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Abstract 
Bridges play a key role in the transportation sector while serving as lifelines for the economy and 

safety of communities. The need for resilient bridges is especially important following natural 

disasters, where they serve as evacuation, aid, and supply routes to an affected area. Much of the 

earthquake engineering community is interested in improving the resiliency of bridges, and many 

contributions to the field have been made in the past decades, where a shift towards performance-

based design (PBD) practices is underway. While the Canadian Highway Bridge Design Code 

(CHBDC) has implemented PBD as a requirement for the seismic design of lifeline and major 

route bridges, the nature of PBD techniques translate to a design process that is not universally 

compatible for all scenarios and hazards. Therefore, there is great benefit to be realised in the 

development of PBD guidelines for mainshock-aftershock seismic sequences for scenarios in 

which the chance to assess and repair a bridge is not possible following a recent mainshock. This 

research analytically explored a parameterized set of 20 reinforced concrete bridge piers which 

share several geometrical and material properties with typical bridge bents that support many 

Canadian bridges. Of those piers, half are designed using current PBD guidelines provided in the 

2019 edition of the CHBDC, whereas the remaining half are designed with insufficient transverse 

reinforcement commonly found in the bridges designed pre-2000. To support this study, a 

nonlinear fiber-based modelling approach with a proposed material strength degradation scheme 

is developed using the OpenSEES finite element analysis software. A multiple conditional mean 

spectra (CMS) approach is used to select a suite of 50 mainshock-aftershock ground motion 

records for the selected site in Vancouver, British Columbia, which consist of crustal, inslab, and 

interface earthquakes that commonly occur in areas near the Cascadia Subduction zone. Nonlinear 

time history analysis is performed for mainshock-only and mainshock-aftershock excitations, and 

static pushover analysis is also performed in lateral and axial directions for the intact columns, as 

well as in their respective post-MS and post-AS damaged states. Using the resulting data, a 

framework for post-earthquake seismic capacity estimation of the bridge piers is developed using 

machine learning regression methods, where several candidate models are tuned using an 

exhaustive grid search algorithm approach and k-fold crossvalidation. The tuned models are fitted 

and evaluated against a test set of data to determine a single best performing model using a multiple 

scorer performance index as the metric. The resulting performance index suggests that the decision 

tree model is the most suitable regressor for capacity estimation due to this model exhibiting the 
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highest accuracy as well as lowest residual error. Moreover, this study also assessed the fragility 

of the bridge piers subjected to mainshock-only and mainshock-aftershock earthquakes. 

Probabilistic seismic demand models (PSDMs) are derived for the columns designed using current 

PBD guidelines (PBD-compliant) to evaluate whether the current PBD criteria is sufficient for 

resisting aftershock effects. Additional PSDMs are generated for the columns with inadequate 

transverse reinforcement (PBD-deficient) to assess aftershock vulnerability of older bridges. The 

developed fragility curves indicate an increased fragility of all bridge piers for all damage levels. 

The findings indicate that adequate aftershock performance is achieved for bridge piers designed 

to current (2019) CHBDC extensive damage level criteria. Furthermore, it is suggested that 

minimal damage performance criteria need to be developed for aftershock effects, and the 

repairable damage level be reintroduced for major route bridges. 
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Chapter 1 Introduction 
1.1 Background 

Bridges are an essential component to transportation infrastructure in many communities 

throughout the world which fundamentally serve multiple industries. While the uninterrupted 

service bridges provide is often overlooked, their importance during earthquake events where the 

safety of the public is threatened and the mobility of emergency responders and potential 

evacuation routes can become bottlenecked is paramount. Much of the earthquake engineering 

community is interested in improving the resiliency of bridges, and many contributions to the field 

have been made in the past few decades, where a shift towards performance-based design (PBD) 

practices is underway. In Canada, the 2014 edition of the Canadian highway bridge design code 

(CHBDC) (National Research Council of Canada 2014) adopted PBD for seismic design of lifeline 

and major route bridges where some performance levels and performance criteria have been 

defined. 

1.2 Problem Statement 

The sophistication of performance based seismic design (PBSD) continues to improve and holds 

an expanding stake in maximizing service life of bridges in the engineering community. Recent 

advances in PBSD focus on improved post-earthquake functionality of structures and accurate 

prediction of seismic performance over a wide range of earthquake scenarios. Performance based 

design of bridges has the potential to be applied in many unique hazards or circumstances, but 

performance criteria must be established beforehand. The ability to predict different damage states 

of a bridge pier following an earthquake can be useful in restoring service or prescribing 

appropriate remediation. Furthermore, most of the design guidelines are moving towards 

performance-based design. Recently, AASHTO has proposed Guidelines for Performance-Based 

Seismic Bridge Design (Murphy et al. 2020). Although the CHBDC first introduced PBD in the 

2014 edition, it has made some significant changes in the 2019 edition (National Research Council 

of Canada 2019). While the CHBDC does acknowledge a need for consideration of aftershock 

effects, there is little guidance provided to practicing engineers. Furthermore, despite the fact that 

the CHBDC stipulates that the aftershock capacity of damaged bridges must be assessed based on 

the predicted mainshock damage, no performance limits or guidelines for assessing the post-

aftershock performance are described. Therefore, there is great benefit to be realised in the 
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development of PBD guidelines for mainshock-aftershock seismic sequences for scenarios in 

which the chance to assess and repair a bridge is not possible following a recent mainshock. 

1.3 Seismic performance of reinforced concrete bridges 

Bridge piers are one of the most critical components in the bridge system that dictate the overall 

performance of bridges during seismic events. In reinforced concrete bridges, much of the energy 

imparted to the bridge structure by ground acceleration is dissipated by the deterioration of the 

bridge pier columns, where concrete cracking and spalling, plastic hinge formation, and 

reinforcement yielding and buckling mechanisms dissipate energy. Current seismic design 

guidelines which are implemented in North America allow all but the highest importance lifeline 

bridges to undergo large inelastic deformations so long as load carrying capacity is maintained and 

collapse does not occur. The Canadian Highway Bridge Design Code (CSA S6-19) has 

implemented performance-based design (PBD) as a requirement for seismic design of more 

important or irregular bridges. Bridges designed to PBD guidelines must demonstrate that they 

meet explicitly outlined performance criteria such as damage limits and service levels. This means 

explicit performance objectives are defined and have to be demonstrated, in contrast to traditional 

codes where performance objectives are implicit. For performance-based seismic design and 

assessment of bridges, it is critical to predict different damage states or performance levels under 

different ground motions (Marsh et al. 2013). Damage experienced by a bridge pier during an 

earthquake is a function of ductility, deformation, energy dissipation, as well as strength and 

stiffness degradation. In CSA S6-19, the damage-level criteria are defined as quantitative limits 

on concrete and reinforcement strains as well as qualitative limits on displacements or damage to 

bridge components as depicted in Figure 1.1. 
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Figure 1.1 Typical definition of bridge pier performance limit states under seismic load 

 

1.4 Machine Learning Regression 

Machine learning (ML) tools have generated significant research interest in the past few decades, 

and have recently gained a foothold in seismic and structural engineering applications due to their 

deep learning capabilities which are able to provide accurate regression models mapped to 

complex functions. Moreover, ML Models are able to generate predictive models which 

outperform many statistical and research-intensive efforts, or reasonably generalize other 

computationally intensive analytical methods in a small fraction of the computational expense. 

The majority of research which has utilized machine learning operates under the subset of 

supervised machine learning, where models are trained and are constantly evaluated for their 

accuracy and performance among a variety of metrics. Supervised learning is further divided into 

regression and classification models, which use input data to generate continuous or discrete output 

predictions, respectively. The growing computational efficiency of modern computers and the 

large body of support from computer science interest in ML has allowed for the ability for 

researchers to rapidly develop ML models for a variety of applications. 
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1.5 Research Objective 

The analytical research study detailed in this thesis has been carried out to investigate the 

behaviour of reinforced concrete bridge columns subjected to a suite of fifty as-recorded 

mainshock-aftershock groundmotion records. To provide a wider scope of data, ten ductile column 

configurations designed based on current PBD requirements outlined in CHBDC as well as an 

additional ten brittle columns, representing existing bridge piers designed without any PBD 

considerations, were examined. Ground motion records were separated into mainshock-only and 

aftershock-only components to be able to evaluate post-mainshock damage levels and to compare 

the additional damage incurred in the subsequent aftershocks. To quantify column capacities, 

quasi-static analyses in the lateral and axial directions were performed. The results of the numerical 

analyses were used to generate fragility functions to observe the increased vulnerability due to 

aftershocks, and to assemble a machine learning model to efficiently predict existing bridge 

column capacities. An overarching goal of this research is to study and assess the seismic 

performance of concrete bridge piers in order to aid in the development of performance limits for 

bridge piers under sequential seismic events. A summary of specific research objectives this study 

accomplishes are listed below: 

1. Design an initial set of reinforced concrete bridge columns according to existing PBD 

guidelines found in the current edition of the CHBDC 2019; 

2. Validate the performance of the finite element software framework using published 

experimental results, and establish a strain-based strength degradation scheme using strain 

limits based on literature; 

3. Perform dynamic time history analysis of the column suite using real as-recorded 

mainshock-aftershock ground motion records to observe changes in key engineering demand 

parameters; 

4. Observe effects of column performance and capacity degradation due to subsequent 

aftershocks; 

5. Develop fragility curves for various damage levels considering aftershock effects; 

6. Develop a data driven machine learning model for the prediction of axial and lateral capacity 

degradation in reinforced concrete bridge columns under mainshock-aftershock sequences. 
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1.6 Thesis Outline 

This thesis is organized into six chapters which contain the following content: 

- Chapter 2 summarizes existing research in the area of mainshock-aftershock design of bridges 

and structures, as well as recent studies involving machine learning methods in the field of 

seismic and structural engineering. 

- Chapter 3 details the analytical methodology used in employing nonlinear and quasi-static 

finite element analysis to perform parametric studies of reinforced concrete bridge column 

models in both mainshock-only and post-mainshock configurations. 

- Chapter 4 presents pertinent machine learning methodology used in this study and quantifies 

the performance of each hyperparameter tuned model when evaluating test set data. The 

results of the developed machine learning models are presented, and key parameters which 

govern the residual capacity estimation are identified and discussed. 

- Chapter 5 evaluates the seismic demand of the developed bridge pier models through the use 

of probabilistic seismic demand models. Fragility functions for mainshock-only and 

mainshock-aftershock demand are developed and compared. 

- Chapter 6 summarizes key research findings, draws conclusions, and outlines future research 

needs. 
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Chapter 2 Literature Review 
2.1 General 

The sophistication of seismic design and engineering of resilient infrastructure is continuously 

being developed towards a holistic design protocol. The response to a changing climate and 

awareness of new hazards and interactions parallels the trends which shape other industries such 

as aviation, where significant disasters improve upon current practices, and bring awareness to 

flaws which remained unnoticed or were previously considered acceptable. In North America, 

earthquakes such as San Fernando (1971), Loma Prieta (1989), and Northridge (1994) are 

monumental to the seismic design profession and have shaped seismic engineering practices to 

ensure that the massive damage to structures, roadways, bridges, economy, as well as loss of life 

are mitigated.  

In North America, the majority of seismic activity can be found along the west coast of the North 

American Plate, particularly along the Cascadia Subduction Zone which stretches several hundreds 

of kilometers from northern California to Vancouver, British Columbia; as well as throughout the 

coastal regions of land stretching north of British Columbia through to Alaska in which several 

additional faults are located. This geographical distribution shows resemblance to that of the 

research interest landscape in seismic design, and as such, California tends to be a centralized hub 

for seismic design initiatives in the United States. The previously mentioned San Fernando, Loma 

Prieta, and Northridge earthquakes all occurring in California, typically categorize infrastructure 

and bridge design into distinct “design eras” due to the vulnerabilities that the disasters exposed. 

Provisions for seismic design of bridges in the US were first developed in 1940, where the bridge 

design codes specified 2% to 6% of the structure’s dead weight be applied as a static maximum 

lateral seismic design force (Veletzos et al. 2008). In 1965 some of the first refinements to the 

seismic design process were introduced when CALTRANS (1999) adopted design equations 

which took into account amplification factors and the period of the structure, while the maximum 

lateral design force was also increased to 13% in some design cases. Design detailing during this 

pre-San Fernando period had very few considerations for reinforcement splicing and development, 

which typically resulted in structures with limited ductility. Due to these design practices, the older 

bridges were particularly vulnerable to damage even during moderate seismic events. The 1971 

San Fernando Earthquake demonstrated the shortcomings of the seismic design of older bridges 
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and proved to be a catalyst for major changes in seismic design philosophy. Bridges still in the 

design phase in the short period following the earthquake were redesigned to be able to resist 

lateral loads scaled up by factors of 2.0 or 2.5. Consequently, the updated version of the 

CALTRANS Seismic Design Code released following the San Fernando Earthquake included 

factors such as fault proximity, site conditions, dynamic structural response, and ductile details for 

newly designed bridges. The new bridge seismic design code had pivoted to a design strategy 

which retained elasticity in the bridge superstructure, and targeted flexural failure in the columns 

(Moehle 1995). Despite the proposed changes and shift in design philosophy, the catastrophic 

damage caused during the 1989 Loma Prieta earthquake signaled that further refinement to the 

seismic design code was needed. CALTRANS enlisted the help of the Applied Technology 

Council (ATC) to perform extensive review and revision to the present design standards, criteria, 

specifications and practices. The ATC-32-1 report (Applied Technology Council 1996) was 

completed after the 1994 Northridge earthquake, marking the start of the post-Northridge design 

era, where all the recommended design provisions brought forth by the report were incorporated 

into the following edition of CALTRANS code. In Canada, the seismic design of bridges tends to 

trail behind the practices employed south of the border. Prior editions of the Canadian Highway 

Bridge Design Code take much guidance from the monumental research and development of the 

CALTRANS and AASHTO LRFD bridge design codes which have greatly matured since their 

inception.  

This chapter provides a detailed review of recent literature pertaining to mainshock-aftershock 

design and retrofit of bridges as well as structures, machine learning applications in seismic 

engineering, and additional research pertaining to the increased vulnerability of structures 

subjected to aftershocks. 

2.2 Significance of mainshock-aftershock consideration 

For many communities, bridges are an essential component to their transportation infrastructure, 

where their continued service is expected to remain uninterrupted. Bridges located in regions 

which are seismically active are likely to experience multiple earthquake sequences during their 

service lives. All seismic activity presents a risk for the damage to a bridge or its components, 

where a subsequent repair or retrofit may be unlikely to restore the full capacity of the intact bridge. 

Moreover, mainshock-aftershock (MS-AS) events, present little to no time to mobilize repair to 
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the already damaged structure, which presents a compounding risk to the fragility of bridges. 

Typically, sequences which involve multiple dependent earthquakes are defined in terms of 

components of foreshocks, mainshock, and aftershocks based on their relative intensity. As a 

multiple earthquake sequence occurs, the current earthquake with the largest intensity is termed 

the mainshock, with the preceding excitations being denoted foreshocks, and the following 

labelled aftershocks, as depicted in Figure 2.1. The frequency of occurrence of aftershocks can be 

approximated empirically using Omori’s law (1894), where the likelihood decreases exponentially 

with time. Additionally, Bath’s law (1965) depicts the decrease in magnitude of the largest 

aftershock as compared to the mainshock. A typical MS-AS record is shown in Figure 2.2. 

 

Figure 2.1 Intensity versus time of mainshock and aftershock sequences 

 

Figure 2.2 Typical time history of mainshock and aftershock sequence 
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2.2.1 Aftershock record selection 

Past studies were cognizant of the potential for increased vulnerability that aftershocks pose, 

however were not able to apply real MS-AS records. Instead, a common technique of reiterating 

the original mainshock record was employed, termed back-to-back application of mainshocks. 

Luco et al. (2004) contributed some of the first analytical research for demonstrating the increased 

vulnerability of structures subjected to MS-AS sequences, where the residual capacity of a 3-storey 

steel moment resisting frame (SMRF) building was used as a case study. Artificial MS-AS records 

were constructed using the back-to-back scaled mainshock technique, where the resulting roof drift 

and residual roof drift IMs generated from the NLTHA were used to calibrate a static pushover for 

specifying a maximum aftershock intensity which may be withstood by the structure without 

collapse. Similarly, Li and Ellingwood (2007) proposed a probabilistic damage and condition 

assessment framework for aftershock vulnerability of two different SMRF buildings; wherein two 

cases of artificial MS-AS were developed by using back-to-back ‘repeated’ or ‘randomized’ 

methods which repeat the unscaled mainshock sequence or use another mainshock from the bin, 

respectively. The study concluded that the characteristics of the aftershocks have a large influence 

of the damage outcome of the moment frames studied therein. Repeated mainshocks for the back-

to-back evaluation produced a divergence in the damage evaluation to the structure, as compared 

to the randomized aftershock assessment. The large variance in the methods highlighted the need 

for the appropriate use of mainshock-aftershock records, where the differences in ground motion 

characteristics are considered.  

As part of a case study to investigate the effectiveness of back-to-back ground motion records, 

Goda (2015) utilised their previously designed wood-frame residential house models (Goda and 

Salami 2014) in order to study the effects of aftershock record selection for collapse vulnerability 

assessment. The model was subjected to a benchmark suite of 30 commonly used back-to-back 

mainshock records as well as a set of 90 real MS-AS records assembled using the K-NET/KiK-net 

database for earthquakes in Japan. The building response obtained from performing IDA when 

employing both sets of records presented compelling evidence against the use of back-to-back 

sequences, as the structural response was improperly captured and varied significantly. It was 

suggested that the use of real MS-AS records is desirable in capturing the motion characteristics 
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representative of the location specific seismic environment being considered. More recently, Shin 

and Kim (2017) explored the effects of frequency content of aftershock ground motions on 

reinforced concrete bridge pier responses. Using three column experimental results from literature, 

finite element models were modelled using OpenSees and validated based on the resulting force-

displacement outputs from cyclic loading analysis. The seismic response under dynamic loading 

of the columns was explored to demonstrate the importance of properly selected ground motion 

sequences. Real MS-AS motion records, back-to-back scaled mainshock records, and spectrally 

matched mainshock motion to the aftershock motion (MS-SM) were chosen as the three test cases. 

The synthesized aftershock responses were compared to the real MS-AS sequence response, where 

it was concluded that back-to-back sequences overestimated maximum displacements of the 

columns. Furthermore, the results of the spectrally matched MS-SM aftershocks more closely 

resembled the real MS-AS response and are recommended in place of MS-MS synthesis.  

2.2.2 Post-Mainshock bridge capacity assessment 

The decision to re-open a bridge following a damaging earthquake is dependent upon the 

remaining capacity of the bridge to support self weight as well as traffic loads. Another level of 

complexity to factor into this decision is presented through the potential for further damage via 

aftershocks which may yet occur. Yeo and Cornell (2005) presented a decision analytic framework 

in which the life cycle loss models are employed considering pre- and post-mainshock scenarios. 

Franchin and Pinto (2009) proposed a criterion for the decision making process as to whether a 

bridge can remain open, or to limit traffic after a mainshock has occurred based on the survival 

probability of the post-MS bridge compared to the intact structure. Additionally, aftershock 

survival probability is also considered and decays with time, therefore a waiting period may be 

employed before a decision to allow traffic on a particular bridge is made. Moreover, Alessandri 

et al. (2013) developed a probabilistic method for aftershock risk assessment that combines in-situ 

site inspection and analytical assessment. Using Bayesian updating, the analytical model is 

compared to match actual conditions as observed from inspection and the model is updated 

accordingly. The developed risk assessment method was applied to a thirteen span RC highway 

viaduct, where the sensitivity of the framework to the Bayesian updating was highlighted, 

especially so when real damage observed by inspection did not match the analytical model 

prediction. Moreover, the risk assessment procedure was compared to the previous two proposed 
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methods and Alessandri et al. (2013) found that theirs lead to reasonably shorter re-opening times 

when subjected to low intensity MS-AS events.  

Furthermore, Terzic and Stojadinović (2010) explored post-earthquake traffic capacity of modern 

bridges in California. Analytical and experimental methods were combined to evaluate the post-

earthquake load capacity of an overpass bridge, where experimental studies into the behaviour of 

seismically induced damage and remaining column capacity of circular RC bridge columns were 

performed and used in calibrating the following analytical studies. A hybrid simulation technique 

was used to validate the proposed finite element models for the overpass bridge, and to calculate 

the post-earthquake load capacity. An extensive parametric study followed to investigate the 

effects of different ground motions and model parameters. It was discovered in the experimental 

study that a typical overpass bridge in California is capable of maintaining truck loading 

immediately after a very strong earthquake since although the damage in the plastic hinge region 

of the column specimen was pronounced, none of the specimen’s reinforcing bars or spiral 

reinforcing fractured. The parametric study and analytical models further revealed that bridge 

parameters such as the abutment type, residual drift of the bridge, position of the truck on the 

bridge relative to the superstructure’s centerline, and the ultimate strain in column reinforcing bars 

carried a significant influence on the post-earthquake truck load capacity that warrants further 

research. While not specifically investigating the effects of MS-AS sequences, Terzic and 

Stojadinović’s study was the first experimental study of its kind in exploring post-earthquake 

bridge pier load capacity. The progression of studies into post-earthquake capacity of bridges 

contributes to the understanding of post-mainshock capacities for MS-AS multihazard 

interactions. 

 

2.3 Existing research in mainshock-aftershock design of structures 

On a macro level, research surrounding consideration of aftershock design for highway bridges 

mainly focuses on fragility assessment and retrofitting techniques. Fragility assessment is valuable 

to infrastructure design and risk quantification as it can more easily facilitate decision making of 

retrofit and design strategies for a particular hazard. Seismic vulnerability of highway bridges is 

frequently expressed using fragility curves, in which the conditional probability of sustaining a 

particular level of damage is related to an earthquake intensity measure.  
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2.3.1 Aftershock fragility assessment of structures 

Dong and Frangopol (2015) explored a probabilistic approach for risk assessment under MS-AS 

ground motions, which combined bridge seismic vulnerability and economic repair loss 

considerations to serve for enabling rapid decision making. They considered resilience as a 

performance factor to quantify the recovery of bridges under MS only and MS-AS sequence 

(Figure 2.3). A Monte-Carlo simulation for mainshock-aftershock sequences was implemented in 

this study to account for the uncertainty in mainshock frequency, magnitude, and ground motion 

duration. Subsequently, a representative single degree of freedom (SDOF) bridge model was used 

to simulate mainshock only and mainshock-aftershock loading in order to collect demand 

parameters for the assembly of fragility curves for both responses. A comparison of the fragility 

curves for the established damage states in the study made for compelling evidence that 

aftershocks increase the vulnerability and diminished residual functionality of the bridge studied.  

 

Figure 2.3 Conceptual illustration for the resilience and functionality of bridges under MS and 

MS-AS sequence (adapted from Dong and Frangopol 2015) 

In a related study, Ghosh et al. (2015) developed a probabilistic damage accumulation and fragility 

framework for bridges subjected to multiple earthquake hazards, where a case-study single 

column, box girder highway bridge located in California was developed using OpenSEES to 
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demonstrate the probability of structural damage due to repeated seismic excitations. Two 

scenarios were explored in this study such as multiple mainshocks during the service life of the 

bridge, and multiple aftershocks following a single mainshock. Structural damage accumulation 

was forecasted through the use of the Park and Ang Damage Index (PA-DI) (Park and Ang 1985), 

where regression models were developed using time history analysis results to correlate damage 

as a function of earthquake intensity and damage history. The study demonstrates the increase of 

structural vulnerability of the studied bridge when exposed to either scenario, and the developed 

framework serves as a potential tool for rapid bridge repair strategies following such events, or for 

risk mitigation over the service life of such bridges by assisting in the retrofit or structural upgrade 

decision making process. 

Xie et al. (2012) evaluated the aftershock seismic performance of a 2000-meter steel tower 

suspension bridge modelled in ABAQUS using elasto-plastic beam elements to consider 

accumulated seismic damage, and foundation springs to consider soil-structure interaction. Five 

MS-AS ground motions were selected for analysis, and seismic damage accumulation was 

captured using McCabe and Hall’s low-cycle fatigue theory (1989). The authors concluded that 

seismic behaviour of the suspension tower behaved similarly to a framed structure under transverse 

excitation with damage vulnerability near junctions of the tower shafts and cross beams. 

Longitudinal excitations of the suspension bridge however placed tower vulnerability at its 

foundation and upper portion. Due to a long natural period of the bridge, and a low cumulative 

damage resulting from the aftershock, the study found that aftershock effects may be ignored for 

this long span suspension bridge, and instead seismic damage can be determined by superimposing 

the mainshock and aftershock excitations. 

More recently, Omranian et al. (2018b) investigated the vulnerability of skewed highway bridges 

subjected to mainshock-aftershock sequences. Using analytical bridge models with skew 

parameters varying between 20° and 80°, MS-only and sequential MS-AS time history analysis 

under seven incidence angles was performed. Cloud-based fragility curves were developed for 

each incidence angle, with four different damage levels observed and compared to the mainshock 

fragility functions established by HAZUS (Hazus 2011). The resulting fragility curves developed 

in the study showed the significance of multiple incidence angle consideration for skewed bridges, 

and more importantly demonstrated that the fragility functions provided in HAZUS are 



14 
 

unconservative since the effects of aftershocks lead to increased fragility which is more profound 

in skewed bridges.  

Additionally, Pang and Wu (2018) used a selection of 8 continuous multi-span RC bridges for 

component level fragility analysis subjected to 75 recorded MS-AS sequences. Initially, 

component-level fragility curves were developed based on pier and bearing responses obtained 

during dynamic analysis. Monte Carlo simulation was implemented using multi-variate normal 

distribution of the component responses to derive system level fragility curves at slight, moderate, 

extensive, and complete damage states. The resulting joint-PSDM’s developed in the study support 

the need for the consideration of aftershock effects as bridge vulnerability is increased on both 

component and system levels, respectively.  

Aftershock effects on the seismic design of structures, on the other hand, has received more 

research attention, and has seen very similar outcomes. Tesfamariam and Goda (2017) performed 

an aftershock seismic vulnerability evaluation of a high-rise reinforced concrete shear wall 

building located in Vancouver, British Columbia. A suite of 50 MS-only and 50 MS-AS ground 

motion records were selected, with an even distribution of crustal, inslab, and interface excitations 

chosen to properly represent the range of possible earthquakes present in western British 

Columbia. Nonlinear time history analysis was performed for the 15-storey gravity column 

structure, where the structural response to the unscaled ground motions was used to develop 

seismic demand prediction models as well as fragility curves. Tesfamariam and Goda explored 

drift-based and energy-based EDP’s and made the distinction that drift based damage indices were 

not suitable for long duration earthquakes such as MS-AS sequences as they underestimated 

vulnerability. Furthermore, IMs such as spectral acceleration at the fundamental period (Sa(T1)), 

Arias intensity (AI), cumulative absolute velocity (CAV), and significant duration of ground 

motion (D5-95%) were evaluated for efficiency and CAV was concluded to be most appropriate for 

the established Mehanny–Deierlein damage index. Last, the study made clear the impact of major 

aftershocks on the vulnerability of the case study building, where the influence of major 

aftershocks increased the damage index values by approximately 40% for a given probability level.  

Abdollahzadeh et al. (2019a) modelled 4, 8, and 12-storey steel moment resisting frames using 

performance based plastic design (PBPD) as well as conventional elastic design. The buildings 

were subjected to 10 mainshock aftershock sequences from the PEER strong motion database to 
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explore the benefits of the plastic design method through demand parameters such as story drift, 

energy distribution and plastic hinge distribution. Response spectra corresponding to 10% and 2% 

probability of exceedance in 50 years were defined and used to determine ground motion scaling 

for two hazard levels. It was observed that the moment frames designed using PBPD exhibited 

improved aftershock performance by way of diminished story drift when compared to the 

conventionally designed frames. Moreover, the authors concluded that during hazard level 2 

sequences, conventionally designed steel moment frames experienced undesirable performance 

during aftershock where additional members exhibited nonlinear behaviour.  

Additionally, Abdollahzadeh et al. (2019b) studied several more three-bay SMRF buildings 

designed using PBPD. Once more, the selected MS-AS ground motion records were scaled based 

on response spectra corresponding to 10% and 2% probability of exceedance in 50 years. IDA was 

performed for each of the model configurations using MS-only and MS-AS sequences to obtain 

the corresponding ductility and ductility reduction factors, μ and Rμ. Furthermore, the energy 

modification factor γ which is a function of the previous ductility factors was calculated for both 

earthquake scenarios, and used to generate a γMS+AS / γMS modification ratio for each of the SMRF 

structures. A curve was fitted to the resulting modification ratios corresponding to the design 

period of the frames, and a modified PBPD which considers aftershock capacity was formulated 

to redesign the SMRF for NLTHA. More importantly, the results of the NLTHA showed 

performance of the modified PBPD frames under hazard level 2 were favourable whereas the 

unmodified frames exhibited the formation of additional plastic hinges or even collapse.  

Mangalathu et al. (2019b) explored the time dependent seismic risk of aftershocks in California 

bridges, with uncertainties in damage states following a specified mainshock. They proposed a 

methodology (Figure 2.4) to three different eras (pre-1971, 1971-1990, post-1990) of California 

highway bridges using a Markov risk assessment framework to account for the probabilistic 

transition of the bridge through different damage states and time dependent aftershock hazards. 

They defined the mainshock and mainshock–aftershock physical damage in bridges using a 

mutually exclusive and collectively exhaustive limit states. They found a direct relationship 

between the age of the bridge and increased aftershock vulnerability for the older bridges. 
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Figure 2.4: Aftershock vulnerability and time dependent risk assessment of bridges (adapted 

from Mangalathu et al. 2019) 

Liang et al. (2020) investigated the time-varying seismic fragility of offshore bridges under MS-

AS sequence. They considered time-dependent material properties of bridge components due to 

aging and deterioration and analyzed the bridge based on time-varying seismic action in the entire 

life cycle. They concluded that with increasing bridge material deterioration, the vulnerability 

increases under MS-AS sequential ground motions.  

Todorov and Billah (2020) evaluated the seismic fragility of concrete bridge piers reinforced with 

two different types of Shape Memory Alloy (e.g. Ni-Ti and Fe-based) rebars under mainshock 

ground motions followed by aftershocks. The seismic fragility of the SMA-RC bridge piers was 

compared with conventional steel-reinforced concrete (Steel-RC) bridge piers. They found that the 

Steel-RC bridge pier is more susceptible to collapse when subjected to MS-AS sequence 

irrespective of damage induced by mainshock events as compared to the SMA-RC bridge pier. 

2.3.2 Aftershock rehabilitation of structures 

Research and development of novel construction materials and technologies for seismic risk 

mitigation and performance improvement techniques exist and are continually evolving. The use 

of materials such as jacket sleeves for retrofitting, Shape Memory Alloy (SMA), and composite 

reinforcement are reviewed, with some having already been implemented in construction 
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applications. There exists much overlap in material technologies for the general increase in a 

structure’s seismic resiliency, the evolution of construction practices, and the retrofitting of bridges 

damaged by mainshock-only events; as such, the review of all construction advancements in bridge 

design would be unnecessarily exhaustive. 

Fakharifar et al. (2015a; b) performed comprehensive analytical studies on the collapse 

vulnerability of substandard reinforced concrete bridge piers which have sustained damage 

through a mainshock ground motion. Post-Mainshock damaged bridge piers from a prototype two 

span single column bridge bent with lap-splice deficiency at the column-footing interface were 

rehabilitated with Fibre Reinforced Polymer (FRP), conventional thick steel, and hybrid repair 

jackets and were evaluated. Using Incremental Dynamic Analysis (IDA), Fakharifar et al. 

evaluated the efficacy of different repair jackets on the post-repair behaviour of the RC bridge 

subjected to aftershock sequences. It was found that the application of repair jackets on damaged 

bridge piers were less effective for cases of severe MS-moderate AS sequences compared to severe 

MS-severe AS scenario. However, repair jackets remained essential for severe MS-moderate AS 

sequence. The performance of conventional thick steel jackets was observed to have a higher 

fragility as compared to the hybrid and Carbon Fiber Reinforced Polymer (CFRP) jackets; 

however, steel jackets exhibited larger energy dissipation as compared to the CFRP. 

Similarly, Omranian et al. (2018a) investigated the post-mainshock seismic fragility of a skewed 

RC bridge retrofitted with FRP. Using two analytical models with and without CFRP jacket 

retrofitting, and performing both mainshock only (MS-only) and Mainshock-Aftershock (MS-AS) 

ground motion analysis, fragility curves were developed based on four damage states. By 

comparing the fragility of the bridge with and without FRP it was revealed that FRP confinement 

improves the seismic performance of the structure and decreases the probability of failure in the 

studied skew bridge. Additionally, FRP confinement has a more significant effect on the seismic 

performance of the bridge particularly in the higher levels of damage state such as severe and 

complete. 

Jeon et al. (2016) developed a framework (Figure 2.5) for aftershock fragility given an initial post-

mainshock damage state. A repair element, rcube (Lee et al. 2009) was implemented in the Zeus-

NL finite element software to verify the authors’ model against post-repaired bridge column 

experimental results (Chai et al. 1991; Haroun et al. 2003; Ohtaki et al. 1997; Youm et al. 2006). 



18 
 

A case study bridge located in California that is not seismically designed was selected and three 

models were developed to assess the aftershock behaviour of this bridge without repairs, and two 

retrofitted models with steel and FRP jackets respectively. Under the proposed framework the as-

built bridge is selected and limit states are defined. The bridge then undergoes N number of ground 

motions to achieve its initial post-mainshock damage state. In this report the options to leave the 

bridge unrepaired, or to repair with steel or FRP jackets are then considered. The bridge is then 

subjected to N number of aftershock ground motions that have been modified using scaling 

method, and fragility curves are finally developed for the model.  Jeon et al. (2016) selected a suite 

of 30 pairs of ground motions in their research and concluded that both steel and FRP jackets are 

suitable choices in seismic rehabilitation. The bridge model using the steel jacket was shown to be 

less seismically vulnerable, however both jackets’ effect on collapse probability varied within a 

small margin of 5%. Additionally, the influence of the initial damage states was shown to have a 

great variance on the bridge’s response to successive earthquakes where the more significantly 

damaged columns experienced considerable inelastic action during the mainshock. 

 

Figure 2.5 Framework for aftershock fragility assessment of unrepaired and repaired bridges 

(adapted from Jeon et al. 2016) 

Jung and Andrawes (2018) performed analytical studies into the effects of retrofitted external 

Shape Memory Alloy confinement in the plastic hinge regions of multiple frame bridge piers. Four 
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levels of active SMA confinement ranging from 1.03 to 2.07 MPa were demonstrated to prevent 

concrete crushing under MS-AS sequences, with concrete strength loss being reduced under higher 

levels of confinement. Furthermore, the SMA confinement was also observed to reduce reinforcing 

bar fatigue damage, along with reduced residual hinge openings at bridge joints. By monitoring 

local and global damage states, the effects of the SMA retrofit were found to improve seismic 

performance of the flexure failure dominated model bridge.  

2.4 Existing research in machine learning applications in seismic/structural engineering 

Due to recent technological progress, Machine Learning (ML) has become a broadly powerful 

tool. Machine learning techniques are becoming attractive in the field of structural and earthquake 

engineering for their rapid prediction and classification of failure modes, among other applications. 

Researchers in the field of structural engineering have utilized machine learning techniques for 

several applications including failure mode classification, strength regression, and fragility curve 

regression.  

Pang et al. (2014) utilized artificial neural network (ANN) regression to generate fragility curves 

of highway bridges, bypassing the computational power-intensive incremental dynamic analysis 

(IDA) required to generate them. Similarly, Mangalathu et al. (2018) applied ANN regression to 

generate bridge specific fragility curves, without the need to group bridge classes as seen in 

traditional regional risk assessment. In another study, Mangalathu and Jeon (2018) applied 

different machine learning techniques to classify failure modes and subsequently predict 

associated shear strength in beam-column joints. Using stepwise and LASSO regression 

techniques, Xie and DesRoches (2019) identified the influential parameters that affect the seismic 

demands of different bridge components. Luo and Paal (2018) proposed a novel machine learning 

model to predict RC column backbone curves in the form of the least squares support vector 

machine trained using an advanced grid search algorithm (GSA) to perform hyperparameter 

optimization. The proposed ML-BCV approach demonstrated superior accuracy and robustness 

when compared to traditional modeling approaches. In another study, Luo and Paal (2019) 

proposed an additional novel machine learning method for RC column drift capacity regression, 

where the least squares support vector machine is optimized using a hybrid coupled simulated 

annealing and grid search locally weighted global optimization scheme. Mangalathu and Burton 

(2019) further explored the limitations of machine learning by applying a long short-term memory 
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(LSTM) deep learning model for the classification of building damage severity and spatial 

distribution using a large dataset of ATC-20 textual damage descriptors. Xie et al. (2020) presented 

a comprehensive review on the application of different ML techniques in earthquake engineering 

focusing on seismic hazard analysis, damage identification, fragility assessment, and structural 

control. Using 40000 existing bridge dataset, Alipour et al. (2017) used different ML techniques 

such as decision trees and random forests to evaluate the load-capacity rating of existing highway 

bridges. Figueiredo et al. (2019) proposed a hybrid finite element–based machine-learning 

approach for damage detection in existing bridges. They concluded that the developed hybrid 

method resulted in an improved damage detection performance for large scale civil engineering 

structures.  

In rapid failure mode identification of seismic force-resisting systems that parallel this research, 

Mangalathu and Jeon (2019) explored the efficiency of several different machine learning methods 

including ANN, naïve Bayes, random forests (RF), and quadratic discriminant analysis in 

classifying column failure modes. ANN predictions were compared with existing predictive 

models and were found to have greater accuracy, and the ability to distinguish between shear and 

flexure-shear failure modes. Furthermore, Mangalathu et al. (2020) explored the classification of 

failure modes in RC shear walls with the application of eight machine learning models including 

four boosting methods such as adaptive boosting (AdaBoost), extreme gradient boosting 

(XGBoost), light gradient boosting machine (LightGBM), and categorical boosting (CatBoost). 

They suggested Random Forest as the suitable ML technique for predicting the shear wall failure 

mode.  

Other areas of civil engineering benefit from the computational savings that machine learning 

models can provide through metamodeling which bypasses intensive analysis that is normally 

used. Keshtegar and Nehdi (2020) utilized metamodeling via support vector regression (SVR) and 

feedforward backpropagated neural networks (FFBNN) to predict the maximum displacement of 

a carbon nanotube reinforced pipe subjected to seismic loading compared to dynamic analysis 

methods. Ghosh et al. (2013) used machine learning regression for multi-dimensional 

metamodeling of the seismic response of bridge components using techniques such as polynomial 

response surface models (PRSM), multivariate adaptive regression splines (MARS), radial basis 

function networks (RBFN), and support vector regression. Additionally, Shekhar and Ghosh 
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(2020) used metamodeling to establish a framework for the prediction of bridge life cycle cost by 

pairing fragility models with ground motion intensity and field measurable bridge parameters, 

resulting in a tool for decision makers to efficiently invest money in seismic upgrades for bridges. 

Similarly, Bandini et al. (2019) developed surrogate models using PRSMs for investigating the 

seismic vulnerability of a case study bridge in Quebec, where fragility surfaces were developed 

for bridge seismic vulnerability with varying amounts of transverse reinforcement ratios in the 

bridge pier columns. To illustrate the capabilities of data-driven machine learning studies, a 

graphical representation of how different ML techniques can be used for identifying the seismic 

performance limits of bridge piers are summarized in Figure 2.6. 

 

2.5 Summary 

It is evident that the combined hazard of aftershock sequences presents an increased vulnerability 

to both buildings and bridges alike. To the author’s knowledge, no investigations into the adequacy 

of the Canadian Highway Bridge Design Code’s seismic PBD have been performed to study the 

effects of aftershocks. As such, the merits of this study are justified in exploring the development 

of a mainshock-aftershock fragility assessment and capacity forecasting framework. Furthermore, 

the explicit capacity prediction of bridge piers following seismic events also presents the need for 

refinement, and machine learning techniques would enable a model to rapidly assess bridge 

condition, or to serve as a tool for the consideration of post-MS and post-AS capacity design. 
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Figure 2.6 Machine learning implementations for bridge pier seismic performance identification  
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Chapter 3 Analytical Modeling and Analysis of RC Bridge Pier under 

Mainshock-Aftershock Ground motions 
3.1 General 

The advances in the capabilities of finite element modelling have enabled researchers to capture 

complex nonlinear relationships of reinforced concrete structural systems with a reduced need for 

expensive and time-consuming experimental data. To establish a deeper understanding in 

structural damage and post-earthquake capacities, an array of bridge piers having different material 

properties, fundamental periods of vibration, and ductile detailing are considered in this study. The 

bridge piers are assumed to be part of a major route bridge located in Vancouver, British Columbia 

and have been designed following the performance-based seismic design requirements as outlined 

in the Canadian Highway Bridge Design Code. A fiber modelling approach which considers 

material and geometrical nonlinearity is realized through the finite element framework, OpenSEES 

(Mazzoni et al. 2006). The response of the columns is examined under monotonic and dynamic 

earthquake loading, where a strain-based degradation scheme is introduced. To investigate the 

seismic responses of the prototype bridge piers, 50 as-recorded earthquake excitations at 475- and 

2475-year return periods which include aftershocks, are utilized to evaluate the likelihood of 

exceeding the seismic capacity of the bridge piers when subjected to aftershocks. 

3.2 Design of prototype bridge piers 

The performance of circular bridge pier prototypes representative of those commonly found in 

highway bridges throughout Canada have been detailed in the following sections. The bridge piers 

are assumed to be part of a multi-span major route bridge located in Vancouver, British Columbia 

and have been designed following the performance-based seismic design requirements as outlined 

in the 2019 edition of the CHBDC (CSA S6-19) (National Research Council of Canada 2019). A 

site-specific soil condition for the prototype bridge is chosen as soil class-D, which the CHBDC 

identifies as stiff soil having average shear wave velocity: 180 < �̅�𝑠30< 360 m/s. The response 

spectra corresponding to different return periods in soil class-D is developed and shown in Figure 

3.1. 
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Figure 3.1 Response spectrum of bridge site location in Vancouver BC, soil class-D 

 

Performance levels for three different categories of bridges, such as Lifeline, Major Route, and 

Other are defined in S6-19. Table 3.1 summarizes the performance levels defined by CHBDC as 

a combination of service and damage levels to be achieved under different intensities of ground 

motion corresponding to 475, 975, and 2475-year return periods. Since the bridge piers are part of 

a major route bridge, they must satisfy the performance requirements for the service and damage 

levels for 475- and 2475-year return period earthquakes. 

Table 3.1 Performance levels for different bridge types (CSA-S6-19) 

Ground motion  

probability of exceedance 

per 50 years (return period) 

Lifeline 

bridges 

Major route 

bridges 
Other bridges 

Service Damage Service Damage Service Damage 

10% (475 years) — — Immediate Minimal 
Service 

limited 
Repairable 

5% (975 years) Immediate Minimal — — — — 

2% (2475 years) 
Service 

limited 
Repairable 

Service 

disruption 
Extensive 

Life 

safety 

Probable 

replacement 
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The performance levels defined by CHBDC relate to a set of performance criteria that describe 

acceptable damage levels which relate to the structure’s usability following an earthquake. In the 

context of performance-based design, performance criteria are defined in terms of material strain 

(concrete and longitudinal reinforcement strain). Additional limits on displacement or damage to 

bridge components such as main structural members, connections, bearings, joints, restrainers, and 

foundations are also specified by the CHBDC; however, the focus of this study is the bridge pier 

only, whose performance criteria have been defined in Table 3.2, where the fiber section steel (𝜀𝑠) 

and concrete (𝜀𝑐) material strains are observed.  

Table 3.2 Performance criteria for reinforced concrete bridges (CSA-S6-19) 

Damage 

Level 

Material 

Observed 

Performance 

Criteria 

Minimal 
concrete 𝜀𝑐 ≤ 0.006 

reinforcing steel 𝜀𝑠 ≤ 0.010 

Repairable reinforcing steel 𝜀𝑠 ≤ 0.025 

Extensive 
concrete Core concrete not permitted to exceed 80% of ultimate strain 

reinforcing steel 𝜀𝑠 ≤ 0.050 

Probable 

replacement 

concrete Core crushing not permitted to occur 

reinforcing steel 𝜀𝑠 ≤ 0.075 

 

The column test matrix which makes up the analytical experiments of this research consists of 20 

columns. The first 10 columns, denoted as C1 through C10 are designed using the current PBD 

requirements. In the preliminary design of these columns, diameter, aspect ratios, axial load ratios, 

and concrete compressive strength are defined to represent a large range of typical configurations. 

Reinforcing steel detailing is designed preliminarily in order to satisfy CHBDC clauses 4.7.5.2.5 

and 8.8.5.8: 

Minimum ratio of spiral reinforcement 

(CSA S6-19 Cl.4.7.5.2.5) 

 

𝜌𝑠 ≥ 0.12
𝑓𝑐 ′

𝑓𝑦

[0.5 +
1.25𝑃𝑓

𝛷𝑐𝑓𝑐
′𝐴𝑔

] 
(1) 



26 
 

Minimum longitudinal reinforcement 

(CSA S6-19 Cl.8.8.5.8) 

 

As𝑓𝑦

𝐴𝑔𝑓𝑐
′

+
𝐴𝑝𝑠𝑓𝑝𝑢

𝐴𝑔𝑓𝑐
′

≥ 0.135 
(2) 

Where fc’ is the column concrete compressive strength, fy is the yield strength of the reinforcement, 

Pf is the axial load, Φc is the concrete resistance factor, Ag is the gross area of the column section, 

As is the cumulative sectional area of longitudinal reinforcement, Aps is the cumulative sectional 

area of prestressed longitudinal reinforcement, and fpu is the yield strength of the prestressed 

longitudinal reinforcement. 

Furthermore, an iterative design procedure is implemented where the steel detailing is the design 

variable. Inelastic static pushover analysis (SPO) is performed where steel and concrete material 

strains are collected, and the longitudinal reinforcement ratio are incrementally adjusted until the 

bridge pier meets the performance criteria for minimal and extensive damage levels. Using the 

defined axial load ratio to determine the pier’s lumped mass, m, and moment–curvature analysis 

to determined effective stiffness of the bridge pier, k, the fundamental period of the bridge pier is 

calculated using the following equation:  

𝑇 = 2𝜋√
𝑚

𝑘
 (3) 

Where the corresponding fundamental period is used to determine design spectral acceleration Sa 

of the bridge pier using the response spectra in Figure 3.1. Two design spectral displacements are 

determined for each of the earthquake return periods (i.e., 475-year and 2475-year) using the 

following equation provided in Cl. 4.4.3.4 of the CHBDC: 

𝑆𝑑(𝑇) = 250 ∗ 𝑆𝑎(𝑇) ∗ 𝑇2 (4) 

The spectral displacement values correspond to the displacement limits of the bridge pier during 

SPO analysis, in which the performance criteria must not occur before the Sd limits to satisfy 

design conditions. Figure 3.2 has illustrated the capacity curve for the first column which was 

designed in this study. The two shaded areas represent the minimal and extensive limits, and as 

can be seen in the figure, all performance limits occur at larger displacement values which 

demonstrates a PBD-compliant design. 
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Figure 3.2 Column C1 static pushover capacity curve 

 

The final designs for columns C1 – C10 have been summarized in Table 3.3. Final designs for 

columns C11 - C20 have been summarized in Table 3.4 and represent existing bridge piers with 

deficient transverse reinforcement such as the detailing found in Canadian bridges constructed 

before 2000. Although aging bridge piers would also have reduced longitudinal reinforcement and 

lower grade rebars, these parameters have been maintained to compare the effects of transverse 

reinforcement detailing only. 
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Table 3.3 Final design parameters for PBD-compliant bridge piers  

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

Diameter (mm) 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 

Aspect Ratio 5 7 9 5 7 9 5 7 9 7 

Axial Load Ratio (%) 10 10 10 10 10 10 10 10 10 12.5 

Fy, Steel (MPa) 400 400 400 400 400 400 400 400 400 400 

fc', Concrete (MPa) 35 35 35 45 45 45 55 55 55 45 

Longitudinal 

Reinforcement (%) 1.188 1.188 1.188 1.584 1.584 1.584 1.901 1.901 1.901 1.584 

Longitudinal Rebar  30M 30M 30M 30M 30M 30M 30M 30M 30M 30M 

Spiral Spacing (mm) 65 65 65 50 50 50 65 65 65 50 

Transverse 

Reinforcement (%) 0.825 0.825 0.825 1.072 1.072 1.072 1.225 1.225 1.225 1.072 

Spiral size 15M 15M 15M 15M 15M 15M 20M 20M 20M 15M 

 

Table 3.4 Final design parameters for PBD-deficient bridge piers  

 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 

Diameter (mm) 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 

Aspect Ratio 5 7 9 5 7 9 5 7 9 7 

Axial Load Ratio (%) 10 10 10 10 10 10 10 10 10 12.5 

Fy, Steel (MPa) 400 400 400 400 400 400 400 400 400 400 

fc', Concrete (MPa) 30 30 30 35 35 35 40 40 40 35 

Longitudinal 

Reinforcement (%) 1.188 1.188 1.188 1.584 1.584 1.584 1.901 1.901 1.901 1.584 

Longitudinal Rebar  30M 30M 30M 30M 30M 30M 30M 30M 30M 30M 

Spiral Spacing (mm) 100 100 100 125 125 125 150 150 150 125 

Transverse 

Reinforcement (%) 0.536 0.536 0.536 0.429 0.429 0.429 0.531 0.531 0.531 0.429 

Spiral size 15M 15M 15M 15M 15M 15M 20M 20M 20M 15M 
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3.3 Analytical model development 

The seismic performance of the studied bridge piers is realized through the use of a 2D fiber based 

finite element modelling approach using OpenSEES (Mazzoni et al. 2006). Figure 3.3 details the 

fiber section implementation strategy of the pier, in which cover concrete and core concrete are 

modelled separately, and each individual longitudinal rebar is modelled as a single fiber. 

 

Figure 3.3 Typical single column bridge pier section and fiber discretization 

 

Transverse reinforcement is not typically modeled explicitly in fiber-based modelling strategies. 

As such, confinement effects brought about by the transverse reinforcement are calculated and 

implemented in the core concrete material properties through confinement factors. The confined 

concrete formulae developed by Mander et al. (1988) are adopted herein, where the effective lateral 

pressure in circular columns is given in the form of: 

fl
′ = 𝑓𝑙𝑘𝑒 (5) 

Where fl is the pressure exerted by the transverse reinforcement which confines the core concrete, 

and ke is the confinement effectiveness coefficient. Many additional formulas which capture the 

confinement effects are provided in the aforementioned model (Mander et al. 1988), however, for 

brevity are omitted. 



30 
 

3.3.1 Material and section properties 

Nonlinear uniaxial materials which constitute the aforementioned core, confined concrete, and 

reinforcing steel are applied using existing material models found in the OpenSEES material 

library. Reinforced concrete behavior is modeled using the ‘concrete07’ material model, which is 

based on an implementation of the original Chang and Mander concrete model (1994) with 

simplified unloading and reloading branches. The hysteretic rules for the concrete model have 

been developed based on statistical regression of previous cyclic compression experiments 

performed by a number of researchers. Figure 3.4 shows the material stress strain response to 

cyclic loading for confined concrete, concrete07 with nominal compressive strength, fc’ = 35 MPa. 

Unconfined concrete material properties for establishing the material model are calculated using 

the suggested values which are recommended in the OpenSEES user manual with the following 

equations: 

𝐸𝑐 = 8200 ∗ (𝑓𝑐0
′ )

3
8⁄  (6) 

𝑓𝑡 = 0.62 ∗ √𝑓𝑐0
′  (7) 

𝜀𝑡 =
2 ∗ 𝑓𝑡

𝐸𝑐
 (8) 

𝑥𝑝 = 2 (9) 

𝑥𝑛 = 2.3 (10) 

𝑟 =
𝑓𝑐0

′

5.2
− 1.9 (11) 

Where Ec is the initial elastic modulus, fc0 is the cylinder compressive strength of concrete, ft is the 

concrete tensile strength, εt is the concrete strain at maximum tensile strength, xp and xn are non-

dimensional terms which define the strain at which straight line descent begins in tension and 

compression, and r is the parameter which controls the nonlinear descending branch. Similarly, 

confined concrete parameters are determined using the Mander et al. (1988) model, and modulus 

and tension properties are again calculated using equations (6),(7), and (8). 



31 
 

 

Figure 3.4 Uniaxial cyclic behaviour of implemented Concrete07 model 

 

Reinforcing steel is modeled using the ‘steel02’ material provided by OpenSEES which uses the  

Menegotto-Pinto steel constitutive model (1973) which was later extended by Filippou et al. 

(1983) to include isotropic strain hardening. Furthermore, an OpenSEES material wrapper object, 

‘fatigue’ has been merged with the steel02 model to include low-cycle fatigue based on Miner’s 

rule linear strain accumulation which is implemented using a rainflow cycle counting algorithm. 

The fatigue material has the additional option to define maximum and minimum strain limits which 

have also been enabled and defined at εs = 0.10 to model longitudinal bar rupture. 
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Figure 3.5 Uniaxial cyclic behaviour of implemented Steel02 model 

 

The fiber sections are aggregated into a single material section, which is then used to model the 

pier in the finite element model space using a beam-column element. Currently, modelling 

reinforced concrete structures in OpenSEES is typically achieved through the use of fiber-based 

nonlinear beam column elements (BCE). Two modeling approaches exist; one which employs 

displacement-based beam column elements using the ‘dispBeamColumn’ command, and the other 

using force-based beam column elements via ‘forceBeamColumn’. The calculation strategies used 

by the OpenSEES analysis object differ, and as such it is common to see a single element with 5-

7 integration points being used in the case of force-based elements, and 3-5 separate elements for 

displacement-based BCEs to achieve comparable performance. In force-based BCEs, the 

predefined fiber sections are placed at discrete locations along the element dependent on the 

integration scheme specified, though Gauss-Lobatto is the default and most commonly used (Scott 

2011). In this research, a modified force-based BCE is used through the command 

‘beamWithHinges’ (BWH). The BWH element implementation is shown in Figure 3.6 and is 

comprised of two modified Gauss-Radau plastic hinge integration regions applied to the beam 
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ends at lengths of 4LpI and 4LpJ. Additionally, a distinct two-point Gauss integration region for 

the interior section is implemented for a total of six element integration points.  

 

 

Figure 3.6 BeamWithHinges element implementation 

 

Not only is the BWH element shown to provide more accurate moment curvature response (Scott 

and Fenves 2006), but there is an advantage to specifying different material section properties at 

the plastic hinge (PH) locations and the interior, as is the case for increased transverse 

reinforcement in the PH region. Plastic hinge length Lp is calculated based on the equation 

determined by Paulay and Priestley (1992) which is approximated as: 

𝐿𝑝 = 0.08𝐿 + 0.022𝑑𝑏𝑓𝑦 (12) 

where L is the length of the pier in mm, db represents the longitudinal bar diameter, and fy is the 

yield strength of the rebar in MPa.  

Node and element responses are obtained on-demand in OpenSEES, and in the case of fiber 

sections, are outputted as one fiber response per recorder. As such, the model has been 

programmed to output all fiber responses for the cover concrete and reinforcing fibers. Core 

concrete responses have been obtained from the outermost fibers only, as this is where the largest 

strains are to occur, and utilising the entirety of the fibers would prove to be an unnecessary 
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computational expense. Figure 3.7 illustrates the fiber section responses which are recorded as the 

shaded portions of the figure. 

 

Figure 3.7 Fiber section stress-strain recorder placement 

 

3.3.2 Validation 

The developed nonlinear model exists in abstract space until its performance can be deemed 

accurate in simulating real world conditions. Fortunately, many research efforts from 1980-2000 

focused on the performance of real bridge pier columns and have made their hysteretic responses 

available for validation efforts. One such study by Lehman and Moehle (2000) explored the 

performance of five concrete bridge columns with varying amounts of longitudinal steel and aspect 

ratios subjected to reversed cyclic loading. Column 415 has been selected to be modeled with the 

same material and geometric properties in order to validate the proposed OpenSEES model.  
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Figure 3.8 OpenSEES model column cyclic response compared to column 415 (Lehman and 

Moehle 2000) 

From the above figure, it can be seen that the developed OpenSEES model achieves good 

agreement with the recorded experimental data. The developed model captures reinforced concrete 

hysteresis well during low displacement, and reasonably well during high energy dissipation 

cycles. 

3.4 Strain-based strength degradation scheme  

Strength and stiffness deterioration of materials is more difficult to capture in OpenSEES. 

Typically, material pinching effects are applied using one of several implementations of the Ibarra-

Medina-Krawinkler Deterioration Model (2005). There are several studies which have used this 

model; however, it is necessary to calibrate all parameters for each configuration, which would 

pose a challenge for a large column test matrix. Instead, a simplified strain-based strength 

modification scheme is applied to the fiber elements located in the plastic hinge region of the 
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bridge pier at post-mainshock and post-aftershock column states. Recent studies which have 

evaluated the residual seismic capacity of post-earthquake RC column members in structures, have 

also assigned reduction factors which are associated with various damage levels. Di Ludovico et 

al. (2013) assembled and explored a database of cyclic tests of 23 flexure or flexure-shear failure 

dominated rectangular RC columns with deformed rebars, and 13 with smooth bars. Using the 

experimental data, modification factors for strength, stiffness, and residual drift were proposed for 

modifying the plastic hinges of RC columns which have exceeded elastic limits. Similarly, Chiu 

et al. (2019) performed experimental analysis of  6 column specimens, in which flexure, flexure-

shear, and shear failure modes were observed and used to calibrate a residual seismic capacity 

model for which strength, stiffness, and energy dissipation are modified. The viability of the 

method was demonstrated by performing a post-earthquake assessment of a school building which 

was damaged during an earthquake in Taiwan.   

Similarly, a reduction factor scheme is developed and suggested in this study for the sectional 

strength modification of concrete and reinforcing steel fibers in the bridge pier’s plastic hinge 

region. Longitudinal steel damage levels have been proposed at five key strain damage levels as 

obtained from the appropriate literature. The initial damage state implemented for steel 

corresponding to εs = 0.002 is defined based on the commonly used 0.2% yield offset strain. 

Goodnight et al. (2015) performed large scale experiments of 30 bridge pier columns, where a 

high-fidelity 3D optical position measurement system to record column strain data was 

implemented. A statistical analysis of the obtained results during experimental testing correlated 

longitudinal rebar strain corresponding to 1mm and 2mm crack widths as εs = 0.010 and εs = 0.020 

respectively. Furthermore, Goodnight et al. (2016) developed empirical formulations for bar 

buckling which were compared against the existing drift-based methods proposed by Berry and 

Eberhard (2003) and strain-based methods by Feng et al. (2015). Using the combined datasets from 

Goodnight et al. (2015) and Berry and Eberhard (2003) study, a modified approach for predicting 

bar buckling limit states was developed, and shown to produce more accurate peak tensile strain 

estimates when predicting bar buckling. Tensile strain corresponding to bar buckling is calculated 

as: 

𝜀𝑏𝑏 = 0.03 +  700𝜌𝑠

𝑓𝑦ℎ

𝐸𝑠
− 0.1

𝑃

𝑓𝑐
′𝐴𝑔

 (13) 



37 
 

Where ρs is the transverse volumetric steel ratio, fyh is the yield strain of transverse steel, Es is the 

corresponding transverse steel modulus of elasticity, and 𝑃 𝑓𝑐
′𝐴𝑔⁄  is the axial load ratio.  

Table 3.5 Suggested reinforcing steel reduction factors 

Damage 

Level 

Performance 

Criteria 

(rebar strain) 

Damage 

State 

Reduction 

Factor 

0 No Damage  DS-0 1 

I 0.002  DS-1 0.8 

II 0.010  DS-2 0.6 

III 0.020  DS-3 0.4 

IV εbb  DS-4 0.2 

V 0.100  DS-5 0 

 

Concrete material damage states have been proposed at four strain levels. The initial damage state 

implemented for concrete corresponding to εc = 0.004 is defined based on the serviceability 

concrete compression strain (Kowalsky 2000). Damage level II εc = 0.006 is adopted by S6-19 for 

minimal damage performance as the strain corresponds to the onset of cover concrete spalling 

(Priestley et al. 1996) . Furthermore, concrete core crushing strain is approximated at εc = 0.015, 

and ultimate concrete compressive strain is approximated using the following formula (Priestley 

et al. 1996) 

𝜀𝑐𝑢 = 0.004 +  
1.4𝜌𝑠𝑓𝑦ℎ𝜀𝑠𝑢

𝑓𝑐
′⁄  (14) 

Where ρs is the transverse volumetric steel ratio, fyh is the yield strain of transverse steel, εsu is the 

ultimate steel tensile strain, and fc’ is the concrete compressive strength.  
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Table 3.6 Suggested reinforced concrete reduction factors 

Damage 

Level 

Performance 

Criteria 

(concrete strain) 

Damage 

State 

Reduction 

Factor 

0 No Damage  DS-0 1 

I 0.004  DS-1 0.75 

II 0.006  DS-2 0.50 

III 0.015  DS-3 0.25 

IV εcu   DS-4 0 

 

Regression functions are proposed for the strength reduction parameters which are applied to the 

concrete and reinforcing steel fibers located in the plastic hinge region of the bridge pier. Figure 

3.9 and Figure 3.10 represent the 3rd order polynomial line fitted to the damage level strains.  

Floating point values based on maximum concrete compressive and rebar tensile strains which are 

obtained from MS-only and MS+AS analysis are determined and applied to the material strength 

properties. Concrete compressive strength, fc’ is multiplied by the reduction factor, and both 

confined and unconfined material properties are recalculated based on the reduced strength. 

Similarly, reinforcing steel fy, is also multiplied by the steel reduction factor. It should be 

mentioned that material reduction parameters are applied to the intact properties only, i.e. 75% and 

60% reduction factors determined for post-MS and post-AS states respectively are exclusively 

applied to the intact material properties and do not “compound” for a total reduction of 45%.  
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Figure 3.9 Concrete material property reduction curve 

 

 

Figure 3.10 Reinforcing steel material property reduction curve 
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To further illustrate the effect of the material property reduction values, the individual uniaxial 

material models have been plotted again in Figure 3.11, for the intact and two reduced strength 

states. The different behaviour of the material reductions can be noticed in the figure, where the 

concrete strength reduction is applied to the compressive strength, fc’ and the remaining properties 

have been recalculated, resulting in the compressive envelope being shortened while the tensile 

strength remains relatively unchanged. In the case of the steel material, the reduction parameter is 

applied to the modulus of elasticity, Es which results in an envelope which is shifted and produces 

lower peak compressive and tensile strengths. 

 

Figure 3.11 Effect of strength reduction for (a) Concrete07 and (b) Steel02 uniaxial materials 

 

3.5 Ground motion suite 

Mainshock-Aftershock ground motion records are selected for assessing the seismic performance 

of the bridge pier components of a multi-span highway bridge in Vancouver, British Columbia. 

Each ground motion consists of a mainshock and aftershock(s), such that the effects due to 

mainshock-aftershock sequences rather than conventional mainshock-only records, can be 

investigated using the selected records. Figure 2.2 illustrates a typical MS-AS ground motion 
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record. The record selection procedure is based on the multiple conditional mean spectra (CMS) 

(Baker 2011; Goda and Atkinson 2011), where separate target response spectra are developed for 

earthquakes having distinct record characteristics. For the seismicity in Vancouver, consideration 

of shallow crustal, deep inslab, and mega-thrust Cascadia subduction events is important because 

they have very different event and ground motion characteristics due to different source and path 

effects. The multiple CMS-based record selection can take into account such physical 

characteristics and their relative contributions to overall seismic hazard. To define the CMS for 

different earthquake types, regional seismic hazard information on dominant scenarios is required. 

This information is obtained from detailed probabilistic seismic hazard analysis (PSHA) for typical 

sites in Vancouver (Atkinson and Goda 2011).  

The multiple CMS-based record selection is carried out by following the same procedures 

described in Tesfamariam et al. (2015) and Tesfamariam and Goda (2015). The target CMS are 

developed for crustal, interface, and inslab earthquakes, based on full PSHA results. The site of 

interest is downtown Vancouver, and its surface soil is classified as site class D. The PSHA is 

conducted based on the updated regional seismic hazard model by Atkinson and Goda (2011). 

Figure 3.12 and Figure 3.13 show the uniform hazard spectrum (UHS) and seismic deaggregation 

result at the return period of 475-year and 2475-year return periods, respectively. Seismic 

deaggregation is based on spectral acceleration at 1.0 s. To develop CMS for different earthquake 

types, mean record characteristics for individual earthquake types are obtained from the PSHA 

results.  
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Figure 3.12 Uniform hazard spectrum and conditional mean spectra for crustal, interface, and 

inslab events in Vancouver (site class D; return period of 475 years), and seismic deaggregation 

for spectral acceleration at 1.0 s in Vancouver (site class D; return period of 475 years) 

 

Figure 3.13 Uniform hazard spectrum and conditional mean spectra for crustal, interface, and 

inslab events in Vancouver (site class D; return period of 2475 years), and seismic deaggregation 

for spectral acceleration at 1.0 s in Vancouver (site class D; return period of 2475 years) 
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The record database is built from an extended dataset of real mainshock-aftershock sequences; it 

has been developed by combing the NGA database (Goda and Taylor, 2012) with the updated 

version of the KKiKSK database (Goda, 2012; Tesfamariam and Goda, 2015). The number of 

available mainshock-aftershock sequences is 606; among them, there are 197 crustal earthquakes, 

340 interface earthquakes, and 69 inslab earthquakes. The interface events are from the 2003 

Tokachi-oki earthquake and the 2011 Tohoku earthquake which have similar event characteristics 

as the expected Cascadia subduction earthquake. 

Using the target CMS, a set of ground motion records are selected by comparing response spectra 

of candidate records with the target spectra. The total number of MS-AS records is set to 50 with 

an even distribution of earthquake type representation selected to include crustal, interface, and 

inslab earthquakes. Since MS-AS records are multicomponent ground motions, the response 

spectra is defined as the geometric mean of the two horizontal components and the target CMS is 

computed for the MS portion of the MS-AS sequences. The vibration period range for the spectral 

matching is considered from 0.5 T1 to 2.0 T1, which is inclusive of the major vibration periods of 

the bridge piers studied. Furthermore, the response spectra of the selected records and the target 

CMS are similar for the crustal and interface records; for inslab records, the selected records 

contain richer short-period spectral content than the target spectra. Given the availability of ground 

motion records and the size of ground motion records (i.e., 16-17 for each earthquake type), 

matching of the candidate response spectra with the target is deemed to be adequate.  

Figure 3.14 shows the magnitude-distance distribution of the selected earthquake records where 

record characteristics for mainshocks and major aftershocks are included. For clarification, major 

aftershocks are the single largest magnitude aftershock in the case of MS-AS sequences which 

contain multiple aftershocks. Finally, Figure 3.15 compares duration metrics such as the duration-

Arias intensity (AI) plot and the duration-cumulative absolute velocity (CAV) plot for the different 

earthquake types. Furthermore, Figure 3.15(b) demonstrates the long duration effects of the 

interface records which have larger CAV values than the crustal and inslab records. 
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Figure 3.14 Magnitude-distance distribution of mainshocks and major aftershocks of the selected 

ground motion sequences. 

 

Figure 3.15 Duration-Arias intensity distribution (a) and duration-cumulative absolute velocity 

distribution (b) of the selected (mainshock) ground motion records. 
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3.6 Static pushover and nonlinear time history analyses 

After generating the finite element models, the piers are subjected to a static analysis where the 

superstructure mass is gradually applied to the top of the column. A static pushover analysis in 

both orthogonal directions (i.e. lateral and axial) is performed for each intact column following 

gravity loading to establish intact pier capacity prior to any earthquake loading. Eigenvalue 

analysis is performed for the first mode of the column and a 5% Rayleigh damping is applied. The 

first nonlinear time history analysis is performed, in which the MS-only component of the selected 

ground motion is analysed using the Newmark average acceleration method integrator. Material 

reduction factors are calculated based on the outputted strains and are applied for the following 

post-MS pushovers to determine residual capacities. Subsequently, a second time history analysis 

is performed using the post-MS damaged model, where the aftershock component of the records 

is analysed. A final strength modification factor is determined for the post-AS damage state, and 

residual lateral and axial capacities are again determined. 

Figure 3.16 and Figure 3.17 illustrate a sample of the post-MS and post-AS residual capacity 

results obtained from the axial and lateral pushover analyses, respectively. Three additional lines 

are plotted to demonstrate 25th, median (50th), and 75th percentile ranges for the residual capacities 

in each figure. Though the data generated here is an intermediate step in preparation for the 

following chapters, it is clear that the consideration of aftershocks increases the susceptibility to 

further damage accumulation in bridge components, as can be seen by the decrease in median 

residual capacity when comparing post-MS and post-AS damage states. Furthermore, the 

divergence of the median and 25th percentile lines shown in the post-AS figures suggest that 

overall, more damage is occurring to bridge piers which remained undamaged during mainshock-

only analysis. The data generated in this chapter will be further processed in chapter 4, where it 

will be used as outputs for the data driven machine learning models, as well as in chapter 5 where 

it will make the basis of the fragility analysis of the bridges. 
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Figure 3.16 Column C1 (a) post-MS and (b) post-AS lateral capacity, analysed using 2475-year 

return period ground motions. 

 

 

Figure 3.17 Column C1 (a) post-MS and (b) post-AS axial capacity, analysed using 2475-year 

return period ground motions. 
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3.7 Summary 

This chapter provides design and modelling details which are employed in the modelling of the 

developed bridge pier test matrix in OpenSEES. An SDOF, fiber-based model is developed for 

each of the bridge piers, and is evaluated under MS-only and MS-AS time history. Material strains 

in the plastic hinge region of the column are recorded during each time history analysis and are 

used to generate an array of material strength reduction parameters. The post-MS and post-AS 

strength reductions are applied to the material models prior to the subsequent analyses. Static push 

over analyses are performed for the intact columns, as well as the damaged columns following MS 

and AS sequences in both orthogonal directions. The respective lateral and axial loading curves 

are collected for the evaluation of post-earthquake residual capacity for the piers, as implemented 

in chapter 4. The resulting strains and displacements recorded during the time history analyses 

serve as the IM’s which are used to perform fragility analysis of the piers in chapter 5. 
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Chapter 4 Post-earthquake Seismic Capacity Estimation using Machine 

Learning Techniques 
4.1 General 

Machine learning techniques are a promising computer science tool that can develop regression 

models capable of deeper understanding as compared to statistical analysis techniques which have 

been employed in past research. In this chapter, the geometrical and material properties, along with 

post earthquake capacities of the bridge pier models which were developed in the previous chapter 

are used in training multiple machine learning regression models. A common approach of using a 

train-test split is applied in this study to evaluate the performance of the proposed machine learning 

model against the test set data, which is representative of future user input data based on real world 

observations. Furthermore, a hyperparameter optimization scheme for further tuning the models is 

deployed alongside a 5-fold crossvalidation scheme which ensures that the models are not tuned 

to overfit instead. To ensure an objective comparison between the models explored, a multiple 

scorer reference index is assembled that captures both model accuracy and precision when 

assessing best model fit. The best configuration of the tuned models is then tested against a set of 

data which has been held out during the training portion and is evaluated again to determine a 

single best performing model. The proposed model allows for the rapid evaluation of a bridge 

pier’s post earthquake capacities, and can serve as a potential tool for determining rapid bridge 

repair strategies following mainshock-aftershock events, or for risk mitigation over the service life 

of such bridges by assisting in the retrofit or structural upgrade decision making process. 

4.2 Column database and pre-processing 

The accuracy of machine learning models largely depends on the data which is used to train them. 

In the context of bridge piers, there are only several material and geometrical properties which 

accurately capture seismic performance, and are easily obtainable in the case of real-world 

inspection of existing infrastructure. In studies which have observed the cyclic performance of 

reinforced concrete columns, several parameters are often used. Berry and Eberhard (2003) studied 

different parameters that affect the column seismic performance limit states such as concrete 

spalling and longitudinal bar buckling. They investigated tie spacing (s), the diameter of the 

longitudinal reinforcing bar (db), volumetric transverse reinforcement ratio (ρs), the yield stress of 

the transverse reinforcement (fys), concrete compressive strength (fc’), axial load (P), gross area of 
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the cross-section (Ag), longitudinal reinforcement ratio (ρl), yield stress of the longitudinal 

reinforcement (fy), and column length (L) and depth (D) and their interaction to find out the most 

significant variables which affect performance limit states. Berry and Eberhard (2003) identified 

axial load ratio (P/Agfc’) and column aspect ratio (L/D) as the governing parameter affecting 

concrete spalling and proposed a regression equation for predicting the drift at the onset of concrete 

spalling. For bar buckling, an effective confinement ratio (ρeff = ρsfys/fc’) was identified as an 

additional factor that affects the bar buckling limit state. On the other hand, Goodnight et al. (2015) 

identified axial load ratio (P/Agfc’), column aspect ratio (L/D), and expected yield strain of the 

transverse steel (fyh/Es) as the significant parameters affecting longitudinal bar buckling. For 

predicting column failure modes, Ma and Gong (2018) and Mangalathu and Jeon (2019) 

considered four input variables such as the aspect ratio, axial load ratio, longitudinal reinforcement 

ratio, and transverse reinforcement ratio. Based on these studies, six input parameters are 

considered as listed in Table 4.1, with the additional input of the MS-AS record PGA, which has 

been added to capture the intensity of the applied groundmotion.  

Table 4.1 Statistical ranges of bridge pier column input and output parameters 

Input Parameters Minimum Maximum Mean Std. Dev 

Axial load ratio, P/fc'Ag 0.100 0.125 0.102 0.007 

Concrete compressive strength (MPa), fc' 30.000 55.000 40.253 7.826 

Aspect ratio, L/D 5.000 9.000 7.000 1.550 

Longitudinal reinforcement ratio, ρl 1.188 1.901 1.561 0.277 

Transverse reinforcement ratio, ρs 0.429 1.225 0.768 0.300 

Peak ground acceleration (g), PGA  0.058 0.883 0.266 0.170 
     

Output Parameters       

Post-MS Lateral Capacity (%) 46.28 100.00 97.57 4.98 

Post-AS Lateral Capacity (%) 24.46 100.00 96.28 6.86 

Post-MS Axial Capacity (%) 58.46 100.00 97.94 6.29 

Post-AS Axial Capacity (%) 41.90 100.00 95.82 9.60 

 

The machine learning regression methods covered in the proceeding section are to be applied to 

the compiled database for regression of lateral and axial residual capacities. To evaluate the 

performance of the proposed regression models in predicting future data, the database is divided 
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into a training and testing set using an 80%-20% ratio, respectively. Training and testing set 

assignment is shuffled using a predefined seed for repeatability, and is scaled using a 

MinMaxScaler to boost performance in certain models trained such as ANN and K-NN. Training 

data makes up the majority of the database and is used to establish all regression models, whereas 

the testing data is held out to evaluate the accuracy of the proposed models in predicting outputs 

for new data; demonstrative of the performance expected in future model fitting with new data. 

When deployed, 100% of the data generated from this study will instead be used for training the 

proposed model, and user-input data would represent testing data. 

4.3 Machine learning regression models 

The objective of this chapter is to identify the most suitable machine learning regression technique 

for the rapid prediction of bridge pier lateral and axial capacity degradation following a mainshock-

aftershock sequence as a function of its selected input parameters. Machine learning methods 

explored in this study have been implemented using the Python programming language via Jupyter 

Notebook on a 3.30 GHz quad-core computer, achieving very fast testing execution times. As 

such, various regression methods such as decision trees (DT), K-nearest neighbors (KNN), support 

vector machines for regression (SVMR), and artificial neural networks (ANN) are explored. An 

overview of each regression algorithm is provided in the following section, along with the 

reasoning behind input parameter selection.  

4.3.1 Linear Regression  

Linear regression (LR) is the simplest and most commonly applied regression technique that 

generates a line of best fit through a specified set of points, in the form of: 

𝑦 =  𝛽𝑜  +  ∑ 𝑥𝑗𝛽𝑗

𝑝

𝑗=1

 (15) 

Where 𝑝 number of unknown 𝛽𝑗 coefficients exist for each input parameter. Coefficients 

𝛽𝑗 , 𝛽𝑘 , 𝛽𝑙 ⋯ 𝛽𝑝 are typically estimated using the least-squares method, in which the coefficients are 

selected to minimize the residual sum of squares in equation (15). 
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𝑅𝑆𝑆(𝛽)  =  ∑ (𝑦𝑖 − 𝛽𝑜 −  ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

 )

2
𝑁

𝑖=1

 (16) 

4.3.2 Ridge Regression 

Ridge regression (RR) is a shrinkage method that implements a size penalty on regression 

coefficients. Shrinkage methods retain a subset of predictors to produce a model that tends to have 

lower variance as compared to the least-squares estimator as discussed previously. Ridge 

regression penalizes the residual sum of squares as 

�̂�𝑟𝑖𝑑𝑔𝑒   =      𝛽
𝑎𝑟𝑔𝑚𝑖𝑛

{∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑖𝑗

𝑝

𝑗=1

)

2
𝑁

𝑖=1

+ 𝛼 ∑ 𝛽𝑗
2

𝑝

𝑗=1

} (17) 

Where 𝛼 is the nonzero complexity parameter that controls the amount of shrinkage. A larger 𝛼 

corresponds to a greater amount of model shrinkage and thus the models become more resistant to 

collinearity. 𝛼 values ranging from 10-6 to 106 have been explored for model hyperparameter 

tuning. Typically, a size constraint 𝑡 for inputs is also implemented in ridge regression, and 

coefficients are scaled respectively such that  

∑ 𝛽𝑗
2

𝑝

𝑗=1

≤ 𝑡 (18) 

Imposing a size constraint alleviates a problem of high variance in the correlation variables, 

however, the inputs also need to be standardized in order to ensure that solutions are equivariant. 

4.3.3 Lasso Regression 

Lasso regression is another shrinkage method that implements size penalties on regression 

coefficients, sharing many similarities to the aforementioned ridge regression model. Lasso 

regression also penalizes the residual sum of squares, instead producing nonlinear solutions in the 

𝑦𝑖 as 
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�̂�𝑙𝑎𝑠𝑠𝑜   =      𝛽
𝑎𝑟𝑔𝑚𝑖𝑛

{
1

2
∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑖𝑗

𝑝

𝑗=1

)

2
𝑁

𝑖=1

+ 𝛼 ∑|𝛽j|

𝑝

𝑗=1

} (19) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑|𝛽𝑗|

𝑝

𝑗=1

≤ 𝑡 (20) 

Where 𝛼 is the nonzero complexity parameter that instead translates each coefficient via soft 

thresholding. Again, 𝛼 values ranging from 10-6 to 106 have been explored for model 

hyperparameter tuning. 

4.3.4 K-Nearest Neighbors Regression 

K-nearest neighbors regression (KNN) is a nonparametric method that predicts a numerical target 

based on a distance function to its K-nearest neighbors. In this study’s defined search space, the 

KNN makes use of an automatic search algorithm that tests both k-d tree and ball tree search within 

the multidimensional search space. Both search algorithms are aimed at computational efficiency 

in the sphere of tree search algorithms where k-dimensional trees are less computationally 

intensive as compared to ball tree structures, albeit with lower data structure efficiency in high 

dimensional searches. For the predicted data 𝑥𝑖, the KNN identifies 𝑘 number of neighbors from 

its training data which are closest to 𝑥𝑖. Using the following Euclidian distance function, a 

weighting factor is calculated to generate the prediction:  

𝐷 =  √∑(𝑥𝑖 − 𝑦𝑖 )2

𝑘

𝑖=1

 (21) 

The choice of K has a great influence on the performance of the KNN model. Lower K values limit 

model bias and allow for higher variance, whereas high K values limit model variance and allow 

for higher bias. In this study, 𝑘 values ranging from 2 to 25 have been searched to determine 

optimal tuning. 

4.3.5 Decision Tree Regression 

Decision trees are another nonparametric regression method that operates by forming a tree-like 

network by learning simple decision rules inferred from the data features. In this study, a nonlinear 
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relationship between predictors and response warrants the use of the classification and regression 

trees (CART) algorithm by the decision tree regressor. The decision tree algorithm works to 

recursively split an input space into a number of partitions, while minimizing the impurity of 

current partitions and those ahead. Trees are initiated with a root node and using greedy splitting 

with binary operators, interior and terminal nodes are formed where each internal node has only 

one parent and two children, and each terminal node has one parent only. The decision tree 

regressor is terminated when all nodes are generated, covering all features, or reaching minimum 

node impurity decrease thresholds. Additionally, a max depth of the tree can be specified as a 

stopping or tuning parameter, though it is typically left infinite by default. Tree depths between 1 

and 10 as well as infinite have been searched in this study. Figure 4.1 illustrates the architecture 

of a generated tree structure. 

 

Figure 4.1 Decision tree layout for residual earthquake capacity predictions 

 

4.3.6 Random Forest Regression 

Random forest (RF) is an ensemble method that creates multiple parallel tree structures consisting 

of decision trees (Breiman 2001). RF implements bootstrap aggregation (bagging) and random 

feature selection which generates each tree using the bootstrap sampled versions of the training 

data. The regression model generated is the averaged regressor of each decision tree subassembly. 
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Random forests make for a powerful regression model since the relatively low bias of decision 

trees is maintained, while a common problem in decision trees, noise is reduced by averaging. A 

generalized random forests algorithm consists of the following procedure: 

For 𝑏 = 1 𝑡𝑜 𝐵 

• Select a bootstrap sample Z* from all available training data used to build each tree. 

• Grow a decision tree 𝑇𝑏 from each bootstrap sample data, by randomly selecting a portion 

(𝑚) of the variables from all available variables (𝑝) (𝑝
3⁄  is recommended) and selecting 

the best split among the data until the minimum node size is reached. 

• Output the forest ensemble {𝑇𝑏}1
𝐵 

Predictions for 𝑥 are then generated in the form of 

𝑓𝑟𝑓
𝐵 (𝑥) =

1

𝐵
∑ 𝑇𝑏(𝑥)

𝐵

𝑏=1

 (22) 

Hyperparameter tuning for the random forests regressor in this study has been carried out by 

searching max number of samples(𝑚) between 2 and 5, and number of trees in each forest between 

50 and 1000, in increments of 50. 

4.3.7 Support Vector Machines for Regression 

Support Vector Machines, while typically employed for the purpose of machine learning 

classification, are also able to perform regression when supplied training vectors 𝑥𝑖, where 𝑖 =

1, … , 𝑛 and test vectors 𝑦𝑖, each corresponding to an n-dimensional vector. Support Vector 

Machines for Regression (SVMR) operates by generating a hyperplane within the feature space 

which optimally separates two classes of data to minimize the primal problem in the following 

equation (23).  

min
1

2
𝑤𝑇𝑤 + 𝐶 ∑(𝜁𝑖 + 𝜁𝑖

∗)

𝑛

𝑖=1

 (23) 
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subject to 𝑦𝑖 − 𝑤𝑇𝜙(𝑥𝑖) − 𝑏 ≤ 𝜀 + 𝜁𝑖,

𝑤𝑇𝜙(𝑥𝑖) + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜁𝑖
∗,

𝜁𝑖 , 𝜁𝑖
∗ ≥ 0, 𝑖 = 1, . . . , 𝑛

 (24) 

In C-ε SVMR such as the one employed in this research, an ε-tube surrounds the generated 

hyperplane in which occurring samples do not penalize the model; as slack variables 𝜁𝑖, 𝜁𝑖
∗ are 

implemented to minimize 𝑤𝑇𝑤 corresponding to positive and negative deviation of the predicted 

values. The cost function, C is used to control the amount of misclassification possible, leading to 

a trade-off between model error and model complexity. SVMR hyperplanes are typically generated 

using a linear function 𝜙(𝑥𝑖); however, other functions such as polynomial, sigmoidal, and radial 

basis functions (RBF) are also available and have been explored in this research. In computing, 

the minimization function is transformed into a dual problem which is then able to be solved using 

quadratic programming. The resulting solution allows for predictions in the form of: 

∑ (𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑥𝑖, 𝑥) + 𝑏

𝑖∈𝑆𝑉

 (25) 

where 𝐾(𝑥𝑖, 𝑥) is the kernel function and 𝑏 is model bias. Several kernel function tuning 

parameters such as linear, polynomial (with degrees of 3, 4, and 5), radial basis function, and 

sigmoidal for this regressor have been searched. In addition, C values ranging from 1 to 10 and 50 

to 1000 (in increments of 50), as well as ε values ranging from 10-6 to 106 have been explored 

4.3.8 Artificial Neural Network 

Artificial neural networks are a type of nonlinear regression model which operate by emulating 

the function of neurons found in biology. Typical multilayer perceptron (MLP) (Haykin and 

Haykin 2009; Sarle 1994) neural networks are composed of an input layer, several hidden layers, 

and a single output layer. Hidden layers used are comprised of neurons that feed forward to the 

next layer using a weighting function. Each neuron in a hidden layer has the following output 

signal:  

𝑦𝑘 =  𝜑 [∑ 𝑤𝑘𝑗𝑥𝑗

𝑚

𝑗=1

+ 𝑏𝑘] (26) 
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In which 𝜑 is the neuron’s activation function; m is the number of neurons in the hidden layer; 

𝑤𝑘𝑗  are the synaptic weights; 𝑥𝑗 are the input signals; and 𝑏𝑘  is the hidden neuron bias.  

Three types of regression activation functions are explored in this chapter such as the sigmoid, 

hyperbolic tangent (tanh), and rectified linear unit (ReLU). Sigmoid and hyperbolic tangent 

functions are commonly used in single layer neural networks, however suffer from problems such 

as exploding or vanishing gradients in deeper networks. On the other hand, rectified linear 

functions lend themselves particularly well to better performance in deep learning network 

architectures (Glorot et al. 2011). 

𝜑𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑣) =  1 (1 + 𝑒−𝑣)⁄  (27) 

𝜑𝑅𝑒𝐿𝑈 (𝑣) =  𝑚𝑎𝑥 (0, 𝑣) (28) 

𝜑𝑡𝑎𝑛ℎ(𝑣) =  𝑡𝑎𝑛ℎ (𝑣) (29) 

Neural network configurations consisting of 1, 2 and 3 hidden layers, each with varying numbers 

of neurons ranging from 8 to 128 in increments of 8 have been explored using grid search for all 

three activation functions. For brevity, the three hidden layer tanh feedforward MLP with 128, 80, 

and 80 neurons respectively which was shown to be the best configuration for ANN regression in 

this study has been visualized in Figure 4.2. 

 

Figure 4.2 Artificial neural network layout for residual earthquake capacity predictions 
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4.3.9 Additional Regression Methods 

It is important to mention that due to the nature of machine learning models, variations which 

operate on similar fundamentals or with additional modifications are available to perform similar 

regression as the research in this chapter. Furthermore, it is worth noting that as machine learning 

continues to gain in popularity, more approaches are developed and made available. Consequently, 

this study has chosen the canonical variations of each of the aforementioned methods as they 

sufficiently cover all fundamental types of available ML regression methods, lend themselves to 

ease of access and have the ability to be published open source.  

4.4 Grid Search Algorithm for Hyperparameter Optimization 

There exist parameters in various models which affect the overall performance of the predictions 

generated. While it is possible to use default, recommended, or arbitrary values, there is more 

performance to be discovered by tuning these hyperparameters. Grid search algorithm (GSA) has 

been implemented to test a wide array of hyperparameters for the majority of the previously 

mentioned ML models such as RR, Lasso, K-NN, DT, RF, ANN and SVMR. The parameter spaces 

considered for the exhaustive search have been specified in the previous sections which detail each 

of the methods. Predictor performance for the selection of a single best configuration of tuning 

parameters is assessed by four commonly used metrics which are indicators of a model’s accuracy 

and precision, including Pearson’s r correlation coefficient, coefficient of determination (R2), 

symmetrical mean absolute percentage error (SMAPE), and root mean squared error (RMSE). The 

definitions for each of the metrics is as follows: 

𝑃𝑒𝑎𝑟𝑠𝑜𝑛′𝑠 𝑟 =
∑ (Y′i − Y′̅)(Yi − Y̅)𝑛

𝑖=1

√∑ (𝑌′i − 𝑌′̅)𝑛
𝑖=1 √∑ (Yi − �̅�)𝑛

𝑖=1

 (30) 

Where 𝑌′ is the actual value and 𝑌 is the corresponding prediction, and  𝑌′̅, Y̅ are their average 

values, respectively. Pearson’s r coefficient is a measure of the statistical relationship between two 

continuous variables, where values range between -1 and 1, where higher values closer to 1 signify 

a perfect linear correlation between the two variables. Furthermore, values which range between 

0.5 – 1.0 are said to have a strong statistical significance. 
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𝑅2 =  1 −
∑ (𝑌𝑖 − 𝑌′)2

𝑖

∑ (𝑌𝑖 − �̅�)2
𝑖

 (31) 

Where again 𝑌′ is the actual testing set result and 𝑌 is the corresponding regression model 

prediction. The coefficient of determination quantifies model goodness-of-fit based on the sum of 

squares method, where values closer to 1 translate to higher performance, and values below 0 

signify performance that is objectively worse than fitting the values to a horizontal line. 

𝑆𝑀𝐴𝑃𝐸 =  
100%

𝑛
∑

|𝑌𝑖 − 𝑌′𝑖|

(|𝑌𝑖| + |𝑌′𝑖| 2⁄ )

𝑛

𝑖=1

 (32) 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑌′𝑖 − 𝑌𝑖)2

𝑛

𝑖=1

 (33) 

Where 𝑌′ is the actual testing set result and 𝑌 is the corresponding regression model prediction. In 

these metrics percent model error and model deviation are quantified respectively, and as such 

better performing models will see lower error values.  

4.5 Model cross-validation, testing, and hyperparameter tuning 

One of the pitfalls which can be encountered with machine learning models is the overfitting of 

data to suggest extreme accuracies that in reality are not plausible when external data is input. A 

systemic approach is needed throughout model development in order to select the top performing 

model across multiple metrics and scenarios. Consequently, 5-fold cross-validation is performed 

during hyperparameter tuning where the training data is split into 5 partitions and the same 

configuration is trained 5 times wherein each iteration uses a different 4 of the folds to train the 

particular model configuration against the remaining fold; averaging the results from each of the 

five folds at the end. This technique of sub-sampling is employed to reduce the unwanted bias that 

tuning models evaluated to the final testing set would introduce. To evaluate the tuning 

configuration’s performance using a single metric, the scorers for each configuration are 

normalized by ascending or descending order in favour of better performance, and a weighting 

scheme of 10% Pearson’s r, 30% Coefficient of Determination, 30% SMAPE, and 30% RMSE is 

employed to define a single reference index. Models with favourable predictive capabilities are 

quantified by a high goodness of fit, by way of Pearson r and R2 values, and minimal error as 
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characterized by low model variance, displayed by SMAPE and RMSE. Table 4.2 presents the 

results of the grid search hyperparameter tuning in which the top performing configuration 

amongst all crossvalidation folds have been summarized, as the configurations presented are the 

top performers, the reference indices have been omitted.  

Table 4.2 Crossvalidation hyperparameter configurations for proposed ML models 

Model Optimal configuration 
Average 

Pearson's r 

Average 

R2 

Average 

SMAPE 

Average 

RMSE 

Linear Regression N/A 0.425 0.179 5.598 0.088 

Ridge Regression α = 10 0.428 0.181 5.557 0.088 

Lasso Regression α = 0.001 0.430 0.181 5.504 0.088 

K-Nearest Neighbours K = 25 0.591 0.291 4.790 0.084 

Decision Trees Depth = 7 0.774 0.539 3.563 0.062 

Random Forests m = 5, trees = 250 0.442 0.151 5.740 0.089 

Support Vector fx = RBF, C = 1, ε = 0.010 0.461 0.167 4.464 0.089 

Neural Network  H1 = 128, H2 = 80, H3 = 80, fx = tanh 0.554 0.301 6.015 0.094 

 

The performance metrics of all 5 folds which are evaluated during the grid search tuning phase of 

the models are averaged using equal weights to produce the above values. The advantage of this 

approach needs again be mentioned as finding an optimal model configuration which proves its 

accuracy and consistency over 5 separate folds is preferred; since recommending a model which 

‘got lucky’ during a single fold of testing is often ill-advised. Table 4.2 does not show the 

comparative reference index of the selected models amongst each other, as the goal of the GSA 

tuning phase is to determine the best performing configuration for each model. However, it is made 

clear that there is a divide in model performance which can easily be illustrated by the polar graph 

in Figure 4.3. By normalizing Pearson’s r and R2 (higher = better) and inverse normalizing SMAPE 

and RMSE (lower = better) values, it is evident that during crossvalidation the decision trees model 

fitted validation training data to test data splits with the highest accuracy and lowest variance as 

compared to the other models tested.  
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Figure 4.3 Crossvalidation reference index of optimally tuned models 

4.6 Optimal model selection and performance 

A final comparison between the testing data and the machine learning predictions generated by the 

best tuned models’ results is presented in Figure 4.4, where the vertical distance of a point from 

the red 1:1 line is the error of the specific prediction made by the proposed model and a linear 

trendline is fitted for each model’s predictions. Note that the linear trendline does not represent the 

function of the regressors, however is instead displayed to generalize the predictive capability of 

the models given new data from the testing split. As a whole, the predictions generated by the 

decision trees model show the least variance for all four outputs, and have trendlines which are 

closest to the 1:1 line. Based on this, the DT models are expected to generate predictions for each 

of the residual capacity outputs which perform very well, albeit would tend to overestimate 

residual capacity based on the vertical position of the trendline being above the 1:1 line. In the 

case of comparing residual lateral to residual axial capacity outputs, it is expected that the 

predictions generated for the axial capacity will be more accurate, as subplots (c) and (d) in Figure 

4.4 tend to have much larger variance, especially in instances of undamaged bridge piers. 

Furthermore, the advantages of the more complex ML models such as DT, ANN, KNN and SVMR 

over the simpler models such as LR, RR, and Lasso are demonstrated by Figure 4.4 wherein, the 

complex models rarely suggest residual capacities over 100%  
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Figure 4.4 Results of training and testing of proposed ML models 

 

The reference index metric is again applied to the models during the testing phase, where this time, 

model performance is normalized in order to compare performance amongst each type of model 

being explored. The performance of the predictive capabilities of the models as compared to the 

withheld test set are summarized in Table 4.3, and an additional set of polar graphs is presented in 

Figure 4.5, where the model metrics are recalculated for each individual output scenario. The same 

divide which was observed during the hyperparameter tuning is apparent in the testing set results 

once more, where the performance of the decision tree regressor is significantly improved as 

compared to the other models. The resulting metrics for the decision tree regressor describe a 

model which has both the highest overall accuracy as well as precision. A Pearson’s r correlation 

coefficient above 0.70 is typically deemed to represent data which has high statistical significance; 

and similarly, a coefficient of determination which is near 0.75 demonstrates a strong goodness-
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of-fit, especially when compared to the relative scores of the other models considered. Moreover, 

the SMAPE and RMSE values which indicate an ML model’s residual error are also the lowest of 

those compared, which suggests the proposed model is highly suitable for the purpose of this 

residual strength prediction as it is overall very robust. 

Table 4.3 Performance metrics of proposed ML models’ predictive capabilities as compared to 

test set data 

Model Pearson r R2 SMAPE RMSE 
Reference 

Index 

LR 0.403 0.153 6.002 0.091 0.073 

RR 0.403 0.162 5.935 0.091 0.085 

Lasso 0.405 0.166 5.873 0.091 0.094 

K-NN 0.575 0.277 4.896 0.083 0.331 

DT 0.864 0.736 3.284 0.048 1.000 

RF 0.400 0.121 6.464 0.093 0.000 

SVMR 0.406 0.146 4.946 0.092 0.164 

ANN 0.439 0.179 5.201 0.090 0.175 

 

The predicted test set outputs are separated and illustrated in four individual polar graphs 

summarizing performance in post-MS and post-AS lateral and axial residual capacities, 

respectively. The differences in model capability can be seen through the distribution of 

performance metrics in Figure 4.5. It can be generalized that DT, ANN, and SVMR regressors 

bring forth the best individual performance, with a distinction in DT greatly outperforming all 

models in both post-MS states, whereas the distribution of model efficiency is shifted towards 

ANN and SVMR in the lateral and axial post-AS states. While specifying four separate models for 

each predicted limit state is possible, it is not recommended and is not pursued in this study. 

Instead, the figure serves to demonstrate the relative variance in the performance of each model 

for each of the outputs. The further that the reference index is divided, the more obscured the data 

becomes as since it is normalized amongst each output in the case of this figure, the performance 

improvement among each model displayed is only relative and could be insignificant when 

compared as a whole. 
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Figure 4.5 Individual performance metrics of proposed ML models’ predictive capabilities as 

compared to test set data 

4.7 Influence of parameter inputs 

Since several variables are utilized as features in this study, it is advantageous to determine which 

features are influential in accurately predicting the post-earthquake lateral and axial load capacities 

of bridge piers. In addition to determining the best performing ML model, the importance of the 

input parameters has also been evaluated using the inbuilt scorer for feature importance. Feature 

importance describes a technique in which scores are assigned to input variables which specify the 

relative importance of each input when predictions are made. Figure 4.6 sorts and displays the 

feature importance of the selected decision tree regressor’s model inputs. Earthquake intensity, 

followed by pier aspect ratio and axial load ratio are identified as being the dominant features 

which affect seismic performance. This is to be expected as the aspect ratio determines the column 

length, and load ratio represents superstructure mass, all of which greatly influence how an 
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idealized bridge pier is expected to behave under dynamic loading. Previous research studies on 

bridge damage assessment using ML techniques (Mangalathu et al. 2019a) also concluded that the 

intensity of ground motion is the most sensitive parameter for the damage evaluation of bridges. 

However, the conclusion by Mangalathu et al. (2019) was based on damage classification of 

bridges not on evaluation of a bridge pier’s post-earthquake capacities. 

 

Figure 4.6 Relative importance factors for model input features 

4.7.1 SHAP implementation for input feature explanation 

Shapley additive explanations (SHAP) is a method which employs a coalitional game theory 

approach to explain the output of a machine learning model. In additive feature attribution 

methods, the explanation models, g(z’) are represented using a linear function of binary input 

variables in the form of: 

𝑓(𝑥) =  𝑔(z′) =  𝛷0 + ∑ 𝛷𝑖𝑧𝑖
′

𝑀

𝑖=1

 (34) 
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Where 𝑓(𝑥) is the original output of the ML model, z′ ∈ {0,1}𝑀 , M is the number of simplified 

input features, and 𝛷𝑖 is the effect coefficient which is attributed to each feature, and is also of 

𝛷𝑖 ∈ ℝ. 

While other methods such as LIME also satisfy the condition of equation (34), SHAP has the 

advantage of generating a single unique solution with the three desirable properties local accuracy, 

missingness, and consistency. Lundberg and Lee (2017) formulated the SHAP explanation model 

as: 

𝛷𝑖(𝑓, 𝑥) =  ∑
|𝑧′|! (𝑀 − |𝑧′| − 1)!

𝑀!
𝑧′⊆𝑥′

[𝑓𝑥(𝑧′) − 𝑓𝑥(𝑧′\𝑖)] (35) 

where |z'| represents the number of non-zero entries in z', and 𝑧′ ⊆ 𝑥 represents all z’ vectors where 

the nonzero entries are also a subset of the nonzero entries in x’. SHAP values are able to satisfy 

the local accuracy, missingness, and consistency properties which are detailed by Lundberg and 

Lee (2017), and are expressed as: 

𝑓𝑥(𝑧′) =  𝑓(ℎ𝑥(𝑧′)) = 𝐸[𝑓(𝑧)|𝑧𝑆] (36) 

Where S is the set of non-zero indices in z’, wherein ℎ𝑥(𝑧′) = 𝑧𝑆 is the simplified input mapping 

where zS has missing values for features not in the set S. In simpler terms, SHAP explains a model 

by decomposing each of its input parameters and explaining whether their contribution adds or 

subtracts to the model output. SHAP are used in this study to explain the predictions and 

importance of each individual input feature for the proposed Decision Tree model. This is 

demonstrated in Figure 4.7 where a summary plot for each output prediction is separately 

generated. 
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Figure 4.7 SHAP summary plots describing input feature importance in the regression of: (a) 

residual post-MS lateral capacity reduction, (b) residual post-AS lateral capacity reduction, (c) 

residual post-MS axial capacity reduction, (d) residual post-AS axial capacity reduction 

From Figure 4.7, it can be seen that the allocation of input feature importance allows for greater 

insight of model performance. Peak ground acceleration is again determined as having the highest 

influence on model output; however, with SHAP it is also evident that higher PGA values 

contribute to lower residual post-earthquake axial and lateral capacities, as was expected. 

Similarly, the effect of column aspect ratio is deemed to contribute to relatively higher residual 

capacities in cases of high values, representing taller columns with higher fundamental periods. 

Axial load ratio is also shown to have the same explanation as was inferred in the previous section; 

wherein higher axial load ratios equate to a higher mass. Of the remaining input features, 

longitudinal reinforcement ratio is consistently the least important variable in both explainers. This 

offers more insight into the formulation of the machine learning models, than it does into the 

seismic performance of the columns, since it should have been expected to influence column axial 

capacity. However, since the residual capacities output by the models are done using percent values 

instead of kilonewtons, there is little output variance to be explained by the SHAP. 

 

4.8 Summary 

This chapter presented a detailed overview of the methods selected to drive the machine learning 

framework for use in the prediction of residual bridge pier capacities following mainshock-
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aftershock sequences. Multiple techniques are selected for evaluation which cover simplistic linear 

models, shrinkage methods, nearest neighbors, decision tree methods, support vector machines, 

and neural networks. To effectively select the top performing machine learning model two 

evaluation strategies are employed, namely train-test splitting and k-fold crossvalidation. Models 

are first established and data is scaled and shuffled to ensure random sampling and better 

performance. A grid search algorithm for tuning each of the models is combined with the k-fold 

crossvalidation to determine the optimal parameter configuration for each of the ML methods 

which are being tested, using a reference index of four commonly used metrics. The tuned models’ 

predictive capabilities are analysed using the previously withheld test data to demonstrate the 

accuracy of the models in the future when faced with outside sources of data. Among the models 

evaluated, the decision tree regressor was determined to be most suitable in predicting bridge pier 

residual capacities. The associated metrics which were obtained during the test set evaluation 

suggest that the DT model has good correlation and strong statistical significance, and the lowest 

residual errors amongst the other models tested. 
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Chapter 5 Fragility Analysis of Reinforced Concrete Bridge Pier 

Subjected to Mainshock-Aftershock Sequence 

5.1 General 

Bridges play a key role in the transportation sector while serving as lifelines for the economy and 

safety of communities. The need for resilient bridges is especially important following natural 

disasters, where they serve as evacuation, aid, and supply routes to an affected area. The reliance 

on the services bridges provide is a driving force in minimizing their loss of functionality against 

seismic hazards. One approach in ensuring the uninterrupted service of bridges during earthquakes 

is the evaluation of seismic vulnerability, through the use of fragility curves. Analytical fragility 

functions serve as a tool which express the probability of a structure reaching a certain damage 

state, when subjected to an earthquake of a particular intensity. The fragility of a given structure, 

is expressed as the conditional probability of a damage state (DS) occurring given a specific 

intensity measure (IM), which can be expressed mathematically as: 

Fragility = P[𝐷𝑆|𝐼𝑀] (37) 

The objective of this chapter is to assess the fragility of the bridge piers divided into two classes 

such as piers designed using current PBD guidelines (PBD-compliant) and piers with deficient 

transverse reinforcement (PBD-deficient) to explore the additional hazard imposed by mainshock-

aftershock sequences. The analytical modelling techniques which were detailed in Chapter 3 are 

employed in performing nonlinear time history analysis for 50 mainshock-only and mainshock-

aftershock ground motions. The resulting seismic responses of the bridge piers are used in deriving 

fragility curves to evaluate the increased aftershock demand of the studied piers. 

 

5.2 Probabilistic seismic demand model 

For bridges subjected to aftershocks following an initial mainshock, the probability of additional 

damage to the already affected structure can be expected to increase. Probabilistic seismic demand 

models (PSDM) provide the basis for fragility curve development, where the conditional 

probability of damage state exceedance under a given ground motion intensity is expressed. The 
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PSDM establishes a correlation between the engineering demand parameters (EDP) and the ground 

intensity measures (IMs). In this research, the component level models are used to generate the 

analytical fragility functions using nonlinear time history analyses of models C1 to C10 and C11 

to C20, respectively. Two of the most common approaches for PSDM are the scaling approach 

(Bhuiyan and Alam 2012; Zhang and Huo 2009) and the cloud approach (Billah et al. 2013; Choi 

et al. 2004; Nielson and DesRoches 2007a; b; Ramanathan et al. 2015). In the scaling approach, 

ground motion data is scaled to determined intensity levels, via incremental dynamic analysis 

(IDA) which is performed for each increment. In contrast, the cloud approach neglects any scaling, 

and instead performs nonlinear time history analysis (NLTHA) using the as-recorded motions to 

develop the PSDM.  

In this research, the cloud method is utilised due to the quality and availability of the as-recorded 

mainshock-aftershock records which have been gathered specifically to represent the seismic 

hazards typically present in Vancouver, British Columbia. In the selected PSDM approach, 

regression analysis is performed to obtain the mean and standard deviation for the minimum and 

extensive damage states based on the power-law function (Cornell et al. 2002) which provides a 

logarithmic correlation between the EDP and selected IM in the form of: 

EDP = a(𝐼𝑀)𝑏 (38) 

The above equation can be expressed in the transformed space, where the parameter b is the slope 

and parameter ln(a) is the vertical intercept, such that a and b can be estimated through regression 

analysis of the response data provided through the NLTHA. The transformed equation is expressed 

as: 

ln(𝐸𝐷𝑃) = ln(𝑎) + b ∗ ln(𝐼𝑀) (39) 

In order to supplement additional data for the cloud approach where the peak ground acceleration 

(PGA) exceeds the maximum unscaled PGA of the selected ground motion records, additional 

entries are extrapolated using the above equation. In the development of the PSDMs, the suite of 

parameterized bridge piers are subjected to the aforementioned MS-AS groundmotion suite, with 

peak column drift demands recorded. The logarithmic standard deviation (dispersion) of the drift 

demand, βEDP|IM conditioned upon the IM is estimated using the following equation (Baker and 

Cornell 2006): 
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βEDP|IM ≅ √
∑ (ln(𝐸𝐷𝑃) − ln(𝑎 ∗ 𝐼𝑀𝑏))2𝑁

𝑖=1

𝑁 − 2
 (40) 

where N is the total number of EDP|IM data entries. The fragility curves for the different damage 

levels considered can be developed using the intensity measure and engineering demand 

parameters using equation (41) (Nielson 2005). 

P[𝐷𝑆|𝐼𝑀] = Φ [
ln(𝐼𝑀) − ln(𝐼𝑀𝑛)

𝛽𝑐𝑜𝑚𝑝

] (41) 

𝑤ℎ𝑒𝑟𝑒, ln(𝐼𝑀𝑛) =
ln(𝑆𝑐) − ln(𝑎)

𝑏
 (42) 

 

In which, Φ(∙) is the standard normal cumulative distribution function, 𝐼𝑀𝑛 is the median value of 

the intensity measure, 𝑆𝑐 is the median value for the damage states of the bridge pier, and a and b 

are the regression coefficients of the PSDM. Lastly, the dispersion component is calculated using 

equation (41) (Nielson 2005). 

𝛽𝑐𝑜𝑚𝑝 =
√βEDPIM

2 + β𝑐
2  

𝑏
 (43) 

Where βc is the dispersion value for the damage states of the bridge pier.  

5.3 Fragility Assessment of Bridge Piers Subjected to Mainshock-Aftershock Sequence 

5.3.1 Characterization of damage states 

Fragility function requires the description of damage states (DS) which reflect the element and 

system level damage quantitatively and qualitatively. An important step in generating fragility 

curves is to define a qualitative or quantitative measure of various stages of damage known as 

damage states (DS). Past researchers have considered different forms of EDPs to measure the DS 

of bridge piers such as Park and Ang damage index (Park and Ang 1985), bridge pier capacity 

demand ratio (Hwang et al. 2000), drift limits (Dutta and Mander 1999), displacement ductility 

(Alipour et al. 2013; Billah et al. 2013), curvature ductility (Nielson and DesRoches 2007b; 

Padgett and DesRoches 2009), rotational ductility (Banerjee and Chi 2013), maximum drift (Billah 
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and Alam 2018; Gardoni et al. 2003), and residual drift (Billah and Alam 2015, 2018). Some 

researchers considered material strain-based damage states (Mackie and Stojadinović 2005) and 

maximum drift corresponding to different seismic performance criteria as DS (Billah and Alam 

2016; Todorov and Billah 2021) for fragility assessment of bridge piers.  

 

A common approach to defining damage states in the seismic vulnerability assessment of 

engineering structures (Billah and Alam 2016; Billah et al. 2013; Todorov and Billah 2021) is 

accomplished using the damage levels provided in HAZUS-MH (2011). However, in order to 

provide a basis for comparison with existing CHBDC PBD guidelines, the established damage 

levels for major route bridges are used instead; namely, minimal and extensive damage states. 

Limit state capacities are derived based on the drifts obtained from static pushover analysis of the 

bridge piers corresponding to the performance levels defined in CHBDC (Table 3.2). Typically, 

DSs are linked to each bridge piers’ capacity which are characterized by the two parameters 

median, SC and dispersion, βc as shown in Eq. 37 and 38, respectively. These two parameters are 

considered to follow a lognormal distribution. However, all the limit state capacities obtained from 

pushover analyses are associated with uncertainties that are described using a lognormal standard 

deviation or dispersion (βc). The values of lognormal standard deviation or dispersion (βc) have 

been obtained following the procedure described in Nielson (2005). Table 5.1 and Table 5.2 

present the limit state capacities for the bridge piers in terms of median and dispersion values. 

Table 5.1 Limit states for PBD-compliant bridge pier fragility assessment 

 Minimal Damage  Extensive Damage 
 Sc βc  Sc βc 

Column C1 1.15 0.59  4.29 0.64 
Column C2 1.56 0.59  5.87 0.64 
Column C3 1.91 0.59  7.32 0.64 
Column C4 1.20 0.59  4.33 0.64 
Column C5 1.63 0.59  5.92 0.64 
Column C6 2.01 0.59  7.36 0.64 
Column C7 1.23 0.59  4.12 0.64 
Column C8 1.68 0.59  5.62 0.64 
Column C9 2.06 0.59  6.93 0.64 
Column C10 1.67 0.59  5.29 0.64 
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Table 5.2 Limit states for PBD-deficient bridge pier fragility assessment 

 Minimal Damage  Extensive Damage 
 Sc βc  Sc βc 

Column C11 1.16 0.59  3.51 0.64 
Column C12 1.59 0.59  4.74 0.64 
Column C13 1.95 0.59  5.79 0.64 
Column C14 1.23 0.59  2.76 0.64 
Column C15 1.68 0.59  3.73 0.64 
Column C16 2.07 0.59  4.52 0.64 
Column C17 1.27 0.59  2.87 0.64 
Column C18 1.73 0.59  3.89 0.64 
Column C19 2.13 0.59  4.72 0.64 
Column C20 1.70 0.59  3.31 0.64 

 

 

5.3.2 Development of Fragility Curves 

The formulated PSDM is used to derive the fragility curves which help express the effect of 

aftershock consideration on the seismic demand imposed on the studied bridge piers. Because of 

the efficiency, practicality, sufficiency, and hazard computability of PGA, many researchers 

(Billah et al. 2013; Padgett et al. 2008) have suggested PGA as the optimal intensity measure for 

fragility assessment of bridges and bridge piers. Accordingly, for the purpose of this study, and to 

maintain consistency with the CHBDC, PGA is selected as the optimal IM for this study. 

Furthermore, the PGA intensity measure is distinguished for both mainshock-only and mainshock-

aftershock fragility analyses. An appropriate EDP selection is a function of the structural system 

and desired performance objectives. In this study, maximum drift (MD) of the bridge pier, which 

represents different performance-based limit states as per CHBDC, is considered as the EDP.  

Nonlinear time history analyses which were carried out for each of the bridge piers for both MS-

only and MS-AS earthquake records are used to determine the maximum drift of the piers. The 

resulting maximum drift and peak ground acceleration pairs are incorporated into a PSDM which 

establishes a linear regression of the pair in the log-transformed space for each of the ground 

motions considered. Figure 5.1 shows the PSDMs for columns C1 and C11 for MS-only and MS-

AS ground motions, where the equation for the linear regression line as well as the corresponding 

R2 value are also shown. The corresponding R2 values of the PSDMs show a weak correlation, 
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which is in part due to the generally low number of EDP-IM pairs considered. It is commonplace 

to simply use more ground motions or to perform multiple NLTHAs with scaling such as 

incremental dynamic analysis (IDA) in order to generate more points for this approach, however, 

due to the large number of columns considered in this study, a trade-off was made in PSDM 

correlation strength. 

 

 
Figure 5.1 PSDMs for different bridge piers subjected to: (a) column C1 subjected to MS-only 

ground motion, (b) column C1 subjected to MS-AS ground motion, (c) column C11 subjected to 

MS-only ground motion, (d) column C11 subjected to MS-AS ground motion 
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Peak responses are determined from each of the analysis results and a regression analysis is carried 

out to estimate a, b, and βEDP|IM. Table 5.3 and Table 5.4 detail the regression parameters from 

equations (38) and (39) for each of the studied bridge piers in MS-only and MS-AS scenarios. It 

can be seen that an increase in the regression parameters a and b is evident when comparing MS-

only to MS-AS PSDMs, as well as the comparison between the two classes of bridge piers (i.e., 

C1 compared to C11). These differences correlate to an increase in median seismic demand when 

considering aftershock effects, or subjecting a bridge pier with deficient transverse reinforcement 

to the same set of hazards. On the other hand, the dispersion parameter βEDP|IM tends to decrease 

for the same scenarios, this however only suggests a stronger correlation of the estimated a and b 

values.  

Table 5.3 PSDMs for PBD-compliant bridge piers 

 Mainshock-Only  Mainshock-Aftershock 

 a b βEDP|IM  a b βEDP|IM 
Column C1 2.523 0.965 0.448  2.785 0.755 0.414 
Column C2 1.788 0.614 0.483  2.553 0.568 0.418 
Column C3 2.393 0.663 0.322  2.701 0.514 0.339 
Column C4 2.113 0.788 0.437  2.516 0.629 0.415 
Column C5 2.629 0.783 0.377  2.988 0.623 0.386 
Column C6 1.808 0.470 0.349  2.423 0.426 0.333 
Column C7 2.055 0.739 0.442  2.558 0.597 0.430 
Column C8 2.624 0.752 0.354  3.026 0.602 0.361 
Column C9 2.420 0.612 0.309  2.874 0.505 0.322 
Column C10 2.878 0.769 0.320  2.984 0.567 0.314 
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Table 5.4 PSDMs for PBD-deficient bridge piers 

 Mainshock-Only  Mainshock-Aftershock 

 a b βEDP|IM 
 

a b βEDP|IM 
Column C11 2.579 1.038 0.423  2.860 0.836 0.387 
Column C12 2.392 0.829 0.432  2.815 0.662 0.404 
Column C13 2.428 0.772 0.400  2.370 0.511 0.352 
Column C14 1.748 0.772 0.471  2.356 0.681 0.410 
Column C15 2.172 0.724 0.389  2.685 0.608 0.399 
Column C16 2.332 0.678 0.304  2.534 0.504 0.326 
Column C17 2.151 0.872 0.426  2.424 0.674 0.399 
Column C18 2.049 0.680 0.404  2.431 0.537 0.394 
Column C19 2.116 0.636 0.351  2.340 0.442 0.312 
Column C20 2.660 0.750 0.374  2.925 0.571 0.328 

 

Using the formulation shown in Eq. (41) combined with the seismic demand and capacity models 

described in the preceding sections, fragility curves for the PBD-compliant and PBD-deficient 

bridge piers are generated. These curves provide the basis for comparing the effect of aftershocks 

as well as the bridge pier transverse reinforcement configurations on bridge pier vulnerability. 

Since it is not worthwhile to compare the fragilities of each bridge pier individually, median 

fragility curves are developed for the PBD-compliant and PBD-deficient bridge piers to facilitate 

a meaningful comparison. The median fragility curves developed for the PBD-compliant bridge 

piers (C1 - C10) are displayed in Figure 5.2, and fragility curves developed for columns C11 - C20 

which are representative of columns with inadequate transverse reinforcement are shown in Figure 

5.3. Comparison between the MS-only and MS-AS fragility curves in Figure 5.2 confirm the 

conclusions which other research has found where an increased seismic vulnerability of structures 

subjected to aftershock effects is observed. Moreover, the vertical offset between the MS-only and 

MS-AS curves for the minimal damage level demonstrate a large increase in the probability of 

damage occurrence which is especially high at lower groundmotion intensities, and later 

converging at higher intensities. A dissimilar effect is observed for the extensive damage level, 

where low intensities pose similar levels of risk, and a divergence is observed when the ground 

motion intensity increases.  

Table 5.5 summarizes the median probability of exceeding minimal and extensive damage states 

for the PBD-compliant and PBD-deficient bridge piers at peak ground acceleration of 0.20g and 
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0.37g corresponding to the design PGA for the 475- and 2475-year return period earthquake, 

respectively. For the PBD-compliant piers, a 35.7% increase in the median probability of 

exceedance is observed for minimal damage levels when aftershock effects are considered. On the 

other hand, the probability of exceedance for extensive damage levels does not increase much 

when subjected to aftershock. Overall, the increased seismic demand that aftershocks present for 

the extensive damage level is fairly insignificant, whereas the minimal damage criteria show a 

larger variance in the two curves.  This suggests that the PBD-compliant columns are fairly well 

designed for aftershock effects in the case of extensive damage levels, and are relatively under-

designed in the case of minimal damage levels. 

 

Table 5.5 Probability of exceeding different damage states at design PGAs 

 Probability of exceedance (%) 

Damage State PBD-Compliant PBD-Deficient 

MS-Minimal 28.77 18.10 
MS-AS Minimal 64.47 54.22 
MS-Extensive 0.07 0.60 
MS-AS Extensive 1.18 4.59 

 

Moreover, in the case of fragility curves for the PBD-deficient columns shown in Figure 5.3, the 

same effect of increased seismic demand is present for aftershock effects. For the PBD-deficient 

piers, a 36.1% increase in the median probability of exceedance is observed for minimal damage 

levels in Table 5.5. This increase is very similar to the PBD-compliant piers; however, the overall 

risk of exceedance is approximately 10% lower. This suggests a lower seismic demand as 

compared to the PBD-compliant piers which is contrary to what is expected, and warrants further 

investigation. For extensive damage levels, there is a much greater risk of exceedance as compared 

to the PBD-compliant columns. Despite a 4% increase in aftershock vulnerability being observed 

at the design PGA, the fragility curves in Figure 5.3 demonstrate a much greater seismic 

vulnerability at higher intensities as compared to the PBD-compliant. Overall, the increased 

seismic demand that aftershocks present for bridge piers with insufficient transverse reinforcement 

is telling of a much greater seismic risk. This suggests that there is a need for retrofitting strategies 

for much of the aging infrastructure where exposure to aftershocks is a possibility. 
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Furthermore, the large variation in fragility between the minimal and extensive damage levels is 

to be expected, but leaves more information to be desired. A design strategy that defines two 

performance criteria at extreme ends of damage levels leaves the opportunity for improvement of 

current practices. What’s more, is that the 2014 edition of the CHBDC considered an optional 

repairable damage state corresponding to 975-year return period earthquakes for major route 

bridges which has since been removed in the 2019 edition. Developing MS-AS performance limit 

states for the three damage levels would make for better performance criteria which would better 

capture the seismic risk of bridges, but could also lead to more resilient designs.  

 

Figure 5.2 Median fragility curves for PBD-compliant bridge piers subjected to mainshock-only 

and mainshock-aftershock sequences 
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Figure 5.3 Fragility curves for PBD-deficient bridge piers subjected to mainshock-only and 

mainshock-aftershock sequences 

 

5.4 Summary 

The fragility of 20 single column RC bridge piers subjected to mainshock and mainshock-

aftershock sequences were assessed in order to investigate the effects of the additional aftershocks 

on the damaged components. Additionally, the columns were divided into two classes in which 10 

were designed using current PBD guidelines found in the 2019 edition of the Canadian highway 

bridge design code, and the remaining 10 with deficient transverse reinforcement such as the 

detailing found in Canadian bridges constructed before 2000, respectively. To adequately 

investigate the seismic vulnerability of the bridge piers when exposed to aftershock effects, a suite 

of 50 ground motions is utilized to determine the seismic capacities of the piers. The resulting 

seismic performance is used in deriving fragility functions which more easily express the 

likelihood of capacity exceedance. The results obtained from both sets of fragility curves confirm 

previous studies which suggest the increased vulnerability of structures during aftershocks. 

Comparison between the fragility functions of the piers designed according to current PBD 

guidelines and piers with insufficient transverse reinforcement detailing indicate that the PBD-
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deficient piers have larger increases of aftershock damage risk as compared to the PBD-compliant 

piers. Furthermore, while the PBD-deficient piers have an overall lower risk of exceeding minimal 

damage levels, their extensive damage vulnerability is significantly increased as compared to the 

PBD-compliant piers.  
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Chapter 6 Conclusions and Future Work 
6.1 Summary  

In order to address the growing interest in developing a generation of bridge infrastructure that is 

more resilient to seismic hazards, a greater understanding needs to be developed for hazard 

interactions such as mainshock-aftershock sequences. Current bridge design practices employed 

in Canada and outlined in the Canadian Highway Bridge Design Code recognize the presence of 

aftershock effects but do not provide any explicit guidelines to practicing engineers. In order to 

help bridge this knowledge gap, this thesis focused on analytically examining a wide range of 

reinforced concrete bridge piers which represent a variety of configurations found in Canadian 

bridges. A detailed literature review on current MS-AS bridge design and fragility analysis studies 

as well as machine learning applications in the fields of structural and seismic engineering was 

performed in order to identify research gaps in adjacent studies. Finite element models were 

developed and validated for capturing the seismic performance of bridge piers, and a strain-based 

strength modification scheme was introduced for capturing post earthquake degradation effects in 

their plastic hinge regions.  

This thesis developed a machine learning post-earthquake capacity framework for the prediction 

of lateral and axial capacities of bridge piers following mainshock and aftershock sequences. This 

proposed data driven model will allow for the rapid evaluation of a bridge pier’s post-earthquake 

capacities, and can serve as a potential tool for determining rapid bridge repair strategies following 

mainshock-aftershock events, or for risk mitigation over the service life of such bridges by 

assisting in the retrofit or structural upgrade decision making process. 

Finally, a fragility assessment of the selected bridge piers is performed where the effects of 

aftershocks are examined. A comparative analysis of the aftershock effects on the fragility of piers 

designed to current performance-based design standards as well as piers with insufficient 

transverse reinforcement has been carried out using the existing CHBDC performance criteria. 

6.2 Research Limitations  

The limitations of the research presented in this thesis are as follows: 

• The effects of soil interaction were not analyzed, this can be particularly unconservative as 

soil liquefaction due to aftershocks is a concern for some soil types. 
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• Only single column, circular bridge piers were considered in this research. 

• Various longitudinal and transverse reinforcement properties (db, fy) were not considered. 

• Only PGA was considered as the IM for developing fragility models and as the ML model 

input. 

• Generating PSDMs using the cloud method with a limited number of unscaled ground 

motions can be improved upon by using a scaling approach such as IDA to generate more 

points. 

6.3 Conclusions 

A growing interest in more sophisticated seismic design methodology has introduced the concept 

of Performance Based Design to recent editions of the CHBDC, where a design must demonstrate 

that it has met performance criteria such as damage limits and service levels. Performance based 

design of bridges has the potential to be applied in many unique hazards or circumstances, but 

performance criteria must be established beforehand. While the CHBDC does acknowledge a need 

for consideration of aftershock effects, there is little guidance provided to practicing engineers. 

Therefore, there is great benefit to be realised in the development of PBD guidelines for 

mainshock-aftershock seismic sequences for scenarios in which the chance to assess and repair a 

bridge is not possible following a recent mainshock. To that effect, fiber based nonlinear modelling 

techniques with a proposed material strength degradation scheme are applied to study a set of 

bridge piers which are characteristic of a typical major route bridge located in Vancouver, British 

Columbia. A suite of 50 ground motions is selected using the conditional mean spectra method 

which consider the site location with a stiff soil class-D. Furthermore, an even distribution of 

record types such as crustal, inslab, and interface earthquakes are selected to properly capture the 

seismic hazards present in Vancouver. Nonlinear time history analysis of the unscaled ground 

motions is performed for the bridge piers considered, with MS and AS records being separated. 

The resulting seismic performance of the piers is used in developing a machine learning database 

to train and evaluate a single best model for the prediction of post earthquake residual capacities. 

Based on the results of the machine learning study, the following conclusions have been 

developed: 

• Median axial and lateral residual capacity of the bridge piers studied decreased from an 

initial post-mainshock damage state compared to subsequent post-aftershock damage state. 



83 
 

• The proposed machine learning model most suitable for the prediction of residual column 

capacity was the DecisionTreeRegressor, which obtained a high statistical significance, 

strong predictive accuracy, and overall low model error. 

• Of the studied model input parameters, peak ground acceleration (PGA) was by and large 

the most influential input parameter, which accounted for the majority of the relative 

importance in the prediction of post earthquake lateral and axial capacities.  

• The proposed machine learning model is to be made available open source for the use as a 

potential tool for practicing engineers or future research efforts where a rapid prediction in 

the residual capacity of bridge piers following an earthquake can be generated.  

The application of the machine learning framework can be especially useful in scenarios where 

the prediction of post-earthquake bridge capacity would lead to a more informed decision-making 

process when evaluating the condition. Following a recent earthquake, provided that peak ground 

acceleration is recorded, future users are be able to rapidly estimate bridge capacity, along with 

potential further capacity degradation should aftershocks occur. 

Furthermore, this research also considered an analytical fragility assessment for the studied bridge 

piers where fragility curves were developed to capture aftershock effects. Aftershock effects are 

evaluated for both piers designed using current PBD guidelines, as well as piers that have 

inadequate transverse reinforcement. Based on the results of the fragility assessment study, the 

following conclusions have been derived: 

• The developed PSDMs which incorporated aftershock effects demonstrated an increased 

fragility for all bridge piers examined, for all damage levels considered. 

• Bridge piers designed using current PBD guidelines were at an insignificant risk of 

exceeding extensive damage levels following mainshock-only and mainshock-aftershock 

excitations. 

• Aftershock effects accounted for increases of 35% and greater for both PBD-compliant and 

PBD-deficient bridge piers’ probability of exceeding minimal damage levels . 

From the above conclusions it is evident that aftershocks pose an increased risk of damage to 

bridges; however, the results of the current work seem to indicate that piers designed using the 

PBD guidelines available in the 2019 edition of the CHBDC produce adequate seismic 
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performance when subjected to 2475-year return period earthquakes, corresponding to the 

extensive damage level. On the other hand, the results of the fragility analysis indicate that 

performance criteria for the minimal damage level in the CHBDC are unconservative and lead 

to increased vulnerability.  

6.4 Recommendation for future work 

Further research is necessary to develop more comprehensive PBD guidelines for the aftershock 

consideration of bridges. This can be accomplished using a system-level bridge model which 

captures the seismic risk of multiple bridge components such as bearings and abutments, and 

effects such as soil structure interaction and girder unseating. 

Performance based plastic design, such as that discussed in Chapter 2 has not yet been applied to 

bridges, when considering aftershock effects and would generate meaningful information into the 

seismic demand increase. A further study which considers multiple bridge pier geometries is 

recommended to better understand aftershock effects. 

Improvements to the fragility analysis in this study are able to be accomplished, wherein a 

sensitivity analysis for determining the optimal IM is introduced, or a conditional model for 

aftershock performance given a mainshock is employed. Furthermore, performing IDA would 

generate more data points which would lead to stronger PSDMs. 

The opportunity to further enhance the machine learning models developed in this research is 

available, either through the synthesis of further bridge pier performance data with geometrical 

and material properties outside of those explored in this research, or by obtaining experimental 

data. Furthermore, the possibility of developing a hybrid fragility analysis using the data driven 

machine learning post-earthquake capacities is able to be explored for developing a more robust 

PSDM.  
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