
Lakehead University

Knowledge Commons,http://knowledgecommons.lakeheadu.ca

Electronic Theses and Dissertations Electronic Theses and Dissertations from 2009

2021

Adaptive steady-state analysis of

circuits using wavelets

Fedick, Kris

https://knowledgecommons.lakeheadu.ca/handle/2453/4804

Downloaded from Lakehead University, KnowledgeCommons

Adaptive Steady-State Analysis of Circuits Using Wavelets

by

Kris Fedick

A Thesis

Presented to Lakehead University

in Partial Fulfillment of the Requirement for the Degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Thunder Bay, Ontario, Canada

2021-05-02

Abstract

Kristoffer A. Fedick. Adaptive Steady-State Analysis of Circuits Using Wavelets (Under the Su-

pervision of Dr. Carlos Christoffersen).

This thesis presents research into utilizing the sparse representations of waveforms that are possible

in the wavelet domain to increase the computational efficiency of the steady-state analysis of electric

circuits. The system of non-linear equations that represent the circuits are formulated in the wavelet

domain and solved using Newton-Raphson method. Factoring the Jacobian matrix each iteration is a

major contributor to the computational time required for solving the circuit equations with Newton-

Raphson method. This research aims to reduce the computational time of factoring the Jacobian matrix

and has led to the following contributions:

1. A study on the effect of wavelet selection on the sparsity of the Jacobian matrix and nodal variable

vectors: Results show that there is no one wavelet that provides the sparsest Jacobian matrices

in every case but the Haar wavelet tends to be a good choice if Jacobian matrix sparsity is a

concern. However, the time domain provides sparser Jacobian matrices than all of the wavelets

tested. Selection of a wavelet to provide the sparsest nodal variable vectors is much more difficult

and no one wavelet stood out as providing sparser vectors than the others.

2. A method for increasing the sparsity of the Jacobian matrix via removal of low amplitude en-

tries: The threshold to determine which elements to remove is adaptively controlled during the

simulation. Results show that there can be a significant decrease in Jacobian matrix density with

adaptive thresholding but the Haar wavelet tends to provide the sparsest matrices with the test

cases. The results show that adaptive Jacobian matrix thresholding can lead to a speedup over the

non-thresholded wavelet domain steady-state analysis. In some cases, this speedup was enough to

lead to a speedup over the time domain when the non-thresholded simulations ran slower than the

time domain.

3. Two new methods that reduce the problem size by taking advantage of the sparse representations

ii

that are possible with the nodal variable vectors in the wavelet domain: A unique feature of one

of these methods is that it allows for the automatic selection of a wavelet for each nodal variable.

Results show a speedup over wavelet domain steady-state analysis for some test cases. There were

some test cases where there was a slowdown compared to wavelet domain steady-state analysis

which was caused by the computational overhead associated with these methods. With one circuit,

the number of columns in the Jacobian matrix was not reduced for most iterations. More work is

required to determine if this is due to the method used to select columns from the Jacobian matrix,

the method used to control the error introduced into the update vectors by the column reduction

method, or if there are some problems that cannot benefit from the column reduction method.

iii

Acknowledgements

I would like to thank all the wonderful people in my life. Without your love and support, this

research would not have been possible.

Kris A. Fedick

kafedick@lakeheadu.ca

iv

Contents

List of Figures viii

List of Tables xiii

List of Abbreviations xvi

List of Symbols xviii

1 Introduction 1

1.1 Motivation . 2

1.2 Contribution . 3

1.3 Methodology and Technical Challenges . 4

2 Background Concepts 7

2.1 Nodal Formulation . 7

2.2 Periodic Steady-State Time Domain (SSTD) . 11

2.3 Wavelet Domain (WD) . 13

2.3.1 Orthogonal wavelets . 16

2.3.2 Construction of wavelet systems . 19

2.3.3 Biorthogonal wavelets . 21

2.3.4 Discrete Wavelet Transform . 22

2.4 Steady-State Wavelet Analysis (SSWA) . 24

2.5 LU Decomposition of the Jacobian Matrix . 25

2.6 Chapter Summary . 29

3 Literature Review 30

3.1 Reduction of Problem Size . 30

3.2 Reduction in Size of the System of Equations . 32

v

3.3 Increasing the Sparsity of the Jacobian Matrix . 37

3.4 Review of Wavelet Selection Methods . 38

3.5 Chapter Summary . 39

4 Effect of Wavelet Selection on Periodic Steady-State Analysis 41

4.1 Adaptive Jacobian Thresholding . 41

4.2 Simulation Studies . 44

4.2.1 Inverter Chain . 47

4.2.2 Gilbert Cell . 52

4.2.3 Ultrasound Transducer Driver . 56

4.2.4 Transmission Line Circuit . 62

4.2.5 Stepped Impedance Filter Circuit . 66

4.3 Discussion . 70

4.4 Chapter Summary . 74

5 Steady-State Analysis of Electronic Circuits Using Wavelets with Adaptive

Jacobian Columns 76

5.1 Reduction of Jacobian Matrix Columns . 76

5.2 Reduced Column Steady-State Wavelet Analysis . 79

5.2.1 Simulation Studies . 83

5.2.1.1 Inverter Chain . 84

5.2.1.2 Gilbert Cell . 87

5.2.1.3 Ultrasound Transducer Driver . 90

5.2.1.4 Transmission Line Circuit . 93

5.2.1.5 Stepped Impedance Filter Circuit . 95

5.2.2 Discussion . 98

5.3 Hybrid Reduced Column Steady-State Wavelet Analysis 99

5.3.1 Simulation Studies . 102

5.3.2 Discussion . 109

5.4 Chapter Summary . 110

6 Conclusions and Future Work 112

A Derivative Estimation 117

vi

A.1 Forward Differences Method . 117

A.2 Backward Differences . 120

A.3 Central Differences . 122

A.4 Fourier (Frequency Domain) Differentiation Method 124

B Details of Derivation of Equation 5.20 127

vii

List of Figures

2.1 Simple resistive network (a) and simple RC network (b) 8

2.2 Gyrator and gyrator devices. (a) A simple gyrator, (b) an ideal voltage source, and

(c) an inductor made from a gyrator and a capacitor. Note: vin(t) is the voltage

of the ideal voltage source. 9

2.3 Simple resistive circuit with a voltage source. (a) Symbolic representation and (b)

Gyrator ideal source. 10

2.4 Simple Diode circuit model with a voltage controlled current source and a voltage

dependent capacitor. 11

2.5 Scaling coefficients of a function, f(t), with the Haar wavelet at three scales. The

resolution becomes coarser with each increase in scale. The wavelet transform

for this example was performed with the discrete wavelet transform described in

Section 2.3.4 with an f(t) discretized into 512 samples. 16

2.6 Approximation of a function, f(t), with the Haar wavelet at three scales. The

resolution becomes coarser with each increase in scale. The wavelet transform

for this example was performed with the discrete wavelet transform described in

Section 2.3.4 with an f(t) discretized into 512 samples. 17

2.7 Approximation of a function, f(t), with the Haar wavelet with both the scaling

and wavelet functions at scale j = 3. On the left are the scaling and wavelet

coefficients for V3, W3, W2, and W1. On the right are the time domain estimates

with V3 as the scaling subspace and the effect of the inclusion of each wavelet

subspace. The wavelet transform for this example was performed with the discrete

wavelet transform described in Section 2.3.4 with an f(t) discretized into 512 samples. 18

2.8 Commonly used orthogonal wavelets. Scaling function in blue and wavelet functions

in green. (a) Haar, (b) 2 vanishing moment Daubechies, (c) 8 vanishing moment

Daubechies, (d) 2 vanishing moment Symlet, (e) 8 vanishing moment Symlet, (f)

2 vanishing moment Coiflet, (g) 8 vanishing moment Coiflet, and (h) discrete Meyer. 20

viii

2.9 Commonly used biorthogonal wavelets. Scaling function in blue and wavelet func-

tions in green. The first number indicates the number of vanishing moments in the

deconstruction wavelet and the second number indicates the number of vanishing

moments in the reconstruction wavelet. (a) Bior1.1 deconstruction (equivalent to

Haar), (b) Bior1.1 reconstruction (equivalent to Haar), (c) Bior 1.3 deconstruc-

tion, (d) Bior 1.3 reconstruction, (e) Bior 2.6 deconstruction, and (f) Bior 2.6

reconstruction. 22

4.1 Inverter chain schematic. 48

4.2 Input and output waveforms for the inverter chain. Dashed line represents the

signals after they are thresholded. 48

4.3 Average Jacobian densities for the inverter chain. 49

4.4 Average v̂ densities for the inverter chain. 49

4.5 Variation of h and Jacobian density at each iteration for the inverter chain using

the Haar wavelet. 50

4.6 Number of iterations for the inverter chain. 51

4.7 Gilbert cell schematic. 53

4.8 Input and output waveforms for the Gilbert cell. Dashed line represents the signals

after they are thresholded. 53

4.9 Average Jacobian densities for the Gilbert cell. 54

4.10 Variation of h and Jacobian density at each iteration for the Gilbert cell using the

Haar wavelet. 54

4.11 Average v̂ densities for the Gilbert cell. 55

4.12 Number of iterations for the Gilbert cell. 55

4.13 Ultrasound transducer driver schematic. 57

4.14 Input and output waveforms for the ultrasound transducer driver. Dashed line

represents the signals after they are thresholded. 57

4.15 Measured vs Simulated output waveform of the ultrasound transducer driver. . . . 58

4.16 Average Jacobian densities for the ultrasound transducer driver. 58

4.17 Average v̂ densities for the ultrasound transducer driver. 59

4.18 Variation of h and Jacobian density at each iteration for the ultrasound transducer

driver using the Db4 wavelet. 59

ix

4.19 Variation of h and Jacobian density at each iteration for the ultrasound transducer

driver using the Haar wavelet. 60

4.20 Number of iterations for the ultrasound transducer driver. 60

4.21 Transmission line circuit schematic. 63

4.22 Input and output waveforms for the transmission line circuit. Dashed line repre-

sents the signals after they are thresholded. 63

4.23 Average Jacobian densities for the transmission line circuit. 64

4.24 Variation of h and Jacobian density at each iteration for the transmission line

circuit using the Haar wavelet. 64

4.25 Average v̂ densities for the transmission line circuit. 65

4.26 Number of iterations for the transmission line circuit. 65

4.27 Stepped impedance filter circuit schematic. 67

4.28 Input and output waveforms for the stepped impedance filter circuit. Dashed line

represents the signals after they are thresholded. 67

4.29 Average Jacobian densities for the stepped impedance filter circuit. 68

4.30 Average v̂ densities for the stepped impedance filter circuit. 68

4.31 Variation of h and Jacobian density at each iteration for the stepped impedance

filter circuit using the Haar wavelet. 69

4.32 Number of iterations for the stepped impedance filter circuit. 69

4.33 Difference between the average density of the L matrices with and without adaptive

Jacobian matrix thresholding. A positive number indicates that the L matrices

resulting from the non-thresholded Jacobian matrices have a higher number of

non-zero elements, on average, than the L matrices resulting from the adaptively

thresholded Jacobian matrices. 71

4.34 Difference between the average density of the U matrices with and without adaptive

Jacobian matrix thresholding. A positive number indicates that the U matrices

resulting from the non-thresholded Jacobian matrices have a higher number of

non-zero elements, on average, than the U matrices resulting from the adaptively

thresholded Jacobian matrices. 72

4.35 Effect of number of time samples on average Jacobian matrix density and average

v̂ density. 74

x

5.1 Input and output waveforms for the inverter chain. The solid line represents the

SSWA simulation results and the dashed line represents the RCSSWA simulation

results. 85

5.2 Percentage of non-zero entries in Sj∆ for each iteration for the inverter chain. 86

5.3 Average number of non-zero entries in the Jacobian matrices for the inverter chain. 86

5.4 Average density of the L1, U , and L2 matrices for the inverter chain circuit. 87

5.5 Input and output waves for the Gilbert cell. The solid line represents the SSWA

simulation results and the dashed line represents the RCSSWA simulation results. . 87

5.6 Percentage of non-zero entries in Sj∆ for each iteration for the Gilbert cell. 88

5.7 Average number of non-zero entries in the Jacobian matrices for the Gilbert cell. . 89

5.8 Average density of the L1, U , and L2 matrices for the Gilbert cell circuit. 89

5.9 Waveforms for the transducer driver circuit. The solid line represents the SSWA

simulation results and the dashed line represents the RCSSWA simulation results. . 90

5.10 Percentage of non-zero entries in Sj∆ for each iteration for the transducer driver. . . 91

5.11 Average number of non-zero entries in the Jacobian matrices for the transducer

driver. 92

5.12 Average density of the L1, U , and L2 matrices for the ultrasound transducer driver

circuit. 92

5.13 Input and output nodal variables for the transmission line circuit. The solid line

represents the SSWA simulation results and the dashed line represents the RC-

SSWA simulation results. 93

5.14 Average number of non-zero entries in the Jacobian matrices for the transmission

line circuit. 93

5.15 Percentage of non-zero entries in Sj∆ for each iteration for the transmission line

circuit. 95

5.16 Average density of the L1, U , and L2 matrices for the transmission line circuit. . . 95

5.17 Input and output nodal variables for the stepped impedance filter circuit. The

solid line represents the SSWA simulation results and the dashed line represents

the RCSSWA simulation results. 96

5.18 Percentage of non-zero entries in Sj∆ for each iteration for the stepped impedance

filter circuit. 97

xi

5.19 Average number of non-zero entries in the Jacobian matrices for the stepped

impedance filter circuit. 97

5.20 Average density of the L1, U , and L2 matrices for the stepped impedance filter

circuit. 98

5.21 Input and output nodal variable waveforms for the five test circuits with HRCSSWA

vs SSWA. 103

5.22 Average density of the L1, U , and L2 matrices for the simulations with all wavelet

families (left) and the limited list of wavelets (right). 106

5.23 Percentage of non-zero elements in Sj∆ for HRCSSWA with the full wavelet list and

limited wavelet list (limited wavelets). Also shown for comparison are the RCSSWA

Percentage of non-zero elements in Sj∆ with the wavelet that provided the lowest

average number of non-zero elements in the Jacobian matrices (green line) and the

lowest number of non-zero elements in Sj∆ (red line) for the (a) inverter chain, (b)

Gilbert cell, (c) ultrasound transducer driver, (d) transmission line circuit, and (e)

stepped impedance filter circuit. 108

xii

List of Tables

4.1 Number of scaling coefficients and wavelet subspaces for 512 time samples with

selected mother wavelets. 46

4.2 Inverter chain lowest Jacobian densities in %. Densities for the adaptive Jacobian

threshold simulations are shown in parentheses. 49

4.3 Total simulation, symbolic factorization, and numeric factorization timing data,

in seconds, for the inverter chain circuit with the Haar and Sym3 wavelets. The

per-iteration times are shown in brackets. The static threshold value was 10−9.

Green font indicates the cases where the adaptive thresholding method is faster

than the non-thresholded method while blue font indicates the cases where the

static thresholding method is faster than the adaptive thresholding method. 52

4.4 Gilbert cell lowest Jacobian densities in %. Densities for the adaptive Jacobian

threshold simulations are shown in parentheses. 54

4.5 Total simulation, symbolic factorization, and numeric factorization timing data, in

seconds, for the Gilbert cell circuit with the Haar, Db2, and Sym2 wavelets. The

per-iteration times are shown in brackets. The static threshold value was 10−8.

Green font indicates the cases where the adaptive thresholding method is faster

than the non-thresholded method while blue font indicates the cases where the

static thresholding method is faster than the adaptive thresholding method. 56

4.6 Total simulation, symbolic factorization, and numeric factorization timing data, in

seconds, for the ultrasound transducer driver circuit with the Haar, Db2, Db4, and

Sym2 wavelets. The per-iteration times are shown in brackets. The static threshold

value was 5×10−9. Green font indicates the cases where the adaptive thresholding

method is faster than the non-thresholded method while blue font indicates the

cases where the static thresholding method is faster than the adaptive thresholding

method. 61

xiii

4.7 Total simulation, symbolic factorization, and numeric factorization timing data, in

seconds, for the transmission line circuit with the Haar, Db2, and Sym2 wavelets.

The number of iterations is shown in brackets. The static threshold value was

10−8. Green font indicates the cases where the adaptive thresholding method is

faster than the non-thresholded method while blue font indicates the cases where

the static thresholding method is faster than the adaptive thresholding method. . . 66

4.8 Total simulation, symbolic factorization, and numeric factorization timing data,

in seconds, and calculated speedup for the stepped impedance filter circuit with

the Haar and Db4 wavelets. The number of iterations is shown in brackets. The

static threshold value was 10−8. Green font indicates the cases where the adaptive

thresholding method is faster than the non-thresholded method while blue font

indicates the cases where the static thresholding method is faster than the adaptive

thresholding method. 70

5.1 Total simulation, calculation, RCSSWA overhead, symbolic factorization, and nu-

meric factorization timing data and number of iterations for the inverter chain.

Green font indicates where the RCSSWA method is faster than the SSWA method. 85

5.2 Total simulation, calculation, RCSSWA overhead, symbolic factorization, and nu-

meric factorization timing data and number of iterations for the Gilbert cell. Green

font indicates where the RCSSWA method is faster than the SSWA method. 88

5.3 Total simulation, calculation, RCSSWA overhead, symbolic factorization, and nu-

meric factorization timing data and number of iterations for the transducer driver.

Green font indicates where the RCSSWA method is faster than the SSWA method. 91

5.4 Total simulation, calculation, RCSSWA overhead, symbolic factorization, and nu-

meric factorization timing data and number of iterations for the transmission line

circuit. Green font indicates where the RCSSWA method is faster than the SSWA

method. 94

5.5 Total simulation, calculation, RCSSWA overhead, symbolic factorization, and nu-

meric factorization timing data and number of iterations for the stepped impedance

filter circuit. Green font indicates where the RCSSWA method is faster than the

SSWA method. 96

5.6 Percentage of times each wavelet was selected during the simulations for the five

test circuits. Blue font indicates two most commonly used wavelets for each circuit. 104

xiv

5.7 Simulation timing data and number of iterations for for the five test circuits. Green

font indicates where the HRCSSWA method with the limited list of wavelets is

faster than the SSWA method. Blue font indicates where the RCSSWA method is

faster than HRCSSWA with the limited list of wavelets. 105

5.8 Matrix factorization timing data and number of iterations for for the five test

circuits. Green font indicates where the HRCSSWA method with the limited list of

wavelets is faster than the SSWA method. Blue font indicates where the RCSSWA

method is faster than HRCSSWA with the limited list of wavelets. 107

xv

List of Abbreviations

ACM model - Advanced compact MOSFET model

BSD - Berkeley Source Distribution

CANCER - Computer Analysis of Nonlinear Circuits, Excluding Radiation

CMOS - Complementary Metal-Oxide-Semiconductor

CPU - Central Processing Unit

DC - Direct Current

DDR3 - Double Data Rate 3

ECG - Electrocardiogram

EKV model - Enz Krummenacher Vittoz MOSFET model

EPFL-EKV - École Polytechnique Fédérale de Lausanne-Enz Krummenacher Vittoz

HB - Harmonic Balance

HP - Hewlett-Packard

HRCSSWA - Hybrid Reduced Column Steady-State Wavelet Analysis

IC - Integrated Circuit

KCL - Kirchoff’s Current Law

LHS - Left Hand Side

LTS - Long Term Support

MMIC - Monolithic Microwave Integrated Circuit

MOSFET - Metal-Oxide-Semiconductor Field-Effect Transistor

Newton method - Newton-Raphson Method

PD - Partial Discharge

PSSA - Periodic Steady-State Analysis

RCSSWA - Reduced Column Steady-State Wavelet Analysis

RHS - Right Hand Side

RMS - Root Mean Squared

xvi

S-parameters - Scattering Parameters

SDRAM - Synchronous Dynamic Random Access Memory

SPICE - Simulation Program with Integrated Circuit Emphasis

SSTD - Steady-State Time Domain

SSWA - Steady-State Wavelet Analysis

WD - Wavelet Domain

Y-parameters - Admittance Parameters

xvii

List of Symbols

� - Used to denote element-by-element division of two vectors which is known as

Hadamard division.

0̂ - A vector with NM entries with all entries set to zero.

0̂1 - A vector with m entries with all entries set to zero.

a - Threshold increase factor.

ak - Filter coefficient k for φ(t)j .

adec,k - Filter coefficient k for φdec(t)j .

arec,k - Filter coefficient k for φrec(t)j .

atol - Absolute tolerance.

A - An nr × nc matrix.

AOMP - The dictionary used to sparsely represent fOMP using the xOMP vector determined

with orthogonal matching pursuit.

A(t) - An N ×N time varying matrix that represents an electrical circuit.

α - A constant that is used to control the acceptable amplitude for ‖d̂∆‖2.

β - The selected maximum allowable value for ‖d̂∆‖2 that can be allowed to consider

∆v̂g to be a good estimate of ∆v̂j+1
∆ .

b - Threshold decrease factor.

bk - The filter coefficient k for ψ(t)j .

bdec,k - Filter coefficient k for ψdec(t)j .

brec,k - Filter coefficient k for ψrec(t)j .

cj,k - Scaling coefficient k for the jth scale.

C - IM ⊗ C. The Kronecker product of IM and C.

C - A matrix of nodal capacitances.

Cw - An M ×M matrix that represents the capacitances of a capacitor at each of the M

time samples.

xviii

d̂∆ - An NM −m length vector that represents the error between ∆v̂g and ∆v̂j+1
∆ .

‖d̂∆‖2 - The wavelet domain residual representing the error between ∆v̂g and ∆v̂j+1
∆ .

‖d̄∆‖2 - The residual associated with calculating ∆v̂j+1
∆ with HRCSSWA.

d - The right hand side vector of an equation with the form Ax = d.

dj,k - Wavelet coefficient k for the jth scale.

dp - Coefficient used in constructing Df .

D - IN ⊗D. The Kronecker product of IN and D.

D - A matrix that performs a derivative operation on a vector.

D1 - The upper portion of the partitioned D matrix. This is used with the Chebyshev

wavelet formulation.

D2 - The lower portion of the partitioned D matrix. This is used with the Chebyshev

wavelet formulation.

DB2 - The derivative matrix for the first order backward differences derivative estimate.

DB4 - The derivative matrix for the first order backward differences derivative estimate

using the two point method.

DC2 - The derivative matrix for the first order central differences derivative estimate.

DC4 - The derivative matrix for the first order central differences derivative estimate

using the four point method.

Df - A matrix that performs the derivative operation in the frequency domain.

DF2 - The derivative matrix for the first order forward differences derivative estimate.

DF4 - The derivative matrix for the first order forward differences derivative estimate

using the two point method.

Ds - An NM ×NM matrix that represents the derivative operation on nodal variable

vector v̄s. This matrix assumes an organization of nodal variables per sample.

∆t - The change in time between time samples.

∆v̄j+1 - The time domain Newton-Raphson update vector for iteration j.

∆v̂j+1 - The wavelet domain Newton-Raphson update vector for iteration j.

∆v̂j+1
∆ - A vector of all non-zero entries in ∆v̂j+1.

∆v̂j+1
∼∆ - A vector of all zero entries in ∆v̂j+1.

∆v̂g - An m length vector that represents the estimate of ∆v̂j+1
∆ .

∆v̂j+1
h - Wavelet domain Newton-Raphson update vector that is calculated using Ĵh.

∆v̂j+1
h,i - Element i of ∆v̂j+1

h .

∆v̂j+1
l - Element l of ∆v̂j+1.

xix

ε̂ - Introduced error vector that results from using Ĵh instead of Ĵ(v̂j) to calculate the

Newton update vector.

fOMP - A vector that is to be decomposed into a sum of dictionary elements. Used in the

orthogonal matching pursuit discussion.

f(a) - f(y) evaluated at arbitrary point a.

f ′(a) - The derivative of f(a).

f̄(v̄jk) - The values of the discretized time domain circuit equation for node k of iteration j.

f(vjk,l) - The value of the discretized time domain circuit equation sample l of node k.

f̄s(v̄s) - A discretized NM element vector representing the nonlinear components of a

circuit arranged so that all nodal variables for a given sample are grouped together

(nodal variables per sample).

f̄(v̄j) - The discretized time domain circuit equation for iteration j for steady-state time

domain.

f̄
′

v̄(v̄j) - The partial derivative of f̄(v̄j) with respect to each nodal voltage.

f̂(v̂j) - The wavelet domain circuit equation for iteration j for steady-state wavelet

analysis.

f̂(v̂j)k - Element k in f̂(v̂j).

F - Factor matrix found during LU decomposition. This is made up of the Lf and Uf

matrix combined.

F̂ (t) - A matrix that represents the system of equations with the Chebyshev spline

wavelet formulation.

F̂1 - Upper portion of the partitioned Chebyshev spline wavelet formulation.

F̂2 - Lower portion of the partitioned Chebyshev spline wavelet formulation.

F{x(t)} - The Fourier transform of x(t).

F−1{u(f)} - The Inverse Fourier transform of u(f).

F - A matrix that performs the Fourier Transform on a given sampled time domain

signal.

F−1 - A matrix that performs the Inverse Fourier Transform on a given frequency domain

signal.

F - IN ⊗F . The Kronecker product of IN and F .

F−1 - IN ⊗F−1. The Kronecker product of IN and F−1.

δ̂ - A vector that represents the difference between ∆v̂j+1 and ∆v̂j+1
h

g - A constant used with gyrators.

xx

gOMP - A vector which represents the projection of rOMP onto the columns of AOMP .

ĝjd - A vector that, once thresholded, provides an update to the estimate of Sj+1
v .

ĝjv - A vector that, once thresholded, provides the estimate of Sj+1
v .

G - Nodal admittance matrix.

G - IM ⊗G. The Kronecker product of IM and G.

h - Threshold value. This symbol is used for the adaptive threshold used with the

adaptive Jacobian matrix thresholding method as well as for the automatic

threshold of RCSSWA and HRCSSWA.

hs - The threshold used on each block of Ξ and is calculated as: γ ‖Ξi,j‖∞.

i(v(t)) - A vector of voltage dependant nodal currents.

iA(vC(t)) - Current source A which is dependant on the voltage at node C.

il(t) - A vector of representing the time domain nodal current for node l.

il(jω) - A vector of representing the frequency domain nodal current for node l.

icap(t) - Capacitor current.

ī(v̄) - A vector of nodal voltage dependant time domain sample currents for each node.

ī(v̄j) - A vector of nodal voltage dependant time domain sample currents for each node for

iteration j.

iin - Current flowing into a node.

iout - Current flowing out of a node.

îr - Wavelet domain resistor current.

îl,o - Wavelet domain initial inductor current.

îl - Wavelet domain inductor current.

îc - Wavelet domain capacitor current.

I - An identity matrix.

IM - An M ×M identity matrix.

IN - An N ×N identity matrix.

jm - The selected scale, or resolution, of a wavelet transform.

J(Wsv̄s) - Wavelet domain Jacobian matrix used with Newton method when solving for v̄s.

J̄(v̄j) - The time domain Jacobian matrix at iteration j.

Ĵ(v̂j) - The wavelet domain Jacobian matrix at iteration j.

Ĵ(v̂j)k,l - The entry in Ĵ(v̂j) located at column l of row k.

Ĵ∆ - A Jacobian matrix made up of columns selected from Ĵ(v̂j) that are indexed by S∆.

Ĵ∼∆ - A Jacobian matrix made up of columns from Ĵ(v̂j) that are not indexed by S∆.

xxi

Ĵh - Wavelet domain Jacobian matrix with all elements with amplitudes below h set to

0.

km - The maximum number of translations possible at the jth scale of a wavelet

transform.

KT
i - A coefficient row vector of dimension 2l+1 + 1 using the Chebyshev polynomial

wavelet basis.

K - A matrix of coefficient vectors with each row composed of KT
i for all 0 < i < N .

Kv - Re-arranged version of K with Kv =
[
KT

1 ,K
T
2 , . . . ,K

T
N

]T
.

L2(<) - A space of functions with absolute values that are square integrable.

L - Inductance in Henrys.

Lf - The lower triangular (for nr = nc) or lower trapezoidal (for nr > nc) factor matrix

found during LU factorization.

Lw - An M ×M matrix that represents the inductances of an inductor at each of the M

time samples.

L - An NM ×m lower trapezoidal matrix which results from the LU decomposition of

an NM ×m matrix with m < NM .

L1 - The upper portion of the partitioned L. This is an m×m lower triangular matrix.

L2 - The lower portion of the partitioned L. This is an (NM −m)×m matrix.

m - The number of non-zero elements in ∆v̂j+1.

mp - The aliasing integer used with the spectral differentiation method.

M - Number of samples (time domain) or coefficients (wavelet domain) per nodal

variable in a given circuit.

n - The number of wavelet coefficients used with the spline wavelets for the

Petrov-Galerkin formulation.

nc - Number of columns.

nr - Number of rows.

ntol - A selected numerical noise tolerance.

N - Number of nodal variables in a given circuit.

p - A multiplier representing the difference between number of rows and number of

columns in matrix A. p = nr
nc

P - A permutation matrix used to sort the rows of a matrix..

PVjf(t) - The approximation of f(t) that using φ(t)j .

PWjf(t) - The approximation of f(t) that using ψ(t)j .

xxii

P c - An m×m column permutation matrix used with LU decomposition of a tall

matrix.

P r - An NM ×NM row permutation matrix used with LU decomposition of a tall

matrix.

φ(t) - The scaling function, or father wavelet function.

φhaar(t) - The scaling function of the Haar wavelet.

φ(t)j - The jth scaled function of φ(t).

φdec(t)j,k - The deconstruction wavelet scaling function (biorthogonal wavelets).

φ(t)j,k - The kth translation at the jth scale of φ(t).

φj0,k,n - The nth sample of φ(t)j0,k once it is discretized into M samples.

φrec(t)j,k - The reconstruction wavelet scaling function (biorthogonal wavelets).

Φ(Wsv̄s) - Wavelet domain circuit function used with Newton method when solving for v̄s.

ψ(t) - The wavelet function, or mother wavelet function.

ψhaar(t) - The wavelet function of the Haar wavelet.

ψ(t)j,k - The jth scaled function of ψ(t).

ψ(t)j,k - The kth translation at the jth scale of ψ(t).

ψj,k,n - The nth sample of ψ(t)j,k once it is discretized into M samples.

Ψk(t) - The lth periodic basis function for the spline wavelet.

Ψch(t) - A wavelet basis of level l which has a size of 2l+1 + 1.

Ψch1 - The upper portion of the partitioned Ψp matrix. This is used with the Chebyshev

wavelet formulation.

Ψch2 - The lower portion of the partitioned Ψp matrix. This is used with the Chebyshev

wavelet formulation.

Ψchr - [Ψch(1)−Ψch(−1)]T .

ΨchD - The transformed derivative matrix. This is used with the Chebyshev wavelet

formulation.

Ψp - A sorted version of Ψch(t) which is given by: Ψp = PΨch(t).

q(v(t)) - A vector of voltage dependent nodal charges.

q̄(v̄) - A vector of nodal voltage dependent time domain sample charges for each node.

q̄(v̄j) - A vector of nodal voltage dependent time domain sample charges for each node for

iteration j.

QB - An M ×M matrix that performs the integration operation on a vector with M

samples.

xxiii

Q−1
B - An M ×M matrix that performs the differentiation operation on a vector with M

samples.

Qf - A column permutation matrix used to sort the columns in a matrix.

QH - Wavelet domain version of QB using the Haar wavelet.

Q−1
H - Wavelet domain version of Q−1

B using the Haar wavelet.

rOMP - A residual that is minimized during orthogonal matching pursuit when determining

xOMP .

rtol - Relative tolerance.

Rw - An M ×M matrix that represents the resistances of a resistor at each of the M

time samples.

RF2 - Error that results from using the 2 point forward differences derivative estimate.

RF4 - Error that results from using the 4 point forward differences derivative estimate.

RB2 - Error that results from using the 2 point backward differences derivative estimate.

RB4 - Error that results from using the 4 point backward differences derivative estimate.

RC2 - Error that results from using the 2 point central differences derivative estimate.

RC4 - Error that results from using the 4 point central differences derivative estimate.

s(t) - A vector of nodal source currents.

s̄s - A vector of independent sources arranged so all nodal variables for a given sample

are grouped together (nodal variables per sample).

s̄ - A vector of time domain sample nodal source currents.

ŝ1 - A column vector with
(
2l+1 + 1

)
N entries all equal to zero.

ŝ2 - The lower portion of the wavelet domain source vector s(t) using the Chebyshev

wavelet formulation.

Sj∆ - Also known as the support of ∆v̂j+1. This is a list of the positions of all non-zero

entries in ∆v̂j+1.

Sjv - Also known as the support of v̂j . This is a list of the positions of all non-zero

entries in v̂j .

Sj+1
v - Also known as the support of v̂j+1. This is a list of the positions of all non-zero

entries in v̂j+1.

T - The period of x(t).

Tc - SSWA calculation time.

T j∆v̄ - The time taken to calculate ∆v̄j+1 each iteration.

T j∆v̂ - The time taken to calculate ∆v̂j+1 each iteration.

xxiv

Thrc - HRCSSWA calculation time.

T jHS - HRCSSWA overhead time.

Trc - RCSSWA calculation time.

T jS - RCSSWA overhead time.

t̂ - The automatically calculated tolerance used with ε̂ to adjust threshold h.

T jv̄∆ - The time taken to calculate ∆v̂j+1
∆ each iteration with the reduced column

Jacobian.

T jv̂∆ - The time taken to calculate ∆v̂j+1
∆ each iteration with the reduced column

Jacobian.

u(f) - The frequency domain representation of x(t).

ũ - The frequency domain coefficients of x̄.

ũp - The pth frequency domain coefficient of ũ.

Uf - The upper triangular factor matrix found during LU factorization.

û - A vector with NM elements all set to 1.

ū - A vector with NM elements all set to 1.

U - An m×m upper triangular matrix which results from the LU decomposition of an

NM ×m matrix with m < NM .

v(t) - A vector of nodal voltages.

ṽ(t) - An approximation of v(t) using a spline wavelet.

vl(t) - The nodal voltage waveform for node l.

v̄k - The sample voltages of the discretized nodal variable voltage waveforms for node k

(time domain).

v̄k,l - The sample voltage for sample l of node k (time domain).

v̄s - An NM element vector of nodal variables (nodal voltages, branch currents,

inductor fluxes, capacitor charges, etc.) arranged so that all nodal variables for a

given sample are grouped together (nodal variables per sample).

v̂φ,k - Scaling coefficient k of v̂.

v̂ψ,j,k - Wavelet coefficient k for resolution j of v̂.

v̂r - Wavelet domain resistor current.

v̂l - Wavelet domain inductor current.

v̂c,o - Wavelet domain initial capacitor voltage.

v̂c - Wavelet domain capacitor voltage.

xxv

v̄ - The discretized time domain nodal variable voltage waveforms arranged as sample

voltages for each node.

v̄j - The discretized time domain nodal variable voltage waveforms arranged as sample

voltages for each node for iteration j.

v̂j - The wavelet domain nodal variable vector at iteration j.

v̂jl - Element l in v̂j .

v̂j+1
l - Element l in v̂j+1.

Vj - Wavelet domain scaling subspace j.

W - A matrix that performs a wavelet transform on a vector.

W−1 - A matrix that performs an inverse wavelet transform on a vector.

Wb - The reconstruction matrix used with biorthogonal wavelets.

Ws - An NM ×NM matrix that performs the wavelet transform on v̄s. This matrix

assumes that the vector is arranged so that all nodal variables for a given sample

are grouped together (nodal variables per sample).

W−1
s - An NM ×NM matrix that performs the inverse wavelet transform on a vector.

This matrix assumes that the vector is arranged so that all nodal variables for a

given sample are grouped together (nodal variables per sample).

W - IN ⊗W . The Kronecker product of IN and W .

W−1 - IN ⊗W−1. The Kronecker product of IN and W−1.

W−1
∆ - A matrix formed using columns from W−1 that are indexed by set Sj+1

∆ .

W−1
∼∆ - A matrix formed using columns from W−1 that are not indexed by set Sj+1

∆ .

W−1
∆0 - A matrix copy of W−1 with all entries in the columns that are not indexed by Sj+1

∆

set to zero.

W−1
∼∆0 - A matrix copy of W−1 with all entries in the columns that are indexed by Sj+1

∆ set

to zero.

Wj - Wavelet domain wavelet subspace j.

x - Vector of unknowns in an equation of the form Ax = d.

xOMP - The sparse representation of fOMP which is determined with orthogonal matching

pursuit.

x(t) - Generic function in time (t) used to describe the derivative methods.

x′(t) - Derivative of the generic function in time (t) used to describe the derivative

methods.

x′(tl) - The first order derivative of x(t) with respect to tl.

xxvi

x′′(tl) - The second order derivative of x(t) with respect to tl.

x′′′(tl) - The third order derivative of x(t) with respect to tl.

x̄df (t) - An interpolating polynomial used with spectral differentiation to interpolate x̄

between points.

x̄′df (t) - The derivative of x̄df (t).

x̄′df - Discretized x̄′df (t) with M samples.

x̄′df,n - Sample n of x̄′df .

xl - The value of x(t) at time sample l.

x′l - The value of x(t)′ at time sample l.

x̄ - The time samples of x(t) after discretization.

x̄p - The pth time sample of x̄.

Ξ - The wavelet domain convolution matrix for Υs which is given as: Ξ = WsΥW
−1
s .

Ξi,j - The (i, j)th block of Ξ.

ξi - The interpolation points of the splines of the Chebyshev spline wavelets.

yj - Used in the Appendix describing Newton-Raphson method for the estimate of the

root of f(y) at iteration j.

yf - A vector found with forward substitution as one of the steps to solving for x with

LU factorization of a system of equations of the form Ax = d.

ŷ - Least squares solution to ∆v̂j+1
∆ = −Ĵ+

∆f̂(v̂j) found using LU decomposition.

ŷ1 - The upper portion of the partitioned ŷ. This vector has m entries.

ŷ2 - The upper portion of the partitioned ŷ. This vector has NM −m entries.

Y - A matrix that represents the contributions of linear frequency-defined devices in a

circuit.

Υ (t) - A function representing the time domain impulse response of a network of

frequency defined components.

Υ (t) - A function representing the time domain impulse response of a network of

frequency defined components.

Υs - An NM ×NM convolution matrix used for frequency defined components. This

matrix operates on v̄s and assumes all nodal variables for a given sample are

grouped together (nodal variables per sample).

z - A set of integers {0,1,· · · ,number of subspaces in Vj}

ẑk - The wavelet domain coefficients of the waveform for node k of the vector being

thresholded.

xxvii

Chapter 1

Introduction

For many years, numerical simulation has provided an important tool for the design and testing of

circuits. The ability to project the most likely behaviour of a circuit can save much of the time spent

in the design stage by allowing designers to not only determine if but also how well their circuits will

work before constructing a physical device. Many of the early circuit simulators were proprietary and

developed by companies with government contracts. As a result, these simulations were required to

have the ability to evaluate the radiation hardness of any given circuit [1]. Then, in 1971, a circuit

simulator that utilized a sparse matrix solver was developed. This simulator; called Computer Analysis

of Nonlinear Circuits, Excluding Radiation (CANCER)[2]; was capable of simulating circuits that were

much larger than previous programs could handle[1, 2]. This program was redeveloped by Nagel during

his doctoral studies under Don Pederson and re-named Simulation Program with Integrated Circuit

Emphasis (SPICE) [1]. SPICE, unlike its predecessor, is an open source program distributed under the

BSD (Berkeley Source Distribution) license [1, 3] and has become widely used and has spawned many

more programs, both proprietary (e.g. Multisim and LTSpice) and free to use (e.g. Ngspice distributed

under the modified BSD license)II.

Circuit simulators often are designed to provide multiple types of analysis methods to meet designers

needs. The selection of the analysis type is dependent on what characteristics the designer wants to

test as well as how quickly and accurately the solution should be found [4, 5]. If the DC operating

point for the circuit is desired then a DC analysis could be run or if the response of a circuit to a given

input or change in input is desired then a transient analysis is run. Transient analysis is a very accurate

simulation method. It can be used to estimate a circuits behavioural characteristics (such as slew rate or

cutoff frequency) as well as its response to a given set of inputs. However, transient analysis is inefficient

IIThe BSD license and modified BSD license allow the use of the code with extremely limited restrictions. For more

information, see: https://www.freebsd.org/doc/en US.ISO8859-1/articles/bsdl-gpl/article.html

1

for the steady-state simulation of circuits that have very long transient responses compared to the period

of the input waveforms [4–7].

Circuit simulator performance has been an issue since the first days of simulators. Early computers had

limited computational and storage resources which imposed restrictions on both the size and complexity

of the circuits that could be simulated. As computer technology advanced, the size and complexity

restrictions relaxed, however, these restrictions remained, and likely will remain, important factors when

designing circuit simulators. Large and more complex circuits can be simulated by modern computers

but, the larger and more complex the circuit, the more time it will take to simulate and the higher

the resource drain on the simulating system. Therefore, it is necessary to keep efficiency in mind when

designing simulators.

One method of performing steady-state analysis involves dividing the time period of interest into

discrete samples, forming a system of circuit equations that allows for all of the samples to be calculated

simultaneously, and solving the system of equations using Newton-Raphson method. Each iteration

of Newton-Raphson method requires the formation of a Jacobian matrix which represents a system of

equations that has to be solved every iteration. The size of the Jacobian matrix increases significantly as

the number of elements in the circuit or the number of samples in the time period of interest is increasedI.

If the Jacobian matrix is sparse, taking advantage of sparse matrix storage formats and sparse algorithms

can significantly reduce the memory and computational requirements of storage and processing of the

Jacobian matrix. This makes Jacobian sparsity an important factor to consider when preparing a circuit

simulation.

1.1 Motivation

In recent years, wavelets have been proposed as a possible way to reduce the memory and computa-

tional requirements of storage and processing of the Jacobian matrix. This is achieved by taking advantage

of the ability of wavelets to sparsely represent a given waveform. These methods work by either reducing

the size of the problem (and Jacobian matrix) [8–15] or reducing the number of non-zero elements in the

Jacobian matrix [16, 17].

Studies that focused on reducing the size of the Jacobian matrix utilized wavelets that were specifically

designed to allow for the circuit equations to be formulated to reduce the number of unknowns to calculate.

These methods were successful in reducing the size of the problem but they relied on properties of the

wavelets they were designed to use and, as such, cannot be used with other wavelets. Since there are

IThe Jacobian matrix has (#nodes×#samples)2 elements. Adding elements will not necessarily increase the number of

nodes by a large factor but increasing the resolution of the nodal variable waveforms could have a significant effect on the

number of samples and, therefore, the number of elements in the Jacobian matrix.

2

many possible wavelets to choose from, a method that can take advantage of any wavelet basis would

be beneficial since it allows for any wavelet basis that exists, or may be developed in the future, to be

utilized.

Studies focused on reducing the non-zero elements in the Jacobian matrix operate by setting low

amplitude elements from the Jacobian matrix to zero (i.e. thresholding the Jacobian matrix). The

threshold is selected before the simulation begins and is performed on the matrix that is used for handling

frequency defined components. This method is successful in reducing Jacobian matrix density because

the matrix used for handling frequency defined components is a major contributor to the density of the

Jacobian matrix. However, this method can lead to an error between the results of the thresholded

simulation and a simulation without thresholding if the threshold is too high.

The goal of this research is to develop methods that increase the efficiency of wavelet domain steady-

state analysis of electrical circuits with Newton-Raphson method by reducing the number of non-zero

elements in the Jacobian matrix and/or reducing the size of the Jacobian matrix which can be used with

any wavelet basis.

1.2 Contribution

The purpose of this research is to develop and explore methods for using wavelets to increase the

efficiency of calculating the Newton-Raphson update vector when performing steady-state analysis that

can be utilized with any wavelet basis. Achieving this purpose resulted in the following developments:

1. A study was performed utilizing many wavelets selected from common wavelet families to determine

the effect these wavelets have on the sparisty of the Jacobian matrix and nodal variable waveforms.

This study was published in [18] and is further expanded in Chapter 4 by allowing for the sparse

matrix pre-ordering determined on the first iteration of the simulation to be re-used every subsequent

iteration.

2. A method for thresholding the Jacobian matrix at each iteration of Newton-Raphson method was

developed and tested. This method utilizes an automatically controlled threshold that was based

on minimizing the error introduced into the Newton-Raphson updates.

3. Methods for reducing the number of columns from the Jacobian matrix that are utilized in calcu-

lating the Newton-Raphson updates each iteration were developed and tested. One method utilizes

a single selected wavelet basis during simulation while the other adaptively selects wavelets each

iteration for each nodal variable waveform.

3

1.3 Methodology and Technical Challenges

Since there are many potential wavelets to choose from, it is natural to ask: Which wavelet should

be used? It is useful to be able to utilize any desired wavelet for an analysis but, when Jacobian matrix

and nodal variable vector sparsity is a requirement, it would be counter intuitive to utilize a wavelet that

does not provide sparse vectors/Jacobian matrices. Studies to determine the wavelet that provides the

sparsest representations of waveforms have been performed for many tasks [19–23]. However, a study

comparing many different wavelets to determine the sparsest wavelet for steady-state analysis was not

found in the literature. For this reason, a study on wavelets selected from common wavelet families was

necessary to determine which wavelet, if any, provides the greatest sparsity Jacobian matrices and nodal

waveform vectors. The study, which was published in [18], also explores the effect of thresholding on

wavelet domain Jacobian matrix sparsity. This thresholding method was developed to address two issues:

1. How to threshold the Jacobian matrix without introducing error into the final result: This problem

was solved by thresholding the Jacobian matrix each iteration of Newton-Raphson method. Any

error introduced into the Newton-Raphson update vector is corrected for at a later iteration and

there is negligible error introduced into the final result of the simulation.

2. The optimal threshold for one circuit may not be optimum for any other circuit. Additionally,

the optimum threshold may change as Newton-Raphson method converges: To address this issue,

the threshold is automatically adjusted based on the amount of error introduced into the Newton-

Raphson update vector.

The results show the wavelets that provided the highest reduction in Jacobian density with thresholding

were wavelets with a higher number of vanishing moments. The Haar wavelet provided the sparsest

Jacobian matrices for most cases both with and without thresholding. However, the time domain Jacobian

matrices tend to be sparser than the wavelet domain, even when adaptive thresholding is applied. The

simulations in this study did not re-use the sparse matrix pre-ordering and this ordering was re-calculated

each iteration. To explore the case where the sparse matrix pre-ordering is re-used, the results presented

in Chapter 4 were produced by re-using the sparse matrix pre-ordering from the first iteration for the

entire simulation.

One of the useful features of wavelets is that they provide sparser representations of waveforms than

the time domain. Therefore, a method that takes advantage of the sparsity of the nodal variable vectors

was developed and explored. This new method, by design, can be used with any wavelet basis and operates

by reducing the columns in the Jacobian matrix used to calculate an estimate of the Newton-Raphson

update vectors. This required the development of a method for selecting the columns to be utilized in the

4

calculation of the update vectors each iteration. Simulation results with the column reduction method

show that, although it is possible to achieve a reduction in the number of Jacobian matrix columns each

iteration, there is no one wavelet that provides the greatest reduction in Jacobian matrix columns for all

cases. Additionally, the optimum wavelet for the column reduction is not easy to select in advance. This

made it necessary to develop a method to automatically select an appropriate wavelet. This led to the

following developments:

1. The equations were re-formulated in a way that enabled the selection of the Jacobian matrix columns

for any selected wavelet without first forming the wavelet domain Jacobian matrix. This makes it

possible to select the wavelet that will be expected to provide the sparsest nodal variable vectors

without forming multiple wavelet domain Jacobian matrices.

2. Another useful feature of the re-formulated equations is that it is possible to form the Jacobian

matrix with far fewer operations. The Jacobian matrix is normally formed in the time domain and

then converted to the wavelet domain with pre-multiplication by a forward wavelet transform matrix

and post multiplication by an inverse wavelet transform matrix. With the re-formulated equations,

the pre-multiplication with the forward wavelet transform matrix is removed and only the selected

columns of the inverse wavelet transform matrix are used. The result is a significant reduction in

number of operations required to form the wavelet domain Jacobian matrix.

3. Since a wavelet that provides the sparsest nodal variable vector for one node may not necessarily

provide the sparsest nodal variable vector for another, a method that can select a wavelet for each

node was developed. This is possible because it is not necessary to form the wavelet domain Jacobian

matrix until after wavelet selection. To this researchers knowledge, adaptive selection of wavelets

for each nodal variable has not been done anywhere in the literature as of the time of the writing

of this thesis.

Simulation results show that the column reduction algorithms lead to a slowdown in simulation times over

wavelet domain steady-state analysis with the wavelets that led to the fastest simulation times in some

cases. However, the simulation times of the method that adaptively selects wavelets for each nodal variable

exhibited times that were faster than wavelet domain steady-state analysis simulations with some of the

selected test wavelets. Additionally, results with the wavelet domain steady-state analysis simulations

show that it is difficult to determine in advance which wavelet will provide the greatest simulation speeds.

Thus, the adaptive wavelet selection method can be utilized in cases where the optimum wavelet choice

is not known at the cost of a small slowdown in simulation speed compared to wavelet domain steady-

state analysis with the optimum choice of wavelet. There is one test circuit where the column reduction

5

methods do not cause a reduction in columns in some of the tests. This problem, which is one focus of

ongoing research, could potentially be overcome by improving the method for selection of columns from

the Jacobian matrix and/or improving the method used to control the error introduced into the update

vectors when the reduced column Jacobian matrix is used.

The rest of this thesis is organized as follows: Chapter 2 presents a discussion on how the circuit

equations are formulated for various components along with a brief description of the time domain steady-

state analysis and wavelet domain steady-state analysis methods used in this thesis; Chapter 3 presents

a literature review on topics pertaining to the research for this thesis; Chapter 4 presents the results of

simulations with the adaptive Jacobian matrix thresholding method and the study on the effect of wavelet

selection on Jacobian matrix and nodal variable vector sparsity; Chapter 5 presents the two methods for

reducing the average number of columns in the Jacobian matrix along with the results of experimentation

with five electrical circuits with some selected wavelets; Chapter 6 concludes this thesis with a summary

of the the results of the Jacobian thresholding and column reduction methods along with a discussion

of some future avenues for continuing this research. Also included is an Appendix that provides extra

details on the derivative estimation methods used in the two studies.

6

Chapter 2

Background Concepts

This chapter begins with a discussion of the formulation of the circuit equations using nodal analysis and

how they are used for time domain periodic steady-state analysis with Newton-Raphson method. Next, a

brief introduction to wavelets, how the wavelet transform matrix is included in the circuit equations , and

how the time domain periodic steady-state analysis is extended to be performed in the wavelet domain.

The chapter ends with a brief introduction to dense and sparse LU factorization and the UMFPack

algorithm used in this research for LU factorization. By the end of this chapter, the reader will have

an understanding of the periodic steady-state formulation used in this research, what wavelets are and

how to include them in the steady-state formulation, and a general idea of how the LU factorization is

performed on dense and sparse matrices.

2.1 Nodal Formulation

In order to simulate a circuit, it is necessary to model that circuit mathematically. The circuits in this

thesis are modelled using nodal analysis [24–26]. There are many ways that the nodal analysis can be

formulated. For example, one could create a vector of all voltages and currents in the circuit and create

a matrix, known as a tableau matrix, that represents the nodal equations of the circuit [24]. However,

including both voltages and currents in the formulation will lead to a very large matrix and it is often

more convenient to select either current or voltages.

The equations in this document are formulated for lumped linear/non-linear and distributed circuit

elements using the nodal voltages. This is done by using Kirchoff’s current law (KCL), where all the

currents entering a node are equal to all the currents leaving the node (iout = iin), to form a matrix of

nodal admittances for each element connected to each node and a vector of nodal voltages which are used

to calculate a vector of currents flowing into each node. For example, consider the circuit in Figure 2.1a.

The circuit equation can be written as:

Gv(t) = s(t), (2.1)

7

Figure 2.1: Simple resistive network (a) and simple RC network (b)

where G is known as the nodal admittance matrix, v(t) is a vector of nodal voltages, and s(t) is the vector

of nodal source currents.

However, circuits are usually much more complex than the simple resistive network of Figure 2.1a.

Circuits with capacitors, inductors, voltage sources, and voltage controlled elements such as diodes and

transistors are often simulated and increase the complexity of the system of equations.

Capacitors are included by simply applying KCL with the capacitor current equation: icap(t) = cdv(t)
dt ,

where c is the capacitance in Farads. For example, if we change the resistor connected between node B

and ground in Figure 2.1a to a capacitor (Figure 2.1b) the circuit equation becomes:

Gv(t) + C
d

dt
v(t) = s(t), (2.2)

where C is a matrix of nodal capacitances.

Many elements, such as inductors and voltage sources can be modelled using special elements called

gyrators [24, 27, 28]. A gyrator is made up of two current sources (Figure 2.2a), each related to the

voltage at the opposite side of the device with a gyrator constant g which can have any non-negative

value. Replacing the voltage source in Figure 2.3a with the ideal voltage source shown in Figure 2.2b

converts a voltage source into a current source. The new circuit would look like Figure 2.3b and a new set

of terms will be included in the G matrix and s(t) vector. The value of g is selected to keep the gyrator

current on a similar order of magnitude as the other branch currents.

An inductor can be built from a gyrator and a capacitor (Figure 2.2c) [24, 27, 28]. This is made

possible by relating the inductor voltage (v1(t) on the left hand side) with the capacitor current (gv1(t)

on the right hand side)

iC = gv1(t) = C
dv2(t)

dt
, (2.3)

vL = L
diL(t)

dt
. (2.4)

8

Figure 2.2: Gyrator and gyrator devices. (a) A simple gyrator, (b) an ideal voltage source, and (c) an

inductor made from a gyrator and a capacitor. Note: vin(t) is the voltage of the ideal voltage source.

Substituting vL = v1(t) and iL(t) = gv2(t) into Equation (2.4) results in:

v1(t) = gL
dv2(t)

dt
,

dv2(t)

dt
=

v1(t)

gL
, (2.5)

where L is the inductance in Henrys of the inductor. Combining Equation (2.3) with Equation (2.5)

provides the relation between the inductance of the original inductor and the capacitance of the substituted

capacitor in Figure 2.2c:

gv1(t) = C
v1(t)

gL
,

C = Lg2. (2.6)

The value for g that is utilized for the conversion of source voltages into source currents is utilized for

the inductor gyrators.

Diodes and transistors can be modelled by combining resistors, capacitors, and current sources. Diodes

and transistors also require a voltage dependent set of equations. These equations can be substituted into

the models by replacing the elements with functions that describe the characteristics of the device [26].

For example, consider the diode circuit model from Figure 2.4.

The current source i1(vin(t)) and the charge over the capacitor are dependent on the input voltage. The

circuit equation is given by:

Gv(t) + i(v(t)) +
d

dt
q(v(t)) = s(t), (2.7)

which, when considering circuits with RLC elements as well as diodes and transistors, results in:

Gv(t) + C
d

dt
v(t) + i(v(t)) +

d

dt
q(v(t)) = s(t). (2.8)

9

Figure 2.3: Simple resistive circuit with a voltage source. (a) Symbolic representation and (b) Gyrator

ideal source.

Where i(v(t)) is a vector of voltage dependent nodal currents and q(v(t)) is a vector of voltage dependent

nodal charges.

Equation (2.8) is sufficient for describing most circuits. However, there are some cases where the

characteristics of a device are only known from its measured linear frequency domain responseI. In this

thesis, admittance or Y-parameters are utilized to describe the linear frequency-defined componentsII and

are included in the circuit equations with a convolution operation:

Gv(t) + C
d

dt
v(t) + i(v(t)) +

d

dt
q(v(t)) +

� ∞
−∞

Υ (t− τ)v(τ)dτ = s(t), (2.9)

where
�∞
−∞ Υ (t− τ)v(τ)dτ is the convolution of the time domain impulse response of the linear frequency

defined components, Υ (t), measured as Y-parameters and the time domain voltage vectors for each node.

The above approach is a basic introduction to the formulation used by the Cardoon simulator [29]. This

design approach was utilized for the simulator so the analysis code only has to deal with three types of

elementary devices: voltage-controlled current sources, voltage-controlled charge sources, and independent

current sources. Since the Cardoon simulator is used in this thesis to test the proposed wavelet domain

steady-state analysis methods, the circuit equations in this thesis are formulated using the same approach.

The proposed analysis methods in this thesis operate on the Jacobian matrix after the circuit equations

are formulated and, as such, will work with other approaches to formulating the circuit equations.

IFor example, scattering or S-parameters can be used for transmission lines [25]
IIMeasured S-parameters are converted into Y-parameters.

10

Figure 2.4: Simple Diode circuit model with a voltage controlled current source and a voltage dependent

capacitor.

2.2 Periodic Steady-State Time Domain (SSTD)

The periodic steady-state solution is obtained by finding a solution for Equation (2.9) that also satisfies

the two-point boundary constraint:

v(T)− v(0) = 0. (2.10)

In other words, v(t) should be a solution that satisfies Equation (2.9) and the value of v(t) at the end of

the time period (time t = T) should be the same as the value of v(t) at the beginning of the time period

(t = 0). The most commonly used method for finding v(t) is the Newton-Raphson method [4], or Newton

method, which is used as the solver for this thesis.

The v(t) vector represents the voltages at each node in the circuit which are the variables being

calculated by the simulator. When working with time domain steady-state analysis, the nodal voltages

are discretized into time samples that each need to be calculatedI. This requires Equation (2.9) to be

modified to account for each of the time samples and can be done by simply including each sample

voltage at each node in the voltage vector which leads to two methods of organization: Nodal voltages

per sample, and sample voltages per node. For this thesis, sample voltages per node is used and the

vectors are structured as shown in Equation (2.11) where N is the number of nodal variables, M is the

number of samples for each nodal variableII, the bar indicates a vector that is in the time domain, a

bold symbol indicates a vector of samples for all nodal variables, a single subscript indicates a vector of

IFor the wavelet domain, the waveform is discretized into its wavelet coefficients.
IIFor this thesis, M and T are known and selected in advance. T is determined by the period of the external sources in

this thesis and M is selected as the minimum number of samples required to fully describe the output waveforms with no

noticeable sampling error.

11

samples for a single nodal variable, and the second subscript indicates an individual sample for the nodal

variable indicated by the first subscript. A single subscript on a bold symbol (e.g. v̄1), unless otherwise

stated, indicates a specific element within the entire vector.

v(t) =

v1(t)

v2(t)
...

vN (t)

 =⇒ v̄ =

v̄1

v̄2

...

v̄N

 =

v̄1,1

v̄1,2

...

v̄1,M

v̄2,1

v̄2,2

...

v̄2,M

...

v̄N,1

v̄N,2
...

v̄N,M

(2.11)

The matrices in Equation (2.9) can be extended to support this organization by using Kronecker

products [4] with an identity matrix:

(IM ⊗G) v̄ + (IM ⊗ C)
d

dt
v̄ + ī(v̄) +

d

dt
q̄(v̄) + [IN ⊗F−1] · Y · [IN ⊗F]v̄ − s̄ = 0̄, (2.12)

where G is the N ×N nodal admittance matrix, C is the N ×N nodal capacitance matrix, F and F−1

are M ×M matrices that perform the forward and reverse Fourier transform respectively, Y represents

the contributions of linear frequency-defined devices and has a denseI M ×M block for each node of the

circuit that is connected to a frequency-defined device [17], ī(v̄) is an NM vector of samples of non-linear

voltage dependent currents, q̄(v̄) is an NM vector of samples of non-linear voltage dependent charges,

s̄ is an NM vector of independent current sources, IN is an N × N identity matrix, IM is an M ×M

identity matrix, and 0̄ is an NM vector with all entries set to 0.

Since convolution is equivalent to multiplication in the frequency domain, the voltage vector v̄ is

converted into the frequency domain so Y can be applied via multiplication and the result is converted

back into the time domain. For simplicity, Equation (2.12) can also be written as:

Gv̄ +CDv̄ + ī(v̄) +Dq̄(v̄) +F−1Y F v̄ − s̄ = 0̄, (2.13)

INon-sparse.

12

where G = IM ⊗G, C = IM ⊗C, F = IN ⊗F , F−1 = IN ⊗F−1, and D = IN ⊗D where D is a matrix

that performs the derivative operation d
dt (see Appendix A).

The number of time samples has a significant effect on the size of the system of equations given

in Equation (2.13). The number of time samples depends on the efficiency of the technique used to

solve the problem as well as the nature of the signals that are exciting the circuit. For example, if a

high frequency and low frequency signal are being simulated, such as the high frequency carrier and low

frequency envelope of an amplitude modulated signal, then the time between samples must be very small

to accurately describe the high frequency carrier which results in the need for many time samples to show

the low frequency envelope [30–34].

The SSTD method is a simple approach in that it solves Equation (2.13) directly in the time domain.

Each iteration of Newton method begins with the calculation of :

f̄(v̄j) = Gv̄j +CDv̄j + ī(v̄j) +Dq̄(v̄j) +F−1Y F v̄j − s̄, (2.14)

where v̄j is the estimate of v̄ at iteration j, ī(v̄j) is ī(v̄) evaluated at v̄j , and q̄(v̄j) is q̄(v̄) evaluated at

v̄j . The Jacobian matrix is then found by taking the derivative of Equation (2.14) with respect to v̄j :

f̄
′

v̄(v̄j) = J̄(v̄j) = G+CD + JI +DJQ (2.15)

J̄I =

[
∂ī(v̄j)

∂v̄j1

∂ī(v̄j)

∂v̄j2
· · · ∂ī(v̄j)

∂v̄jN

]
(2.16)

J̄Q =

[
∂q̄(v̄j)

∂v̄j1

∂q̄(v̄j)

∂v̄j2
· · · ∂q̄(v̄j)

∂v̄jN

]
, (2.17)

and the Newton update equation for iteration j is:

J̄(v̄j)∆v̄j+1 = −f̄(v̄j), (2.18)

2.3 Wavelet Domain (WD)

Wavelets are specially designed functions that are useful for signal and image processing [35–38]. Like

sinusoidal functions with the Fourier transform, these functions are used to represent functions in what

is known as the wavelet domain. However, unlike sinusoidal functions (Fourier basis), wavelets represent

information at different resolutions which are matched to their scale. The result is a tool that allows for

information to be broken down, analyzed, and/or processed at different scales or resolutions with a choice

of many different basis functions (unlike the Fourier basis which only has one). The ability to represent

the signals at different resolutions is known as multiresolution analysis and is an important feature of

wavelets.

This section will provide a brief introduction to wavelets. Since the focus of this research is with

discrete periodic waveforms, the discussion on the wavelet transform will focus on utilizing wavelets for

discrete periodic functions.Multiresolution representations of a function

13

There are potentially an infinite number of possible basis functions that could be used (including

the Fourier basis), however, most of them do not have the special property of being localized in both

frequency and time [39]. These basis functions are also designed such that they can be used to form a

multiresolution analysis of other functions [35, 40].

Multiresolution analysis is used to represent a given function, f(t), at various levels of resolution

[35, 40]. This is achieved by expanding the function in terms of scaling functions,

φ(t)j,k =
1√
2j
φ

(
t− 2jk

2j

)
, (2.19)

which are scaled (dilated) by adjusting j and translated by adjusting k to provide approximations of the

original function at different levels of detail (i.e. different resolutions). The function, f(t), is approximated

in the wavelet domain by orthogonal projections onto different embedded subspaces {Vj}j∈Z
I, each of

which are formed by translations of the scaling functions at the same scale, 2j . Scaling φ(t) by a factor of

2j allows the corresponding subspace, Vj , to represent signal features at the resolution 2−j . Thus, scaling

up φ(t)j,k by increasing j will increase the subspace level of Vj while decreasing the resolution. In the rest

of this thesis, scale 2j is referred to as scale j (or transform level j). Each Vj has the following properties

[35, 40]:

1. There exists a scaling function, φ(t)0,k, such that {φ(t− k)}k∈ZII is a Riesz basis of V0: This allows

for the formation of all other subspaces by scaling φ(t)j,k. If {φ(t− k)}k∈Z forms a Riesz basis of

V0 then
{

1√
2
φ
(
t−2k

2

)}
k∈Z

forms a Riesz basis of V1,
{

1
2φ
(
t−4k

4

)}
k∈Z forms a Riesz basis of V2, and

so on. Therefore, we can say that
{

1√
2j
φ
(
t−2jk

2j

)}
k∈Z

forms a Riesz basis of Vj with parameter j

being referred to as the scale of the subspace Vj . In order to form a Riesz basis, the translations of

φ(t)j,k for all k, have to be linearly independent, therefore:

〈φ(t)j,k, φ(t)j,l〉 = δk,l ∀ (j, k) ∈ Z, (2.20)

where δk,l =

1 k = l

0 otherwise

and 〈φ(t)j,k, φ(t)j,l〉 is the inner product between φ(t)j,k and φ(t)j,l
III.

2. ∀ (j, k) ∈ Z, f(t) ∈ Vj ⇐⇒ f(t − 2jk) ∈ Vj : This property means that Vj is invariant by any

translation proportional to the scale 2j .

3. ∀j ∈ Z, Vj+1 ⊂ Vj IV: This property means an approximation at a resolution, 2−j , contains all

INote: Z is a set containing all integers between −∞ and ∞. For the purposes of this discussion, j ∈ Z can be taken to

mean “for all valid integer values of j”.

IIφ(t)0,k= 1√
20
φ
(
t−20k

20

)
=φ (t− k)

IIINote: If φ(t)j,k is real (i.e. contains no complex numbers), then 〈φ(t)j,k, φ(t)j,l〉 = φ(t)j,k · φ(t)j,l. The scaling functions

of the wavelets used in this thesis contain only real numbers.
IVVj+1 ⊂ Vj means that Vj+1 is a subset of Vj .

14

necessary information required to compute an approximation at a coarser resolution 2−(j+1). Thus,

we can express any function in Vj in terms of basis functions in Vj−1 and [35]:

φ(t)j =

∞∑
k=−∞

akφ(t)j−1,k, (2.21)

where ak ∈ Z are known as the filter coefficients and are a square summable sequence.

4. f(t) ∈ Vj ⇐⇒ f(t2) ∈ Vj+1: Dilating a function in Vj by a factor of 2 will enlarge the details by 2

and Vj+1 will define an approximation at a courser resolution.

5. lim
j→∞
Vj =

∞
∩

j=−∞
Vj = {0}I: This property indicates that all details of f are lost as the resolution,

2−j , approaches zero.

6. ∪j∈ZVj II is dense in L2(<): This property forces the signal approximation to converge to the original

signal as the resolution approaches ∞.

If the above properties are met for φ(t)j,k, then an approximation of a function, f(t), for any scale j can

be obtained by projecting f(t) over φ(t)j,k [35, 40]:

PVjf(t) =
∞∑

k=−∞
cj,kφ(t)j,k, (2.22)

cj,k = 〈f(t), φ(t)j,k〉 , (2.23)

where the inner products, cj,k, provide a discrete approximation at scale j and each of the k elements in

cj,k are known as scaling coefficients for scaling subspace j or just scaling coefficients.

An interesting property of the scaling coefficients is that, as the scale is increased, the number of

coefficients required to approximate the signal is decreased. This property is easily illustrated with an

example. The Haar wavelet is the simplest and oldest wavelet [37]. The scaling function is a simple box

function:

φhaar(t)0 =

1 0 < t < 1

0 otherwise.

(2.24)

Figure 2.5 shows the scaling coefficients for an example function which is approximated with the Haar

wavelet with three different scales. With each increase in scale, the number of coefficients describing the

I ∞
∩

j=−∞
Vj indicates the intersection of subspaces that are nested within Vj . As the scale increases, the number of higher

scale subspaces nested within Vj decreases. The intersection of subspaces indicates where details are retained as the scale is

increased. As the set that represents the intersection between subspaces decreases, the number of details that are retained

decreases as well. If an increase in scale causes the intersection to become {0} then there are no details retained with the

new scale.
IIi.e. The union of all subspaces Vj .

15

Figure 2.5: Scaling coefficients of a function, f(t), with the Haar wavelet at three scales. The resolution

becomes coarser with each increase in scale. The wavelet transform for this example was performed with

the discrete wavelet transform described in Section 2.3.4 with an f(t) discretized into 512 samples.

signal is divided by 2. However, this sparsity comes at the cost of a loss of details in the time domain

representation of the signal, shown in Figure 2.6.

2.3.1 Orthogonal wavelets

Adjusting the scale of the transform is useful for representing a function at different resolutions and

allowing for a sparser representation of a function. However, what if we are interested in the details

between scaling subspaces? Indeed, the wavelet transform would not be as useful if it was impossible to

recover the original function. If a new subspace, Wj , that represents the details that are lost between

scaling subspaces is introduced, it is possible to express Vj as a combination of the scaling subspace at

the next higher scale (lower resolution), Vj+1, and the wavelet subspace at the next higher scale (lower

resolution), Wj+1 [35, 40]:

Vj = Vj+1 ⊕Wj+1; Vj+1 ⊥ Wj+1, (2.25)

To describe Wj , we introduce another function, ψ(t)j,k, known as the wavelet function:

ψ(t)j,k =
1√
2j
ψ

(
t− 2jk

2j

)
. (2.26)

This function has the same 6 properties as φ(t), discussed in Section 2.3, which leads to:

PWjf(t) =

∞∑
k=−∞

dj,kψ(t)j,k, (2.27)

16

Figure 2.6: Approximation of a function, f(t), with the Haar wavelet at three scales. The resolution

becomes coarser with each increase in scale. The wavelet transform for this example was performed with

the discrete wavelet transform described in Section 2.3.4 with an f(t) discretized into 512 samples.

dj,k = 〈f(t), ψ(t)j,k〉 , (2.28)

where the inner products, dj,k, provide the details at scale 2j with each of the k coefficients in dj,k being

known as the wavelet coefficients of subspace j. Combining PVjf(t) and PWjf(t) at one scale (resolution)

will result in an an approximation of the function at the next lower scale (higher resolution):

PVjf(t) = PVj+1f(t) + PWj+1f(t). (2.29)

Combining PVj+1f(t) and PWj+1f(t) in this way means that any details that are lost by the approximation

of f(t) with PVj+1f(t), instead of PVjf(t), are preserved in PWj+1f(t). This process can be repeated until

any scale, k, has been reached:

PVjf(t) = PVj+1f(t) + PWj+1f(t)

= PVj+2f(t) + PWj+2f(t) + PWj+1f(t)

= PVj+3f(t) + PWj+3f(t) + PWj+2f(t) + PWj+1f(t)

= PVkf(t) +
∑
l<k

PWl
f(t), (2.30)

From property 6 in Section 2.3, we know that as the scale approaches −∞, PVjf(t)→ f(t) and f(t) can

be expressed as a combination of PVjf(t) at any choice of j and all wavelet subspaces at and below j:

f(t) = PVjf(t) +
∑
l≤j

PWl
f(t). (2.31)

17

Figure 2.7: Approximation of a function, f(t), with the Haar wavelet with both the scaling and wavelet

functions at scale j = 3. On the left are the scaling and wavelet coefficients for V3, W3, W2, and W1. On

the right are the time domain estimates with V3 as the scaling subspace and the effect of the inclusion of

each wavelet subspace. The wavelet transform for this example was performed with the discrete wavelet

transform described in Section 2.3.4 with an f(t) discretized into 512 samples.

This leads to:

f(t) =
∞∑

k=−∞
〈f(t), φ(t)j,k〉φ(t)j,k+

∑
l≤j

∞∑
k=−∞

〈f(t), ψ(t)l,k〉ψ(t)l,k. (2.32)

Figure 2.7 shows an example of the signal from Figure 2.6 with the wavelet subspaces included in the

approximation. The scaling subspace, V3, provides a rough approximation that is improved with the

addition of each higher resolution wavelet subspace.

Determination of ψ(t) is achieved by taking advantage of the properties of Vj and Wj . Since Wj is

contained in Vj−1, Wj describes the higher resolution details that are missing from Vj that are required

to form Vj−1. This means that the wavelet function at one resolution can be expressed in terms of the

scaling function at the next higher resolution [35, 40]:

ψ(t)j =
∞∑

k=−∞
bkφ(t)j−1,k, (2.33)

where bk is a set of filter coefficients for the wavelet function. The wavelet function is, by design, orthogonal

18

to the scaling functionI and can be expressed as [35]:

ψ(t)j =

Na−1∑
k=0

(−1)kaNa−1−kφ(t)j−1,k, (2.34)

where Na represents the number of filter coefficients and bk = (−1)kaNa−1−k.

2.3.2 Construction of wavelet systems

Constructing the wavelet system is achieved by selecting a function, φ(t), and calculating values for

ak and bk in Equations (2.21) and (2.33). This process is best illustrated with an example. Consider the

Haar wavelet which has the scaling function described in Equation (2.24). From property 3 described in

Section 2.3, φhaar(t) at one resolution can be described by the combination of all translations of φhaar(t)

at the next higher resolution. The filter coefficients for the scaling function are calculated by first dilating

φhaar(t)0 and finding its translationsII:

φhaar(t)−1,0 =

√

2 0 < t < 0.5

0 otherwise,

(2.35)

φhaar(t)−1,1 =

√

2 0.5 < t < 1

0 otherwise.

(2.36)

From Equation (2.21), φhaar(t)0 =
1∑

k=0

akφhaar(t)0−1,k = a0φhaar(t)−1,0 + a1φhaar(t)−1,1 and:

φhaar(t)0 =

a0

√
2 0 < t < 0.5

a1

√
2 0.5 < t < 1

0 otherwise.

(2.37)

Substitution of a0 = a1 = 1√
2

into Equation (2.37) results in Equation (2.24).

The wavelet function, ψhaar(t), is found by substituting j = 0 and φhaar(t)0 into Equation (2.34):

ψhaar(t) =

1∑
k=0

(−1)kaNa−1−kφhaar(t)0−1,k = a1φhaar(t)−1,0 − a0φhaar(t)−1,1. (2.38)

Substituting a0 = a1 = 1√
2
, Equation (2.35), and Equation (2.36) into Equation (2.38) results in the

wavelet function for the Haar wavelet:

ψhaar(t) =

1 0 < t < 0.5

−1 0.5 < t < 1

0 otherwise.

(2.39)

IFrom the requirement in Equation (2.25): Vj+1 ⊥ Wj+1

IIBy setting j = −1 in Equation (2.19).

19

Figure 2.8: Commonly used orthogonal wavelets. Scaling function in blue and wavelet functions in green.

(a) Haar, (b) 2 vanishing moment Daubechies, (c) 8 vanishing moment Daubechies, (d) 2 vanishing

moment Symlet, (e) 8 vanishing moment Symlet, (f) 2 vanishing moment Coiflet, (g) 8 vanishing moment

Coiflet, and (h) discrete Meyer.

The filter coefficients are: a0 = a1 = 1√
2
, b0 = 1√

2
, b1 = − 1√

2
. The scaling and wavelet functions for the

Haar wavelet, along with selected wavelets from other orthogonal families, are shown in Figure 2.8.

Many families of wavelets have been developed. These families use specially designed φ(t) functions

and/or impose special properties on φ(t). Some of the common families, which are used in this thesis,

are the Daubechies, Coiflets, Symlets, and discrete Mayer. The following paragraphs contain a short

description of these wavelet families. For more information on the design of these wavelets, along with

their filter coefficients, see [40].

The Daubechies wavelet families are designed to have a compact support (i.e. a limited number of

non-zero elements exist in φ(t)) for any given number of vanishing moments. A wavelet function ψ(t) has

p vanishing moments if [40]: � ∞
−∞

tkψ(t)dt = 0 for 0 ≤ k < p, (2.40)

which means that ψ(t) is orthogonal to any polynomial of degree p− 1. This means that a wavelet with

p vanishing moments will be able to reproduce a polynomial of degree p− 1 using only scaling functions.

Indeed, the filter coefficients of the Daubechies wavelets can be derived by imposing the requirement that

a polynomial of degree p−1 can be represented by translations of the scaling function [35]. Two examples

of this wavelet are shown in Figure 2.8b and c.

The Symlet families are similar to the Daubechies wavelet (they are a modified version of the Daubechies

20

wavelet) but have been designed to be more symmetrical than the Daubechies wavelets [20, 38]. Two ex-

amples of this wavelet are shown in Figure 2.8d and e. The Coiflet family, like the Daubechies and Symlet

families, is designed to provide p vanishing moments and a minimum support. However, the support of

the Coiflet family tends to be larger than the Daubechies and Symlet families and the Coiflet wavelet also

requires [38, 40]: � ∞
−∞

φ(t)dt = 1. (2.41)

Two examples of the Coiflet wavelet are shown in Figure 2.8f and g.

The Dmey family (Discrete Meyer family) is a discrete approximation to the Meyer wavelet used

with the discrete wavelet transform. This approximation is necessary because the Meyer wavelet is not

compactly supported [20]. The Meyer wavelet was designed to be frequency band-limited and have a

Fourier transform that is smooth. The Meyer wavelet has infinite support (it does not decay in time)

while its Fourier transform has compact support. For this reason, its transform is normally performed

in the Fourier domain. It is also the reason that it is necessary to use a discrete approximation when

utilizing the discrete wavelet transform. An example of this wavelet is shown in Figure 2.8h.

2.3.3 Biorthogonal wavelets

Biorthogonal wavelets are a family of wavelets that is comprised of two sets of wavelet functions. One

set, called the deconstruction functions, are used to transform a time domain function into the wavelet

domain while the other set, called the reconstruction functions, are used to rebuild the time domain

function from its wavelet domain representation. This means that the scaling and wavelet function sets

are designed to be orthogonal to each other [40, 41]:

〈φdec(t)j,k, φrec(t)j,l〉 = δk,l ∀ (j, k) ∈ Z, (2.42)

〈ψdec(t)j,k, ψrec(t)j,l〉 = δk,l ∀ (j, k) ∈ Z. (2.43)

The same condition in Equation (2.21) applies to the scaling function sets:

φdec(t)j =
∞∑

k=−∞
adec,kφdec(t)j+1,k, φrec(t)j =

∞∑
k=−∞

arec,kφrec(t)j+1,k, (2.44)

where adec,k and arec,k are the kth deconstruction and reconstruction filter coefficients, respectively. How-

ever, the deconstruction wavelet functions depend on the filter coefficients of the reconstruction scaling

functions and vice versa [41].

ψdec(t)j =

Na−1∑
k=0

(−1)karec,Na−1−kφdec(t)j+1,k, ψrec(t)j =

Na−1∑
k=0

(−1)kadec,Na−1−kφrec(t)j+1,k. (2.45)

A function, f(t), is expressed in the wavelet domain with biorthogonal wavelets as:

f(t) =
∞∑

k=−∞
〈f(t), φdec(t)j,k〉φrec(t)j,k+

∑
l≤j

∞∑
k=−∞

〈f(t), ψdec(t)l,k〉ψrec(t)l,k. (2.46)

21

Figure 2.9: Commonly used biorthogonal wavelets. Scaling function in blue and wavelet functions in

green. The first number indicates the number of vanishing moments in the deconstruction wavelet and

the second number indicates the number of vanishing moments in the reconstruction wavelet. (a) Bior1.1

deconstruction (equivalent to Haar), (b) Bior1.1 reconstruction (equivalent to Haar), (c) Bior 1.3 decon-

struction, (d) Bior 1.3 reconstruction, (e) Bior 2.6 deconstruction, and (f) Bior 2.6 reconstruction.

An interesting property of biorthogonal wavelets is that the deconstruction and reconstruction wavelets

can be swapped. This means that each biorthogonal wavelet set can provide two wavelet deconstruc-

tion/construction operations and [41]:

f(t) =

∞∑
k=−∞

〈f(t), φrec(t)j,k〉φdec(t)j,k+
∑
l≤j

∞∑
k=−∞

〈f(t), ψrec(t)l,k〉ψdec(t)l,k. (2.47)

An example of some biorthogonal wavelets are shown in Figure 2.9.

2.3.4 Discrete Wavelet Transform

When represented in the wavelet domain, a discretized waveform, v̄, will have two sets of coefficients:

A set of scaling coefficients for the selected resolution and multiple sets of wavelet coefficients for the

selected resolution and all possible higher resolutions. A scaling coefficient at a selected resolution is

determined by:

v̂φ,k =
M−1∑
n=0

φj,k,nv̄n, (2.48)

where φj,k,n is the nth sample of φ(t)j,k once it is discretized into M samples, and v̂φ,k is scaling coefficient

k of the wavelet domain representation of v̄.

A wavelet coefficient at a selected resolution is determined by:

v̂ψ,j,k =
M−1∑
n=0

ψj,k,nv̄n, (2.49)

22

where ψj,k,n is the nth sample of ψ(t)j,k once it is discretized into M samples and v̂ψ,j,k is wavelet coefficient

k for resolution j. If the wavelet domain representation of v̄ is arranged so that the scaling coefficients

are first, Equations (2.48) and (2.49) can be represented in matrix form with jm indicating the selected

scale, or resolution, of the transform; km = M
2j

indicating the maximum number of translations possible

at the jth scale; and W is an M ×M matrix that performs the wavelet transform.

v̂φ,jm,0

v̂φ,jm,1
...

v̂φ,jm,km−1

v̂ψ,jm,0

v̂ψ,jm,1
...

v̂ψ,jm,km−1

v̂ψ,jm−1,0

v̂ψ,jm−1,1

...

v̂ψ,jm−1,km−1

...

v̂ψ,1,0

v̂ψ,1,1
...

v̂ψ,1,km−1

=

φjm,0,0 φjm,0,1 · · · φjm,0,M−1

φjm,1,0 φjm,1,1 · · · φjm,1,M−1

...
...

...
...

φjm,km−1,0 φjm,km−1,1 · · · φjm,km−1,M−1

ψjm,0,0 ψjm,0,1 · · · ψjm,0,M−1

ψjm,1,0 ψjm,1,1 · · · ψjm,1,M−1

...
...

...
...

...

ψjm,km−1,0 ψjm,km−1,1 · · · ψjm,km−1,M−1

ψjm−1,0,0 ψjm−1,0,1 · · · ψjm−1,0,M−1

ψjm−1,1,0 ψjm−1,1,1 · · · ψjm−1,1,M−1

...
...

...
...

...

ψjm−1,km−1,0 ψjm−1,km−1,1 · · · ψjm−1,km−1,M−1

...
...

...
...

ψ1,0,0 ψ1,0,1 · · · ψ1,0,M−1

ψ1,1,0 ψ1,1,1 · · · ψ1,1,M−1

...
...

...
...

...

ψ1,km−1,0 ψ1,km−1,1 · · · ψ1,km−1,M−1

v̄0

v̄1

v̄2

...

v̄M−1

, (2.50)

v̂ = Wv̄, (2.51)

The inverse wavelet transform is performed differently depending on the type of wavelet being used.

For orthogonal wavelets, each time domain coefficient is calculated as:

v̄n =

km−1∑
k=0

φjm,k,nv̂φ,k+

jm−1∑
j=1

km−1∑
k=0

ψj,k,nv̂ψ,j,k

 , (2.52)

which, due to the orthogonal property of φ(t) and ψ(t), is equivalent to:

v̄ = W−1v̂ = W T v̂, (2.53)

where W−1 is an M ×M matrix that performs the inverse wavelet transform.

23

Withbiorthogonal wavelets,theforwardtransform matrix W,isformedinthesame manneras

Equation(2.50)butusingthe φdec(t)andψdec(t)functions. Theinverse wavelettransform matrixis

formedbycreatinga matrixWbinthesamewayasEquation(2.50)butusingtheφrec(t)andψrec(t)to

formthe matrixWb:

v̄=W−1v̂=WT
bv̂. (2.54)

Aninterestingpropertyofbiorthogonalwaveletsisthat,byswappingtherollsofthedeconstruction

andreconstructionfunctions,itispossibletogetacompletelydifferentwaveletrepresentation(i.e.youget

twowaveletrepresentationsin1). Reversingthedeconstructionandreconstructionwaveletsissometimes

calledthereversebiorthogonalwavelet. Withreversebiorthogonalwavelets,v̂= Wb̄vandv̂= WTv̄.

Allequations with waveletsinthisthesis,canbeextendedtobiorthogonal waveletsbysubstituting

W−1=WT
b andtoreversebiorthogonalwaveletsbysubstitutingWb=W.

Withsomewavelets,someofthecoefficientsinsomeofthetranslationsof φ(t),ψ(t),φdec(t),ψdec(t),

φrec(t)andψrec(t)canfalloutsideofthetimerangeofthesampled waveform. Whenusingperiodic

waveforms,coefficientsfrompasttheendofarow(requireelementsfromthenexttimeperiod)are

wrappedaroundtothebeginningofthesamerow(orwrappedaroundtotheendofthesamerowif

elementsfromtheprevioustimeperiodarerequired)inthetransform matrix.

2.4 Steady-State Wavelet Analysis(SS WA)

TheSSWAmethodisaperiodicsteady-stateanalysismethodthatisderivedbytransformingEquation

(2.14)tothewaveletdomain:

f̂(̂vj) =W f̄(W 1̂vj) =W f̄(̄vj)=WGW −1v̂j+WCDW −1v̂j+W ī(W −1v̂j)

+WDq̄(W −1v̂j)+W F−1YFW −1v̂j−W s̄, (2.55)

wherethehatisusedtodenotevariablesinthe waveletdomain, v̂j = W v̄j, W = IN ⊗W,and

W −1=IN ⊗W−1.Frequencydefinedcomponentscanbeincludedviatheconvolutionoperationwhich

isstillperformedinthefrequencydomain. ThisrequirestheforwardandreverseFouriertransformtobe

includedatthecostofextra matrixoperations. However,the matrixW F−1YFW 1onlyneedstobe

formedonceandthemajorityoftheextracomputationaloverheadofthismethodisfoundintheforward

andreversewavelettransforms.

Inthisthesis,thepartialderivativeofEquation(2.55)withrespecttōvjisperformedinthetime

domainandtheNewtonupdateforiterationjisgivenby:

W f̄̄v(̄vj)∆̄vj+1 =−W f̄(̄vj). (2.56)

24

Substituting ∆̄vj+1 =W −1∆v̂j+1 intoEquation(2.56)resultsin:

W J̄(̄vj)W 1∆v̂j+1 = −f̂(̂vj), (2.57)

Ĵ(̂vj)∆̂vj+1 = −f̂(̂vj), (2.58)

wheref̄̄v(̄vj)=J̄(̄vj),IandĴ(̂vj)=W J̄(̄vj)W −1istheJacobian matrixfortheSSWA method. An

interestingpropertyofthisformulationisthat,assumingcalculationsareexact,thecalculatedcorrection

vectorsforeach Newtoniterationareequivalent. Theonlydifferenceisthedomainthevectorsare

representedin.

2.5 LU DecompositionoftheJacobian Matrix

The majorityoftimerequiredforNewton methodtoconvergeisspentsolvingEquations(2.18)and

(2.58).SolutionofEquations(2.18)and(2.58)isachievedbyusingLUdecompositioninthisresearch.

LUdecompositioninvolvesdecomposinga matrix,A,intoasetoffactorsoftheform[42–44]:

LfUf=PAQ, (2.59)

whereLfisalowertriangularmatrix(orlowertrapezoidalforatallrectangularA)withaunitarydiagonal,

Ufisanuppertriangularmatrix,Pisarowpermutationmatrix,andQisacolumnpermutationmatrix.

EachrowandcolumninPandQcontainasinglenon-zeroentrythatisequalto1and:PPT =QQT =I

whereIisanidentity matrix. Thesefactors,oncesubstitutedintoasystemofequationsoftheform

Ax=d,yield:

(PAQ)QTx = Pd

LfUf(QTx) = Pd, (2.60)

Thesolutiontotheunknownvectorxcanthenbefoundwithforwardsubstitutiontosolveforyfin

Lfyf=Pd, (2.61)

andbackwardsubstitutiontosolveforxwithII:

Uf(QTx)=yf. (2.62)

SolvingEquations(2.61)and(2.62)hasacomputationalcomplexityoforderO(n2
c)whenAisdense

wherencisequaltothenumberofcolumnsinLf[44]III. ThefactorizationofAisO(n3
c)whenAisdense

IFromEquation(2.15):f̄(W 1v̂j)=f̄(̄vj)=J̄(̄vj)
IINote: ThisisachievedbysolvingforQTxwithbackwardsubstitutionandthenapplyingQ totheresulttogetx.

IIISolvingfortheithelementinyfinEquation(2.61)requires1division,i−1multiplicationoperations,andi−1subtraction

operationsforatotalof
nc

i=1

1+2(i−1). Usingtherelation
nc

i=1

1=ncand
nc

i=1

i= nc(nc+1)
2

,thetotalnumberofoperations

requiredforforwardsubstitutionis:
nc

i=1

1+2(i−1)=
nc

i=1

2i−1=2nc(nc+1)
2

−nc=n2
c=O(n2

c). Thenumberofoperations

forbackwardsubstitutionisthesame.

25

[43, 44].

The calculation of the LU factors, which is known as numerical factorization, is performed by starting

at the first row and column of the matrix and using Gauss elimination to eliminate all elements in the

first column (active column) below the first row (active row). Then the process continues with the second

row of the second column as the active row and column, then the third row of the third column as the

active row and column, and so on for all columns. There are three operations that can be performed

when eliminating the elements below the active row:

1. Two rows can be swapped. These swaps are recorded in the P matrix.

2. Two columns can be swapped. These swaps are recorded in the Q matrix.

3. A row can be multiplied by a constant and then subtracted from another row.

When working with sparse matrices, the columns are normally swapped before performing LU decomposition[44]

so only rows are swapped during the elimination process. Calculating the LU factors with only row swap-

ping, or row pivoting, is known as factorization with partial pivotingI. Row pivoting is performed to

maintain numerical stability [43, 45]. One method for selection of a row to perform pivoting is to look

at all elements in the active column and selecting the row with the maximum amplitude element (in the

active column) to swap with the active row. Once the pivoting, if required, is performed the elimination

is performed on each of the rows below the active row. A simple LU factorization algorithm with row

pivoting is shown in Algorithm 2.1.

Performing elimination on the ith row on the F matrix in Algorithm 2.1 requires 1 division, nc − i

multiplications, and nc − i subtractions over nr − i rows for a total of

nc∑
i=1

(nr − i) [1 + 2 (nc − i)] =
1

3

(
−n3

c + 3nrn
2
c −

3

2
n2
c −

1

2
nc

)
(2.63)

operations while the pivot step requires nr − i compare operations, nc element swap operations for the F

matrix, and nc element swap operations for the P matrix for a total of

nc∑
i=1

nr − i+ 2nc =
3

2
n2
c + nrnc −

1

2
nc (2.64)

operations.

IFactorization with full pivoting is when both row and column swapping is performed.

26

Algorithm 2.1 Simple LU factorization algorithm for an nr × nc matrix.

F ← copy of original nr×nc matrix to be factored. Lf and Uf factors are stored in this matrix as they

are found.

P ← is the row permutation matrix. Initial value is an nr × nr identity matrix.

i← 1

while i <= nc do

gmax ← index of row in column i of F that has maximum amplitude element.

if i 6= gmax then

Swap row i with row gmax in the P matrix.

Swap row i with row gmax in the F matrix.

end if

j ← i+ 1

while j <= nr do

Fj,i = Fj,i/Fi,i // Store elements for in L matrix portion of F .

k ← i+ 1

while k <= nc do

Fj,k = Fj,k − Fj,i × Fi,k
k ← k + 1

end while

j ← j + 1

end while

i← i+ 1

end while

To obtain the Lf and Uf matrices from F :

- All elements at and above the diagonal in the first nc rows of F become the upper triangular

portion of Uf .

- All elements below the diagonal in the first nc rows of F become the lower triangular (nr = nc)

or trapezoidal (nr > nc) portion of Lf and all diagonal elements in first nc rows of Lf are equal

to 1.

When nr = nc, Equation (2.63) simplifies to 2n3
c − 3

2n
2
c − 1

2nc which is of order O(n3
c) and Equation

(2.64) simplifies to 5
2n

2
c − 1

2nc which is of order O(n2
c). If F is a tall rectangular matrix with nr > nc

and nr = pnc where 1 < p, then Equation (2.63) simplifies to 1
3

(
−n3

c + 3pn3
c − 3

2n
2
c − 1

2nc
)

which, since

27

p = nr
nc

, is of order O(nrn
2
c)

I. Equation (2.64) simplifies to 3
2n

2
c + pn2

c − 1
2nc and is of order O(n2

c). Thus,

with a tall rectangular matrix, the number of columns is the determining factor for the computational

complexity of LU factorization of a dense matrix.

When performing SSTD and SSWA on electric circuits, the Jacobian matrices are normally sparse.

Since the LU decomposition in Algorithm 2.1 will operate on all elements, regardless of if they are non-

zero or not, it is an inefficient method of finding the L and U factors of a sparse matrix. Therefore, it is

necessary to utilize a method that operates only on the non-zero entries of the Jacobian matrix. Methods

that perform LU factorization on sparse matrices operate by partitioning the matrix into smaller, sparse

sub-matrices based on the positions of the non-zero elements in the original sparse matrix [44–48]. These

methods typically include the following phases[44–48]:

� Matrix ordering to reduce fill-in: During this phase, the matrix columns are re-ordered in a way that

is expected to provide the sparsest Lf and Uf matrices (the Q matrix is selected during this phase)

and provide an upper bound on fill-in. Fill-in occurs when new non-zero entries are introduced

into the Lf and Uf matrices that were not present in the original A matrix. These fill-ins increase

the amount of computational time required for factorization since they will require extra time to

compute their values as well as require more allocated memory to store.

� Symbolic factorization: During this stage, the upper bound to the fill-in associated with the LU

decomposition of the matrix and the memory used for the factorization step is estimated and

allocated for use with the numerical factorization.

� Search for dense sub-matrices and numerical factorization: This is the step where the work is

performed. The matrix is sub-divided into multiple dense blocks which are factorized to generate

the Lf and Uf matrices. The row order, provided by the P matrix, is also refined in this step.

This research utilizes the UMFPack routines in SuiteSparse [48, 49]. UMFPack performs numerical

factorization by forming smaller, dense, matrices known as frontal matrices out of columns and rows

in the original matrix and performing the factorization on the frontal matrices. The size of the frontal

matrices varies and is dependant on the number of non-zero elements in the rows and columns used to

create the frontal matrix at each stage of factorization[48, 49]. The number of iterations required in the

factorization depends on how many columns are utilized in the frontal matrices. At worst, one column is

added to each frontal matrix each iteration. This would mean that elimination would be performed one

ISince p is always greater than 1 (more rows than columns), 3pn3
c is the dominant term regardless of the value of p so the

complexity is of order O(pn3
c). Substitution of p = nr

nc
provides the result in terms of nr and nc which results in O(nrn

2
c).

28

column at a time just like Algorithm 2.1. However, more than one column can be added at a time and,

therefore, it is possible for UMFPack to finish factorization in fewer than nc iterations.

One of the contributions of this thesis is a method that reduces the columns in the Jacobian matrix

at each iteration. Reducing the columns could lead to a potential speedup by reducing the number

of iterations required for UMFPack to finish by reducing nc. Another contribution of this thesis is a

method that reduces the number of non-zero entries in the Jacobian matrix. Since the pre-ordering is

selected to minimize fill-in, a matrix with fewer non-zero entries could require less memory resources and

computational time to factorize. However, the method utilized to reduce the number of non-zero entries

in the Jacobian matrix can lead to potential problems with respect to fill-in since the sparsity pattern

(the positions of the non-zero elements in the Jacobian matrix) can be altered.

2.6 Chapter Summary

In this chapter, the reader was introduced to the nodal analysis used in this work to form the system

of circuit equations, how these equations are used for periodic steady-state analysis, as well as a brief

introduction to wavelets and how they are used for wavelet domain periodic steady-state analysis. Also

included was a brief introduction to dense and sparse LU factorization and the UMFPack algorithm that is

utilized for LU factorization in this research. The next chapter will discuss other work that has been done

in the area of utilizing wavelets to increase the efficiency of steady-state analysis. These methods operate

by either reducing the size of the problem to be solved using Newton method or by reducing the number

of non-zero elements in the Jacobian matrix. Also included in the chapter summary is a comparison of

the benefits and drawbacks of these methods compared with the contributions of this thesis.

29

Chapter 3

Literature Review

Wavelet domain analysis is not a new idea in circuit simulation. Some proposed applications are: transient,

steady-state, and sensitivity analysis [9, 11, 16, 17, 50–53]. Wavelets have been utilized to improve the

efficiency of steady-state analysis by:

1. Reduction of problem size by taking advantage of the sparse representation of signals in the wavelet

domain. [8–11]

2. Reduction in the size of the system of equations by selecting the level of wavelet transform to be

used during the circuit simulation. [12–15]

3. Increasing the sparsity of the Jacobian matrix. [16, 17]

This section will discuss some of the research performed in each of these three methods of improving

efficiency. Note that, where possible, the same notation and symbols used in Chapter 2 were used in this

chapter and, as a result, some of the formula symbols differ from the original sources.

3.1 Reduction of Problem Size

One way of taking advantage of the ability of wavelets to sparsely represent signals is proposed by

the authors of [8, 10, 11, 54]. The method is applicable to both transient analysis [9] and periodic

steady-state analysis (PSSA) [8]. This method utilizes a specifically designed spline wavelet that has

an explicit formulation and allows for derivatives and integrals to be performed directly in the wavelet

domain [10, 54].

The circuit equations are formulated using nodal analysis to obtain[8, 10]:

d

dt
q(v(t)) + i(v(t))− s(t) = 0, (3.1)

30

where v(t) : R→ RN denotes the unknown voltages and currents, i(v(t)) describes the static contributions

from resistors, diodes, transistors, etc., q(v(t)) contains charges and fluxes from capacitors and inductors,

and s(t) contains the independent sources. The solution to Equation (3.1) is found using a Petrov-Galerkin

approach. The unknown solution is discretized in terms of the wavelet basis functions. That is, the spline

wavelet is used to discretized v(t) in Equation (2.8) into n+ 1 coefficients[8, 10, 54]:

v(t) =

n∑
k=0

v̂kΨk(t), (3.2)

where v̂k ∈ RN and Ψk(t) is the kth periodic basis function for the spline wavelet. Equation (3.1) is then

integrated over a chosen set of n sub intervals [τl−1, τl]
I to define:

fl(v̂0, v̂1, . . . , v̂n) = q(v(τl))− q(v(τl−1)) +

� τl

τl−1

i(v(t)) + s(t)dt, (3.3)

for l = 1, . . . , n and solved using Newton method.

This method begins with a set of equally spaced knots. Each iteration, Equation (3.3) is solved using

Newton method. Then each interval is checked and equally spaced knots are added to regions where

sharp changes are detected by using a tunable refinement rate parameter and removed from smooth

regions by thresholding knots with corresponding wavelet coefficients that are below a selected threshold.

The new representation with the adjusted knots is then used as the initial guess for Newton method to

solve Equation (3.3) again until the square norm of the difference between the result for Equation (3.3)

on the current iteration and the result for Equation (3.3) on the previous iteration is sufficiently small.

This method was extended to handle multirate circuit simulations as well.

The study in [10] was performed using transient simulations. The wavelet transient algorithm achieved

results that agreed with a time domain transient analysis. Although the wavelet method had a lower

number of spline knots than the time domain transient analysis had time steps, the computation time

was nearly always higher with the wavelet transient algorithm. In [11], the method was extended to find

the periodic steady-state solution to multirate circuit problems. The results show that the wavelet PSSA

algorithm is much faster than utilizing time domain transient analysis to find the steady-state solution

for the test cases. The results of [8] show the operation of the algorithm simulating a diode rectifier and

several multirate circuit problems for PSSA.

The algorithm is successful in managing the number of knots used to describe the nodal variable

waveforms. Early iterations of the multirate simulations tended to require more knots to describe the

waveforms and required less as the simulation converged. For the diode rectifier, the number of knots

increased as the simulation converged and then was decreased for the final iterations where no new knots

were added but many were removed for the last round of Newton method.

IThese sub-intervals are determined by the knots in the splines.

31

An advantage of this method is that, since the previous iterations nodal variable vector is used as the

initial guess for the internal Newton iterations, the Newton method tends to converge very quickly since

it starts close to its final solution.

3.2 Reduction in Size of the System of Equations

It is possible to utilize wavelets to reduce the size of the system of equations by selecting the level of

transform used during the simulation. These methods operate by starting with a low resolution wavelet

transform and only calculating the scaling coefficients for that resolution. Leaving all the wavelet subspace

coefficients at zero allows for a low resolution estimate of the solution to be calculated. This estimate

can then be improved by adding elements from the higher level wavelet subspaces to fill in the missing

details and refine the rough estimate.This approach has been proposed for both transient [12, 13] and

steady-state analysis [14, 15].

Transient analysis was used in [12] with the Haar wavelet to develop a method that takes advantage

of the properties of the block pulse function to derive derivative and integral operators. These operations

are used to form matrices that perform the integrals and derivatives:

QH = WQBW
−1, (3.4)

Q−1
H = WQ−1

B W−1, (3.5)

where QB and Q−1
B are M × M matrices that perform the integration and differentiation operations,

respectively, on a vector with M samples and are defined in [12, 13]. This method does not use nodal

analysis but instead uses Kirchhoff’s Current Law and Kirchhoff’s Voltage Law to directly find the voltage

or current in a component. The voltages and currents are derived for resistors, inductors, and capacitors:

v̂r = Rw îr, (3.6)

v̂l = Q−1
H Lw (̂il − îl,o), (3.7)

îl = îl,o + L−1
w QH v̂l, (3.8)

v̂c = v̂c,o + C−1
w QH îc, (3.9)

îc = CwQ
−1
H (v̂c − v̂c,o), (3.10)

where v̂r and îr are the wavelet domain resistor voltage and current respectively, v̂l and îl are the wavelet

domain inductor voltage and current respectively, v̂c and îc are the wavelet domain capacitor voltage

and current respectively, and v̂c,o and îl,o are the wavelet domain initial capacitor voltage and inductor

current respectively. Rw, Lw, and Cw are M ×M matrices that represent the resistance, inductance,

and capacitances of a given resistor, inductor, or capacitor and are defined in [12, 13]. This derivation

32

is extended to handle coupled inductors and non-linear time variant circuit elements as well. For more

details on these elements, the reader is encouraged to review [12, 13].

A simulation with this method begins by selecting an element. Kirchhoff’s Voltage Law and Kirchhoff’s

Current Law is then used to solve for either the current or voltage of the selected component. The derived

equation is then solved at a low resolution. The simulation time period is divided into smaller sub-intervals

and each is analyzed either manually [12], or automatically [13] and the local resolution of the solution

in sub-intervals where singular points are detected is then increased while the other sub-intervals are left

at the original resolution and the derived equation is solved again. The results show that there is an

advantage to using the mixed resolution method as opposed to using the higher resolution for the entire

time period. However, this method calculates one voltage or current variable at a time and, if more are

required, a new analysis has to be prepared and run for each.

Another approach, proposed in [14], utilizes Chebyshev polynomials that are defined on the interval

[−1, 1] to create an orthogonal wavelet basis for the steady-state analysis of power electronics circuits.

This method then approximates the solution to the circuit equations by selecting a desired resolution

which is achieved by varying the level of the wavelet transform. In this method, power electronic circuits

are represented by:
d

dt
v(t) = A(t)v(t) + s(t), (3.11)

where A(t) is an N×N time varying matrix that represents the circuit. Utilizing the developed Chebyshev

polynomial wavelet, v(t) can be expressed with[14]:

v(t)i = KT
i Ψch(t), for i = 1, . . . , N (3.12)

where Ψch(t) is a wavelet basis of level l of dimension 2l+1 + 1 constructed with Chebyshev polynomials

and KT
i =

[
ki,0, ki,1, · · · , ki,2l+1

]
is an unknown coefficient vector of dimension 2l+1 + 1. Equation (3.11)

can be expressed as:

KDΨch(t) = A(t)KΨch(t) + s(t), (3.13)

where D is a matrix that represents the derivative operation and

K =

KT

1

KT
2

...

KT
N

 . (3.14)

Re-arranging K into a vector as Kv =
[
KT

1 ,K
T
2 , . . . ,K

T
N

]T
allows Equation (3.12) to be re-written as:

F (t)Kv = s(t), (3.15)

33

F (t) =

a11ΨT
ch(t) · · · a1iΨ

T
ch(t) · · · a1NΨT

ch(t)
...

. . .
...

. . .
...

ai1ΨT
ch(t) · · · aiiΨ

T
ch(t) · · · aiNΨT

ch(t)
...

. . .
...

. . .
...

aN1ΨT
ch(t) · · · aNiΨ

T
ch(t) · · · aNNΨT

ch(t)

−ΨchD, (3.16)

ΨchD =

ΨT
ch(t)DT

. . .

ΨT
ch(t)DT

. . .

ΨT
ch(t)DT

. (3.17)

Unknown vector Kv requires (2l+1 + 1)N equations to solveI. The periodic boundary condition, which

requires x(1) = x(−1), provides N of the equations [14]. The other 2l+1N equations are provided by the

interpolation points of the Chebyshev wavelets.

 F̂1

F̂2

Kv =

 ŝ1

ŝ2

 , (3.18)

where F̂1 and ŝ1 have N rows and
(
2l+1 + 1

)
N columns and are given by

F̂1 =

Ψchr

Ψchr

Ψchr

Ψchr

 , (3.19)

Ψchr = [Ψch(1)−Ψch(−1)]T . (3.20)

Due to the periodic boundary condition, [Ψch(1)−Ψch(−1)]T Ki = 0 and

ŝ1 =

0
...

0

 . (3.21)

IKv has (2l+1 + 1)N elements.

34

F̂2 and ŝ2 have 2l+1N rows and
(
2l+1 + 1

)
N columns and are given by

F̂2 =

F (ξ1)

F (ξ2)
...

F (ξ2n+1)

 , (3.22)

ŝ2 =

−s(ξ1)

−s(ξ2)
...

−s(ξ2n+1)

 , (3.23)

where ξi are the interpolation points of the wavelets...

With the formulation in [14, 15], increasing the level of transform will increase the resolution of

the wavelet domain representation by including more wavelet coefficientsI. Thus, increasing the level

of wavelet transform will increase the size of F̂2 and ŝ2 by including more wavelet coefficients in the

calculations and lower level transforms will lead to smaller systems of equations. The interpolation points

can be selected to be anywhere in the interval [−1, 1]II but, a poor choice can lead to numerical instability

and the authors of [14] recommend using the interpolation points of the wavelets.

It is noted in [14] that higher level wavelets are only required at times where there are high variations,

such as switching instants, in the waveforms. Thus, by using higher level wavelets for parts of the solution

waveform that show high variability and lower level wavelets for the parts of the solution waveform that

show low variability, it is possible to represent the solution with an over all lower number of wavelet

coefficients. This is achieved by partitioning Ψch(t) into two parts: Ψch1 which represents the wavelets

that are selected for use in the approximation of the solution and Ψch2 which represents the un-chosen

wavelets. This partitioning results in:

Ψp = PΨch(t) =

 Ψch1

Ψch2

 , (3.24)

where P is a permutation matrix which sorts the chosen and un-chosen wavelets. The differentiation

matrix must also be sorted to accommodate this new partitioned scheme:

D = PDP−1 =

 D1

D2

 . (3.25)

IRemember, for the formulation in this thesis, increasing the level will lower the resolution of the scaling subspace

representation.
IIThis interval was selected because the Chebyshev polynomials were defined on this interval.

35

The partitioning described above results in an F̂1 and ŝ1 which each have N rows and an F̂2 and

ŝ2 which each have (M − 1)N rows where M is the number of wavelets that have been chosen for the

approximation (i.e. the number of elements in Ψch1). For a more detailed description of the derivation

and resulting F̂1, F̂2, ŝ1, and ŝ2 see [14]. Low level wavelets are automatically included in Ψch1 for

waveforms that contain a substantial amount of low-frequency components while higher level transforms

are only included for waveforms that have high-frequency components. The higher frequency wavelets are

selected based on distance from a switching point with an empirical rule of 1
10 to 1

2 of the interval being

a recommended range.

The results presented in [14] show that it is possible to obtain approximations of the solution waveforms

using fewer coefficients than a Fourier series approximation would require to achieve the same level

approximation error. However, in cases where there are few high-frequency details around switching

instants, the Fourier approximation requires significantly more coefficients to reduce the average error to

a level that is below that of the wavelets. Even with extra coefficients, the maximum error was much

higher when using the Fourier approximation. With both the wavelet approximation method and the

improved method, the accuracy of the approximation is determined by how many low level wavelets are

included in Ψch1 at the beginning of the simulation and also the selected distance threshold used to

determine which wavelets to add to Ψch1 while the simulation is run. The selection of how many low level

wavelets to include at the beginning of the simulation, as well as the selected distance threshold, can have

a significant effect on the error and are left up to the designer to select prior to running a simulation.

In [15], the method is further improved by adding a convolution of F̂2 and ŝ2 with the wavelet basis

functions. This makes the exact locations of the data points unimportant in the computations and provides

a more robust and accurate solution to Equation (3.18). However, this method still requires a selection of

wavelet levels to use in the simulations. Simulations were run for the same circuits as used in [14] in order

to provide a comparison between the proposed and original, un-partitioned, methods. The partitioned

method presented in [14] is not compared and errors are calculated using SPICE simulation results as the

baseline. The results show that the convolution method does provide greater accuracy than the original

method for any given selected set of wavelet levels. This error can be significant around switching points if

the number of wavelet levels utilized is too low. This could be problematic since it is left to the designer to

select how many levels to include prior to the start of the simulation. Simulation times were also explored

in this paper with simulation speeds being faster with the improved method. Interestingly, based on

the results presented, the partitioned method in [14] appears to attain lower measured errors than the

improved method in [15]. However, since there is no direct comparison with the partitioned method it is

unclear how the computational speed of the two methods compare.

36

3.3 Increasing the Sparsity of the Jacobian Matrix

Wavelet domain Jacobian matrix sparsity can be increased by either thresholding (setting to zero) low

amplitude entries in the Jacobian matrix itself or in one of the matrices that the Jacobian is composed of.

For example, the authors in [17] presented a method that used a pre-selected threshold for thresholding

low amplitude entries in the wavelet domain version of the convolution matrix used for frequency defined

components. The behaviour of non-linear circuits with frequency defined components can be described

with:

(G⊗ IM) v̄s + (C ⊗ IM)Dsv̄s + f̄s(v̄s) + Υsv̄s − s̄s = 0̄, (3.26)

where f̄s(v̄) is the discretized NM element vector representing nonlinear components arranged so all

nodal variables for a given sample are grouped togetherI, Ds is an NM ×NM matrix that represents the

derivative operation and is defined in [53], Υs is an NM × NM convolution matrix used for frequency

defined components and is defined in [17], v̄s is an NM element vector of nodal variables (node voltages,

branch currents, inductor fluxes, capacitor charges, etc.) arranged so all nodal variables for a given sample

are grouped together, s̄s is a vector of independent sources arranged so all nodal variables for a given

sample are grouped together.

Transforming the equations into the wavelet domain results in:

Φ(Wsv̄s) = (G+ CD + Ξ)Wsv̄s +Wsf̄s(v̄s)−Wss̄s = 0̄, (3.27)

where Ws and W−1
s are NM × NM matrices that perform the forward and reverse wavelet transforms

as defined in [17] and Ξ = WsΥsW
−1
s . The Jacobian matrix associated with Equation (3.27) is defined in

[17] as:

J(Wsv̄s) = (G+ CD + Ξ) +Ws

[
∂fk
∂xl

]
W−1
s = 0̄. (3.28)

Representation of Ξ tends to be dense and this increase in density increases the computational cost of

factoring the Jacobian matrix when applying Newton method to Equation (3.27). Thus, the authors of

[17] proposed thresholding the low amplitude elements from Ξ to decrease the Jacobian matrix density.

This was achieved by checking each of the N × N blocks that make up J(Wsv̄s) and thresholding all

elements that are below the threshold (i.e. setting them to zero) which is calculated as:

hs = γ ·max |Ξi,j | , (3.29)

where 0 < γ < 1 is a thresholding parameter used to set the threshold and Ξi,j is the (i, j)th block of

Ξ. Since Ξ is thresholded before the simulation begins, there is a trade off between the sparsity and

accuracy of the thresholded convolution operation and there is a risk of causing an error in the final result

IAll variables for sample 1 are grouped together followed by the variables for sample 2, etc.

37

of the simulation if the threshold, which has to be selected by the designer running the simulation, is too

aggressive. Additionally, since thresholding is performed at the beginning of the simulation, Υs has to be

invariant of v̄s [17].

The results of this paper show that the sparsity of the wavelet domain Jacobian matrices are much

greater, once thresholding is applied, than the Jacobian matrices of an equivalent frequency domain

analysisI. However, since Ξ is used in the formulation of the system of equations, thresholding elements

from it leads the introduction of a small error into the final result of the thresholded simulations compared

to the non-thresholded simulations.

3.4 Review of Wavelet Selection Methods

There are many ways of measuring the performance of a wavelet and usually the performance metrics

are problem dependent. For example, in [19], it was shown that 8 coefficient Daubechies wavelets provided

the best performance, out of the wavelets being compared, for compression and denoising of electrocar-

diogram (ECG) signals. Denoising of the signal was achieved by thresholding low amplitude coefficients

from the noisy signal. The determination of best performance was based on how sparsely the signal was

represented by the wavelets being compared, how much Root Mean Squared (RMS) error was introduced

when low amplitude coefficients were thresholded, and how well the peaks of the denoised signal were

preserved.

In [20] several wavelet families were analyzed and compared for use with measurement of steady-state

harmonic distortion of power systems. Since the authors were interested in the third and fifth harmonic

components of the signal, they selected a five level transform. The scaling coefficients at this level would

contain the fundamental component while the fifth and fourth detail levels would contain the third and

fifth harmonic components of the original waveforms. The energy of the wavelet coefficients at each level

was compared with the calculated energy of each harmonic component of the waveforms studied and the

one with the least deviation between energy at each level and energy of each harmonic component was

considered the best. In this case, the Coiflet family of wavelets was found to be most suitable.

In [21] a study was performed on using wavelets with partial discharge (PD) detection. The authors

discussed a method for automatically selecting an appropriate mother wavelet by maximizing the correla-

tion coefficient between the signal being represented and the mother wavelet (this method was developed

by authors in [22]). This indicates that the sparsest wavelet domain representations of a signal occur with

Mother wavelets that exhibit similar behaviour to the signal. The paper also tests automatic thresholding

methods that are commonly used for removing noise. Since the mother wavelet is highly correlated with

IThe frequency domain analysis was performed by substituting matrices that perform the forward and reverse Fourier

transform operations for Ws and W−1
s .

38

the PD pulse signal being detected, most of the energy of the PD pulse signals in the wavelet domain will

be concentrated on a few wavelet subspaces (i.e. the signal is sparse) while the uncorrelated noise will be

spread out over all subspaces (i.e. is not sparse) and the noise can be removed by thresholding off the low

amplitude wavelet coefficients which leaves only the high amplitude wavelet coefficients that correspond

to the PD pulse signal being detected.

In [23], a comparison analysis of the sparsity of the Jacobian and derivative matrices between the

biorthogonal cubic spline wavelet in [55] and the Daubechies wavelet is presented. The authors [23] used

a formulation that was similar to that used in [17] but did not consider frequency defined components in

their circuit equation formulation. It is shown that the biorthogonal cubic spline wavelet led to higher

sparsity Jacobian and derivative matrices in their analysis. However, it is unclear what effect the inclusion

of frequency defined components would have on the Jacobian and derivative matrices.

3.5 Chapter Summary

In this chapter is a review of previous work performed on taking advantage of the sparse representations

that are possible with wavelets to increase the efficiency of periodic steady-state analysis. One topic of

research focused on utilizing wavelets to reduce the density of the Jacobian matrices by thresholding the

convolution matrix used with frequency defined components. The convolution matrix is represented in

the wavelet domain by including the forward and reverse transform matrices when the convolution matrix

is formed. Other works focused on utilizing the properties of a specific wavelet to reduce the size of the

system of equations by re-formulating the problem to calculate a sparse estimate of the solution to the

system of equations. The volume of work in this area is very limited. Based on the results of the reviewed

works as well as the results of this research, there is an advantage to SSWA in some cases. However, wither

or not wavelet domain steady-state analysis provides a computational advantage, as well as the selection

of the most suitable wavelet, is largely problem dependent. Therefore it is difficult to create a one size

fits all method which makes progress in this area of research slow. However, there is still much room for

further developments and research on this interesting topic. The following two chapters will discuss the

contributions of this thesis into ways to increase the efficiency of calculating the Newton update vectors

during each iteration of Newton method.

Presented in Chapter 4 is a study on the effect wavelet selection has on Jacobian matrix and nodal

variable vector sparsity. This study is an important requirement for further work since there were no

previous studies to determine which wavelet, if any, tends to provide the sparsest Jacobian matrix and

nodal variable vectors. Also presented and tested is an adaptive Jacobian matrix thresholding algorithm.

This algorithm was developed to address the issue of selection of an appropriate threshold by automatically

adjusting it each iteration of Newton method. The threshold is dependant on error introduced into the

39

Newton update vectors each iteration and, unlike the method described in Section 3.3, will not introduce

an error into the final result of the simulation.

Presented in Chapter 5 is a method that reduces the number of columns in the Jacobian matrix that

are used in the calculation of the Newton update vectors. This method was developed to allow for the

use of any wavelet basis. This method is modified to allow for the wavelets to be adaptively selected each

iteration. Utilization of a different wavelet basis for every nodal variable is also explored.

40

Chapter 4

Effect of Wavelet Selection on Periodic

Steady-State Analysis

An important consideration when selecting a wavelet is its effect on SSWA. Since the SSTD and SSWA

formulations in this thesis are equivalent (see Section 2.4), the wavelet choice has no effect on the con-

vergence of Newton method. The main effect of the wavelet choice is in the density of the nodal variable

vectors and the structure, and sparsity, of the Jacobian matrix. However, selection of an optimum wavelet

basis function for circuit simulation is not a straight forward task. The nodal variable waveforms for circuit

simulations can potentially have completely different shapes. This applies to nodal waveforms of differing

circuits as well as the waveforms for each node within the same circuit. Most of the nodal waveforms are

also unknown until they are calculated. A designer could select a wavelet based on the shape of the input

and expected output waveforms but this does not guarantee the selected wavelet will provide the sparsest

representations of the other nodes in the circuit. For this reason, a study on the effect that wavelets

selected from several families have on the sparsity of the nodal variable vectors and Jacobian matrices

was performed to determine which wavelet, if any, provides the sparsest vectors and matrices.

4.1 Adaptive Jacobian Thresholding

The study presented in this section, and published in [18], explores the effect that wavelets selected

from several families have on the sparsity of the nodal variable vectors and Jacobian matrices with five

test circuits. A method that performs adaptive thresholding, with an automatically selected threshold,

on the entire Jacobian matrix each iteration is also presented and tested. Unlike the method in [53],

this method does not run the risk of causing a deviation between the un-thresholded and thresholded

simulations since any error caused by thresholding the Jacobian matrix will be corrected during a later

Newton iteration. Additionally, since the Jacobian matrix is thresholded at each iteration, the convolution

41

matrix can vary with v̄. Another advantage of the automatic thresholding method is that a designer does

not have to determine an ideal threshold for use with each circuit problem. However, this method has

three disadvantages:

1. Extra computational overhead every iteration to perform the thresholding.

2. An error, which is dependent on how aggressive a threshold is used, is introduced to the calculation

of ∆v̂j+1.

3. Overaggressive thresholding can lead to additional iterations to converge or even a failure to con-

verge.

In order to overcome the first disadvantage, the thresholding algorithm has to be efficient enough for

the overhead of thresholding the Jacobian matrix to be lower than the computational speedup of solving

the sparser, thresholded, Jacobian matrix. The adaptive method used in this study is computationally

simple. All elements in the Jacobian matrix that have amplitudes below the adaptive threshold (h) are

set to zero and control of the threshold is achieved via simple vector and matrix/vector operations.

To overcome the second and third disadvantages, the adaptive method used in this study adapts the

threshold to control and minimize the error introduced into the computation of ∆v̂j+1. This is achieved

by adjusting the value of h based on the error introduced in the computations due to thresholding the

Jacobian matrix. After selecting a small initial value for h, an approximate Newton update (∆v̂j+1
h) is

obtained by using the thresholded Jacobian (Ĵh) to express Equation (2.58) as:

Ĵh∆v̂j+1
h = −f̂(v̂j). (4.1)

The Newton update is given by:

∆v̂j+1 = ∆v̂j+1
h + δ̂, (4.2)

where δ̂ is a vector that represents the difference between ∆v̂j+1 and ∆v̂j+1
h . Substituting Equation (4.2)

into Equation (2.58) yields:

Ĵ(v̂j)(∆v̂j+1
h + δ̂) = −f̂(v̂j),

Ĵ(v̂j)δ̂ = −f̂(v̂j)− Ĵ(v̂j)∆v̂j+1
h .

The introduced error, ε̂, is then given by:

ε̂ = |Ĵ(v̂j)δ̂| = |f̂(v̂j) + Ĵ(v̂j)∆v̂j+1
h |, (4.3)

where the vertical bars denote the absolute value of all elements in a vector. The values of the individual

elements of ε̂ should be comparable to the tolerance used to evaluate convergence of the Newton algorithm.

42

If an element is too large, then h must be reduced, conversely if all elements in ε̂ are very small, this

indicates that h may be increased. If ε̂ is in an acceptable range, h is left unchanged. Each element in ε̂

is controlled by comparison with an automatically calculated tolerance:

t̂ = rtolminimum{|f̂(v̂j)|, |Ĵ(v̂j)∆v̂j+1
h |}+ atolû, (4.4)

where û ∈ <NM is a vector with all elements set to 1 and rtol and atol are selected relative and absolute

tolerances. Operation minimum{} performs an element wise comparison between f̂(v̂j) and Ĵ(v̂j)∆v̂j+1
h

with the result being a vector containing the minimum between the elements of f̂(v̂j) and Ĵ(v̂j)∆v̂j+1
h .

The relative tolerance ensures that each element in ε̂ will have amplitudes that are much lower than the

corresponding minimum element between Ĵ(v̂j)∆v̂j+1
h and f̂(v̂j).

Algorithm 4.1 Jacobian matrix adaptive threshold algorithm.

j ← 0

// Initial Newton iteration uses full Jacobian

∆v̂j+1 ← −Ĵ(v̂j)
−1
f̂(v̂j)

v̂j+1 ← v̂j + ∆v̂j+1

// Main loop for Newton iterations

repeat

j ← j + 1

Ĵh ← Threshold(Ĵ(v̂j), h)

∆v̂j+1
h ← −Ĵ−1

h f̂(v̂j)

v̂j+1 ← v̂j + ∆v̂j+1
h

ε̂← |f̂(v̂j) + Ĵ(v̂j)∆v̂j+1
h |

t̂← rtolminimum{|f̂(v̂j)|, |Ĵ(v̂j)∆v̂j+1
h |}+ atolû

k ← ‖ε̂� t̂‖∞

if k < 0.1 then

h← h× a

else if k > 1 then

h← h/b

end if

n̂← rtol min{|v̂j |, |v̂j+1|}+ atolû

until ∆v̂j+1
h,i < n̂i ,∀i ∈ {1, 2, . . . , NM} and

‖f̂(v̂j+1)‖∞ < atol

The proposed method for adaptive Jacobian thresholding is given in Algorithm 4.1. In this algorithm,

43

a and b are the threshold increase and decrease factors, ∆v̂j+1
h,i represents element i of ∆v̂j+1

h , and the

’ � ’ symbol denotes element-by-element division of two vectors (Hadamard division). The decision to

raise or lower the threshold is controlled by element-wise division of ε̂ by t̂ and then calculating:

k = ‖ε̂� t̂‖∞. (4.5)

For this thesis, if k is less than 0.1 then the threshold is increased and if k is greater than 1 then

the threshold is decreased. The selection of this range will effect how often the threshold is changed.

For example, in this thesis the range is 0.1 < k < 1. If the lower range is decreased (for example,

0.00001 < k < 1) then the threshold will not be increased as often as it would for the range used in this

thesis. If the upper range is increased (for example, 0.1 < k < 100), the threshold will be decreased less

often than it would for the range used in this thesis. Increasing the upper range will cause more error

to be allowed in the Newton updates before the threshold is lowered and could lead to an increase in

number of iterations required to converge. Therefore, it is not recommended to set this to a high number.

Setting the lower range to a lower number is safer but results in lower thresholds than could otherwise be

utilized. The threshold increase and decrease factors are used to control how the threshold changes. In

this study we have selected a = 2 and b = 10 so that the threshold will always decrease at a higher rate

than it increases. Although a and b have to be selected by a designer when the simulation is run, they

only affect the speed that the threshold is adjusted. Therefore, there is no risk of a user selected property

leading to an over aggressive threshold provided reasonable values for a and b are selected.

4.2 Simulation Studies

Simulations were run on an HP Envy 17-J170ca using the Cardoon circuit simulator. The operating

system is Ubuntu 18.04.3 LTS and the computer has 16GB DDR3 SDRAM and an 2.2GHz Intel Core

i7-4702MQ Processor with Turbo Boost Technology (feature is enabled and can overclock the processors

up to 3.2GHz). Simulations and thresholding were performed with the following parameters for each case

study and mother wavelet: atol = 10−7, rtol = 10−4, and an initial h = 10−7. The UMFPack algorithm

operates by performing a symbolic factorization step followed by a numeric factorization step. During

the symbolic factorization step, sparse matrix column pre-ordering is performed to reduce fill-inI before

the symbolic factorization is performed to estimate the structures of the L and U matrices. During each

simulation in this study, the matrix column pre-ordering is calculated during the first iteration only. This

pre-ordering is then re-used for each subsequent iteration. Thus, the sparse matrix pre-ordering is only

performed once per simulation. The numerical factorization step performs the LU factorization of the

Jacobian matrix to obtain the L and U factors.
IFill-in refers to the number of elements in the L and U matrix that begin with values of zero and are changed to non-zero

values by the end of factorization.

44

The results of simulations run with non-thresholded Jacobian matrices and adaptively thresholded

Jacobian matrices (Algorithm 4.1) are presented in this section. Three types of derivative estimates

were used for the time derivatives: The two point central differences method (DC2), four point central

differences method (DC4), and the Fourier derivative method (Fourier). For more information on these

methods, see Appendix A. Mother wavelets were selected from commonly used wavelet families to de-

termine the effect of both the wavelet shape and number of vanishing moments on each of the circuits

and, to maximize the sparsities of the vectors, the maximum level of transform allowed by each wavelet

was used. The maximum level of transform is reached when the scaling function has been dilated to a

scale where any further increase in scale would result in the scaling function being larger than the signal

being transformed. For example, the Haar wavelet scaling function at level 1, once discretized, has two

samples. Increasing the level of the transform will result in a scaling function with twice as many samples

as the previous levels scaling function. Increasing the level again will result in 4 samples, then 8, then

16, and so on until the scaling function has 512 samples (this occurs at level 9 since 29 = 512. Once

level 9 is reached there will be 1 coefficient in the scaling subspace and 9 wavelet subspaces. The Db2

wavelet, once discretized, has 4 samples at level 1. The maximum level transform for this wavelet would

be 7.I Since the scaling function is translated by a factor of 2 at each level of transform, the scaling and

wavelet subspaces at each level will have half as many coefficients as the previous level. With the Db2

wavelet, this would result in a scaling subspace with 512
27 = 4 coefficients at the maximum possible level

of transform. The number of scaling coefficients and wavelet subspaces for 512 time samples with the

mother wavelets used in this study are shown in Table 4.1. The number of time samples was manually

selected for this study and was determined experimentally as the minimum required number of samples

for the nodal variable vectors to have no significant error in them with every test circuit (compared to

simulations with a higher number of time samples).

Since the number of vanishing moments in the mother wavelet affects the maximum level of transform

that is possible, the number of scaling coefficients is not the same for every wavelet. Wavelets with a

higher number of vanishing moments will have a higher number of scaling coefficients. Since the scaling

coefficients are not thresholded, wavelets with a higher number of vanishing moments will tend to lead to

higher density vectors.

ISince 22 = 4 and each increase in level increases the number of samples in the scaling function by a factor of 2, it would

require 7 additional increases in level of transform for the scaling function to have 512 samples.

45

Table 4.1: Number of scaling coefficients and wavelet subspaces for 512 time samples with selected mother

wavelets.

Wavelet
Number of Number of

Wavelet
Number of Number of

scaling coefficients wavelet subspaces scaling coefficients wavelet subspaces
Haar 1 9 Coif12 128 2
Db2 4 7 Coif16 128 2
Db3 8 6 Sym2 4 7
Db4 8 6 Sym3 8 6
Db8 16 5 Sym4 8 6
Db12 32 4 Sym8 16 5
Db16 32 4 Sym12 32 4
Dmey 64 3 Sym16 32 4
Coif2 16 5 Bior1.1 1 9
Coif3 32 4 Bior4.4 16 5
Coif4 32 4 Bior6.8 32 4
Coif8 64 3

Presented in this section are:

1. Input and output nodal waveforms.

2. Number of iterations.

3. Average v̂ density.

4. Average Jacobian density.

5. Variation of h per iteration.

6. Simulation times for SSTD and SSWA (with no thresholding, with adaptive thresholding, and with

a static threshold) with some selected wavelets using the DC2 derivative.

7. Change in average number of non-zero elements in the L and U matrices.

The input and output nodal waveforms are presented to show that there is no difference between the final

result of the thresholded and non-thresholded simulations. The number of iterations is presented to show

that there is no large change in number of iterations, if any, when applying the Jacobian thresholding. The

average density of v̂ for all iterations with the different mother wavelets is shown for each simulation. This

is important to estimate the potential savings that could be obtained by methods that take advantage of

low density nodal vectors [10].

Many of the wavelet coefficients in the nodal variables will have negligible amplitudes. For this

reason, the nodal waveforms are thresholded to remove the low amplitude coefficients. Since each nodal

46

variable has its own waveform, the wavelet coefficients for each node are thresholded independently with

a threshold that is selected using the following formula:

tv = rtol‖v̂k‖∞ + atol; (4.6)

where v̂k is a vector of wavelet domain nodal voltages for node k. All wavelet coefficients for node k that

have an amplitude that is below tv are then set to zero (the scaling coefficients are not thresholded). The

average Jacobian density and variation of h are presented to show how much h affects Jacobian sparsity.

To illustrate the potential trade off between computational savings and overhead of the thresholding

method, the simulation time for SSTD is also presented and compared with the simulation times of the

wavelets that provided the sparsest Jacobian matrices and v̂ vectors with the DC2 derivative. The Haar

wavelet provided the lowest average Jacobian densities for all circuits except for the ultrasound transducer

driver with Jacobian matrix thresholding where the Db4 wavelet provided the lowest average Jacobian

density. The sparsest wavelet for the inverter chain circuit was the Sym3 wavelet. The Db2 and Sym2

wavelets were tied for the Gilbert cell, ultrasound transducer driver, and transmission line circuits. The

Db4 wavelet provided the sparsest v̂ vectors for the stepped impedance filter circuit. When applying

the adaptive threshold, the Jacobian matrix pre-ordering from the first iteration is re-used for every

subsequent iteration.I This could potentially affect the fill-ins that occur when factorizing the thresholded

Jacobian matrices at each subsequent iteration. For this reason, the change in average number of non-zero

elements in the L and U matrices between the thresholded and un-thresholded simulations is compared.

Since there can be a small effect on matrix and vector densities when applying the adaptive thresholding

method to SSTD, the number of iterations, v̂ densities, Jacobian matrix densities, simulation times,

numerical factorization times, symbolic factorization times, and difference in L and U matrix densities

are included for thresholded SSTD for comparison.

4.2.1 Inverter Chain

The first case study is the CMOS inverter chain circuit shown in Figure 4.1. The ALD1103 IC used

in these simulations is made up of 2 matched pairs of MOSFETs. They were modelled using the intrinsic

portion of the EKV 2.6 model [56].II The model parameters were extracted from measurements from

an ALD1103 chip. There are 7 nodal variables with 512 time samples for this circuit which results in

3584 unknowns. The non-thresholded (solid line) and thresholded (dashed line) input and output voltage

waveforms are shown in Figure 4.2. The vector thresholding method has an insignificant effect on the

time domain representation of the signals.

IThe first iteration Jacobian matrix is not thresholded and, therefore, the thresholding method will not affect the calculated

pre-ordering.
IIFor more information see the ekv i model at: https://vision.lakeheadu.ca/cardoon/device library.html#ekv-i-intrinsic-

epfl-ekv-2-6-mosfet

47

Figure 4.1: Inverter chain schematic.

Figure 4.2: Input and output waveforms for the inverter chain. Dashed line represents the signals after

they are thresholded.

Figure 4.3 shows the Jacobian density for all simulations and Table 4.2 shows a detail for the lowest

un-thresholded and thresholded densities, with the thresholded densities denoted between parentheses.

The time domain simulation provided the lowest Jacobian densities for DC2 and DC4.

48

Figure 4.3: Average Jacobian densities for the inverter chain.

Table 4.2: Inverter chain lowest Jacobian densities in %. Densities for the adaptive Jacobian threshold

simulations are shown in parentheses.

Domain time Haar Bior1.1
DC2 (thresholded) 0.22 (0.21) 1.62 (1.36) 1.59 (1.36)
DC4 (thresholded) 0.37 (0.35) 1.69 (1.33) 1.69 (1.33)

Figure 4.4: Average v̂ densities for the inverter chain.

For wavelet simulations there are no significant density differences between the DC2 and DC4 derivative

methods. The Haar wavelet and the Biorthogonal 1.1 wavelet, which is an Biorthogonal equivalent to the

Haar wavelet, performed best in terms of Jacobian densities. As expected, the Fourier derivative produces

the highest Jacobian densities and it is clear that this kind of derivative approximation can not compete

49

with finite differences.

The average density of v̂ with the non-thresholded and thresholded Jacobian matrices, is shown in

Figure 4.4. The Daubechies and Symlet wavelets have similar densities and there is a slight increase in

density as the number of vanishing moments increases. The Haar, Bior1.1, Coif12, Coif16, and Dmey

wavelets had the highest densities. This is due to how the wavelets represent the nodal waveforms. The

smooth waveforms of the Input and Output1 nodes, along with any smooth waveforms for nodes that are

not shown, will not be sparsely represented by the Haar wavelet and cannot be thresholded much before a

large amount of time domain error is introduced. Similarly, the Output2 and Output3 nodal waveforms,

along with any sharply changing waveforms that are not shown, will not be represented sparsely by the

Dmey and Coiflet wavelets. The other wavelets represent a middle ground between the aforementioned

wavelets and are sparser as a result. For some simulations, the effect of thresholding the Jacobian matrix

results in a small variation of the density of v̂ at some iterations. The error introduced by using v̂j+1
h

can change the waveforms enough to alter the density of v̂ and a small change in density can be expected

with the adaptive thresholding method.

Figure 4.5: Variation of h and Jacobian density at each iteration for the inverter chain using the Haar

wavelet.

The variation of h and the Jacobian density using the Haar wavelet, which led to the lowest average

Jacobian matrix density when thresholding was applied, at each iteration are shown in Figure 4.5. The

threshold value has relatively large variations that, with the exception of the Fourier derivatives, do not

have a large effect on Jacobian density.

The number of iterations necessary for convergence is shown in Figure 4.6. The difference in the

number of iterations seen with some wavelet/derivative combinations is due to the error introduced by

50

using ∆v̂j+1
h instead of ∆v̂j+1 when the thresholded Jacobian matrix is used. The difference represents

an extra error that has to be accounted for and can lead to extra iterations. It is also possible for this

error to be a ‘lucky guess’ and cause the number of iterations to be lower. We can see from Figure 4.5

that a single threshold does not perform optimally, in terms of error, for all iterations and h must be

adapted as the simulation runs to keep the error at a minimum. The thresholding method is effectively

adapting this threshold and keeping the error low enough to only cause a small alteration in the number

of iterations required for the simulation to converge for most cases.

Figure 4.6: Number of iterations for the inverter chain.

There are some mother wavelets, even when no Jacobian thresholding is used, that required a different

number iterations to converge on a solution than the time domain simulation. This is likely due to

rounding errors introduced into the vectors during the forward and backward wavelet transforms. Given

the observed disadvantages of using the Fourier derivative in the considered simulations (i.e. when the

error function is not defined in the frequency domain), this derivative is not included for the remaining

examples.

The simulation run times for the Inverter chain for the time domain and Haar and Sym2 wavelets are

shown in Table 4.3. The static threshold selected for this circuit was 10−9 and is, roughly, the average

threshold used by the adaptive thresholding method (see Figure 4.5). All wavelets exhibit a speedup

when adaptive Jacobian matrix thresholding is applied and, due to a reduction in number of iterations,

the speedup in one case was enough for the adaptively thresholded simulation to be faster than SSTD.

Based on the per-iteration times, the adaptively thresholded simulations would still exhibit a speedup

over un-thresholded SSWA if the number of iterations was unchanged. The static threshold tended to

be slower than the adaptive threshold method. The static threshold matched the per-iteration numeric

51

factorization time of the adaptive thresholding method with the Haar simulation with the DC4 derivative

and exhibited lower per-iteration numerical factorization times than the adaptive thresholding method

with both Sym3 simulations.

Table 4.3: Total simulation, symbolic factorization, and numeric factorization timing data, in seconds,

for the inverter chain circuit with the Haar and Sym3 wavelets. The per-iteration times are shown

in brackets. The static threshold value was 10−9. Green font indicates the cases where the adaptive

thresholding method is faster than the non-thresholded method while blue font indicates the cases where

the static thresholding method is faster than the adaptive thresholding method.

DC2 DC4

No Thresh Adaptive Static No Thresh Adaptive Static

T
im

e

Total
30.66 36.04 39.23 35.83 36.27 35.41
[0.989] [0.974] [1.060] [0.995] [0.980] [1.041]

Symbolic
0.162 0.167 0.169 0.175 0.179 0.177
[0.005] [0.005] [0.005] [0.005] [0.005] [0.005]

Numeric
0.437 0.458 0.456 0.463 0.471 0.476
[0.014] [0.012] [0.012] [0.013] [0.013] [0.014]

Iterations 31 37 37 36 37 34

H
aa

r

Total
43.35 41.40 41.79 43.82 35.53 38.33
[1.204] [1.118] [1.161] [1.123] [1.110] [1.128]

Symbolic
0.295 0.276 0.291 0.281 0.261 0.274
[0.008] [0.008] [0.008] [0.007] [0.008] [0.008]

Numeric
0.926 0.852 0.898 0.982 0.780 0.831
[0.026] [0.023] [0.025] [0.025] [0.024] [0.024]

Iterations 36 37 36 39 32 34

S
y
m

3

Total
60.98 49.70 40.92 85.30 51.30 47.07
[1.418] [1.381] [1.240] [1.551] [1.350] [1.272]

Symbolic
0.528 0.460 0.362 0.730 0.470 0.391
[0.012] [0.013] [0.011] [0.013] [0.0124] [0.011]

Numeric
3.920 3.110 1.675 5.670 3.217 1.808
[0.091] [0.086] [0.051] [0.103] [0.085] [0.049]

Iterations 43 36 33 55 38 37

4.2.2 Gilbert Cell

The second case study is the Gilbert cell circuit shown in Figure 4.7. There are 15 nodal variables in

this circuit with 512 time samples which results in 7680 variables. The non-thresholded (solid line) and

thresholded (dashed line) input and output voltage waveforms are shown in Figure 4.8. This circuit has

waveforms with shapes that are a mixture of sharply changing pulses and smoothly changing curves.

52

Figure 4.7: Gilbert cell schematic.

Figure 4.8: Input and output waveforms for the Gilbert cell. Dashed line represents the signals after they

are thresholded.

The Jacobian densities are given in Figure 4.9 and Table 4.4. The wavelets that have the lowest number

of vanishing moments lead to the sparsest Jacobian matrices and the greatest reduction in density, when

thresholding is applied, occurred with wavelets with the highest number of vanishing moments. The time

domain led to the sparsest Jacobian matrices. The variation of h and the Jacobian density using the

Haar wavelet at each iteration is shown in Figure 4.10. Only small variations in the density occur as the

53

Jacobian matrix threshold varies.

Figure 4.9: Average Jacobian densities for the Gilbert cell.

Table 4.4: Gilbert cell lowest Jacobian densities in %. Densities for the adaptive Jacobian threshold

simulations are shown in parentheses.

Domain time Haar Bior1.1
DC2 (thresholded) 0.13 (0.11) 0.78 (0.58) 0.78 (0.58)
DC4 (thresholded) 0.21 (0.17) 0.87 (0.59) 0.87 (0.59)

Figure 4.10: Variation of h and Jacobian density at each iteration for the Gilbert cell using the Haar

wavelet.

54

Figure 4.11: Average v̂ densities for the Gilbert cell.

Figure 4.12: Number of iterations for the Gilbert cell.

The average density of v̂ with and without adaptive Jacobian thresholding is shown in Figure 4.11.

The lowest density representations of v̂ occur with the wavelets with the lowest number of vanishing

moments. The number of iterations for each of the simulations is shown in Figure 4.12. The time domain

simulations required 8 iterations to converge while the wavelet domain simulations required 7 and the

number of iterations remains unchanged when Jacobian thresholding is used which indicates that the

thresholding algorithm successfully keeps the error introduced by Jacobian thresholding at a minimum

with this test case.

The simulation run times for the Gilbert cell for the time domain and Haar, Db2, and Sym2 wavelets

are shown in Table 4.5. The static threshold used for this circuit was 10−8 which represents a rough

average of the threshold values used by the adaptive thresholding method (see Figure 4.10). All the

adaptive threshold simulations exhibited a small speedup over the non-thresholded case and the per-

55

iteration numeric factorization times are all lower with the adaptively thresholded simulations. None of

the wavelet simulations were faster than SSTD. The adaptive thresholding method exhibited lower per-

iteration numeric factorization times than the static threshold for all but the Haar wavelet simulations

and the time domain simulation with the DC4 derivative.

Table 4.5: Total simulation, symbolic factorization, and numeric factorization timing data, in seconds,

for the Gilbert cell circuit with the Haar, Db2, and Sym2 wavelets. The per-iteration times are shown

in brackets. The static threshold value was 10−8. Green font indicates the cases where the adaptive

thresholding method is faster than the non-thresholded method while blue font indicates the cases where

the static thresholding method is faster than the adaptive thresholding method.

DC2 DC4

No Thresh Adaptive Static No Thresh Adaptive Static

T
im

e

Total
13.50 14.25 16.62 13.84 14.61 16.18
[1.687] [1.782] [2.078] [1.730] [1.826] [2.023]

Symbolic
0.6799 0.6955 0.7287 0.6855 0.6989 0.793
[0.085] [0.087] [0.091] [0.086] [0.087] [0.099]

Numeric
3.839 4.051 4.189 3.903 4.036 3.919
[0.480] [0.506] [0.524] [0.488] [0.505] [0.490]

Iterations 8 8 8 8 8 8

H
aa

r

Total
17.60 16.49 16.52 17.40 16.67 17.01
[2.514] [2.356] [2.360] [2.485] [2.381] [2.431]

Symbolic
0.797 0.766 0.769 0.777 0.784 0.762
[0.114] [0.109] [0.110] [0.111] [0.112] [0.109]

Numeric
5.021 4.565 4.514 4.892 4.519 4.346
[0.717] [0.652] [0.645] [0.699] [0.646] [0.621]

Iterations 7 7 7 7 7 7

D
b

2

Total
25.06 23.02 24.67 25.31 23.61 25.00
[3.581] [3.288] [3.525] [3.616] [3.372] [3.572]

Symbolic
0.870 0.949 0.944 0.870 0.969 0.930
[0.124] [0.136] [0.135] [0.124] [0.138] [0.133]

Numeric
9.690 8.426 9.258 9.855 8.113 9.504
[1.384] [1.204] [1.323] [1.408] [1.159] [1.358]

Iterations 7 7 7 7 7 7

S
y
m

2

Total
24.744 22.902 23.909 25.242 22.764 24.909
[3.535] [3.272] [3.416] [3.606] [3.252] [3.559]

Symbolic
0.853 0.960 0.928 0.855 0.961 0.936
[0.122] [0.137] [0.133] [0.122] [0.137] [0.134]

Numeric
9.834 8.3794 9.074 9.733 7.925 9.507
[1.405] [1.197] [1.296] [1.390] [1.132] [1.358]

Iterations 7 7 7 7 7 7

4.2.3 Ultrasound Transducer Driver

The third case study is the ultrasound transducer driver circuit, shown in Figure 4.13, which is similar

to the one discussed in [57]. There are 8 nodal variables in this circuit with 512 time samples which

56

results in 4096 unknowns. The transducer in this circuit is modelled in the frequency domain, using the

measured S-parameters in a frequency range from 800kHz to 10MHz. Outside of this range, the transducer

is modelled as a capacitor.

Figure 4.13: Ultrasound transducer driver schematic.

Figure 4.14: Input and output waveforms for the ultrasound transducer driver. Dashed line represents

the signals after they are thresholded.

The MOSFETs are modelled using the ACM model [58].I Figure 4.14 shows the input, output, and

transducer current waveforms. The vector thresholding method causes no significant change in the time

IFor more information see the acms i model at: https://vision.lakeheadu.ca/cardoon/device library.html#acms-i-

simplified-acm-intrinsic-mosfet

57

Figure 4.15: Measured vs Simulated output waveform of the ultrasound transducer driver.

domain representation of the nodal waveforms. Figure 4.15 shows the simulated SSWA output waveform

vs data measured from a constructed circuit (data from [57]). The simulated results closely resemble the

measured output.

Figure 4.16: Average Jacobian densities for the ultrasound transducer driver.

The Jacobian density for each simulation is given in Figure 4.16. Densities tend to be higher with

some wavelets due to the presence of the frequency-domain transducer model. As seen in Equation

(2.14), the dense blocks contributed by that model are independent of the method used to approximate

time derivatives.

58

Figure 4.17: Average v̂ densities for the ultrasound transducer driver.

The wavelets with the lowest number of vanishing moments lead to the sparsest Jacobian matrices

while the wavelets with the highest number of vanishing moments lead to the greatest decrease in Jacobian

density when thresholding is applied. The time domain leads to the sparsest Jacobian matrices when no

thresholding is applied but, with thresholding, some wavelets lead to slightly sparser Jacobian matrices

than the time domain.

Figure 4.18: Variation of h and Jacobian density at each iteration for the ultrasound transducer driver

using the Db4 wavelet.

Figure 4.17 shows the density of v̂. The wavelets with the lowest number of vanishing moments tend

to lead to the lowest density representations of v̂ with the exception of the Haar wavelet which, due to the

presence of very smooth waveforms, leads to higher density representations of v̂ than other wavelets with

a similar number of vanishing moments. The Db4 wavelet leads to the lowest average v̂ vector densities.

59

This suggests the Db4 wavelet has a higher correlation to v̂ on average than the other wavelets.

Figure 4.19: Variation of h and Jacobian density at each iteration for the ultrasound transducer driver

using the Haar wavelet.

The variation of h and the Jacobian density are shown in Figure 4.18 for the Db4 wavelet, which

led to the sparsest Jacobian matrices when thresholding was applied. There are no large variations in

Jacobian density observed as the threshold changes. The variation of h and the Jacobian density with

the Haar wavelet are shown in Figure 4.19. There are no large variations in Jacobian density observed as

the threshold changes. The range of values h took during the simulation is roughly similar to the range

of values of h seen with the Db4 wavelet but the effect of thresholding on the Db4 Jacobian density is

more significant.

Figure 4.20: Number of iterations for the ultrasound transducer driver.

60

Table 4.6: Total simulation, symbolic factorization, and numeric factorization timing data, in seconds, for

the ultrasound transducer driver circuit with the Haar, Db2, Db4, and Sym2 wavelets. The per-iteration

times are shown in brackets. The static threshold value was 5×10−9. Green font indicates the cases where

the adaptive thresholding method is faster than the non-thresholded method while blue font indicates the

cases where the static thresholding method is faster than the adaptive thresholding method.

DC2 DC4

No Thresh Adaptive Static No Thresh Adaptive Static

T
im

e

Total
11.71 20.65 27.20 35.07 26.78 35.90
[1.065] [2.581] [2.472] [3.188] [3.347] [3.264]

Symbolic
0.305 0.273 0.361 0.296 0.273 0.337
[0.028] [0.034] [0.033] [0.027] [0.034] [0.031]

Numeric
6.703 16.67 21.79 30.06 22.75 30.29
[0.609] [2.083] [1.981] [2.733] [2.844] [2.753]

Iterations 11 8 11 11 8 11

H
aa

r

Total
21.38 18.51 19.56 22.10 20.19 20.74
[2.138] [1.851] [1.956] [2.210] [2.019] [2.074]

Symbolic
0.329 0.297 0.319 0.342 0.296 0.301
[0.033] [0.030] [0.032] [0.034] [0.030] [0.030]

Numeric
16.04 13.19 14.16 16.53 14.77 15.38
[1.604] [1.319] [1.416] [1.653] [1.477] [1.538]

Iterations 10 10 10 10 10 10

D
b

2

Total
17.59 12.54 13.66 17.16 12.33 13.43
[1.955] [1.393] [1.518] [1.907] [1.370] [1.492]

Symbolic
0.415 0.271 0.289 0.398 0.271 0.282
[0.046] [0.030] [0.032] [0.044] [0.030] [0.031]

Numeric
11.56 7.103 8.194 11.27 6.915 8.109
[1.284] [0.789] [0.910] [1.252] [0.768] [0.901]

Iterations 9 9 9 9 9 9

D
b

4

Total
24.56 12.71 13.83 23.58 12.91 13.86
[2.729] [1.412] [1.537] [2.620] [1.435] [1.541]

Symbolic
0.530 0.270 0.285 0.520 0.278 0.298
[0.059] [0.030] [0.032] [0.058] [0.031] [0.033]

Numeric
17.66 7.070 7.908 16.630 7.200 7.940
[1.962] [0.786] [0.879] [1.848] [0.800] [0.882]

Iterations 9 9 9 9 9 9

S
y
m

2

Total
16.76 12.25 14.27 17.04 12.15 13.37
[1.862] [1.361] [1.586] [1.893] [1.350] [1.485]

Symbolic
0.406 0.270 0.299 0.390 0.273 0.281
[0.045] [0.030] [0.033] [0.043] [0.030] [8.112]

Numeric
10.89 6.929 8.712 11.11 6.783 8.112
[1.211] [0.770] [0.968] [1.235] [0.754] [0.901]

Iterations 9 9 9 9 9 9

The number of iterations for each of the simulations is shown in Figure 4.20. Thresholding caused

no change in the number of iterations required for convergence for the wavelets but did alter the number

of iterations for the time domain. Since the number of iterations remains unchanged when Jacobian

61

thresholding is applied with the wavelet domain simulations, the error is kept low enough to not increase

the number of iterations necessary to achieve convergence when Jacobian thresholding is applied. The

time domain simulations have less coefficients in the Jacobian matrix that can be removed via thresholding

without introducing a large amount of error. The error in the time domain simulations with thresholding,

in this case, was a ’lucky guess’ and led to a reduction in number of iterations.

The simulation run times for the transducer driver for the time domain and Haar, Db4, and Sym2

wavelets are shown in Table 4.6. The static threshold used for this circuit was 5× 10−9 which represents

a rough average of the threshold values used by the adaptive thresholding method (see Figures 4.18 and

4.19). There are significant speedups with all but one of the wavelets when adaptive Jacobian matrix

thresholding is applied. The average Jacobian matrix density is not significantly reduced by adaptive

Jacobian matrix thresholding with the Haar wavelet and, therefore, the speedup is also small. The

Db4 wavelet did not lead to the lowest numeric factorization times even though the Jacobian matrix

density was lower than the Sym2 wavelet when adaptive thresholding was applied. Additionally, there

is no significant reduction in Jacobian density with the Haar wavelet but a speedup is still observed.

All of the non-thresholded and adaptively thresholded simulations with the DC4 derivative ran faster

than the time domain. The adaptive threshold led to lower per-iteration numeric factorization times

than the static threshold for all but the time domain simulations. For the Db2 and Sym2, the per-

iteration numeric factorization times are significantly higher with the static threshold than the adaptive

thresholding method.

4.2.4 Transmission Line Circuit

The fourth case study is the transmission line circuit shown in Figure 4.21, which is based on an

example circuit in [59] with an added inverter stage at the output. There are 18 nodal variables in this

circuit with 512 time samples which results in 9216 variables. The transmission line is modelled in the

frequency domain by its scattering parameters, which are generated using its physical characteristics:

length of 1m, effective relative dielectric constant of 21, attenuation of 1 dB/m, and a characteristic

impedance of 50 Ω. The MOSFETs for the inverter stage use the intrinsic portion of the EKV 2.6

model [56]I with 0.5µm CMOS parameters (EKV v2.6 parameters for 0.5µm CMOS EPFL-EKV, 1999)II

and have a channel length of 0.5µm and channel width of 10µm. The non-thresholded (solid line) and

thresholded (dashed line) input and output waveforms and the voltages at two of the transmission line

ports are shown in Figure 4.22. The vector thresholding method causes no significant change in the time

domain representation of the nodal waveforms.

IFor more information see the ekv i model at: https://vision.lakeheadu.ca/cardoon/device library.html#ekv-i-intrinsic-

epfl-ekv-2-6-mosfet
IIhttps://www.epfl.ch/labs/iclab/wp-content/uploads/2019/02/ekv v262.pdf

62

Figure 4.21: Transmission line circuit schematic.

Figure 4.22: Input and output waveforms for the transmission line circuit. Dashed line represents the

signals after they are thresholded.

The Jacobian densities are given in Figure 4.23. The wavelets with the lowest number of vanishing

moments provide the lowest density Jacobian matrices while the greatest reduction in density occurs with

wavelets that have the highest number of vanishing moments. When Jacobian thresholding is applied,

many of the wavelets exhibit densities that are below that of the time domain.

The threshold and Jacobian density at each iteration with the Haar wavelet is shown in Figure 4.24.

There are no large variations in Jacobian density observed as the threshold changes. The Jacobian

thresholding method is successful in keeping the error introduced by thresholding the Jacobian matrix

low enough not to alter the number of iterations required for the simulation to converge.

63

Figure 4.23: Average Jacobian densities for the transmission line circuit.

Figure 4.24: Variation of h and Jacobian density at each iteration for the transmission line circuit using

the Haar wavelet.

The density of v̂ is shown in Figure 4.25. The wavelets with the lowest number of vanishing moments

led to the lowest density v̂ with all but the biorthogonal wavelets. Jacobian thresholding had no significant

effect on the density of v̂.

The number of iterations for each of the simulations is shown in Figure 4.26. Thresholding caused

no change in the number of iterations required for convergence. The number of iterations was often not

significantly changed when using wavelets instead of the time domain. However, for the DC4 derivative

method and Haar, Bior1.1, and Bior4.4 wavelets, there is a significant difference between the time and

wavelet domain.

The simulation run times for the transmission line circuit for the time domain and Haar and Sym2

64

wavelets are shown in Table 4.7. There is a speedup with all of the adaptively thresholded simulations,

compared to SSWA with no thresholding. The static threshold used for this circuit was 10−8 which repre-

sents a rough average of the threshold values used by the adaptive thresholding method (see Figure 4.24).

Based on per-iteration simulation times, all adaptively thresholded simulations but the Db2 wavelet sim-

ulations with the DC2 derivative ran faster than SSTD. For half of the test cases, the static threshold had

lower per-iteration numeric factorization times than the adaptive Jacobian matrix thresholding method.

Figure 4.25: Average v̂ densities for the transmission line circuit.

Figure 4.26: Number of iterations for the transmission line circuit.

65

Table 4.7: Total simulation, symbolic factorization, and numeric factorization timing data, in seconds,

for the transmission line circuit with the Haar, Db2, and Sym2 wavelets. The number of iterations is

shown in brackets. The static threshold value was 10−8. Green font indicates the cases where the adaptive

thresholding method is faster than the non-thresholded method while blue font indicates the cases where

the static thresholding method is faster than the adaptive thresholding method.

DC2 DC4

No Thresh Adaptive Static No Thresh Adaptive Static

T
im

e

Total
86.41 95.23 115.9 107.6 109.3 109.5
[2.541] [2.801] [3.410] [3.470] [3.528] [3.532]

Symbolic
2.538 2.267 2.578 2.181 2.221 2.223
[0.075] [0.067] [0.076] [0.070] [0.072] [0.072]

Numeric
54.00 63.15 79.69 79.12 77.64 76.06
[1.588] [1.857] [2.344] [2.552] [2.505] [2.454]

Iterations 34 34 34 31 31 31

H
aa

r

Total
98.97 61.04 67.15 52.46 32.42 31.21
[2.828] [1.744] [1.919] [3.497] [2.316] [2.080]

Symbolic
3.069 1.990 2.013 1.478 1.034 0.923
[0.088] [0.057] [0.057] [0.099] [0.074] [0.062]

Numeric
59.55 25.98 28.82 33.51 15.21 13.16
[1.701] [0.742] [0.823] [2.234] [1.087] [0.875]

Iterations 35 35 35 15 14 15

D
b

2

Total
86.89 85.59 90.78 86.91 84.66 87.27
[2.633] [2.594] [2.751] [2.634] [2.565] [2.645]

Symbolic
4.183 3.776 4.141 4.312 3.811 4.149
[0.127] [0.114] [0.126] [0.131] [0.116] [0.126]

Numeric
43.40 42.67 44.17 42.72 41.72 41.82
[1.315] [1.293] [1.338] [1.295] [1.264] [1.267]

Iterations 33 33 33 33 33 33

S
y
m

2

Total
89.77 87.79 84.15 89.99 83.88 83.82
[2.720] [2.660] [2.550] [2.727] [2.542] [2.540]

Symbolic
4.465 3.807 3.847 4.435 3.806 3.915
[0.135] [0.115] [0.117] [0.134] [0.115] [0.119]

Numeric
43.98 44.61 41.10 45.86 41.69 40.46
[1.333] [1.352] [1.246] [1.390] [1.263] [1.226]

Iterations 33 33 33 33 33 33

4.2.5 Stepped Impedance Filter Circuit

The last case study is the stepped impedance filter circuit shown in Figure 4.27. There are 64 nodal

variables in this circuit with 512 time samples which results in 32768 variables, making this the largest

problem tested in this study. The transmission lines are modelled in the frequency domain using scattering

parameters that are generated using their physical characteristics which are given in Figure 4.27. The

filter has a cutoff frequency of 14Ghz. The LMA411 is a model of the Filtronics X-band MMIC low noise

amplifier[60]. The non-thresholded (solid line) and thresholded (dashed line) input and output waveforms

66

and the voltage at the input of the LMA411 (node A) are shown in Figure 4.28.

Figure 4.27: Stepped impedance filter circuit schematic.

The Jacobian densities are given in Figure 4.29. The wavelets with the lowest number of vanishing

moments provide the lowest density Jacobian matrices while the greatest reduction in density occurs with

wavelets that have the highest number of vanishing moments. When Jacobian thresholding is applied,

many of the wavelets exhibit densities that are below that of the time domain.

Figure 4.28: Input and output waveforms for the stepped impedance filter circuit. Dashed line represents

the signals after they are thresholded.

67

Figure 4.30 shows the density of v̂. Due to the presence of very smooth waveforms, the wavelets with

the lowest number of vanishing moments do not tend to provide the lowest density v̂ waveforms. The

lowest density v̂ occurs with the Db4 wavelet.

Figure 4.29: Average Jacobian densities for the stepped impedance filter circuit.

The variation of h and the Jacobian density with the Haar wavelet are shown in Figure 4.31. There

are no large variations in Jacobian density observed as the threshold changes.

Figure 4.30: Average v̂ densities for the stepped impedance filter circuit.

68

Figure 4.31: Variation of h and Jacobian density at each iteration for the stepped impedance filter circuit

using the Haar wavelet.

Figure 4.32: Number of iterations for the stepped impedance filter circuit.

The number of iterations for each of the simulations is shown in Figure 4.32. Thresholding caused no

change in the number of iterations required for convergence. The number of iterations was not changed

when using wavelets instead of the time domain. The simulation run times for the stepped impedance

filter circuit for the time domain and Haar and Db4 wavelets are shown in Table 4.8. The static threshold

used for this circuit was 10−8 which represents a rough average of the threshold values used by the adaptive

thresholding method (see Figure 4.31). There is a speedup with the Haar wavelet when adaptive Jacobian

thresholding is applied. This speedup is enough for the adaptively thresholded simulations to be faster

than SSTD when SSWA with no thresholding was not. For half of the test cases, the static threshold led

to a lower per-iteration numerical factorization time than the adaptive thresholding method.

69

Table 4.8: Total simulation, symbolic factorization, and numeric factorization timing data, in seconds,

and calculated speedup for the stepped impedance filter circuit with the Haar and Db4 wavelets. The

number of iterations is shown in brackets. The static threshold value was 10−8. Green font indicates the

cases where the adaptive thresholding method is faster than the non-thresholded method while blue font

indicates the cases where the static thresholding method is faster than the adaptive thresholding method.

DC2 DC4

No Thresh Adaptive Static No Thresh Adaptive Static

T
im

e

Total
287.5 272.9 288.8 292.2 284.6 291.4
[47.91] [45.48] [48.13] [48.71] [47.44] [48.56]

Symbolic
5.455 5.323 5.365 5.470 5.074 4.952
[0.909] [0.887] [0.894] [0.912] [0.846] [0.825]

Numeric
246.4 230.4 245.3 249.1 241.6 247.0
[41.06] [38.40] [40.89] [41.52] [40.27] [41.16]

Iterations 6 6 6 6 6 6

H
aa

r

Total
328.1 257.7 245.6 329.0 272.5 251.6
[54.68] [42.95] [40.93] [54.83] [45.41] [41.93]

Symbolic
5.789 5.069 5.253 5.585 5.475 5.233
[0.965] [0.845] [0.876] [0.930] [0.912] [0.872]

Numeric
279.6 207.5 197.8 277.7 222.7 203.94
[46.60] [34.58] [32.97] [46.28] [37.12] [33.99]

Iterations 6 6 6 6 6 6

D
b

4

Total
267.6 350.9 339.42 264.7 345.0 341.3
[44.61] [58.48] [56.57] [44.11] [57.50] [56.88]

Symbolic
12.71 11.73 11.88 15.588 13.78 12.58
[2.119] [1.956] [1.980] [2.598] [2.296] [2.10]

Numeric
193.4 275.5 258.5 187.8 261.5 263.7
[32.24] [45.92] [43.09] [31.30] [43.59] [43.95]

Iterations 6 6 6 6 6 6

4.3 Discussion

The Newton updates are calculated by performing LU factorization on the thresholded Jacobian

matrices using the UMFPack routines in SuiteSparse [49]. The difference in average density of the L and

U matrices between non-thresholded SSWA and SSWA with adaptive Jacobian matrix thresholding are

shown in Figures 4.33 and 4.34. Since the adaptive thresholding method will have an effect on the sparsity

pattern of the Jacobian matrix, the densities of the L and U matrices are compared to determine the effect

the adaptive Jacobian matrix thresholding method has on fill-in. The difference in non-zero elements is

calculated by subtracting the number of non-zero elements in the L and U matrices of SSWA with

adaptive Jacobian matrix thresholding from the number of non-zero elements in the L and U matrices of

SSWA without Jacobian matrix thresholding. Thus, a positive difference in number of non-zero elements

indicates that there are fewer non-zero elements in the L and U matrices when adaptive Jacobian matrix

thresholding is applied. The average density of the L and U matrices is lower when adaptive Jacobian

70

matrix thresholding is applied in all cases for the inverter chain, Gilbert cell, and ultrasound transducer

driver circuits. However, some wavelets with the transmission line circuit exhibit an increase in L matrix

density and many wavelets with the stepped impedance filter circuit exhibit an increase in L and/or U

densities. Thus it is possible for fill-in to increase, and negatively affect simulation speed and memory

utilization, with the adaptive thresholding method if the first iteration column pre-ordering is re-used.

Figure 4.33: Difference between the average density of the L matrices with and without adaptive Jacobian

matrix thresholding. A positive number indicates that the L matrices resulting from the non-thresholded

Jacobian matrices have a higher number of non-zero elements, on average, than the L matrices resulting

from the adaptively thresholded Jacobian matrices.

71

Figure 4.34: Difference between the average density of the U matrices with and without adaptive Jacobian

matrix thresholding. A positive number indicates that the U matrices resulting from the non-thresholded

Jacobian matrices have a higher number of non-zero elements, on average, than the U matrices resulting

from the adaptively thresholded Jacobian matrices.

With the stepped impedance filter circuit, there is a slowdown when the Db4 wavelet was utilized (see

Figure 4.8). The increase in average L and U matrix densities when adaptive Jacobian matrix thresholding

is utilized is high which indicates a significant increase in computational resources required to compute

the extra elements, on average, in the L and U matrices and leads to the slowdown seen with this test

case. For the Db2 and Sym2 wavelets with the transmission line with inverter circuit, there is an increase

in L density but there is a decrease in U density. The increase in L density is high enough to remove

most of the advantage of thresholding the Jacobian matrix and the speedup with these wavelets is very

72

small as a result. The increase in L and U matrices appears to be the cause of the slowdown exhibited

with the Db4 wavelet with the stepped impedance filter circuit.

Since the Jacobian matrix sparsity pattern can change each iteration as the adaptive threshold changes,

it is possible for the sparse matrix pre-ordering found at the first iteration to become less efficient for

minimizing fill-ins. To test if a static threshold can mitigate this problem, the simulation speeds of a static

threshold were compared with the adaptive thresholding method. The results show for many, but not

all, cases the adaptive threshold leads to faster per-iteration numeric factorization times than the static

threshold. For the stepped impedance filter, the fill-ins caused a slowdown with the adaptive threshold

method. The static threshold exhibited lower factorization times for some of the test cases with the

stepped impedance filter circuit but these factorization times were still higher than the non-thresholded

simulations. It is possible that, by experimenting with thresholds, the static threshold method could

lead to faster simulation and factorization times than the adaptive thresholding method. However, one

of the problems that the adaptive thresholding method addresses is the need for a designer to manually

determine an ideal threshold for the simulation. Thus, using the adaptive thresholding method removes

the need for selecting an ideal threshold but comes at a trade off of a possible slowdown compared to an

ideally selected static threshold.

The adaptive threshold succeeded in reducing the average Jacobian density in the cases tested without

significantly altering the total number of iterations. The reduction in Jacobian density is higher for

wavelets that have a higher number of vanishing moments but the wavelets with the lowest number of

vanishing moments operate with the lowest Jacobian densities of the wavelet families both with and

without adaptive thresholding. The time domain tends to have the lowest Jacobian densities for circuits

without frequency defined components but, with thresholding, it is possible for the wavelets to achieve

lower Jacobian densities than the time domain when frequency defined components are present.

The average density of v̂ for all iterations was presented to estimate the potential savings that could

be achieved by methods that take advantage of low density nodal vectors. This density tends to be lowest

with wavelets that have the lowest number of vanishing moments. However, the Haar wavelet, which

provided the lowest density Jacobian matrices when Jacobian thresholding was not applied, exhibits a

higher v̂ density over other wavelets that have the a similar number of vanishing moments (Db2, Coif2,

and Sym2). This is due to the Haar wavelet not being able to describe smoothly changing waveforms as

sparsely as the other wavelet families. Thus, in terms of vector sparsity, Db2, Coif2, and Sym2 wavelets

are better suited than the Haar wavelet if a method that takes advantage of the sparsity of nodal variable

vectors is being used and the Sym2 wavelet provides the sparsest v̂ vectors of these wavelet families. For

the stepped impedance filter circuit the sparsest vector representations were not provided by the wavelets

73

with the lowest number of vanishing moments. Thus the Haar, Db2, Coif2, and Sym2 wavelets do not

always provide the sparsest vectors and simply selecting a wavelet with the lowest number of vanishing

moments will not guarantee the sparsest v̂ vectors will be achieved. The density of the v̂ vectors is much

lower for all wavelet domain representations than the time domain.

Figure 4.35: Effect of number of time samples on average Jacobian matrix density and average v̂ density.

The effect of changing the number of time samples on the average densities of the Jacobian matrix

for the Haar wavelet and v̂ using the Sym2 wavelet with the DC2 derivatives are shown in Figure 4.35

(results forDC4 derivatives are similar). The shaded boxes indicate the v̂ densities for the final results. The

average density of the Jacobian matrix is approximately halved as the number of samples is doubled for the

circuits without frequency defined elements. However, when frequency defined elements are introduced,

the density reduction rate is lower. The density of the nodal variable vectors does not follow the same

trend and is approximately halved for the inverter chain and transducer driver while the reduction rate

is lower for the Gilbert cell, transmission line, and stepped impedance filter circuits.

4.4 Chapter Summary

This chapter presented a study on the effect of wavelet selection on the sparsity of the Jacobian

matrices and the Newton update vectors of periodic steady-state analysis with wavelets. Also presented

was a method that increased the sparsity of the Jacobian matrix each iteration via an adaptive threshold.

Based on this data, Jacobian matrix densities tends to be higher with wavelets than the time domain,

even with adaptive Jacobian matrix thresholding, in the majority of cases.

The reduction in densities tends to be highest with wavelets that have a higher number of vanishing

moments but this reduction is not high enough to result in Jacobian matrix densities that are as low as

wavelets with a lower number of vanishing moments. When not utilizing adaptive thresholding, the Haar

74

wavelet provided the sparsest Jacobian matrices of the wavelets tested. Even though it is possible for

other wavelets to achieve a greater sparsity than the Haar wavelet when Jacobian thresholding is applied,

it is safe to say that, if unsure of which wavelet to select, the Haar wavelet should be selected if Jacobian

matrix sparsity is the main concern.

Adaptive Jacobian matrix thresholding successfully increases the speed of SSWA for nearly every test

case. In some cases, the speedup was high enough to cause the simulations to be faster than SSTD when

the non-thresholded SSWA simulations did not. It is also possible for the number of iterations to be

altered when applying adaptive Jacobian matrix thresholding. This change in number of iterations could

potentially be addressed by improvement of error control with adaptive Jacobian matrix thresholding.

However, in its present form, the adaptive Jacobian matrix thresholding method is useful for increasing

the efficiency of SSWA. For two of the test circuits, there was a small increase in speed when applying

adaptive Jacobian matrix thresholding to SSTD. However, given the change in Jacobian matrix densities

was not significant with the SSTD simulations, it does not seem that there is much, if any, advantage to

applying adaptive Jacobian matrix thresholding to SSTD.

The average density of v̂ was significantly lower than the average density of v̄ in the majority of cases,

which implies that there may be greater potential to reduce the computational complexity of SSWA by

taking advantage of the wavelet domain vector sparsity. Even wavelets that exhibited very low reductions

in Jacobian sparsity with adaptive thresholding tended to have much lower average v̂ densities than SSTD.

Therefore, a method that takes advantage of the sparse representations of v̂ has the potential to achieve

more consistent gains in efficiency at each iteration. For this reason, two algorithms were developed

that reduce the number of columns in the Jacobian matrix at each iteration of Newton method. These

algorithms are presented and tested in the next chapter.

75

Chapter 5

Steady-State Analysis of Electronic

Circuits Using Wavelets with Adaptive

Jacobian Columns

In this chapter, two methods called Reduced Column Steady-State Wavelet Analysis (RCSSWA) and

Hybrid Reduced Column Steady-State Wavelet Analysis (HRCSSWA) are presented along with the results

of simulations run with several test circuits.

RCSSWA takes advantage of the sparse wavelet representations of the nodal variable waveforms to

attempt to reduce the number of columns in the Jacobian matrix during each iteration of Newton method.

The reduced Jacobian is a tall rectangular matrix that has a lower number of non-zero elements than the

original Jacobian matrix on iterations where the column reduction is performed. The column selection

criterion is based on the error introduced into the computations and, by keeping the introduced error

at a minimum, it is possible to achieve a significant reduction in the number of columns and average

number of non-zero elements in the Jacobian matrix compared to SSWA. HRCSSWA combines RCSSWA

and SSTD into a hybrid wavelet-time method that utilizes a reduced column wavelet transform for the

formation of a reduced column wavelet domain Jacobian matrix. The reduced Jacobian matrices with

HRCSSWA have a lower number of non-zero elements, and require less computational overhead to form,

than the SSWA and RCSSWA Jacobian matrices.

5.1 Reduction of Jacobian Matrix Columns

The RCSSWA method takes advantage of the ability of wavelets to sparsely represent a given waveform

to find a sparse estimate of the solution of Equation (2.58). This is achieved by creating a list, Sj∆, of the

positions of the non-zero elements in ∆v̂j+1. This list, which is also known as the support of ∆v̂j+1, is

76

used to create a Jacobian matrix with a reduced number of columns which is used to calculate a sparse

estimate of ∆v̂j+1 at each iteration. Each element in f̂(v̂j) is related to ∆v̂j+1 by expressing Equation

(2.58) as the sum:

f̂(v̂j)k = −
NM∑
l=0

Ĵ(v̂j)k,l∆v̂
j+1
l . (5.1)

Since Sj∆ is a list of the indices of the non-zero elements in ∆v̂j+1, the above equation can be separated

into two sums:

f̂(v̂j)k = −
∑
l∈Sj∆

Ĵ(v̂j)k,l∆v̂
j+1
l −

∑
l /∈Sj∆

Ĵ(v̂j)k,l∆v̂
j+1
l . (5.2)

Since all elements in ∆v̂j+1 that are not in set Sj∆ are expected to be zero, the sum over all l /∈ Sj∆ in

Equation (5.2) can be considered to be equal to zero for all k. Thus, a sparse estimate of ∆v̂j+1 can be

found by using only the columns in Ĵ(v̂j) that correspond to elements in ∆v̂j+1 that are in set Sj∆.

The sparse estimate of ∆v̂j+1 is given by:

∆v̂j+1
∆ = −Ĵ+

∆f̂(v̂j), (5.3)

where Ĵ∆ is an NM × m matrix formed from the columns in Ĵ(v̂j) that correspond to the non-zero

elements in ∆v̂j+1, Ĵ
+
∆ is the Moore-Penrose inverse of Ĵ∆ given by Ĵ

+
∆ = (Ĵ

T
∆Ĵ∆)−1Ĵ

T
∆, ∆v̂j+1

∆ is a

vector of all non-zero elements in ∆v̂j+1, and m represents the number of non-zero elements in ∆v̂j+1.

Selection of elements to include in set Sj∆ is performed by considering both v̂j+1 and v̂j . Substituting

∆v̂j+1 = v̂j+1 − v̂j into Equation(5.1) results in:

f̂(v̂j)k = −
NM∑
l=0

Ĵ(v̂j)k,l(v̂
j+1
l − v̂jl). (5.4)

Which can be separated into two sums:

f̂(v̂j)k = −
NM∑
l=0

Ĵ(v̂j)k,lv̂
j+1
l +

NM∑
l=0

Ĵ(v̂j)k,lv̂
j
l . (5.5)

Let Sj+1
v be a list of the indices of all non-zero elements in v̂j+1 and Sjv be a list of the indices of all

non-zero elements in v̂j . Since all elements in v̂j+1 that are not indexed by Sj+1
v are equal to zero and

all elements in v̂j that are not in Sjv are equal to zero, Equation (5.5) becomes:

f̂(v̂j)k = −
∑

l∈Sj+1
v

Ĵ(v̂j)k,lv̂
j+1
l +

∑
l∈Sjv

Ĵ(v̂j)k,lv̂
j
l . (5.6)

Therefore, both Sj+1
v and Sjv are combined to estimate Sj∆:

Sj∆ = Sj+1
v ∪ Sjv. (5.7)

77

Since part of Sj∆ comes from the known vector v̂j , the support estimate will focus on the unknown

vector v̂j+1. Substituting ∆v̂j+1 = v̂j+1 − v̂j into Equation (2.58) and rearranging it to calculate v̂j+1

directly yields:

Ĵ(v̂j) · v̂j+1 = −f̂(v̂j) + Ĵ(v̂j) · v̂j . (5.8)

Sj+1
v can then be estimated using an approach that is similar to those used by the orthogonal matching

pursuit algorithms used with compressed sensing to find sparse estimates of the solution to the system of

equations of the form[61]:

AOMPxOMP = fOMP , (5.9)

where AOMP is a dictionary matrix that transforms the elements given by sparse vector xOMP into the

measurement vector fOMP .

Orthogonal matching pursuit algorithms have two fundamental steps: element selection and coefficient

update. During element selection, coefficients are selected to be included in the support of xOMP . The

elements are selected to minimize the residual given by:

rOMP = fOMP −AOMPxOMP . (5.10)

To perform element selection, rOMP is projected onto the columns of AOMP :

gOMP = ATOMP · rOMP . (5.11)

Next, the elements from gOMP with the highest amplitudes are selected and added to SOMP (the support

of xOMP).

During the coefficient update step, a matrix is formed from the columns of AOMP that are in the selected

support of xOMP . The new matrix is then used to calculate a new xOMP . The element selection and

coefficient update steps are repeated until a selected stopping criterion is met. A basic outline of an

orthogonal matching pursuit algorithm is shown in Algorithm 5.1.

In this thesis, Sj+1
v is estimated by substituting rOMP = −f̂(v̂j) + Ĵ(v̂j) · v̂j and AOMP = Ĵ(v̂j) into

Equation (5.11) to calculate:

ĝv = Ĵ(v̂j)T · (−f̂(v̂j) + Ĵ(v̂j) · v̂j), (5.12)

then thresholding the elements in ĝv with the lowest absolute values. Using this column selection method

for finding Sj+1
v can lead to multiple iterations for finding v̂j+1 which can potentially be more computa-

tionally expensive than simply calculating v̂j+1 directly using:

v̂j+1 = Ĵ(v̂j)−1 · (−f̂(v̂j) + Ĵ(v̂j) · v̂j). (5.13)

For this reason, all elements in the thresholded ĝv vector are used to form the estimate of Sj+1
v . This

search method can cause errors in the support estimate which can lead to error between ∆v̂j+1
∆ and

78

Algorithm 5.1 Basic orthogonal matching pursuit algorithm. Adapted from [61].

j ← 0

xOMP ← All entries set to zero.

SOMP ← All entries set to zero.

rOMP ← fOMP

while ‖rOMP ‖2 < selected convergence level do

gOMP = ATOMP · rOMP

SOMP ← Indices of elements in gOMP with amplitudesthat are greater than a selected threshold to

SOMP .

AOMP,S ← Copy of columns from AOMP indexed by SOMP .

xOMP ← A+
OMP,S · fOMP

rOMP ← fOMP −AOMP · xOMP

end while

∆v̂j+1. When the error is low, it can be corrected for in a future Newton iteration. When the error is

high, it must be corrected when the Newton update vector is calculated. Methods for estimating and

correcting the error will be discussed in Section 5.2.

Vector v̂j contains many very low amplitude coefficients that can be removed without introducing a

significant amount of error and low amplitude elements in vector ĝv also need to be removed to ensure

Sj∆ is as sparse as possible.

The thresholding method used in this paper is based on the highest amplitude coefficient in each nodal

waveform. The threshold is automatically selected using a relative tolerance and a noise tolerance. A

single threshold value that works well for one nodal waveform will not necessarily work well for another.

The relative tolerance addresses this issue by basing the threshold on the highest amplitude wavelet

coefficient while the noise tolerance is used to remove numerical noise. For each node, the threshold is

selected using the following formula:

h = rtol‖ẑk‖∞ + ntol, (5.14)

where ntol is a selected noise tolerance, rtol is a selected relative tolerance and ẑk are the wavelet domain

coefficients of the waveform for node k of the vector being thresholded. All scaling and wavelet coefficients

for node k that have an amplitude less than h are set to zero.

5.2 Reduced Column Steady-State Wavelet Analysis

A method that utilizes the LU decomposition of Ĵ∆ has been selected to provide an estimate of the

least squares solution of Equation (5.3). This method finds an estimate of ∆v̂j+1
∆ as well as an error factor

79

that represents the difference between the estimate of ∆v̂j+1 and ∆v̂j+1
∆ . If the error factor is below a

reasonable threshold, the estimate of ∆v̂j+1
∆ is considered an accurate estimate of ∆v̂j+1. If the error

factor is above the threshold, ∆v̂j+1 is calculated using Equation (2.58) instead.

LU decomposition can be applied to find the least squares solution for over determined systems of

equations of the form Ax = b by using a pseudo-inverse of A [62]. The pseudo-inverse can be formed

using factored matrices with different factoring methods (including LU decomposition). Björck and Duff

[63, 64] introduced a partitioning scheme to split the problem into two parts. One part that represents an

estimate to the least squares solution and a second part that represents a residual which is the difference

between the estimate and least squares solutions.

The LU decomposition of Ĵ∆ is given by:

P rĴ∆P c = LU , (5.15)

where P c is an m×m column permutation matrix, P r is an NM ×NM row permutation matrix, L is

an NM ×m lower trapezoidal matrix, and U is an m ×m upper triangular matrix. From [63, 64], the

least squares solution to Equation (5.3) can be posed as:

min
ŷ
‖ − P rf̂

(
v̂j
)
−Lŷ‖2 s.t. ŷ = UP T

c ∆v̂j+1
∆ . (5.16)

Following the methodology in [63, 64], L, −f̂
(
v̂j
)
, and ŷ are partitioned into two parts:

L =

[
L1

L2

]
, − P rf̂

(
v̂j
)

=

[
f̂1

f̂2

]
, ŷ =

[
ŷ1

ŷ2

]
, (5.17)

where L1 is an m ×m lower triangular matrix, L2 is an (NM −m) ×m matrix, f̂1 is a vector with m

entries, f̂2 is a vector of NM −m entries, ŷ1 is a vector with m entries, and ŷ2 is a vector of NM −m

entries. This partitioning leads to:

L1ŷ1 = f̂1, UP T
c ∆v̂g = ŷ1, (5.18)

where ∆v̂g is an m length vector that represents the estimate of ∆v̂j+1
∆ and

d̂∆ = f̂2 −L2ŷ1, (5.19)

where d̂∆ is a vector with NM −m entries that represents the residual that is associated with the unused

part of the partitioned LU factorization in Equation (5.17) and the residual norm corresponding to ∆v̂g

is:

‖d̂∆‖2 = ‖ − f̂(v̂j)− Ĵ∆∆v̂g‖2. (5.20)

For more detail on the derivation of this formula, see Appendix B.

80

If the residual norm, which represents the error between ∆v̂g and ∆v̂j+1
∆ , is below an acceptable

level, β, then ∆v̂g can be considered a solution to Equation (5.3). Otherwise, further refinement of ∆v̂g

is necessary [63, 64]. Equation (5.20) will be affected by error between ∆v̂g and ∆v̂j+1
∆ caused by the

LU factorization method as well as errors in the estimate of Sj+1
v .I Thus, both errors arising from the

estimate of Sj+1
v as well as errors cause by using ∆v̂g can be corrected by monitoring ‖d̂∆‖2.

It is possible for ‖d̂∆‖2 to be on the same order of magnitude as ‖f̂(v̂j)‖2 when the simulation is

close to convergence. When this occurs, the error that results from using ∆v̂g can become high enough

to prevent the simulation from converging. As a result, it is necessary to ensure that ‖d̂∆‖2 < ‖f̂(v̂j)‖2

so that the error does not prevent convergence. Therefore there are two requirements for ‖d̂∆‖2:

‖d̂∆‖2 < α‖f̂(v̂j)‖2 and ‖d̂∆‖2 < β, (5.21)

where α is a constant that is used to control the acceptable amplitude for the residual norm. If the

conditions in Equation (5.21) are satisfied then ∆v̂j+1
∆ = ∆v̂g is considered an accurate estimate of

∆v̂j+1. Otherwise ∆v̂g is further refined.

It is not possible to estimate in advance the densities of the L1, L2, and U matrices. However, the

upper limit of their densities can be estimated. Since L1 and U are m ×m lower triangular and upper

triangular matrices, their maximum possible densities will be

(
1
m2

m∑
i=1

i

)
∗100% which rapidly approaches

50% as m is increased. The maximum density of the L2 matrix is 100%. If m << MN , L2 will contain

most of the elements in L and, therefore, can potentially require much higher storage space than L1 and

U .

Refinement of ∆v̂g can be achieved by utilizing the unused portion of the partitioned LU factorization

in Equation (5.17). However, this requires utilizing d̂∆ and the L2 matrix [63, 64]. There is no guarantee

that L2 will not have a greater number of non-zero elements than Ĵ(v̂j) and it is possible that calculating

the update could require more computational time than solving Equation (2.58) directly.

Since ‖d̂∆‖2 can be calculated without using L2 and the column reduction method does not perform

any refinement using d̂∆, the L2 matrix is not required. With careful design of the LU decomposition

algorithm, it may be possible to avoid forming the L2 matrix and, therefore, the density of the L2 matrix

would not be a concern.

From Equation (5.19), it can be seen that the error in ∆v̂g is related to the unused part of the

partitioned LU factorization in Equation (5.17). Increasing the number of entries in Sj∆ will, in turn,

increase the number of elements in ∆v̂g, ŷ1, and f̂1 while reducing the number of elements in ŷ2 and

IThis can be proven by substituting fOMP = −f̂(v̂j), AOMP = Ĵ∆, and xOMP = ∆v̂j+1 into Equation (5.10). The

squared norm of the resulting equation, ‖ − f̂(v̂j)− Ĵ∆∆v̂j+1‖2, is the same as Equation (5.20) when ∆v̂j+1 = ∆v̂g.

81

f̂2. This, in turn, reduces the effect of the unused part of the partitioned LU factorization in Equation

(5.17), increases the accuracy of ∆v̂g, and reduces ‖d̂∆‖2.

Algorithm 5.2 RCSSWA Algorithm

j ← 0

v̂0 ← Initial guess.

∆v̂1 ← −Ĵ(v̂0)−1f̂(v̂0)

v̂1 ← v̂0 + ∆v̂1

repeat

j ← j + 1

∆v̂j+1 ← 0̂

ĝv ← Ĵ(v̂j)T · (−f̂(v̂j) + Ĵ(v̂j) · v̂j)

Sj∆ ← Support(ĝv) ∪ Support(v̂j)

Ĵ∆ ← copy of all columns from Ĵ(v̂j) in set Sj∆

// Calculate ∆v̂g with LU decomposition.

∆v̂g ← LUSolve
(
Ĵ∆,−f̂(v̂j)

)
‖d̂∆‖2 ← ‖− f̂(v̂j)− Ĵ∆ ·∆v̂g‖2

if
(
‖d̂∆‖2 > β

)
or
(
‖d̂∆‖2 > α · ‖f̂(v̂j)‖2

)
then

// The conditions in Equation (5.21) are not met,

// calculate ∆v̂j+1 using Ĵ(v̂j)

// intsead.

∆v̂j+1 ← −Ĵ(v̂j)−1f̂(v̂j)

else

∆v̂j+1
∆ ← ∆v̂g

end if

// Update Guess

v̂j+1 ← v̂j + ∆v̂j+1

n̂← rtol min{|v̂j |, |v̂j+1|}+ atolû

until ∆v̂j+1
k < n̂k ,∀k ∈ {1, 2, . . . , NM} and ‖f̂(v̂j+1)‖∞ < atol

Refinement may require multiple steps to lower ‖d̂∆‖2 to an acceptable level. Multiple refinement

steps can potentially cause a high increase in the overhead of using RCSSWA. Therefore, to keep the

number of refinement steps to a minimum, ∆v̂j+1 is calculated using Equation (2.58) when the conditions

in Equation (5.21) are not met.

82

Combining the Jacobian matrix column reduction method in Section 5.1 and the LU decomposition

for tall rectangular matrices with Newton method results in the RCSSWA algorithm shown in Algorithm

5.2. In Algorithm 5.2, û is a vector with the same number of elements as v̂j with all elements set to 1,

Support(ĝv) is the list of all non-zero elements left in ĝjv after it has been thresholded using h, Support(v̂j)

is the list of all non-zero elements left in v̂j after it has been thresholded using h, and LUSolve
(
Ĵ∆, f̂(v̂j)

)
is a function that performs the LU factorization described in Section 5.2 on Ĵ∆ and calculates ∆v̂g using

L1, U , and f̂(v̂j).

5.2.1 Simulation Studies

The results of simulations run using the Cardoon circuit simulator for the circuits studied in Section

4.2 are presented in this section. Simulations using the RCSSWA method and an un-modified Steady-

State Wavelets Analysis (SSWA) method were performed using wavelets with a low number of vanishing

moments from different families as well as the wavelets that provided the sparsest v̂ vectors while the

derivatives were approximated using the second order central difference formula. The wavelets used in

this study are the Haar, Db2, Coif2, Sym2, Sym8, Bior4.4, and Bior6.8 wavelets. The sparsest v̂ vectors

were determined using the data from the study in Section 4.2. The sparsest wavelet for the inverter chain

circuit was the Sym3 wavelet. The Db2 and Sym2 wavelets were tied for the Gilbert cell, ultrasound

transducer driver, and transmission line circuits. The Db4 wavelet provided the sparsest v̂ vectors for

the stepped impedance filter circuit. The simulations were performed with 512 coefficients, atol = 10−7,

ntol = 10−15, and rtol = 10−4. LU factorization of the Jacobian matrices for both SSWA and RCSSWA

were performed using the UMFPack routines in SuiteSparse with row scaling disabled I. On the first

iteration, the pre-ordering that is determined before symbolic decomposition is stored and, on iterations

where the reduced column Jacobian matrix is not used, the pre-ordering from the first iteration is re-used

for factorization of the full Jacobian matrix. Since columns are selected from the Jacobian matrix to form

the reduced column Jacobian matrix, the sparse matrix pre-ordering cannot be re-used with the reduced

column Jacobian matrix.

The RCSSWA method is compared with SSWA using the following metrics: simulation run times,

calculation times, number of iterations, average number of non-zero elements in the Jacobian matrices,

and percentage of non-zero entries in Sj∆ each iteration. The average densities of the L1, U , and L2

matrices and the simulation times for Steady-State Time Domain (SSTD) are also presented. Simulation

run times are measured as the total time the simulation took to converge on a solution while calculation

times are the total time spent calculating the Newton updates. For SSWA, the calculation time is given

IUMFPACK SCALE=0

83

by:

Tc =
∑
j

T j∆v̂, (5.22)

where T j∆v̂ is the time taken to find ∆v̂j+1 using Equation (2.58). For RCSSWA, the calculation time is

given by:

Trc =
∑
j

T jS + T jv̂∆, (5.23)

where T jS is the overhead time for iteration j while T jv̂∆ is the time taken to calculate the Newton update

using Equation (5.3). The RCSSWA overhead time is equal to the amount of time taken to find Sj∆

and test ‖d̂∆‖2 on iterations where the conditions in Equation (5.21) are met. On iterations where the

conditions in Equation (5.21) are not met, it is equal to the total time taken to find Sj∆, test ‖d̂∆‖2, and

calculate ∆v̂g.

5.2.1.1 Inverter Chain

The first case study is the CMOS inverter chain shown in Figure 4.1. The input and output waveforms

for the inverter chain with both RCSSWA and SSWA are shown in Figure 5.1. There is no significant

difference in the final result between SSWA and RCSSWA.

The simulation run times, calculation times, RCSSWA overhead times and number of iterations are

shown in Table 5.1. There is a difference in the number of iterations between SSWA and RCSSWA that

is due to the difference between ∆v̂j+1 and ∆v̂j+1
∆ . The RCSSWA overhead time accounts for only a

fraction of the total calculation time and, therefore, the overhead of performing the support search and

refinement are not a dominant factor with this circuit. There are slowdowns seen with the Coif2 and Sym3

wavelets. The per-iteration simulation and calculation times are lower for RCSSWA with these wavelets

which indicates that the slowdowns are due to the increased number of iterations of RCSSWA. The SSTD

simulation time was 30.6615 seconds and took 31 iterations (0.9891 seconds per-iteration). None of the

wavelet simulations ran faster than the time domain nor did they have lower calculated per-iteration

simulation times.

84

Figure 5.1: Input and output waveforms for the inverter chain. The solid line represents the SSWA

simulation results and the dashed line represents the RCSSWA simulation results.

Table 5.1: Total simulation, calculation, RCSSWA overhead, symbolic factorization, and numeric fac-

torization timing data and number of iterations for the inverter chain. Green font indicates where the

RCSSWA method is faster than the SSWA method.

Haar Db2 Db4 Coif2 Sym2 Sym3 Bior4.4 Bior6.8
SSWA 43.35 48.48 53.87 68.35 43.97 60.98 57.47 85.85

Sim Time [1.204] [1.310] [1.738] [1.667] [1.293] [1.418] [1.596] [2.094]
RCSSWA 40.69 43.95 48.88 70.73 38.09 66.67 53.59 67.67
Sim Time [1.100] [1.157] [1.397] [1.505] [1.190] [1.361] [1.410] [1.440]
Speedup 1.065 1.103 1.102 0.966 1.154 0.915 1.072 1.269
SSWA 0.295 0.391 0.499 0.739 0.372 0.528 0.540 0.822

Symbolic Time [0.008] [0.011] [0.016] [0.018] [0.011] [0.012] [0.015] [0.020]
RCSSWA 0.295 0.422 0.611 0.856 0.379 0.658 0.574 0.755

Symbolic Time [0.008] [0.011] [0.018] [0.018] [0.012] [0.013] [0.015] [0.016]
SSWA 0.926 1.812 9.885 10.72 1.686 3.921 5.935 12.61

Numeric Time [0.026] [0.049] [0.319] [0.262] [0.050] [0.091] [0.165] [0.308]
RCSSWA 1.207 1.926 4.817 6.889 1.984 4.079 5.037 6.584

Numeric Time [0.033] [0.051] [0.138] [0.147] [0.062] [0.083] [0.133] [0.140]
SSWA 5.153 6.895 16.00 19.784 6.367 10.751 12.466 23.515

Calculation Time [0.143] [0.186] [0.516] [0.483] [0.187] [0.250] [0.346] [0.574]
RCSSWA 4.280 5.092 8.744 12.600 4.830 8.725 9.270 11.95

Calculation Time [0.116] [0.134] [0.250] [0.268] [0.151] [0.178] [0.244] [0.254]
SSWA

Iterations 36 37 31 41 34 43 36 41

RCSSWA
Iterations 37 38 35 47 32 49 38 47

RCSSWA 0.127 0.473 0.558 1.228 0.345 0.679 0.998 0.881
Overhead Time [0.003] [0.013] [0.016] [0.026] [0.011] [0.014] [0.026] [0.019]

Note: Calculated per-iteration values shown in square brackets
and all times are in seconds.

The percentage of non-zero entries in Sj∆ and the average number of non-zero elements in the Jacobian

85

Figure 5.2: Percentage of non-zero entries in Sj∆ for each iteration for the inverter chain.

Figure 5.3: Average number of non-zero entries in the Jacobian matrices for the inverter chain.

matrices are shown in Figures 5.2 and 5.3 respectively. The Haar wavelet simulations exhibited the lowest

per-iteration calculation times. This is expected since the number of non-zero elements in the Jacobian

matrices of the Haar wavelet are lower than all other wavelets with both SSWA and RCSSWA. All

iterations where the percentage of non-zero entries in Sj∆ is 100%, excluding iteration 0, are iterations

where the conditions in Equation (5.21) are not met. From Equation (5.21), ‖d̂∆‖2 has to be less than

α · ‖f̂(v̂j)‖2. As the simulation approaches convergence, ‖f̂(v̂j)‖2 decreases and ‖d̂∆‖2 has a higher

chance of being high enough for the conditions in Equation (5.21) to not be met and causes the later

iterations to use Ĵ(v̂j) instead of Ĵ∆. Since the majority of iterations with RCSSWA utilized Ĵ∆, the

overhead times are very low and there is a reduction in calculation times with RCSSWA.

The average density of the L1, U , and L2 matrices are shown in Figure 5.4. The density of the L1

86

and U matrices follow a similar pattern as the Jacobian densities (see Figure 4.3) with the Haar, Db2,

and Sym2 wavelets exhibiting the lowest densities. The L2 matrix exhibits the highest average densities.

Figure 5.4: Average density of the L1, U , and L2 matrices for the inverter chain circuit.

5.2.1.2 Gilbert Cell

The second case study is the Gilbert cell circuit shown in Figure 4.7. The input and output waveforms for

the Gilbert cell with both SSWA and RCSSWA are shown in Figure 5.5. As is the case with the inverter

chain, there is no significant difference between the final result for SSWA and RCSSWA.

Figure 5.5: Input and output waves for the Gilbert cell. The solid line represents the SSWA simulation

results and the dashed line represents the RCSSWA simulation results.

87

Table 5.2: Total simulation, calculation, RCSSWA overhead, symbolic factorization, and numeric factor-

ization timing data and number of iterations for the Gilbert cell. Green font indicates where the RCSSWA

method is faster than the SSWA method.

Haar Db2 Db4 Coif2 Sym2 Sym3 Bior4.4 Bior6.8
SSWA 17.60 25.06 47.05 53.98 24.74 42.32 48.56 54.84

Sim Time [2.514] [3.581] [6.722] [7.712] [3.535] [6.046] [6.937] [7.834]
RCSSWA 20.39 30.23 61.25 59.44 30.55 44.25 63.45 65.51
Sim Time [2.548] [3.778] [7.657] [8.492] [3.819] [6.321] [7.931] [8.189]
Speedup 0.863 0.829 0.768 0.908 0.810 0.957 0.765 0.837
SSWA 0.797 0.870 0.985 1.151 0.853 0.928 0.924 1.133

Symbolic Time [0.114] [0.124] [0.141] [0.164] [0.122] [0.133] [0.132] [0.162]
RCSSWA 0.844 1.000 1.355 1.373 1.010 1.043 1.231 1.439

Symbolic Time [0.106] [0.125] [0.169] [0.196] [0.126] [0.149] [0.154] [0.180]
SSWA 5.021 9.6901 26.9405 31.8360 9.8344 23.9231 29.0176 32.5335

Numeric Time [0.717] [1.3843] [3.8486] [4.5480] [1.4049] [3.4176] [4.1454] [4.6476]
RCSSWA 6.838 13.4601 36.9160 36.5964 13.5655 26.0617 40.7488 39.4250

Numeric Time [0.855] [1.6825] [4.6145] [5.2281] [1.6957] [3.7231] [5.0936] [4.9281]
SSWA 8.572 14.80 35.20 40.90 14.86 31.35 37.11 41.75

Calculation Time [1.225] [2.115] [5.028] [5.843] [2.123] [4.479] [5.302] [5.965]
RCSSWA 10.79 19.112 46.95 45.79 19.28 33.36 50.88 50.94

Calculation Time [1.349] [2.389] [5.869] [6.542] [2.410] [4.765] [6.360] [6.368]
SSWA

Iterations 7 7 7 7 7 7 7 7

RCSSWA
Iterations 8 8 8 7 8 7 8 8

RCSSWA 1.373 4.246 10.85 8.455 4.359 7.148 12.52 9.287
Overhead Time [0.172] [0.531] [1.357] [1.208] [0.545] [1.021] [1.565] [1.161]

Note: Calculated per-iteration values shown in square brackets
and all times are in seconds.

Figure 5.6: Percentage of non-zero entries in Sj∆ for each iteration for the Gilbert cell.

The simulation run times, calculation times, RCSSWA overhead times, and number of iterations are

88

shown in Table 5.2. None of the RCSSWA simulations ran faster than the SSWA simulations. The per-

iteration calculation times are higher with RCSSWA and the per-iteration RCSSWA overhead times are

high enough to account for the slowdowns seen with RCSSWA. The SSTD simulation time was 13.4959

seconds and took 8 iterations (1.6870 seconds per-iteration). None of the RCSSWA simulations had lower

simulation times than SSTD.

Figure 5.7: Average number of non-zero entries in the Jacobian matrices for the Gilbert cell.

Figure 5.8: Average density of the L1, U , and L2 matrices for the Gilbert cell circuit.

The percentage of non-zero entries in Sj∆ and the average number of non-zero elements in the Jacobian

matrices for the Gilbert cell are shown in Figures 5.6 and 5.7 respectively. All iterations where the

percentage of non-zero entries in Sj∆ is 100%, excluding iteration 0, are iterations where the conditions

in Equation (5.21) are not met. The lowest calculation times occur with the Haar wavelet which has the

lowest average number of non-zero entries in the Jacobian matrix with both SSWA and RCSSWA. The

89

reduction in average number of non-zero elements is not as high as with the inverter chain circuit.

The average density of the L1, U , and L2 matrices are shown in Figure 5.8. The density of the L1

and U matrices follow a similar pattern as the Jacobian densities (see Figure 4.9) with the Haar, Db2,

and Sym2 wavelets exhibiting the lowest densities. The L2 matrix exhibits the highest average densities

for all test cases with the U matrix being the second most dense.

5.2.1.3 Ultrasound Transducer Driver

The third case study is the ultrasound transducer driver circuit shown in Figure 4.13. The input and

output waveforms for the transducer driver circuit with both SSWA and RCSSWA are shown in Figure

5.9. As with the inverter chain and Gilbert cell, there is no significant difference between the SSWA and

RCSSWA nodal variable waveforms.

Figure 5.9: Waveforms for the transducer driver circuit. The solid line represents the SSWA simulation

results and the dashed line represents the RCSSWA simulation results.

The simulation run times, calculation times, RCSSWA overhead times, and number of iterations for

the transducer driver are shown in Table 5.3. There are speedups with all but the Haar wavelet. Based

on per-iteration times, the slowdown with the Haar wavelet is due to both the extra overhead associated

with RCSSWA as well as the increase in number of iterations. The number of iterations is altered by

RCSSWA with all of the test cases and is high enough to almost cancel out the speedup in per-iteration

times with the Sym2, Sym3, and Bior4.4 wavelets. As is the case with the Gilbert cell, the RCSSWA

overhead times account for a fraction of the calculation times. The SSTD simulation time was 11.7099

seconds and took 11 iterations (1.0645 seconds per-iteration). Based on per-iteration times, the speedups

seen with RCSSWA are not enough to lead to faster simulation times than SSTD.

90

Table 5.3: Total simulation, calculation, RCSSWA overhead, symbolic factorization, and numeric factor-

ization timing data and number of iterations for the transducer driver. Green font indicates where the

RCSSWA method is faster than the SSWA method.

Haar Db2 Db4 Coif2 Sym2 Sym3 Bior4.4 Bior6.8
SSWA 21.38 17.59 24.56 34.93 16.76 21.67 29.79 38.80

Sim Time [2.138] [1.955] [2.729] [4.366] [1.862] [2.407] [3.724] [4.312]
RCSSWA 26.54 15.07 20.12 28.77 15.29 19.94 27.47 25.71
Sim Time [2.212] [1.507] [1.829] [2.397] [1.390] [1.813] [1.831] [2.338]
Speedup 0.806 1.168 1.221 1.214 1.096 1.086 1.085 1.509
SSWA 0.329 0.415 0.530 0.492 0.406 0.439 0.451 0.603

Symbolic Time [0.033] [0.046] [0.059] [0.062] [0.045] [0.049] [0.056] [0.067]
RCSSWA 0.419 0.373 0.465 0.516 0.399 0.452 0.559 0.465

Symbolic Time [0.035] [0.037] [0.042] [0.043] [0.036] [0.041] [0.037] [0.042]
SSWA 16.04 11.56 17.66 28.02 10.89 15.35 23.45 31.05

Numeric Time [1.605] [1.284] [1.962] [3.503] [1.211] [1.706] [2.931] [3.450]
RCSSWA 20.20 8.986 12.72 20.48 8.875 12.91 18.48 18.02

Numeric Time [1.683] [0.899] [1.156] [1.706] [0.807] [1.174] [1.232] [1.638]
SSWA 18.26 14.40 21.05 31.67 13.55 18.45 26.87 35.02

Calculation Time [1.826] [1.600] [2.339] [3.959] [1.506] [2.050] [3.359] [3.892]
RCSSWA 22.59 11.24 15.30 23.77 11.22 15.75 21.99 20.81

Calculation Time [1.882] [1.124] [1.391] [1.981] [1.020] [1.432] [1.466] [1.892]
SSWA

Iterations 10 9 9 8 9 9 8 9

RCSSWA
Iterations 12 10 11 12 11 11 15 11

RCSSWA 1.331 0.682 0.875 1.165 0.645 0.936 1.591 1.276
Overhead Time [0.111] [0.068] [0.080] [0.097] [0.059] [0.085] [0.106] [0.116]

Note: Calculated per-iteration values shown in square brackets
and all times are in seconds.

Figure 5.10: Percentage of non-zero entries in Sj∆ for each iteration for the transducer driver.

91

The percentage of of non-zero entries in Sj∆ and the average number of non-zero elements in the

Jacobian matrices for the transducer driver are shown in Figures 5.10 and 5.11 respectively. All iterations

where the percentage of non-zero entries in Sj∆ is 100%, excluding iteration 0, are iterations where the

conditions in Equation (5.21) are not met. There is a very small reduction in Jacobian matrix density

with the Haar wavelet and the RCSSWA per-iteration calculation time is roughly the same as SSWA.

Therefore, the increase in speed from RCSSWA with the Haar wavelet is overcome by the calculation

overhead of RCSSWA.

Figure 5.11: Average number of non-zero entries in the Jacobian matrices for the transducer driver.

Figure 5.12: Average density of the L1, U , and L2 matrices for the ultrasound transducer driver circuit.

The average density of the L1, U , and L2 matrices are shown in Figure 5.12. The density of the U

matrices exhibit, on average, higher densities than the L2 matrix with most wavelets.

92

5.2.1.4 Transmission Line Circuit

The fourth case study is the transmission line circuit shown in Figure 4.21. The non-thresholded (solid

line) and thresholded (dashed line) input and output waveforms and the voltages at two of the transmission

line ports with both SSWA and RCSSWA are shown in Figure 5.13. As with the other circuits in this

study, there is no significant difference between the SSWA and RCSSWA nodal variable waveforms.

Figure 5.13: Input and output nodal variables for the transmission line circuit. The solid line represents

the SSWA simulation results and the dashed line represents the RCSSWA simulation results.

Figure 5.14: Average number of non-zero entries in the Jacobian matrices for the transmission line circuit.

The simulation run times, calculation times, RCSSWA overhead times, and number of iterations for

the transmission line circuit are shown in Table 5.4. There are very slight speedups over SSWA with

most of the test wavelets. Based on per-iteration simulation and calculation times, the speedup with the

Coif2 wavelet is due to the decrease in number of iterations. The per-iteration RCSSWA overhead times

93

indicate that the RCSSWA calculation overhead is the cause of the slowdowns in calculation times seen

with the Haar, Coif2, Bior4.4, and Bior6.8 wavelets. The SSTD simulation time was 86.4077 seconds and

took 34 iterations (2.5414 seconds per-iteration). The speedup with the Db2 wavelet caused the RCSSWA

method to exhibit a speedup over SSTD. As is the case with the other circuits, the RCSSWA overhead

times account for a fraction of the RCSSWA calculation time.

The percentage of of non-zero entries in Sj∆ and the average number of non-zero elements in the

Jacobian matrices for the transmission line circuit are shown in Figures 5.15 and 5.14 respectively. All

iterations where the percentage of non-zero entries in Sj∆ is 100%, excluding iteration 0, are iterations

where the conditions in Equation (5.21) are not met.

The average density of the L1, U , and L2 matrices are shown in Figure 5.16. The density of the L1 and

U matrices follow a similar pattern as the Jacobian densities (see Figure 4.23). The L2 matrix exhibits

the highest average densities.

Table 5.4: Total simulation, calculation, RCSSWA overhead, symbolic factorization, and numeric factor-

ization timing data and number of iterations for the transmission line circuit. Green font indicates where

the RCSSWA method is faster than the SSWA method.

Haar Db2 Db4 Coif2 Sym2 Sym3 Bior4.4 Bior6.8
SSWA 98.97 86.89 127.9 159.2 89.77 101.3 126.5 154.1

Sim Time [2.828] [2.633] [3.553] [4.191] [2.720] [3.068] [3.720] [4.403]
RCSSWA 104.0 84.75 126.4 152.4 86.428 100.3 155.7 174.3
Sim Time [2.972] [2.493] [3.511] [4.355] [2.542] [3.039] [4.098] [4.840]
Speedup 0.951 1.025 1.012 1.045 1.039 1.010 0.812 0.884
SSWA 3.069 4.183 7.099 8.611 4.465 4.822 7.203 9.501

Symbolic Time [0.088] [0.127] [0.197] [0.227] [0.135] [0.146] [0.212] [0.272]
RCSSWA 3.385 3.328 5.081 5.927 3.468 4.154 8.088 7.154

Symbolic Time [0.097] [0.098] [0.141] [0.169] [0.102] [0.126] [0.213] [0.199]
SSWA 59.55 43.40 63.56 84.32 43.98 52.14 65.718 80.89

Numeric Time [1.701] [1.315] [1.766] [2.219] [1.333] [1.580] [1.933] [2.311]
RCSSWA 67.29 43.58 68.98 87.76 44.73 53.25 88.660 102.3

Numeric Time [1.926] [1.282] [1.916] [2.508] [1.316] [1.614] [2.333] [2.842]
SSWA 80.09 66.25 99.44 125.4 68.28 78.78 99.25 122.3

Calculation Time [2.288] [2.007] [2.762] [3.299] [2.07] [2.387] [2.919] [3.493]
RCSSWA 84.97 61.21 94.378 117.2 62.74 74.35 125.2 137.9

Calculation Time [2.428] [1.800] [2.622] [3.348] [1.85] [2.253] [3.294] [3.830]
SSWA

Iterations 35 33 36 38 33 33 34 35

RCSSWA
Iterations 35 34 36 35 34 33 38 36

RCSSWA 14.44 4.559 7.198 13.07 4.859 6.080 19.32 15.19
Overhead Time [0.413] [0.134] [0.200] [0.373] [0.143] [0.184] [0.508] [0.422]

Note: Calculated per-iteration values shown in square brackets
and all times are in seconds.

94

Figure 5.15: Percentage of non-zero entries in Sj∆ for each iteration for the transmission line circuit.

Figure 5.16: Average density of the L1, U , and L2 matrices for the transmission line circuit.

5.2.1.5 Stepped Impedance Filter Circuit

The last case study is the stepped impedance filter circuit shown in Figure 4.27. The non-thresholded

(solid line) and thresholded (dashed line) input, output of the filter, and output of the amplifier waveforms

with both SSWA and RCSSWA are shown in Figure 5.17. As with the other circuits in this study, there

is no significant difference between the SSWA and RCSSWA nodal variable waveforms.

The simulation run times, calculation times, RCSSWA overhead times, and number of iterations for

the stepped impedance filter circuit are shown in Table 5.5. The SSTD simulation time was 287.4568

seconds and took 6 iterations (47.9095 seconds per-iteration). With RCSSWA, both the Db2 and Bior6.8

wavelet simulations were faster than SSTD.

95

Figure 5.17: Input and output nodal variables for the stepped impedance filter circuit. The solid line

represents the SSWA simulation results and the dashed line represents the RCSSWA simulation results.

Table 5.5: Total simulation, calculation, RCSSWA overhead, symbolic factorization, and numeric factor-

ization timing data and number of iterations for the stepped impedance filter circuit. Green font indicates

where the RCSSWA method is faster than the SSWA method.

Haar Db2 Db4 Coif2 Sym2 Sym3 Bior4.4 Bior6.8
SSWA 328.1 256.2 267.6 280.3 246.5 262.4 289.7 342.0

Sim Time [54.68] [42.70] [44.61] [46.72] [41.09] [43.73] [48.28] [57.00]
RCSSWA 533.8 283.3 317.4 395.5 338.0 332.6 419.4 262.1
Sim Time [88.96] [56.66] [52.90] [65.91] [56.34] [55.43] [69.91] [37.43]
Speedup 0.615 0.904 0.843 0.709 0.729 0.789 0.691 1.305
SSWA 5.789 9.553 12.71 14.90 9.219 10.74 13.22 18.96

Symbolic Time [0.965] [1.592] [2.119] [2.483] [1.537] [1.790] [2.203] [3.160]
RCSSWA 10.03 10.66 15.41 21.54 12.21 12.77 18.90 10.96

Symbolic Time [1.671] [2.132] [2.569] [3.590] [2.036] [2.128] [3.150] [1.566]
SSWA 279.6 190.4 193.4 206.0 177.5 192.9 212.7 251.3

Numeric Time [46.60] [31.74] [32.24] [34.33] [29.58] [32.14] [35.45] [41.88]
RCSSWA 454.3 211.0 233.2 286.0 251.1 241.1 311.9 185.2

Numeric Time [75.72] [42.20] [38.87] [47.67] [41.85] [40.18] [51.99] [26.46]
SSWA 320.8 248.5 259.1 271.7 239.3 254.3 280.8 331.3

Calculation Time [53.47] [41.41] [43.18] [45.28] [39.89] [42.39] [46.81] [55.21]
RCSSWA 523.2 274.2 305.7 381.9 326.9 321.6 407.8 248.4

Calculation Time [87.20] [54.84] [50.95] [63.65] [54.48] [53.59] [67.96] [35.48]
SSWA

Iterations 6 6 6 6 6 6 6 6

RCSSWA
Iterations 6 5 6 6 6 6 6 7

RCSSWA 194.9 75.64 62.69 88.03 92.31 74.49 118.6 33.64
Overhead Time [32.48] [15.13] [10.45] [14.67] [15.38] [12.42] [19.76] [4.805]

Note: Calculated per-iteration values shown in square brackets
and all times are in seconds.

96

However, the Db2 wavelet simulation would have run slower than SSTD if the number of iterations

remained unchanged. The Haar, Coif2, and Bior4.4 wavelets had no iterations where the the conditions

in Equation (5.21) were met. Thus, RCSSWA does not provide a benefit with these wavelets on this

circuit. The per-iteration RCSSWA overhead time is high enough to account for the slowdown with the

Db2, Db4, Sym2, and Sym3 wavelets. The majority of iterations requires support refinement with these

wavelets and, therefore, the overhead of implementing RCSSWA overcomes any increase in speed that

occurs with these wavelets.

Figure 5.18: Percentage of non-zero entries in Sj∆ for each iteration for the stepped impedance filter

circuit.

Figure 5.19: Average number of non-zero entries in the Jacobian matrices for the stepped impedance filter

circuit.

The percentage of of non-zero entries in Sj∆ and the average number of non-zero elements in the

97

Jacobian matrices for the stepped impedance filter circuit are shown in Figures 5.18 and 5.19 respectively.

All iterations where the percentage of non-zero entries in Sj∆ is 100%, excluding iteration 0, are iterations

where the conditions in Equation (5.21) are not met. There was no reduction in percentage of non-zero

entries in Sj∆ for the Haar, Coif2, and Bior4.4 wavelets. The support refinement was applied for the

majority of iterations in all cases but the Bior6.8 wavelet which caused the RCSSWA overhead times to

have a much higher effect on the RCSSWA calculation times with this circuit than the others.

Figure 5.20: Average density of the L1, U , and L2 matrices for the stepped impedance filter circuit.

The average density of the L1, U , and L2 matrices are shown in Figure 5.20. The density of the L1

and U matrices do not follow a similar pattern as the Jacobian densities (see Figure 4.29). The L2 matrix

does not always exhibit the highest average densities. For the Haar, Coif2, and Bior4.4 wavelets, the Ĵ∆

matrix was never utilized so there is no L2 matrix density reported for them.

5.2.2 Discussion

RCSSWA lead to a speedup in per-iteration calculation time over SSWA, and even SSTD, in some of

the test cases. This speedup tended to be low but was significant in a few of the test cases. The change

in number of iterations with RCSSWA indicates that there is a significant deviation between ∆v̂j+1 and

∆v̂j+1
∆ when using RCSSWA. This deviation is caused by errors in the support estimate and can lead to

enough extra iterations to cause a slowdown in total simulation time.

One of the disadvantages of using RCSSWA is the overhead time introduced in estimating and refining

Sj∆. In cases where the size of Ĵ∆ is reduced significantly enough, the overhead time of RCSSWA does

not have a large effect on the per-iteration calculation time. However, in cases where there is no reduction

for a majority of iterations, as is the case with the stepped impedance filter, the overhead time can

be significant. There are wavelets that provide a speed/sparsity advantage over others with each of

98

the example circuits. However, based on this data, there is no wavelet that will provide the sparsest

representation, and fastest performance, in all cases. One could select a wavelet based on the expected

final result of the nodal variable waveforms but, since the nodal variable waveforms change as the Newton

updates are calculated, this does not guarantee that the sparsest representations for all iterations. Thus,

it is difficult to select an appropriate wavelet for use with all iterations in advance with RCSSWA.

The L2 matrix can exhibit a much higher average density then the L1 and U matrices but there appears

to be no way to predict for which circuit problems the L2 matrix will exhibit the greatest densities. This

could cause issues with larger circuits since the density of the L2 matrix has the potential to be much

higher than the densities of the L1 and U matrices. The Haar wavelet tended to exhibit the lowest

densities of all the cases tested and appears to be the best wavelet to utilize to achieve the lowest density

Jacobian, L1, U , and L2 matrices if the optimum wavelet is not known.

5.3 Hybrid Reduced Column Steady-State Wavelet Analysis

The main disadvantage of the SSWA formulations used in this thesis is the computational overhead due

to the wavelet transforms involved with converting the system of equations into the wavelet domain. As a

result, SSWA, SSWA with adaptive Jacobian matrix thresholding, and RCSSWA all suffer a computational

disadvantage compared to SSTD. However, with a small alteration to the formulation of Equation (2.58),

it is possible to utilize RCSSWA to create a hybrid wavelet-time approach for the Newton updates.

Substituting Ĵ(v̂j) = WJ̄(v̄j)W−1 and f̂(v̂j) = Wf̄(v̄j) into Equation (2.58) yields:

WJ̄(v̄j)W−1∆v̂j+1 = −Wf̄(v̄j). (5.24)

Equation (5.24) can be partitioned into elements that are indexed by set Sj+1
∆ and not indexed by set

Sj+1
∆ as:

WJ̄(v̄j)W−1
∆ ∆v̂j+1

∆ +WJ̄(v̄j)W−1
∼∆∆v̂j+1

∼∆ = −Wf̄(v̄j), (5.25)

where W−1
∼∆ is formed out of the columns of W−1 that are not indexed by set Sj+1

∆ . Since all elements

in ∆v̂j+1 /∈ Sj+1
∆ are expected to be equal to zero, W−1

∼∆∆v̂j+1
∼∆ = 0̂ and Equation (5.25) becomes:

WJ̄(v̄j)W−1
∆ ·∆v̂

j+1
∆ = −Wf̄(v̄j). (5.26)

Removing the pre-multiplication by W from Equation (5.26) results in:

J̄(v̄j)W−1
∆ · (∆v̂

j+1
∆) = −f̄(v̄j), (5.27)

where W−1
∆ is formed out of the columns of W−1 that are indexed by set Sj+1

∆ .

Another disadvantage of SSWA and RCSSWA is, based on the data presented in Chapter 4 and Section

5.2.1, there appears to be no one wavelet that will provide the sparsest nodal variable representations for

99

all cases which makes selection of an appropriate wavelet basis difficult. This problem can be addressed by

the formulation in Equation (5.27) because it does not require a wavelet to be selected in advanceI. Thus,

each iteration, a wavelet that is expected to provide the sparsest representation of the nodal variable

waveforms could be selected prior to forming J̄(v̄j)W−1
∆ . With the formulation in Equation (5.27), it is

also possible to estimate Sj+1
v without using Ĵ(v̂j):

ĝv =
(
W−1

)T
J̄(v̄j)T · (−f̄(v̄j) + J̄(v̄j) · v̄j). (5.28)

With orthogonal wavelets, W−1 = W T and Equation (5.28) becomes:

ĝv = Wḡv = WJ̄(v̄j)T · (−f̄(v̄j) + J̄(v̄j) · v̄j). (5.29)

With biorthogonal wavelets, W−1 = W T
b , and Equation (5.28) becomes:

ĝv = W bḡv = W bJ̄(v̄j)T · (−f̄(v̄j) + J̄(v̄j) · v̄j), (5.30)

where W b = IN ⊗Wb. Reverse biorthogonal wavelets use Equation (5.29).

Equations (5.28), (5.29), and (5.30) have an advantage over support estimation with RCSSWA: Be-

cause ĝv does not require Ĵ(v̂j), f̂(v̂j), or v̂j to calculate, it is possible to adaptively select a wavelet

family for each node to achieve the sparsest v̂j every iteration. To this authors knowledge, this has not

been done with any SSWA method in the literature. The residual associated with calculating ∆v̂j+1
∆ with

Equation (5.27) is:

‖d̄∆‖2 = ‖ − f̄(v̄j)− J̄(v̄j)W−1
∆ ·∆v̂

j+1
∆ ‖2. (5.31)

A new approach that takes advantage of the above formulation is explored in this section. This

approach, which utilizes a hybrid time-wavelet approach, is called Hybrid Reduced Column Steady-State

Wavelet Analysis (HRCSSWA) and is shown in Algorithm 5.3. In Algorithm 5.3, ū is a vector with

the same number of elements as v̄j with all elements set to 1, Support(Wv̄j) is the list of all non-zero

elements left in Wv̄j after it has been thresholded using h, and LUSolve
(
J̄(v̄j)W−1

∆ , f̂(v̂j)
)

is a function

that performs the LU factorization described in Section 5.2 on J̄(v̄j)W−1
∆ and calculates ∆v̂g using L1,

U , and f̂(v̂j). SparseSearch
(
Sj+1
v , Sjv

)
represents the method for finding the sparsest wavelet domain

representation of Sj∆.

The sparse search is performed by taking the waveforms for each node in ḡjv and v̄j and dividing them

into their individual nodal variable waveforms: ḡv,k and v̄jk. For each node, ḡv,k and v̄jk are transformed

into the wavelet domain using the wavelets from selected wavelet families (i.e. transformed into ĝv,k and

IW−1
∆ can be applied right before Equation (5.27) is solved rather than including it in the formation of the Jacobian

matrix.

100

v̂jk). Next, ĝv,k and v̂jk are thresholded using Equation (5.14) and the wavelet that provides the sparsest

wavelet domain representations of ĝv,k and v̂jk combined is selected for use with node k and the support

of ĝv,k and v̂jk are added to Sj∆ for node k.

Once the support and list of wavelets for all nodes have been found, W−1 is then created by using the

wavelet transform matrices for the selected wavelets. Since W−1 is block diagonal with each block being

comprised of an inverse wavelet transform matrix, it is easy to substitute a separate wavelet transform

matrix into each block. Lastly, W−1
∆ is created out of the columns in W−1 that are indexed by Sj∆.

Algorithm 5.3 HRCSSWA Algorithm

j ← 0

v̄0 ← Initial guess.

∆v̄1 ← −J̄(v̄0)−1f̄(v̄0)

v̄1 ← v̄0 + ∆v̄1

repeat

j ← j + 1

Sj∆ ← SparseSearch
(
Sj+1
v , Sjv

)
Form W−1

∆

// Calculate ∆v̂g with LU decomposition.

∆v̂g ← LUSolve
(
J̄(v̄j)W−1

∆ ,−f̄(v̄j)
)

‖d̄∆‖2 ← ‖− f̄(v̄j)− J̄(v̄j)W−1
∆ ·∆v̂g‖2

if
(
‖d̄∆‖2 > β

)
or
(
‖d̄∆‖2 > α · ‖f̄(v̄j)‖2

)
then

// The conditions in Equation (5.21) are not met,

// calculate ∆v̄j+1 in the time domain

// intsead.

∆v̄j+1 ← −J̄(v̄j)−1f̄(v̄j)

else

∆v̄j+1 ←W−1
∆ ∆v̂g

end if

// Update Guess

v̄j+1 ← v̄j + ∆v̄j+1

n̄← rtol min{|v̄j |, |v̄j+1|}+ atolū

until ∆v̄j+1
k < n̄k ,∀k ∈ {1, 2, . . . , NM} and ‖f̄(v̄j+1)‖∞ < atol

The formulation used for HRCSSWA removes the need for the pre-multiplication by W from the

101

circuit equations and reduces the amount of computational overhead required for the remaining wavelet

transform since W−1
∆ will have fewer columns than W . Additionally, the wavelet domain is only required

for the calculation of ∆v̂j+1 and all other steps can be treated the same as for SSTD. There is however,

additional computational overhead from performing the wavelet transforms on ĝv,k and v̂jk for each node

as well as the overhead of forming W−1
∆ each iteration.

5.3.1 Simulation Studies

The results of simulations run using the Cardoon circuit simulator for the circuits studied in Section 4.2

are presented in this section. The Haar, Daubechies, Coiflet, Symlet, biorthogonal and reverse biorthog-

onal families were used in this study. Conversion of ḡv and v̄j into ĝv and v̂j for the support search was

achieved using the fast wavelet transform functions of the PyWavelets library which can be set to handle

periodic waveforms. The simulations were performed with 512 coefficients, atol = 10−7, ntol = 10−15, and

rtol = 10−4. LU factorization of the Jacobian matrices were performed using the UMFPack routines in

SuiteSparse [49] with row scaling disabled.

The HRCSSWA method is compared with SSWA and RCSSWA using the following metrics: simulation

run times, calculation times, numeric factorization time, symbolic factorization time, number of iterations,

average number of non-zero elements in the Jacobian matrices, percentage of non-zero entries in Sj∆ each

iteration. The average densities of the L1, U , and L2 matrices is also included. For the simulation time

comparison, only the wavelets that led to the lowest run times with SSWA and RCSSWA are compared

with HRCSSWA. Only the wavelets that provided the lowest average number of non-zero elements with

SSWA and RCSSWA were used in the comparison of average Jacobian matrix density and number of

non-zero elements. For the percentage of non-zero elements in Sj∆ comparison, the wavelets that provided

the lowest percentage of non-zero elements in Sj∆ and average lowest number of non-zero elements in the

Jacobian matrix with RCSSWA were compared with HRCSSWA. The wavelets that were utilized by each

simulation are also presented along with the percentage of times each was utilized so it can be determined

if any wavelet family tends to provide the sparsest representations for each of the circuits in the study.

For HRCSSWA, the calculation time is given by:

Thrc =
∑
j

T jHS + T jv̄∆ + T j∆v̄, (5.32)

where T jHS is the HRCSSWA overhead time; T j∆v̄ is the time taken to calculate ∆v̄j+1 using Equation

(2.18); and T jv̄∆ is the time taken to calculate ∆v̂j+1
∆ using Equation (5.27) and transform it into the time

domain. On iterations when the conditions in Equation (5.21) are met, the calculation time is determined

by the time taken to find and test ∆v̂j+1
∆ and, therefore, T j∆v̄ = 0. The overhead time for the HRCSSWA

algorithm is equal to the time taken to find Sj∆, form J̄(v̄j)W−1
∆ , and test ‖d̂∆‖2 on iterations when

102

the conditions in Equation (5.21) are met. Otherwise, the overhead time includes time spent calculating

∆v̂j+1
∆ and is equal to T jHS + T jv̄∆.

Figure 5.21: Input and output nodal variable waveforms for the five test circuits with HRCSSWA vs

SSWA.

The input and output waveforms for the five test circuits with SSWA and HRCSSWA are shown in

Figure 5.21. There is no noticeable difference between SSWA and HRCSSWA in the final calculated v̄

waveforms.

A list of all wavelets used by HRCSSWA, out of 105 wavelets within the selected families available

with the PyWavelets library, for each simulation is shown in Table 5.6. The percentage usage is calculated

as the total number of times a wavelet was utilized divided by the total number of times any wavelet

was utilized. Most of the circuits utilized wavelets from multiple wavelet families with a varying number

103

of vanishing moments but, even so, a specific wavelet was favoured over the others in each simulation.

For this reason, the two most commonly utilized wavelets for each circuit were used to create a new,

shorter list for HRCSSWA and the simulations were run again. This approach has the advantage of only

having to search a shorter list which saves time during the support search since less wavelets are checked

during each iteration. The reduced column Jacobian matrix was not used for any of the iterations with

HRCSSWA during the stepped impedance filter circuit simulation and, therefore, no wavelets are listed for

this circuit. The wavelets used in the second set of HRCSSWA simulations were the Haar, Db6, Bior3.1,

Bior3.3, and Bior5.5 wavelets. The simulations that utilized the shorter list of wavelets are recorded as

’limited wavelets’ in the presented simulation results.

The simulation timing data for the five test circuits with HRCSSWA compared to SSWA and RCSSWA

with the wavelets that provided the lowest simulation run times is shown in Table 5.7. Due to the

significant reduction in support search time, HRCSSWA with the limited wavelets list ran faster than

HRCSSWA with all wavelets in every test case except for the Gilbert cell circuit where the extra iteration

caused a slowdown with the limited wavelets.

Table 5.6: Percentage of times each wavelet was selected during the simulations for the five test circuits.

Blue font indicates two most commonly used wavelets for each circuit.

Inverter Gilbert Ultrasound Transmission Stepped
Chain Cell Transducer Driver Line Circuit Impedance Filter

Bior2.2 - 1.67 - 0.89 -
Bior3.1 67.97 1.67 62.50 64.00 -
Bior3.3 8.23 - - 4.89 -
Bior3.5 4.76 - - - -
Bior3.7 0.87 - - - -
Bior4.4 0.43 - - - -
Bior5.5 3.90 6.67 - - -

Db2 - 3.33 - - -
Db3 - - - - -
Db4 - - - - -
Db5 - - - - -
Db6 - 6.67 - - -
Haar 5.19 80.00 37.50 30.22 -

Rbio1.5 3.46 - - - -
Rbio2.4 0.43 - - - -
Rbio2.6 0.43 - - - -
Rbio3.7 0.43 - - - -
Sym4 0.43 - - - -
Sym5 2.16 - - - -
Sym6 0.43 - - - -
Sym7 0.43 - - - -
Sym8 - - - - -
Sym11 0.43 - - - -

104

Table 5.7: Simulation timing data and number of iterations for for the five test circuits. Green font

indicates where the HRCSSWA method with the limited list of wavelets is faster than the SSWA method.

Blue font indicates where the RCSSWA method is faster than HRCSSWA with the limited list of wavelets.

Inverter Gilbert Ultrasound Transmission Stepped
Chain Cell Transducer Line Impedance Filter

SSWA 43.35 17.60 16.76 86.89 246.5
Sim Time [1.204] [2.514] [1.862] [2.633] [41.09]
RCSSWA 38.09 20.39 15.07 84.75 262.1
Sim Time [1.190] [2.548] [1.507] [2.493] [37.44]

HRCSSWA 49.71 22.94 15.67 159.4 427.2
Sim Time [1.344] [2.868] [1.205] [4.689] [71.20]

HRCSSWA 38.33 23.44 13.60 146.9 353.5
Sim Time (limited wavelets) [1.198] [2.604] [1.046] [4.590] [58.92]

SSWA 5.153 8.572 13.55 66.25 239.3
Calc Time [0.143] [1.225] [1.506] [2.008] [39.89]
RCSSWA 6.367 10.79 11.24 61.21 248.4
Calc Time [0.187] [1.349] [1.124] [1.800] [35.48]
HRCSSWA 16.66 15.49 12.11 146.7 421.8
Calc Time [0.450] [1.937] [0.931] [4.315] [70.29]
HRCSSWA 10.12 15.50 10.06 134.4 348.2

Calc Time (limited wavelets) [0.316] [1.723] [0.774] [4.199] [58.04]
SSWA Iterations 36 7 9 33 6

RCSSWA Iterations 32 8 10 34 5
HRCSSWA Iterations 37 8 13 34 6
HRCSSWA Iterations

(limited wavelets) 32 9 13 32 6

RCSSWA 0.345 1.373 0.682 4.559 33.64
Overhead Time [0.011] [0.172] [0.068] [0.134] [4.805]

HRCSSWA 11.04 7.708 4.073 72.13 131.0
Overhead Time [0.299] [0.964] [0.313] [2.122] [21.84]
Jacobian Matrix 5.264 3.710 1.308 41.76 63.85
Formation Time [0.142] [0.464] [0.101] [1.228] [10.64]
Support Search 5.531 2.235 2.031 13.26 7.839

Time [0.150] [0.279] [0.156] [0.390] [1.306]
HRCSSWA 5.115 7.620 2.156 59.45 98.60

Overhead Time [0.160] [0.847] [0.166] [1.858] [16.434]
(limited wavelets)
Jacobian Matrix 4.599 4.383 1.326 46.78 58.83
Formation Time [0.144] [0.487] [0.102] [1.462] [9.806]

(limited wavelets)
Support Search Time 0.255 0.131 0.116 0.822 0.528

(limited wavelets) [0.008] [0.015] [0.009] [0.026] [0.088]
Note: Calculated per-iteration values shown in square brackets and all times are in seconds.

HRCSSWA with the limited list of wavelets exhibited comparable simulation run times to SSWA and

RCSSWA for the inverter chain, Gilbert cell, and ultrasound transducer driver and exhibited speedups

105

Figure 5.22: Average density of the L1, U , and L2 matrices for the simulations with all wavelet families

(left) and the limited list of wavelets (right).

over SSWA with the inverter chain and ultrasound transducer driver circuits. Based on per-iteration

simulation time, HRCSSWA with the limited list of wavelets would have run faster than SSTD if the

number of iterations had remained unchanged. The simulation times for HRCSSWA with the limited

wavelets are close to the lowest simulation times for SSWA and RCSSWA with all but the transmission

line with inverter and stepped impedance filter circuits (see Tables 5.1, 5.2, 5.3, 5.4, and 5.5). Additionally,

with the transmission line circuit, HRCSSWA with the limited wavelets list leads to lower simulation times

than some of the wavelets with SSWA and RCSSWA. This indicates that although HRCSSWA with the

limited list of wavelets did not provide the highest overall speeds in every test case, it could provide

competitive speeds while also removing the problem of selection of most suitable wavelet that occurs with

SSWA and RCSSWA. However, the reduced size Jacobian matrix was not used much with the stepped

impedance filter circuit with HRCSSWA with the limited list of wavelets (and not at all for HRCSSWA

with the full list of wavelets) which indicates there may be some problems that do not benefit from the

use of HRCSSWA.

The support estimate time is significantly reduced by limiting the list of wavelets but, even with

simulations that have a high number of iterations that did not utilize ∆v̂j+1
∆ , the time taken to form

J̄(v̄j)W−1
∆ is still significant. The overhead times for HRCSSWA are much higher than RCSSWA because

the Jacobian matrix formation time is included with the overhead of support estimationI. The overhead

times for HRCSSWA with the limited list of wavelets, without the Jacobian matrix formation times, are

much higher than RCSSWA for three of the test circuits and close to the same for the others.

IWith HRCSSWA, the Jacobian matrix is formed after the support estimation rather than before so the Jacobian matrix

formation time is included with the overhead time calculation. Subtracting this time from the total overhead time allows for

the comparison of the overhead times for support estimation, error checking, and recalculation of the Newton update vector

(if the sparse estimate is not utilized) between RCSSWA and HRCSSWA.

106

Table 5.8: Matrix factorization timing data and number of iterations for for the five test circuits. Green

font indicates where the HRCSSWA method with the limited list of wavelets is faster than the SSWA

method. Blue font indicates where the RCSSWA method is faster than HRCSSWA with the limited list

of wavelets.

Inverter Gilbert Ultrasound Transmission Stepped

Chain Cell Transducer Line Impedance Filter

S
S

W
A

Symbolic 0.295 0.797 0.406 4.183 9.553

Time [0.008] [0.114] [0.045] [0.127] [1.592]

Numeric 0.926 5.021 10.90 43.40 190.4

Time [0.026] [0.717] [1.211] [1.315] [31.74]

R
C

S
S

W
A

Symbolic 0.295 0.844 0.373 3.328 10.96

Time [0.008] [0.106] [0.037] [0.098] [1.566]

Numeric 1.207 6.838 8.986 43.58 185.2

Time [0.033] [0.855] [0.899] [1.282] [26.46]

H
R

C
S

S
W

A Symbolic 0.372 0.795 0.307 2.746 6.997

Time [0.010] [0.099] [0.024] [0.081] [1.166]

Numeric 3.381 6.454 6.559 69.53 297.9

Time [0.091] [0.807] [0.505] [2.045] [49.66]

H
R

C
S

S
W

A

(L
im

W
av

e) Symbolic 0.356 0.811 0.305 2.749 5.726

Time [0.011] [0.090] [0.024] [0.086] [0.954]

Numeric 2.921 7.432 6.476 65.74 242.6

Time [0.091] [0.826] [0.498] [2.054] [40.43]

Note: Calculated per-iteration values shown in square brackets and all times are in seconds.

107

(a) (b)

(c) (d)

(e)

Figure 5.23: Percentage of non-zero elements in Sj∆ for HRCSSWA with the full wavelet list and limited

wavelet list (limited wavelets). Also shown for comparison are the RCSSWA Percentage of non-zero

elements in Sj∆ with the wavelet that provided the lowest average number of non-zero elements in the

Jacobian matrices (green line) and the lowest number of non-zero elements in Sj∆ (red line) for the (a)

inverter chain, (b) Gilbert cell, (c) ultrasound transducer driver, (d) transmission line circuit, and (e)

stepped impedance filter circuit.

In Figure 5.23, HRCSSWA is compared with the wavelets that provided the lowest number of non-

zero elements in the Jacobian matrices and lowest average percentage of non-zero elements in Sj∆ with

RCSSWA. For most circuits HRCSSWA leads to a lower percentage of elements in Sj∆ on average than

108

RCSSWA. For the stepped impedance filter circuit, there are few iterations that utilized the sparse

estimate of v̂j with both RCSSWA (all but one wavelet) and HRCSSWA. For this reason, the simulation

times using RCSSWA and HRCSSWA are not competitive with SSWA and SSTD for this circuit. This

problem could potentially be addressed by improving the metric used to control ‖d̂∆‖2 or the column

selection method but, with the current formulation, there are certain circuits that do not benefit from

the reduced column method. Utilizing the shorter list of wavelets leads to a small difference in Sj∆ with

HRCSSWA with most of the circuits. No change is seen with the ultrasound transducer driver since the

two wavelets that were utilized with this circuit were both on the shortened wavelet list with the limited

wavelets simulations.

The average density of the L1, U , and L2 matrices for each of the test circuits is shown in Figure 5.22.

The average densities of the L1, U , and L2 matrices is not significantly different when using the shorter

list of wavelets for most of the circuits.

5.3.2 Discussion

Allowing for a separate wavelet for each node leads to sparser representations of the nodal variable

vectors and less computational overhead to form the Jacobian matrix than SSWA and RCSSWA. However,

this comes at the cost of a higher overhead time to find the ideal combination of wavelets to use in the

formation of J̄(v̄j)W−1
∆ each iteration. This overhead is a significant disadvantage of utilizing HRCSSWA.

The results with the test circuits show that the Bior3.1 and Haar wavelets were utilized to the highest

extent with HRCSSWA with the Db6, Bior3.3, and Bior5.5 wavelets being the second most utilized

wavelets. Utilizing just these wavelets, as was the case with the ’limited wavelets’ simulations, leads to

similar nodal variable vector and Jacobian matrix sparsities along with a significant reduction in overhead

time associated with the support estimation compared to HRCSSWA when all wavelets are utilized. The

limited list of wavelets was determined experimentally when running simulations with all 105 wavelets

within the selected families available in the PyWavelets library. The list of 5 wavelets significantly reduced

the overhead time associated with the support search of HRCSSWA. However, one could select a list that

is two to three times larger and not significantly increase the support search times. Additionally, it is

possible to select some of the wavelets based on the known input waveforms to a circuit. For example,

the Haar wavelet will provide the sparsest representation of DC and square wave waveforms and should

be included with a circuit that contains these inputs. Since many of the wavelets required to achieve the

lowest density representations of Sj∆ can be removed without having too large of an effect on the density

of Sj∆, as is the case with the inverter chain, using a limited list of wavelets in this manner can increase

the speed of HRCSSWA at the possible cost of a small increase in density of Sj∆.

The simulation times for HRCSSWA with the limited list of wavelets for some of these test cases are

109

higher than SSWA with the wavelet that led to the fastest simulation times. However, in the case of the

Gilbert cell and transmission line with inverter circuits, HRCSSWA ran faster than SSWA with some of

the other wavelets. This indicates that HRCSSWA could be utilized as an alternative to SSWA if the

wavelet that will provide the best performance with SSWA is not known. This would result in a relatively

small reduction in speed over the ideal case with SSWA but, considering the number of possible wavelets

to choose from, the risk of selecting an inefficient wavelet justifies this cost in cases where selection of the

most efficient wavelet for SSWA is difficult.

The densities of the L1, U , and L2 matrices are higher with HRCSSWA than RCSSWA. If the densities

of these matrices is similar with larger circuit problems then the LU factorization algorithm may not be as

efficient as RCSSWA with larger problems. The L2 matrix, which exhibits densities over two times that

of the L1 matrix, may cause memory/computational efficiency issues with very large circuits. However,

testing with large circuits would be necessary to confirm if this is the case.

The percentage of non-zero elements in Sj∆ with HRCSSWA is lower than with RCSSWA. This indi-

cates that assigning a wavelet to each nodal variable adaptively successfully leads to sparser nodal variable

vectors and fewer columns in the reduced column Jacobian matrix than selecting one wavelet for all nodal

variables to use for the entire simulation.

5.4 Chapter Summary

This chapter presented methods for reducing the columns in the Jacobian matrix at each iteration.

The results show that the methods are successful in reducing the number of columns in the Jacobian

matrix at each iteration. The HRCSSWA algorithm requires a higher calculation overhead per iteration

to perform wavelet selection which can be mitigated by limiting the list of wavelets used in the search.

RCSSWA and HRCSSWA with the limited list of wavelets led to a speedup over SSWA in some of the

test cases. In all but one of the simulations where HRCSSWA with the limited list of wavelets ran slower

than SSWA, some of the other wavelets with SSWA led to slower simulations than HRCSSWA with the

limited list of wavelets. This indicates that HRCSSWA with a limited list of wavelets could be utilized

instead of SSWA in cases where the most efficient wavelet for SSWA is not known. The trade off is a

reduction in speed compared to SSWA when the optimum wavelet is selected but at a gain of not risking

an even higher reduction in speed when an inefficient wavelet is selected. For the stepped impedance filter

circuit with RCSSWA and HRCSSWA, the reduced column Jacobian was not utilized very often. This

indicates that there are some problems that do not benefit from the column reduction methods in their

current state. This problem can potentially be corrected by improving the criterion that controls ‖d̂∆‖2

and/or the support search method but more work is required to determine if this is the case.

The next Chapter discusses this, and other future directions for this research and also concludes this

110

thesis with a brief summary of the results of Chapters 4 and 5.

111

Chapter 6

Conclusions and Future Work

Presented in this thesis is a study on the effect wavelet selection has on the densities of the Jacobian

matrix and nodal variable vectors of SSWA. Three algorithms that attempt to increase the efficiency of

SSWA with Newton method were also developed and presented. In terms of Jacobian matrix density, the

Haar wavelet provided the lowest densities of the wavelets tested with all test circuits but did not always

provide the lowest v̂ vector densities. When Jacobian matrix thresholding was applied, the Haar wavelet

still provided the lowest density Jacobian matrices for the majority, but not all, of the test cases. Thus,

there appears to be no one wavelet that will always provide the sparsest Jacobian matrices but, if the

most ideal wavelet is unknown, it can be safe to use the Haar wavelet if Jacobian density is a concern.

The adaptive Jacobian matrix thresholding algorithm was successful at reducing the average Jacobian

matrix densities while rarely introducing a high enough error into the Newton update vectors to cause

a significant change in total number of iterations required to converge. Adaptive thresholding led to a

speedup over SSWA without thresholding in all but one test case and sometimes even led to a speedup

over SSTD. Thus, applying an adaptive threshold to the Jacobian matrix can be used to increase the

efficiency of SSWA. There is still the requirement of selecting the threshold increase and decrease factors,

the initial threshold, and the absolute and relative tolerances. However, these values are not hard to

determine since the absolute and relative tolerances can be determined from the characteristics of the

simulation, the initial threshold can be set to any very small, but safe, value to avoid over thresholding

the early iterations of the simulation and the values for the increase and decrease factors used in this

study appear to be sufficient for the general case. It is possible to achieve lower simulation times than the

adaptive thresholding method by careful selection of a static threshold. However, selection of an optimal

threshold is difficult and could require trial and error. One problem that the adaptive threshold addresses

is removing the need for a designer to select an ideal threshold. Thus, a potential slowdown, compared

to an ideally selected static threshold, is the trade off of using the adaptive Jacobian matrix thresholding

112

method. However, considering the difficulty in selecting an ideal threshold, the adaptive Jacobian matrix

thresholding method appears to be worth using if an ideal threshold is not known in advance.

The wavelets that achieved the greatest reduction in density were the ones that had the highest number

of vanishing moments while the wavelets with the lowest number of vanishing moments, which are the

ones that provided the greatest simulation speeds, achieved the lowest Jacobian densities. Based on the

data from this study, there is no one wavelet that provides the greatest Jacobian matrix sparsity and

speeds. However, the Haar wavelet tends to provide the sparsest Jacobian matrices when using SSWA

with no thresholding. Therefore, the Haar wavelet would make a safe choice for speed/sparsity if the

choice of wavelet for optimal performance is unknown.

The RCSSWA and HRCSSWA algorithms were developed to attempt to take advantage of the sparsity

of the wavelet domain representations of the nodal variable vectors that were observed in the SSWA study.

Both algorithms work within each iteration of Newton method to reduce the number of columns in the

Jacobian matrix. This is achieved by first estimating the support of the unknown update vector, selecting

columns from the Jacobian matrix using the estimated support, and then solving the new system of

equations represented by the reduced column Jacobian matrix to provide a sparse estimate of the update

vector. The error in the sparse estimate is tested and, if it is low enough, the estimate is used and, if it

is too high, the estimate is rejected.

On iterations where the reduced column estimate was utilized, there was a significant decrease in the

number of columns, and number of non-zero elements, in the Jacobian matrix with both RCSSWA and

HRCSSWA. This resulted in a deviation between the update vectors calculated by SSWA, RCSSWA, and

HRCSSWA that led to a change in the total number of iterations required to converge. The slowdown

in simulation times was caused by an increase in the number of iterations and/or the extra overhead of

implementing the column reduction methods. The overhead of HRCSSWA can be significantly reduced by

reducing the number of wavelets that are used during support estimation. This also results in simulation

times that are sometimes lower than the lowest simulation times that were achieved with SSWA. In

cases where there was a slowdown, compared to the wavelet that provided the fastest simulation time,

HRCSSWA still ran faster than some of the other wavelet choices. This indicates that HRCSSWA with

a limited list of wavelets can be utilized in cases where the most efficient wavelet choice for SSWA is

not known. The L2 matrix will tend to exhibit densities that are much greater than the L1 matrix. If

the densities of the L1, U , and L2 matrices remain the same with larger circuit problems, this method

may run into memory/computational efficiency issues when factorizing Ĵ∆. However, further testing with

larger circuit problems will be necessary to confirm if this is the case.

Adaptive Jacobian matrix thresholding provides the best increase in speed with the SSWA formulation

113

used in this thesis. However, with this formulation, SSTD still tends to provide the fastest simulation

times. The waveforms with these circuits were not very sparse. RCSSWA and HRCSSWA have the

potential to provide faster calculation speeds as the sparsity of the nodal variable waveforms increases

and more work is required to determine if RCSSWA and HRCSSWA perform better with large, sparse,

problems.

The speedups that occur with SSWA with adaptive thresholding and RCSSWA do not consistently

happen with the same wavelets for every circuit, making wavelet selection difficult. HRCSSWA addresses

this issue by automatically selecting a wavelet for each nodal variable to provide the sparsest represen-

tations of the nodal variable waveforms but at the price of a significant increase in overhead time. This

overhead time can be reduced by limiting the list of wavelets used when estimating Sj∆ but the overhead

time of forming J̄(v̄j)W−1
∆ , along with the increase in time required to factorize Ĵ∆ compared to Ĵ(v̂j)

remain significant factors. The HRCSSWA simulations presented in this thesis exhibited slowdowns com-

pared to SSTD. However, for the ultrasound transducer driver, the per-iteration simulation and numeric

factorization times are lower for HRCSSWA than SSTD (see Tables 4.6 and 5.8). This could indicate that

improvements to HRCSSWA could potentially lead to simulation times that are competitive with SSTD.

However, in its present form, the HRCSSWA algorithm does not lead to speedups over SSTD with the

examples in this thesis.

Jacobian matrix formation with HRCSSWA will be faster than RCSSWA since J̄(v̄j)W−1
∆ can be

formed with far fewer operations than WJ̄(v̄j)W−1. Since Jacobian matrix formation is faster with

HRCSSWA and the difficulty in selecting the proper wavelet for a given circuit is addressed by HRCSSWA,

the focus of future research will be with HRCSSWA. There are three main avenues of future development

for the HRCSSWA algorithm:

1. Increase the speed/efficiency of solving Equation (5.27).

2. Improvement of the estimate of Sj∆.

3. Increase the speed/efficiency of forming J̄(v̄j)W−1
∆ .

One of the drawbacks of the LU factorization is the formation of matrix L2 of the partitioned problem.

There is no guarantee that L2 will be sparse and, as such, it can potentially require a large amount of

memory for storage. However, the L2 matrix is not required by the reduced column methods and, if an

algorithm can be written that finds L1 and U without explicitly forming L2 can be developed, a significant

decrease in memory resources could potentially be achieved. However, LU factorization requires extra

memory for storage of the L and U matrices and may provide poor performance with very large problems.

Therefore, an iterative method, such as GMRES [65] may be better suited to solving Equation (5.27) with

114

very large problems.

For the Gilbert cell and stepped impedance filter circuits, there were many iterations where the

estimate of Sj∆ led to a large enough error for the conditions in Equation (5.21) to not be met. This could

be due to the conditions in Equation (5.21) being too aggressive. A new set of conditions may improve

this method by allowing more iterations where ∆v̂g is used as the Newton update vector. Additionally,

a new thresholding method could be developed to better select elements to add to the support estimate.

The threshold used in this thesis is selected based on the waveforms being thresholded. The parameter

rtol is manually entered and was one of the parameters used to determine convergence of the simulation.

However, a pre-selected threshold is not the only possible method. For example, threshold selection

methods based on those used in data compression applications, such as those used in [66], could provide

more optimal performance. However, a pre-selected threshold is the most computationally simple and

care has to be taken to avoid adding too much computational overhead to the estimation of Sj∆.

The majority of the computational time of estimating Sj∆ with HRCSSWA is due to the wavelet

transforms required to find the most convenient wavelet. For each node, the waveforms are transformed

into the wavelet domain, thresholded, and the number of non-zero elements in the thresholded vector are

counted. In total, there were 105 wavelets used in the HRCSSWA study. This represents a very high

amount of extra overhead that can be significantly reduced by utilizing a shorter list of wavelets. Based

on this study, selection of a list of wavelets that will provide the greatest sparsity for all cases is not

possible. However, one could select a single wavelet from each family (there were 6 used in the limited

wavelets list of this study) which would significantly reduce the computational overhead associated with

estimation of Sj∆. Based on this study, the Haar and Bior3.1 wavelets tended to be utilized the most.

Additionally, the wavelets that provided the sparsest nodal variable vectors tended to be the wavelets

with the lowest number of vanishing moments. Thus, the Haar, Db2, Coif2, Sym2, and Bior3.3 wavelets

could be utilized in the general case where it is uncertain which wavelets to use with HRCSSWA.

Formation of J̄(v̄j)W−1
∆ is another significant source of computational overhead for HRCSSWA. The

transform matrix, W−1
∆ , is created by using the fast wavelet transform to form only the columns in W−1

∆

that correspond to the entries in Sj∆. This requires many operations to form W−1
∆ every iteration. If

the limited list of wavelets is decided before the simulation is run, it is possible to form these matrices

and keep them stored in memory for use during the simulation. This is is easily implemented and results

in the matrices only needing to be formed once at the cost of a little extra use of memoryI. However,

this method would scale poorly to problems that have a high number of samples for the nodal variables.

Another way to increase efficiency of formation of J̄(v̄j)W−1
∆ is to apply the fast wavelet transforms

I5M2 elements have to be stored in memory if the wavelets list has 5 entries.

115

directly to J̄(v̄j). This would avoid the extra memory use from storing the wavelet transform matrices

and should provide a speedup over SSWA since J̄(v̄j)W−1
∆ can be formed with much fewer operations

than WJ̄(v̄j)W−1.

One potential application that was not explored in this thesis is the case where multiple simulations

with the same circuit are performed. For example, if a Monte Carlo analysis is performed, many simula-

tions with the same circuit with small changes to the values of circuit elements (resistances, capacitances,

inductances, etc.) are run to predict the effect of variations in the elements due to causes such as envi-

ronmental effects or manufacturing tolerances. HRCSSWA could be applied to this type of problem by

running the first simulation with the designed parameters. During this simulation the ideal wavelets for

each node could be determined. This list could then be utilized for subsequent simulations to avoid the

requirement of searching for the ideal wavelet at later iterations. The iterations from the first simulation

that required refinement could also be flagged and, for subsequent simulations, the Newton updates for

the flagged iterations could be calculated without trying reduce the columns. Since refinement will result

in utilizing J̄(v̄j) to calculate ∆v̄ directly, the overhead time required to calculate ∆v̂g for these iterations

would be removed and result in a reduction in calculation overhead.

116

Appendix A

Derivative Estimation

Due to the capacitances and charges requiring the time derivatives of the voltages at each node to calculate,

Newton method cannot be directly applied to Equation (2.8) or Equation (2.9). Therefore, a method for

calculating or approximating the time derivatives during each iteration is necessary so the Jacobian

matrix can be formed and next the Newton update can be calculated. Some common derivative estimate

methods are the Forward Differences Method, Backward Differences Method, Central Differences Method,

and Fourier derivative (derivatives calculated in the frequency domain) method. This appendix briefly

introduces these derivative methods.

A.1 Forward Differences Method

This method begins with the Taylor series expansion of the function x(t) about an arbitrary point tl:

x(t) = x(tl) +
x′(tl)(t− tl)

1!
+
x′′(tl)(t− tl)2

2!
+
x′′′(tl)(t− tl)3

3!
+ · · · , (A.1)

where N is the number of terms in the series, a prime denotes differentiation with respect to t, and all

derivatives are evaluated at tl[42]. Setting ∆t = t− tl in Equation (A.1) yields

x(tl + ∆t) = x(tl) +
x′(tl)(∆t)

1!
+
x′′(tl)(∆t)

2

2!
+
x′′′(tl)(∆t)

3

3!
+ · · · . (A.2)

If x(t) is a vector representing a periodic waveform that is discretized with M equally spaced time

samples then Equation (A.2) becomes:

xl+1 = xl +
x′l(∆t)

1!
+
x′′l (∆t)

2

2!
+
x′′′l (∆t)3

3!
+ · · · , (A.3)

where xl is the value of x(t) at time sample l, xl+1 is the value of x(t) at time sample l+ 1, and x′l is the

value of the estimate of the derivative of x(t) at time sample l.

To approximate the first order derivative, all terms after the first order derivative in Equation (A.3)

are truncated:

xl+1 ≈ xl +
x′l(∆t)

1!
. (A.4)

117

The equation is then re-ordered to solve for x′l:

x′l ≈
xl+1 − xl

∆t
. (A.5)

Equation (A.5), known as the 2 point forward differences method, can be expressed using matrix

vector products as:
x′0

x′1
...

x′M

 ≈ 1

∆t

−1 1 0 · · · 0

0 −1 1 · · · 0
...

. . .
. . .

. . .
...

1 0 0 · · · −1

x0

x1

...

xM

 , (A.6)

x′(t) ≈ DF2x(t). (A.7)

The final row requires a sample that is outside the time period (sample M + 1) to calculate the derivative

x′M . Since x(t) is periodic, the sample that falls in the next time period can be found by wrapping around

to the beginning of the row (i.e. sample M + 1 is the same as sample 1).

The error of the 2 point forward differences method is the sum of the remaining terms from Equation

(A.4) that were neglected. Equation (A.5) with all terms is:

x′l =
xl+1 − xl

∆t
−
x′′l (∆t)

2!
−
x′′′l (∆t)2

3!
−
x′′′′l (∆t)3

4!
− · · · , (A.8)

and the remaining terms are:

RF2 = −
x′′l (∆t)

2!
−
x′′′l (∆t)2

3!
−
x′′′′l (∆t)3

4!
− · · · . (A.9)

The lower order derivative terms usually contribute more to the error than the higher order derivative

terms and RF2 can be approximated using just the first of the remaining terms [42]:

RF2 ≈ −
x′′l (∆t)

2!
. (A.10)

It is possible to increase the accuracy of the approximate derivative by using more datapoints in the

Taylor series expansion of x(t). For example, the 2 point method utilizes two points: xl+2 and xl+1. The

2 point method begins with the first 3 terms of the Taylor series expansion in Equation (A.3) for xl+2

and xl+1:

xl+2 ≈ xl +
x′l(2∆t)

1!
+
x′′l (2∆t)2

2!
, (A.11)

xl+1 ≈ xl +
x′l(∆t)

1!
+
x′′l (∆t)

2

2!
. (A.12)

Since the time samples are equally spaced, the time step is twice as large for the expansion of xl+2 and

∆t must be multiplied by 2 in Equation (A.11).

118

Multiplying Equation (A.12) by 4 and subtracting it from Equation (A.11) yields:

xl+2 − 4xl+1 ≈ −3xl − x′l(2∆t). (A.13)

The estimate of the 2 point derivative is then found by solving for x′l Equation (A.13):

x′l ≈
−xl+2 + 4xl+1 − 3xl

2∆t
. (A.14)

Equation (A.14) can be expressed using matrix vector products:

x′0

x′1
...

x′M

 ≈ 1

2∆t

−3 4 −1 0 0 0 · · · 0

0 −3 4 −1 0 0 · · · 0

0 0 −3 4 −1 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...

4 −1 0 0 0 0 · · · −3

x0

x1

...

xM

 , (A.15)

x′(t) ≈ DF4x(t). (A.16)

The error of the 4 point forward differences method is the combination of the terms of Equations

(A.11) and (A.12) that were not included in the estimate. Equations (A.11) and (A.12) with all terms

are:

xl+2 = xl +
x′l(2∆t)

1!
+
x′′l (2∆t)2

2!
+
x′′′l (2∆t)3

3!
+
x′′′′l (2∆t)4

4!
+ · · · , (A.17)

xl+1 = xl +
x′l(∆t)

1!
+
x′′l (∆t)

2

2!
+
x′′′l (∆t)3

3!
+
x′′′′l (∆t)4

4!
+ · · · . (A.18)

Multiplying Equation (A.18) by 4 and subtracting it from Equation (A.17) yieldsI:

xl+2 − 4xl+1 = −3xl − x′l(2∆t) + 4
x′′′l (∆t)3

3!
+ 12

x′′′′l (∆t)4

4!
+ · · · , (A.19)

x′l =
−xl+2 + 4xl+1 − 3xl

2∆t
+ 2

x′′′l (∆t)2

3!
+ 6

x′′′′l (∆t)3

4!
+ · · · . (A.20)

The error is given by the remaining terms that were not used in Equation (A.14):

RF4 = 2
x′′′l (∆t)2

3!
+ 6

x′′′′l (∆t)3

4!
+ · · · . (A.21)

Which, due to having higher order derivatives than Equation (A.10), can be expected to be lower than

the error of the 2 point method.

IThese are the same operations that were performed on Equations (A.11) and (A.12) to form Equation (A.13).

119

A.2 Backward Differences

This method begins with a similar formulation as the Forward differences method but, instead of

looking forward in time the method looks backward in time and −∆t = t−tl [42]. Substituting −∆t = t−tl
into Equation (A.1) yields:

x(tl −∆t) = x(tl) +
x′(tl)(−∆t)

1!
+
x′′(tl)(−∆t)2

2!
+
x′′′(tl)(−∆t)3

3!
+ · · · . (A.22)

If x(t) is a vector representing a periodic waveform that is discretized with M equally spaced time samples

then Equation (A.22) becomes:

xl−1 = xl +
x′l(−∆t)

1!
+
x′′l (−∆t)2

2!
+
x′′′l (−∆t)3

3!
+ · · · , (A.23)

where xl is the value of x(t) at time sample l, xl−1 is the value of x(t) at time sample l− 1, and x′l is the

value of the estimate of the derivative of x(t) at time sample l.

To approximate the first order derivative, all terms after the first order derivative in Equation (A.23)

are truncated:

xl−1 ≈ xl +
x′l(−∆t)

1!
, (A.24)

and the equation is re-ordered to solve for x′l:

x′l ≈
xl − xl−1

∆t
. (A.25)

Equation (A.25) can be expressed using matrix vector products:

x′0

x′1
...

x′M

 ≈ 1

∆t

1 0 0 · · · −1

−1 1 0 · · · 0

0 −1 1 0 · · ·
...

. . .
. . .

. . .
. . .

...

0 0 · · · −1 1

x0

x1

...

xM

 , (A.26)

x′(t) ≈ DB2x(t). (A.27)

The first row requires a sample that is outside the time period (sample −1) to calculate the derivative x′1.

Since x(t) is periodic, the sample that falls in the previous time period can be found by wrapping around

to the end of the row (i.e. sample −1 is the same as sample M).

The error of the 2 point backward differences method is the sum of the remaining terms from Equation

(A.24) that were neglected. Equation (A.25) with all terms is:

x′l =
xl − xl−1

∆t
+
x′′l (∆t)

2!
−
x′′′l (∆t)2

3!
+
x′′′′l (∆t)3

4!
− · · · , (A.28)

120

and the remaining terms are:

RB2 =
x′′l (∆t)

2!
−
x′′′l (∆t)2

3!
+
x′′′′l (∆t)3

4!
− · · · . (A.29)

The lower order derivative terms usually contribute more to the error than the higher order derivative

terms and RB2 can be approximated using just the first of the remaining terms [42]:

RB2 ≈
x′′l (∆t)

2!
. (A.30)

It is possible to increase the accuracy of the approximate derivative by using more datapoints in the

Taylor series expansion of x(t). For example, the 2 point method utilizes two points: xl−1 and xl−2. The

2 point method begins with the first 3 terms of the Taylor series expansion in Equation(A.23) for xl−1

and xl−2:

xl−2 ≈ xl +
x′l(−2∆t)

1!
+
x′′l (−2∆t)2

2!
, (A.31)

xl−1 ≈ xl +
x′l(−∆t)

1!
+
x′′l (−∆t)2

2!
. (A.32)

Since the time samples are equally spaced, the time step is twice as large for the expansion of xl−2 and

∆t must be multiplied by 2 in Equation (A.31).

Multiplying Equation (A.32) by 4 and subtracting it from Equation (A.31) yields:

xl−2 − 4xl−1 ≈ −3xl + x′l(2∆t). (A.33)

The estimate of the 2 point derivative is then found by solving for x′l Equation (A.33):

x′l ≈
xl−2 − 4xl−1 + 3xl

2∆t
. (A.34)

Equation (A.34) can be expressed using matrix vector products:

x′0

x′1
...

x′M

 ≈ 1

2∆t

3 0 0 0 0 · · · 0 1 −4

−4 3 0 0 0 · · · 0 0 1

1 −4 3 0 0 · · · 0 0 0

0 1 −4 3 0 · · ·
...

...
...

...
. . .

. . .
. . .

. . .
. . .

...
...

...

0 0 0 0 0 · · · 1 −4 3

x0

x1

...

xM

 , (A.35)

x′(t) ≈ DB4x(t). (A.36)

The error of the 4 point backward differences method is the combination of the terms of Equations

(A.31) and (A.32) that were not included in the estimate. Equations (A.31) and (A.32) with all terms

are:

xl−2 = xl +
x′l(−2∆t)

1!
+
x′′l (−2∆t)2

2!
+
x′′′l (−2∆t)3

3!
+
x′′′′l (−2∆t)4

4!
+ · · · , (A.37)

121

xl−1 = xl +
x′l(−∆t)

1!
+
x′′l (−∆t)2

2!
+
x′′′l (−∆t)3

3!
+
x′′′′l (−∆t)4

4!
· · · . (A.38)

Multiplying Equation (A.38) by 4 and subtracting it from Equation (A.37) yieldsI:

xl−2 − 4xl−1 = −3xl − 2x′l(−∆t) + 4
x′′′l (−∆t)3

3!
+ 12

x′′′′l (−∆t)4

4!
+ · · · , (A.39)

x′l =
xl−2 − 4xl−1 + 3xl

2∆t
+ 2

x′′′l (∆t)2

3!
− 6

x′′′′l (∆t)3

4!
+ · · · . (A.40)

The error is given by the remaining terms that were not used in Equation (A.34):

RB4 = 2
x′′′l (∆t)2

3!
− 6

x′′′′l (∆t)3

4!
+ · · · . (A.41)

Which, due to having higher order derivatives than Equation (A.30), can be expected to be lower than

the error of the 2 point method.

A.3 Central Differences

This method is a combination of the Backward and Forward differences method. If Equation (A.23)

is subtracted from Equation (A.3), the result is:

xl+1 − xl−1 = xl − xl +
x′l(∆t)

1!
−
x′l(−∆t)

1!
+
x′′l (∆t)

2

2!
−
x′′l (−∆t)2

2!
+ · · · , (A.42)

xl+1 − xl−1 =
2x′l(∆t)

1!
+

2x′′′l (∆t)3

3!
+

2x′′′′′l (∆t)5

5!
+ · · · . (A.43)

To approximate the first order derivative, all terms after the first order derivative in Equation (A.43) are

truncated:

xl+1 − xl−1 ≈
2x′l(∆t)

1!
, (A.44)

and the equation is re-ordered to solve for x′l:

x′l ≈
xl+1 − xl−1

2∆t
. (A.45)

Equation (A.45) can be expressed using matrix vector products:

x′0

x′1
...

x′M

 ≈ 1

2∆t

0 1 0 0 0 · · · −1

−1 0 1 0 0 · · · 0

0 −1 0 1 0 · · ·
...

. . .
. . .

. . .
. . .

. . .
...

1 0 0 0 · · · −1 0

x0

x1

...

xM

 , (A.46)

x′(t) ≈ DC2x(t). (A.47)

IThese are the same operations that were performed on Equations (A.31) and (A.32) to form Equation (A.33).

122

This is known as the 2 point central differences method. Since x(t) is periodic, any required sample that

is outside the time period can be obtained by wrapping around to the opposite side of the time period.

For example, x−1 is the same as xM and xM+1 is the same as x0.

The error of the 2 point central differences method is the sum of the remaining terms from Equation

(A.44) that were neglected. Equation (A.45) with all terms is:

x′l =
xl+1 − xl−1

2∆t
+
x′′′l (∆t)2

3!
+
x′′′′′l (∆t)4

5!
+ · · · . (A.48)

and the remaining terms are:

RC2 =
x′′′l (∆t)2

3!
+
x′′′′′l (∆t)4

5!
+ · · · . (A.49)

The lower order derivative terms usually contribute more to the error than the higher order derivative

terms and RC2 can be approximated using just the first of the remaining terms [42]:

RC2 ≈
x′′′l (∆t)2

3!
. (A.50)

Which can be expected to be lower than the 2 point forward and backward differences approximations

which contain lower order derivative terms.

It is also possible to increase the accuracy of the approximate derivative by using more datapoints in

the Taylor series expansion of x(t). For example, the 4 point central differences method can be derived

by subtracting the Taylor series expansion of xl−2 from the Taylor series expansion of xl+2
I:

xl+2 − xl−2 =
2x′l(2∆t)

1!
+

2x′′′l (2∆t)3

3!
+

2x′′′′′l (2∆t)5

5!
+ · · · . (A.51)

Multiplying Equation (A.43) by 8, subtracting it from Equation (A.51), and truncating all but the

first and third derivative terms from the result yields:

xl+2 − xl−2 − 8xl+1 + 8xl−1 ≈
2x′l(2∆t)

1!
+

2x′′′l (2∆t)3

3!
− 8

2x′l(∆t)

1!
− 8

2x′′′l (∆t)3

3!
, (A.52)

xl+2 − 8xl+1 + 8xl−1 − xl−2 ≈ −12x′l(∆t). (A.53)

The estimate of the 4 point derivative is then found by solving for x′l Equation (A.53):

x′l ≈
−xl+2 + 8xl+1 − 8xl−1 + xl−2

12∆t
. (A.54)

IThe first three terms of the Taylor series expansion of xl+2 and xl−2 are given in Equations (A.11) and (A.31) respectively.

123

Equation (A.54) can be expressed using matrix vector products:

x′0

x′1
...

x′M

 ≈ 1

12∆t

0 8 −1 0 0 0 · · · 0 1 −8

−8 0 8 −1 0 0 · · · 0 0 1

1 −8 0 8 −1 0 · · · 0 0 0

0 1 −8 0 8 −1
. . .

...
...

...
...

. . .
. . .

. . .
. . .

. . .
. . .

...
...

...

8 −1 0 0 0 0 · · · 1 −8 0

x0

x1

...

xM

 , (A.55)

x′(t) ≈ DC4x(t). (A.56)

The error of the 4 point central differences method is the combination of the terms of Equations (A.51)

and (A.43) that were not included in the estimate. Equation (A.54) with all terms is:

x′l =
−xl+2 + 8xl+1 − 8xl−1 + xl−2

12∆t
+ 4

x′′′′′l (∆t)4

5!
+ 20

x′′′′′′′l (∆t)6

7!
+ · · · . (A.57)

The error is given by the remaining terms that were not used in Equation (A.34):

RC4 = 4
x′′′′′l (∆t)4

5!
+ 20

x′′′′′′′l (∆t)6

7!
+ · · · (A.58)

Which, due to having higher order derivatives than Equation (A.50), can be expected to be lower than

the error of the 2 point method. This error also contains much higher order derivatives than the 4 point

forward and backward differences methods and, therefore, can be expected to be lower than RF4 and

RB4.

A.4 Fourier (Frequency Domain) Differentiation Method

With the Fourier differentiation method, also known as a spectral differentiation [67] or pseudospectral

method [68], the derivatives are performed in the frequency domain. These methods perform the derivative

on a set of discrete data in three steps [67, 68]:

1. The discrete data x̄ is transformed into the frequency domain with the Fourier Transform.

2. The derivative is performed by using the inverse discrete Fourier transform to define a continuous

interpolation, xdf (t), between the samples of the frequency domain representation of the discrete

data [67]. The derivative of this interpolation is used to determine the derivatives of the frequency

domain coefficients of the discrete data (ũ).

3. The derivative of ũ is transformed into the time domain with the Fourier Transform to obtain the

estimate of the derivatives of x̄.

124

This method can be utilized for both periodic and non-periodic waveforms [67, 68]. However, since this

thesis is concerned with periodic steady-state analysis, this Appendix will focus on periodic waveforms.

For a description of how to use spectral differentiation for non-periodic waveforms, the reader is encouraged

to review [67] and [68].

If a periodic waveform, x(t), with period T is discretized into M uniformly spaced samples over period

T , the Fourier transform can be expressed as [67, 69]:

ũp =
1

M

M−1∑
l=0

x̄le
−j 2π

M
lp, (A.59)

x̄l =

M−1∑
p=0

ũpe
j 2π
M
lp, (A.60)

where x̄l represents the lth time sample, ũp represents the pth frequency coefficient, and x̄l = x(lTM).. It

is possible to construct matrices that perform the operations in Equations (A.59) and (A.60) and the

transforms can be expressed using matrix/vector products:

ũ = F x̄, (A.61)

x̄ = F−1ũ, (A.62)

where F and F−1 are matrices that perform the forward and inverse Fourier transforms, respectively, and

ũ is the vector of frequency coefficients.

There are many different choices possible for x̄df (t). However, the most useful functions for discrete

derivatives are purely real-valued interpolation polynomials (i.e. they don’t result in complex values)

[67, 68]. The reason there are many choices possible for x̄df (t) is aliasing: any term ũpe
j 2π
M
lp in Equation

(A.60) can be replaced by ũpe
j 2π
M
l(p+mpM), for any integer mp and still give the same samples x̄l [67]. The

addition of the mp term means that x̄df (t) oscillates mp extra times between sample points.

The interpolation is then found by replacing ũpe
j 2π
M
lp with ũpe

j 2π
M
l(p+mpM) and substituting l = Mt

T

into Equation (A.60) and allowing aliasing with any integer value for mp [67]:

x̄df (t) =

M−1∑
p=0

ũpe
j 2π
T

(p+mpM)t, (A.63)

where mp is known as the aliasing integer and is selected to minimize the mean-square slope of x̄df (t) for

0 ≤ p ≤M − 1. The mean-square slope is given asI:

1

T

L�

0

∣∣x̄′df (t)
∣∣2 dt =

1

T

L�

0

∣∣∣∣∣∣
M−1∑
p=0

j
2π

T
(p+mpM)ũpe

j 2π
T

(p+mpM)t

∣∣∣∣∣∣
2

dt (A.64)

=

(
2π

T

)2 M−1∑
p=0

|ũp|2 (p+mpM)2. (A.65)

IFor more details on this formula, please see [67]

125

Thus, selecting mp to minimize (p + mpM)2 will minimize the mean-square slope given by Equation

(A.65). If 0 ≤ p < M
2 , then (p+mpM)2 is minimized when mp = 0 . If M

2 < p < M , then (p+mpM)2 is

minimized when mp = −1. When p = M
2 , mp = 0 and mp = −1 result in the same value for (p+mpM)2.

This is addressed by evenly splitting the ũ 1
2

term between mp = 0 and mp = −1. The final interpolating

polynomial is given by:

x̄df (t) =

M
2
−1∑

p=0

ũpe
j 2π
T
pt +

M∑
p=M

2
+1

ũpe
+j 2π

T
(p−M)t + ũM

2

(
ej

πM
T
t + e−j

πM
T
t

2

)
. (A.66)

The derivative of x̄df (t) is given by:

x̄′df (t) =

M
2
−1∑

p=0

j
2π

T
pũpe

j 2π
T
pt −

M∑
p=M

2
+1

j
2π

T
pũpe

−j 2π
T

(p−M)t + j
πM

T
ũM

2

(
ej

πM
T
t − e−j

πM
T
t

2

)
.(A.67)

=

M
2
−1∑

p=0

j
2π

T
p
(
ũpe

j 2π
T
pt − ũM−pe−j

2π
T
pt
)
− πM

T
ũM

2
sin

(
πM

T
t

)
. (A.68)

The derivatives of each of each sample of x̄ is then estimated by evaluating x̄′df (t) at the sample points

t = lT
M

I:

x̄′l = x̄′df,l(
lT

M
) =

M
2
−1∑

p=0

j
2π

T
p
(
ũpe

j 2π
M
pl − ũM−pe−j

2π
M
pl
)

=

M−1∑
p=0

ũ′pe
j 2π
M
pl (A.69)

In [67], it is shown that the derivative operation can be performed using the discrete Fourier Transform

by multiplying each frequency domain coefficient by:

dp =

j2πp
T p < M

2

j2π
T (p−M) p > M

2

0 p = M
2 (if M is even)

. (A.70)

To perform the derivatives in the frequency domain, the time domain waveform is first transformed into

the frequency domain using F , the derivative is applied using dp, and then the result is transformed back

into the time domain with F−1. This operation can be performed by using a matrix, Df , that has the

form:

Df = F−1 j2π

T

0 1 2 · · · M
2 − 1 0 M

2 + 1 M
2 + 2 · · · M

2 + M
2 − 1 M

0 1 2 · · · M
2 − 1 0 M

2 + 1 M
2 + 2 · · · M

2 + M
2 − 1 M

0 1 2 · · · M
2 − 1 0 M

2 + 1 M
2 + 2 · · · M

2 + M
2 − 1 M

...
...

...
...

...
...

...
...

...
...

...

0 1 2 · · · M
2 − 1 0 M

2 + 1 M
2 + 2 · · · M

2 + M
2 − 1 M

F . (A.71)

IThe πM
T
ũM

2
sin
(
πM
T
t
)

term vanishes because sin (πl) = 0 for all l.

126

Appendix B

Details of Derivation of Equation 5.20

Since the order of the coefficients does not affect the result of calculating the square norm, Equation

(5.20) can be written as:

‖d̂∆‖2 = ‖P r(−f̂(v̂j)− Ĵ∆∆v̂g)‖2. (B.1)

Using Equations (5.17) and (5.18), Equation (B.1) can be written as:

‖d̂∆‖2 = ‖

[
f̂1

f̂2

]
− P rĴ∆P cU

−1ŷ1‖2. (B.2)

Substituting Equation (5.15) into Equation (B.2), and partitioning L as in Equation (5.17) results in:

‖d̂∆‖2 = ‖

[
f̂1

f̂2

]
−
[
L1

L2

]
ŷ1‖2. (B.3)

Since L1ŷ1 = f̂1 and d̂∆ = f̂2 −L2ŷ1:

‖d̂∆‖2 = ‖
[

0̂1

d̂∆

]
‖2, (B.4)

where 0̂1 is a vector with m entries with all entries set to zero.

127

Bibliography

[1] L. Nagel, “The life of spice,” transcript of a presentation given at BCTM’96 and hosted by The

Designer’s Guide Community, January 2008.

[2] L. Nagel and R. Rohrer, “Computer analysis of nonlinear circuits, excluding radiation (cancer),”

IEEE Journal of Solid-State Circuits, vol. 6, no. 4, pp. 166–182, 1971.

[3] T. Perry, “Donald o. pederson [electronic engineering biography],” IEEE Spectrum, vol. 35, no. 6,

pp. 22–27, 1998.

[4] Ognen Nastov, Rircardo Telichevesky, Ken Kundert, and Jacob White, “Fundamentals of Fast Sim-

ulation Algorithms for RF Circuits,” Proceedings of the IEEE, vol. 95, pp. 600–621, March 2007.

[5] Kenneth S. Kundert, “Simulation Methods for RF Integrated Circuits,” ICCAD-97 IEEE Interna-

tional Conference on Computer-Aided Design, pp. 752–765, November 1997.

[6] Kenneth S. Kundert and Alberto Sangiovanni-Vincentelli, “Finding the Steady-State Response of

Analog and Microwave Circuits,” CICC-88 Proceedings of the 1988 IEEE Custom Integrated Circuits

Conference, pp. 611–617, May 1988.

[7] Vittorio Rizzoli and Antrea Neri, “State of the Art and Present Trends in Nonlinear Microwave

CAD Techniques,” IEEE Transactions on Microwave Theory and Techniques, vol. 36, pp. 343–365,

February 1988.

[8] Kai Bittner and Hans Georg Brachtendorf, “Fast Algorithms for Adaptive Free-Knot Spline Approx-

imation Using Non-Uniform Biorthogonal Spline Wavelets,” SIAM Journal on Scientific Computing,

vol. 37, pp. B283–B304, March 2015.

[9] K. Bittner and E. Dautbegovic, “Adaptive wavelet-based method for simulation of electronic cir-

cuits,” in Scientific Computing in Electrical Engineering SCEE 2010, pp. 321–328, Springer Berlin

Heidelberg, Oct. 2011.

[10] Kai Bittner and Emira Dautbegovic, “Wavelet Algorithm for Circuit Simulation,” COMPEL Inter-

national Journal of Computations and Mathematics in Electrical, April 2016.

[11] Kai Bittner and Hans Georg Brachtendorf, “Adaptive Multi-Rate Wavelet Method for Circuit Sim-

ulation,” Radioeng, vol. 23, pp. 300–307, April 2014.

[12] Akira Ohkubo, Seiichiro Moro, and Tadashi Matsumoto, “A Method for Circuit Analysis using Haar

Wavelet Transform,” The 47th IEEE International Midwest Symposium on Circuits and Systems,

vol. 3, pp. 399–402, July 2004.

[13] Masanori Oishi, Seiichiro Moro, and Tadashi Matsumoto, “A Modified Method for Circuit Analysis

using Haar Wavelet Transform with Adaptive Resolution -For Circuits with Waveform with Sharp

Convex Ranges-,” ECCTD 2009 European Conference on Circuit Theory and Design, pp. 299–302,

August 2009.

[14] M. Liu, C. K. Tse, and J. Wu, “A wavelet approach to fast approximation of steady-state waveforms

of power electronics circuits,” International Journal of Circuit Theory and Applications, vol. 31,

no. 6, pp. 591–610, 2003.

[15] K. Tam, S.-C. Wong, and C. Tse, “An improved wavelet approach for finding steady-state waveforms

of power electronics circuits using discrete convolution,” IEEE Transactions on Circuits and Systems

II: Express Briefs, vol. 52, no. 10, pp. 690–694, 2005.

[16] Nick Soveiko and Michel Nakhla, “Wavelet Harmonic Balance,” IEEE Microwave and Wireless Com-

ponents Letters, vol. 13, pp. 232–234, June 2003.

[17] Nick Soveiko and Michel Nakhla, “On the Steady-State Analysis of Nonlinear Circuits With Fre-

quency Dependent Parameters in Wavelet Domain,” IEEE Microwave and Wireless Components

Letters, vol. 15, pp. 384–386, May 2005.

[18] K. Fedick and C. Christoffersen, “Effect of wavelet selection on periodic steady-state analysis,” IEEE

Access, vol. 8, pp. 70784–70796, 2020.

[19] Brij N. Singh and Arbind K. Tiwari, “Optimal Selection of Wavelet Basis Function Applied to ECG

Signal Denoising,” Digital Signal Processing, vol. 16, pp. 275–287, May 2006.

[20] Walid G. Morsi and M. E. El-Hawary, “The Most Suitable Mother Wavelet For Steady-State Power

System Distorted Waveforms,” in Canadian Conference on Electrical and Computer Engineering

(CCECE), pp. 17–22, IEEE, May 2008.

[21] X. Ma, C. Zhou, and I. J. Kemp, “Automated Wavelet Selection and Thresholding for PD Detection,”

IEEE Electrical Insulation Magazine, vol. 18, pp. 37–45, March/April 2002.

[22] G. Keppel and S. Zedeck, Data Analysis for Research Designs: Analysis of Variance and Multiple

Regression/Correlation Approaches. New York: W. H. Freeman, 1989.

[23] Jing Gao, “Comparison Analysis Based on the Cubic Spline Wavelet and Daubechies Wavelet of

Harmonic Balance Method,” Abstract and Applied Analysis, vol. 2014, 2014. Article ID 634974.

[24] Jiŕı Vlach and Kishore Singhal, Computer Methods for Circuit Analysis and Design. Dordrecht, The

Netherlands: Kluwer Academic Publishers, 1983. ISBN: 978-0442281083.

[25] Paulo J. C. Rodrigues, Computer-Aided Analysis of Nonlinear Microwave Circuits. Norwood, MA:

Artech House, 1998. ISBN: 0-89006-690-6.

[26] Stephen A. Maas, Nonlinear Microwave and RF Circuits. Norwood, MA: Artech House, 1997. ISBN:

1-58053-484-8.

[27] Bryan T. Morrison, “An Introduction to Gyrator Theory: How inductors can be simulated using

resistors, capacitros, and opamps,” Popular Electronics, pp. 58–59, July 1977.

[28] Thomas H. Lynch, “The right gyrator trims the fat off active filters,” Electronics, pp. 115–119, July

1977.

[29] C. Christoffersen, “Cardoon circuit simulator.” Online: https://vision.lakeheadu.ca/cardoon/, ac-

cesed: October 2020.

[30] J. F. Oliveira and J. C. Pedro, “A new time-domain simulation method for highly heterogeneous

RF circuits,” Proceedings of the 37th European Microwave Conference (EUMC ’07), pp. 1161–1164,

2007.

[31] Jorge F. Oliveira and José Carlos Pedro, “An Efficient Time-Domain Simulation Method for Multirate

RF Nonlinear Circuits,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, pp. 2384–

2392, November 2007.

[32] Ricardo Telichevesky, Ken Kundert, and Jacob White, “Efficient AC and Noise Analysis of Two-Tone

RF Circuits,” DAC ’96 Proceedings of the 33rd annual Design Automation Conference, pp. 292–297,

June 1996.

[33] Dan Feng, Joel Phillips, Keith Nabors, Ken Kundert, and Jacob White, “Efficient Computation

of Quasi-Periodic Circuit Operating Conditions via a Mixed Frequency/Time Approach,” DAC-99

Proceedings of the 36th Design Automation Conference, pp. 635–640, 1999 1999.

[34] Jaijeet Roychowdhury, “Efficient Methods for Simulating Highly Nonlinear Multi-Rate Circuits,”

Proceedings of the 34th Design Automation Conference, pp. 269–274, June 1997.

[35] John R. Williams and Kevin Amaratunga, “Indroduction to Wavelets in Engineering,” International

Journal for Numerical Methods in Engineering, vol. 37, no. 14, pp. 2365–2388, 1994.

[36] Amara Graps, “An Introduction to Wavelets,” IEEE Computational Science and Engineering, vol. 2,

pp. 50–61, June 1995.

[37] B. Vidakovic and P. Mueller, “Wavelets for kids: A tutorial introduction.” Online:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.54, 1991. accessed October 2020.

[38] Liu, Chun-Lin, “A tutorial of the wavelet transform.” Online:

https://www.researchgate.net/publication/265633800 A Tutorial of the Wavelet Transform, ac-

cessed October 2020, January 2010.

[39] W. H. Press, Numerical Recipes in Fortran 77: The Art of Scientific Computing. Cambridge Uni-

versity Press, sep 1992.

[40] Stéphane Mallat with contributions from Gabriel Peyré, A Wavelet Tour of Signal Processing: The

Sparse Way. Elsevier, 2009.

[41] A. Karoui and R. Vaillancourt, “Families of biorthogonal wavelets,” Computers & Mathematics with

Applications, vol. 28, pp. 25–39, Aug. 1994.

[42] S. S. Rao, Applied Numerical Methods for Engineers and Scientists, ch. Solution of Nonlinear Equa-

tions: 2.5 Newton-Raphson Method, pp. 64–70. Prentice Hall, 2002.

[43] Chapra, S.C., Applied Numerical Methods with MATLAB for Engineers and Scientists. McGraw-Hill

International edition, McGraw-Hill Higher Education, 2005.

[44] Dongarra, Jack and Eijkhout, Victor and Luszczek, Piotr, “Recursive approach in sparse matrix lu

factorization,” Scientific Programming, vol. 9, 08 2002.

[45] Cong Fu and Xiangmin Jiao and Tao Yang, “Efficient sparse lu factorization with partial pivoting on

distributed memory architectures,” IEEE Transactions on Parallel and Distributed Systems, vol. 9,

no. 2, pp. 109–125, 1998.

[46] Michel J. Daydé and lain S. Duff, “Level 3 blas in lu factorization on the cray-2, eta-10p, and ibm

3090-200/vf,” The International Journal of Supercomputing Applications, vol. 3, pp. 40–70, June

1989.

[47] Davis, Timothy A. and Duff, Iain S., “An unsymmetric-pattern multifrontal method for sparse lu

factorization,” SIAM Journal on Matrix Analysis and Applications, vol. 18, no. 1, pp. 140–158, 1997.

[48] Timothy A. Davis, “A column pre-ordering strategy for the unsymmetric-pattern multifrontal

method,” ACM Transactions on Mathematical Software, vol. 30, pp. 165–195, June 2004.

[49] Timothy A. Davis, “Suitesparse : A suite of sparse matrix software.” Online:

https://people.engr.tamu.edu/davis/suitesparse.html, accessed October 2020.

[50] Dian Zhou and Wei Cai, “A Fast Wavelet Collocation Method for High-Speed Circuit Simulation,”

IEEE Transactions on Circuits and Systems, vol. 46, pp. 920–930, August 1999.

[51] Dian Zhou, Wei Cai, and Wu Zhang, “An Adaptive Wavelet Method for Nonlinear Circuit Simula-

tion,” IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, vol. 46,

pp. 931–938, August 1999.

[52] Carlos E. Christoffersen and Michael B. Steer, “Comparison of Wavelet and Time Marching-Based

Microwave Circuit Transient Analyses,” 2001 IEEE MTT-S International Microwave Symposium

Digest, vol. 1, pp. 447–450, May 2001.

[53] Nick Soveiko and Michel S. Nakhla, “Steady-State Analysis of Multitone Nonlinear Circuits in

Wavelet Domain,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, pp. 785–797,

March 2004.

[54] Kai Bittner, Wavelets and Splines: Athens 2005, ch. Biorthogonal Spline Wavelets on the Interval,

pp. 93–104. Nashboro Press, 2006.

[55] J. Wang, “Cubic Spline Wavelet Bases of Sobolev Spaces and Multilevel Interpolation,” Applied and

Computational Harmonic Analysis, vol. 3, no. 2, pp. 154–163, 1996.

[56] Matthias Bucher, Christophe Lallement, Christian Enz, Fabien Theodoloz, Francois Krummenacher,

“The EPFL-EKV MOSFET Model Equations for Simulation, Technical Report, Model Version 2.6,”

Technical Report, EPFL, July 1998.

[57] C. Christoffersen, T. Ngo, R. Song, Y. Zhou, S. Pichardo, and L. Curiel, “Suboptimal Class DE

Operation for Ultrasound Transducer Arrays,” Proceedings of the 2018 IEEE NEWCAS conference,

Montreal, pp. 1–4, June 2018.

[58] Márcio Cherem Schneider and Carlos Galup-Montoro, “An MOS Transistor Model for Analog Circuit

Design,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 1510–1519, October 1998.

[59] S. N. Lalgudi, E. Engin, G. Casinovi, and M. Swaminathan, “Accurate transient simulation of inter-

connects characterized by band-limited data with propagation delay enforcement in a modified nodal

analysis framework,” IEEE Transactions on Electromagnetic Compatibility, vol. 50, pp. 715–729,

2008.

[60] Sonali Luniya et al., “Compact electrothermal modeling of an x-band mmic,” 2006 IEEE MTT-S

International Microwave Symposium Digest, pp. 651–654, June 2006.

[61] T. Blumensath, M. E. Davies, and G. Rilling, “Greedy algorithms for compressed sensing,” in Com-

pressed Sensing: Theory and Applications (Y. C. Eldar and G. Kutyniok, eds.), pp. 348–393, Cam-

bridge University Press, May 2012.

[62] G. Peters and J. H. Wilkinson, “The least squares problem and pseudo-inverses,” The Computer

Journal, vol. 13, pp. 309–316, January 1970.

[63] Å. Björck and I. S. Duff, “A direct method for the solution of sparse linear least squares problems,”

Linear Algebra and its Applications, vol. 34, pp. 43–67, December 1980.

[64] M. Heath, “Numerical methods for large sparse linear least squares problems,” SIAM Journal on

Scientific and Statistical Computing, vol. 5, pp. 497–513, September 1984.

[65] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,

C. Romine, and H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for

Iterative Methods. Society for Industrial and Applied Mathematics, Jan. 1994.

[66] Hossain, Md, “ECG Signal Compression using Energy Compaction Based Thresholding of the

Wavelet Coefficients,” Duet Journal, vol. 1, July 2011.

[67] S. G. Johnson, “Notes on fft-based differentiation.” Online: https://math.mit.edu/ stevenj/fft-

deriv.pdf, accessed: October 2020 2011.

[68] A. N. Malyshev, “On the spectral differentiation.” Online:

http://www.ii.uib.no/ sasha/INF263/spectral, accessed: October 2020.

[69] Dennis Roddy and John Coolen, Electronic Communications 4th Edition. Prentice Hall, 1995.

