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ABSTRACT
Although redshift-space distortions only affect inferreddistances and not angles, they still
distort the projected angular clustering of galaxy samplesselected using redshift dependent
quantities. From an Eulerian view-point, this effect is caused by the apparent movement of
galaxies into or out of the sample. From a Lagrangian view-point, we find that projecting the
redshift-space overdensity field over a finite radial distance does not remove all the anisotropic
distortions. We investigate this effect, showing that it strongly boosts the amplitude of clus-
tering for narrow samples and can also reduce the significance of baryonic features in the
correlation function. We argue that the effect can be mitigated by binning in apparent galaxy
pair-centre rather than galaxy position, and applying an upper limit to the radial galaxy sepa-
ration. We demonstrate this approach, contrasting againststandard top-hat binning in galaxy
distance, using sub-samples taken from the Hubble Volume simulations. Using a simple model
for the radial distribution expected for galaxies from a survey such as the Dark Energy Sur-
vey (DES), we show that this binning scheme will simplify analyses that will measure baryon
acoustic oscillations within such galaxy samples. Comparing results from different binning
schemes has the potential to provide measurements of the amplitude of the redshift-space dis-
tortions. Our analysis is relevant for other photometric redshift surveys, including those made
by the Panoramic Survey Telescope & Rapid Response System (Pan-Starrs) and the Large
Synoptic Survey Telescope (LSST).
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1 INTRODUCTION

The late-time acceleration of the expansion of the Universehas
been one of the most exciting cosmological discoveries in recent
years (Riess et al. 1998; Perlmutter et al. 1999). Understanding the
nature of this acceleration is one of the main challenges facing cos-
mologists. One of the key observational methods that will beused
to help meet this challenge involves using Baryonic Acoustic Os-
cillations (BAO) in the 2-point galaxy clustering signal asa stan-
dard ruler to make precise measurements of cosmological expan-
sion. The acoustic signature has now been convincingly detected
(Percival et al. 2001; Cole et al. 2005; Eisenstein et al. 2005) using
the 2dF Galaxy Redshift Survey (2dFGRS; Colless et al. 2003)and
the Sloan Digital Sky Survey (SDSS; York et al. 2000). The de-
tection has subsequently been refined using more data and better
techniques, and is now producing interesting constraints on cos-
mological models (Percival et al. 2007a,b; Gaztanaga et al.2008;
Sanchez et al. 2009; Percival et al. 2009).

Some of the next generation of sky surveys, including the
Dark Energy Survey (DESwww.darkenergysurvey.org),

⋆ e-mail: kelly.nock@port.ac.uk (KN)

the Panoramic Survey Telescope and Rapid Response System
(PanStarrspan-starrs.ifa.hawaii.edu), and the Large
Synoptic Survey Telescope (LSSTwww.lsst.org), will use
photometric techniques to estimate galaxy redshifts, rather than
more precise estimates from spectroscopic emission lines.The
larger uncertainties on galaxy redshifts induce errors on inferred
distances in the radial direction. The amplitude of the power
spectrum and correlation function is reduced in the radial direc-
tion by this smoothing, removing information. In this scenario,
where little information remains from fluctuations in the radial
direction, it makes sense to use the projected 2-pt functions in
photometric-redshift slices as the statistics to compare with mod-
els (Padmanabhan et al. 2007; Blake et al. 2007). The projection
does not completely remove problems caused by inferring distances
from velocity data (i.e. working in redshift-space).

The distribution of galaxies that we observe in sky surveys,
where we measure radial distances from spectroscopic or photo-
metric redshifts, is not a true 3D picture. We observe an appar-
ent clustering pattern inredshift-space, which is systematically dif-
ferent from the true distribution inreal-space because redshifts of
galaxies are altered from their Hubble flow values by peculiar ve-
locities. For example, on large scales, the infall of galaxies onto
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2 Kelly Nock, Will J. Percival, Ashley J. Ross

Figure 1. The radial distribution of galaxies selected in a bin of width
400 h−1 Mpc, calculated using photometric redshifts to estimate distances
(solid line). This is compared against the distribution of true distances
to these galaxies (dashed line) assuming a photometric redshift error of
σz = 0.03(1 + z). If the photometric redshifts of different galaxies are
independent, then the expected projected correlation function of the photo-z
selected sample, and a sample selected applying the dashed line as a selec-
tion function based on the true distances, are the same.

collapsed objects leads to an apparent enhancement of clustering
in the radial direction as galaxies are projected along their veloc-
ity vectors (Kaiser 1987; Hamilton 1998). When we infer galaxy
distances assuming that the total velocity relative to the observer
comes from the Hubble expansion flow, the result is that we seea
distorted (redshift-space) density field.

For angular measurements, these redshift-space distortions
can alter the angular clustering in a redshift slice becausethe dis-
tortions are correlated across the direction of projection. Although
redshift-space distortions are sub-dominant compared with photo-
metric redshift uncertainties, they give rise to a systematic effect,
which needs to be included when photometric redshift surveys are
analysed (Padmanabhan et al. 2007; Blake et al. 2007). This can
complicate the analysis as the size of the redshift-space distor-
tions, and therefore of this effect, is dependent on the cosmological
model. Consequently, for every model to be tested against the data,
we need to make a revised estimate of the redshift-space effect.

In this paper, we consider the simplified problem in the plane-
parallel approximation, and only consider linear redshift-space dis-
tortions. Both photometric redshift errors and the random motion of
galaxies in clusters provide an additional convolution of the over-
density field along the radial direction. While these effects need
to be corrected in any analysis, the required correction is easily
modelled and can be separated from the linear redshift-space dis-
tortion effects. For a measurement of the projected clustering, in-
cluding such effects is equivalent to simply broadening theradial
window function with which the galaxies were selected. Thisis
demonstrated in Fig. 1. A top-hat bin in photometric redshift gives
the same expected projected correlation function as simplyapply-
ing the convolved version of the bin as a selection function for the
true distances. As we have to include a window function anyway,
we simply assume in this paper that this window already includes

the effects of both photometric redshift errors and the random mo-
tion of galaxies in clusters. In the following analysis, we therefore
assume that there are no redshift errors without loss of generality.

The layout of our paper is as follows. In Section 2 we analyse
the projected overdensity field and redshift-space effectsupon it,
both analytically (Section 2.1 & 2.3) and using Monte-Carlosim-
ulations (Section 2.4). We then consider how the recovered corre-
lation function depends on galaxy binning (Section 3). Mockcata-
logues drawn from the Hubble Volume simulation are constructed
and analysed in Section 4 in order to validate this analytic work.
We incorporate hybrid selection functions based on both real and
redshift-space boundaries into the analysis in Section 5. In Sec-
tion 6 we consider a non-uniform redshift distribution similar to
that of future sky survey DES, and the realistic implementation of
our work is discussed in Section 7.

2 PROJECTED 2-POINT STATISTICS OF THE
OVERDENSITY FIELD

2.1 Correlation Function

In order to simplify the problem, we assume that the clustering
strength does not change across the samples under consideration
and make the plane-parallel (distant observer) approximation, with
redshift-space distortions along the z-axis of a Cartesianbasis. In
the absence of redshift distortions the projected correlation function
is given by:

ξp(dp) = 〈δp(rp)δp(r
′

p)〉, (1)

=

∫ ∫

drzdr
′

zφ(rz)φ(r
′

z)ξ
[

d(rz, r
′

z, dp)
]

(2)

whered(rz, r
′

z, dp) =
√

(rz − r′z)
2 + d2p, and subscriptsx, y

and z denote the direction along each Cartesian axis, andp de-
notes projected quantitiesp ≡ xy. φ(rz) is the radial galaxy se-
lection function, normalised such that

∫

drz φ(rz) = 1, and
ξ(d) = 〈δ(r)δ(r′)〉, whereδ(r) is the overdensity of galaxies at
real-space positionr. Throughout our paper we user to describe a
galaxy position andd to describe the distance between two galax-
ies, so, for example,rz is the position of a galaxy along thez-axis,
while dp is amplitude of the separation between two galaxies when
projected into thex, y-plane.

In reality, our radial position is determined via a redshift. In
this case, Eq. (2) must be altered to

ξsp(dp) = 〈δp(sp)δp(s
′

p)〉. (3)

The weighted, projected overdensity fieldδp(rp) can now be writ-
ten

1 + δp(rp) =

∫

dsz φ(sz)[1 + δ(s)], (4)

wheres = (rp, sz) is the redshift-space position of each galaxy
andφ(sz) gives the galaxy selection function along the line of sight
corresponding tosz (e.g. Peebles 1980).

The difference between the projection in redshift-space and
real-space is shown schematically in Fig. 2. An edge to a window
function (or a contour of constant galaxy density) that is straight in
redshift-space is systematically distorted in real-space. The edge of
the bin is itself clustered with a non-negligible projectedcorrelation
function, i.e. the real-space boundary has a correlation function that
depends onrp. The inclusion or exclusion of galaxies is balanced
in terms of the 3D correlation function within the boundary;while
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δcluster ≫ 0

δvoid ≪ 0

sz, rz

rp

Figure 2. Schematic showing the boundary of a region selected in redshift-
space (solid line) compared with the boundary of the same region in real-
space (dashed line). The boundary is distorted in real-space around an over-
density and an underdensity. The positions of two galaxies whose apparent
motion crosses the boundary are shown in redshift-space (solid circles) and
in real-space (dashed circles). Note that, in this simplified picture where the
under and overdensities have the same amplitude, the galaxypair lost and
the galaxy pair gained would contribute the same amount to the 3D real-
space correlation function, following the dashed boundary. However, the
projected clustering is different because we do not know theshape of the
dashed line, and instead assume that the projection length is the same for
all rx, ry. It is the 2D clustering strength of the boundary, and its correla-
tion with the density field that is important, rather than theloss or gain of
particular galaxy pairs.

we lose voids, we gain clusters and these give the same clustering
signal. However, we assume that the projected field has a constant
projection length, and this implies that the underdensity of the void
will become larger (since we include less of the galaxies) and the
overdensity of the cluster becomes larger (since we will include
more of its galaxies). Thus the overall clustering signal becomes
stronger.

The apparent shift in galaxy positions caused by moving from
real to redshift space(sz − rz) can be treated by Taylor expanding
the selection function (Fisher et al. 1993), which gives to first order

φ(sz) = φ(rz) +
dφ(rz)

drz
(sz − rz). (5)

We consider this to be an Eulerian picture as it is based on apparent
galaxy motions. We can write

δp(rp) =

∫

drz

[

φ(rz)δ(r) + (sz − rz)
∂φ(rz)

∂rz

]

(6)

to first order inδ(r). Following linear theory,(sz − rz) can be
written as a function of the overdensity field,

(sz − rz) = −β
∂

∂rz
∇−2δ(r), (7)

whereβ ≡ f/b, with f being the logarithmic derivative of the
linear growth rate with respect to the logarithm of the scalefactor,
andb the galaxy bias. We therefore have that

δp(rp) =

∫

drz

[

φ(rz)− β
∂φ(rz)

∂rz

∂

∂rz
∇−2

]

δ(r). (8)

If we think of φ(sz) as setting up boundaries insz, then substitut-
ing Eq. (8) into Eq. (3) shows that we can expect coherent appar-
ent galaxy motion across these boundaries. Correlations between
galaxies moved into the sample by the redshift-space distortions,
and those already within the sample, give rise to cross termsfrom
the two terms in Eq. (8). The second term in Eq. (8) also adds a
component to the projected correlation function from the coherence
of the velocities at different points on the boundary. We seethat,
even with constantφ(sz) within a fixed interval, redshift-space dis-
tortions can still affect the correlation function of the volume within
the sample due to the motion of galaxies across the boundary.Mod-
elling the effect of redshift-space distortions based on predicting
galaxy motions (e.g. Regos & Szalay 1995) is difficult because we
need to correlate multiple points on the boundary and internal lo-
cations within the bin.

In addition to the Eulerian picture given by Eq. (8), we can
also consider a Lagrangian picture based on the redshift-space over-
density field that we wish to project. Following this equivalent pic-
ture, we can work directly with redshift-space overdensities using
Eq. (3),

ξsp(dp) =

∫ ∫

dszds
′

zφ(sz)φ(s
′

z)ξ
s
[

d(sz, s
′

z, dp)
]

. (9)

In the plane-parallel approximation, we can use the redshift-space
correlation function of equation 5 of Hamilton (1992) as input into
the projection equation.

ξs(d) = ξ0(d)P0(µ) + ξ2(d)P2(µ) + ξ4(d)P4(µ), (10)

where

ξ0(d) = (b2 +
2

3
bf +

1

5
f2)ξ(d), (11)

ξ2(d) = (
4

3
bf +

4

7
f2)[ξ(d)− ξ′(d)], (12)

ξ4(d) =
8

35
f2[ξ(d) +

5

2
ξ′(d)−

7

2
ξ′′(d)], (13)

Pi are the standard Legendre polynomials, and

ξ′(d) ≡ 3d−3

∫ d

0

ξ(d′)(d′)2dd′, (14)

ξ′′(d) ≡ 5d−5

∫ d

0

ξ(d′)(d′)4dd′. (15)

b is the large-scale bias of the galaxy population being consid-
ered,f is the standard dimensionless linear growth rate,ξ is the
3-dimensional real-space correlation function, andµ is the cosine
of the angle between the separation along the line of sight and the
transverse separation,µ ≡ |sz − s′z|/d. One strong advantage of
the Lagrangian framework is that it is straightforward to determine
the projected correlation function, even when the galaxy selection
function is discontinuous. This allows simple comparison between
the results one expects to obtain with and without redshift-space
distortions.

2.2 The Limber approximation

For pairs of galaxies, we can define the meanmz ≡ (rz + r′z)/2
and separation along the z-axisdz ≡ rz − r′z. For a survey whose
depth is larger than the correlation length, and with a slowly vary-

c© 2008 RAS, MNRAS000, 1–13
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ing selection function, so thatφ(rz) ≃ φ(r′z) ≃ φ(mz), Eq. (2)
reduces to the Limber equation in real-space (sz − rz = 0)

ξp(dp) =

∫ +∞

−∞

dmz φ2(mz)

∫ +∞

−∞

ddz ξ
(

√

d2p + d2z

)

. (16)

We see that, for the Limber approximation,φ is a function ofmz

alone, and the integrals overdmz andddz in Eq. (17) are separable.
In redshift-space, a similar reduction of Eq. (9) gives

ξsp(dp) =

∫ +∞

−∞

dmz

∫ +∞

−∞

ddz

[

φ(mz)− β
∂φ(mz)

∂mz

∂

∂rz
∇−2

]2

× ξ
(

√

d2p + d2z

)

, (17)

if we expand redshift-space distortions in(sz − rz), or

ξsp(dp) =

∫ +∞

−∞

dmz φ2(mz)

∫ +∞

−∞

ddz ξs
(

√

d2p + d2z

)

, (18)

in the Lagrangian picture. Because no galaxies are lost or gained
moving from real-space to redshift-space, the result of theintegral
overdz is the same in real or redshift space, so we see that in this
approximation there are no redshift-space effects. But, aswe show
later, this picture is too simplistic to be applied to the analysis of
future data sets.

2.3 Power Spectra

In Padmanabhan et al. (2007), the projection of the 2-pt clustering
was analysed through the power spectrum. We now consider such
an approach in the plane-parallel approximation and for a Cartesian
basis. Taking the Fourier transform ofδ(s) in Eq. (4) gives

δp(rp) =

∫

dsz φ(sz)

∫

d3k

(2π)3
δ(k)e−ik·s. (19)

We now define a window function

W (kz) =

∫

dsz φ(sz)e
−ikzsz , (20)

and use statistical isotropy and homogeneity within the definition
of the power spectrum〈δ̂(k)δ̂∗(k′)〉 = P (k)δD(k − k

′), where
δD is the Dirac delta function. We assume that the power spectrum
does not evolve over the volume covered by the window1. Taking
the 2-point function of the projected overdensity (Eq. 19) gives

ξp(dp) = 〈δ̂p(rp)δ̂(r
′

p)〉 (21)

=

∫

dk3

(2π)3
W 2(kz)P (k)e−ikp·(rp−r′

p
). (22)

The projected overdensity can be written in terms of a 2D power
spectrumPp(kp),

ξp(dp) =

∫

dkx dky
(2π)2

Pp(kp)e
−ikp·(rp−r′

p
). (23)

If we compare Eqns. (22) & (23), we see that

Pp(kp) =

∫

dkz
(2π)

W (kz)
2P
(

√

k2
p + k2

z

)

. (24)

Note that the powerP (k) depends on the amplitude of the full 3-
dimensional wavevector, and so is dependent onkp.

Using Eq. (5) to include redshift-space distortions, the window
W (kz) has an extra term,

1 This is true if analysing a single time slice from a simulation

W (kz) =

∫

drz

[

φ(rz) + (sz − rz)
dφ(rz)

drz

]

e−ikzrz . (25)

In Fourier space,(sz − rz) = −β(k2
z/k

2)δ(r), so we can ex-
pandδ(s) to 1st order inδ(r), leaving a new window function for
Eq. (24)

W (kz) =

∫

drz

[

φ(rz)− β
(

kz
k

)2 dφ(rz)

drz

]

e−ikzrz . (26)

If we drop the plane-parallel approximation and expand in
Spherical Harmonics, the standard result (Peebles 1973) is

〈|alm|2〉 =
1

2π2

∫

dk k2P (k)W 2(k), (27)

where

W (k) =

∫

dr φ(r)jl(kr) +
β

k

dφ(r)

dr
j′l(kr). (28)

Here thel dependence is contained withinW (k), while in Eq. (24),
it was the power that depended onkp. Eq. (24) could have been
rewritten by changing the variable of the convolution integral to k
to match.

2.4 Monte-Carlo simulations of the projection effect

In order to test the projection formulae presented in Sections 2.1
& 2.3 without redshift-space distortions, we have used Monte-
Carlo realisations ofδ-function real-space correlation functions in
a similar vein to that of Simpson et al. (2009). We work in a plane
parallel approximation throughout and construct a real-space 3D
δ-function correlation function at an arbitrary locationd0 such that

ξ(d) = δD(d− d0) ξ0, (29)

whereδD is the standard Dirac delta function. We do this by intro-
ducing a pre-determined excess of data pairs at the locationd0.
The number of excess pairs we introduce depends on the value
of ξ(d0) we require and is determined using the natural estima-
tor ξ = D/R − 1. For example, if we have a uniform distribution
of data and random pairs with100, 000 pairs per bin of separation,
we would require an excess of10, 000 data pairs at the location
d0 for ξ(d0) = 0.1. In doing this we create an unnormalised 3D
δ-function correlation function.

Changing the variables in the inner integral of Eq. (16) to bea
function of 3D pair separationd gives

ξp(dp) =

∫ ∫

V

dmz dd φ2(mz)
2ξ(d) d
√

d2 − d2p
, (30)

and is simplified for theδ-function case such that

ξp(dp) =
2

πd0

∫

dmz φ2(mz) ξ0
d0

√

d20 − d2p
. (31)

The factor1/πd0 accounts for the fact that theδ-function real-
space correlation function was unnormalised. By introducing a ra-
dial window, we are preferentially selecting pairs of galaxies from
the sample. A further volume reduction normalisation is required in
Eq. (30) to account for this. The excess probability of finding two
galaxies in areasδA1 andδA2 with a 2D projected separationdp is
the sum of all the probabilities of finding two galaxies in volumes
δVi andδVj along the radial axis atall 3D separationsd. That is,

1+ξp(dp) =
n̄V

2

n̄A
2

1

δA1δA2

(

∑

i

∑

j

[1 + ξ(dij)]δViδVj

)

.(32)
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Redshift-space distortions and projected clustering 5

Figure 3. Projected correlation functions calculated for a 3-dimensional
δ-function correlation function centred ond3D = 90 h−1 Mpc, with no
radial window (solid symbols) and with a top-hat window in radial distri-
bution of width 100 h−1 Mpc (open symbols). Models calculated using
Eq. (31) are shown by the solid lines.

In Fig. 3 we show the clustering expected for a projection of
a density field created from aδD-function 3D correlation function
in the case where there is no window function (solid symbols)and
for a window function of width 100h−1 Mpc (open symbols). The
excess of pairs that exists at a single scale in 3D is projected onto
a range of scales, up to and including this scale, in 2D. The projec-
tion window leads to a damping of power on all scales. This effect
depends upon the window size; as we move to smaller projection
windows the effect of the projection is decreased andξ2D → ξ3D .
The projection of a more general density field, where there isclus-
tering on a range of scales, can be considered as the linear combi-
nation of the projections of a series ofδD-function 3D correlation
functions. The trends observed in this analysis will help usto inter-
pret the behaviour of the projected correlation function inthe more
general situation analysed in later sections.

3 BINNING GALAXY SAMPLES

Future surveys will automatically have a standard selection func-
tion caused by the changing cosmological volume, the number
density of galaxies as a function of redshift, and selectioneffects
such as a magnitude limit below which we cannot observe galax-
ies or obtain accurate photometric redshifts. In addition to this dis-
tribution we will wish to bin galaxies based on their photomet-
ric redshifts in order to analyse the evolution of galaxy proper-
ties and/or cosmology across the sample. We now consider how
the way in which this sub-division is applied affects the importance
of redshift-space distortions.

One simple approach would be to bin galaxy positions in red-
shift, equivalent to atop-hat binning. Such galaxy selection means
that galaxy pairs, where galaxies lie in different bins, arenot in-
cluded in the estimate of the correlation function. This exclusion of
pairs leads to the observed difference between the projected real-
space and redshift-space correlation function, as described in Sec-

1

2

3

A

B

C

D

Figure 4. A schematic representation showing how galaxy pairs are se-
lected using top-hat and pair-centre binning schemes. Using a top-hat bin-
ning scheme, where galaxy pairs are selected according to the position of
each individual galaxy, pairAB would be placed in redshift bin 2, whereas
pairCD would not be placed in any bin, and would simply not be counted
in an analysis. In contrast, the pair-centre binning schemewould place both
pairs in bin 2.

tion 2.1. An alternative to this approach, considered here,would be
to bin galaxy pairs rather than individual galaxies.

A simple argument shows that in an ideal situation, applying
a binning based on the centre of galaxy pairs in the radial direc-
tion, which hereafter we refer to aspair-centre binning, can com-
pletely remove the effect of redshift-space distortions while retain-
ing information about the evolution of the correlation function. A
schematic representation of this binning scheme is shown inFig. 4.
Consider the galaxy pair defined by galaxiesA andB: the posi-
tions of both galaxies and their pair-centre are within redshift slice
2. This pair would therefore be included in analyses conducted on
this slice in both top-hat and pair-centre binning schemes.The po-
sitions of galaxiesC andD span two separate redshift slices and
therefore the pair they define would not be included in an analysis
of either slice 2 or 3 when using a top-hat binning scheme. How-
ever, this pair would be included in an analysis of slice 2 when
using the pair-centre binning scheme. This schematic demonstrates
both the pair-centre binning scheme and the fact that such a scheme
includes all pairs within an analysis.

Suppose that we have a clustered distribution ofD galaxy
pairs of separationr with a uniform sampling function along the
z-axis in a large volume that would containR pairs if galaxies were
randomly distributed. Because of the large volume assumption, we
can assume that boundary effects for this sample are negligible.
Therefore, redshift-space distortions have no effect for the full cat-
alogue for which our estimate ofξp(dp) is ξ̂p(dp) = D/R − 1.
Now suppose the sample is split inton sub-samples, based on the
redshift-space positions of the centres of the pairs withinequal vol-
umes, chosen independently of the observed galaxy distribution.
Then all pairs are still counted in some bin; none are lost or gained
as opposed to galaxy based selection functions. For the subsam-
ples,〈D′〉 = D/n, R′ = R/n, and〈ξp(dp)〉 is unchanged from
the value for the full sample. This is true regardless of bin size. The
key difference here, compared with considering a set of binsbased

c© 2008 RAS, MNRAS000, 1–13



6 Kelly Nock, Will J. Percival, Ashley J. Ross

Figure 5. Top panel: the normalised radial distribution of galaxies (solid
line) and pair-centres (dashed line) for the distribution of galaxies in a top-
hat bin of width100 h−1 Mpc. These are compared with the distributions
of galaxies (dot-dash line) and pair-centres (dotted line)for galaxies whose
pair-centre is within a50 h−1 Mpc bin, and withdz < 100 h−1 Mpc.
Bottom panel: comparison of the radial pair separations (dz), between top-
hat (solid line) and pair-centre (dashed line) binning.

on galaxy selection, is that no pairs are left out, so the expected
correlation function has to be the same for all bins.

For a sample where we do not know the true distance to each
galaxy, but instead rely on photometric redshifts, binningbased
on apparent pair centre will also remove redshift-space distortions.
The above argument based on pair conservation will also holdin
this situation.

The radial distributions of galaxies and pair-centres along with
the distribution of radial pair separations for top-hat andpair-centre
binning schemes are compared in Fig. 5. For measuring the radial
evolution of clustering through binned projected correlation func-
tion measurements, there is no obvious advantage to either scheme.
This is particularly true when photometric redshifts are used to es-
timate radial positions, as it is then impossible to select galaxies
from non-overlapping radial bins (see Section 7).

We therefore see that we can add boundaries based on pair-
centres and analyse projected clustering in bins without being af-
fected by redshift-space distortions. However, there are two prob-
lems with applying this approach in practise:

(i) galaxy pairs of wide separation now have to be included,

(ii) galaxy surveys typically have flux limited boundaries,which
cause redshift dependent effects that cannot be removed by any
binning. However, this effect can be removed byk-correcting the
observed luminosities and cutting the sample at a more stringent
k-corrected luminosity limit. We now investigate this further.

3.1 Flux-limited Selection Functions

Peculiar velocities can directly influence galaxy brightness through
relativistic beaming, but such effects are small for typical galaxy
peculiar velocities. Redshift distortions would additionally change
the apparent magnitudes through thek-correction, potentially caus-
ing galaxies to either enter or exit flux-limited samples. The change
in apparent magnitude will correlate with bulk-flow motionsand
thus the boundary of the survey in real-space will fluctuate in a
manner analogous to that described in Fig. 2. In this situation, the
amplitude of the effect and whether it enhances or reduces the real-
space clustering signal will depend on galaxy type and the band
used for detection, but for a homogeneous sample of galaxies(e.g.
Luminous Red Galaxies) one would expect that this effect will be
significant.

This redshift-space effect is simple to remove -k-corrections
derived by fitting to galaxy spectra will correct for spectral shifts
caused by both the Hubble flow and any peculiar velocities. It
therefore makes sense to select galaxy samples after applying the
k-correction, and cutting back from survey boundaries basedon
apparent magnitude, until no galaxies outside the originalsample
would be expected to pass the revised boundary. This is not asoner-
ous as it sounds as one has to do this to create true volume-limited
catalogues.

Given purely photometric data,k-corrections can only be es-
timated given a photometric redshift and spectral-type fit,and are
therefore unreliable for individual galaxies. For this reason, and the
fact that cutting back from the survey boundary removes a large
amount of data,k-corrections have not always been applied to ap-
parent magnitude limits (e.g. Ross & Brunner 2009 select galaxies
with de-reddenedr < 21 for their parent sample). We therefore
now consider the amplitude of the effect. One can express thefluc-
tuation in magnitude,δm, as

δm = dkcorr/dzδz (33)

whereδz is the magnitude of the redshift distortion. This will cause
fluctuations in the effective depth of the survey such that

DM(zeff )−DM(z) = δm (34)

whereDM(z) is the distance modulus,zeff is the effective depth
and z would be the predicted depth. The SDSS DR7 photomet-
ric redshift table includes estimatedr-bandk-corrections for ev-
ery galaxy. Studying galaxies with type-value equal to 0 (the most
early-type), one can determine thatdkcorr/dz ∼ 3.3 at z = 0.4.
For an arbitraryδz, this dkcorr/dz yields zeff − z = 0.5δz.
For example, assuming bulk flows have a velocity∼ 103km/s —
thereby imparting redshift distortions at the∼ 1% level (δz =
0.004) — they impart coherent fluctuations in apparent magnitude
equivalent to 0.013 magnitudes (in ther-band). Atz = 0.4, these
fluctuations in magnitude imply a change in the survey depth of
zeff − z = 0.002 (0.5%). Thus, the redshift distortions caused by
selecting a flux-limited sample of galaxies can be as large as50%
of those caused by selecting a sample in redshift. Therefore, even
for a flux limited selection function, redshift distortionsmay be im-
portant. The size of the effect depends on the slope ofkcorr(z), and
one can minimise the effect by carefully choosing the band used for
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selection and the type(s) of galaxies included in the sample. (One
can envision cases where slope of the averagek-correction is zero,
thus removing any effect even before applyingk-corrections.)

4 ANALYSIS OF HUBBLE VOLUME SIMULATIONS

In order to test the effect of redshift-space distortions onthe pro-
jected correlation function for a realistic non-linear distribution of
galaxies, we have analysed results from theΛCDM Hubble Volume
(HV) simulations (Evrard et al. 2002). TheΛCDM HV simulation,
covering a(3000 h−1 Mpc)3 box, assumes a cosmological model
with Ωm = 0.3, ΩCDM = 0.25, Ωb = 0.05, ΩΛ = 0.7, h = 70,
σ8 = 0.9, & ns = 1.

We make a number of simplifications in order to help with
the calculation of projected real-space and redshift-space correla-
tion functions. For each sample to be analysed, along the twonon-
projection axes, we use the periodic nature of the numericalsimu-
lation to eliminate boundaries. This means that we can confidently
use the natural estimatorξ+1 = D/R, where the expected number
of galaxy pairs in the absence of clusteringR can be calculated ana-
lytically. We also do not introduce a galaxy-bias model, andassume
that galaxies Poisson sample the matter particles. The inclusion of
such a model would not alter the conclusions of this work.

We start by applying a top-hat selection function to the galaxy
positions, calculating projected correlation functions for window
widths 50h−1 Mpc and 100h−1 Mpc in real and redshift space.
Fig. 6 shows the correlation function after reducing noise by
averaging over30 samples (100h−1 Mpc bins) or 60 samples
(50h−1 Mpc) bins. In real-space the projected correlation function
tends towards the 3D correlation function at large scales, as ex-
pected. In line with the analysis presented in Section 2.4, the scale
at whichξp becomes∼ ξ3D is larger for the 100h−1 Mpc bin. For
each bin size, the inclusion of redshift-space distortionsclearly has
a strong effect and this effect grows dramatically as the scale gets
larger. Notably, it is larger even than the effect of redshift-space
distortions on the 3D spherically averaged correlation function (or
power spectrum). The effect is enhanced in the narrower projection
window. As well as increasing the amplitude of the projectedcor-
relation function, we see that redshift-space distortionsalso act to
wash out the baryon acoustic oscillation signal.

Selecting galaxy pairs solely based on the position of their
pair-centre removes the effect of redshift-space distortions. To see
this, suppose we split along the projection axis intoN slices, and
average theDD counts over all slices. Then the average is inde-
pendent ofN as all pairs are counted however many bins are se-
lected. In addition, the periodic nature of the simulation means that
no pairs are gained or lost between real-space and redshift-space:
we always count all pairs of galaxies, so there will be no change
in the measured correlation function. As explained in Section 3.1,
if we select based on an apparent magnitude limit, we can remove
redshift distortions by applying a more stringent magnitude limit
based onk-corrected luminosities. Here we have to cut the lumi-
nosity limit back to make sure that the new sample is complete,
in that it contains all of the possible galaxies. However, there is a
further practical problem in that including galaxy pairs with wide
radial separation might complicate the modelling of cosmological
evolution required to fit the correlation function. Consequently, it
might be difficult to analyse the measured correlations function for
a pair-centre binned sample in practice.

We therefore introduce aconstrained pair-centre binning
scheme that includes an upper limit on the pair separation along the

Figure 7. The expected ratio of the projected correlation functions in
redshift-space and in real-space, averaged for “angular” separations be-
tween40 h−1 Mpc and80h−1 Mpc, as a function of bin width. The solid
line show the difference as a function of the width of the top-hat window.
The dashed line show the result for constrained pair-centrebinning as a
function of an additional constraint placed on the radial galaxy separation.
We have plotted results (and therefore matched filters) as a function of the
mean radial galaxy separation.

projection axis, in addition to pair-centre binning. This is equiva-
lent to locatingeach galaxy included in the analysis in the centre
of a top-hat bin. We should expect that the effect of redshift-space
distortions will be reduced compared with binning galaxy distri-
butions in a top-hat with the same width, as boundaries will only
affect galaxy pairs with the maximum radial separation, whereas
for top-hat bins they affect galaxy pairs with a range of radial sep-
arations (see Fig. 5). Results calculated using this binning scheme
are shown in Fig. 6. Here we see that the effect of redshift-space
distortions is reduced, especially for the larger|dz| limit.

In order to investigate the effect of different binning schemes
further, Fig. 7 shows a comparison on the large-scale redshift-space
and real-space correlation function amplitude. These are averaged
for galaxy separations between40h−1 Mpc and80 h−1 Mpc. We
have plotted these as a function of average radial galaxy separa-
tion, in order to compare filters in an unbiased way. We clearly see
that, when binning radially using the constrained pair-centre bin-
ning scheme, the effect of redshift-space distortions is significantly
reduced.

The relative importance of redshift-space distortions depends
on the average galaxy bias of the populations being considered;
there is a balance between the impacts ofb andf in Eq. (10). In
order to demonstrate this, Fig. 8 shows that the relative effect of
redshift-space distortions decreases as the bias of the galaxy sample
analysed increases. This explains why the effect of redshift-space
distortions was reduced in the work of Baldauf et al. (2009).

In this section, we have considered the cases of a top-hat or
pair-centre galaxy selection. We have argued that while, inprin-
ciple, pair-centre binning removes the effects of redshift-space dis-
tortions providedk-corrections are included when magnitude limits
are applied, there are good reasons to remove galaxies of wide sepa-
ration if we are to measure the evolution in the correlation function.
Therefore, in Section 6, we will test how these binning schemes
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Figure 6. Top row: Correlation functions calculated from Hubble Volume data in radial bins of width 50h−1 Mpc and 100h−1 Mpc. Solid symbols are
plotted where the correlation function is positive, while open symbols show where the correlation function is negative. Bottom row: Correlation functions
calculated from Hubble Volume data for galaxy pairs selected based on constrained pair-centre binning scheme with boththeir pair-centres and radial separation
less than 50h−1 Mpc or 100h−1 Mpc. 1σ error bars are plotted in both cases, assuming that the slices analysed draw correlation functions from a Gaussian
distribution. The dotted line gives the 3D HV correlation function,ξHV , (plotted assumingr = rp) as measured from the simulation. The solid lines denote
the projected correlation function one expects in real-space withξHV as the 3D correlation function (lower curves in each panel),and in redshift-space using
Eqns. (9) & (10) to estimate the 3D redshift-space correlation function fromξHV (upper curves in each panel).

work when the background galaxy distribution has a more realis-
tic radial distribution, similar to that expected for a survey like the
Dark Energy Survey. Before we can do that, we need to consider
the case where we have a boundary that consists of a mix of real-
and redshift-space constraints.

5 DEALING WITH HYBRID SELECTION FUNCTIONS

In practice, the radial selection function will be dependent on both
observational constraints such as the limiting apparent magnitude
of the survey, and additional binning. One expects that the bound-
ary based on observational constraints can be treated as a real-space
boundary (though, this even, is not so simple; see Section 3.1).
Thus, when one applies a top-hat selection in redshift to an ob-
served sample of galaxies, the resulting boundaries of the selec-
tion function will include both real-space and redshift-space com-
ponents.

Fig. 9 shows a schematic representation of a top-hat selection

in redshift made at positionssz1 andsz2 along a non-uniform real-
space radial selection function. It shows that we can split galaxies
within this bin into three sub-samples, with different boundaries:

• As (redshift-redshift): Selected with both boundaries in
redshift-space.
• Bh (redshift-real): Selected with one boundary in real-space

and one boundary in redshift-space (hybrid-space).
• Cr: Selected with both boundaries in real-space.

The real-space and redshift-space boundaries of Fig. 9 are repre-
sented by solid and dotted lines respectively. Any auto-correlation
of galaxies with this selection function will essentially be a
weighted sum (based on the amplitude of the selection function)
of the auto-correlations of galaxies within the individualsubsam-
ples and the cross-correlations of galaxies in different subsamples.

In order to investigate the projected clustering of these dif-
ferent subsamples, we have drawn samples of particles from the
HV simulation (see Section 4), created in top-hat bins of width
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Figure 8. The expected ratio of the projected correlation functions in
redshift-space and in real-space, averaged for “angular” separations be-
tween40h−1 Mpc and 80h−1 Mpc, as a function of galaxy bias, as-
suming aΛCDM cosmology withΩm = 0.25. The solid line show the
difference as a function of the width of the top-hat window. The dashed line
show the result for constrained pair-centre binning as a function of the ad-
ditional constraint placed on the radial galaxy separation. As in Fig. 7, we
have plotted results (and therefore matched filters) as a function of the mean
radial galaxy separation.

rz, sz

φ(rz)

sz1 sz2

As

Bh

Cr

Figure 9. Schematic representation of an evolving real-space radialselec-
tion function with populationsAs, Bh andCr defined according to where
a top-hat bin with redshift-space boundaries atsz1 andsz2 intersect the
radial selection. Populations have boundaries in:As redshift-space,Bh

hybrid-space andCr real-space.

100hMpc−1. SampleAs has top-hat selection boundaries in
redshift-space, sampleBh has one real-space and one redshift-
space boundary, while sampleCr has both boundaries in real-
space. These samples cover the same region of the simulation.

Fig. 10 shows the projected auto-correlation functions for
these subsamples. The measuredξp for theCr andAs samples are
essentially the same as those shown in the top-right panel ofFig. 6,
and just as before they return the expected real and redshift-space
correlation functions calculated via Eqns. (9) & (10). However, the
hybrid-space correlation function,ξhp of sub-sampleBh has an am-
plitude that lies in-between those of the pure real and redshift-space

Figure 10. The average recovered auto-correlation function (solid circles)
for galaxies from 90 samples drawn from the Hubble Volume simulation us-
ing three different radial selections, each with top-hat width 100 h−1Mpc.
These are compared against model correlation functions calculated for dif-
ferent galaxy samples Eq. (36). The three radial selectionsare: 1) two
real-space boundaries (lowest points), which best matchesthe model calcu-
lated using the real-space correlation function, 2) two redshift space bound-
aries (highest points), which best matches the model calculated using the
redshift-space correlation-function and, 3) a real-spaceboundary on one
side and a redshift space boundary on the other side (points in the middle),
which best matches the model calculated using the geometricmean of the
real- and redshift-space correlation functions.

correlation functions. We find that we can effectively modelξhp
by assuming the underlying 3D overdensity field has a correlation
functionξh given by

ξh + 1 =
√

(1 + ξr)(1 + ξs). (35)

Note that we are usingξr to represent the real-space 3-dimensional
correlation function. As can be seen in Fig. 10, this model iswell-
matched to the measuredξp. The justification for this model is that
the multiplicative boost to the projected density fluctuations (R if
we consider thatξ = D/R − 1) can be decomposed into multi-
plicative contributions from each boundary. Following this model,
we should find that the relative effect of redshift-space distortions
on each population, and their cross-correlations, are simply pro-
portional to the number of redshift-space boundaries present. If we
choose galaxies from a sample withn ∈ {0, 1, 2} redshift-space
boundaries, and another from a sample (possibly the same one)
with m ∈ {0, 1, 2} redshift-space boundaries, then expected corre-
lation function is given by

ξh + 1 = (1 + ξr)1−l/4(1 + ξs)l/4, (36)

wherel = m+ n.
Fig. 11 displays the cross-correlations between the our three

HV subsamples. As expected, the model calculated using the ap-
propriateξh from Eq. (36) is the closest match to the measured
cross-correlation in every case. All of the models do over-predict
all three measurements at large scales, but we believe this is re-
flective of the error associated with our measurements (one would
expect it to be covariant between each sample as they all sample the
same density field). It is possible that we are seeing effectscaused
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Figure 11. The average measured cross-correlation functions from 90 radial
slices of width 100 h−1Mpc in real-space, redshift-space or a hybrid with
one real-space and one redshift-space boundary, each containing 106 galax-
ies (solid circles). These are compared against the modelξhp of Eq. (36)
(solid lines), for different total numbers of redshift boundaries. The ampli-
tude of both model and data correlation functions increase with increasing
dependence on the redshift-space correlation function.

by the coherence of the boundaries with each other that wouldbe
removed for wider bins, such as those we consider in Section 6.

Given a hybrid selection function such as that shown in Fig. 9,
we must split the sample into populations where we can assume
simple boundary conditions for each. In fact, we can consider
solving the projection equation (e.g. Eqns. 2 & 9 in real-space
and redshift-space) by Monte-Carlo integration over pairsof radial
galaxy locations. For each pair of locations we can determine the
relative contributions from galaxies in each of the subsamples, and
therefore construct a full model for the correlation function.

6 IMPLICATIONS FOR FUTURE PHOTOMETRIC
REDSHIFT SURVEYS

A number of extremely wide angle imaging surveys are planned
over the next few years: the Dark Energy Survey (DES), the
Panoramic Survey Telescope & Rapid Response System (Pan-
Starrs) and the Large Synoptic Survey Telescope (LSST). Onegoal
of these surveys is to constrain the current acceleration ofthe Uni-
verse. In general, one can hope to use such surveys to make four
measurements of dark energy using complimentary techniques:
cluster counting, BAO, weak lensing and supernovae. In thispa-
per we consider BAO measurements. For these experiments, radial
distances to galaxies will be estimated from photometric redshifts,
so there will be little information in the radial direction on the scale
of BAO. Consequently, analyses will tend to rely on making pro-
jected galaxy clustering measurements in redshift slices that are
sufficiently narrow to be able to reveal cosmological acceleration.

In order to assess the effect of redshift-space distortionson
such measurements, we now consider one of these surveys, DES,
in more detail. The DES will use a 500 Mega-pixel camera on the
Blanco 4-metre telescope in Chile to conduct a galaxy surveyover
a sky area of 5000 deg2. Multi-band observations usingg, r, i andz

Figure 12. Approximate redshift distribution similar to that expected from
the Dark Energy Survey. In order to use this distribution of galaxies to eas-
ily measure cosmological acceleration using projected clustering measure-
ments, this population will have to be subdivided or binned in redshift.

Figure 13. Top panel: normalised radial selection functions for top-hat
slices of width400h−1 Mpc created from a DES-like distribution. Bot-
tom panel: We also consider bins in radial galaxy pair-centre of the same
width 400 h−1 Mpc. While we bin in distances derived from photomet-
ric redshifts (solid lines), the true distribution of radial galaxy distances is
shown by the dashed lines.
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filters will allow photometric redshifts to be obtained overa range
0.2 < z < 1.4. The expected redshift distribution of the galaxies
will be approximately2

φDES(z) ∝
(

z

0.5

)2

exp
(

−
z

0.5

)1.5

, (37)

after applying approximate survey depths to basic luminosity func-
tions. This function is plotted in Fig. 12. This distribution of galax-
ies will then be sub-divided into bins in order to assess the evo-
lution of the BAO scale across the survey. As discussed above,
measurements of the projected correlation function will beaf-
fected by redshift-space distortions, which will increasethe signal
strength and decrease the importance of BAO features. We now
consider how the choice of binning methodology affects the impact
of redshift-space distortions.

We consider splitting this galaxy distribution into five redshift
slices each of width400 h−1 Mpc for distances estimated from
photometric redshifts, assumed to be Gaussian withσz = 0.03(1+
z). These bins cover radial distances of500 → 2500 h−1 Mpc, re-
lated to redshiftsz = 0.15 to z = 1.06 (assuming a flatΛCDM
cosmology withΩm = 0.25. The upper panel of Fig. 13 shows the
distributions of galaxies in these slices. The lower panel of Fig. 13
shows the redshift distributions when we bin the galaxies based on
the centre of the radial separation, calculated from the photometric
redshifts. Because we are using photometric redshifts, there is no
way to bin without leaving overlap in the true radial distributions.
Consequently, the top-hat binning scheme does not provide an ob-
vious advantage over other schemes in terms of analysing disjoint
regions.

In light of the discussion in Section 3.1, we consider both the
case in whichφDES is treated as a real-space boundary (results pre-
sented in Fig. 14), and the case in which it is treated as a redshift-
space boundary (as may be the case when the slope ofkcorr(z) is
especially large; results presented in Fig. 15). For the hybrid bound-
ary, we employ the techniques described in Section 5 to determine
the full form of the projection. When we treatφDES as a redshift-
space boundary, we can simply use Eq. (2) & (9) to determineξp
in real and redshift-space.

The left-hand panels of Figs. 14 and 15 show the expected
projected correlation functions when a top-hat binning scheme is
applied with width 400h−1 Mpc. Even for this large bin width,
in every radial bin there is a significant difference betweenthe re-
sult obtained using the redshift-space correlation function and the
real-space correlation function. The difference is made clear by ob-
serving the ratios between the two, displayed in the bottom panels.
The ratios are slightly higher in the case where we treatφDES as
a redshift-space boundary (Fig. 15), and the difference between the
two treatments is largest for the lowest redshift bin (whichhas its
selection most affected by the overall DES selection). In every case,
the ratio is significant (∼ 1.5) around 100h−1 Mpc and the shape
of the predictedξp andξsp measurements differ substantially.

The effects of redshift distortions are completely removed
when a pair-centre binning scheme is employed and theφDES

boundary is assumed to be real-space, as made clear in the middle
panel of Fig. 14. Based on the discussion in Section 3, we can sim-
ply use Eq. (2) for both and thus their ratio is identically 1.Even
when theφDES boundary is assumed to be in redshift-space, as
displayed in the middle panel of Fig. 15, the difference between the
redshift-space and real-space model is considerably smaller than

2 We thank the DES LSS working group for providing this approximation

for the top-hat binning. The right-hand panels of Figs. 14 and 15
show that even if one applies the constraint that the separation be-
tween pairs be less than400 h−1 Mpc to be included in a con-
strained pair-centre bin, redshift space distortions introduce a much
smaller effect than for a top-hat binning scheme.

7 DISCUSSION

Redshift distortions produce a strong effect on projected clustering
measurements — one that is far stronger than the redshift-space dis-
tortion effect on the 3D clustering signal for galaxy samples with
low bias and a narrow radial window. It is clear that redshiftdistor-
tion effects must be included when modelling the projected galaxy
clustering in redshift slices.

If we consider the apparent motion of galaxies as we move
from real- to redshift-space, then redshift-space distortions cause
an apparent coherent motion of galaxies into and out of samples.
This is true whether samples have sharp boundaries, or if these-
lection function changes more gradually with distance. In fact, we
have argued that such motion does not in itself alter the projected
correlation function — we would recover the real-space projected
correlation function if we could correct for the movement ofthe
boundary (i.e. allow for the depth of the survey to change with the
distortions). However, this is not easy to do, although it istheo-
retically possible and is an interesting alternative approach. The ef-
fect of redshift-space distortions is due to the redshift-space bound-
aries themselves having an angular clustering signal, and their cor-
relation with the overdensity field. We can alternatively view the
effect from a Lagrangian standpoint, where we have to consider
that the projection does not remove redshift-space effectsfrom the
anisotropic correlation function.

We have used Hubble Volume simulations to show that the
projected correlation function can be modelled most easilyby in-
tegrating the redshift-space correlation function over the radial se-
lection function. Galaxy selection will often be a mix of real and
redshift-space constraints, and we have shown that this canbe mod-
elled by splitting the population into samples that can be considered
to have top-hat windows in either real-space, redshift-space or a
hybrid of the two. In the hybrid situation, the projected correlation
function can be modelled using both the real-space and redshift-
space correlation function over the radial selection function, and
that more complicated selection functions can be effectively mod-
elled in a similar manner. Prior to this publication, no-onehas con-
sidered how these hybrid selection functions affect the recovered
projected clustering signal.

7.1 Pair-Centre Binning

We have presented a new measurement technique,pair-centre bin-
ning, and shown that it minimises the effects of redshift space dis-
tortions. In this new scheme, we only include galaxies wheretheir
apparentpair-centres lie within a given radial bin, whereas tradi-
tional methods select pairs where both galaxies lie within the bin.
The new scheme includes individual galaxies that lieoutside the
traditionally applied top-hat boundaries. This simple modification
acts to reduce the effect of the coherent movement of galaxies be-
tween slice boundaries on projected correlation function clustering
analyses. It is important to note that this new technique does not
prevent the movement of galaxies between slices; redshift-space
distortions due to peculiar velocities will always exist inthe radial
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Figure 14. Top panels: Real-space (dashed lines) and redshift-space (solid lines) correlation functions predicted for the 5 radial bins drawn from the DES-like
selection function, assuming it can be treated as a real-space boundary. Bottom panels: The ratio between the redshift-space and real-space projected correlation
function. Here different line styles correspond to different bins: in the order of increasing redshift, they are solid,dashed, dot-dash, dotted, dot-dot-dash. From
left to right: Top-hat bins of width400 h−1 Mpc in the radial direction, pair-centre bins of width400 h−1 Mpc, and constrained pair-centre bins of width
400 h−1 Mpc, including an additional constraint on the radial separation of |dz| < 400 h−1 Mpc.

Figure 15. As Fig. 14, only in this case we treat the DES selection function as a redshift-space boundary.

direction. It simply makes sure that they do not produce a coherent
effect on the measurements.

There are two potential disadvantages of the pair-centre bin-
ning scheme. One is the fact that the same galaxy may be included
in multiple radial bins — thus introducing a correlation between
radial bins. Another is the fact that such a scheme results innec-
essarily wider radial bins, which causes the clustering signal to be
diluted. We do not feel that either is a large problem. Applying
the more traditional top-hat binning scheme to photometricsurveys
necessarily results in overlapping radial bins (due to photometric
redshift errors) and there will always be considerable covariance
between radial bins selected with photometric redshifts — we do

not think that pair-centre binning will make this problem consid-
erably worse. The dilution effect can be mitigated by imposing a
maximum separation between the pairs included in a pair-centre
bin: we call this constrained pair-centre binning. As can beseen
by comparing the middle and right-hand panels of Figs. 14 and15,
imposing such a constraint increases the expected signal while not
causing a significant change in the effects of redshift-space distor-
tions. More detailed studies of these effects are warranted, but we
are confident that the reduction in the redshift distortion effect we
observe when utilising pair-centre binning will make this scheme
considerably preferable to a top-hat binning scheme.

Pair-centre binning completely removes the effect of redshift
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distortions when given a uniform galaxy distribution. Suchperfect
distributions do not exist — most galaxy samples selectionsare
based on an apparent magnitude limit — and thus realistic radial
distributions of galaxies are more complicated. However, we have
argued that if galaxy samples selected based on an apparent magni-
tude limit are cut back so that no galaxiesk-corrected galaxies are
missing from the sample, then this does not matter: the boundaries
of the bins are either in real-space, or based on pair-centres, neither
of which introduces redshift distortion effects.

We have argued, and it is clear from previous work, that any
interpretation of projected clustering measurements mustaccount
for redshift space distortions. In fact, comparing correlation func-
tions calculated using different binning schemes might actually
prove to provide a mechanism for measuring the amplitude of the
redshift-space distortions. This is beyond the scope of ourcurrent
draft, and we leave this for subsequent work.

7.2 Future Surveys

To quantify the effect of redshift-space distortions for future sur-
veys, we have used the expected radial selection function and pho-
tometric redshift distribution for the Dark Energy Survey to predict
the effect of redshift-space distortions on projected clustering mea-
surements. This analysis is also relevant to other planned surveys
such as PanStarrs and the LSST, which will have similar radial se-
lection functions. We have contrasted two different types of bin-
ning: top-hat — in which we only allow galaxies between a given
radial bound to enter our sample— and pair-centre — in which we
only count galaxy pairs with an average radial position thatlies
within our bounds. For typical bin widths that will be applied to
these surveys, we find that top-hat binning in the radial direction
leaves a strong signal from redshift-space distortions. Using a pair-
centre binning scheme reduces the redshift-space distortion signal,
by as much as 80% in realistic situations (see Fig. 14) and should
therefore allow the measurements to be more sensitive to thecos-
mological parameters one wishes to constrain.

In this analysis, we have only considered the simplified situ-
ation where the redshift-space distortions act along one axis of a
Cartesian basis. However, the arguments we have put forwardin
favour of pair-centre binning do not rely on this assumption, and
will remain valid even when wide-angle effects are includedin any
analysis.
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