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Abstract

Two queuing models approvriate for estimating time depend-
ent déléys and delay costs at major airports are reviewed. The
models use the demand and capacity profiles at any given airport
as well as the number of runways there to compute bounds on queu-
inb statistics. The bounds are obtained through the iterative
solution of systems of equations describing the two models.

This computational procedure is highly efficient and inexpen-
sive. The assumptions and limitations of the models are dis-
cussed.

Common characteristics and properties of delay profiles
at major airports are illustrated through a detailed example.
Potential applications to the exploration of the effect of
air traffic control innovations on congestion and to the esti-

mation of marginal delay costs are also described.



I. INTRODUCTION

The problem of air traffic congestion at major airports has
been the subject of numerous studies in the past. Since these
airports are generally acknowledged to be the principal bottle-
necks on the airside of the air transportation system, this
attention is certainly well deserved.

Understanding of all facets of the airport congestion phen-
omena is becoming increasingly essential for a number of reasons.
Airports and runways, first, are enormously expensive facilities
and it is to the best interest of society to use these facilities
as efficiently as possible. Second, the primary future hurdle
to further growth of the air transportation system will most
likely be the cost or unavailability of fuel. Circling in the
air over an airport or waiting for long periods next to a run-
way to take-off are notoriously poor ways of utilizing expensive
fuel resources, especially in cases where a trip is over a short
or medium distance. A third fact is that there is currently
throughout the world a tendency to adopt a wait-and-see attitude
on planning major airport-related construction programs. In
view of the current questions concerning the future growth of
air transportation, claims regarding the need for new airport
facilities are viewed with doubt and scepticism. The major deter-
minants of whether a new facility is indeed needed are the
costs, nature, and causes of airport delays.

The major deficiency of most work on airport queues has been

that, due to lack of analytical tools, the time-varving nature of



airport congestion phenomena hgs not been explicitly considered
and accounted for.

In 1969, CARLIN AND PARK [1l] took a highly practical approach
to the problem of congestion in New York City's airports, consider-
ing the time-dependence of delay costs due to the demand profile.
They estimated, among other things, total delay costs at the air-
rorts during peak and off-peak hours.

More recently, KOOPMAN [6] pointed out thét delay estimates
are relatively insensitive to the precise queuing model used,
as long as the probabilistic nature of the queuing process was
explicitly recognized. Through a computer-aided analytic sol-
ution of sets of transition-probability equations, he obtained
upper and lower bounds on the actual time-dependent delay statis-
tics and demonstrated that, for the parameter values prevalent
at major airports, these bounds are very close to each other.

This paper avplies KOOPMAN's approach to multiple server
queuing systems. By using a set of computer programs carefully
written to account for some ¢f the numerical intricacies of the
queuing models, it provides a detailed example of congestion an-
alysis at a specific airport and attempts to cast light on sev-
eral important practical problems: It reviews the sensitivity
of waiting times to changes in airport capacity and airport de-
mand: it computes the total daily costs of de;ays and places a
price~-tag on the non-uniformity of demand through the day; finally
it illustrates the concept of marginal delay costs, by estimating

the costs of adding new flights at different times of the day.



The results illustrate the pctential of this approach to future
work on runway pricing and on evaluating the need for new facil-
ities.

In the following sections, we first review the gqueuing mod-
els, their assumptions, and limitaticens in an informal thecretai-
cal section (part 2). 1In part 3, we present some results from
the detailed case study that was mentioned earlier. Part 4
discusses the results and the approach to a number of important
airport-related problems. A set of notes, that supplement the
text, provide mostly background infcrmation on the subjects

discussed.



2. THE MODELS

The theoretical model presenéed here is based on the earlier
work of KOOPMAN [6] and is a quite straight-forward extension
of that work to the case of multiple servers (i.e., multiple
runway airports). For this reason we shall only describe the bare
essentials of the theoretical foundations here and, instead, concen-
trate on providing an intuitive explanation of the basic rationale,
of the assumptions used, and of the limitations of the models. For
a rigorous treatment of the theoretical questions, the reader is
referred to [6].

The model considers an airport as a set of independent, parallel
servers (the runways). A schematic representation of this system is
shown in figure 1.

It is assumed that the total demand at the airport - that is,
the‘sum of the demands for landings and for take-offs - is a Poisson

process with a time-dependent average demand rate, given by A(t).

The Poisson assumption for airport demand is consistent with actual
observations at several major airports and has been used extensively
in the literature [4], [8], [10] (see Note 1).

By contrast, the form of the probability law describing the
duration of a service at the runways is still a matter for
speculation [4], [8], [10]. The duration of the period during which
a runway is busy with an aircraft depends on such diverse factors as
type of operation being conducted, weather, aircraft mix, ruﬁway configur-
ation in use, runway surface conditions, location of runway exits, air

traffic control equipment, requirements for minimum separations



A\ Y‘Po*f‘*_

N L ' wmwa
N Q“A\Y\cas [Rumw G&J
N
N —Dew‘\\—av\é R\'\““f“i}i‘
S e ',
~ AE) .
s |
/““" i A\ W
y Ta ke ~0ggs = \m&\}w
Se~cvurce

ke Rpl)

Figure 1: Schematic representation of the model.



between aircraft, pilot and air traffic controller performance, etc.
Following the example of [6], we shali sidestep this issue by making
this intuitively reasonable observation: the duration of the service
times must be "less random" than the perfect randomness described
by the negative exponential probability density function and "less
regular" than the perfect regularity described by deterministic ser-
vice times.

This last point is a crucial one as it drives our whole
approach to the problem: we shall seek to obtain upper and lower
bounds on congestion-related statistics by noting that a worst
case is provided by the negative exponential service assumption ana a
best case by the deterministic service assumption. The rationale,
of course, is that, if - for the set of parameter values prevalent
in the systems under consideration, i.e. the major commercial air-
ports - the upper and lower bounds turn out to be reasonably close
to each other, then either bound (or any rea;onably weighted combina-
tion of the two) can be used as a good approximation of the actual
statistics desired. As will be seen in what follows, the bounds do
indeed turn out to be close for all practical purposes, and under
widely varying sets of conditions.

Here then is the strategy to be followed: Given an airport
with k independent runways each of which has a time-dependent average
service rate u(t), we shall solve iteratively and for the desired
period of time two systems of equations, one describing an M/M/k
gueuing system and the other an M/D/k queuing system. The actual

values of interest will then be bounded from above and below by



the values obtained from these two queuing models. This whole ap-
proach is dictated by the fact that the integro-differential equa-
tions that describe an M/G/k queuing system - a more realistic

model for the case of interest - are unwieldy even for the purpose

of obtaining numerical solutions.

Assumptions in the Model

To complete the description of our queuing models, we now list
some assumptions that were made, mostly for reasons of computational
feasibility. The most important of these, from a practical viewpoint,
is the assumption of the existence of a single queue of aircraft
awaiting use of the runways on a strictly first-come, first-
served basis. Thus, we make no distinction between landing and
departing aircraft but are instead interested only in overall measures
- of congestion. While, in practice, the average service times (and the
probability distributions) for landings and take-offs are different
(see Note 2), we use here what is in effect a single weighted’
average service time for both kinds of cperations (see Note 3).

Another assumption is that all active runways (or, all the
parallel servers in figure 1) operate independently and are identical.
In practice, runways often can not be operated independently, since
operations at one may affect those on another, due to airport geometry.
Again, from the practical viewpoint, this assumption is not too re-
strictive since dependencies among the servers, if they exist, can
be accounted for by adjusting the service rates accordingly. As an

example, consider an airport with a single runway which can handle,



say, 50 aircraft movements per hour, i.e. the average service time

is 72 seconds. Suppose now that operations are begun at a second

~ runway which intersects the first one. Then, the overall Airport
capacity might increase to, say, 80 operations per hour,; and not

to 100 as it would if the two runways were independent. To account
for this in our model, we would then assume the existence of a

single independent server, with an average service time of 45 seconds,
for an overall aifport capacity of 80 movements per hour.

Obviously, the number of state-transition equations, describing
the queuing models and being iteratively solved by the cohputer,
must be finite. Since the number of such equations is equal to the
number of states in the gueuing model, a futher condition must be
that the capacity of the airport queue is.finite. Thus, it is
assumed that the queuing system of figure 1, can accomodate up to a
maximum of m aircraft (including the ones in service at the k servérs).
In practice, this is entirely inconsequential since m can be
selected large enough to make it highlf unlikely that the number of
aircraft in the terminal area at any given instant will be egual to
m. This is further discussed later in this paper.

Finally, it is assumed that successive service times are
statistically independent. Thié is substantially true in reality,
as little attempt is made, under today's air traffic control regime,
to sequence operations in anything but a first-pome, first-served
way. Successive service times are, therefore, randomly mixed
according to the mix of aircraft with little or no inter-dependence

among them.



The M/M/k System Equations

We now list the equations that describe the two queuing systems
under consideration here. First, for the M/M/k model, we have
Poisson arrivals at a time-dependent average rate‘of A(t).‘ These
arrivals are served by k parallel servers, each operating at an
average-'service rate, u(t). It is assumed, that individual service
times are distributed as negative exponential random var.ables with
expongﬁf equal to the value of u(t) at the instant t when service is
initiated. The queue capacity is equal to m.

; Let us define by P, (t), i = 0,1,2,...,m, the probability that
at time t there are i aircraft in the terminal area. Then, for any
t, we can write the well-known set of Chapman-Kolmogorov equations
for the derivatives P;(t) of the state probabilities. Suppressing,
for reasons of conciseness, the time-dependence of the arrival and

service rates, i.e. writing A =")A(t) and u = u(t), we have:

, |

Po(t)‘ = =APy(t) + uPy(t) (1.1)

P{(t) = AB,_;(t) = (A + iwP (£) + (i + L)uP, ) (t) for 1fisk-1 (1.2)
- |

P.(t) = AP, _;(t) - (A + ku)P, (£) + kuP, ,(t) for k€i¥m-1 (1.3)
/

P (£) = AP, (£) - kuP_ (t) (1.4)

The above m + 1 equations can be solved iteratively for any
desired period of time T, using the approximation Pi(t+At)=Pi(t)+Pl(t)'At,

where At is a time interval chosen éﬁfficiently small to be consistent
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with the Poisson assumptions regarding the arrival and service
processes. A boundary set of values Pi(o), i=20,1,2,...,m, and

the functions X (t) and p(t) for 04t€T must be provided.

The M/D/k System Equations

Turning to the corresponding system of equations for the
model in which service is assumed to be deterministic, we define
the increment of time as equal to the duration of a single
service time. We assume further that all k parallel servers
begin and end service simultaneously (see Note 4). It is then
possible to write equations relating the sets of state probabilities.
Pi(t) and Pi(t+l) - remember that t is now being increased at
discrete intervals equal to the average service time. (Since
time intervals are normalized to 1/u, the demand rate must also
be normalized to p = A/u, the demand per unit of service.) These
equations are based on the fact that the probability that exactly n
aircraft will attempt to join the system between t and t+l is equal
to pn . exp(;o)/n! due to the Poisson law for the demand pattern.

We then have:

Pyt + 1) = exp (-p)q, (t) (2.1)
- _ i i-1
P.(t+1) = exp( O)[qk(t)_p__ + P (t) e + Pk+i(t)]
it (i-1)!
for 1$ifm-k (2.2)
- _ i i-1
P.(t + 1) = exp( o)[qk(t) 2+ P () P + ...,
it (i-1)!
i+k-m
e T PR(E) 0 } for m-k+1€i$m-1 (2.3)

(i1+k=-m) {



11

= ( . .
Pm(t + 1) qk‘t)bm + Pk + l(t) bm -1 + ...+ Pm(t) bk (2.4)
k i i
where qk(t) = 7 P.(t) and b. = exp(-p)=Z Ql
o i j T
1=0 i=]

Strictly speaking, (2) assumes that the new arrivals during
a unit of time join the queue at the end of the service unit
at which time the capacity limit, m, applies.

Again, beginning with a set of initial conditions Pi(O),
i=20,11 2, ..., m, the above set of equations can be solved
iteratively to obtain numerical answers for demand and service
rate profiles, A(t) and u(t) (we have, for conciseness, suppressed

the time variable in the equations).

Related Quantities

KOOPMAN [6] has shown that for "relatively slow varying" X(t)
and u(t) the sets of equations for the M/M/k and M/D/k systems
possess unique periodic solutions with period T whenever the demand
and service rates are both periodic with period T. In the case of
airports, demand and service rates can indeed be considered to be
periodic quantities with period T=24 hours. It remains, therefore,
to solve the two sets of equations numerically to obtain estimates
of the state probilities, Pi(t), for all 0<t<T. The state
probabilities, in turn, can be used to compute other quantities of
interest. Of those, we shall specifically refer to:

i) The probability that all runways are busy and, therefore, that

a newly- arriving aircraft will experience positive delay,

k

B(t) =1 - % P.(t) (3)
. i
1=0
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ii) The expected number of aircraft in the gqueue at time t,
m
Q(t) = L (i-k)Pi(t) . (4)
i=k+1

iii) The average waiting time in the queue for aircraft that

arrive at time t (see Note 5)
m
W(t) = ——— 1 (i-k+1)P, (t) (5)
k - pw(t) i=k
This last quantity is only an approximation in the case when
p(t) is a function of time. The reason is that the rate of service,
p(t), may change in the future if the waiting time is long (see
Note 6).
In all cases, two estimates of these parameters of interest

are obtained, one based on the M/M/k and the other based on the

M/D/k model.

The Computer Programs

Computer programs were written [5] to compute numerical
solutions for the two queuing models. The inputs to the programs
are: the hourly demand levels; the hourly service rates; and the
number of independent servers at the airport of interest. The
piecewise linear functions that result from connecting the half-
hour points of the demand and service rates are then taken to
represent A(t) and u(t), respectively (for instance, figure 4
shows the function A(t) that results from the demand depicted in
figure 2). The outputs of the programs are the state probabilities,
Pi(t), as computed in (1) and (2), as well as other desired

guantities such as those obtained from (3) through (7).
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Particular attention needs to be given to numerical
control problems due to the magnitudes of some of the coefficients
in the equations and to the propagation and build-up of truncation
errors in the iterative solution. Double precision arithmetic is
used throughout as well as the procedures outlined below.

The iterative solution of the set of differential equations,
(1), is accomplished with the aid of a standard Runge-Kutta
subroutine. The time increment between successive iterations,

At, is varied internally during the period of interest, T,
according to tine magnitudes of the parameters X (t) and up(t).
Specifically, At can be doubled or halved on successive iterations
depending on the magnitude of the total truncation error which is
not allowed to exceed a prespecified level. At the same time,

At is not allowed to exceed a preset maximum interval which is
consistent with the Poisson assumptions.

For the M/D/k model, the terms exp(-o)-pi/i! are computed
at the beginning of each iteration (note that p is a function of
time ). All terms with value greater than a prespecified number
(we have used 1079) are included. This provides the coefficients
in (2), including the bj.

A useful feature of the computer programs is an option under
which the capacity, m, of the queuing system is adjusted internally
so that the probability of system saturation, Pm(t), is
maintained arbitrarily small. When this option is in use Pm(t),
for the current value, m, of the system capacity, is the first state

prcoability to be calculated on each iteration. If Pm(t) turns



14

out to be greater than a prespecified tolerance level of saturation,
the queue capacity is increased in steps of 1 unit, until the
probability of a saturated queue is below the required level. The
system of equations is then solved for the iteration in question
using the new value of m. Conversely, if at the beginning of a

new iteration the value of Pm(t) is less than a required level, the
queue capacity is decreased in steps of 1 unit. Since the number
of operations per iteration in each algorithm is proportional

to mz; this leads to improved efficiency. 1In addition, by not
allowing the queue to saturate, the full potential extent of con-
gestion can be explored.

On the other hand, if it is believed that an airport and
terminal area do indeed have only a specified number of waiting
slots for aircraft, then m can be maintained fixed.

The programs are being used at present to obtain deléy estimates
for various demand profiles at major airports in the United States
in a project sponsored by the Federal Aviation Administration. The
programs are written in FORTRAN H language. Typical execution
times for a 24-hour case, such as the one described in the next
_section, run to a total of about 25 seconds of CPU time for the

two queuing models on an IBM 370/168 computer.
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3. A DETAILED CASE STUDY

The example chosen for detailed study was Logan International
Airport in Boston. The average demand érofile (landings and take-
offs) over the weekdays of a two-week period (16-29 September 1970)
for this airport [3] is shown in figure 2 (see Note 6).

For initialization purposes, 4 a.m. was chosen as the beginning
of the 24-hour period. Due to very low traffic activity at that
time it can be assumed that the initial conditions on the state

probabilities are as follows:

PO(O) 1

P, (0)

0 fori=1,2, ...n

" The theoretical capacity of Logan International Airport depends

on weather conditions. When visibility is good (Visual Flight Rules
weather) average airport capacity is considered to be 80 operations/
hour. 1In poor visibility (Instrument Flight Rules weather) the
average capacity is reduced to 70 operations/hour (see Note 7).
As two runways are active most of the time at Logan Airport, k was
chosen equal to 2 for all computer runs. Thus, each runway is con-
sidered to have a capacity of 40 and 35 operations/hour in VFR and
IFR weather, respectively. As explained earlier, no distinction

is made between landings and take-offs.

Average Queue Lengths and Waiting Times

For the demand profile shown in figure 2, the computer prcarams
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were run twice for 24-hour periods, once with an overall airport
capacity of 80 operations/hour and the second time with a capacity
of 70 operations’hour throughout the day.

A set of results for these two cases is shown in figures 3
and 4. Figure 3 comp%res the average queue lengths Q(t), for the
_two cases (or, rather; the boundsAon the average queue lengths).
It should be noted that an increase in capacity by 10 operations
per hour (from 70 to 80) reduces average queue length by roughly
a facﬁor of 3 at the peak hour (6p.m.).

Figure 4 concentrates on waiting times, W(t), for the case
in which thé capacity is 70 operations/hour in order to focus
attention on the dynamic properties éf this queuina system. One
point to note is the strongly non-linear nature of the relation-
ship between demand and éverage waiting time. A peak demand of
about 62 operations in the morning results in relatively modest
delays. By contrast, an increase of the demand toba maximum of
74 operations in late afternoon implies very severe waiting times
averaging to 10 or more minutes per aircraft. A second observ-
ation is that there exisis a time phase between demand changes
and the attendant congestion effects. This time phase is especially
evident during the morning and evening peak hours. It is not deter-
mined by any simple relationship, depending on the whole past his-

tory of the demand rate.

Delay Costs

In working with economic quantities a weighted average of
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the two bounds was used as an estimator of the actual gueuing sta-
tistics. Specifically, the estimator of average delay that was

employed is:

W_(t) = 1/3 W(t) +2/3 - W(t)

M/M/2 M/D/2

The reason for this particular weighting is that a deterministic
service time distribution is a better approximation to the actual
service time distribution than a negative exponential distribution.

So, it was felt that the low bound should be weighed more heavily.

Uniformly Distiributed Demand’

In order to obtain an estimate of the congestion costs due to
the non-uniformity of demand, a hypothetical case in which traffic
demand was maintained constant at about 53 operations per hour for
18 hours (6 a.m. to midnight) was compared to the status guo as
represented by figure 2. The same number of operat.ons is performed
in both cases.

The results for the two cases are compared in figure 1. Uni-
form demand reduces delay costs by 45% and 62% in the VFR and IFR
cases, respectively.

From table I, it is also possible to obtain estimates of the
current annual delay costs at the airport. Weather at Logan Air-
port is of VFR type about 85% of the time, and VFR 15% of the time.
For the annual delay costs, we thus compute 365-[(.15)(17,611)

+ (.85) (7,288)] = $2,915,000 (see Note 10).
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CURRENT DEMAND UNIFORM DEMAND
VFR IFR VFR IFR

Cumulative $6,288 $17,611 $3,480 $6,746
Delay Costs for i
24-hour Period
(943 operations)
Delay Costs
Per Operation $6.67 $18.67 $3.69 $7.16

Table I: Delay Costs for Two Demand Distributions



Adding New Flights
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Finally, it is possible to quantify the impact that additional

users at different times have on the queuing statistics and on

delay costs.

To illustrate this, the existing operations pattern as shown

on figure 2, was taken as the status quo . Assuming a capacity of

t

80 operations pef hour at the airport, we compare four cases each

of which involves demand for 8 additional operations per hour, i.e.

an increase equal to 10% of the hourly airport capacity.

Case 1:

Case 2:

Case 3:

Case 4:

8 additional flights between 1 p.m. and 2 p.m., a
time with relatively low air traffic activity.

8 additional flights for each of the three hours
between 11 a.m. and 2 p.m.; during this whole period
the airport is only moderately utilized.

8 additional flights between 5 p.m. and 6 p.m., a
time when the airport, as it is, experiences the
maximum demand rate of the day.

8 additional flights for each of the three hours
between 3 p.m. and 6 p.m.; these three hours are
already associated with the highest sustained demand

rate for the whole day.

The computer results for the delay costs are summarized in -

table II. Two observations can be made from these results. First,

the after-effects of cases 3 and 4 are much more pronounced than

those of cases 1 and 2. The disturbance introduced by the addi-



status quo.

A "-" indicates no appreciable change from status quo.

TIME STATUS  QUO CASE 1 CASE 2 CASE 3 " CASE 4

4 A.M. $ .03 $ - $ - $ - $

5 .05 - - -

6 .44 - - -

7 19.08 - - -

8 167.94 - - -

9 418.49 - - -
10 390.57 - - -
11 274.56 - 352.54 (28) -
12 183.41 - 362.52 (98) -

1 p.M. 147.25 196.24 (33) 298.79 (103) -

2 192.82 273.88 (42) 279.43 (45) -

3 425.34 431.96 (2) 432.26 (2) - 555.72 (31)
4 782.14 782.99 (.l) 783.06 (.1) - 1494.18 (91)
5 1167.21 - - 1411.48 (21) 2577.95 (121)
6 1236.91 - - 2086.45 (69) 2993.79 (142)
7 523,13 - T - 800.41 (53) 1170%60 (123)
8 172 .64 - - 194.76 (13) 236.87 (37)
9 102.36 - - 103.03 (.2) 104.36 (2)
10 59.04 - -~ -
11 18.46 - - -
12 4.35 - - -

1 A.M. 2.22 - - -

2 .21 - - -

3 .05 - - -
TOTAL COSTS 6,288.61 6,426.70 6,792.34 7,682.50 11,012,336
COST PER 6.67 6.76 7.C2 8.08 11.39
OPERATION
Table II: Hourly total delay costs in $. Figures in parenthesis indicate % increase over

1 %4
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ADDITIONAL TOTAL PERCENTAGE
DELAY COSTS FOR INCREMENT OVER

24-HOUR PERIOD STATUS QUO
($) (%)
CASE 1 138.09 +2
CASE 2 503.72 +8
CASE 3 1393.89 +22
CASE 4 4723.75 +75

Table III: Summary of results of Table 2.

MARGINAL DELAY
COSTS FOR EACH
ADDITIONAL OPERATION

($)

17.26
20.99
173.46

196.82

The last column is

obtained by simply dividing additional total costs by the
appropriate number of operations. For example 138.09/8 = 17.26.
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tional demand on the system virtually disappears about an hour
later for cases 1 and 2. The after-effects of cases 3 and 4,

on the other hand, last for three and four hours. The second
observation relates to the strongly non-linear behaV1or of
congestion phenomena. The results of table II, in this respect,
are summarized by table III. The effects of cases 1 and 2 vary
from those of cases 3 and 4,respec£ively by factors cf lb; i.e., a
new operation conducted during a peak traffic hour introduces
merginal delay costs an order of magnitude larger than those
caused by a new operation added at a relatively offrpeak hour.

| Even in absolute terms the fiécres for cases 3 endy4 are gquite
impressive. It is rather remarkable, for instance, that an additioh
of a total of 24 operations (case 4) to the already existing total

of 943 operations, i.e., a 2.5% increase, implies an 1ncrease

of 75% in total delay costs for the day!
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4. DISCUSSION

The approach outlined and illustrated in the earlier sections
should prove useful in clarifying a number of issues related to
air traffic congestion at airpdgis as well as in exploring several
new questions in the future. Congestion dynamics similar to those
that we have already observed in our numerical example can be reason-
ably expected to apply to most major airports, since Logan Inter-
national is a rather typical example of these transportation centers.
Several points have been illustrated, all with important
practical implications for airport congestion. For instance, itn
has been shown that relatively small improvements in the service
rate or a limited reduction in demand can have a significant
effect on delays. (The reverse, of course, is also true.) The
Federal Aviation Administration (FAA) in the United States and
similar agenicies in Japan, the Soviet Union, and several West
European countries are currently in the process of introducing
major innovations in terminal area air traffic control equipment
(see Note 11). While the primary purpose of these innovations,
at this stage, is to alleviate the workload of air traffic con-
trollers, they can also be expected to make possible marginal
increases in airport capacity. From the above, it is clear

- that even such marginal improvements can provide substantial delay-

saving benefits.
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Another, perhaps less obvious way of deéreasing délay costs 1is
through a modification of the demand pattern during.the,course of
a typical day. The aim here is to "smoothen" the demand profile, to
the extent possible. Our example clearly demonstrated the effects
of time-variations in demand and placed a price tag on the costs
of these variations. A rather crude way to even out the time- |
distribution of demand is through imposition of upper };mits (oxr
"quota") on the number of operations that can be conducted at a
given airport during certaiﬁ periods of a day. This has actually
been done beginning in 1968 when the FAA imposed hoﬁrly quota on op-

erations at several major airports (see Note 12).
Unfortunately, the quota method is economically 1neff1c1ent

since it simply propagates the status quo instead of actually
auctioning off the available time-slots to those flights for

which an operation during a peak hour is most valuable. An
apparently simple way of implementing a market-like environment is
through the use of a time-varying schedule of runway ﬁsége fees.
(However, one can not emphasize too strongly that these schedules
must also be cognizant of other public policy objectives, in addition
to that of economic efflclency, w1th regard to runway use. These
objectives are descrlbed partlcularly well by LITTLE AND McLEOD [7]}]).
Although practical experlence with such time-varying fees is very
limited (see Note 13) due to the reluctance of airport operators

to use them, several economists [2] [3] [7] [13] have argued
cogently and persuasively in favor of this pricing mechanism in

recent years (see Note 14). A major gap, that has severely.hampered



28

the application of the aforementioned body of work, has been the
inability to compute congestion costs in an accurate wayAthat
reflects the actual time-varying nature of demand instead of

being based on the traditional steady-state gqueuing models.
Through the method described here, such items as average delay
costs as a function of time and, more importantly, marginal

delay costs imposed on other airport users by new flights at
different times of the day can be computed. It is expected

that future studies of this issue will take advantage of this cap-
ability.

Oniamoregéneral level, the numerical results vividly il-
lustrate two properties of time-dependent queues‘often alluded to
in the literature [9]:

i) As in the well-known cases of constant demand, so too in the
case when demand is time-dependent, there exists a strongly non-
linear relationship between the demand rate and the average queue
length (and average waiting time). The exact nature of this rela-
tionship depends on the time-history of the demand pattern.

ii) A non-constant time phase exists between the demand pattern
and the attendant congestion phenomena.

Finally, it may be pointed out that, while the computer-aided
approach to time-dependent queues which was outlined here can, nat-
urally, be used in contexts other than airport congestion, the
answer té whether or not the upper and lower bounds are "sufficiently"
close will depend on the narameters and requirements of the particular

problem at hand.
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5. NOTES

1. STEUART[lZ]has recently cast some doubt on the Poisson as-
semptlon by dls“overlng ev1dence of short -term perlodlclty ("banks")
wlth;n hours due to airline schedules. However, STEUART s data
come from airport gate occupancies -- and a single sgeéific group

of gates at that -- and, therefore, require futher exploration.

s

‘éf The avarage service time'ror take-offs at meier airports,
i. e., the average time gap between the completlon of successive
departures froﬁ the same runway when there is a deaprture queue,
is of the order of 80 to 100 seconds (35 to 45 take-offs per hour).

The corresponding range for landings is more like 90 to 120 seconds.

3. It is saimple theoretically, to extend the approach here
in such a way that‘separate gueues are maintained for errivals and
for departures with distinct servrce times fcr each type of cpera-
tion and a set of priority rules to determine the order of service.
One of the co-authors (ODONI) is presently working on such e prob-

+

lem. However, in practlce, severe penalties in terms of program

complex1ty and computatlonal effort have to be paid for differen-

tiating between landings and take-offs.

4. This assumption introduces an additional error in the com-
putation of waiting times for the M/D/k queue. The reason is that
those aircraft which arrive at a time when one of the servers is

idle will have to wait until the beginning of the next service



30

period to enter service. This delay, however, is equal to half a
service time on the average and thus of the order of a half minute.
It applies only to those aircraft finding the system in states
Po(t), Pl(t), vee Pk_l(t). Since the delays of interest in practice
are those that exceed the 4 or 5 minute level, the error involved is

small for practical purposes.

5. For those aircraft that join the queue, the perceived ser-
vice rate of the k servers at time t is k-u(t). For the aircraft
tﬁat enter the queue when there are i > k other aircraft in the
system, the number of aircraft before them in the queue is equal
to i - k. These preceding aircraft must enter service before the
last one to arrive (hence the term (i - k)/(ku(t))). In addition,
there is a waiting time until the next service of those already be-
ing served is completed. This introduces an additional 1/(k - u(t))
delay -- exéctly for the M/M/k queue, an overestimation by 1/(2k-u(t))
for the M/D/k queue. Note that, for the time-dependent queuing sys-

tem, W(t) is not equal to Q(t)/A(t).

6. For all the runs in the Logan International Airport example
that follows, we have used a constant service rate p throughout the
24-hour period. 1In any case, for relatively slow-varying u(t), ex-

pression (5) should be quite accurate.

7. In terms of number of operations, air traffic volume in
Boston has remained substantially constant over the period from

1970 to 1974 (the time when this is written). With the energy cri-
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sis and the increasing use of large aircraft, it can also be ex-
pected that air traffic volume will not change significantly for

several more years.

8. Clearly these numbers proﬁidé only average.;étimates.
For instance, it is known that the airport has on occasion been
able to accomodate up to almost 100 operations/hour. Conversely,
in very poor weather conditions,Vcapacity may be reducéd all the

way to zero (when the airport closes down).

9. We did not attempt to include other costs, such as the

.costs ¢f lost passenger time in the estimates of delay costs.

10. An accurate estimate of P réquires exact knowledge 6f the
traffic mix at an airport, as well as the marginal delay costs in
the air (waiting to land) and on the ground (waiting’to depart) for
each type of aircraft in the mix. No such detailed calcuiation
was performed by the authors. The $5‘figure was seiected after a
quick review of: i) marginal direct operating costs for various -
classes of aircraft; and ii) ﬁhe mix of aircraft using Logan Inter-

national Airport.

11. There are about 10 commercial airports in the United
States which are believed to operate at a congestion level similar
to that of Boston. Four other airports (New York's JFK International
and La Guardia, Chicago's O'Hare International, and Washington's
National Airport) operate with congestion problems which are de-

finitely more severe.
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12. Most notable among these innovations is the ARTS III
System (Automatic Radar Tracking System) in the United States and
similar systems elsewhere. These systems automate to some extent
the air traffic control operations near an airport by performing
several time-consuming functions that formerly had to be performed

manually.

13. For a variety of reasons [11l] , congestion problems are
much less severe now than in 1968. Only four airports, those men-
tioned under Note 10, are still operating with a quota system on

hourly scheduling.

14. The authors are aware of only two cases in which a time-
varying schedule of landing fees has been implemented. By far the
most important of the two is the schedule of charges used by the
British Airports Authority at Heathrow Airport. This schedule
was initiated in April 1972 and, among other things, imposed a
surcharge of about $50 for landings or take-offs between 9 a.m.
and 1 p.m. on weekdays during the peak season. This schedule of
charges has been revised recently (beginning on April 1, 1974)
and the surcharge may now amount up to $250 for a 747 jet on
an intercontinental flight.

The second pertinent case is the imposition in 1969 and there-
after of a $25 fee on general aviation aircraft using New York's
JFK Interﬁational Airport during selected time periods. (The run-
way fee at other times is $5.) Despite the apparent modesty of
these amounts, the effects on the distribution of general aviation

demand at that airport were dramatic.
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15. Current landing fees are computed primarily on the basis
of maximum gross take-off weight of the aircraft. There is, héw-
ever, considerable variation on the exact formula used from place
to place. The range of landing fees varies widely,nrapggpg from
about $150 in some U.S. airgorts'tp about $1,500 in most European
airports and up t? $4000 in Sydney, Australia =-- all for the same

aircraft (B747).
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