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Abstract

Two queuing models appropriate for estimating time depend-

ent delays and delay costs at major airports are reviewed. The

models use the demand and capacity profiles at any given airport

as well as the number of runways there to compute bounds on queu-

ing statistics. The bounds are obtained through the iterative

solution of systems of equations describing the two models.

This computational procedure is highly efficient and inexpen-

sive. The assumptions and limitations of the models are dis-

cussed.

Common characteristics and properties of delay profiles

at major airportt are illustrated through a detailed example.

Potential applications to the exploration of the effect of

air traffic control innovations on congestion and to the esti-

mation of marginal delay costs are also described.



I. INTRODUCTION

The problem of air traffic congestion at major airports has

been the subject of numerous studies in the past. Since these

airports are generally acknowledged to be the principal bottle-

necks on the airside of the air transportation system, this

attention is certainly well deserved.

Understanding of all facets of the airport congestion phen-

omena is becoming increasingly essential for a number of reasons.

Airports and runways, first, are enormously expensive facilities

and it is to the best interest of society to use these facilities

as efficiently as possible. Second, the primary future hurdle

to further growth of the air transportation system will most

likely be the cost or unavailability of fuel. Circling in the

air over an airport or waiting for long periods next to a run-

way to take-off are notoriously poor ways of utilizing expensive

fuel resources, especially in cases where a trip is over a short

or medium distance. A third fact is that there is currently

throughout the world a tendency to adopt a wait-and-see attitude

on planning major airport-related construction programs. In

view of the current questions concerning the future growth of

air transportation, claims regarding the need for new airport

facilities are viewed with doubt and scepticism. The major deter-

minants of whether a new facility is indeed needed are the

costs, nature, and causes of airport delays.

The major deficiency of most work on airport queues has been

that, due to lack of analytical tools, the time-varying nature of
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airport congestion phenomena has not been explicitly considered

and accounted for.

In 1969, CARLIN AND PARK [1] took a highly practical approach

to the problem of congestion in New York City's airports, consider-

ing the time-dependence of delay costs due to the demand profile.

They estimated, among other things, total delay costs at the air-

ports during peak and off-peak hours.

More recently, KOOPMAN [6] pointed out that delay estimates

are relatively insensitive to the precise queuing model used,

as long as the probabilistic nature of the queuing process was

explicitly recognized. Through a computer-aided analytic sol-

ution of sets of transition-probability equations, he obtained

upper and lower bounds on the actual time-dependent delay statis-

tics and demonstrated that, for the parameter values prevalent

at major airports, these bounds are very close to each other.

This paper applies KOOPMAN's approach to multiple server

queuing systems. By using a set of computer programs carefully

written to account for some of the numerical intricacies of the

queuing models, it provides a detailedexample of congestion an-

alysis at a specific airport and attempts to cast light on sev-

eral important practical problems: It reviews the sensitivity

of waiting times to changes in airport capacity and airport de-

mand: it computes the total daily costs of delays and places a

price-tag on the non-uniformity of demand through the day; finally

it illustrates the concept of marginal delay costs, by estimating

the costs of adding new flights at different times of the day.



The results illustrate the potential of this approach to future

work on runway pricing and on evaluating the need for new facil-

ities.

In the following sections, we first review the queuing mod-

els, their assumptions, and limitations in an informal theoreti-

cal section (part 2). In part 3, we present some results from

the detailed case study that was mentioned earlier. Part 4

discusses the results and the approach to a number of important

airport-related problems. A set of notes, that supplement the

text, provide mostly background information on the subjects

discussed.



2. THE MODELS

The theoretical model presented here is based on the earlier

work of KOOPMAN [61 and is a quite straight-forward extension

of that work to the case of multiple servers (i.e., multiple

runway airports). For this reason we shall only describe the bare

essentials of the theoretical foundations here and, instead, concen-

trate on providing an intuitive explanation of the basic rationale,

of the assumptions used, and of the limitations of the models. For

a rigorous treatment of the theoretical questions, the reader is

referred to [6].

The model considers an airport as a set of independent, parallel

servers (the runways). A schematic representation of this system is

shown in figure 1.

It is assumed that the total demand at the airport - that is,

the sum of the demands for landings and for take-offs - is a Poisson

process with a time-dependent average demand rate, given by ?(t).

The Poisson assumption for airport demand is consistent with actual

observations at several major airports and has been used extensively

in the literature [4], [8], [10] (see Note 1).

By contrast, the form of the probability law describing the

duration of a service at the runways is still a matter for

speculation [4], [81, [101. The duration of the period during which

a runway is busy with an aircraft depends on such diverse factors as

type of operation being conducted, weather, aircraft mix, runway configur-.

ation in use, runway surface conditions, location of runway exits, air

traffic control equipment, requirements for minimum separations
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Figure 1: Schematic representation of the model.



between aircraft, pilot and air traffic controller performance, etc.

Following the example of [6], we shall sidestep this issue by making

this intuitively reasonable observation: the duration of the service

times must be "less random" than the perfect randomness described

by the negative exponential probability density function and "less

regular" than the perfect regularity described by deterministic ser-

vice times.

This last point is a crucial one as it drives our whole

approach to the problem: we shall seek to obtain upper and lower

bounds on congestion-related statistics by noting that a worst

case is provided by the negative exponential service assumption and a

best case by the deterministic service assumption. The rationale,

of course, is that, if - for the set of parameter values prevalent

in the systems under consideration, i.e. the major commercial air-

ports - the upper and lower bounds turn out to be reasonably close

to each other, then either bound (or any reasonably weighted combina-

tion of the two) can be used as a good approximation of the actual

statistics desired. As will be seen in what follows, the bounds do

indeed turn out to be- close for all practical purposes, and under

widely varying sets of conditions.

Here then is the strategy to be followed: Given an airport

with k independent runways each of which has a time-dependent average

service rate i(t), we shall solve iteratively and for the desired

period of time two systems of equations, one describing an M/M/k

queuing system and the other an M/D/k queuing system. The actual

values of interest will then be bounded from above and below by



the values obtained from these two queuing models. This whole ap-

proach is dictated by the fact that the integro-differential equa-

tions that describe an M/G/k queuing system - a more realistic

model for the case of interest - are unwieldy even for the purpose

of obtaining numerical solutions.

Assumptions in the Model

To complete the description of our queuing models, we now list

some assumptions that were made, mostly for reasons of computational

feasibility. The most important of these, from a practical viewpoint,

is the assumption of the existence of a single queue of aircraft

awaiting use of the runways on a strictly first-come, first-

served basis. Thus, we make no distinction between landing and

departing aircraft but are instead interested only in overall measures

of congestion. While, in practice, the average service times (and the

probability distributions) for landings and take-offs are different

(see Note 2), we use here what is in effect a single weighted*

average service time for both kinds of operations (see Note 3).

Another assumption is that all active runways (or, all the

parallel servers in figure 1) operate independently and are identical.

In practice, runways often can not be- operated independently, since

operations at one may affect those on another, due to airport geometry.

Again, from the practical viewpoint, this assumption is not too re-

strictive since dependencies among the servers, if they exist, can

be accounted for by adjusting the service rates accordingly. As an

example, consider an airport with a single runway which can handle,



say, 50 aircraft movements per hour, i.e. the average service time

is 72 seconds. Suppose now that operations are begun at a second

runway which intersects the first one. Then, the overall airport

capacity might increase to, say, 80 operations per hour; and not

to 100 as it would if the two runways were independent. To account

for this in our model, we would then assume the existence of a

single independent server, with an average service time of 45 seconds,

for an overall airport capacity of 80 movements per hour.

Obviously, the number of state-transition equations, describing

the queuing models and being iteratively solved by the computer,

must be finite. Since the number of such equations is equal to the

number of states in the queuing model, a futher condition must be

that the capacity of the airport queue is finite. Thus, it is

assumed that the queuing system of figure 1, can accomodate up to a

maximum of m aircraft (including the ones in service at the k servers).

In practice, this is entirely inconsequential since m can be

selected large enough to make it highly unlikely that the number of

aircraft in the terminal area at any given instant will be equal to

m. This is further discussed later in this paper.

Finally, it is assumed that successive service times are

statistically independent. This is substantially true in reality,

as little attempt is made, under today's air traffic control regime,

to sequence operations in anything but a first-come, first-served

way. Successive service times are, therefore, randomly mixed

according to the mix of aircraft with little or no inter-dependence

among them.



The M/M/k System Equations

We now list the equations that describe the two queuing systems

under consideration here. First, for the M/M/k model, we have

Poisson arrivals at a time-dependent average rate of X(t). These

arrivals are served by k parallel servers, each operating at an

averagevservice rate, yp(t). It is assumed, that individual service

times are distributed as negative exponential random variables with

exponent equal to the value of p(t) at the instant t when service is

initiated. The queue capacity is equal to m.

tet u6 define by P (t), i = 0,l,2,...,m, the probability that

at time t there are i aircraft in the terminal area. Then, for any

t, we can write the well-known set of Chapman-Kolmogorov equations

for the derivatives P" (t) of the state probabilities. Suppressing,

for reasons of conciseness, the time-dependence of the arrival and

service rates, i.e. writing X =-X(t) and P = yP(t), we have:

P (t) = -XPO(t) + pP 1(t) (1-1)

P (t) = XP (t) - (X + ip)P. (t) + (i + 1)pP. (t) for liik-1 (1.2)
1-1 i i+l

P (t) = XP. (t) - (X +-kyp)P (t) + kpPi (t) for k~im-1 (1.3)
3. i-+ i

P (t) = XP (t) - kyP (t) (1.4)
m .m-1 m

The above m + 1 equations can be solved iteratively for any

desired period of time T, using the approximation P (t+At)=Pi (t)+P' (t) -At,

where At is a time interval chosen sufficiently small to be consistent



with the Poisson assumptions regarding the arrival and service

processes. A boundary set of values P (0), i = 0,l,2, ... ,m, and

the functions A(t) and p(t) for O4tiT must be provided.

The M/D/k System Equations

Turning to the corresponding system of equations for the

model in which service is assumed to be deterministic, we define

the increment of time as equal to the duration of a single

service time. We assume further that all k parallel servers

begin and end service simultaneously (see Note 4). It is then

possible to write equations relating the sets of state probabilities

P. (t) and P. (t+l) - remember that t is now being increased at
1. 1

discrete intervals equal to the average service time. (Since

time intervals are normalized to 1/yp, the demand rate must also

be normalized to p = X/y, the demand per unit of service.) These

equations are based on the fact that the probability that exactly n

aircraft will attempt to join the system between t and t+l is equal

to pn - exp(-p)/n! due to the Poisson law for the demand pattern.

We then have:

P 0 (t + 1) = exp(-p)q k (t) (2.1)

P (t +1) exp(-p)(t) p + P (t) p + Pk (t)

Si k+l (lk+i

for ligm-k (2.2 )

P (t + 1) = exp(-p) qk(t) k P + P (t) pi-l + .......

il (i-l) !

-+ Pm(t) pi+k-m for m-k+lgiim-1 (2.3)

(i+k-m)!
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P m(t + 1) q k(t)bm + Pk + 1(t) . bm - 1 + + Pm(t) . k (2.4)

k 00
where qk(t) = Z P (t) and b = exp(-p) Z

ki=0 i i=j -'i=O'

Strictly speaking, (2) assumes that the new arrivals during

a unit of time join the queue at the end of the service unit

at which time the capacity limit, m, applies.

Again, beginning with a set of initial conditions P. (0),

i = 0, 1, 2, ... , m, the above set of equations can be solved

iteratively to obtain numerical answers for demand and service

rate profiles, X(t) and 0(t) (we have, for conciseness, suppressed

the time variable in the equations).

Related Quantities

KOOPMAN [6] has shown that for "relatively slow varying" X (t)

and P(t) the sets of equations for the M/M/k and M/D/k systems

possess unique periodic solutions with period T whenever the demand

and service rates are both periodic with period T. In the case of

airports, demand and service rates can indeed be considered to be

periodic quantities with period T=24 hours. It remains, therefore,

to solve the two sets of equations numerically to obtain estimates

of the state probilities, P. (t), for all OtET. The state

probabilities, in turn, can be used to compute other quantities of

interest. Of those, we shall specifically refer to:

i) The probability that all runways are busy and, therefore, that

a newly- arriving aircraft will experience positive delay,

k
B(t) = 1 - Z P.(t) (3)

i=0



ii) The expected number of aircraft in the queue at time t,

m
Q(t) = E (i-k)P.(t) (4)

i=k+1

iii) The average waiting time in the queue for aircraft that

arrive at time t (see Note 5)

W Wt) = (i-k+l)P.i(t)(5
k - pdt) i=k

This last quantity is only an approximation in the case when

p(t) is a function of time. The reason is that the rate of service,

p(t), may change in the future if the waiting time is long (see

Note 6).

In all cases, two estimates of these parameters of interest

are obtained, one based on the M/M/k and the other based on the

M/D/k model.

The Computer Programs

Computer programs were written [5] to compute numerical

solutions for the two queuing models. The inputs to the programs

are: the hourly demand levels; the hourly service rates; and the

number of independent servers at the airport of interest. The

piecewise linear functions that result from connecting the half-

hour points of the demand and service rates are then taken to

represent X(t) and p(t), respectively (for instance, figure 4

shows the function X(t) that results from the demand depicted in

figure 2). The outputs of the programs are the state probabilities,

P. (t), as computed in (1) and (2), as well as other desired

.quantities such as those obtained from (3) through (7).



Particular attention needs to be given to numerical

control problems due to the magnitudes of some of the coefficients

in the equations and to the propagation and build-up of truncation

errors in the iterative solution. Double precision arithmetic is

used throughout as well as the procedures outlined below.

The iterative solution of the set of differential equations,

(1), is accomplished with the aid of a standard Runge-Kutta

subroutine. The time increment between successive iterations,

At, is varied internally during the period of interest, T,

according to tne magnitudes of the parameters X(t) and p(t).

Specifically, At can be doubled or halved on successive iterations

depending on the magnitude of the total truncation error which is

not allowed to exceed a prespecified level. At the same time,

At is not allowed to exceed a preset maximum interval which is

consistent with the Poisson assumptions.

For the M/D/k model, the terms exp(-p)-pl/i! are computed

at the beginning of each iteration (note that p is a function of

time ). All terms with value greater than a prespecified number

(we have used 10~9) are included. This provides the coefficients

in (2), including the b..
J

A useful feature of the computer programs is an option under

which the capacity, m, of the queuing system is adjusted internally

so that the probability of system saturation, P m(t), is

maintained arbitrarily small. When this option is in use P m(t),

for the current value, m, of the system capacity, is the first state

prcbability to be calculated on each iteration-. If P m(t) turns



out to be greater than a prespecified tolerance level of saturation,

the queue capacity is increased in steps of 1 unit, until the

probability of a saturated queue is below the required level. The

system of equations is then solved for the iteration in question

using the new value of m. Conversely, if at the beginning of a

new iteration the value of P m(t) is less than a required level, the

queue capacity is decreased in steps of 1 unit. Since the number

of operations per iteration in each algorithm is proportional

to m this leads to improved efficiency. In addition, by not

allowing the queue to saturate, the full potential extent of con-

gestion can be explored.

On the other hand, if it is believed that an airport and

terminal area do indeed have only a specified number of waiting

slots for aircraft, then m can be maintained fixed.

The programs are being used at present to obtain delay estimates

for various demand profiles at major airports in the United States

in a project sponsored by the Federal Aviation Administration. The

programs are written in FORTRAN H language. Typical execution

times for a 24-hour case, such as the one described in the next

section, run to a total of about 25 seconds of CPU time for the

two queuing models on an IBM 370/168 computer.



3. A DETAILED CASE STUDY

The example chosen for detailed study was Logan International

Airport in Boston. The average demand profile (landings and take-

offs) over the weekdays of a two-week period (16-29 September 1970)

for this airport [3] is shown in figure 2 (see Note 6).

For initialization purposes, 4 a.m. was chosen as the beginning

of the 24-hour period. Due to very low traffic activity at that

time it can be assumed that the initial conditions on the state

probabilities are as follows:

P (0) = 1

P.(0) = 0 for i = 1,2, ... n

The theoretical capacity of Logan International Airport depends

on weather conditions. When visibility is good (Visual Flight Rules

weather) average airport capacity is considered to be 80 operations/

hour. In poor visibility (Instrument Flight Rules weather) the

average capacity is reduced to 70 operations/hour (see Note 7).

As two runways are active most of the time at Logan Airport, k was

chosenequal to 2 for all computer runs. Thus, each runway is con-

sidered to have a capacity of 40 and 35 operations/hour in VFR and

IFR weather, respectively. As explained earlier, no distinction

is made between landings and take-offs.

Average Queue Lengths and Waiting Times

For the demand profile shown in fiqure 2, the computer procrams
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were run twice for 24-hour periods, once with an overall airport

capacity of 80 operations/hour and the second time with a capacity

of 70 operations/hour throughout the day.

A set of results for these two cases is shown in figures 3

and 4. Figure 3 compares the average queue lengths Q(t), for the

two cases (or, rather, the bounds on the average queue lengths).

It should be noted that an increase in capacity by 10 operations

per hour (from 70 to 80) reduces average queue length by roughly

a factor of 3 at the peak hour (6p.m.).

Figure 4 concentrates on waiting times, W(t), for the case

in which the capacity is 70 operations/hour in order to focus

attention on the dynamic properties of this queving system. One

point to note is the strongly non-linear nature of the relation-

ship between demand and average waiting time. A peak demand of

about 62 operations in the morning results in relatively modest

delays. By contrast, an increase of the demand to a maximum of

74 operations in late afternoon implies very severe waiting times

averaging to 10 or more minutes per aircraft. A second observ-

ation is that there exists a time phase between demand changes

and the attendant congestion effects. This time phase is especially

evident during the morning and evening peak hours. It is not deter-

mined by any simple relationship, depending on the whole past his-

tory of the demand rate.

Delay Costs

In working with economic quantities a weighted average of-:
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the two bounds was used as an estimator of the actual queuing sta-

tistics. Specifically, the estimator of average delay that was

employed is:

W (t) = 1/3 W(t)M/M/2 + 2/3 - W(t)M/D/2

The reason for this particular weighting is that a deterministic

service time distribution is a better approximation to the actual

service time distribution than a negative exponential distribution.

So, it was felt that the low bound should be weighed more heavily.

Uniformly Distiributed Demand

In order to obtain an estimate of the congestion costs due to

the non-uniformity of demand, a hypothetical case in which traffic

demand was maintained constant at about 53 operations per hour for

18 hours (6 a.m. to midnight) was compared to the status quo as

represented by figure 2. The same number of operations is performed

in both cases.

The results for the two cases are compared in figure 1. Uni-

form demand reduces delay costs by 45% and 62% in the VFR and IFR

cases, respectively.

From table I, it is also possible to obtain estimates of the

current annual delay costs at the airport. Weather at Logan Air-

port is of VFR type about 85% of the time, and VFR 15% of the time.

For the annual delay costs, we thus compute 365-[(.15)(17,611)

+ (.85) (7,288)] = $2,915,000 (see Note 10).



CURRENT DEMAND UNIFORM DEMAND

VFR IFR VFR IFR

Cumulative $6,288 $17,611 $3,480 $6,746
Delay Costs for
24-hour Period
(943 operations)

Delay Costs
Per Operation $6.67 $18.67 $3.69 $7.16

Table I: Delay Costs for Two Demand Distributions



Adding New Flights

Finally, it is possible to quantify the impact that additional

users at different times have on the queuing statistics and on

delay costs.

To illustrate this, the existing operations pattern as shown

on figure 2, was taken as the status quo . Assuming a capacity of

80 operations per hour at the airport, we compare four cases each

of which involves demand for 8 additional operations per hour, i.e.

an increase equal to 10% of the hourly airport capacity.

Case 1: 8 additional flights between 1 p.m. and 2 p.m., a

time with relatively low air traffic activity.

Case 2: 8 additional flights for each of the three hours

between 11 a.m. and 2 p.m.; during this whole period

the airport is only moderately utilized.

Case 3: 8 additional flights between 5 p.m. and 6 p.m., a

time when the airport, as it is, experiences the

maximum demand rate of the day.

Case 4: 8 additional flights for each of the three hours

between 3 p.m. and 6 p.m.; these three hours are

already associated with the highest sustained demand

rate for the whole day.

The computer results for the delay costs are summarized in-

table II. Two observations can be made from these results. First,

the after-effects of cases 3 and 4 are much more pronounced than

those of cases 1 and 2. The disturbance introduced by the addi-
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2
3
4
5
6
7
8
9
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2
3

$ .03
.05
.44

19.08
167.94
418.49
390.57
274.56
183.41
147.25
192.82
425.34
782.14

1167.21
1236.91
523.13
172.64
102.36
59.04
18.46
4.35
2.22

.21

.05

1411.48
2086.45
800-41
194.76
103.03

(21)
(69)
(53)
(13)
(.2)

555.72 (31)
1494.18 (91)
2577.95 (121)
2993.79 (142)
1110v60 (123)
236.87 (37)
104.36 (2)

TOTAL COSTS 6,288.61 6,426.70 6,792.34 7,682.50 11,012.36

COST PER
OPERATION

6.67 6.76 7.02 8.08 11.39

Table II: Hourly total delay costs in $. Figures in parenthesis indicate % increase over

status quo. A "-" indicates no appreciable change from status quo.
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362.52

(33) 298.79
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ADDITIONAL TOTAL
DELAY COSTS FOR
24-HOUR PERIOD

($)

138.09

503.72

1393.89

4723.75

PERCENTAGE
INCREMENT OVER
STATUS QUO

(%)

+2

+8

+22

+75

MARGINAL DELAY
COSTS FOR EACH
ADDITIONAL OPERATION

($)

17.26

20.99

173.46

196.82

Table III: Summary of results of Table 2. The last column
obtained by simply dividing additional total costs by the
appropriate number of operations. For example 138.09/8 =

CASE 1

CASE 2

CASE 3

CASE 4

is

17.26.



tional demand on the system virtually disappears about an hour

later for cases 1 and 2. The after-effects of cases 3 and 4,

on the other hand, last for three and four hours. The second

observation relates to the strongly non-linear behavior of

congestion phenomena. The results of table II, in this respect,

are summarized by table III. The effects of cases 1 and 2 vary

from those of cases 3 and 4, respectively by factors of 10, i.e., a

new operation conducted during a peak traffic hour introduces

marginal delay costs an order of magnitude larger than those

caused by a new operation added at a relatively off-peak hour.

Even in absolute terms the figures for cases 3 and 4 are quite

impressive. It is rather remarkable, for instance, that an addition

of a total of 24 operations (case 4) to the already existing total

of 943 operations, i.e., a 2.5% increase, implies an increase

of 75% in total delay costs for the day!



4. DISCUSSION

The approach outlined and illustrated in the earlier sections

should prove useful in clarifying a number of issues related to

air traffic congestion at airports as well as in exploring several

new questions in the future. Congestion dynamics similar to those

that we have already observed in our numerical example can be reason-

ably expected to apply to most major airports, since Logan Inter-

national is a rather typical example of these transportation centers.

Several points have been illustrated, all with important

practical implications for airport congestion. For instance, it

has been shown that relatively small improvements in the service

rate or a limited reduction in demand can have a significant

effect on delays. (The reverse, of course, is also true.) The

Federal Aviation Administration (FAA) in the United States and

similar agenicies in Japan, the Soviet Union, and several West

European countries are currently in the process of introducing

major innovations in terminal area air traffic control equipment

(see Note 11). While the primary purpose of these innovations,

at this stage, is to alleviate the workload of air traffic con-

trollers, they can also be expected to make possible marginal

increases in airport capacity. From the above, it is clear

that even such marginal improvements can provide substantial delay-

saving benefits.



Another, perhaps less obvious way of decreasing delay costs is

through a modification of the demand pattern during the. course of

a typical day. The aim here is to "smoothen" the demand profile, to

the extent possible. Our example clearly demonstrated the effects

of time-variations in demand and placed a price tag on the costs

of these variations. A rather crude Way to even out the t4me-

distribution of demand is through imposition of upper limits (or

"quota") on the number of operations that can be conducted at a

given airport during certain periods of a day. This has actually

been done beginning in 1968 when the FAA imposed hourly quota on op-

erations at several major airports (see Note 12).

Unfortunately, the quota method is economically inefficient

since it simply propagates the status quo instead of actually

auctioning off the available time-slots to those flights for

which an operation during a peak hour is most valuable. An

apparently simple way of implementing a market-like environment is

through the use of a time-varying schedule of runway usage fees.

(However, one can not emphasize too strongly that these schedules

must also be cognizant of other public policy objectives, in addition

to that of economic efficiency, with regard to runway use. These

objectives are described particularly well by LITTLE AND McLEOD [7]).

Although practical experience with such time-varying fees is very

limited (see Note 13) due to the reluctance of airport operators

* to use them, several economists [2] [3] [7] [13] have argued

cogently and persuasively in favor of this pricing mechanism in

recent years (see Note 14). A major gap, that has severely.hampered



the application of the aforementioned body of work, has been the

inability to compute congestion costs in an accurate way that

reflects the actual time-varying nature of demand instead of

being based on the traditional steady-state queuing models.

Through the method described here, such items as average delay

costs as a function of time and, more importantly, marginal

delay costs imposed on other airport users by new flights at

different times of the day can be computed. It is expected

that future studies of this issue will take advantage of this cap-

ability.

On amore general level, the numerical results vividly il-

lustrate two properties of time-dependent queues often alluded to

in the literature [9]:

i) As in the well-known cases of constant demand, so too in the

case when demand is time-dependent, there exists a strongly non-

linear relationship between the demand rate and the average queue

length (and average waiting time). The exact nature of this rela-

tionship depends on the time-history of the demand pattern.

ii) A non-constant time phase exists between the demand pattern

and the attendant congestion phenomena.

Finally, it may be pointed out that, while the computer-aided

approach to time-dependent queues which was outlined here can, nat-

urally, be used in contexts other than airport congestion, the

answer to whether or not the upper and lower bounds are "sufficiently"

close will depend on the oarameters and requirements of the particular

problem at hand.



5. NOTES

1. STEUART[12] has recently cast some doubt on the Poisson as-

sumption by disc.overing evidence of short-term periodicity ("banks")

within hours due to airline schedules. However, STEUART'is data

come from airport gate occupancies -- and a single specific group

of gates at that -- and, therefore, require futher exploration.

2. The avarage service time for take-offs at major airports,

i.e., the average time gap between the completion of successive

departures from the same runway when there is a deaprture queue,

is of the order of 80 to 100 seconds (35 to 45 take-offs per hour).

The corresponding range for landings is more like 90 to 120 seconds.

3. It is simple theoretically, to extend the approach here

in such a way that separate queues are maintained for arrivals and

for departures with distinct service times for each type of opera-

tion and a set of priority rules to determine the order of service.

One of the co-authors (ODONI) is presently working on such a prob-

lem. However, in practice, severe penalties in terms of program

complexity and computational effort have to be paid for differen-

tiating between landings and take-offs.

4. This assumption introduces an additional error in the com-

putation of waiting times for the M/D/k queue. The reason is that

those aircraft which arrive at a time when one of the servers is

idle will have to wait until the beginning of the next service



period to enter service. This delay, however, is equal to half a

service time on the average and thus of the order of a half minute.

It applies only to those aircraft finding the system in states

P0 (t), P 1 (t), ... Pk-l(t). Since the delays of interest in practice

are those that exceed the 4 or 5 minute level, the error involved is

small for practical purposes.

5. For those aircraft that join the queue, the perceived ser-

vice rate of the k servers at time t is k-p(t). For the aircraft

that enter the queue when there are i > k other aircraft in the

system, the number of aircraft before them in the queue is equal

to i - k. These preceding aircraftmust enter service before the

last one to arrive (hence the term (i - k)/(kV(t))). In addition,

there is a waiting time until the next service of those already be-

ing served is completed. This introduces an additional 1/(k - P(t))

delay -- exactly for the M/M/k queue, an overestimation by l/(2k-p(t))

for the M/D/k queue. Note that, for the time-dependent queuing sys-

ter, W(t) is. not equal to Q(t)/A(t).

6. For all the runs in the Logan International Airport example

that follows, we have used a constant service rate y throughout the

24-hour period. In any case, for relatively slow-varying p(t), ex-

pression (5) should be quite accurate.

7. In terms of number of operations, air traffic volume in

Boston has remained substantially constant over the period from

1970 to 1974 (the time when this is written). With the energy cri-



sis and the increasing use of large aircraft, it can also be ex-

pected that air traffic volume will not change significantly for

several more years.

8. Clearly these numbers provide only average estimates.

For instance, it is known that the airport has on occasion been

able to accomodate up to almost 100 operations/hour. Conversely,

in very poor weather conditions, capacity may be reduced all the

way to zero (when the airport closes down).

9. We did not attempt to include other costs, such as the

costs of lost passenger time in the estimates of delay costs.

10. An accurate estimate of P requires exact knowledge of the

traffic mix at an airport, as well as the marginal delay costs in

the air (waiting to land) and on the ground (waiting to depart) for

each type of aircraft in the mix. No such detailed calculation

was performed by the authors. The $5 figure was selected after a

quick review of: i) marginal direct operating costs for various

classes of aircraft; and ii) the mix of aircraft using Logan Inter-

national Airport.

11. There are about 10 commercial airports in the United

States which are believed to operate at a congestion level similar

to that of Boston. Four other airports (New York's JFK International

and La Guardia, Chicago's O'Hare International, and Washington's

National Airport) operate with congestion problems which are de-

finitely more severe.



12. Most notable among these innovations is the ARTS III

System (Automatic Radar Tracking System) in the United States and

similar systems elsewhere. These systems automate to some extent

the air traffic control operations near an airport by performing

several time-consuming functions that formerly had to be performed

manually.

13. For a variety of reasons [11] , congestion problems are

much less severe now than in 1968. Only four airports, those men-

tioned under Note 10, are still operating with a quota system on

hourly scheduling.

14. The authors are aware of only two cases in which a time-

varying schedule of landing fees has been implemented. By far the

most important of the two is the schedule of charges used by the

British Airports Authority at Heathrow Airport. This schedule

was initiated in April 1972 and, among other things, imposed a

surcharge of about $50 for landings or take-offs between 9 a.m.

and 1 p.m. on weekdays during the peak season. This schedule of

charges has been revised recently (beginning on April 1, 1974)

and the surcharge may now amount up to $250 for a 747 jet on

an intercontinental flight.

The second pertinent case is the imposition in 1969 and there-

after of a $25 fee on general aviation aircraft using New York's

JFK International Airport during selected time periods. (The run-

way fee at other times is $5.) Despite the apparent modesty of P

these amounts, the effects on the distribution of general aviation

demand at that airport were dramatic.
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15. Current landing fees are computed primarily on the basis

of maximum gross take-off weight of the aircraft. There is, how-

ever, considerable variation on the exact formula used from place

to place. The range of landing fees varies widely, ranging from

about $150 in some U.S. airports to about $1,500 in most European

airports and up to $4000 in Sydney, Australia -- all for the same

aircraft (B747).
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