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Abstract

Tomographic imaging problems are typically ill-posed and often require the use of regularization tech-
niques to guarantee a stable solution. Minimization of a weighted norm of model length is one commonly
used secondary constraint. Tikhonov methods exploit low-order differential operators to select for solu-
tions that are small, flat, or smooth in one or more dimensions. This class of regularizing functionals
may not always be appropriate, particularly in cases where the anomaly being imaged is generated by
a non-smooth spatial process. Timelapse imaging of flow-induced velocity anomalies is one such case;
flow features are often characterized by spatial compactness or connectivity. By performing inversions
on differenced arrival time data, the properties of the timelapse feature can be directly constrained. We
develop a differential traveltime tomography algorithm which selects for compact solutions i.e. models
with a minimum area of support, through application of model-space iteratively reweighted least squares.
Our technique is an adaptation of minimum support regularization methods previously explored within
the potential theory community. We compare our inversion algorithm to the results obtained by tra-
ditional Tikhonov regularization for two simple synthetic models; one including several sharp localized
anomalies and a second with smoother features. We use a more complicated synthetic test case based on
multiphase flow results to illustrate the efficacy of compactness constraints for contaminant infiltration
imaging. We conclude by applying the algorithm to a CO2 sequestration monitoring dataset acquired
at the Frio pilot site. We observe that in cases where the assumption of a localized anomaly is correct,
the addition of compactness constraints improves image quality by reducing tomographic artifacts and
spatial smearing of target features.
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1 Introduction

The inversion of geophysical data, and tomographic imaging problems in particular, are often both non-
unique and ill-posed. When we are confronted with a multitude of valid answers, all sensitive to small
variations in noise, secondary constraints can be added to both stabilize the inversion and to select solutions
which fulfill an independent notion of what a “good” model should look like. Regularization techniques
accomplish both goals by minimizing a weighted semi-norm of solution length in addition to fitting the data.
One such approach, originally developed by Tikhonov and Arsenin [1977], minimizes one or more low order
(0th, 1st or 2nd) spatial derivatives of the model to help choose small, flat or smooth solutions. Despite
the fact that neither flatness nor smoothness are intrinsic properties of the earth, Tikhonov methods have
enjoyed remarkable success and are routinely applied to a wide range of parameter estimation problems
[Aster et al., 2005].

As discussed by Constable et al. [1987], the purpose of regularization in the inverse problem is to introduce
stability while recovering models that do not contain more complicated features than can be justified by the
data. Smoothness can be a desirable quality because it suppresses unnecessary model complexity, and
often provides a reasonable representation of earth structures. Additionally, the application of a linear
regularization operator on the model using an l2 norm results in a quadratic term in the objective function
that is minimized by solving a linear system of equations.

We advocate the selection of regularization operators which incorporate some notion of the physics re-
sponsible for observed property variations e.g. subsurface flow, thermal diffusion, or fracture propagation.
Due to the complexity of these processes, heuristic constraints which select for models with related character-
istics might be appropriate. Since flow processes tend to localize in zones of high permeability, regularization
operators favoring compact or connected anomalies seem reasonable. The infiltration of dense non-aqueous
contaminants [Kueper et al., 1993] and the transport of saline tracers through permeable fractures [Day-Lewis
et al., 2003] are two examples of compact flow features suitable for geophysical characterization.

The dynamic nature of flow processes makes them amenable to timelapse methods which seek to delineate
temporal changes in subsurface properties. Unfortunately, standard timelapse imaging techniques are inca-
pable of directly constraining model perturbations; the most common approach is to perform independent
inversion for datasets acquired at multiple times followed by model domain subtraction to yield a differenced
image or a set of differenced attributes [Greaves and Fulp, 1987]. In this case, constraints can only be applied
to each independent dataset but not to the difference between them. This distinction is crucial since the
spatial characteristics of the dynamic process (e.g. flow) may have different geometric properties than back-
ground structures. An alternative approach is to subtract datasets acquired at multiple times directly in the
data domain followed by inversion of the differenced data to recover model perturbations. This approach,
which we refer to as differential or difference inversion, allows spatial constraints to be directly applied to
changes in model properties.

Various regularization schemes have been introduced that provide inversion stability using constraints
that promote simple, though not necessarily smooth, features in the model without introducing unnecessary
complexity. Some examples of alternate regularization methods include minimization of the low order spatial
derivatives of the model using an l1 norm [Claerbout and Muir , 1979], minimizing the area occupied by
model parameters [Last and Kubik , 1983] or their spatial derivatives [Portniaguine and Zhdanov , 1999], and
minimization of the moment of inertia of an object [Guillen and Menichetti , 1984]. In all of these cases, the
objective function is no longer quadratic, and solution of the non-linear inverse problem requires the use of
model-space iteratively reweighted least squares (IRLS). IRLS techniques are more commonly used in the
data domain to solve inverse problems in the lp norm for 1 ≤ p ≤ 2 [Scales et al., 1988; Bube and Langan,
1997] but can be easily adapted to model-space reweighting [Farquharson and Oldenburg , 1998].

One particular application of model regularization that minimizes the l1 norm of the model gradient is
often referred to as total variations. This approach has been used for image processing where reconstruction
of sharp edges is required [Rudin et al., 1992; Acar and Vogel , 1994], as well as geophysical inverse problems
where the target of interest is not inherently smooth [Bertete-Aguirre et al., 2002; Yu and Dougherty , 2000].
The l1 measure of the model gradients does not penalize sharp boundaries as strongly as the l2 measure,
therefore allowing for models that are more blocky.

2



Compact body inversion, as developed by Last and Kubik [1983], is one approach used in the potential
field community for selecting compact models while still satisfying data misfit constraints. In this case,
compactness implies a solution which minimizes the area of an anomaly in 2D or the volume of an anomaly
in 3D. This concept is further developed by Portniaguine and Zhdanov [1999] to select models where the
spatial gradients of an anomaly, rather than the anomaly itself, are compact. They use the term minimum
gradient support (MGS) to describe this regularization method. Youzwishen and Sacchi [2006] use this
approach to reconstruct blocky acoustic velocity models from synthetic seismic datasets. Both compactness
and MGS allow for sharper model variations than traditional smoothness constraints, though MGS tends to
produce more blocky images due to the penalty on model gradients.

Given a variety of regularization techniques that provide inversion stability without introducing unneces-
sary solution complexity, one should choose a method that is consistent with the expected physical properties
of the model. This choice is equivalent to introducing prior knowledge into the inverse problem. Timelapse
seismic traveltime tomography, a technique with demonstrated utility in a monitoring context (e.g. Lazaratos
and Marion, 1997), is one of many geophysical inverse problems which might benefit from the incorporation
of compactness constraints. As mentioned previously, geophysical perturbations induced by flow processes
often yield features with spatially localized properties suggesting that compactness is an appropriate metric
with which to evaluate solutions. In this document, we will pose the differential traveltime tomography
problem in the formalism of Last and Kubik [1983] and demonstrate the resulting algorithm on a simple
synthetic test problem, a more realistic problem based on contaminant imaging, and on a crosswell seismic
monitoring dataset acquired at the Frio pilot sequestration site.

1.1 Principles & Theory

We initially consider the general linear inverse problem where a linear operator, G, maps a model (m) to a
dataset (d) i.e. G m = d. Traditional Tikhonov regularization selects solutions that minimize an objective
function, Φ(m), combining a measure of data misfit and a weighted semi-norm of model length in the l2
sense,

Φ(m) = ‖G m− d‖22 + λ2‖W m‖22, (1)

where W is typically either I or a low order differential operator and λ, referred to as the regularization
parameter, allows the weight given to solution length to vary. When W is a 1st spatial derivative operator,
bias is given towards flat models while use of a laplacian or split 2nd derivative operators favors smooth
models. Minimizing equation 1 results in an augmented least-squares problem of the form,[

G
λW

]
m =

[
d
0

]
. (2)

While Tikhonov schemes have enjoyed successful application in many fields, as mentioned previously
they rely on a somewhat arbitrary choice of prior structure to stabilize the inversion problem. Last and
Kubik [1983] developed an alternative regularization strategy which selects for models with causative bodies
of minimum area in addition to fitting the data. A key aspect of such a strategy is a consistent definition
of area in the context of imaged anomalies. Last and Kubik [1983] introduced an area metric, A(m), for n
elements of constant size which can be written as,

A(m) = ae lim
β→0

n∑
i=1

m2
i

m2
i + β

, (3)

where ae is the area of a single element, mi is the ith model parameter, and β is a factor to remove the
singularity in cases where mi → 0. In the limit of small β, the interior of the right hand side of equation 3
evaluates to 0 for cases where mi = 0 and 1 for non-zero values. Equation 3 can thus be viewed as a sum
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of binary values, each indicating whether or not a particular model element is “on” or “off”. Adopting the
definition of area used in equation 3 leads to a joint objective function of the form,

Φ(m) = φd + λ2φm = ‖G m− d‖22 + λ2
n∑

i=1

m2
i

m2
i + β2

, (4)

where λ integrates both model element area and a secondary regularization parameter controlling the relative
weighting of the two terms. Figure 1A shows the general form of the model regularization term (φm) in
equation 4 for several values of β compared with the traditional case where W = I. The compactness term
is clearly non-quadratic, though large values of β (relative to mi) introduce a similar damping effect on the
model parameters. For the case when β << mi, the compactness constraint becomes apparent; the objective
term asymptotes to one regardless of the magnitude of mi. Hence, the penalty on model parameters does
not depend on their relative magnitude, only whether or not they lie above or below the threshold of β.
Minimization of this objective function yields a least-squares problem of the same form as equation 1 with
the exception that the weighting matrix is now dependent on a model estimate,[

G
λWc(mj−1)

]
mj =

[
d
0

]
, (5)

where Wc(m) is a new diagonal matrix incorporating compactness and j is an index over sequential model
estimates as discussed below. Wc can be written in explicit indicial form as,

Wcii
=

[
m2

i + β2
]−1/2

. (6)

Since Wc is now dependent on m, the resulting problem is non-linear and we must resort to iterative
techniques, in this case a modified form of the iteratively reweighted least-squares (IRLS) method. Starting
with a prior estimate of the model, equation 5 is solved for a new m followed by an update to the regularization
operator. This solve/update sequence is repeated until a convergence criterion is met.

For the initial model estimate, we choose a smooth solution generated using standard regularization
methods; experimentation suggests that the compactness result is relatively insensitive to the exact choice
of starting model assuming that highly localized features are not already present. Figure 1B shows the
linearized form of the model regularization term, φm, which now depends on the value of a prior model
estimate, mj−1

i . First, note that even for small values of β (relative to mj−1
i ) the objective function does not

asymptote to a constant value as in figure 1A. In this case where β << mj−1
i , it is the ratio mj

i/mj−1
i that

is penalized quadratically. When β >> mj−1
i , the objective term simplifies to the traditional damping case

and β serves to bound the maximum value of any element on the diagonal of Wc; as mi → 0, Wii → 1/β.
At any given step, Wc should be viewed as a spatially variable damping matrix with high values in regions
where the prior model estimate has a small absolute magnitude. This promotes compactness and reduces
unnecessary model complexity by damping out relatively small amplitude features within the constraints
provided by the data misfit term.

1.2 Misfit Levels, (λ, β) Selection, and Convergence Tests

The algorithm as outlined above neglects two issues, the selection of the regularization parameters (λ, β) and
when to terminate the IRLS process. As can be seen in the definition of the least squares problem (equation
5), both λ and β affect the strength of the model weighting operator in an interconnected fashion; β bounds
the maximum value in Wc while λ scales all of the elements. Small values of β correspond to the limiting
case of interest in equation 3, but introduce instability as mi → 0. Larger values of β provide a more stable
result at the cost of additional smoothness in the model. λ behaves like a more traditional regularization
parameter but scales a spatially variable damping matrix which changes at each IRLS iteration.

The solution generated by an optimal choice of parameters should both fit the data within some toler-
ance and exhibit structural features consistent with prior information. However, care must be taken not
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Figure 1: (A) Illustration of the non-quadratic term in the objective function for the compactness constraint
defined in equation 4 for several values of β. These are compared with a traditional quadratic term (grey
line). (B) The linearized version of the compactness term in the objective function, which is now a function
of both β and a prior model estimate mj−1.

5



to overfit the data; if measurement error exists, a perfect fit will map noise into model structure. Mo-
rozov’s discrepancy principle [Morozov , 1962] suggests that the best regularization level is the one which
yields the “simplest” model which still satisfies the data to within a bound determined by data variance,
‖G m − d‖2 ≤ ε. Unfortunately, a priori estimates of data variance are not available for most geophysical
measurements making direct application of the discrepancy principle difficult. Additionally, most problems
involving multiple regularization components have a range of parameter pairs which produce solutions with
both the correct data residual and equivalent model norms. Selection from within this class of simple, equally
feasible solutions must rely on prior knowledge, which is typically a judgment made by the geophysicist.

The L-curve method [Hansen, 1992; Hansen and O’Leary , 1993] and the generalized cross validation
(GCV) method [Wahba, 1977, 1990] are two approaches for selecting regularization parameters which do not
require noise estimates. The L-curve method involves calculation of a trade-off curve between data residual
and model semi-norm for a selection of regularization parameter values; the value corresponding to the
point of maximum curvature on this curve is considered optimal. The GCV method selects a regularization
parameter which maximizes solution robustness by evaluating the stability of model estimates when selected
data points are eliminated. This technique requires finding the parameter value associated with the minimum
of this GCV cost function. Although both methods have been successfully applied to geophysical inverse
problems, they are sometimes unstable in cases where correlated noise is present. More crucially, they suffer
from the same problem as the discrepancy method when considering multiple regularization parameters e.g.
2 dimensional GCV surfaces often exhibit minima resembling troughs, thus necessitating the addition of
prior knowledge to select an appropriate parameter pair.

Previous investigations of compactness constraints have used a combination of the above techniques,
experimentation, and interpretive skills to determine the correct (λ, β) pairs. The original work of Last
and Kubik [1983] suggests that β should have a value close to machine precision (≈ 10−11 in their case)
with λ determined using the discrepancy principle and an assumed, although somewhat arbitrary, noise
level. Zhdanov and Tolstaya [2004] advocates the use of a procedure similar to the L-curve technique where
β is chosen to be the point of maximum curvature on the trade-off curve relating β to A(m). We have
observed that setting β to values near machine precision results in severe instability and that the approach
of Zhdanov and Tolstaya [2004] often yields trade-off curves with poorly defined corners. We therefore
fix β at a reasonable value determined by experience, typically between 10−4 and 10−7. This reduces the
regularization parameter search problem to a single dimension. We then select an appropriate λ value by
using the L-curve approach, adding manual guidance if the curve is not well-behaved. λ and β are kept
fixed through later IRLS iterations although dynamic re-adjustment of λ might be a superior approach
[Farquharson and Oldenburg , 2004]. In cases where compactness results are compared to other inversion
methods, we first determine an optimal λ for the Tikhonov problem and then use the resulting data misfit
value to determine λ for the compactness inversion. This approach guarantees that the inversion results for
both methods are equiprobable from a data fit perspective.

A second concern is the formulation of a stopping criterion for the IRLS procedure. In our implementation
we use a bound (α) on the change in the area metric between non-linear iterations to terminate the procedure,
‖A(mj) − A(mj−1)‖ ≤ α. In some cases, the process is halted manually if the solution matches a prior
conception of structure. Alternative stopping criterion formulated in terms of data misfit reduction are
problematic because we find that, after the first iteration, the l2 data residuals are almost constant as a
function of IRLS iteration.

1.3 Compactness And Traveltime Tomography

Our discussion of compactness so far has been general with no assumptions regarding the operation which G
performs, the model parametrization represented by m, or the type of data stored as d. We will now apply our
formulation to the concrete example of differential seismic traveltime tomography. In the case of differential
inversion we consider two datasets, d1 and d2, acquired at different times, but with the same geometry.
Instead of inverting the two datasets independently, we invert ∆d, the difference between measurements
made at time 1 and time 2, for ∆m, the temporal perturbation in model parameters. The starting system
becomes G ∆m = ∆d and compactness constraints are applied directly to the model perturbations. When
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Figure 2: A noise-free synthetic test : (A) True velocity model, (B) 1st order Tikh. regularization, (C) 2nd
order Tikh. regularization, (D) Compactness constraints.

applying this approach to traveltime tomography, we choose ∆m to be a 2D rectilinear mesh of constant
slowness cells while ∆d is a vector of differenced first-arrival traveltimes and G is the ray-path matrix.

At each iterative step in the inversion, a coupled system of the form shown in equation 5 is solved
using the LSQR algorithm [Paige and Saunders, 1982]. The starting model required to compute the first
weighting matrix is calculated using the same G, but with 1st order Tikhonov regularization instead of Wc.
This procedure minimizes the area metric with respect to perturbations from the background estimate.

We restrict our consideration to examples where G is linear, which corresponds to situations where ray-
paths are fixed within the inversion process. In differential tomography this is often a reasonable assumption
since timelapse perturbations are typically small in comparison to background property variations, which
allows the use of rays traced in a prior reference model for the inversion. In situations where the assumption
of a linear operator are clearly invalid, the IRLS process can be extended to include variable ray-paths by
updating G at each iteration. We leave examination of the more complete non-linear problem including
variable ray-curvature to future investigations and focus on the case where the only non-linearity present is
introduced via the regularization operator.

2 A Simple Synthetic Test

The compactness algorithm we describe was initially tested on two static synthetic crosswell datasets to
enhance our understanding of the IRLS process, corresponding changes in the weighting matrix, and the
role of the compact body assumption. Straight ray traveltimes were first generated for a symmetric 40 × 40
source/receiver configuration (1600 data) using the velocity model shown in panel [A] of figure 2 with three
compact perturbations. For the inversion, model estimates were calculated on a 25 × 75 sample mesh. All
inversions used identical versions of the modeling operator, G, and differ only in constraint implementation.

The right three panels of figure 2 depict noise-free inversion results using both standard 1st and 2nd
order Tikhonov regularization (panels [B] and [C]) and compactness constraints (panel [D]). In all examples,
a β value of 10−5 was used for the compactness inversions. A target data residual was chosen by interpretive
analysis of the 1st order Tikhhonov results guided by L-curve analysis. λ values were selected for each
inversion to match this misfit level, and the results for all three methods fit the data equally well. Object
smearing, due to limited angular aperture, is visible in both standard tomograms. Artifacts of this type often
plague traveltime imaging results and obscure both qualitative interpretation and the recovery of quantitative
property estimates. As can be seen in panel [D], the addition of compactness constraints largely eliminates
object smearing. The compactness inversion was initialized using an over-damped solution with 1st order
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Figure 3: Wc and m as a function of iteration: The top row depicts diag(Wc), the spatial variations in
damping. The bottom row shows the corresponding estimates of m. Panel (A) shows the starting model,
generated using 1st order Tikh. constraints

Tikhonov regularization. In this case, the IRLS loop converged in only 2 IRLS iterations.
During the IRLS procedure, Wc(m) changes in accordance with variations in the previous model estimate.

Examining the spatial characteristics of Wc provides insight into the way which the compactness constraints
evolve. Figure 3 shows images of diag [Wc] (top row) and the corresponding estimates of m (bottom row) for
the first two IRLS iterations. The first model estimate [A] shows the smooth over-damped starting model.
The resulting Wc operator [B] exhibits large damping values in zones with no anomalous features and smaller
values in the vicinity of the three perturbations. The second and third iterations exhibit increasingly tight
constraints around the perturbed zone, which corresponds to a reduction in perturbation area, A(m). After
the 1st iteration, the l2 data residual is essentially constant as a function of IRLS iteration for this choice of
β and λ. Interestingly, some of the artifacts present in the starting model are still visible in later iterations
except in a focused form.

Figure 4 depicts results from the same synthetic problem with the addition of 3% gaussian noise to the
data. As in the noise-free case, compactness constraints minimize artifacts due to limitations in survey
aperture. Additionally, image artifacts due to noise in the traveltime data are partially suppressed yielding
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Figure 4: A synthetic test with 3% gaussian noise: (A) True velocity model, (B) 1st order Tikh. regulariza-
tion, (C) 2nd order Tikh. regularization, (D) Compactness constraints.

a more interpretable image. However, the compact solution exhibits some less desirable features including
a reduction in the size of the lower right velocity anomaly. Imaging artifacts above and below the central
anomaly are also focused into small high amplitude features. This illustrates an important aspect of the
compactness constraint; model resolution is data dependent due to the introduction of a regularization
operator that depends on a prior model estimate. Therefore, the extent to which a truly compact feature
can be recovered depends on the data quality.

As alluded to previously, choosing a compact model is one of many techniques for introducing prior in-
formation to the inversion process. Although we believe that compact solutions are appropriate for imaging
flow-induced features, diffusive processes such as thermal conduction might result in smooth velocity anoma-
lies. In such cases, regularization methods favoring smooth solutions will yield superior results. Figure 5
depicts a comparison of Tikhonov and compactness solutions for a case where the true model is smooth. The
true model (panel [A]) was generated by applying a gaussian filter to the model shown in panel [A] of figure
2, followed by a re-normalization to yield the same maximum and minimum velocities. Synthetic data were
generated using the same geometry and noise levels used in the previous example.
As can be seen in figure 5, both the 1st order (panel [B]) and 2nd order (panel [C]) Tikhonov solutions
effectively recover the true model. The addition of compactness constraints (panel [D]) yields a model
estimate with a grainy texture and locally compact features. While correctly locating the velocity anomalies,
the compact solution does not effectively capture the smooth transitions around the velocity features and
underestimates their spatial extent. This pair of examples clearly demonstrates the benefit of incorporating
prior knowledge into the regularization process. In this case, constraints based on a valid understanding
of anomaly structure significantly improve image quality, motivating their inclusion when such insight is
available.

3 A Synthetic Contaminant Infiltration Example

The previous examples considered only a set of simplified features with no particular physical significance.
Evaluating the efficacy of the algorithm for fluid process monitoring applications requires a synthetic test case
where the imaging target exhibits the geometry of a flow-induced property perturbation. The geophysical
monitoring of dense non-aqueous phase liquids (DNAPLs) infiltrating the subsurface is one of many imaging
problems which exhibits these spatial characteristics. Because DNAPLs are denser and often less viscous than
water, they easily penetrate deep into the saturated zone and pond at low permeability barriers [Pankow and
Cherry , 1996]. GPR imaging results from the Borden field experiment [Greenhouse et al., 1993] [Brewster
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Figure 5: A smooth synthetic test with 3% gaussian noise: (A) True velocity model, (B) 1st order Tikh.
regularization, (C) 2nd order Tikh. regularization, (D) Compactness constraints.

and Annan, 1994] revealed that DNAPLs injected at the site in question formed several thin lenticular zones
of high saturation, visible as laterally discrete reflection events. Parker et al. [2003] used direct-push fluid
sampling techniques to quantify the vertical distribution of DNAPLs at five contaminated sites; this study
confirmed that dense contaminants often form very thin (5 to 15 cm thick) pools of limited lateral extent,
features which we would characterize as “compact”. Motivated by these observations, we selected the 2-phase
contaminant modeling results of Kueper and Gerhard [1995] as the geometric basis for our second synthetic
test. In this case, we synthesize and invert differential crosswell radar traveltimes. Changes in bulk dielectric
constant, and therefore radar velocities, are relatively sensitive to DNAPL saturation as shown in laboratory
investigations [Ajo-Franklin et al., 2004], making GPR the preferred imaging modality.

The study of Kueper and Gerhard [1995] examined the infiltration characteristics of point-source spills of
tetrachloroethylene (PCE) for spatially correlated random permeability models. The models used for their
numerical experiments were 50.5×20.125 m two dimensional permeability fields with anisotropic exponential
autocorrelation functions with correlation lengths of 5.0 m and 0.5 m in the horizontal and vertical directions
respectively. They used an adaptation of the two-phase flow code presented in Kueper and Frind [1991] to
simulate the release of 5.0 m3 of PCE (ρfl = 1460 kg/m3, η = 0.00057 Pa s). We use several snap-shots
from one of their flow realizations as starting points for our numerical experiments. Panel (A) of figure 6
shows the results for one of their flow simulations with a background image of log permeability structure.
The blue, green, and red zones correspond to regions with greater than 20 % PCE saturation at three times
within the simulation.

We started with the stochastic permeability model and multiphase saturation results detailed in Kueper
and Gerhard [1995] and adapted them to provide the requisite input parameters for radar modeling and
tomography. The log of the initial permeability models were linearly mapped to porosities ranging from 0.3
to 0.48 with more hydraulically conductive regions mapped to higher porosities. The DNAPL saturation
results and the porosity values were converted to maps of dielectric constant using the Bruggeman/Hanai/Sen
(BHS) model [Sen et al., 1981]. We assumed a 3-phase system composed of quartz (κ = 4.27, Keller [1987]),
water (κ = 79.8, Sen et al. [1981], and PCE (κ = 2.297, Nath and Narain [1982]) for dielectric property
estimation. Panel (B) of figure 6 shows the estimated dielectric constant model for time C. We also assumed
that the imaginary component of the dielectric constant was 0 to facilitate conversion to a radar slowness
model. Using the slowness map and the source/receiver geometry as input, synthetic radar traveltimes were
generated using straight-ray tracing on a 90 x 190 sample mesh with ∆x = ∆z = 0.1 m. First arrival
times for the plume at times B and C were subtracted to yield a ∆t dataset suitable for difference inversion.
Gaussian noise (2.5 %) was added to the time differenced dataset.
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Figure 6: DNAPL pool geometry and dielectric model : Panel (A) : The background model permeability
variations are shown in greyscale while the evolution of pool geometry at three successive times is shown
in solid colors. The source (blue triangles) and receiver (red triangles) locations for the synthetic crosswell
experiment are also shown. Panel (B) shows the dielectric model at time C. Dielectric values were estimated
from the flow results and the BHS model. The dashed blue lines indicate the extent of the synthetic crosswell
dataset.
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Figure 7 shows the tomographic result generated by both traditional 1st and 2nd order Tikhonov regular-
ization and the inversion with compactness constraints. All inversions were performed on 45 x 95 sample
rectilinear meshes with ∆x = ∆z = 0.2 m. All slowness models shown use the same colorscale to allow
for accurate comparisons. Panel [A] shows the true differential slowness model, ∆s = sC − sB . The
geometry of the zone with DNAPL induced slowness changes is composed of a series of vertically connected
lenticular features with variable saturation levels. Panels [B] through [E] show the tomography results using
1st (left) and 2nd (right) order Tikhonov regularization with both small (bottom) and large (top) values for
λ. Panel [F] shows the result of the inversion based on compactness constraints after four reweighting steps.
Like the results from the first synthetic test, the only difference between the inversions are the constraint
implementations.

Several conclusions can be drawn from figure 7. When considering the standard Tikhonov solutions,
small λ values allow more detailed delineation of the DNAPL zones at the cost of increased image noise
levels. Larger λ values succeed in suppressing artifacts but simultaneously smear the target feature. In
contrast, the application of compactness constraints succeeds in both decreasing artifacts and providing a
sharper image of the DNAPL zone. The compactness based inversion also provides more accurate slowness
estimate, largely because the anomaly is focused into an appropriate geometry.

4 Analysis Of The Frio CO2 Monitoring Dataset

For our final algorithmic test we explored the use of differential seismic traveltime tomography with compact-
ness constraints to monitor the subsurface movement of supercritical carbon dioxide (CO2). The injection
of carbon dioxide into deep saline aquifers is one approach currently being considered to minimize anthro-
pogenic contributions to atmospheric greenhouse gasses [Orr , 2003]. Since the goal of sequestration is the
long-term storage of CO2, remote monitoring is required to ensure that reservoir seals remain intact [Benson,
2003]. Seismic methods offer one possible approach to mapping the subsurface extent of CO2 saturation,
a topic explored in previous enhanced oil recovery (EOR) monitoring studies [Lazaratos and Marion, 1997]
[Davis et al., 2003]. Borehole imaging methods in particular have shown promise for resolving small-scale
flow features in a CO2 monitoring context [Majer et al., 2006].

A complete test of the compactness algorithm was performed on a timelapse crosswell monitoring dataset
acquired at the Frio pilot site. The Frio demonstration project [Hovorka et al., 2006] is an on-going multi-
institution effort to improve understanding of the in situ dynamics of CO2 injection within a saline aquifer
located in East Texas. In the first stage of the project, 1600 ×103 kg of supercritical CO2 (at P = 15 MPa,
T = 55oC) was injected into a confined unit of the Oligocene Frio sandstone formation at a depth of 1534 m
(5053 ft). The target unit, referred to as the Frio “C” sand, has a dip of approximately 15 degrees. Cores
from the “C” sand exhibited porosities between 30 and 35 % with permeabilities between 2000 and 2500 md.
Hovorka et al. [2006] includes a complete description of the formation properties and the multiple facets of
the Frio experiment. Since the supercritical phase at these P/T conditions is characterized by both a low
density (≈ 700 kg/m3, Hovorka et al. [2006]) and a low bulk modulus (≈ 0.086 GPa, Wang and Nur [1989]),
the zone of CO2 saturation was expected to migrate up-dip and be visible as a zone of decreased P-wave
velocity.

Motivated by previous seismic monitoring projects [Lazaratos and Marion, 1997], Lawrence Berkeley
National Laboratory acquired two high-quality crosswell seismic datasets before and after the pilot injection
in an attempt to delineate the region of subsurface CO2 saturation. Daley et al. [2005] describes the data
collection procedure and relevant survey parameters. Panel A of figure 8 shows a schematic representation
of the lithological units within the survey domain including the “C” sand used for the injection experiment.
Traveltimes from the baseline and repeat surveys were picked and subtracted to yield time differences (∆t).
This dataset, consisting of 3301 differential times, was then inverted to generate a map of changes in slowness
(∆s). ∆s images were converted to maps of velocity changes using a background reference model obtained
from logs and the baseline survey. Figure 8 shows tomography results for the Frio dataset using 0th [panel
B], 1st [panel C], and 2nd [panel D] order Tikhonov regularization in comparison to compactness constraints
[panel E]. All inversions were performed on a 60 × 200 sample rectilinear mesh.
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panels (B), (C), (D), and (E) is relative to the uppermost measurement source location.

The region of injected CO2 is visible in all four images as a linear feature with decreased P-wave velocity.
The dip of the imaged CO2 zone matches prior models of local structure, increasing our confidence in the
reconstruction. As can be seen in figure 8, the results based on 1st and 2nd order Tikhonov schemes (panel
C and D) were generally of low quality with significant artifacts including a broad low velocity feature which
extends counter to structural orientation and ray related features near the boreholes. Both the 0th order
Tikhonov and compactness constrained models exhibit a high degree of similarity within the anomalous zone.
However, the addition of compactness constraints has largely eliminated artifacts related to ray coverage;
these artifacts are particularly visible on the left side of the 0th order solution. Since ensuring seal integrity
is one of the primary goals of sequestration monitoring, a robust interpretation requires the reduction of low
velocity artifacts outside of the formation.

The maximum magnitude of the velocity perturbation observed in our reconstruction (≈ −600 m/s) is
surprisingly large. The neglect of ray curvature in the reconstruction is another possible source of error;
however the inclusion of ray bending typically increases rather than decreases the magnitude of velocity
anomalies. Preliminary rock-physics analysis using poroelastic fluid substitution models similar to those used
in Nolen-Hoeksema et al. [1995] indicate that such effects are insufficient to produce this change. Likewise,
Wang et al. [1998] observe significantly smaller reductions in Vp during core-scale laboratory measurements
of CO2 injection. The absence of significant changes in Vs (not shown) suggests that an increase in pore
pressure can also be ruled out as a secondary factor. Future investigation is needed to identify the mechanism
responsible for these large changes in rock properties.

5 Conclusion

We describe one approach for including compactness constraints in differential seismic traveltime tomography
through use of a model-space reweighting algorithm. We observe improvements in image quality in com-
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parison to standard Tikhonov-based techniques for a simple test problem, a synthetic based on multiphase
flow results, and a CO2 sequestration monitoring dataset. For the test problems including localized features,
the addition of compactness regularization reduces tomographic artifacts, improves the recovery of target
geometry, and more quantitatively estimates property variations. The strength of compactness constraints
can also be a weakness; in situations where the imaging target exhibits smooth variations, the size of the
reconstructed feature can be inappropriately reduced, potentially resulting in property overestimates. The
assumption of compactness is particularly dangerous when considering flow processes dominated by diffu-
sion rather than advection. One promising extension to our approach would be to replace compactness with
connectivity as a secondary constraint in the reweighting process, possibly a more effective regularization
approach for flow imaging. A general limitation of differential inversion is the requirement that all surveys
have matching geometries, a requirement which is often difficult to fulfill in practice. A possible solution
to this limitation would be to pose the imaging problem as a coupled joint inversion across multiple time
steps [Day-Lewis et al., 2003], thus allowing the inclusion of compactness constraints on model perturbations
without requiring explicit data differencing.
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