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I. Introduction and Objectives

For some time now regression models, often calibrated using the ordinary

least-squares (OLS) estimation procedure, have become common tools for

forecasting the demand for air transportation. However, in recent years

more and more decision makers have begun to use these models not only to

forecast traffic, but also for analyzing alternative policies and strategies.

Despite this increase in scope for the use of these models for policy analysis,

few analysts have investigated in depth the validity and precision of these

models with respect to their expanded use. In order to use these models

properly and effectively it is essential not only to understand the under-

lying assumptions and their implications which lead to the estimation procedure,

but also to subject these assumptions to rigorous scrutiny. For example,

one of the assumptions that is built into the ordinary least-squares estimation

technique is that the explanatory variables should not be correlated among

themselves. If the variables are fairly collinear, then the sample variance

of the coefficient estimators increases significantly, which results in

inaccurate estimation of the coefficients and uncertain specification of the

model with respect to inclusion of those explanatory variables. As a correc-

tive procedure, it is a common practice among demand analysts to drop those

explanatory variables out of the model for which the t-statistic is insigni-

ficant. This is not a valid procedure since if collinearity is present the

increase in variance of the coefficients will result in lower values of the

t-statistic and rejection from the demand model of those explanatory

variables which in theory do explain the variation in the dependent variable.

Thus, if one or more of the assumptions underlying the OLS estimation pro-

cedure are violated, the analyst must either use appropriate correction



procedures or use alternative estimation techniques.

The purpose of the study herein is three-fold: (1) develop a "good" simple

regression model to forecast as well as analyze the demand for air transportation;

(2) using this model, demonstrate the application of various statistical tests

to evaluate the validity of each of the major assumptions underlying the OLS

estimation procedure with respect to its expanded use of policy analysis; and,

(3) demonstrate the application of some advanced and relatively new statistical

estimation procedures which are not only appropriate but essential in eliminating

the common problems encountered in regression models when some of the under-

lying assumptions in the OLS procedure are violated.

The incentive for the first objective, to develop a relatively simple single

equation regression model to forecast as well as analyze the demand for air

transportation (as measured by revenue passenger miles in U.S. Domestic trunk opera-

tions), stemmed from a recently published study by the U.S. Civil Aeronautics

Board [CAB, 1976]. In the CAB study a five explanatory variable regression

equation was formulated which had two undesirable features. The first was

the inclusion of time as an explanatory variable. The use of time is un-

desirable since, from a policy analysis point of view, the analyst has no

"control" over this variable, and it is usually only included to act as a

proxy for other, perhaps significant, variables inadvertently omitted from

the equation. The second undesirable feature of the CAB model is the

"delta log" form of the equation (the first difference in the logs of the

variables),which allowed a forecasting interval of only one year into the

future. This form was the result of the application of a standard correc-

tion procedure for collinearity among some of the explanatory variables.



In view of these two undesirable features, it was decided to attempt to

improve on the CAB model. In addition to the explanatory variables consi-

dered in the CAB study a number of other variables were analyzed to deter-

mine their appropriateness in the model. Sections II and III of this report

describe the total set of variables investigated as well as a method for

searching for the "best" subset. Then, Section IV outlines the decisions

involved in selecting the appropriate form of the equation.

The second objective of this study is to describe a battery of statistical

tests, some common and some not so common, which evaluate the validity of

each of the major assumptions underlying the OLS estimation procedure with

respect to single equation regression models. The major assumptions assessed

in Section V of this report are homoscedasticity, normality, autocorrelation,

and multicollinearity. The intent here is not to present all of the statistical

tests that are available, for to do so would be the purpose of regression

textbooks, but to scrutinize these four major assumptions enough to remind

the analyst that it is essential to investigate in depth the validity and

precision of the model with respect to its expanded use of policy analysis.

It is hopeful that the procedure outlined in this report sets an example

to demand modeling analysts of the essential elements used in the development

of reliable forecasting tools.

The third and ultimate objective of this work is to demonstrate the

use of some advanced corrective procedures in the event that any of the four

above mentioned assumptions have been violated. For example, the problem

of autocorrelation can be resolved by the use of generalized least-squares(GLS),

which is demonstrated in Section VI of this report; and the problem of multi-



collinearity , usually corrected by employing the cumbersome and restrictive

delta log form of equation, has been eliminated by using Ridge regression

(detailed in Section VII). Finally, in Section VIII an attempt is made to

determine the "robustness" of a model by first performing an examination of

the residuals using such techniques as the "hat matrix", and second by the

application of the recently developed estimation procedures of Robust

regression. Although the techniques of Ridge and Robust regression are still

in the experimental stages, sufficient research has been performed to warrant

their application to significantly improve the currently operational regression

models.
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II. A Search for the "Best" Set of Explanatory Variables

One criterion for variable selection was to find that minimum number

of independent variables which maximize the prediction and control of the

dependent variable. The problem is not one of finding a set of indepen-

dent variables which provides the most control for policy analysis, or

those variables which best predict the behavior of the dependent variable,

but, rather, constraining the number of these variables to a minimum. The

hazards of using too many explanatory variables are widely known: an inevi-

table increase in the variance of the predicted response [Allen,1974]; a

more difficult model to analyze and understand; a greater presence of

highly intercorrelated explanatory variables; a reduction in the number of

degrees of freedom; and a more expensive model to maintain since the value

of each explanatory variable must also be predicted.

Initiallyten explanatory variables were selected for analysis based partly

on the study by the Civil Aeronautics Board [CAB, 1976]. These variables are:

(1) TIME - included to provide for any trend resulting from variables
omitted from the model.

(2) YLD = Average scheduled passenger yield - total domestic passenger
revenues plus excess baggage charges and applied taxes divided by
scheduled revenue passenger miles. The yield is deflated by the
consumer price index to arrive at the real cost per mile to the
consumer.

(3) GNP = Gross National Product, expressed in real terms (1967 dollars)
to measure changes in purchasing power.

(4) DJLAG = Dow Jones Industrial Average , lagged by one year, computed
from the quarterly highs and lows of the Dow "30" price range.

(5) UNEMPLY = Unemployment - percent of the civilian labor force.



(6) PERATIO = Price to Earnings Ratio - ratio of price index for the
last day of the quarter to quarterly earnings (seasonally adjusted
annual rate). Annual ratios are averages of quarterly data.

(7) GOVBND or INDBND = Bond Rate - both U.S. Government bond yields and
industrial bond yields were studied.

(8) DPI = Disposable Personal Income.

(9) IIP = Index of Industrial Production.

(10) SINDEX = Quality of Service - an index obtained by principal compo-
nent analysis of five variables: total available seat miles, average
overall flight stage length, average on-line passenger trip length,
average available seats per aircraft, and average overall airborne
speed. The index is used as a measure of the improvement in the
quality of service offered. (See Section III).

The data values and sources for these ten variables are given in

Table 1 (Appendix A).

The problem then is how to shorten this list of independent variables

so as to obtain the "best" selection - "best" in the sense of maximizing

prediction and control based on a model which is appropriate not only on

theoretical grounds but which can also be calibrated relatively easily.

As a start, the variables should be screened before-hand in some systematic

way. They should make theoretical sense in the regression equation, and

they should meet the more important characteristics such as (1) measurabi-

lity, (2) consistency, (3) reliability of the source of the data,

(4) accuracy in the reporting of the data, (5) forecastability, and

(6) controlability - that is, at least some of the variables should be

under your control.



Then, to aid the investigator in his selection, automatic statistical

search procedures are available (see Hocking [1972]). One such search

procedure calls for an examination of all possible regression equations1

involving the candidate explanatory variablesand selection of the "best"

equation according to some simple criterion of goodness of fit. In this

study a statistical measure of "total squared error" was utilized as a

criterion for selecting independent variables. 2 This statistic, given

by Mallows [1964],has a bias component and a random error component.

The total squared error (bias plus random) for n data points, using a

fitted equation with p terms (including bo) is given by:

r n n
TM1 -i)2 + ~ 2(9 (A.1

i=1 i=1

bias random error
component* component

where: v = E [Y.] according to the true relation

nI = E [Y ] according to the fitted equation

a 2(' ) = variance of the fitted value Y.

a2 = true error variance.

Note that the all possible regression equations search procedure pre-
supposes that the functional form of the regression relation has already
been established. Both the additive form and the multiplicative form
were evaluated simultaneously. The multiplicative form (or log model)
was our final choice, so it will be represented here. See Section IV.

2 Other statistical selection criteria include step-wise regression,
R 2, MSEP , and t-directed search. See Neter and Wasserman [1974].
pp



With a good unbiased estimate of o2 (call it a2) it can be shown

[Daniel and Wood, 1971 ; Gorman and Tomau, 1966] that the statistic

C is an estimator of rP:

C = SSEP - (n-2p) (11.2)

where SSE stands for the sum of squares due to error.

When there is negligible bias in a regression equation (i.e. sum of

squares due to bias, SSB, is zero) the C statistic has an expected value

of p:

E[C pSSBP = 0] = p (11.3)

Thus, when the C values for all possible regressions are plotted against p,

those equations with negligible bias will 'tend to cluster about the line

Cp = p. Those equations with substantial bias will tend to fall above the

line. Since bias is due to variables omitted from the equation, adding terms

may reduce the bias but at the added expense of an increase in the variance

of the predicted response. The trade-off is accepting some bias in order

to get a lower average error of prediction. The dual objective in this study,

maximum prediction with a minimum number of variables, now becomes clear.

Therefore, the object was to find that set of explanatory variables that

leads to the smallest Cp value. If that set s-hould contain substantial

bias another set may be preferred with a slightly larger C which does

not contain substantial bias.



The Cp values for all possible regressions were calculated on the

UCLA BMD09R regression series computer program, and are plotted against

p in Figure A. The C value for point A is the minimum one, and appears

to contain negligible bias. Equations represented by points B and C and

surrounding points are also potential candidates, although point B does

contain some small bias, and at point C the number of variables has

increased by one.

From a purely statistical point of view, the equation represented

by point A in Figure A (containing the five explanatory variables

TIME, YLD, DJLAG, IIP, SINDEX) appears to represent the "best" set of

independent variables. But, the solution is unique to the C statistical

criterion, and therefore may be "best" only in terms.of this criterion.

Not all of the statistical procedures for variable search (R2 criterion,

MSE criterion, foreward/backward stepwise regression, or t-directed search)

may lead to the same conclusion. Indeed each procedure has its unique

solution, and the conclusions are only valid for our sample data. Further-

more, the importance of subjective evaluation can not be overlooked.

Consider the model chosen on the basis of minimum Cp criterion:

ln RPM=b0 + b1 ln TIME + b2 In YLD + b3 ln DJLAG + b4 in IIP +b 5 ln SINDEX

(11.4)

There is no control over the variable TIME. In fact, as is often typical

in time series data, this variable is merely a surrogate for those variables

omitted from the regression equation and some which are included in the

equation. There is also no control over the Dow Jones index, DJLAG, and

there is some question as to whether this variable can be forecasted re-
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liably. The index of industrial production variable, IIP, is supposed to

measure changes in the economy and relate them to the growth in air travel,

but it is only a measure of the industrial or business economy. It does

not reflect changes in personal spending. Since the attempt in this

study is to develop an aggregate model of air travel demand, it would be

more appropriate to employ an aggregate measure of the economy - for

example, GNP.

What remains after this pragmatic investigation is the following

selected relationship:

ln RPM = b 0 + b 1 ln YLD + b2 ln GNP + b3 ln SINDEX (11.5)

The number of explanatory variables has been reduced considerably and yet

the analyst still remains in control over two of them - YLD and SINDEX.

The first variable, YLD, tracks changes in the cost of air travel; the

second variable, GNP, measures changes in passenger traffic associated

with changes in the national economy; and the third variable, SINDEX,

is an indicator of the service offered by the industry. Thus, the objectives

in the variable selection process appear to be met:

- the number of variables have been kept to a bare minimum;

- the variables make theoretical sense in the regression equation;

- the variables are measurable, consistent, reliable, accurate,
forecastable, and, with the exception of GNP, controlable, that is,
under the control of the policy decision maker.



III. Development of a Quality of Service Index Through Principal

Component Analysis

An important measure which should be included in the economic modeling

of the growth of air transportation is the quality of service offered. The

level of service tends to propagate the level of air travel: that is, as

the quality of air service increases, demand increases. Suppose one was

to represent the improvement in the quality of air service through the

following variables.

- average available seats per aircraft (SEATS)

- average overall airborne speed (SPEED)

- average on-line passenger trip length (PTL)

- average overall flight stage length (FSL)

- total available seat miles (ASM)

If the classical supply and demand equation economic modeling principle

was to be employed it would be possible to design a demand equation expres-

sing RPM as a function of the quality of service,

RPM = f1 (Quality of Service,...),

and a supply equation expressing the quality of service as a function of

the above five variables,

Quality of Service = f2(SEATS,SPEEDPTL,FSL,ASM).

In this way adding an additional equation to form a simultaneous equation

model allows for a complex interaction within the system conjoining the

demand and supply variables. This interaction, however, is undesirable for

the following reasons. First, by nature of the simultaneous equation speci-

fication, the quality of service variable will be in a dynamic state. The



demand and quality of service will be allowed to interact with each other

in two-way causality. Although its cause and effect role is different

in the two equations, the quality of service variable is still considered

to be endogenous due to its dependent role. In the present model speci-

fication,for simplicity,it was decided to represent the improvement in

quality of service in a static state with causality in only one direction.

Second, in a simultaneous equation model it is necessary to "identify" the

quality of service function (in terms of total travel time, for example).

Yet, since this is an aggregate model of air transportation demand without

regard to length of haul or nature of travel (business, pleasure, personal,

etc.), it would be incorrect to specify the quality of service offered in

such terms as total travel time or total frequency available. Third, a

simultaneous equation model is more complex than.a single equation speci-

fication, which makes such a model more difficult to control and interpret

- incongruous to the objective of developing a simple model. Fourth, a

supply equation cannot be designed for level of service from the five

variables listed since at least one of the variables, total available seat

miles, is itself a supply variable. Thus, while on theoretical grounds it

may be argued that the dual-equation specification is more appropriate,

the intention is to be crude because the focus here is on the estimation

procedures rather than the theoretical specification.

Therefore, the objective in this study of an aggregate travel demand

model is not to construct a supply equation for use in a simultaneous

equation model, but rather to design one factor which can be used as a

proxy for the quality of service in a single equation model. Principal

component analysis (PCA) [Bolch & Huang, 1974; Davis, 1973] takes the five



variables mentioned above, and makes a linear combination of them in such

a manner that it captures as much of the total variation as possible. This

linear combination, or principal component, will serve as a proxy for

level of service.

Before discussing the development of the principal component analysis

technique, it will be difficult to understand the meaning of the linear

combination of the five variables unless they are all measured in the same

units (the raw data is given in Table 2,Appendix A). A linear combination of seats,

miles and miles-per-hour is at best unclear. Therefore, before computing

the components it is possible to convert the variables to standard scores,

or z-scores,

Z =x- x
s

(where: X is the sample mean, ands is the sample standard deviation),

which are pure numbers, and the problem of forming linear combinations of

different measurements vanishes.

From the standard scores of m variables it is possible to compute an

m x m matrix of variances and covariances. (The variance-covariance matrix

of the z-scores for the five variables is simply the correlation matrix of

the original data set. This is given Table 3.) From this,one can extract

m eigenvectors and m eigenvalues. Recall that elements in an m x m matrix

can be regarded as defining points lying on an m-dimensional ellipsoid.

The eigenvectors of the matrix yield the principal axes of the ellipsoid,

and the eigenvalues represent the lengths of these axes. Because a variance

-covariance matrix is always symmetrical, these m eigenvectors will be

orthogonal, or oriented at right angles to each other. Figure B illustrates

this principle graphically for a two-dimensional matrix.



Table 3

Variance-Covariance Matrix of the z-scores of the Five
Quality of Service Variables

ASM

ASM

FS L PTL

1.0 0.975 0.923

FSL 0.975 1.0

PTL 0.923 0.909

SEATS 0.966 0.933

SPEED 0.934 0.954

0.909

1.0

0.975

SEATS

0.966

0.933

0.975

1.0

SPEED

0.934

0.954

0.878

0.913

0.878 0.913 1.0



Principal Axes of a 2-Dimensional Ellipsoid

X2
I

a

b

II

Figure B

Vectors I and II are the eigenvectors, and segments a and b are the cor-

responding eigenvalues. This is the case where X and X2 are positively

correlated. As the correlation between the two variables increases, the

ellipse more closely approaches a straight line. In the extreme case if

X and X2 are perfectly positively correlated, the ellipse will degenerate

into a straight line. It is not possible to demonstrate the 5-dimensional

variance-covariance matrix graphically, but it can be envisioned in the

same manner. The eigenvectors and eigenvalues of this 5-dimensional vari-

ance-covariance matrix can be computed easily and are shown below.

0.985 0.041
-0.980 0.139

1 0.962 II -0.251
0.983 -0.151
0.960 0.222

I Eigenvalue = 4.7447 II Eigenvalue = 0.1563



-0.147 -0.062 0.042
-0.085 0.111 -0.031

I = 0.073 IV = 0.079 V = 0.026
0.001 -0.093 -0.046

L0. 164 -:0.033J 0.010j

III Eigenvalue = 0.0613 IV Eigenvalue = 0.0321 V Eigenvalue = 0.0057

The total of the five eigenvalues is

4.7447 + 0.1563 + 0.0613 + 0.0321 + 0.0057 = 5.0

which is equal to p, or the number of variables. This is also equivalent

to the trace of the variance-covariance matrix for the z-scores. Thus,

the sum of the eigenvalues represents the total variance of the data set.

Note that the first eigenvalue accounts for 4.7447/5.0 = 94.89 percent of

the trace. Since the eigenvalues represent the lengths of the principal

axes of an ellipsoid, then the first-principal axis, or principal component,

accounts for 94.89 percent of the total variance. In other words, if one

measures the variation in the data set by the first principal component,

it accounts for almost 95 percent of the total variation in the observations.

Principal components, therefore, are nothing more than the eigenvectors

of a variance-covariance matrix.

Principal components are also a linear combination of the variables,

X, of the data set. Thus

Y = 6lX + + 63X3 + 64X4 + 65X5

is the first principal component, and the 's are the elements of the first

eigenvector. If one were to use the standard scores in lieu of actual data,

the first principal component becomes:

** * * *

Yl = 6z + 622+ 633+ 644+ z



*

where the coefficients 6 are the elements of the eigenvectors corresponding

to the standardized variance-covariance matrix. Transforming this equation

in terms of the original data, Z =X -X , and substituting in the ele-
5

*

ments of the standardized eigenvectors, S , for the first principal com-

ponent, the level of service index can be computed as follows:

Level of Service Index = 0.985 ASM 88. .103

+0.980 FSL - 282.417
95.709

+0.962 PTL - 585.4
81.237

+0.983 SEATS - 77.15
33.375

+0.960 'SPEED - 290.433
84.987

Therefore, this procedure results in a new set of data, termed the

principal component (or factor) scores, which is a linear combination of

the five level of service variables and accounts for 95 percent of the

variation in the observations. The centered principal component scores

are given in Table 2. To these scores the quantity 2.0 is subsequently

added, which is the minimum positive integer required to transform the

scores to all positive values for use in a logarithmic model. The result-

ing specified index, termed SINDEX, is the proxy for the quality of service

offered.



IV. Functional Form of the Model

Two functional forms were investigated: the additive form,

Y = 0 + IxI + 2 x2 + ... + nXn + C

and the multiplicative form,

Y = 0X -1 0X 26 2 * xn .:

The multiplicative form is in a class of models called intrinsically linear

models because it can be made linear through a logarithmic transformation

of the variables:

* *

ln Y =0 + 1 In X + l2 in X2 + ... + n ln X +

* *

where, 60 and e are the logarithmic transformations of the constant and

the error term.

The delta log model,

ln Y- 1n Y t-1 + S (In Xlt - ln X1t 1 ) +

which is commonly used because it tends to eliminate the multicollinearity

- and serial correlation problems,was not employed because it removes the

secular trend in the data and only allows one to forecast out one period

- not really suitable for long-term forecasting.

Both the additive form and the multiplicative form (or logarithmic

model) were evaluated while the variable selection process was taking place

(see Section II ). This was necessary since the automatic variable selec-

tion technique that was used, Mallows C criterion, required that the

functional form already be established. The log model was the final choice



for the functional form. This conclusion was reached after an exhaustive

and extensive evaluation of both forms during the variable selection

process. To illustrate this conclusion compare the statistics of both

forms using the three explanatory variables which were finally selected.

Additive Model

RPM = -56.556 + 0.934 YLD + 0.068 GNP + 28.130 SINDEX

(0.281) (1.252) (2.914)

R2 = 0.9780
Standard Error of Estimate = 6.1536
n = 27

Natural Logarithm Model

ln RPM = 7.433 - 0.735 ln YLD + 0.592 ln GNP + 1.132 ln SINDEX

(-3.443) (1.934) (7.810)

R2 = 0.9968
Standard Error of Estimate = 0.0534
n = 27

The figures in paratheses are the corresponding t-ratios. Not only

is the sign of the coefficient for yield in the additive model "wrong"

(the plus sign of the coefficient infers that as the 'cost of travel in-

creases the amount of travel increases!), but it is difficult to place any

confidence in either its coefficient or that of GNP since the t-ratios

are not significant.



V. Statistical Evaluation of the Ordinary Least Squares Model

In the development of an econometric air travel demand model,

such as Y = X6 + c, the analyst attempts to obtain the best values of

the parameters 6 given by estimators b. The method of ordinary least-

squares produces the best estimates in terms of minimizing the sum of

the squared residuals. The term "best" is used in reference to certain

desired properties of the estimators. The goal of the analyst is to

select an estimation procedure which produces estimators (for example

price elasticity of demand) which are unbiased, efficient, and consis-

tent [Wonnacott & Wonnacott, 1970]. The method of least-squares estima-

tion is used in regression analysis because these properties can be

achieved if certain assumptions can be made with respect to the distur-

bance term c and the other explanatory variables in the model. These

assumptions are:

1. Homoscedasticity - the variance of the disturbance term
is constant;

2. Normality - the disturbance term is normally distributed;

3. No autocorrelation - the covariance of the disturbance term
is zero;

4. No multicollinearity - matrix X is of full column rank.

This section goes through each of these assumptions performing various tests

to determine if any assumption is violated. (For further reference on

each assumption see Taneja [1976]). Corrective procedures for the violations

are explained and examined in subsequent sections of this report. The

ordinary least-squares regression equation which is to be tested is as

follows:



ln RPM = 7.433 - 0.735 ln YLD + 0.592 in GNP + 1.132 in SINDEX (V.1)

(3.507) (-3.443) (1.934) (7.810)

R = 0.9968

Standard Error of Estimate = 0.0534
Durbin-Watson Statistic = 0.77
n = 27 observations

The figures in parentheses are the corresponding t - ratios.

V.1 Test for Homoscedasticity

The assumption of constant variance of the disturbance term is called

homoscedasticity. When it is not satisfied, the condition is called

heteroscedasticity. Heteroscedasticity is fairly common in the analysis

of cross-sectional data. Air transportation demand models incorporating

income distribution of air travelers, for example, usually encounter this

problem because the travel behavior of the rich and poor can differ in the

large and small variances of their spending pattern.

If all assumptions except the one related to homoscedasticity are valid,

the estimators b produced by least-squares are still unbiased and consistent,

but they are no longer minimum-variance estimators. The presence of hetero-

scedasticity will distort the measure of unexplained variation, thus distort-

ing the conclusions derived from the multiple correlation coefficient R and

the t - statistic tests. The problem is that the true value of a hetero-

scedastic residual term is dependent upon the related explanatory variables.

Thus, the R and t-values become dependent on the range of the related

explanatory variables. In general, the standard goodness-of-fit statistics

will usually be misleading. The t and F distributed test statistics used

for testing the significance of the coefficients will be overstated, and



the analyst will unwarily be accepting the hypothesis of significance

more often than he should.

V.1.1. Goldfeld-Quandt Test

A reasonable parametric test for the presence of heteroscedasticity

is one proposed by Goldfeld and Quandt [1965]. The basic equation for

n observations, Y =X + E, is partitioned in the form:

YAx A A+A

YB B B (V.2)

The vectors and matrices with subscript A refer to the first n/2 observations,

and those with subscript B refer to the last n/2 observations. If eA*

and eB represent the least-squares residuals computed for both sets of

observations independently (from separate regressions),then the ratio

e'AeA of the sum of squares of these residuals will be distributed as

e'Be
B F(n/2 -p, n/2 - p). The null hypothesis is that the variance of

the disturbance term is constant, aA = B; that is, the data is homoscedastic.

The null hypothesis will be rejected if the calculated F value exceeds

F(a ; nA -p, nB -'

The calculated F value for the model shown in equation (V.1) is

F n , = F - SSEA/(13-4 )

A n 13-4, 14-4 SSEB /( 4-4)

.0.012/9
0.008/10

= 1.667 (V.3)



which is less than F(.05,9,10) = 3.02. So, the null hypothesis that the

data set is homoscedastic can be accepted .

Sometimes the variance of the disturbance term changes only very

slightly and heteroscedasticity is not so obvious. To help exaggerate the

differences in the variance Goldfeld and Quandt suggest the omission of

about 20 percent of the central observations. The elimination of 20 per-

cent of the data reduces the degrees of freedom, but it tends .to make the

difference between e'AeA and e'BeB larger. Of the 20 total observations

in the data base, the middle 6 observations were omitted. The calculated

F value is

F -= F -= SSEAI(10-4)
nAp, nB~ F 0 4 ' 4  SSEB/(11- 4)

= .005/6
.005/7

= 1.167 (V.4)

which is less than F(.05,6,7)= 3.79. Again the null hypothesis that

the data set is homoscedastic can be accepted.

V.1.2 Glejser Test

This test ,due to Glejser [1969], suggests that decisions about homo-

scedasticity of the residuals be taken on the basis of the statistical

significance of the coefficients resulting from the regression of the abso-

lute values of the least squares residuals on some function of X., where X

is the explanatory variable which may be causing the problem. This would



mean, for this example, considering fairly simple functions like:

(i) lei = b + b ln YLD

(ii) lel = b + b ln GNP

(iii) jel = b0 + b ln SINDEX

and testing the statistical significanc

Two relevant possibilities may then ari

scedasticity" when bo = 0 andb $0 ;

scedasticity" when b 0 0 and b $0.

Using the above relationships the

(i) let = 0.038 +

(0.682)

(ii) let = 0.080 -

(o.641)

:e of the coefficients bo and b1 .

se: (1) the case of "pure hetero-

and (2) the case of "mixed hetero-

regression equations are:

0.002 ln YLD

(0.073)

0.006 ln GNP

(-0.309)

(iii) le| = 0.044 - 0.004 ln SINDEX

(5.586) (-0.376)

The figures in parentheses are the corresponding t - ratios.

A test for deciding whether or not b = 0 or b = 0 is based on the

t-statistic. The decision rule with this test statistic, when cofitrolling

the level of significance at a, is:

if |til < t(1 - a/2 ; n-2).,

if It | > t(1 - a/2 ; n-2) ,.

then conclude b = 0,

then conclude b $ 0.

To draw inferences regarding both b0 = 0 and b1 =0 jointly, a test

can be conducted which is based on the F-distribution (see Neter & Wasserman



[1974]). Define the calculated F-statistic as:

Fcalculated
n(b0 - S)2 + 2(EXi ) (bo - %) (b- + (EX2) (b1 - S) 2

2 (MSE)

where 6 0,S. 1  0, and MSE is the mean square error.

The decision rule with this F-statistic is:

if Fcalculated < F(l - a; n-2), then conclude that b0 = 0

and b= 0 jointly

At a 5 percent level of significance, where t(.975, 27-2) = 2.06

and F(.95, 2, 27-2) = 3.38, the results of the significance tests on b and

b are the following:

For regresssion (i) :

Fcalculated = 27(0.038

|tol = 0.862 < 2.06

|til = 0.073 < 2.06

- 0)2 + 2(51.234)(0.038 - 0)(.002-0) + (98.118)(.002)2
2(.0075)

= 3.127 < 3.38

which infer that b0 = 0, bI = 0, and both b and b1 are equal to

zero jointly. So neither pure nor mixed heteroscedasticity are associated

with the variable ln YLD.

For regression (ii): it0 1 = 0.641 < 2.06

it 11 = 0.309 < 2.03

F calculated = 2.536 < 3.38



inferring that b = 0, b = 0, and both b0 and b1 are equal to zero jointly.

So neither pure nor mixed heteroscedasticity are associated with ln GNP.

For regression (iii):

to = 5.586 > 2.06

t= 0.376< 2.06

Fcalculated = 3.86 > 3.38

Although b0 is not equal to zero and the F-distributed statistic fails the

test, bi js equal to zero- concluding once again that neither pure nor mixed

heteroscedasticity are associated with the variable ln SINDEX.

V.1.3. Spearman Coefficient of Rank Correlation Test

Yet another test for heteroscedasticity was suggested by P.A. Gorringe

in an unpublished M.A. thesis at the University of Manchester (see Johnston

[1972]). This test computes the Spearman coefficient of rank correlation

between the absolute values of the residuals and the explanatory variable

with which heteroscedasticity might be associated.

In this test the variables lei and X are replaced by their ranks

lel' and X', which range over the values 1 to n. The coefficient of rank

correlation is the simple product-moment correlation coefficient computed

from let' and X':

n 2
6 E d

r = 1 - (V5
n 3 - n (V.5)

where di = le l' = Xi'



If heteroscedasticity is associated with the variable X, then as X changes,

lei moves in the same direction, the distance between lei' and X' is

negligible, and r approaches 1.0. Thus, for r approaching 1.0 the Spearman

rank correlation test indicates severe heteroscedasticity with X ; and,

for r approaching 0 the test indicates no heteroscedasticity with X. The

calculations of r for the three variables ln YLD, ln GNP and ln SINDEX

are given in Table 4.

rlnYLD = 0 rlnGNP ~ 0 and rlnSINDEX ~ 0

thus, no heteroscedasticity is associated with any of our variables.



Table 4

Spearman Coefficient of Rank Correlation Test for Heteroscedasticity

n lel'

1 23
2 19
3 7
4 18
5 13
6 8
7 14
8 20
9 11

10 5
11 27
12 21
13 1
14 6
15 12
16 2
17 9
18 26
19 24
20 15
21 3
22 22
23 25
24 10
25 17
26 4
27 16

ln YLD' d

16
49

324
36

100
121

9
16
9

100
81
1

441
225

1
100

4
256
225
64
9

324
289
25

225
1

225

3276

r = 1 - 6(3276)_
27 - 27

-0

In GNP'

1
2
3
4
6
5
7
8

10
9

11
12
13
14
15
16
17
18
19
20
22
21
23
24
27
26
25

2
d.

484
289
16

196
49
9

49
144

1
16

256
81

144
64
9

196
64
64
25
25

361
1
4

196
100
484
81

3408

r-1- 6(3408)
27 - 27:

in SINDEX

1
2
3
4

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
26
25
27

1d

484
289
16

196
64
4

49
144

4
25

256
81

144
64
9

196
64
64
25
25

324
0
4

196
81

441
121

3370

r - 1 - 6(8370)

273 - 27

- 0



V.2 Test for Normality

For the model shown by Equation (V.1), it was not necessary to make an

assumption that the disturbance term follow a particular probability distri-

bution, normal or otherwise. Although this assumption is not necessary

[Murphy, 1973], it is common and convenient for almost all of the test pro-

cedures used. For example, the Durbin-Watson test assumes that the distur-

bance terms are normally distributed. The normality assumption can be justi-

fied if it can be assumed thatmany explanatory variables, other than those

specified in the model, affect the dependent variable. Then, according to

the Central Limit Theorem (for a reasonably large sample size the sample

mean is normally distributed), it is expected that the disturbance term will

follow a normal distribution. However, for the Central Limit Theorem to apply,

it is also necessary to assume that these factors which influence the depend-

dent variable Y must be independent. Thus, while the assumption of normal

distribution for the disturbance term is quite common and convenient, its

validity is not so obvious.

Small departures from normality do not create any serious problems, but

major departures should be of concern. Normality of error terms can be

studied in a variety of ways.

V.2.1. A Simple Test

One test for normality is to determine whether about 68 percent of the

standardized residuals, eg/ i \E, fall between -1 and +1, or about 90 percent

between -1.64 and +1.64. For the regression model under investigation,

17/27 or 63 percent of the standardized residuals fall between -1 and +1;

and 25/27 or 93 percent fall between -1.64 and +1.64.



V.2.2. Normal Probability Paper

Another possibility is to plot the standardized residuals on normal

probability paper. A characteristic of this type of graph paper is that a

normal distribution plots as a straight line. Substantial departures from

a straight line are grounds for suspecting that the distribution is not

normal.

Figure C is a normal probability plot of our model generated by the

UCLA BMD regression series computer program. The values of the residuals

from the regression equation are laid out on the abscissa. The ordinate

scale refers to the values which would be expected if the residuals were

normally distributed. While not a perfect straight line, the plot of the

residuals is reasonably close to that of a stan.dard normal distribution to

suggest that there is no strong evidence of any major departure from

normality..

V.2.3. Chi-Square Goodness of Fit Test

In making this test one determines how closely the observed (sample) fre-

quency distribution fits the normal probability distribution by comparing the

observed frequencies to the expected frequencies. The observed frequencies

(calculated from the standardized residuals) are given in the second column

of Table 5. The expected frequencies from the normal distribution are given

in the third column. The remainder of the table is used to compute the

value of the chi-square. The further the expected values from the observed

values (the larger the 2 value is), the poorer the fit of the hypothesized

2
distribution. In the present case2X is equal to 1.00475. This value is not



Figure C

Normal Probability Plot of Residuals
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Table 5

Computation of Chi-Square

Observed Frequency
0

Expected Frequency
E i

- 0 to -1.0

-1.0 to -0.5
-0.5 to 0

0 to +0.5
+0.5 to +1.0
+1.0 to + co

27 6

i =1

(0. - E 2

E 1
= 1.00475

Table 6

Computation of the Kolmogorov-Smirnov Test Statistic D

Observed Frequency
0 i

Cumulative
0

5 .185185
5 .370370

4 .5185
5 .7037
3 .8148
5 1.0.

Expected Frequency
E

4.2849
4.0446
5.1705
5.1705
4.0446
4.2849

Cumulative
E

0.1587
0.3085
0.5

- 0.6915
0.8413

Absolute
Difference

.026485

.06187 = D

.0185

.0122

.0005

1.0 0

Range (Oi - Ei) 2

E.

4.2849
4.0446
5.1705
5.1705
4.0446
4.2849

0.11934
0.22568
0.26498
0.00562
0.26979
0.11934



2
significant even at the 0.05 probability level (2 = 1.07), and it can be

concluded that the hypothesized normal distribution fits the data satifac-

torily.

V.2.4 Kolmogorov-Smirnov Test

Where the chi-square test requires a reasonably large sample, the

Kolmogorov-Smirnov test can be used for smaller samples. The test uses a

statistic called D, which is computed as follows:

Step 1 - Compute the cumulative observed relative frequencies.

Step 2 - Compute the cumulative expected relative frequencies.

Step 3 - Compute the absolute difference of both frequencies.

Step 4 - The value of D is the maximum difference:

t t

D max . (O/n) - (Es/n)
t i=0 i=0

Step 5 - Compare D to critical values from the Kolmogorov-
Smirnov tables.

The larger the value of D, the less likely the hypothesized normal distri-

bution is suitable. Tables of the statistic D exist which give the critical

values for various probabilities and sample sizes [Miller, 1956]. For this

case the critical value of D at a significance level of 0.10 and n=5

is 0.44698. Since the calculated value of D (0.06187) is less than the

critical value, it is not significant and we again accept that our error

terms are distributed normally.



V.3 Test for Autocorrelation

The third assumption in the least-squares model Y = X + E represented

by Equation (V.1) was that the error terms are uncorrelated random vari-

ables. This assumption of independence is equivalent to assuming zero

covariance between any pair of disturbances. A violation, referred to

as autocorrelation, occurs if any important underlying cause of the error

has a continuing effect over several observations. It is likely to exist

if the error term is influenced by some excluded variable which has a

strong cyclical pattern throughout the observations. If omitted variables

are serially correlated, and if their movements do not cancel out each

other, there will be a systematic influence on the disturbance term.

Besides the omission of variables, autocorrelation can exist because of an

incorrect functional form of the model, the possibility of observation

errors in the data, the estimation of missing data by averaging or extrapo-

lating, and the lagged effect of changes distributed over a number of time

periods [Huang, 1970].

The major impact of the presence of autocorrelation is its role in

causing unreliable estimation of the calculated error measures. Goodness-

of-fit statistics, such as the coefficient of multiple determination R ,

will have more significant values than may be warranted. In addition,

the sample- variances of individual regression coefficients, such as price

elasticity of demand, will be seriously underestimated, thereby causing

the t-tests to produce wrong conclusions. Finally, the presence of sig-

nificant autocorrelation will produce inefficient estimators [Elliott, 1973].

V.3.1 The Durbin-Watson Statistic

Autocorrelation of the residuals is tested by computing and interpreting



the Durbin-Watson statistic [Durbin-Watson, 1950-511. This statistic, d,

is defined as follows:

n 2
E (e. - e.1 )

d ==2

n 2
E e.

i=1 I

where e. is the calculated error term resultig from the estimated regression

equation. A positively autocorrelated error term will result in a dispro-

portionately small value of the d statistic since the positive and nega-

tive e. values tend to cancel out in the computation of the squared suc-

cessive differences. A negative autocorrelated error term, however, will

produce large values of d as the systematic sign changes cause successive

terms to add-together. If no autocorrelation is present,d will have an

expected value of approximately two. Two critical values of the d statistic,

d and du, obtained from Durbin-Watson tables, are involved in applying the

test. The critical values d and d describe the boundaries between the

acceptance and rejection region for positive autocorrelation; and, the

critical values 4-d and 4-du define the boundaries for negative auto-

correlation. Forany remaining region the test is inconclusive. The posi-

tive and negative serial correlation regions, applicable for a 5 percent

level of significance and the problem presented here, are shown in Figure D

[Elliott, 1973].



Figure D

Acceptance and Rejection Regions
of the Durbin-Watson Statistic

Probability
of d

4- Reject
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Correlation)
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(No Serial Correlation),

a a1 u
1.16 1.65

+-Reject
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Serial

Correlation)

4-d 
4-dl

2.35 2.84

Since the Durbin-Watson statistic for the model given by Equation (V.1)

is equal to 0.77 it can be concluded that the residuals are positively

autocorrel ated.

V.4 Test for Multicollinearity

The fourth assumption built into the econometric model of Y = XS + E

is that matrix X is of full rank. If this condition is violated, then the



determinant IX'XI is equal to zero, and the ordinary least-squares estimate

b = (X'X)~l X'Y cannot be determined. In most air travel demand models

the problem is not as extreme as the case of IX'XI = 0. However, when the

columns of X are fairly collinear such that IX'XI is near zero, then the

variance of b, which is equal to a 2(X'X)~ , can increase significantly.

This problem is known as multicollinearity. The existence of multicol-

linearity results in inaccurate estimation of the parameters S because

of the large sample variances of the coefficient estimators, uncertain

specification of the model with respect to the inclusion of variabl-es,

and extreme difficulty in interpretation of the estimated parameters b.

The effects of multicollinearity on the specification of the air

travel demand model are serious. For instance, it is a common practice

among.demand analysts to drop those explanatory variables out of the model

for which the t-statistic is below the critical level for a given sample

size and level of significance. This is not a valid procedure since if

multicollinearity is present, the variances of the regression coefficients

under consideration will be substantially increased, and result in lower

values of the t-statistic. Thus, this procedure can result in the rejection

from the demand model of those explanatory variables which in theory do

explain the variation in the dependent variable Y.

V.4.1 Correlation Matrix

In air travel demand models the problem is not so much in detecting

the existence of multicollinearity but in determining its severity. The

seriousness of multicollinearity can usually be examined in the correlation

coefficients of the explanatory variables. How high can the correlation



coefficient reach before it is declared intolerable? This is a difficult

question to answer, since it varies from case to case, and among different

analysts. It is sometimes recommended, however, that multicollinearity

can be tolerated if the correlation coefficient between any two explanatory

variables is less than the square root of the coefficient of multiple

determination [Huang, 1970]. An examination of the correlation matrix for

the sample case (Table 7) clearly indicates significant correlation between

the explanatory variables. The analyst should be cautious, however, in

examining multicollinearity by using the simple correlation coefficients

since such a rule is useful only- for pairwise considerations; for instance,

even if two columns may not be highly collinear, the determinant of (X'X)

will be zero if several columns of X can be combined in a linear combina-

tion to equal another.

Table 7

Correlation Matrix

log YLD log GNP log SINDEX log RPM

log YLD 1.0

log GNP -0.9645 1.0

log SINDEX -0.9561 0.9906 1.0

log RPM -0.9692 0.9933 0.9966 1.0

V.4.2 Eigenvalues

The degree of multicollinearity can also be reflected in the eigen-

values of the correlation matrix. To demonstrate this it is necessary to

represent the regression model in matrix notation. Let Y = X + 6 be the

regression model where it is assumed that X is (n x p) and of rank p,



5 is (p x 1) and unknown, E[s] = 0, and E[sE'] = 12'.Let5 be the least

squares estimate of 6, so that:

= (X'X)~1  X'Y (V.6)

Let X'X be represented in the form of a correlation matrix. If X'X

is a unit matrix,

X'X = =I.
n

then the correlations among the X are zero, multicollinearity does not

exist, and the variables are said to be orthogonal. However, if X'X is

not nearly a unit matrix, multicollinearity does exist, and the least

squares estimates, S , are sensitive to errors. To demonstrate the effects

of this condition Hoerl and Kennard [1970] propose looking at the distance

between the estimate S and its true value S. If L is the distance from

6 to 6, then the squared distance is:

L2 = (S - s)'(6 - 6) *(V.7)

2
Analogous to the fact that E[cc'] =a I , the expected value of the

squared distance L2 can be represented as:

E[L2] = Trace (X'X)~1  (V.8)

If the eigenvalues of X'X are denoted by XMAX = X1 >X2 ' Xp MIN



then the average value of the squared distance from S to 6 is given by:

E2 _2' 2EEL 2] = aY P ( >. >a2 /X(V)

1 1

This relationship indicates that as X decreases, E[L 2 increases. Thus,

if X'X results in one or more small eigenvalues, the distance from S to S

will tend to be large, and large absolute coefficients are one of the

effects or errors of nonorthogonal data.

The X'X matrix in correlation form was given in Table 7. The result-

ing eigenvalues of X'X are:

AYLD = 2.933

XGNP = 0.059

XSINDEX = 0.008

Note the smallness of XYLD and XSINDEX, which reflects the multicollinearity

problem. The sum of the reciprocals of the eigenvalues is

I(1/X ) = 1/2.933 + 1/0.059 + 1/0.008 = 142.29

Thus, equation (V.9) shows that the expected squared distance between
A 2

the coefficient estimate S and S is 142.29 a , which is much greater than

what it would be for an orthogonal system (3 a2

V.4.3 Farrar and Glauber Test to Identify Variables Involved in
Multicollinearity

To identify which individual variables are most affected by collinear-

ity, an F-distributed statistic proposed by Farrar and Glauber [1967], tests

the null hypothesis (H : X. is not affected) against the alternative
o0,



(H X is affected).

Recalling that (X'X) is the matrix of simple correlation coefficients

for X, as interdependence among the explanatory variables grows, the cor-

relation matrix (X'X) approaches singularity, and the determinant IX'XI

approaches zero. Conversely, |X'XI close to one implies a nearly orthog-

onal independent variable set. In the limit, perfect linear dependence

among the variables causes the inverse matrix (X'X)~1 to explode, and the

diagonal elements of (X'X)~ become infinite. Using this principle,

Farrar and Glauber define their test statistic as:

*j (n-p)
F p= r - 1) (V.10)
(n-p, p-1)(p1

where r denotes the jth diagonal element of (X'X)~1 , the inverse matrix

of simple correlation coefficients. The null hypothesis (H0 X is not

affected) is rejected if the calculated F-distributed statistic exceeds

the critical F(a; n-p, p-1). The results for the model of Equation (V.1)

are given in Table 8. The calculated F-statistics,

Fln YLD = 110.02 Fl GNP = 497.23 , and Fln SINDEX = 402.37 ,

are all much greater than the critical F(.05, 27-4, 4-1) = 8.64. Thus,

the null hypothesis can be rejected and the alternate, that all variables

are significantly affected by multicollinearity, can be accepted.



Table 8

Farrar and Glauber Test for Multicollinearity

Simple Correlation Matrix

in YLD in GNP in SINDEX

1.0 -0.964 -0.956

(X'X) = -0.964 1.0 0.991

-0.956 0.991 1.0

Determinant = 0.0013

Inverse Correlation Matrix

in YLD

in GNP

in SINDEX

r* n YLD

r in GNP

14.344

= 13.329r* In SINDEX 0.511
13.329 0.511

65.828 -52.466

-52.466 53.461

= (14.344 - 1) (27-4)4-17 = (14.344)(7.67) = 110.02

= (65.828 - 1)(7.67) = 497.23

= (53.461 - 1)(7.67) = 402.37

(X'X)~ -

Fin YLD

Fin GNP

FlIn SINDEX



V.5 Summary Evaluation of the Ordinary Least-Squares Model

The method of least-squares produces estimators which are unbiased,

efficient and consistent if the assumptions regarding homoscedasticity,

normality, no autocorrelation, and no multicollinearity can be made with

respect to the disturbance term and the other explanatory variables in

the model. This section tested each of these assumptions on the ordinary

least-squares model of Equation (V.1). The conclusions are:

. the sample data is homoscedastic,

. the distribution of error terms is normal

. the residuals are positively autocorrelated,

. severe multicollinearity exists among all explanatory variables.

Thus, the least-squared model failed on the autocorrelation and

multicollinearity tests.

The autocorrelation problem may adversely affect the property of the

least-squares technique to produce efficient (minimum-variance) estimates.

This means that the resulting computed least squares plane cannot be relied on,

and the goodness-of-fit statistics, such as the R2 and the t-test, will have

more significant values than may be warranted. The existence of severe

multicollinearity compounds these problems. When the columns of X are

fairly collinear such that the determinant -IX'XI is near zero, then the

variance of the estimators b, which is equal to a2(X'X)~l can increase

significantly. This results in inaccurate estimation of parameters B

because of the large sample variances of the coefficient estimators, un-

certain specification of the model with respect to the inclusion of variables,

and extreme difficultly in interpretation of the estimated parameters b.
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In the sections that follow, the autocorrelation problem will be corrected

by the method of generalized least-squares, and the problem of severe multi-

collinearity will be dealt with using a relatively new (1970) technique called

"ridge regression".



VI. Correction for Autocorrelation - Generalized Least Squares

The problems associated withthe presence of autocorrelation (inflated R2

unreliable estimates of the coefficients, inefficient estimators) are already

well documented [Taneja, 1976].Standard procedures, such as the Cochrane-Orcutt

[1949] iterative process, are available for correcting autocorrelation, but

the procedure, which usually requires a first or second difference transfor-

mation of the variables:

Y - Y = (X- p X) + (e- p ) (VI.)

where p is es-tImat-ed from e P-e
and e is the vector e lagged one period,

restricts the forecasting interval to one period - which is very limiting

for long term forecasting. Another method, known as generalized least squares,

corrects for autocorrelation and is not as restrictive as the Cochrane-Orcutt

process.

The classical ordinary least squares (OLS) linear estimation procedure

is characterized by a number of assumptions concerning the error term in the

regression model. Specifically, the disturbance term c in

Y = X + e (VI.2)

is supposed to satisfy the following requirement:

E[EE'] = a2 p = [2 1 (VI.3)

where the identity matrix In is of order (n x n). Note that in the OLS model



the variances of the disturbance terms are constant and the covariances are

zero, COV(E s ) = 0, for i / j. If the disturbance terms at different obser-

vations are dependent on each other, then the dependency is reflected in the

correlation of error terms with themselves (i.e. in the covariance terms) in

preceding or subsequent observations. This autocorrelation of disturbance

terms violates the assumption given by Equation (VI.3).

If this assumption (VI.3) is not made, but all the other assumptions of

the OLS model are retained,the result is a generalized least squares (GLS)

regression model. The GLS model is:

Y = Xl + E , (VI.4)

for which the variances of the disturbance terms are still constant but the

covariances are no longer zero, COV( £ E) / 0, for i / j. Consequently,

the variance-covariance matrix of disturbances for the first-order autore-

gressive process

Et P £ t-l + U (VI.5)

(where u is distributed as N(0, a'2I) and |pJ < 1) is given by [Kmenta, 1971]:

E[. ' = a 2 (VI.6)

1 t-12
11 p2.. Qt

S 2 2 . t-3

't-l't-72 t-'3-0-- (VI.7)
P P P i



In OLS the estimate of 6 is given by:

= (X'X)~ X'Y . (VI.8)

In GLS the estimate of F is given by:

F = (X'~1X) 1  (X'~Y). (VI.9)

The preceding discussion has been carried out on the assumption that 2,

the variance-covariance matrix of the disturbances, is known. In many cases

Q is not known. But if the disturbances follow a first-order autoregressive

scheme,

Et E "t-1 + U (VI.10)

then S1 involves only two unknown parameters, a2 and p, which can be

readily estimated.

A version of the generalized least squares regression technique is

programmed into the TROLL computer software system developed at the National

Bureau of Economic Research. TROLL automatically performs an iterative

search for the best value of the p parameter. The results of this search

are:

log RPM = 2.133 - 0.794 log YLD + 1.467 log GNP + 0.652 log SINDEX

(1.291) (-3.646) (6.121) (4.7a1)

R2 = 0.9757 (VI.ll)

Standard Error of Estimate = 0.0349
n = 27

Durbin-Watson = 1.89

p = 0.8796

The Durbin-Watson statistic (1.89) is not significant even at the .05
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probability level (see Section V.3.). Thus, serial correlation of the

error terms has been corrected, and it was not necessary to restrict the fore-

casting interval to one period as in the case of using the Cochrane-Orcutt

technique. Also, the t-ratios of all coefficients remain significant - in

fact the t-ratios for GNP and YLD show an improvement over the OLS results.



VII. Correction for Multicollinearity - Ridge Regression

In Section V.4.2 the use of eignenvalues of the X'X matrix in correla-

tion form was presented to diagnose the problem of multicollinearity. It

was shown that the average value of the squared distance from S, the least

squares estimated coefficient, to 6, the true value, is given by:

E[L 2] = 2 Trace(X'X)~ (VII.1)
P

= a2 { (1/X.) > a2/X (VII..2)

where X = X> X> e >_ p XMIN > 0 denote the eigenvalues of X'X.
MAX ~ ~ p I

This indicates that if one or more of the eigenvalues of X'X is small, the

distance from 8 to will tend to be large - that is, the coefficients will

be inflated. This pulling of the least squares estimates away from the

true coefficients is the effect of nonorthogonality of the prediction variables.

Indeed, this was the case for the data when it was found that E[L 2]=142.29 a2.

2 2If multicollinearity did not exist E[L ] would be 3a2!

A.E. Hoerl [1962] first suggested that to control the inflation and

general instability of the least squares estimates resulting from collinear

data, one can use a procedure based on adding small positive quantities to

the diagonal of X'X. This can be represented mathematically by adding kI,

k > 0, to the matrix X'X in the least squares estimate

A -1

= (X'X)~X'Y (VII.3)

to give:

k= (X'X + kI) X'Y

k > 0. (VII.4)



Equation (VII.4) has mathematical similarities to the determination of the

maximum and minimum boundaries or "ridges" of quadratic response functions

[Hoerl,1964]. Thus, regression analysis built around Equation (VII.4) has

been labeled "ridge regression" [Hoerl & Kennard, 1970].

Generally speaking, the estimate Sk given by ridge regression provide

a procedure by which one can examine the sensitivity of the coefficients to

the effects of collinear data. The inflated coefficients are mathematically

being required to decrease while simultaneously obtaining the best possible

fit to the data. By varying the value of k in Equation (VII.4) it is possible

to examine how stable the analytic solution of Sk is and simultaneously

determine if the best solution is stable. Hoerl describes the procedure

this way:

Basically, the principle which is being applied is
as follows: Given the analytic solution the ridge
analysis determines the unique combinations of
solutions which minimize the lack of fit of the data
while decreasing the size of the coefficients. In
addition, a solution is determined which not only
"fits" the data, but is simultaneously a stable solu-
tion - the real crux of the matter. 3

Since the ridge estimator contains the parameter k~which must be fixed before

the value of the estimator is determined, a major problem lies in determining a

reasonable value for k. Hoerl and Kennard propose a scheme for choosing

an appropriate k by plotting the individual coefficients(Skk2...,6kpI

against k and noting the value of k for which the coefficients stabilize.

This two-dimensional protrayal is called a"Ridge Trace" [Hoerl & Kennard, 1970].

3 Arthur E. Hoerl, "Application of Ridge Analysis to Regression Problems",
Chemical Engineering Progress, Volume 58, No. 3, March 1962, p.58 .



FigureE shows the Ridge Trace for this problem. This trace was

constructed by computing a total of 9 regressions and 9 values of k in the

interval (0.5) indicated by the dots. The Ridge Trace was produced using

the TROLL &RIDGE macro developed by the Computer Research Center of the

National Bureau of Economic Research. &Ridge solved Equation (VII.4)

for k=O and for each user-specified value of k. Both X and Y were centered

(using weighted means y = Xwiy /Ew and x = Ew x ./Ew ), and scaled (using

a weighted length for the columns of X, S. = Ew. (x i- )2, and

Sy = Zw. (y.-Y)2 for Y.) In addition, a prior vector 6 of the coefficients,

estimated from the generalized least squares correction for autocorrelation

(see Section VI ), was provided. The ridge estimate with a non-zero

prior 6 for the coefficient vector is:

k= 6 + (X'X + kI) X'(Y-X6) (VII.5)

Interpreting the Ridge Trace - A Guide to Selecting the Value of k

Consider Equation (VII.4). When k=O Sk is the generalized least

squares (GLS) estimate. These scaled GLS estimates are shown on the Ridge

Trace on the left at k=O. The two coefficients LSINDEX, the log form of

service index, and LGNP, the log form of GNP, are undoubtedly inflated and

unstable. Moving a short distance to the right away from the GLSestimates,

these two coefficients show a rapid change in absolute value. LSINDEX,

the largest coefficient, is quickly being driven down, while LGNP counteracts

this movement. This is not surprising since their simple correlation

coefficient of 0.9906 (Table 7) indicates that they are really the same

factor with different names, and the positive sign of their covariance is

driving them together. At a value of k near 0.1 the system begins to

stabilize. Coefficients chosen from a value of k beyond 0.1 will undoubtedly
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be closer to actual values of S, be more stable for prediction than the GLS

estimates, and have the general characteristics of an orthogonal system.

The tradeoff here is an increase in the standard error of the estimate with

increasing values of k. The residual sum of squares (SSR) is superimposed

onto the Ridge Trace to demonstrate this effect. For this reason it was

decided to choose k at 0.1.

Other aids in determining reasonable choices for k are available. It

may be helpful, for example, to view the least squares estimators from

a Bayesian point of view. The Ridge macro in the TROLL computer software

system provides the option to useone of three empirical Bayes choices of

k: ka, kd, or km. ka and kd are both found by fitting moments of the

marginal distribution of Y; while km is based onthemarginal likelihood

function of Y. The equation for ka is easily computed:

= Trace (X'X)o 2

a lyX 2 - (N-2)92  (VII.6)
w

whereas kd and km are found by an iterative (Newton's method) solution of

two equations. For this reason ka is more appealing. Holland's paper

[1973] provides a comprehensive study of these techniques.

The three empirical Bayes choices for this study are:

ka = 0.11

kd = 0.001

km = 0.001

While the kd and km Bayes values result in a lower standard error, the Ridge

Trace shows that the coefficients are still inflated and unstable at k equal
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to 0.001. so, a value of k at 0.1 remains the optimal value, and the regression

coefficients at k =0.1 are shown by the following equati-on:

log RPM = 2.365 - 0.726 log YLD + 1.410 log GNP + 0.703 log SINDEX

(10.234) (43.080) (36.252) (VII.7)



VIII. Robustness of the Regression Equation

Throughout the development of the air travel demand model, in its

statistical evaluation, and in the correction procedures employed, the

classical least-squares approach for estimating the coefficients was assumed.

The justification for using this method was that the estimators of the

parameters were the best linear unbiased estimators(BLUE). This result

is known as the Gauss-Markov Theorem. One important realization that is

contained within this theorem is that it is not necessary to make an assumption

that the disturbance term follow a particular probability distribution,

normal or otherwise [Murphy, 1973]. Although this assumption is not

necessary, it is common and convenient to assume normality for almost all

of the test procedures used. The Durbin-Watson test, for example, assumes

that the disturbance term follows a normal distribution.

Suppose that the distribution of observations deviates slightly from

this presumed normal distribution. Will the distribution of the estimators

change only slightly? According to Huber[1973] uncontrollable variance

in the error term and long-tailed error distributions will impair the

efficiency of the estimates. "Just a single grossly outlying observation

may spoil the least squares estimate..."4 Hampel outlines three main

causes of such deviations:

1) rounding of the observations;

2) the occurance of gross errors,

and 3) the model itself may only be an approximation to the underlying
chance mechanism.

4 Frank R. Hampel, "A General Qualitative Definition of Robustness," The
Annals of Mathematical Statistics ,Volume 42, No. 6, 1971, pp. 1887-T196.



The Hat Matrix

One good form of insurance is to test the model for outliers or contaminated

observations. Traditionally, an examination of the plot of the residuals

(see Figure F) has been used to indicate suspect data. While such a frequency

or time distribution often is informative (indicating heteroscedasticity,

skewness, multiple modes, or a heavy-tailed distribution) large outliers may

not be so evident since the squared error criterion heavily weights extreme

values.

Hoaglin and Welsch[1977] suggest looking at the "hat matrix". The hat

matrix is defined by:

H = X(X'X) 1 V (VIII.l)

The diagonal elements of H, termed hi, are interpreted as the amount of

leverage or influence that the resonse value y exerts on the corresponding

fitted value y . The larger the size of a diagonal element, the more
n

influence that data point exerts on the fit. Since E h. = p, then the
i=l 3

average size of the diagonal element is shown to be equal to p/n,

E[h.] = p/n where p=l + number of explanatory
variables, and n=number of observations.

*1

As a rule of thumb, Hoaglin and Welsch state that an observation "i"

corresponding to the diagonal element h. is a leverage point (outlier) if

h. is more than twice its epected value; that is, if

h. > 2p/n. (VIII. 2)
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The calculated values of h for the X matrix of Equation (VII.7) are:

h. h. h.

1949 0.169 1958 0.189 1967 0.081
50 0.222 59 0.070 68 0.110
51 0.303 60 0.125 69 0.108
52 0.115 61 0.224 70 0.185
53 0.086 62 0.323 71 0.113
54 0.171 63 0.098 72 0.111
55 0.091 64 0.078 73 0.206
56 0.096 65 0.094 74 0.166
57 0.186 66 0.112 75 0.166

The average value of h. is:

E[h.] = p/n = 4/27= 0.148

Observation "i" is a leverage point i-f h. > 2p/n = 0.296.

Two observations are suspect - 1951 and 1962. Although neither one is truly

an "extreme" outlier, they do exert more than twice the average influence on

the regression fit - a fact that is not immediately evident from an examination

of a plot of the residuals. In the following section a regression technique

is described which is designed to make the model resistant to leverage points.

Such a model is termed a "robust" model.

Robust Regression

Robust regression is a relatively new technique intended to make the

regression model insensitive to changes or irregularities in the data

or the assumed model. Generally, one would like to have minor inaccuracies

in the model cause only small errors in the final results. Thus, a robust

fit is not influenced by leverage points or contaminated observations. Robust

properties are discussed in more detail in Hampel [1968 & 1971] and



Huber [1972 & 1973]. The purpose of robust regression is two-fold: first,

it can be used as a diagnostic tool to determine whether leverage points

unduly influence the fitor whether the assumption of a Gaussian distribution

of error terms is appropriate; and second, if necessary it can be used as a

corrective procedure to provide estimates of the coefficients intended to be

resistant to outliers or inaccuracies in the model.

Generally speaking, the approach is to examine the sensitivity of the

regression coefficients to perturbations in the data points. The technique

that will be used is called iteratively reweighted least squares. It is a

modified form of Newton's method for solving the normal equations. At each

iteration the residuals from the previous step are scaled, and if they are

large they are given a weight which is small enough such that in the next

iteration they are, in effect, deleted. If the model is "robust" the

estimators will be insensitive to such perturbations. This idea will now

be formalized. Consider the regression model:

Y = X + e . (VIII.3)

In least squares estimation the sum of the squares of the residuals is

minimized - that is,
n2

min (y - x )2 (VgII.4)

Suppose now one attempts to minimize the least absolute residuals, then:

n
min E (y. - x. ) (VIII.5)
5 i=l1 1

In robust regression the residuals are weighted through some "loss function" p:

n ,v. A

min E p x (VIII.6)
Si= s



where s is a measure used to scale the residuals. Differentiating Equation

(VIII.6) the necessary condition for a minimum is obtained:

n yi -Yg
. xij, s0 (VIII.7)

1=1

The way one solves this equation for 8 is by iterating - similar to Newton's

method for solving the normal equations. This means that one must begin with

a set of starting coefficient values O*. Residuals are computed from 6*, and

the weights are computed from these residuals. Let w* be the vector of

weights found from the starting coefficients S* ; then a new set of coefficients

are estimated by

= (X'WOX)~ X'W0Y (VIII.8)

This process is repeated. At the jth step:

= (X'W ~X)~ x'W~Y (VIII.9)

which should converge, ordinarily within about four steps, to a local

minimum of Equation (VIII.6). If one does not have a good starting guess

for a, the starting coefficient estimates can be obtained from the least

absolute residuals (LAR) criterion function,

n
min . lyi - xg (VIII.10)

i=1

which is scale invariant so that one does not need the scale factor s.

For the model under investigation the ridge estimates (obtained in

Section VII ) can be used as starting coefficients, 5*, for robust analysis.

In this case when one iterates to find 5 the following would be used:

i = 6 + (X'w~ 1 X + kI)~ 1 x'Wd~I(Y - X6) (VIII.ll)
k

which includes the ridge parameter k and priors 6 (the vector of coefficients



estimated from the generalized least squares procedure in Section VI).

The vector of weights, wi, are determined from the residuals of the

previous step. They are used to "down-grade" large residuals - in effect

deleting that observation from the next estimate. If e l= y - x 6-~ is

to residual for the ith row, j-lst step, then w3 , which is a diagonal matrix

with entries w , is defined as:

j p e j-s j-

(ei /s )(e1i - (VIII.12)

where p' is the first derivative of the weighiting or "loss" function of

the residuals e.

Iwo possible loss functions are the least squares (LS) and the least

absolute residuals (LAR)(see Figure G). For large residuals the LS function

yields a more extreme weight value than the LAR function.

p(e)

residuals, e

LS Function

p(e)

Iresiduals, e

LAR Function

Figure G



Huber[1973] proposed a p(e) function which can be viewed as a combination of

both the LS and LAR loss functions. This function is quadratic in the

middle and linear for large residuals., For example:

12
p(r) =2e for jej < c

1 2
= clel- c for tel > c (VIII.13)

The value of c is the breakpoint between the quadratic and linear sections

of the function as shown in Figure H.

p(e)

-c +c
residual, e

The Huber Loss Function

Figure H

Note that if c=O the Huber loss function behaves like the LAR function, and if

c=- it behaves like the LS function.

The derivative of the Huber loss function is: p'(e) = max(-c,min(c,e)),

which has the useful properties that: it gives normal weights to normal-sized

residuals and lower weights to large residuals (thus, it replaces the least

squares technique with some expression which is less sensitive to extreme

values of the residuals) ; and, it is continuous and bounded (See Figure 1).
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-c
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Fi gu

Huber Loss Function
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Other loss functions exist. An extreme case of the Huber loss function

is a function which is redescending to zero for large residuals. One such

function is the bisquare (Figure J):

p'(e) = e(l - (e/c) )

-0

I I

p'(e)

residual, e

Bisquare Loss Function

Figure J

for jet

lel

< c

> C (VIII.15)



Beyond point c, observations are deleted, and thus have no influence on the

estimation procedure. This is useful in determining the sensitivity of the

coefficients to the removal of observations.

The computer Research Center of the National Bureau of Economic Research

has developed a TROLL system macro to perform robust regression. The &ROBUST

macro provides three different families of loss functions: the Huber loss

function, the Bisquare loss function, and the Sine loss function (which

behaves similarly to the Bisquare). All will behave like the LS function

when c = o ;when c = 0 the Huber function will behave like LAR, while the

Bisquare and Sine weights will be equal to zero.

After choosing one of the three loss functions, the sensitivity of

the regression fit to changes in the weights given to the residuals can

be examined by plotting the coefficients against values of c. The resulting

plot, called a "robust trace", will be similar to the ridge trace developed

in Section VII. For convenience and similarity to the ridge trace the plot

uses r = 1/(l+c) as an index instead of c. Thus, when c = o, r = 0 ;

and when c = 0, r = 1.

Interpretation of the Robust Trace

In Figure K is the robust trace for the problem under investigation.

This trace was constructed using the TROLL &ROBUST macro, which solved

equation (VIII.ll) for r=1 and for each user specified value of r. Here,

the Huber loss function was employed with: a ridge estimate of k=0.1, starting

coefficients V taken from ridge 0.1 (Section VII). and priors 6 from the

generalized least squares estimate (Section VI).

On the left-hand side of the trace, when r=0 and c=o, the Huber loss



function behaves as the least squares function.5 Any large residuals are

given a normally high weighting. At the other end of the plot (on the right),

when r=l and c=O, the Huber function behaves as the least absolute residuals

function. At this point large residuals are given small weights in an attempt

to down-grade leverage points or contaminated observations. So at each end

of the trace the residual weighting functions are very different, yet the

values of the coefficients do not change significantly. Perhaps the large

residuals are not down-graded enough - that is, perhaps the weights on the

large residuals are too small to notice any difference. As a test, the

Bisquare loss function of Equation (VIII.15) can be used which redescends

to zero for large residuals. If there are any leverage points which do

influence the fit, then deleting them from the regression will affect the

coefficients.

Figure L i's the robust trace using the Bisquare loss function. Again,

at r=O and c=o the Bisquare function behaves as the least squares function,

so there should be no change here over the Huber analysis. But, for small

values of c, r near or at 1, the Bisquare function gives large residuals

negligible weights, thus setting aside substantial portions of the data.

Once again, values of the scaled coefficients do not change significantly.

Thus, the insensitivity of the coefficients to changes in the observations

(via the weighting functions) leads to the conclusion that the regression

model given by Equation (VII.7) is "robust".

5Note that the scaled coefficients at this point are not the ordinary
least squares coefficient estimates since the estimate ~ includes the
ridge parameter k as well as generalized least squares priors.
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Figure K

Robust Trace with Huber Loss Function
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Figure L

Robust Trace with Bisquare Loss Function

Includes Starting Coefficients from Ridge 0.1
and Priors from Generalized Least-Squares

o.6

0.5

LGNP*1; ........... . 33 LSINDEK
.3-

0.2

0.1

0

-0.1

-0.2

[ O

l'LYLDI

I I I I S

0 0.1 0.2 0.3 0.4 0.5 o.6 0.7 0.8 0.9

r
1+c

Sk

(Scaled)

1.0



IX. Conclusions

It is evident from the preceding sections that the process of

developing effective regression models is an extremely complex operation.

Yet, to develop analytical models which not only provide accurate forecasts

but which can also be used for policy analysis, it is essential to follow

a procedure exemplified by the outline of these sections. Whereas the

criteria for a "good" forecasting model might be low forecast errors, the

criteria for "good" policy models is not only access to variables which

are under the control of the decision maker, but also reliable knowledge

about the impact of changes in these variables on the demand for air trans-

portation. In this study an attempt has been made to demonstrate the

development of a model which satisfies both of these objectives. The final

model is not only a good forecasting tool, but the individual regression

coefficients are statistically significant as well as "robust" for analyzing

policy decisions with respect to such factors as fares, the quality of

service offered, and the state of the economy.

The emphasis throughout the study has not been to develop "the ultimate

model", but rather to demonstrate the use of the latest statistical esti-

mation procedures which are not only appropriate but essential in elimi-

nating the common problems encountered in regression models. Although

some of these techniques, such as Ridge and Robust regression, are still

in the experimental stages, sufficient research has been performed to

warrant their application to significantly improve the currently operational

regression models.
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APPENDIX A

Data Values and Sources



Table 1

Data Values and Sources

Time'

13

14

15
16
17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36
37
38

RPM 2

6571
7766

10211

12121

14298

16235
19206
21643

24500
24436

28127
29233
29535
33803
38720
44568

52395

64397
76008
87268
95658
95900
97618

108006
115352

117616

Y 3

6.685
6.434

6.482

6.430

6.301
6.056
5.913
5.875
5.855
6.214
6.458
6.679
6.869
6.919
6.343

6.224

6.127

5.876
5.668
5.623
5.884
6.171
6.576
6.666
6.906
7.827

CPI4

71.4
72.1

77.8
79.5
80.1
80.5
80.2
81.4

84.3
86.6
87.3
88.7
89.6
90.6
91.7
92.9

94.5

97.2
100.0
104.2

109.8
116.3
121.3
125.3
133.1
147.7

GN P5

387.4
422.1

455.4

473.0

490.8

484.5

517.2
528.5
538.0
536.3
569.7
581.6
596.7
630.7
656.4
691.0
731.2
774.7
796.3
830.3.
852.8
849.1

875.2
925.0
974.1

956.4

DJLAG6

181
178
215

257
271
275
335
442

491
476
492

629
618
688
632
709
833

907
869
875

906
877
752
879
947

924

UNEMPLY 7

5.9

5.3

3.3

3.0

2.9

5.5

4.4
4.1

4.3

6.8

5.5
5.5
6.7

5.5
5.7

5.2

4.5

3.8

3.8

3.6

3.5

4.9

5.9

5.6

4.9

5.6

PERATIO 8

6.49
7.15
8.57

10.57
9.77

11.75
12.59
13.25
12.73
16.33
17.32
16.98
21.68
17.39
18.20
18.81
17.92
15.15
17.48
17.66

16.48

15.69
18.50
18.20
14.22
8.94

GOVBND 9

2.31

2.32

2.57

2.68

2.93

2.54

2.80

3.08

3.47

3.43

4.07

4.01

3.90

3.95

4.00

4.15

4.21

4.66

4.85

5.25

6.10

6.59

5.74

5.63

6.30

6.99

INDBND 10

2.74
2.67
2.89

3.00
3.30
3.09
3.19
3.50
4.12
3.98
4.53

4.59

4.54

4.47

4.42

4.52

4.61

5.30
5.74
6.41

7.25
8.26
7.57
7.35
7.60
8.78

SINDEX 1

0.671
0.713

0.778
0.928
1.022

1.100

1.154
1.227

1.357

1.409
1.468

1.560
1.667
1.840

1.937
2.026

2.183

2.297
2.537
2.795

3.101

3.277
3.346
3.372
3.465
3.444

DPI 12

187.1
205.5
224.8

236.4

250.7
255.7
273.4
291.3

306.9
317.1
336.1
349.4
362.9
383.9
402.8
437.0

472.2

510.4

544.5
588.1

630.4

685.9
742.8
801.3
901.7
982.9

"p 
13

38.8
44.9

48.7
50.6
54.8

51.9
58.5
61.1
61.9
57.9
64.8

66.2
66.7
72.2
76.5
81.7
89.8
97.8

100.0
106.3
111.1

107.8

109.6
119.7
129.8
129.3



Table 1 continued...

Time RPM2 3 4 ' 5 6 7 8 9 10 S E
YLD CPI GNP DJLAG UNEMPLY PERATIO GOVI3ND INDBND 0SINDEX1 DPI12 H 13

39 119400 7.953 161.2 937.5 754 8.5 14.10 6.98 9.25 3.522 1080.9 117.8

Note: All data in this table is defined for U.S. domestic trunk operations for certificated route air

carriers. The data was summarized for 48 states up through 1969 and for 50 states thereafter.



Table 1 continued...

Sources:

Time is expressed as 13=1949 thru 39=1975. Note: All data in this table
was summarized for 48 states up through 1969 and for 50 states thereafter.

2 Domestic trunk scheduled revenue passenger-miles. 1966 RPM's were adjusted
for a major airline strike which occurred in July and August 1966.
Source: Civil Aeronautics Board, Handbook of Airline Statistics.
The 1973 edition contained summary yearly data up through 1972. Later
data was obtained from CAB's Air Carrier Traffic Statistics, a monthly
issue.

Average yield is defined as the sum of passenger revenues, excess baggage
revenues, and taxes divided.by revenue passenger-miles. The yield will
be subsequently deflated by the consumer price index to arrive at the
real cost per mile to the consumer.
Source: Civil Aeronautics Board, Handbook of Airline Statistics.

4 Consumer Price Index. Source: Economic Report of the President, January
1976, Table B-17.

Gross National Product. Source: Economic Report of the President, January
1976, Table B-1 adjusted to shift base year from 1972 to 1967. Expressed
in 1967 dollars.

6 Dow Jones Industrial Average lagged by one year. Computed from the
quarterly highs and lows of the Dow "30" price range. Source: Wall Street
Journal Library.

Unemployment Ratio - a percent of civilian labour force. Source: Economic
Report of the President, January 1977, Table B-27.

8 Price to Earnings Ratio - a ratio of price index for last day of quarter
to quarterly earnings(seasonally adjusted annual rate). Annual ratios
are averages of quarterly data. Source: Economic Report of the President,
January 1976, Table B-81. T946-48 data based on 50 stocks.

9 U.S. Government bond yields - percent. Source: Statistical Abstracts,
U.S. Bureau of Economic Analysis, 1976, Table 801.

10U.S. Industrial bond yields - percent. Source: Statistical Abstracts,
U.S. Bureau of Economic Analysis, 1976, Table 801.
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Table 1 continued...

A quality of service index obtained by principal component analysis of
five service variables. See Section III of this paper.

12 Disposable Personal Income in current dollars. Source: Economic Report
of the President, January 1977, Table B-21.

13 Index of Industrial Production. Source: Economic Report of the President,
January 1977, Table B-37.



Table 2

Variables for Level of Service Index

48
tate+1-l949

50
51
52
53
54
55
56
57
58
59
60
61
62
63 )0..)

64
65
66
67

50 68
tate-+ 69

70
71
72
736
74
75

ASM 1

11.711576
13.124889
15.614681
19.170377
23.337498
26.921925
31.371182
35.366158
41.746375
42.723508
48.404952
52.220182
56.087214
63.887578
72.254533
80.524404
94.787113

104.668839
133.699795
166.870750
206.434271
213.159880
221.503166
226.621031
244.699120
233.878372
241.282125

Flight 2

Stage Length

168.0
162.9
174.2
186.0
192.7
198.9
206.5
214.9
227.0
233.3
231.8
228.3
226.3
241.3
251.3
261.0
279.3
291.0
317.6
347.5
396.4
422.8
427.1
422.0
424.6
424.7
426.6

Seats4 Speed 5
Psgr. 3

Trip Length

448.0
460.0
466.0
499.0
512.0
517.0
519.0
534.0
562.0
567.0
575.0
583.0
589.0
601.0
602.0
605.0
614.0
620.0
636.0
651.0
648.0
679.0
681.0
685.0
689.2
683.7
697.9

34.7
37.1
39.1
42.2
45.6
49.6
51.5
52.1
53.7
55.5
58.7
65.4
72.9
79.4
83.4
86.1
89.2
91.2
94.4

100.8
109.8
110.4
115.3
118.1
123.8
127.7
130.4

Principal Component
Scores

178.0
180.0
183.0
189.0
196.0
204.0
208.0
210.0
214.0
219.0
223.0
235.0
252.0
274.0
286.0
296.0
314.0
330.0
353.0
369.0
394.0
403.0
405.0
404.0
404.0
401.0
403.0

Total available seat miles (in
CAB, 1973, Part II, Table 14.

billions), source: Handbook of Airline Statistics,

Average Overall Flight Stage Length (miles), Source: Handbook of Airl
CAB, 1973, Part II, Table 51.

ihe Statistics,

Average On-line Passenger Trip Length (miles), Source: Handbook of Airline Statistics,
CAB, 1973, Part II, Table 52.

Average Available Seats per Aircraft, Source: Handbook of Airline Statistics, CAB
1973, Part II, Table 53.

Average Overall Airborne Speed, (miles per hour), Source: Handbook of Airline
Statistic, CAB, 1973, Part II, Table 54.

Data from 1973-1976 obtained from Air Carrier Traffic Statistics, CAB, December 1976,
p. 5.

-1.329
-1.287
-1.222
-1.072
-0.978
-0.900
-0.846
-0.773
-0.643
-0.591
-0.532
-0.440
-0.333
-0.160
-0.063

0.026
0.183
0.297
0.537
0.795
1.101
1.277
1.346
1.372
1.465
1.444
1.522

qkp - -__ - - --- - ---
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