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Abstract

To compete successfully in short haul markets under

200 miles, an air transport system must offer a high daily

frequency of service, N, as well as short air travel times.

In a given market, N can be increased by using vehicles of

smaller seat capacity, C, which are more expensive per

seat to operate. A method of determining optimal values

of N and C for assumed market behavior in terms of fare

and time elasticities is presented. By defining total trip

time to include the average wait for service, and using a

demand model developed for the Northeast Corridor, the air

share of total demand in any market can be calculated as a

function of N and the competing fares. Plotting daily pas-

sengers versus N, and relating this to the maximum and

breakeven load factors for a family of vehicles of different

seating capacitiesdetermines the values of N and C which

maximize return to the operator.

This work was performed under Contract C-136-66 for the

Office of High Speed Ground Transport, Department of Trans-

portation. It was presented at the 1968 ORSA/TIMS National

Meeting in San Francisco, May 1968.
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1. INTRODUCTION

In competition with other modes of intercity passenger

transportation for trips between 10 and 500 miles, frequen-

cy of service for a V/STOL short haul air system will have

a strong effect on generating new passengers and attracting

passengers away from other modes, i.e. the total revenue

in a given market is a function of the frequency of service

N, and this argues for a high frequency of service using

vehicles of small capacity C.

But the cost of providing highly frequent service

using small vehicles will be highersince unit costs in

terms of cents/seat-mile are higher for smaller capacity

aircraft. The question then is: What are the size of

vehicle and frequency of service which, in a given market

competition, defined by fares and trip times, maximize

net income for the air system?

The following discussions outline an approach to

structuring this problem and obtaining a solution. The

first step is to show from results of optimal dispatching

investigations that the level of service to the passenger

as measured by average wait for service, D, is strongly
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related to N. Then, by defining total travel time T as

the sum of en route plus wait time, and using it in a

travel prediction model, the market share or revenue can

be found as a function of N for a given modal market com-

petition in terms of fares and travel times. By making an

appropriate correction for vehicle capacity, maximum net

contribution to overhead can then be obtained for a family

of V/STOL vehicles of varying capacity. Optimum values of

N and C, an optimal-dispatch pattern and average wait for

service are all then specified for the given market com-

petition.

The work described here assumes that in these short

haul markets, passengers may not be required to make a seat

reservation, and indeed that there may not be knowledge on

theirpart of the operations timetable. In other words, the

system may be operated quite differently from present air-

line service. It is also assumed that only one size of

vehicle will be assigned to a given route. The method is

part of a larger network scheduling process.

-2-



2. OPTIMAL DISPATCHING

In a given transportation market, the distribution

of departures during the day will be an optimal dispatch

pattern if it maximizes net income for the system opera-

tor or maximizes service to the passengers.

But a dispatch pattern is the combination of two

elements:

(1) The number of flights operated daily or frequency

of service, N

(2) The pattern of the N flights at various times

during the day.

The optimal frequency of serrice N will be calculated,

in part 4 of this report, in order to maximize net contri-

bution to overhead for the operator.

The pattern of N flights during the day should then

be such as to maximize the service to passengers. Since

in terms of scheduling that service may be measured by

the average wait for service, or delay per passenger D,

the problem of dispatch optimization will be that of min-

imizing, for a given N, the delay imposed on passengers.

We now have good methods for solving this problem (Reference
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1), and we wish to draw some conclusions from recent ap-

plications of these methods.

Constant Arrival Rate

Given a constant arrival rate of p passengers per

hour between times t and tN (T d= t - t ), we want to

dispatch N vehicles of fixed capacity C at times ti, t2 '

. 40tN in order to minimize the total delay D

Passengers

p ,,

t t1 t. 1  t. tN time of day

Figure A

For passengers arriving between times t and t and

waiting until departure at t., the delay, represented by

the hatched area in Figure A, is:

t.

P (t) - dt = (t. t. )2
2 i 1-1

If there are N such departures, the total delay over the

day will be N
D = (t. - t )22 .i= 1 i-l
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Calculus of variations shows that the minimum value

of D is obtained for departures distributed at equal in-

tervals of time during the day

t. - t. = d_
i i-1 N

2 2
N Td

Then D = -
1 N 2 N

Since the total number of passengers is

P = p Td

the average delay per passenger will be

T
D= 

2.1
2 N

This shows that in the case of optimal , least delay

dispatching for constant arrival rate, the average delay is

only dependent on the frequency of service, N , and equals

one half the headway time, or interval between departures.

General Case

We now are concerned with the problem of dispatching

independent vehicles of fixed capacity C to satisfy a
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periodic, deterministic but non-uniform demand which is

non-zero from td to td2, as shown in Figure B.

p, Passengers

per

Hour I

I Time
t t t t

Figure B di i+l d 2
Td

In this case, we minimize a weighted average of delay

and dispatch costs; the optimization can then be stated as:

Min Z D + N - TC

where TC

N

D

is the cost of dispatching a vehicle, or

trip cost

is the frequency of service

is the total passenger delay over the day

represents the unit cost (or loss of revenue)

per minute of passenger delay for the operator

Z is the weighted cost of dispatching

-6-
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The parameter can be considered as a Lagrange

multiplier which will determine the value of N in the

optimization. As suggested by D. E. Ward (Ref. 3) this

problem can be solved using a discrete dynamic program.

Figure 1 shows a typical demand and resulting dispatch

patterns.

Using the dynamic program for various market den-

sities (as determined by the ratio T/C of the total

daily traffic in passengers, T, to the vehicle capacity

C) and different values of the parameter to give

variations in N, computations have shown the following

results:
T
d

The relation for average delay per passenger, D 2 '

shown in the case of constant arrival rate, seems to hold

for optimal dispatching in a non-uniform demand situation,

at least as long as no flight is dispatched at full

capacity.

Figure 2 shows how close the optimal average delay

D is to the function D = . The agreement is extremely

good, and computational experience with several non-uniform

demand distributions shows similar results. This compu-

tational result indicates that optimal average delay is

only dependent on N.

Experience with other dispatching policies which

result in regularly distributed patterns (such as equal load

-7-
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dispatching) has indicated that the average delay is

strongly and predominantly determined by N, and that

the relationship 2.1 is a good measure of average wait

for service, D

Given this result, one can then relate the level

of service measured by 5 to the market load factor TP

and the market density.

The market load factor over the day is

T 1 T
LF= --- -

N -C N C

and substituting 2.1, we obtain the relationship

= d ( F)
2 ( T/C

2.2

which states that, for a given T/C , 1 is proportional to

LF . The linearity of this result is indicated by Figure 3

which compares 2.2 with optimal dispatching computations.

This figure shows that for low density markets in terms

of T/C, it is difficult to obtain good economic load factors
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without incurring high values of D. Conversely in high

density markets, it is possible to operate above 70% load

factor and still have low values of passenger delay.

Total Travel Time

If total travel time, Tt, is taken as time from

true origin to true destination, it becomes (for any public

transportation system) the sum of:

1. Access time to the systerr ,Ta

2. Wait time for next service, I5

3. System en route time , Tb (block time)

4. Egress time from system, Te

If the system en route time is known, and some esti-

mate can be made for average access and egress times, then

the relation 2-1 for D , may be used in computing Tt. Since

D is a function of N, then Ttbecomes a function of N.

Typical variations in total travel time against travel

distance are shown in Figure 5. It shows that despite the

much greater speed of a V/STOL aircraft, the total travel

time for auto or bus can be less. The crossover distance
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where V/STOL becomes the fastest means of transportation

is a function of N. Figure 5 assumes that, given N dis-

patches, an optimal dispatch pattern, or at least a

regularly distributed pattern of N dispatches will be

used.

Thus, using the expression 2.1, total transit time

offered by a transportation system becomes an explicit

function of N, the daily frequency of service.

-13-



3. TRAVEL PREDICTION MODEL

To structure the problem we need some model of

market behavior given competing transportation systems

which offer the passenger a set of alternatives described

in terms of fares and travel times. There are a variety

of such models at present, and the one used here is shown

in Figure 4. It describes the traffic for a given mode

in terms of the best values of fare and frequency in the

market, and the modal fares relative to these best values.

The values of c<,,B, g , S have the economic interpreta-

tion of elasticities of travel demand with respect to

fares and travel times, and must be accurately known be-

fore any selection of optimal values of N and C can be

made with confidence.

The inputs to the model for a given set of competing

modes such as air, rail, bus, auto, and V/STOL are total

travel time as indicated in Figure 5, and total travel

cost as given by Figure 6. Travel cost is defined as sum of

1. Access cost to the system (e.g. taxi fare)

2. System fare

3. Egress cost from the system
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THE ROLES OF FARE
AND TOTAL TRAVEL TIME

ma r my r 8
Pij k = Kij - (Fij) - (Fji k) Tm) b( jk

where:
= Volume of travel by mode

= Constant for a given city p
at terminal
capita in

= Minimum

= Relative

= Minimum

= Relat ive

k from i to j

lair. Function of the population
cities and economic factors such as per

come

cost (over all modes) of

cost of mode k from i

value (over all modes.) of total

traveling from i to j

travel time from i to j

time for mode k from ito j

a = Elasticity

R= Elasticity

of traffic with respect to

of traffic with respect to

minimum fare

relative fare

Y = Elasticity of traffic with respect to minimum travel t ime

8 = Elasticity of traffic with resDect to relative

Pi

FJ

r
Fi jk

Tijk

FIG. 4 T RAV EL P REDIC TION MODE L - E STIMATING

travel time
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Figure 6 gives typical, out of pocket costs for present

competing modes. The VTOL fare structure has been arbi-

trarily assumed to be roughly proportional to system costs

as a function of terminal costs, and travel distance. The

fare structure assumption will affect the .optimal values

of N and C, and one may raise the question of determining

an optimal fare structure for the mode, particularly if

the vehicle size C is known.

For the given inputs, typical market model results

are shown in Figures 7, 8 and 9. For a market presently

served by auto and bus, Figure 7 shows the market share

for an assumed V/STOL system at N=5, and N=30 flights/day

as a function of market distance. It shows that as dis-

tance increases, the time savings due to the high speed

of a V/STOL system attracts an increasing percentage of

the market. Conversely, at distances below 50 miles, the

time savings may be negligible (unless a higher frequency

of V/STOL service is offered) and the market is dominated

by the automobile.

By crossplotting such results, the market share may

be plotted as a function of N for a given distance as

shown. in Figure 8. Here at 800 miles the air mode shows
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a market share variation which increases rapidly to above

80% of the market as is typically expected for airline

systems. However, at shorter distances the market share

is obtained much more slowly as N is increased, and even

for very high values of N, the market share may only be

30-40% of the total market. As had been hypothesized,

at distances below 150 miles, these market share curves

have a double curvature which means that there exists a

region where increasing the frequency of service (and

therefore total seats/day) will lead to increased load

factors since the V/STOL traffic increases faster than

the added capacity. This effect has been observed in some

present short haul helicopter markets where a minimal daily

frequency exists before the market can be developed.

These market -share curves have to be corrected for total

market size since total travel in terms of passengers/day

is much larger for the shorter distances. An indication

of this is given by Figure 9, which shows the typical hyper-

bolic increase in total passengers/day as distance decreases.

The market shares for auto, bus, V/STOL, and fixed wing air-

line are shown for typical values of travel costs and times.

The air markets show their typical peaking in the vicinity.

-21-
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of 200 miles, with automobiles serving a vast market at

lower distances. For these assumptions, the potential

market area is indicated by Figure 9 to lie between 50

and 500 miles with a supersingly large share of the longer

haul traffic. This potential market area can be placed

at lower ranges by increasing the V/STOL fare structure

in terms of cents/seat mile, or reducing V/STOL cruising

speeds. Similarly, higher V/STOL daily frequencies cause

a higher penetration of the very -short range automobile

travel market. One can establish the roles which the

various modes might play by setting fares, cruising speeds,

and frequency of service.
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4. DETERMINING N AND C TO MAXIMIZE CONTRIBUTION

TO OVERHEAD

In a given market competition, the travel prediction

model now allows us to predict the daily passenger demand

P as a function of the frequency of service N, all other

parameters such as time and fare structures being fixed

for a certain market and vehicle.

But the demand P, as given by the model, is an

expected or average demand. The expected number of pas-

sengers or traffic T can only be derived by combining

the random variability of demand with constraints due

to vehicle capacity.

It has been assumed that air travel demand is nor-

mally distributed about an average demand P and that the

standard deviation of demand is a linear function of the

average demand:

CO, KP
p

A value of K = 0.22 has been used in our analyses.
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The amount of traffic is obviously limited by the

number of seats N-C. If, for a frequency of service No,

the average passenger demand is Po and the seat capacity

No - C, Fignre 10 shows that a certain percentage of

flights will be dispatched at full capacity while the

passenger load on other flights will be distributed ac-

cording to the demand distribution. The expected traffic

To is the mean of the passenger load distribution, and

is less than PO since passengers will be lost to other

modes on over-capacity days.

Figure 10 shows a typical P(N) curve for a given

market, i.e. the average number of potential passengers

for a V/STOL system given N frequencies. For a given

vehicle size C, the straight line N'C represents 100%

load factor, and obviously when P(N) is above this straight

line, the system cannot physically carry its potential daily

demand. The traffic curves, calculated assuming a normal

distribution of P(N) are therefore a function of vehicle

capacity, T(N,C). Note that average load factor is given

by the ratio of T(N,C)/N-C at any given N, and that con-

stant load factor curves are straight lines from the origin

on this plot.
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If F is the fare charged for the actual flight ser-

vice, the total revenue per day is simply: TR = F - T,

hence the variation of total revenue with N and C in a

given market can be represented on a similar curve.

We now want to determine on these traffic or total

revenue curves the optimal point in terms of profitability

to the operator. Because of the short-term aspect of our

optimization in construction a schedule over a network of

routes, we want to select the conditions which maximize

contribution to overhead, as this will lead to a maximiza-

tion of profit on a network basis. For other planning

purposes, maximization of net profit can be a suitable

objective. }

For the short term schedule planning, the usual airline

direct and indirect operating costs both have fixed and vari-

able terms, and we will optimize using the variable costs only.

The marginal revenue is taken as total revenue which is a

function of N and C. The daily contribution to overhead

(or marginal income) is then defined as

CON = TR - variable costs

= F.T(N,C) - VDC(C).N - VIC.T(NC)

where VDC = variable direct costs per trip

VIC = variable indirect costs per passenger

-27-



In our analyses of typical short-haul markets, we have

been concerned with a family of vehicles, the characteristics

of which have been determined by a computer program developed

at the Flight Transportation Laboratory of M.I.T. (Ref. 2) .

The basic vehicle used as an example here is a V/STOL aircraft

of the tilt wing type with 4 engines, 2 propellers, a cruise

speed of 400 MPH, a design range of 400 miles and technologi-

cally feasible in 1980. Figure 11 shows how the operational

costs vary with the vehicle capacity.

The larger size vehicles have lower unit costs in terms

of cost/seat-hour or cost/seat'mile , and would seem to allow

lower fares. However, the smaller size vehicles have lower

trip costs (or cost/hour) which alloy lesser dispatch costs

for a given frequency of service. The costs shown in Figure 11

are direct operating costs for the vehicles less the fixed

depreciation costs. As well, one must estimate the variable

indirect costs associated with boarding, processing of passen-

gers, etc. in the ground operations of the V/STOL system. These

have been estimated at $2 per passenger for an efficient ground

operation in future automated terminals.

Given these cost characteristics, the number of passengers

to break even can be determined for any size of

-28-
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vehicle. This breakeven load factor can now be plotted

on the traffic-frequency plot such as Figure 12. The

difference between the traffic curve T and the breakeven

line is proportional to the contribution to overhead ex-

pressed as passengers/day or net revenue.

Figure 12 shows plots of traffic curves for a market

of 100 miles distance, and a potential demand of 1000

passengers/day at N = , and for vehicle capacities

of 30, 60, and 100 seats. The T(N,C) curves are different

because of the capacity saturation effect, and the load

factor lines are different because of capacity and cost

effects. As aircraft size increases, the optimum daily

frequency N* decreases, and also the traffic carried in

the market. In this case, the maximum net contribution

to overhead occurs for the smaller 30 passenger vehicle

at the highest frequency per day, and traffic size.

If we examine different size markets over different

distances, we can show the area where aircraft of vary-

ing sizes would be optimal for the market assumptions of

the example used in this report. Figure 13 shows such

a result, where market potential (P for air if N = 00 )

-30-
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is used to give market size in passengers per day. Given

the market potential and distance, one can select the

optimal vehicle size, and solve for the optimal frequency,

N*, and the actual market size for that frequency. For
0

example, if the market distance were 200 miles, and the

potential V/STOL traffic at N = M were 2000 passengers/

day, the optimal V/STOL tilt wing would have approximately

50 seats, and the optimal frequency of service is approxi-

mately 33 flights/day. Using a 50 seat vehicle, one can

then solve for the exact optimal frequency and market

size.

-33-



5. ESTIMATING AND THE DISPATCH PATTERN

In Figure 12 the optimal frequency for maximizing

net contribution occurs when the slope of the T (N,C)

curve is parallel to the breakeven load line.

5.1

i.e. LFBE

0

where LFBE is the variable cost breakeven load factor

shown in Figure 11.

For the double curvature T (N, C) curves such as

shown for the 100 seat vehicle in FiYure 12, another

operating point which could be selected is the frequency

which gives maximum load factor. This occurs at a lesser

load and frequency than the net contribution point, and

maximizes net contribution per passenger.

The value of required to determine an optimal

dispatch pattern of N* flights can now be calculated for
0

use in the dynamic program of part 2. This value repre-

sents the loss of daily revenue caused by a unit of

passenger delay.

i.e. =
D

-34-



Using relation 5.1

= F - D

N* N*
0 0

BE
- C

From 2.1 for optimal dispatching,

D Td] d
-orN= 2D

Therefore,

\ -T T ] - -2N2

D 2 D2 -D. T - Td~T

Substituting in 5.2

2-

-F - 2N - LBE

N* Td (T/C)
0

Therefore,

F - L'F B

* T BE
d

2
2N*

0

(T/C)

Relation 5.3 gives a value

in the dynamic programs of part

dispatch pattern of N* flights.
0

determination of since N is

in practice, it either produces

of which may be used

2 to produce an optimal

It is not a precise

a discrete variable, but

N* flights, or gives a
0
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value close to that required.

It is interesting to note that\ * is a function of

vehicle and market variables such as fare, breakeven

load factor, market density and level of service as

measured by delay or frequency. As indicated in part

2 of this report, X may be regarded as a Lagrange
multiplier, and given the interpretation of the cost

per minute of passenger delay to the operator. The

optimal value of will vary depending on the market

competition and vehicle used.



6. SUMMARY

For a given model of travel market behavior, a method

of determining an optimal vehicle size and frequency of

service for a short haul V/STOL air transport system has

been determined. For each individual city pair market, a

predicted travel volume, and net income can be calculated

for any vehicle size, and its optimal frequency of service.

The problem now turns to selecting in some fashion, a small

number of different aircraft sizes to be routed over the

collection of city pair markets on a given network of routes.

On the network, we may desire to mix the aircraft types in

order to improve utilization or decrease the total number

of aircraft required. The method described in this report

is one component of a larger problem of schedule generation

for such a transportation system.

The model results have tended to show that frequency

of service is important to short haul air systems which are

in competition with the automobile, and that smallermore

costly vehicles may be more economic in the sense that they

generate higher revenues through higher schedule frequlency.
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The travel behavior model used here has a number of points

of agreement with expected traffic behavior, but before it

can be used with any confidence, further experimental veri-

fication and statistical testing seems necessary.

All of the method described in this report has been

coded for an IBM 360 Model 65 at MIT such that a link by

link evaluation of a number of vehicle sizes can be carried

out for individual link market competitions from a given

network.
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