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Abstract

DEVELOPMENT OF A LANGUAGE MODEL AND OPINION EXTRACTION FOR

TEXT ANALYSIS OF ONLINE PLATFORMS

Language models are one of the fundamental components in a wide variety of natural lan-

guage processing tasks. The proliferation of text data over the last two decades and the

developments in the field of deep learning have encouraged researchers to explore ways to

build language models that have achieved results at par with human intelligence. An exten-

sive survey is presented in Chapter 2 exploring the types of language models, with a focus

on transformer-based language models owing to the state-of-the-art results achieved and the

popularity gained by these models. This survey helped to identify existing shortcomings and

research needs. With the advancements of deep learning in the domain of natural language

processing, extracting meaningful information from social media platforms, especially Twit-

ter, has become a growing interest among natural language researchers. However, applying

existing language representation models to extract information from Twitter does not often

produce good results. To address this issue, Chapter 3 introduces two TweetBERT models

which are domain specific language presentation models pre-trained on millions of tweets.

TweetBERT models significantly outperform the traditional BERT models in Twitter text

mining tasks. Moreover, a comprehensive analysis is presented by evaluating 12 BERT mod-

els on 31 different datasets. The results validate our hypothesis that continuously training

language models on Twitter corpus helps to achieve better performance on Twitter datasets.

Finally, in Chapter 4, a novel opinion mining system called ONSET is presented. ONSET is

mainly proposed to address the need for large amounts of quality data to fine-tune state-of-
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the-art pre-trained language models. Fine-tuning language models can only produce good

results if trained with a large amount of relevant data. ONSET is a technique that can fine-

tune language models for opinion extractions using unlabelled training data. This system is

developed through a fine-tuned language model using an unsupervised learning approach to

label aspects using topic modeling and then using semi-supervised learning with data aug-

mentation. With extensive experiments performed during this research, the proposed model

can achieve similar results as some state-of-the-art models produce with a high quantity of

labelled training data.
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Chapter 1

Introduction

This study is mainly comprised of articles written during this degree. The main focus of the

thesis was to conduct text analysis for online platforms. In Chapter 2, the thesis provides an

insight on important topics in the field of language models, emphasising on transformer-based

language models, that are essential to understand for the Chapters to follow. It includes the

properties of various state-of-art-language models and their application on different types of

natural language processing tasks. Chapter 2 serves as a point of reference for researchers to

gain an understanding of the recent developments and breakthroughs in the field of language

models.

In Chapter 3, we present two TweetBERT models, which are domain specific language

representation models, pre-trained on millions of tweets. Twitter is a well-known microblog-

ging social site where users express their views and opinions in real-time, as a result, tweets

tend to contain valuable information. Due to this reason, mining useful information from

tweets has become a growing interest among natural language researchers. Implementing

the existing language model on Twitter text analysis tasks seldomly yields good results.

Moreover, no language representation models exist for text analysis that is unique to the
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social media domain. Hence, to conduct text analysis for Twitter, TweetBERT was devel-

oped and to demonstrate the effectiveness of the approach TweetBERTs were fine tuned

on two major Twitter text mining task: sentiment analysis and classification. For Twitter

datasets, we show that the TweetBERT models outperform the conventional Bidirectional

Encoder Representations from Transformers (BERT) models by more than 7% in Twitter

text mining tasks. A thorough and detailed analysis is presented by comparing the results

of 12 different BERT models, including TweetBERTs, on 31 different datasets. The results

indicates that continuously training language models on Twitter corpus over time improves

output on Twitter datasets.

Lastly, in Chapter 4, the thesis provides a a novel opinion mining system called ONSET.

Online businesses are highly interested in finding practical solutions to opinion mining, but

it is challenging to extract aspects and sentiments from the text. One way to solve this prob-

lem is to fine-tune good quality extractions from reviews using state-of-the-art pre-trained

language models. However, such fine-tuned language models can produce good results if

trained with a large amount of relevant data. In this thesis, we present a technique that

can fine-tune language models for opinion extractions using unlabelled training data. The

framework is built using a fine-tuned language model that takes into account unsupervised

learning to extract aspects with the aid of topic modeling, followed by semi-supervised learn-

ing with data augmentation. Based on comprehensive experiments conducted during this

research, it was observed that the proposed method can achieve competitive results as some

of the recent robust models that are trained with a large amount of labeled data. F1-scores of

87.30% and 88.35% are achieved on SemEval Aspect-Based Sentiment Analysis and Twitter

datasets, respectively.

To summarize, this research is primarily a collection of articles written over the course

of this degree. The thesis’ key emphasis was on developing efficient language models for
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conducting text analysis for online platforms.
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Chapter 2

Background

All of this chapter will be submitted in a peer-reviewed journal as the following:
• Qudar, M. M. A., & Mago, V. (2020). A Survey of Language Models.

To broaden my expertise in the field of text analysis, I conducted research on topics
related to language models during my degree. As a result, I’ve compiled summaries of
a number of recent publications for the background chapter of my thesis. We plan to
publish a comprehensive survey article based on the content presented here.
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2.1 Introduction

The field of Natural language processing (NLP) has received significant attention from re-

searchers in the past decade with the advancements in the field of deep learning. Neural

networks based components have been used by researchers to replace traditional statistical

or symbolic methods, which in turn has yielded increasing performance. Language models

are one of the basic components of natural language processing. Language modeling is de-

fined as determining a probability of a text component e.g. word or sentence occurring in a

given context and a language model is a function that captures the probability distribution

of all possible text components in a natural language. For example, let’s consider a partial

sentence “Please submit your” It is more likely that the next word would be “homework”

or “paper” than the next word being “professor”. Language models play an important role

in various NLP applications such as machine translation [185], grammatical error correction

[132], speech recognition [27], information retrieval [32], text summarization [56], question

answering [184], and sentiment analysis [151] [146].

Statistical language models are based on Markov’s assumption which states that the

distribution of a word depends on some fixed number of words that immediately comes

before it. The most popular traditional language model is the n-gram model. N-grams can

be defined as a group of words that occur continuously in a given text corpus. Based on

the number of words used to predict the probability of the occurrence of the given word

n-gram models are classified as uni-gram, bi-gram, tri-gram, and so on. Every model uses

n− 1 previous words to determine the probability of the word in question, for example, the

trigram model uses two previous words to determine the probability of the word, the bigram

model uses the previous word and the unigram model simply indicates the probability of the

given word being present in the document. Natural languages are versatile and there are
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frequent addition and deletion of words and phrases, which makes it almost impossible to

build training data with all possible combinations of words and sentences. This exponential

increase in the requirement of training samples with the increase of input sequences is called

the curse of dimensionality. In order to overcome this hurdle, neural network-based language

models were proposed which calculate the probability distribution based on the feature-

vectors of words instead of discrete units like words or sentences. The feature-vectors may

be defined as real value vectors of text data that capture the semantic properties of the words

thus removing the mutual exclusiveness of words. For example, consider the two sentences “A

student is studying in the school” and “A student is learning in the classroom”, the feature-

vectors of these two sentences are closely aligned because they contain different words, the

semantic properties of the words “studying, learning” and “school, classroom” are similar.

In recent years transformer-based language models have shown promising results in a wide

range of NLP tasks, which had led to numerous research works with a focus on language

models. However, a comprehensive survey to analyze and compare, various attributes of these

models has not been published yet. In this survey article, we briefly provide an introduction

to the statistical foundations of language models and discuss in detail various neural networks

based language models classifying them as static and dynamic language models. In Section

2.2 of this survey, we discuss the procedure followed to extract and select articles for the

survey; in Section 2.3 we discuss in detail, various neural network-based language models. In

Section 2.4 we provide a comparison between the state-of-the-art transformer based language

models; and lastly in Section 2.5 we present some of the benchmark datasets for fine tuning

language models. Figure. 2.1 shows the overall structure of the survey.
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Figure 2.1: Overview of the structure of Chapter 2

2.2 Survey Methodology

With the recent advancements in deep learning models the importance of NLP has signif-

icantly increased and thus a vast amount of research has been conducted. To study the

impact of the researches done the total number of citations of the selected articles, h-index

of the venue where the articles were published and their year of publications were extensively

analyzed to study the effect of the researches performed. The articles surveyed in this study

were selected searching with keywords such as NLP, text classification, sentiment analysis.

Futhermore, article chosen were from 2015 onwards, enabling for a more in-depth analysis of

the techniques used in recent papers. Some arxiv papers were chosen because they received

a large number of citations in a short period of time. This represents the arxiv paper’s
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significant influence on the topic. Table A shows the articles selected for the survey, includ-

ing the total number of citations, h-index on Google scholar of the venue, and the year of

publication. Figure. 2.2 shows that no articles were selected from venues that had h-Google

index lower than 25 to ensure high quality of articles and shows the number of citations

each articles has as of April’20. It can be observed that instead of a linear drop there is a

increase in number of articles over 3000+ citations. This is because most the papers in this

citation range are written by authors who made a high contribution, such as Tom Mikolov

and Christopher Manning. Figure. 2.3 gives a visualization of the year of publication of

the articles selected for carrying out this survey. It shows most the articles were published

recently.

Figure 2.2: The h-Google index of the venues from where the articles were selected and the
total number of citations each articles has as of April’20.

For this survey, the name of the authors from the 106 articles that had high citations

and high h-index were extracted to form a dataset. A word cloud was created to illustrate a

visualization of authors who have made a significant contribution in neural language models.
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Figure 2.3: The year of publications of the articles that were selected.

As the articles in the survey are from 2015 onward, the word cloud represents authors

currently working in the field of language models. The dataset of authors was pre-processed

by attaching the author’s first and the last name together. This prevents the repetition of

the same author having different names, in the word cloud. Figure. 2.4 shows the name

of the authors. The size of the author’s name corresponds to the frequency of that name

appearing in the dataset, thus representing a higher contribution of that particular author.

2.3 Language Models

Capturing the semantic properties of text data using numerical representations is a challeng-

ing task and language models exploit the principles of probability to predict the occurrence

of a text component based on the previous content. Statistical language models calculate

the conditional probability of the occurrence of a word given a set of previous words using
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Figure 2.4: Names of the authors in the form of word cloud

equation 2.1

P̂ (wT1 ) =
T∏
t=1

P̂ (wt|wt−11 ) (2.1)

A neural networks model was proposed in building distributed representations of text

data using parallel distributed processing [112]. With significant advancements in the field

of neural networks, proposed the first neural probabilistic language model, where the model

optimizes to derive at a function that obtains the highest probability of an “out-of-sample”

word was proposed [7]. Given a vocabulary of words V = w1, w2, ....wT the model optimizes

the function, P̂ represents the probability in equation 2.2.

f(wt, ....wt−n+1) = P̂ (wt|wt−11 ) (2.2)

In this section, the embeddings of different types of language models are discussed that

include word2vec, ELMO and transformer based language models. Word embeddings de-
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veloped by various language models are commonly classified as static and contextual word

embeddings. Static word embeddings are constructed using a vocabulary and the embed-

ding of a word is constant irrespective of the occurrence of the word whereas the contextual

embeddings produce the embeddings based on the context it appears in. Language models

like word2vec produce static embeddings, while the more recent transformer-based language

models generate dynamic or contextual embeddings. The difference between static and con-

textual embeddings are tabulated in Table 2.1. Recent language models have primarily

focused on transformer-based language models, especially with the introduction of Bidirec-

tional Encoder Representations from Transformers (BERT), since these models have shown

to perform well in a variety of NLP tasks such as sentimental analysis and classification

problems. Some of the properties of different types of BERT baseline models are illustrated

in Table 2.2.

Word2Vec

A language model that used a simple neural network with one hidden layer is called word2vec

[114]. Given a large text corpus as input word2vec builds distributed representations of words,

that when applied in simple mathematical operations produced results that were closely in

consensus with human understanding. For example, the difference between the embeddings

of the words “king” and “man” when added with the embedding of the word “woman”

produces an embedding in close proximity to the embedding of the word “queen”. There are

two different types of word2vec: the Skip-gram and Continuous Bag of Words (CBOW). The

skip-gram model is optimized to predict a target word when given the neighboring or context

words and the CBOW model is optimized to predict the context words when given a target

word. The dimension of the embeddings depends on the number of neurons in the hidden
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Parameters Static Word Embeddings Contextualized Word Em-
beddings

SEMANTICS Does not consider the polysemy
of a word [81], which is the the
ability of words to have multiple
meaning. Same embeddings are
generated from same word in dif-
ferent contexts [11].

Considers the word semantics in
different context taking into ac-
count the context of a word [24].

OUTPUT The output of the training mod-
els, for example word2vec, are
only vectors [178].

The output of the training is a
trained model and vectors [24].
As a result, this trained model
can be used to fine-tune different
NLP tasks, such as SQuad [143].

NLP TASKS Word vectors have very shallow
word representations [74]. In
other words, it only has a single
layer for training and each time
the network has to be trained
from scratch to fine-tune on a
NLP task [11].

Weights from the trained model
generated can be used to fine-
tune the models for a specific nat-
ural language task [90] [44]. This
process is called transfer learning
where instead of training a model
from scratch existing neural net-
work models can be modified to
train on a small data and give
high performance [155].

Table 2.1: Differences between static and contextual word embeddings

layer of the model, and word2vec produces static word embeddings with a dimensionality

of 300. The advent of word2vec was a major breakthrough owing to the simplicity of the

model, which enabled researchers to focus on exploiting the advancements in neural networks

to build efficient language models.

ELMO

In an attempt to incorporate the concept of polysemy into the embeddings a deep contex-

tualized word embedding model Embeddings from Language Models (ELMO) was proposed
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[131]. ELMO uses layers of LSTMs and traverses through a given sentence from both di-

rections trying to predict a given word thus building a more information-rich embedding.

Instead of assigning a single embedding to any given word ELMO calculates the embedding

of a word based on the sentence it appears in. The embeddings are considered ‘deep’ because

they are formed using the features from all the underlying of the model in contrast to other

models which use only the final layer to provide the values [34]. Hence, ELMO generates

context-rich embeddings that capture a wide range of syntactic and semantic properties of

the words in consideration. The model was able to generate embeddings for words not in

the vocabulary or training dataset by taking into consideration the characters in the given

word. The model when added with architectures to perform specific NLP tasks both at the

input and the output layer achieved state-of-the-art results in six major NLP tasks [131].

Transformer Models

BERT:

Bidirectional Encoder Representations from Transformers (BERT) is similar to ELMO, but

uses a pre-trained neural network instead of feature based approach for word representations

[36]. BERT’s key component is that it applies bidirectional transformer language model

while training a corpus [36]. A transformer is a machine learning model that takes into

account the ordered sequence of the data, even though it is not necessary that the sequence

of words are processed in that order [171]. As a result, it can start to process the end of a

sentence without starting to process the beginning. If a language model is trained using a

bidirectional transformer it can have a sense of the linguistic context [126]. BERT used two

training techniques Masked language model and Next Sentence Prediction [36].

Masked Language Model
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Although it is logical to think that bidirectional model performs better than unidirectional

models but bidirectional model has its own disadvantage. When using a corpus to train

a bidirectional model, it can “allow each word to see itself” [36], since it is bidirectional in

nature. To solve this, some percentage of words are randomly masked and the model is asked

to predict random words from the input rather than the next word from the sequence [171].

Masking is carried out in three different ways. For example if the sentence to be trained

is “My dog is hairy” [36] and the word “hairy” is chosen to be the token, then masking is

done either by replacing it with a < Mask > token i.e., “My dog is < Mask >” or with

a random token e.g. “My dog is apple” or keeping it as it is i.e., “My dog is hairy” [36].

Using these three ways together masking is done to capture the contextual meaning of a

word. If only the first method was used, that is only using < Mask > tokens, then the

performance of the model would be low as it was never trained on anything other than a

masked object. Also sometimes keeping the sentence intact, the model is forced to train on

the original representation of the sentence to introduce biasness [171]. This biasness helps

the language model to stick to the context [172].

Next Sentence Prediction

The second part for pre-training BERT is done by a method called Next Sentence Prediction

[108]. This method requires giving the model a pair of sentence and then testing if the model

can predict whether the second sentence comes after the first sentence or not in the corpus.

50% of the time the second sentence is actually related to the first sentence [36]. Next

Sentence Prediction is mainly carried out so that the model can understand and relate how

two sentences are connected [171], and this helps the model to perform better in various

NLP tasks such as Language Inference [32] or Question Answering [184].
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BioBERT:

Taking into account the considerable increase in documents generated in the biomedical

domain a domain-specific version of BERT called the Bidirectional Encoder Representations

from Transformers for Biomedical Text Mining (BioBERT) was proposed [87]. BioBERT

uses the architecture and pretraining techniques of BERT while training on a domain-specific

corpus. The domain-specific corpus includes abstracts from PubMed - a search engine that

contains medical literature and biomedical information and full articles from PubMed Central

- a full-text archive of biomedical and life sciences journal literature [1]. The corpora contain

4.5B and 13.5B tokens respectively. The model is initialized with weights from BERT trained

on a general English corpus and further trained with the BioMedical corpus for computational

efficiency thus using transfer learning. The BioBERT outperformed the existing language

models on three biomedical text mining analysis which includes biomedical named entity

recognition (0.62% F1 score improvement), biomedical relation extraction (2.80% F1 score

improvement), and biomedical question answering (12.24% MRR improvement).

Figure 2.5: Pre-training of biobert with words from PubMed and PMC [87].
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Figure 2.6: Finetuning of BioBERT on specific NLP tasks [87].

AlBERT:

Generally, increasing the number of training corpus and the model size increases the per-

formance of the NLP tasks [84]. However, as the model size increases it becomes difficult

to pre-train the model because of the “GPU/TPU memory limitations and longer training

times” [84]. To solve this issue A lite BERT (AlBERT) was introduced. AlBERT has the

same architecture as BERT. AlBERT uses two parameter-reduction techniques to signifi-

cantly reduces the number of training parameters of BERT. They are:

• Factorized embedding parameterization, it breaks down the large word matrix into

smaller matrices [84]. As a result the size of the word representations is separated

from the size of vocabulary embedding [6].

• Cross-layer parameter sharing, which stops the parameters from increasing as the depth

of the neural network increases [84].

Both the techniques significantly decrease the training time and increase the training speed

of the model [84].
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SciBERT:

Similar to BioBERT, a modified version of the BERT model trained on a scientific corpus

called the A Pretrained Language Model for Scientific Text (SciBERT) was proposed [6].

The corpus is built using 1.14M articles obtained from the semantic scholar containing pre-

dominantly articles from the biomedical domain and approximately 18% from the computer

science domain. Unlike BioBERT, SciBERT uses a vocabulary built specifically for scientific

text. Using the Sentencepiece1 library, the authors build a 30K size vocabulary that overlaps

with the BERT vocabulary by 42%. SciBERT is evaluated across 5 different NLP tasks on

domain-specific datasets. The model achieves state-of-the-art results in 3 out of 7 biomedical

datasets, in all 3 datasets in the computer science domain, and in 2 multidomain datasets.

RoBERTa:

A Robustly Optimized BERT Pretraining Approach (RoBERTa) was build upon BERT for

pretraining natural language understanding systems. RoBERTa mainly improves on the hy-

perparameters of BERT and trains on greater quantities of mini-batches and learning rates

[104]. Moreover, in RoBERTa BERT’s next-sentence pretraining approach is removed which

enables RoBERTa to perform better than BERT on language masking approach since many

hyperparameters of BERT are not used as next-sentence pretraining task is removed thus

enables RoBERTa to perform better for downstreaming tasks. RoBERTa was also trained

with a larger quantity of data and also for a longer time thus improving the memory of

RoBERTa. When the modifications were applied in the proposed RoBERTa model, there

was a significant performance improvement in GLUE benchmark dataset and thus beating

the performance of the XlNet-Large model [104]. After introducing the RoBERTa model,

1https://github.com/google/sentencepiece
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researchers have deduced that by hyperparameter tuning the training approach, the perfor-

mance on multiple types of NLP task can be improved significantly. RoBERTa is part of

Facebook’s reasearch that is still in progress for enhancing the self-supervised machanisms

that can be able to perform with less amount of data labeling and training time.

XlNet:

Generalized Autoregressive Pretraining for Language Understanding (XLNet) that uses the

TransformerXL architecture and it has shown to outperform BERT in 20 different NLP tasks

including document ranking, question answering, natural language inference, and sentiment

analysis [193] [35]. The model claims to address the limitations of BERT such as,

• Independence Assumption: Given the unmasked tokens, the BERT model assumes

that the tokens that are predicted are independent of each other which is an oversim-

plified assumption since high-range dependency contexts are quite common in natural

language [193].

• Noise Input: Artificial symbols such as MASK used in the BERT model tends to create

noise as such symbols do not exist in the downstream tasks. Hence, these symbols lead

to inconsistencies in the pre-training and finetuning phase. The masked tokens can

be replaced with original tokens, but the issue will still not be solved as the original

tokens can only be used by a small probability [193] [35].

The XLNet method uses the permutation modeling approach by training an autoregressive

model on all possible permutations of words in a given sentence. It maximizes its performance

on the expected log-likelihood by computing all possible permutations instead of traversing

a fixed right-left or left-right modeling. Each position of the context learns to use the

contextual information from all possible positions thus capturing information bidirectionally
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[142]. Therefore, in this approach, no masking is required and so the input data is not

contaminated with masked tokens. Autoregressive factorization is performed on T orders,

for a given sequence of x of length T. The model will be able to learn information for all

possible position from both sides: left to right and right to left. In order to formulate the

XLNet method, let ZT be a set for all the possible permutations length T index sequence of

1,2,...T. z<t represents the t-th element and the initial t− 1 elements of a permutation such

that z ∈ ZT . Thus, the permutation language modeling can be defined as [193]:

maxθIEz ZT

[
T∑

t=1

log pθ(xzt|xz<t)

]
(2.3)

For a given text sequence x, a factorization order z at a given time t was sampled and

decomposed the likelihood of pθ(x), according to the order of factorization. When the model

is being trained, xt has come across every possible element in the text sequence, thus enabling

the model to learn the bidirectional content.

2.4 Comparison of BERT models

BERT models have earned considerable attention in the Machine Learning community by

providing cutting-edge findings in several NLP tasks, such as Question Answering [143],

Natural Language Inference [184], and others. The properties of BERT models are often

discussed due to their high performance in text analysis tasks. Table 2.2 shows the properties

of various baseline BERT models. In comparison to the BERT model, a greater number of

corpora were used to pre-train RoBERTa, SciBERT, and BioBERT models, as shown in

the table, and they were able to perform substantially better than BERT. SciBERT, for

example, outperformed BERT models when pre-trained with scientific datasets in scientific
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text analysis tasks. Table 2.2, also, provides the different types of techniques, vocabulary

used to pre-train various BERT models.
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2.5 Benchmark Datasets for Fine Tuning Language

Models

General

This section discuss some of the benchmark datasets that are often used to fine-tune language

models. The general domain contains datasets such as GLUE [173], SQuAD [143], SWAG

[199] and RACE datasets. These datasets have contents that covers a wide range of general

knowledge in basic English.

GLUE

General Language Understanding Evaluation (GLUE) consists of datasets used for “training,

evaluating, and analyzing” language models [173]. GLUE consist of nine different datasets

designed in such a way so that it can evaluate a model’s understanding of general language

[72][181].

• The Corpus of Linguistic Acceptability (CoLA) is a single-sentence task consisting

of more than 10,000 English sentences. Each sentence is given a label indicating if

its grammatical or ungrammatical English sentence. The language model’s task is to

predict the label.

• The Stanford Sentiment Treebank (SST) is also a binary single-sentence classification

task containing sentences from movie reviews, along with their sentiment, labeled by

humans [157]. The task of language model is to predict the sentiment of a given

sentence only.
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• The Microsoft Research Paraphrase Corpus (MRPC) is a sentence pair corpus gener-

ated from online news sources, with human annotations for whether both the sentences

are semantically equivalent or not. Thus, the task is to predict if a given sentence-pair

has semantic similarity or not [173].

• Quora Question Pairs (QQP) is similar to MRPC; the task is to predict how similar a

given pair of questions are in terms of semantic meaning [173]. However, unlike MRPC,

QQP dataset is a collection of questions from the question-answering website Quora2.

• Semantic Textual Similarity Benchmark (STS) is a collections of sentence pairs ex-

tracted from news headlines, video and image captions, and similar sources, where

semantic similarity score from one to five is assigned to the sentence pairs. The task

is to predict the scores [190].

• The Multi-Genre Natural Language Inference Corpus (MNLI) is a crowd sourced

dataset, consisting of sentence pairs with a human annotated premise and a hypothesis

sentence. The task is to predict whether the premise sentence “entails” the hypothesis,

contradicts the hypothesis sentence or stays neutral [173].

• Question Natural Language Inference (QNLI) is a simplified version of SQuAD dataset

which has been converted into a binary classification task by forming a pair between

each question and each sentence in the corresponding context. A language model’s

task would be to determine if the sentence contains the answer to the question. A

positive value is assigned if pairs contain the correct answer, similarly a negative value

is assigned if the pairs do not contain the answer [173].

2https://www.quora.com/
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• Recognizing Textual Entailment (RTE) is similar to MNLI, where the language model

predicts if a given sentence is similar to the hypothesis, contradicts or stays neutral.

RTE dataset is very small compared to MNLI [157].

• The Winograd Schema Challenge (WNLI) is a reading comprehension task, in which

a model takes a sentence with a pronoun as an input, and selects an answer from a list

of choices that references to the given pronoun [181].

SQuAD

Stanford Question Answering Dataset (SQuAD) is a collection of more than 100,000 ques-

tions answered by crowdworkers [143]. It contains 107,785 question-answer pairs on 536

articles. Each question and its following answer is from Wikipedia. SQuAD, unlike previous

datasets like MCTest dataset [147], does not provide a list of choices. The dataset has been

created in such a way so that a language model can select the answer from the context of the

passage and the question. In the beginning when releasing this dataset, logistic regression

was performed to evaluate the level of difficultly [130]. It was seen that the performance of

the model decreases as the diversity of the model increases. The dataset helps a model to

predict the context of a language [147].

RACE

Large-scale ReAding Comprehension Dataset From Examinations is a collection of approxi-

mately 28,000 English passages and 100,000 questions [82]. This dataset was developed by

English language professionals in a such a way so that a language model can gain an ability

to read a passage or paragraph. The dataset is a multiple question answering task, where

the model tries to predict the correct answer [174][50]. Other existing question answering
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dataset have two significant limitations. First, answer from any dataset can be found by

simply a word-based search from the passage, which shows that the model is not able to

consider the reasoning factor; this restricts the various types of questions that can be asked.

Secondly, most datasets are crowd sourced, which introduces unwanted noise and bias in

the dataset. Moreover, RACE is the largest dataset that support neural network training

and needs logical reasoning to answer. It also contains option for an answer that might not

be present in the training passage, which diversifies the questions that can be asked [108].

RACE also contains content from various fields, allowing the language models to be more

generic.

Passage: Apollo ran from 1961 to 1972, and was supported by the two-man Gemini

program which ran concurrently with it from 1962 to 1966. Gemini missions developed

some of the space travel techniques that were necessary for the success of the Apollo

missions. Apollo used Saturn family rockets as launch vehicles. Apollo/Saturn

vehicles were also used for an Apollo Applications Program, which consisted of

Skylab, a space station that supported three manned missions in 1973–74, and the

Apollo–Soyuz Test Project, a joint Earth orbit mission with the Soviet Union in 1975.

Question:

What space station supported three manned missions in 1973-1974

Answer:

Skylab

Figure. 2.5 is a sample from SQuAD dataset [143].
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SWAG

A Large-Scale Adversarial Dataset for Grounded Commonsense Inference (SWAG) is com-

posed of approximately 113,000 multiple choice questions, including 73,000 instances for

training, 20,000 instances for validating, and 20,000 instances for testing, respectively [199].

The multiple choice questions are derived from video caption, that are taken from Activ-

ityNet Captions and the Large Scale Movie Description Challenge (LSMDC) [154]. The

ActivityNet Captions consists of around 20,000 YouTube clips, in which each clip contains

one of 203 activity types such as doing gymnastics or playing guitar [13]. LSMDC dataset

has approximately 128,000 movie captions including both audio descriptions and scripts. For

every captions pairs, constituency parsers have been used for splitting the second sentence

of each pair into nouns and verb phrases [199]. Each question from the multiple choice

questions was annotated by workers from Amazon Mechanical Turk. In order to improve

the quality of the dataset, annotation artifacts were minimized. Annotation artifacts are the

stylistic patterns that unintentionally provide suggestions for the target labels.

Biomedical

The biomedical domain contain datasets, such as National Center for Biotechnology Infor-

mation (NCBI), BioCreative V CDR task corpus: a resource for chemical disease relation

extraction (BC5CDR) and MedNLI dataset. These datasets only contain texts related to

biomedical domain.

NCBI

The national center for biotechnology information disease corpus is a collection of 793

PubMed abstracts in which abstracts are manually labelled by annotators, where the name
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of each disease and their corresponding concepts can be found in Medical Subject Headings

[50] or in Online Mendelian Inheritance in Man [28]. Name entity recognition is considered

to be an important and challenging task of NLP. For example, adenomatous polyposis coli

[194] and Friedrich ataxia [194] can be both a gene or a disease name. Also, abbreviated

disease names are commonly used in biomedical texts, such as AS can stand for Angelan-

guage modelan syndrome, ankylosing spondylitis,aortic stenosis, Asperger syndrome or even

autism spectrum [184]. Also, doctors have their own way of describing a disease and as a

result, it more difficult for any language model to achieve good performance. Evaluating a

model on this NCBI dataset would show how the model performs in terms of remembering

names, especially in biomedical domains [20].

BC5CDR

BioCreative V CDR task corpus: a resource for chemical disease relation extraction (BC5CDR)

dataset consists of chemical induced disease (CID) relation extractions [129]. The corpus

is composed of 1,500 PubMed articles with approximately 4,400 annotated chemicals, 5,818

diseases and 3,116 chemical-disease interactions. To study the chemical interactions within

diseases in depth, it is also not only important for the corpus to have the annotations of the

chemical/diseases, but also their interactions with one another [87]. Moreover, the corpus

consists of disease/chemical annotations and relation annotations from the corresponding

series of articles. Medical Subject Headings (MeSH) indexers were used for annotating

the chemical/disease entities. Comparative Toxicogenomics Database (CTD) was used for

annotating the CID relations. In order to attain a rich quality of annotation, compre-

hensive guidelines along with automatic annotation tools were given. For evaluating the

inter-annotator agreement (IAA) score between each of the annotators, Jaccard similarity

coefficient was calculated separately for the diseases and chemicals. This dataset has been
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used in multiple BioCreative V challenge assignments of biomedical text mining.

Chemical Disease Relations (CDR) are usually physically curated with the aid of CTD. How-

ever, this approach of curating manually is expensive. Thus, multiple alternative approaches

have been proposed of guiding curation with text-mining mechanisms, which consist of the

automatic extraction of CDRs. However, these proposed approaches have not been signifi-

cantly successful since there are shortages of large training corpora. Moreover, to study the

chemical interactions within diseases in depth, it is also not only important for the corpus to

have the annotations of the chemicals diseases, but also their interactions with one another.

However, there are multiple biomedical corpora that consist of only a few selected diseases

and chemicals. In addition, none of the previous corpora have the instances of chemical-

disease relation annotations, which includes abstracts having the entire chemical disease,

relation annotation, and controlled vocabulary. In the case of the BC5CDR dataset, MeSH

vocabulary was used as a controlled vocabulary similar to the existing biomedical informa-

tion extraction datasets, BC5CDR that includes protein-protein interaction and drug-drug

interactions. In contrast to the existing biomedical corpora, BC5CDR dataset is crucially

different in terms of annotations (CID relations) from the 1,500 PubMed abstracts.

MedNLI Dataset

MedNLI dataset is a dataset that consists of medical history of the patients which is anno-

tated by doctors. MIMIC-III have been used as the source of sentences. In order to avoid in

annotating the data, only the medical prescriptions of deceased patients were used. The doc-

tors performed a natural language inference task (NLI) task on the clinical notes that were

provided. The MedNLI dataset has shown to be very handy as it is extremely challenging in

having constructive, knowledge specific domains, where there is a shortage of training data.

The clinical domain has a shortage of massive-scale annotated datasets for training machine



CHAPTER 2. BACKGROUND 29

learning models for natural language tasks, such as question answering, or paraphrasing.

This makes the MedNLI a suitable resource in the open-medical field, since it is publicly

available. Moreover, designing such a knowledge intensive medical domain dataset is ex-

pensive as well, since common approaches such as crowdsourcing platforms cannot be used

for annotating the dataset. This is because annotating the dataset requires medical domain

experts and thus curating such a dataset is very costly. Previously existing datasets have

small sizes, and they target general fundamental natural language tasks such as co-reference

resolution or information extraction tasks (e.g. named entity extraction).

BIOSSES

Biosses is one of the benchmark dataset for sentence similarity in the biomedical domain.

The dataset is composed of 100 pairs of sentences. The sentences are selected from the Text

Analysis Conference (TAC) containing Biomedical Summarization Track Training dataset.

The TAC dataset consists of 20 reference articles and for each of the reference articles

[158]. The sentence pairs are mainly selected from the citing articles in which the sentence

has a citation from any one of the reference articles. The data in TAC dataset is both

semantically related. At the same time there are dissimilar sentence pairs that also occur

in the annotated texts. Sentences that are citing articles from the same reference article

will tend to be somewhat semantically similar [23]. In addition, there are other sentences in

which the citing sentence referring to an article is written about different ranges of topics or

domains. Such sentence pairs will tend to have less or no similarity at all. Thus, sentence

pairs covering different rates of similarity were obtained from the TAC dataset. In order

to obtain a higher quality of dataset, only the pairs which gave strong alliance between the

scores of the annotators were taken into account [158]. Table 2.3 shows a sample from the

original biosses dataset.
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Sentence1 Sentence2 Comment Score

Membrane proteins are
proteins that interact
with biological mem-
branes.

Previous studies have
demonstrated that
membrane proteins are
implicated in many dis-
eases because they are
positioned at the apex
of signaling pathways
that regulate cellular
processes

The two sentences are
not equivalent, but are
on the same topic

1

This article discusses the
current data on using
anti-HER2 therapies to
treat CNS metastasis as
well as the newer anti-
HER2 agents

Breast cancers with
HER2 amplification have
a higher risk of CNS
metastasis and poorer
prognosis

The two sentences are
not equivalent, but
share some details

2

We were able to con-
firm that the cancer tis-
sues had reduced ex-
pression of miR-126 and
miR-424, and increased
expression of miR-15b,
miR-16, miR-146a, miR-
155 and miR-223

A recent study showed
that the expression of
miR-126 and miR-424
had reduced by the
cancer tissues

The two sentences are
roughly equivalent, but
some important infor-
mation differs/ missing

3

Hydrolysis of b-lactam
antibiotics by b-
lactamases is the most
common mechanism of
resistance for this class
of antibacterial agents
in clinically important
Gram-negative bacteria

In Gram-negative organ-
isms, the most common
b-lactam resistance
mechanism involves
b-lactamase-mediated
hydrolysis resulting in
subsequent inactivation
of the antibiotic

The two sentences are
completely or mostly
equivalent, as they
mean the same thing

4

Table 2.3: A sample from Biosses dataset showing example annotations[158]
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JNLPBA

Joint Workshop on Natural language Processing in Biomedicine and its Application is a

corpus of Pubmed abstracts specialized for NER tasks [59]. The types of entities that are

selected from the biomedical domain include DNA, RNA, protein of cells and its types.

However, few of the entities did not turn out to be prominently significant. For instance,

entities for genes include the DNA as well as other gene entities like the protein and RNA

[59].

Chemprot

Chemprot is a chemical protein interaction corpus generated from PubMed abstracts [163].

The dataset consists of annotations within protein and chemical entities for identifying chem-

ical protein interactions. The dataset is organized in a hierarchical structure with a total of

23 interactions. The author of the dataset has emphasized on mainly five high level interac-

tions that includes: upregulator, downregulator, agonist, antagonist, and substrate [163].

GAD

Genetic Association Database is a dataset that was generated from the Genetic Association

Archive [68]. The archive mainly contains gene-disease interactions from the sentences of

PubMed abstracts. NER tool was also used in this dataset to detect gene-disease interactions

and create artificial positive instances from the labeled archive sentences. On the other hand,

negative instances from the dataset that were labeled as negative gene-disease interactions.
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HOC

Hallmarks of Cancer dataset is generated from cancer hallmarks annotated on 1,499 PubMed

abstracts. Afterwards, the dataset was broadened to 1,852 abstracts. The dataset has binary

labels which focuses on labelling the cancer discussions on the abstracts as positive samples.

However, the samples which had no mention of cancer were filtered out [78].

Scientific

The scientific domain contain datasets such as SciCite and SCIERC that contain texts related

to scientific domain.

SCICITE

SciCite is a dataset composed of citation intents that are extracted from various scientific

fields [6]. SciCite has been very recently released [31]. The dataset was extracted from Se-

mantic Scholar corpus of medical and computer science domains, and was annotated by giving

label to citation content in four categories the are: method, result, comparison, background,

and other. Language models are used to evaluate how well it performs in classification and

question answering tasks on scientific domain.

SCIERC

SCIERC dataset is a publicly available dataset that consists of annotations of around 5,000

scientific abstracts [105]. The abstracts are collected from 12 AI conference/workshop pro-

ceedings from the Semantic Scholar Corpus. SCIERC is an extended version of previous

existing similar datasets that are also collected from scientific articles, which include Se-

mEval 2017 Task 10 [20] and SemEval 2018 Task 7 [20]. SCIERC dataset is broadened in
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terms of summing up the cross-sentences related to one another by using conference links,

named entity and relation types.

Twitter

The Twitter domain contain datasets such as gender classification and tweets for sentiment

analysis. These datasets only contain tweets.

Twitter US airline dataset

Twitter airline dataset3 is a collection of 14,640 tweets from six US airlines that includes:

United, US Airways, Southwest, Delta and Virgin America. The tweets represent the reviews

from each of the customers. The tweets are either labeled as positive, negative or neutral,

based on the sentiment expressed. The airline company usually checks the feedback of

their quality through traditional approaches such as the customer satisfaction questionnaires

and surveys that are filled by customers. However, this approach is time consuming and

inaccurate as customers might fill up the surveys in a hurry. Hence, designing an airline

sentiment dataset as the Twitter airline dataset is very helpful since users in social media

give genuine feedback and reviews about the airlines.

Twitter User Gender Classification

In this dataset, 4 annotators were asked to predict and label if the user of a certain Twitter

account is male, female or a brand by only viewing the account. The dataset contains about

20,000 instances with user name, user id, account profile, account image and location.

3https://www.kaggle.com/crowdflower/twitter-airline-sentiment
4https://www.kaggle.com/crowdflower/twitter-user-gender-classification
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2.6 Conclusion

In this Chapter, a survey was presented that discusses state-of-art language models. It can

be seen that with the recent developments in neural network models, numerous types of

neural language models have been proposed. Each model comes with its own advantages

and disadvantages. This survey is mainly about the different types of language models,

their architecture, why a model was proposed, and the datasets that were used to pre-train

and fine-tune the language models. The survey addresses how each article was selected

considering the number of citations of the article, the year of publication, and the h-index

of the venue. The name of the authors, from the selected articles, was used to form a word

cloud to analyse the authors who were currently working in the field of language model. The

survey focuses on the recent transformer based language models and BERT and AlBERT.

BERT uses a neural network approach for word representations. The advantage of using

BERT is that it applies bidirectional transformer language model and this helps BERT to

stick to the context of a text. BERT was pre-trained on a general domain and to develop

domain specific language models, BERT models were pre-trained on different domain corpus.

For example, Bidirectional Encoder Representations from Transformers for Biomedical Text

Mining (BioBERT) has the same structure as BERT but it was pre-trained on biomedical

corpus for biomedical text analysis. Similarly, to extract information from scientific text

SciBERT was released.

This survey article also present different datasets commonly used in the field of language

models for pre-training or fine tuning a model. When BERT was introduced it was fine-tuned

on a number of datasets, such as RACE, SQuAD, and GLUE, to compare the accuracy of

BERT with the existing language models. Both RACE and SQuAD are question answering

datasets. SQuAD contains more than 100,000 questions answered by crowdworkers and it
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was constructed in such a way that the model has to predict the answer from the context of

the passage. Likewise, RACE dataset has several questions and each question has a set of

four answers. It was designed in such a way that to answer the questions critical thinking is

necessary. Thus, accessing a model’s capability to understand a text.

Overall this Chapter can serve as a resource, enabling natural language researchers to

comprehend and become aware of recent developments of language models
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Chapter 3

TweetBERT: A Pretrained Language

Representation Model for Twitter

Text Analysis

All of this chapter is submitted in a peer-reviewed journal and is currently under
revision:
• Qudar, M. M. A., & Mago, V. (2020). “TweetBERT: A Pretrained Language

Representation Model for Twitter Text Analysis”

This chapter captures my contribution to a larger research initiative that applies ar-
tificial intelligence techniques to develop a language model for the Twitter platform.
Twitter was chosen because it is open for discussion, unlike other social media like
Facebook. Twitter does not have any group option, allowing users to express their feel-
ings and thoughts publicly. One of the main objectives of Twitter is that opinions are
heard all over the world. All of these make it easier to extract tweets that contain useful
information from users in real-time. We submitted this section of my thesis in to a
Journal, where it is currently under review.
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3.1 Introduction

Twitter is a popular social networking platform where users tend to express themselves and

share their information in real-time [19], as a result, text from Twitter is widely studied

by natural language researchers and social scientists. The users tend to write texts that

are very colloquial and casual, usually following very little or no grammatical rules [19] [44]

[178]. The text is written in a completely different way than traditional writings, primarily

due to a restriction in their length. However, their contents are so powerful that they can

start a movement or impact the economy of a nation or help the public health authorities

to plan in the early stages of epidemic, or in current scenario pandemic [46]. Hence, usage

and style of language need to be studied extensively. Using existing language representa-

tion models, such as BERT [36] or AlBERT [84], to evaluate such texts is a challenge. As

a result, a need for a language model specific to social media domain arises. Deep neural

network models have contributed significantly to many recent advancements in NLP, espe-

cially with the introduction of BERT. BERT and BioBERT [1] have considerably improved

performance on datasets, in the general domain and biomedical domain, respectively [128].

State-of-art research indicates that when unsupervised models are pre-trained on large cor-

pora, they perform significantly better in the NLP tasks [87]. However, language models,

such as BioBERT, cannot achieve high performance on domains like social media corpora.

This is mainly due to the fact that these models are trained on other domain corpora and

the language in social media is irregular and mostly informal. To address this need, in this

article, TweetBERT is introduced, which is a language representation model that has been

pre-trained on a large number of English tweets, for conducting Twitter text analysis. Ex-

perimental results show that TweetBERT outperformed previous language models such as

SciBERT [6], BioBERT [87] and AlBERT [84] when analyzing twitter texts [167].
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In order to study and extract information from social media texts it is neccessary to have

a language model specific to social media domain. Futhermore, the TweetBERT models have

been evaluated on 31 different datasets, including datasets from general, biomedical, scientific

and Twitter domains. These state-of-the-art language representation models have shown

promising results in the datasets for conducting text analysis. To show the effectiveness of

our approach in Twitter text analysis, TweetBERTs were fine-tuned on two main Twitter

text mining tasks: sentiment analysis and classification. In this chapter, the authors made

the following contribution:

• TweetBERT, a domain specific language representation model trained on Twitter cor-

pora for general Twitter text mining, is introduced.

• TweetBERT is evaluated on various Twitter datasets and is shown that both Tweet-

BERTv1 and TweetBERTv2 outperform other traditional BERT models, such as

BioBERT, SciBERT and BERT itself in Twitter text analysis.

• A comprehensive and elaborate analysis is provided by evaluating 12 different BERT

models including TweetBERTs on 31 different datasets, and their results are compared.

• Pre-trained weights of TweetBERT are released and source code is made available to

the public1.

The structure of the chapter is as follows: the existing work in the field of language models

is discussed in Section 3.2. Section 3.3 presents the methodology, where it is described how

the data has been collected for pre-training the model, and includes the approaches that

were taken for implementing the TweetBERT models. There is also a brief description about

datasets that were selected for evaluating all the BERT models. A detailed description of the

1https://github.com/mohiuddin02/TweetBERT
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datasets was provided in Chapter 2.5. Section 3.4 provides a discussion of the experimental

results of the benchmark datasets with the various BERT and TweetBERT models. Finally,

the conclusion is presented in Section 3.5.

3.2 Related Works

Recently a vast amount of work has been done, in the field of NLP, using bidirectional

language models especially by modifying BERT [139]. BERT is a pre-trained neural network

word representation model. It uses bidirectional Transformer, which considers the sequence

of data and, therefore, can understand the context of a text. It was pre-trained using texts

from BookCorpus [185] and English Wiki [36]. BERT uses two techniques for pre-training:

masked language model, and next sentence prediction. Masking is carried out in three

different ways in a sentence: by replacing a word with a token, or by replacing the word

with a random word, or keeping the sentence as it is. These three ways help a bidirectional

model to maintain and learn the context of a text. On the other hand, the next sentence

prediction helps BERT to relate and connect two sentences together [140, 198]. This is useful

when evaluating sentiment analysis or question answering datasets. However, as BERT has

been pre-trained on general corpora, it performs poorly in domain specific tasks. As a

result, language models like BioBERT and SciBERT have been introduced. Recent language

models have been broken down into two categories: contiual pre-training and pre-training

from scratch.

Continual Pre-training

Continual models are those which use weights from another model and modify themselves for

a specific task [194]. BioBERT is a continual pre-trained model because it was first initialized
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with the weights of BERT, and then pre-trained on various biomedical corpora, such as

PubMed abstracts and PMC full-text articles, to make it domain specific [87]. BioBERT

was released as Biomedical documents were increasing and biomedical text analysis was

becoming popular [117]. For example, more than 2,000 articles are published in biomedical

peer-reviewed journals every day [39]. Directly using BERT to evaluate biomedical tasks

did not give satisfactory results, thus BioBERT was created [87]. BioBERT has the same

architecture as BERT, but it has shown to perform better than BERT on biomedical text

analysis [172]. BioBERT was mainly evaluated in three biomedical tasks: biomedical named

entity recognition, biomedical relation extraction, and biomedical question answering [194].

Likewise, more models were introduced for specific domains. Lately, Covid-Twitter BERT

model (CT-BERT) has been released to analyze tweets related to Covid [122]. CT-BERT has

been pre-trained on around 160 million coronavirus tweets collected from the Crowdbreaks

platform [122]. CT-BERT is a continual BERT model and has shown an improvement of more

than 10% on classification datasets compared to the original BERT [134] model. This model

has shown the most improvement in the target coronavirus related tweets. Furthermore,

other extensions of BERT models, such as AlBERT [84], were also released. Generally,

increasing the training corpus increases the performance of the NLP tasks. Moreover, the

model size is directly proportional to the size of the training corpus. However, as the model

size increases, it becomes increasely difficult to pre-train the model because there are GPU

limitations. To address this factor AlBERT was introduced. It uses two parameter-reduction

techniques to significantly reduces the number of training parameters in BERT: factorized

embedding parameterization [84], which breaks a large matrix into smaller matrices [139],

and performing cross-layer parameter sharing, which cuts down the number of parameters as

the neural network size increases. These methods have helped BERT to increase its training

speed [139].
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Pre-training from Scratch

There are other domains where both BERT and BioBERT provide unsatisfactory results.

For example, when extracting information from general scientific texts, BERT performed

poorly because it was only pre-trained on general domain corpora. As a result, A Pretrained

Language Model for Scientific Text (SciBERT) was released to evaluate scientific datasets

[6]. SciBERT also has the same architecture as BERT, but it is not a continual model.

SciBERT is pre-trained from scratch and it uses a different WordPiece vocabulary called

SentencePiece [92] [193]. SentencePiece vocabulary consists of words that are commonly used

in scientific domains [2]. When WordPiece and SentencePiece are compared, it is found that

there is a similarity of only about 40%. This shows that there is a huge difference between

the words regularly used in general and scientific articles. SciBERT was pre-trained on a

corpus from semantic scholar, containing 1.14 million papers from the computer science and

biomedical domain [43]. Each paper produced around 3,000 tokens making it similar to the

number of tokens used to pre-train BERT [43]. Additionally, an optimized robust language

model was build based on BERT for pretraining natural language understanding systems.

RoBERTa mainly optimizes the hyperparameters of BERT and trains on large number of

mini-batches and learning rates [104]. In RoBERTa next-sentence pretraining approach is

removed which enables RoBERTa to perform better than BERT on downstreaming tasks

since many hyperparameters of BERT are not used. RoBERTa was trained with a larger

quantity of data and also for a longer time thus improving the memory of RoBERTa [21].

These modifications allowed RoBERTa model to significantly improve performance in GLUE

benchmark dataset. It has been deduced that by hyperparameter tuning during the training

approach, the performance on multiple types of NLP task can be improved significantly.

Additionally, RoBERTa is not a continual model. It has been pre-trained on an extremely
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large, five different types of corpora: BookCorpus, English Wikipedia, CC-News (collected

from CommonCrawl News) dataset, OpenWebText, a WebText corpus [141], and Stories, a

dataset containing story-like content [141]. The overall size of the datasets was more than

160GB [104]. Moreover, RoBERTa uses 4 different techniques, unlike BERT, to pre-train.

They are:

• Segment-pair with next sentence prediction hyperparameter, which is the same as next

sentence prediction as BERT [104].

• Sentence-pair next sentence prediction hyperparameter, where back to back sentences

from only one document are connected [104].

• Full-sentences hyperparameter, where sentences within a document are connected.

• Doc-sentences hyperparameter, which is similar to full-sentences but two or more doc-

uments are connected [141].

Recently, Decoding-enhanced BERT with Disentangled Attention (DeBERTa) was in-

troduced to improve the performance of RoBERTa and BERT models, by using two novels

methods: disentangled attention and enhanced masked decoder [51]. In the disentangled

attention technique, each of the words is represented with two vectors that can encode

the word’s position and content. Disentangled matrices are used to calculate the attention

weights of the words with respect to their contents and positions [127]. When designing

the DeBERTa, it was observed that the attention weight of words is not only dependent on

their contents but also on their relative positions. In DeBERTa’s architecture, an enhanced

masked decoder is used to interpolate the positions in the decoding the masked tokens in

the model’s pre-training phase. DeBERTa was trained with 48 Transform layers which had

around 1.5B parameters. The model was pre-trained with Wikipedia, BookCorpus [204],
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OPENWEBTEXT (public Reddit content) [47], and STORIES (a subset of CommonCrawl)

[170]. Due to these changes, the DeBERTa model has outperformed the SuperGLUE bench-

mark over the human baseline.

Incorporating Language Structures into Pre-training for Deep Language Understanding

(StrucBERT) was also introduced to improve the performance of BERT in terms of the

model’s contextual representation [175]. It mainly tries to keep the structure of an input

sentence in proper order. StrucBERT improves the BERT’s masked language model task

by shuffling the tokens after the masked language model task and then predicting the right

order of the context. To understand the correlation of each of the sentences, StrucBERT

randomly swaps the order of the sentences and predicts both the next sentence and the

previous sentence as a new sentence prediction task [175]. Performing the pre-training tasks

in these ways, the new model can efficiently capture the word structures in more detail [49].

The StrucBERT was also pre-trained with English Wikipedia, BookCorpus, and WordPiece

vocabulary [175]. The model has outperformed BERT and achieved competitive scores in

many downstream tasks such as on GLUE and SQuAD datasets.

Enhanced Language Representation with Informative Entities (ERNIE) was built upon

BERT to incorporate Knowledge graphs (KGs), which can present rich structured facts

for better language understanding [202]. ERNIE was introduced to overcome two main

challenges: (1) For a given text, it is a challenge to effectively extract and encode the relevant

information into KGs for language representation (2) The approach of BERT’s pre-training

for language representation is very different from the knowledge representation procedure

that leads to two individual vector spaces [202]. Therefore, a special pre-training objective

is required to compose the lexical, syntactic, and knowledge information. To extract and

encode the knowledge information, the named entity mentions were first identified in the

text and then aligned to their respective entities in KGs [202]. The graph structure of the
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KGs was encoded with knowledge embedding algorithms such as TransE [12]. Finally, the

informative entity embeddings were fed as input into the ERNIE model. Masked language

model and next sentence prediction techniques were applied for pre-training ERNIE. For

merging the textual and knowledge features, a new pre-training technique was proposed

that randomly masked some of the named entity alignments in the input sentence and

simultaneously questioned the model to select proper entities from KGs for completing the

alignments [202]. The ERNIE model is unique because of its objective to merge both the

textual and knowledge features from the KGs for predicting the tokens and entities. Thus,

ERNIE was pre-trained on both large-scale textual corpora and KGs [202]. The knowledge

embeddings were trained on Wikidata by TransE as the input embeddings for entities. The

experimental results have proved that ERNIE succeeded to obtain comparable results with

the recent BERT models on many common NLP tasks.

To address the issue of time taken during the pre-training phase of BERT over large

corpora, SqueezeBERT was released [61]. SqueezeBERT was designed with grouped con-

volutions in order to evaluate whether it could conduct NLP tasks at a faster rate than

BERT or not, since grouped convolutions have significantly increased the speed of image

processing for computer vision networks [61]. In the SqueezeBERT model, several attention

layers were replaced with grouped convolutions, with this novel architecture it was able to

run four times faster than the BERT-base model and has also achieved comparable accuracy

scores with the BERT model on the GLUE dataset [61]. BERT is also highly dependent

on global self-attention blocks that cause the language model to suffer from a large memory

footprint because it has around 110M parameters [65]. ConvBERT was introduced to solve

this issue, which replaces some of the self-attention heads to model local dependencies by

a span-based dynamic convolution mechanism [65]. The mixtures of novel convolution and

self-attention heads make it extremely effective to learn the context of texts both at the local
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and global level. Therefore, this mixed attention mechanism was able to outperform BERT

in multiple downstream tasks with reduced training costs and model parameters. The model

was per-trained with the open-sourced dataset: OpenWebText which has a similar size to

the mixture of English Wikipedia and BooksCorpus [47].

Non-English BERT models for Twitter analysis

There are BERT models which have been pre-trained in other languages such as Italian, and

Spanish language for Twitter analysis [136, 71]. According to BERT documentation, the Mul-

tilingual model is somewhat worse than a single-language model. However, it is not feasible

for us to train and maintain dozens of single-language models [36]. To address the limitations

of non-English language models and the size of the vocabulary, ALBERTo language model

was developed. AlBERTo was the first Italian language model pre-trained on the writing

style of social networking sites [136]. The architecture of AlBERTo is similar to BERT and

the model was trained on Google TPU-V2 on 200M tweets in the Italian language. The

model was later finetuned on SENTIPOLC (SENTIment POLarity Classification) Dataset

and showed state-of-the-art results. SentencePiece segmentation algorithm was used for gen-

erating an extensive vocabulary for the ALBERTo model. Similarly, TWilBERT is another

pre-trained language model trained with Spanish tweets [48]. TWilBERT was pre-trained on

47M Spanish Tweets. SentencePiece algorithm was used to generate the vocabulary for the

TWilBERT model with a size of 30,000 subwords. However, in ALBERTo, the model was

unable to learn coherence among the tweets as the flow of tweets cannot be identified directly

on a sequence of tweets from the same user [48]. This issue was resolved when designing the

TWilBERT model. The authors of TWilBERT pointed out that inter-sentence coherence

is an essential perspective of language understanding that could boost up the performance
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on downstream tasks that require reasoning on pairs of tweets. For this reason, the authors

have proposed a coherence sign as in Twitter conversations, where a flow of tweets can be

easily identified as (tweet, reply) pairs [48]. Furthermore, there is a Reply Order Prediction

signal mechanism which has boosted up the performance of TWilBERT. This mechanism

specializes in learning the coherences of each of the sentences of Twitter conversations inter-

nally. To learn the coherences between each of the sentences, Sentence order prediction was

used which is an alternative to the next sentence prediction approach. The sentence order

prediction approach was first used for the AlBERT model to improve its performance [84].

The sentence order prediction signal is a reformulation of next sentence prediction in which

the pairs of the unordered sentences are taken into account as negative samples. Unlike sen-

tence order prediction, next sentence prediction is only better at capturing topic coherence

rather than sentence coherence. As a result, next sentence prediction does not provide addi-

tional information to the masked language modeling task[193]. Sentence order prediction is

a means of pre-training signal for learning the coherences in each of the sentences more ef-

fectively. By using this approach TWilBERT models have outperformed multilingual BERT

on 14 different text classification tasks which include irony detection, sentiment analysis,

emotion detection, hate speech detection, stance detection, and topic detection.

Although there are different types of language models pre-trained on various corpora, but

no language model yet exists specific to the social media domain in the English language.

Thus, to evaluate datasets from the social media domain, a need for such a language model

arises. As a result, the authors developed TweetBERT models. The next section discusses

the approach taken to create the model.
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3.3 Methodology

This section discusses in detail the source of data collecting, tweet extracting, and corpora

used for pre-training TweetBERT. An overview of the pre-training approach is shown in

Figure. 3.1. There are two TweetBERT models: TweetBERTv1 and TweetBERTv2. Each

of these models are pre-trained using different approaches, but have the same architecture

as BERT because it is continual pre-training model. Moreover, Table 3.1 shows the different

variation of corpora and vocabulary used to pre-train each BERT model. For example,

SciBERT uses SciVocab vocabulary which contain words popular in the scientific domain.

Further details are provided in the following subsections.

Pre-training Corpus

For domain specific text mining tasks, language models like BioBERT were pre-trained on

PubMed and PMC [87]. Likewise, TweetBERT was pre-trained on English tweets. Tweet-

BERTv1 was pre-trained on a corpus that consists of 140 million tweets. The corpus contains

tweets from top 100 personalities2 and top 100 hashtags of Twitter [159]. Top personalities

are the group of people who have the highest number of followers, Twitter platform. Tweet-

BERTv2 was pre-trained on a similar but larger corpus containing 540 million English tweets.

Table 3.1 shows the different combination of corpora and WordPiece vocabulary involved in

training of BERT models.

To create the training datasets, tweets were collected and pre-processed from big data ana-

lytics platform3 developed in DaTALab at Lakehead University, Canada [110]. This platform

allows users to extract millions of tweets by simply providing keywords as inputs. The tweets

are pre-processed by converting all the texts to their lowercase form and all characters (emo-

2https://www.kaggle.com/parulpandey/100-mostfollowed-twitter-accounts-as-of-dec2019
3https://twitter.datalab.science/
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jis, URLs, hashtags, mentions, punctuation) except for full stop and question mark have

been removed. Moreover, it was also ensured that each tweet post had more than 1 sen-

tence so that the next sentence prediction task could be performed efficiently during the

pre-training phase. The authors generated two corpora: Corpus140 and Corpus540 which

indicate corpora with 140 and 540 million tweets, respectively. Corpus140 contain 2.3 billion

word tokens and Corpus540 contain 10.1 billion word tokens. Each corpus consists of tweets

from top trending hashtags and top personalities [159]. The reason behind generating the

corpora with the top personalities, followed by millions of Twitter users, was to ensure that

the tweets were taken from authentic profile, since Twitter contains many fake accounts and

their tweets have no real meaning. Moreover, tweets from top hashtags were used to analyze

the pattern and style of informal language used in the Twitter platform by the general users.

Model Corpora Used WordPiece Vocab
BERT English Wiki + BookCorpus BaseVocab

SciBERT Scientific articles SciVocab
TweetBERTv1 English Wiki + BookCorpus + Corpus140 BaseVocab
TweetBERTv2 English Wiki + BookCorpus + Corpus540 BaseVocab + SciVocab

Table 3.1: Shows the different variation of corpora and WordPiece vocabulary involved in
BERT models

TweetBERT

TweetBERTs are continual pre-trained models since they were initialized with the weights

of uncased BERT-base and AlBERT-base models. Uncased models does not differentiate

between lower and upper case words. Since there are no significant differences between

upper and lower case words in tweets uncase BERT models were selected. Futhermore, to
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Figure 3.1: Overview of the pre-training TweetBERTs

reduce the risk of overfitting and complexity specifically for tweets, the weights of BERT-base

and AlBERT-base was used since the base models have less parameters than the large models

[36]. As a result, TweetBERTv1 has the same architecture as BERT. TweetBERTv1 is pre-

trained on Corpus140. On the other hand, TweetBERTv2 is pre-trained on Corpus540 using

both BaseVocab and SciVocab. Moreover, as TweetBERTv2 was initialized with the weight

of AlBERT, it also has the same architecture like BERT, except that is uses two parameter-

reduction techniques to reduce the number of training parameters in BERT, which increases

the training speed of the model [139] [6]. BaseVocab and SciVocab are the WordPiece

and SentencePiece vocabularies of BERT and SciBERT, respectively. TweetBERTs use

the same type of vocabulary as BERT so that the initial pre-trained weights of BERT and

ALBERT are compatible with TweetBERT models [84]. The vocabulary of SciBERT is used,

in TweetBERTv2, so that scientific analysis can be carried out, for example detecting an

epidemic or pandemic as opposed to simple sentiment analysis from tweets. TweetBERT can

be also be used to evaluate other datasets in different domains, rather than just analyzing

tweets.

Moreover, both TweetBERT models use Transformer networks, like BERT. A Transformer

is a neural network model that is designed to work with sequential data. Each TweetBERT

model contains 24 Transformers that consist of multiple attention layers [30]. An attention
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layer contains set of matrices called an attention head, which work with the word tokens

that is most relevant with the head. Then, the attention head provides an embedding for the

token that contains information about the token itself and a weight relative to how relevant

the token is in that context. For example, in the case of TweetBERT, input sequence of

a tweet in vector is t = [t1, . . . , tn], where n represents the number of tokens in the input

sequence. Each vector ti is broken down by attention layers into key k, query q, and value

v [171]. Hence, for ti vector it is ki, qi and vi [171]. The attention head then calculates the

weight of the token using softmax dot product.

αij =
e(q

T
i kj)∑n

l=1 e
(qTi kl)

(3.1)

where, α is the attention weights between all the query and key vectors of all the pairs of

words [171]. The sum of the weights is the output of the attention head, which is denoted

by [30]:

Output =
n∑
j=1

αijvj (3.2)

Futhermore, TweetBERT transformer has a multi-head attention layer, which allows model

to link and simultaneously work with words from different representations. Figure 3.1 gives

a detailed overview of the approach in making TweetBERT models.

Datasets for fine-tuning

The authors evaluated 12 BERT models on 31 different datasets. The datasets are divided

into four domains: general, biomedical, scientific and Twitter. Datasets that have been used

for evaluation are discussed in detail in Chapter 2.5. In addition, Table 3.2 and Figure 3.2

provide a brief description and visualization of the datasets used for the evaluation.
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Table 3.2: Some of the datasets selected for the evaluation, the table contains the name of

the dataset, the task, the number of data point and and year of publication

Name Task No. of data

points

Year of publi-

cation

Multi-Genre Natural Language

Inference (MNLI)

Natural language inference 433k 2018

Quora Question Pairs (QQP) Paraphrase 537k 2018

The Stanford Natural Language

Inference (SNLI)

Classification 570k 2018

The Corpus of Linguistic Accept-

ability (CoLA)

Sentiment Analysis 106k 2018

Sea surface temperature (SST) Sentiment Analysis 67k 2018

Microsoft Research Paraphrase

Corpus (MRPC)

Semantic textual similarity 3.7k 2018

Semantic Textual Similarity

Benchmark (STS)

Textual Similarity 7k 2018

Recognizing Textual Entailment

(RTE)

Natural Language Infer-

ences

2.5k 2018

Stanford Question Answering

Dataset (SQuAD)

Question Answering 100k 2018

Continued on next page
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Table 3.2 – Continued from previous page

Name Task No. of data

points

Year of publi-

cation

A Large-Scale Adversarial

Dataset for Grounded Common-

sense Inference (SWAG)

Question Answering 113k 2018

Large-scale ReAding Comprehen-

sion Dataset From Examinations

(RACE)

Natural Language Infer-

ences

100k 2018

National Center for Biotechnol-

ogy Information (NCBI)

Natural Language Infer-

ences

705k 2016

BioCreative V CDR task corpus:

a resource for chemical disease re-

lation extraction (BC5CDR)

Natural Language Infer-

ences

4.4k 2016

Gene-Disease Associations

(GDA)

Sentiment Analysis 12k 2015

A semantic sentence similarity es-

timation system for the biomedi-

cal domain (BIOSSES)

Textual Similarity 100k 2017

A Natural Language Inference

Dataset For The Clinical Domain

(NLIC)

Sentiment Analysis 14k 2019

Continued on next page
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Table 3.2 – Continued from previous page

Name Task No. of data

points

Year of publi-

cation

Structural Scaffolds for Citation

Intent Classification in Scientific

Publications (SciCite)

Classification 11k 2019

A Challenge Dataset for

Document-Level Information

Extraction (SciREX)

Question Answering 10k 2020

Twitter US Airline Sentiment Sentiment Analysis 14k 2015

Twitter User Gender Classifica-

tion

Sentiment Analysis 20k 2020

Sentiment140 Sentiment Analysis 1.6M 2013

3.4 Results

In this section, the parameter settings and training details of pre-training and fine-tuning

results on 31 distinct datasets are presented.

Experimental Setup

The total amount of parameters of TweetBERT is around 12M which is the same as the

AlBERT-base model. The maximum sequence length is intialized to 256 for speeding up the
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Figure 3.2: Shows the number of data points for the general domain datasets

training process [202]. To have the number of tokens of TweetBERT similar to the AlBERT-

base model, the training batch size has been kept as 4,096. The pre-training hyperparameters

of TweetBERT are mostly kept the same as the hyperparameters of the AlBERT model

except for the batch size for evaluation, the learning rate, and the number of training epochs.

In the TweetBERT model, it was observed that the following ranges work best for pretraining

the model, i.e, the batch size for evaluation: 32, learning rate: 3e−5, maximum sequence
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length: 256, and the number of epochs: 4. The configurations of TweetBERT are shown in

Table 3.3.

To understand the relationship between each sentence of a tweet post, the model was

pre-trained with the binarized next sentence prediction task which was inherited from the

BERT architecture. In the pre-training phase, when sentences A and B of a tweet post

was selected, 50% of the time B was given as the actual next sentence that is followed by A

labeled as IsNext (since it is the next sentence after A) and in the remaining 50% of the time,

a random sentence from the corpus was given followed by A and was labeled as NotNext.

Hyperparameters Values

Drop out ratio for attention probability 0.1
Non-linear activation function gelu
Hidden drop out probability 0.1
Embedding size 128
Intermediate size 3072
Maximum sequence length 256
Attention heads 12
Hidden layers 768
Hidden groups 1
Inner group number 1
Vocab size of token ids 2
Vocab size 33050
Batch size 32
Learning rate 3e−5

Number of epochs 4

Table 3.3: Configurations for TweetBERT models

Experimental Results

The 31 datasets used can be divided into four different domains. The general domain,

includes eight datasets from GLUE [173], SQuAD [143], SWAG [199] and RACE datasets.

Table 3.4 and Table 3.5 shows the performance of the BERT models on the GLUE and
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question answering datasets, respectively. It is observed that AlBERT [36] and RoBERTa

[104] achieve a higher score than other BERT models. AlBERT performs better in almost

all of the GLUE datasets whereas RoBERTa outperforms in general question answering

datasets. TweetBERT models are also compared with other state-of-art BERT models:

DeBERTa, StrucBERT, ERNIE, ConvBert, and SqueezeBERT. From the results it can be

observed, only in the case of MRPC dataset of GLUE, DeBERTa has outperformed the rest of

the BERT models. The results of TweetBERT are fairly or sometimes extremely close to that

of the highest accuracy. For example, on CoLA dataset AlBERT and TweetBERT achieves

an accuracy of 71.42% and 71% respectively. Moreover, to understand the improvement

and effectiveness of each TweetBERT models the marginal performance on each dataset is

calculated using equation 3.3 [122]. Table 3.6 and Table 3.7 shows the marginal performance

between existing BERT models and TweetBERTv1, and Table 3.8 and Table 3.9 shows

the mariginal performance of TweetBERTv2, on general domain datasets. Positive value

represents by how much the TweetBERT outperformed a BERT model. For example, from

Table 3.9 TweetBERT outperformed BioBERT by 12.81% in SQuAD dataset. On the other

hand, negative value represents by how much an existing BERT model outperformed the

TweetBERT model. To find the most suitable model overall on all the datasets the total

of all the marginal performance of each BERT model was calculated. In the Total column

positive and negative number indicates the value by which TweetBERT performs better or

worst than that BERT model. Both Tables 3.6, 3.7, 3.8, and 3.9 show that overall RoBERTa

performs the best.

∆MP =
AccuracyBERTmodel − AccuracyTweetBERTs

100− AccuracyBERTmodel
× 100 (3.3)

Secondly, the evaluation of the BERT models on 12 different biomedical domain datasets
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Domain General

Datasets
GLUE

MNLI QQP QNLI SST CoLA STS MRPC RTE
Metrics A A A A A PC A A
BERT 84.43 72.1 90.51 93.58 60.61 86.51 89.3 70.11

BioBERT 86.27 85.65 90.28 93.86 65.83 87.31 85.04 75.72
SciBERT 84.51 73.47 88.34 94.25 61.72 87.14 90.78 66.26
RoBERTa 90.28 92.21 94.72 96.4 68 92.41 90.9 86.65
AlBERT 90.83 92.25 95.37 96.99 71.42 96.94 90.9 89.21

TweetBERTv1 90.91 86.37 91.25 92.43 68.42 90.2 88.64 75.23
TweetBERTv2 90.51 88.83 91.21 94.38 71 94.41 91.79 91.3

DeBERTa 90.8 92.15 95 95.1 69.4 92.3 92.8 90.9
StrucBERT 85.2 88.4 91.8 94.1 57 87.9 89.5 76.6

Ernie 84.9 70.4 91.1 93.8 52.1 82.7 89.3 68.9
ConvBERT 88.1 89.8 93 95.5 66.9 95.8 88.1 77.3

SqueezeBERT 81.4 80.3 90 91.1 45.4 86.6 86.9 71.5

Table 3.4: Shows the performance of different BERT models on GLUE datasets. Highest
accuracies are underlined

Domain General

Datasets
QA

SQuAD SWAG RACE
Metrics A A A
BERT 81.66 86.23 69.23

BioBERT 72.22 82.71 80.9
SciBERT 84.69 84.44 78.58
RoBERTa 94.63 90.16 81.31
AlBERT 85.3 88.57 82.37

TweetBERTv1 69.84 85.47 81.96
TweetBERTv2 75.78 88.86 81.74

Table 3.5: Shows the performance of different BERT models on question answering datasets

is shown in Table 3.10. Precision (P), recall (R), and F1-score (F) are used as metrics for

measuring performance. It shows that, although BioBERT was pre-trained on millions of

biomedical corpus, RoBERTa and TweetBERT outperforms BioBERT in all dataset types
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Domain General Total

Datasets
GLUE

MNLI QQP QNLI SST CoLA STS MRPC RTE
BERT 41.61 51.14 7.79 -17.91 19.82 27.35 -6.16 17.12 140.76

BioBERT 33.79 5.017 9.97 -23.28 7.57 22.77 24.06 -2.01 77.887
SciBERT 41.31 48.62 24.95 -31.65 17.50 23.79 -23.21 26.58 127.89
RoBERTa 6.48 -74.96 -65.71 -110.27 1.31 -29.11 -24.83 -85.54 -382.63
AlBERT 0.87 -75.87 -88.98 -151.49 -10.49 -220.26 -24.83 -129.56 -700.61

DeBERTa 1.19 -73.63 -75 -54.48 -3.20 -27.27 -57.77 -172.19 -462.35
StrucBERT 38.58 -17.5 -6.70 -28.30 26.55 19.00 -8.19 -5.85 17.59

Ernie 39.80 53.95 1.68 -22.09 34.07 43.35 -6.16 20.35 164.95
ConvBERT 23.61 -33.62 -25 -68.22 4.59 -133.33 4.53 -9.11 -236.55

SqueezeBERT 51.12 30.81 12.5 14.94 42.16 26.86 13.28 13.08 204.75

Table 3.6: Shows the marginal percentage of existing BERT models in comparison to Tweet-
BERTv1 on GLUE datasets

Domain General Total

Datasets
QA

SQuAD SWAG RACE
BERT -64.44 -5.51 33.74 -36.21

BioBERT -8.57 15.96 3.66 11.05
SciBERT -97.00 6.62 14.10 -76.28
RoBERTa -461.64 -47.66 14.10 -495.20
AlBERT -105.17 -27.12 -4.37 -136.66

Table 3.7: Shows the marginal percentage of existing BERT models in comparison to Tweet-
BERTv1 on question answering datasets

including NER and relation extraction. TweetBERTs performed best or very close to the

best in many of the biomedical datasets. The the marginal performance of all the biomedical

datasets between existing BERT models and TweetBERTs were calculated and reported in

Table 3.11 and 3.12 respectively. Results in both the table indicates that TweetBERT

outperforms BERT, BioBERT and SciBERT, on the other hand, RoBERTa and AlBERT

performed better.
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Domain General Total
Type GLUE

Datasets MNLI QQP QNLI SST CoLA STS MRPC RTE
BERT 39.05 59.96 7.37 12.46 26.37 58.56 23.27 70.89 297.93

BioBERT 30.88 22.16 9.56 8.46 15.13 55.94 45.12 64.16 251.41
SciBERT 38.73 57.89 24.61 2.26 24.24 56.53 10.95 74.21 289.42
RoBERTa 2.36 -43.38 -66.47 -56.11 9.37 26.35 9.78 34.83 -98.84
AlBERT -3.48 -44.12 -89.84 -86.71 -1.46 -82.67 9.78 19.36 -279.14

DeBERTa -3.15 -42.29 -75.8 -14.69 5.22 27.40 -14.03 4.39 -112.95
StrucBERT 35.87 3.70 -7.20 4.75 32.55 53.80 21.80 62.82 208.09

Ernie 39.80 53.95 1.68 -22.09 34.07 43.35 -6.16 20.35 164.95
ConvBERT 23.61 -33.62 -25.00 -68.22 4.59 -133.33 4.54 -9.11 -236.54

SqueezeBERT 48.97 43.29 12.10 36.85 46.88 58.28 37.32 69.47 353.16

Table 3.8: Shows the marginal percentage of existing BERT models in comparison to Tweet-
BERTv2 on GLUE datasets

Domain Total

Datasets
QA

SQuAD SWAG RACE
BERT -32.06 19.09 19.8 6.83

BioBERT 12.81 35.56 4.39 52.76
SciBERT -58.19 45.1 14.75 1.66
RoBERTa -351 -13.21 2.3 -361.91
AlBERT -64.76 2.53 -3.57 -65.80

Table 3.9: Shows the marginal percentage of existing BERT models in comparison to Tweet-
BERTv2 on question answering datasets

Thirdly, BERT models on four scientific datasets were evaluated. Previously, with the

introduction of SciBERT there was statistical evidence that it performed remarkably better

on scientific tasks. Although, Table 3.13 show that TweetBERT performed best in only

two datasets, Table 3.15 shows that TweetBERTv2 outperformed SciBERT and it is more

suitable to use TweetBERTv2 to evaluate scientific tasks rather than using SciBERT. In

the TweetBERTv2 model, the vocabulary was composed with both AlBERT and SciBERTs’
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Domain Type Datasets Metrics BERT BioBERT SciBERT RoBERTa AlBERT TweetBERTv1 TweetBERTv2

NCBI
P
R
F

88.30
89.00
88.60

88.22
91.25
89.71

88.57
90.97
91.15
90.58

90.43
91.22
89.83

87.62
91.33
89.70

90.38
91.62
89.69

BC5CDR
P
R
F

91.3
80.1
85.9

86.47
87.84
87.15

90.01
90.28
89.12
90.64

90.69
89.03
89.51

89.61
86.09
87.83

89.22
88.86
90.41

Species
P
R
F

69.35
74.05
71.63

72.80
75.36
74.06

70.89
75.82
73.68

84.25
87.16
84.76

83.77
85.90
84.06

85.18
87.45
84.89

85.17
88.31
83.53

BC5CDR A 91.5 93 93.46 93.73 93.14 92.4 92.83
NER

JNLPBA A 74.23 77.54 75.63 78.23 78.33 81.63 81.61

GAD
P
R
F

79.21
89.25
83.25

77.32
82.68
79.83

80.18
88.51
80.28

83.82
90.14
82.78

83.41
89.73
82.01

78.18
91.81
84.45

78.11
91.92
85.57

EUADR
P
R
F

75.45
96.55
84.62

84.83
90.81
80.92

74.91
96.64
85.41

85.84
89.5
85.24

85.76
90.48
84.11

77.73
92.31
81.36

75.95
92.1
79.39

RE
CHEMPROT

P
R
F

76.02
71.60
73.74

77.02
75.90
76.46

71.3
80.17
78.97
79.32

85.32
87.55
83.29

86.10
84.35
85.63

85.77
87.69
85.04

MedSTS A 78.6 84.5 78.6 89.06 91.06 86.78 90.89
Sentence

Biosses A 71.2 82.7 74.23 88.77 91.25 80.27 83.96
Inference MedLNI A 75.4 80.5 75.36 86.39 90.13 82.16 88.41

Biomedical

Doc classif HoC A 80 82.9 80.12 87.83 91.48 82.71 86

Table 3.10: Shows the performance of different BERT models on biomedical domain dataset.
Highest accuracies are underlined

vocabularies. Due to this reason, TweetBERTv2 has outperformed or performed fairly close

to SciBERT’s accuracy on scientific domain datasets. Moreover, it is advantageous to use

the vocabulary of SciBERT when fine-tuning scientific domain datasets since Scivocab has

been generated from scientific corpora. Furthermore, BioBERT is pre-trained on bio-medical

corpora which is similar to the scientific domain. As a result, the TweetBERT, and SciBERT

models have outperformed the BioBERT model on the Biomedical benchmark datasets.

Finally, all the BERT models were evaluated on tweets sentiment and classification

datasets. As the TweetBERTs were pre-trained on millions of tweets it outperformed all

existing BERT models, as expected. Table 3.16 records the performance of the BERT mod-

els including our TweetBERT. Table 3.17 shows that the highest total marginal performance
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Domain Type Datasets BERT BioBERT SciBERT RoBERTa AlBERT
NCBI disease 9.64 0.91 9.88 -9.34 -1.27

BC5CDR disease 13.68 -0.14 -21.82 -30.02 -16.01
Species 46.7 49.06 42.59 0.85 5.2

BC5CDR chemical 10.58 -8.57 -16.20 -21.21 -10.78
NER

JNLPBA 28.71 18.21 24.62 15.61 15.22
GAD 7.16 52.71 21.14 9.69 13.56

EUADR -21.19 16.32 -27.75 -26.54 -17.3RE
CHEMPROT 45.27 38.95 49.93 30.51 14

MedSTS 38.22 14.70 38.22 -20.84 -47.87
Sent sim

Biosses 31.49 -14.047 23.43 -75.69 -125.48
Inference MedLNI 27.47 8.51 27.59 -31.08 -80.79

Biomedical

Doc Classifi HoC 13.55 -1.11 13.02 -42.07 -102.93
Total 237.63 171.62 184.67 -200.12 -354.42

Table 3.11: Shows the marginal percentage of existing BERT models in comparison to
TweetBERTv1 on different Biomedical datasets

Domain Type Datasets BERT BioBERT SciBERT RoBERTa AlBERT
NCBI disease 9.56 -0.19 9.79 -9.44 -1.37

BC5CDR disease 31.9 25.36 4 -2.45 8.57
Species 41.9 36.5 37.4 -8.07 -3.32

BC5CDR chemical 15.64 -2.42 -9.63 -14.35 -4.51
NER

JNLPBA 28.63 18.12 24.53 15.52 15.13
GAD 13.85 28.45 29.67 16.2 19.78

EUADR -30.49 -5.18 -37.55 -35.98 -26.3RE
CHEMPROT 43.03 36.44 47.87 27.65 10.47

MedSTS 57.42 41.22 57.42 16.72 -1.90
Sen sim

Biosses 44.30 7.28 37.75 -42.83 -83.31
Inference MedLNI 52.88 40.56 52.96 14.84 -17.42

Biomedical

Doc Classifi HoC 30 18.12 29.57 -15.03 -64.31
Total 306.75 244.27 283.81 -37.21 -148.51

Table 3.12: Shows the marginal percentage of existing BERT models in comparison to
TweetBERTv2 on different Biomedical datasets

is 159.13% when SciBERT and TweetBERTv1 are compared. Table 3.18, on the other hand,

shows that the lowest marginal performance, 167.15%, is greater than the highest marginal

performance from Table 3.17. As a result, it can concluded that TweetBERTv2 performs

significantly better than TweetBERTv1 in Twitter domain tasks.
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Domain Scientific

Datasets
Text Classification parsing

paper feild sci-cite scie-relation-extraction genia
Metrics A A A A
BERT 55.06 84.33 63.55 64.81

BioBERT 56.22 85.11 65.42 67.71
SciBert 65.71 85.42 65.77 72.3
RoBerta 63.48 87.16 66.79 76.95
Albert 62.85 86.68 68.46 78.45

TweetBERTv1 58.12 88.5 68.85 67.98
TweetBERTv2 66.49 88.56 66.82 70

Table 3.13: Shows the performance of different BERT models on scientific domain dataset.
Highest accuracies are underlined

Domain Scientific Total

Datasets
Text Classification Parsing

paper feild sci-cite sci-RE Genia
BERT 6.8 26.61 14.54 9 56.95

BioBERT 4.33 22.76 9.91 0.83 37.83
SciBERT -22.13 21.12 8.99 -15.59 -7.61
RoBERTa -14.67 10.43 6.2 -38.91 -36.95
AlBERT -12.73 13.66 1.23 -48.58 -46.42

Table 3.14: Shows the marginal percentage of existing BERT models in comparison to
TweetBERTv1 on different scientific datasets

3.5 Discussion and Conclusion

Twitter is a popular social networking site, which contain valuable data, where analyzing

the content is particularly challenging. Tweets are usually written in an informal structure,

and as a consequence, using language models trained on general domain corpora like BERT

or other domains such as BioBERT often gives unsatisfactory results. Hence, two versions

of TweetBERT are introduced, which are pre-trained language representation models used
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Domain Scientific Total

Datasets
Text Classification Parsing

paper feild sci-cite sci-RE Genia
BERT 25.43 26.99 8.97 14.74 76.13

BioBERT 23.45 23.16 4.04 7.09 57.74
SciBERT 2.27 21.53 3.06 -8.3 18.56
RoBERTa 8.24 10.9 0.09 -30.15 -10.92
AlBERT 9.79 14.11 -5.19 -39.21 -20.50

Table 3.15: Shows the marginal percentage of existing BERT models in comparison to
TweetBERTv2 on different scientific datasets

Domain Twitter

Datasets
Sentiment

Airline Sentiment Gender Classification Sentiment140 Political Tweets
Metrics A A A A
BERT 85.2 80.65 85.63 69.99

BioBERT 84.17 80.22 87.84 69.34
SciBERT 82.73 72.23 82.29 64.66
RoBERTa 88.68 80.74 86.71 72.01
AlBERT 87.08 82.22 90.59 69.57

TweetBERTv1 89 85.02 92.74 75.13
TweetBERTv2 92.99 89.75 95.18 78.79

Table 3.16: Shows the performance of BERT models in different Twitter datasets. Highest
accuracies are underlined

for Twitter text mining. This chapter also discusses how the data was collected from the

big data analytics platform for pre-training TweetBERT. Millions of tweets were extracted

and cleaned from this platform. Moreover, detailed discussion of pre-training TweetBERT

models are included. TweetBERTv1 was initialized using weights from BERT and then pre-

trained on a tweet corpus. In the case of TweetBERTv2, first the model is initialized with

weights from AlBERT and used vocabularies from both BERT and SciBERT. Two main

advantages of using BaseVocab and SciVocab are scientific analysis can be carried out by
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Domain Twitter Total

Datasets
Sentiment

Airline Sentiment Gender Classification Sentiment140 Political Tweets
BERT 25.67 22.58 49.47 17.12 114.84

BioBERT 30.51 24.26 40.29 18.88 113.94
SciBERT 36.30 34.21 59.0 29.62 159.13
RoBERTa 2.82 22.22 45.37 11.14 81.55
AlBERT 14.86 15.74 22.84 18.27 71.71

Table 3.17: Shows the marginal percentage of existing BERT models in comparison to
TweetBERTv1 on different Twitter datasets

Domain Twitter Total

Datasets
Sentiment

Airline Sentiment Gender Classification Sentiment140 Political Tweets
BERT 52.63 47.02 66.45 29.32 195.42

BioBERT 55.72 48.17 60.36 30.82 195.07
SciBERT 59.40 54.98 72.78 39.98 227.14
RoBERTa 38.07 46.78 63.73 24.22 172.80
AlBERT 45.74 42.35 48.77 30.29 167.15

Table 3.18: Shows the marginal percentage of existing BERT models in comparison to
TweetBERTv2 on different Twitter datasets

studying tweets, and ALBERT is compatible with TweetBERTs and can be used in other

evaluating other datasets in different domains rather than just analyzing tweets.

Moreover, this chapter focuses on the datasets used to evaluate BERT models. Evaluation

of TweetBERT models and five other BERT models on 31 different datasets from general,

biomedical, scientific and Twitter domains and provide a comparison between them. Chap-

ter 2.5 gives a detail description of most of the datasets used. Finally, the results for the

evaluation are released. It is shown that TweetBERT significantly outperforms other BERT

models on Twitter datasets, and even on some other domain datasets, like BioBERT. The
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marginal performance that shows the amount by which a BERT model outperforms an-

other BERT model is calculate. It shows that, especially in the case of Twitter datasets,

TweetBERTs has the best performance. TweetBERTv2 outperforms AlBERT by a total

of 167.17% when evaluating Twitter datasets. Overall, an extensive discussion is provided

about the necessity of language model specific to social media. We introduce TweetBERTs

and give comprehensive discussion about the methods, approaches and data used to pre-train

TweetBERTs.
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Chapter 4

ONSET: Opinion and Aspect

Extraction System from Unlabelled

Data

All of this chapter is submitted as the following in a peer-reviewed conference:
• Qudar, M. M. A., Bhatia, P., & Mago, V. (2020). “ONSET: Opinion and Aspect

Extraction System from Unlabelled Data”

This chapter is about extracting aspects and opinion from unlabelled data from an online
platform. For this case only benchmark datasets from SemEval and Twitter were use
to compare the results. The system develop during my thesis research will serve as a
base architecture for extracting aspects from unlabelled data. We have submitted this
section of thesis in a Conference
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4.1 Introduction

Online platforms like Amazon, Yelp, and Booking actively extract aspects and opinions

from user-generated information feedback and other online sources. These data extractions

help gain insight into services, customers reviews, products and also in addressing questions

from the customer. An overall opinion about a review or sentence can be extracted from a

document-level or sentence-level sentiment analysis. However, more fine-grained information

can be extracted from Aspect-Based Sentiment Analysis (ABSA) by mining aspects and

examining aspect-level opinions for a discussed entity [100, 17]. For example, a user posts

a review for a laptop: “I love the operating system but not the preloaded software” which

contains two aspects, (a) a positive sentiment for the “operating system” and (b) a negative

sentiment for the “preloaded software”.

An ABSA can be divided into two sub-tasks of Aspect Mining (AM) and Aspect Senti-

ment Classfication (ASC) [100]. The AM sub-task extracts the aspect words from each sen-

tence of reviews, which has been thoroughly investigated by applying unsupervised models

[69, 203, 53], supervised models [63, 169, 96, 138, 177, 176, 97], or semi-supervised tech-

niques [25, 26, 121, 94, 188, 93]. The ASC sub-task attempts to determine the sentiment

polarities on aspects. These subtasks are performed using a supervised learning approach

and required a large set of labelled reviews [180, 165, 166, 98, 99]. The results from these

approaches achieve high accuracy. However, manually training a large dataset is very expen-

sive, especially for domain-dependent aspects, i.e. different domains may have various aspect

domains. As a result, researchers are encouraged to explore more efficient semi-supervised

models for ABSA [60].

In recent years, Latent Dirichlet Allocation (LDA) [10] and its variants have become a

major unsupervised approach for aspect extraction [168, 15, 121]. However, using pre-trained
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language models, such as BERT [37] or XLNet [192], it is very easy to extract opinions. These

language models can be fine tuned to attain high-quality extractions from the data. Fine-

tuning such language models needs a huge number of high-quality labelled training data

as they have a large number of parameters and training pre-trained language models on

small datasets will cause overfitting [111]. Therefore, some systems obtain labelled training

data through crowdsourcing [91]. Collecting data using the crowdsourcing technique requires

additional tasks such as preparing the questionnaires, launching and managing the project

and processing the results. These tasks are time-consuming, complicated and expensive.

Additional steps are required to exclude responses from dishonest crowd workers to maintain

the quality of data. Also, to eliminate potential mistakes, the labels for a sentence have to

be obtained many times, and the results have to be cleaned until they are consumable for

downstream tasks. Consequently, there has been a rising interest in collecting quality labelled

data using less expensive and in a more effective way [152].

This chapter introduces ONSET, an architecture to reduce the labelled training data

required for fine-tuning language models for AM and ASE. It is a novel system in which un-

supervised learning, Data Augmentation (DA) and semi-supervised learning are performed to

extract opinion and aspect from unlabelled data. The architecture uses Cross View Training

(CVT), a semi-supervised learning algorithm. The CVT helps improve the representations

of a Bi-LSTM sentence encoder using a mix of labelled and unlabelled data. CVT uses

standard supervised learning for labelled examples. On unlabelled examples, CVT acts as

both a teacher that makes predictions about the examples and a student that is trained

on those predictions [29]. ONSET can mine three main types of information from reviews:

aspects, opinions, and sentiments. An example of restaurant review with its aspect, opinion

and sentiment is illustrated in Table 4.1.

From Table 4.1 the triplet (service, good, +1) consists of two spans of tokens extracted
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Sentence Aspect Opinion Sentiment
The service varies from good to mediocre
depending upon waiter, seating is always prompt
though, and the restaurant gets busy in evening.

service good +1
seating prompt +1
restaurant busy -1

Table 4.1: Shows an example of a restaurant review with its aspect, opinion and sentiment

from the review, where “good” is an opinion about the aspect “service”. Positive sentiment is

derived based on the sentence containing the aspect and opinion terms indicating a positive

sentiment in this example (1 indicates positive, -1 is negative, and 0 is neutral). In this

chapter, the authors made the following contributions:

• Introduction of ONSET, an architecture that eliminates the need of using huge amounts

of labelled data which is very expensive and time consuming to collect and label.

• Augmentation of data to automatically generate more labelled training data from the

existing data in which the aspects are labelled via topic modeling.

• Fine-tuning a language model by a semi-supervised approach for opinion extraction.

• Extensive experimentation carried out on large review datasets of Yelp, Amazon and

Twitter; and the source code is made publicly available1.

4.2 Related Works

Sequence labelling is a challenging task in natural language processing, and it is intended to

assign a label to each input token in sequence. The aspect mining problem can be identified

as a sequence labelling problem that requires a label sequence (y1 . . . yn) to be predicted

1https://github.com/mohiuddin02/ONSET
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for a given word sequence (x1 . . .xn). These labels can be simplified and written in (B,

I, O) scheme, where B identifies the beginning of an aspect, I for the continuation of the

aspect, and O for other words [67]. The (B, I, O) schemes can effectively deal with aspects

expressing in phrases [96, 188] and aspect opinion mining term extraction [177, 176]. This

section discusses the prior works related to the topic modeling using deep learning models,

DA, and semi-supervised approaches.

Topic Modeling using Deep Learning Models

Many deep learning and pre-trained language models have been utilised to perform review

and mining related tasks. For example a multi-task supervised model with two coupled

Gated recurrent units (GRU) layers is proposed to co-extract aspects and sentiment words

for aspect-based sentiment analysis [176]. On the other hand, uses a deep learning model

with three Long Short-Term Memory (LSTM) layers to execute multi-task learning for AM

achieving state of the art results [176, 96]. A two-step attention-based LSTM along with

an interactive deep learning network (IMN) has been proposed to learn the model from the

token-level AM and ASC [52, 107]. Topic modeling is gaining vast popularity in various

text-mining communities. LDA has become the standard unsupervised approach for topic

modeling in recent years [55]. Several extensions to LDAs have been proposed for social

networks and social media. A novel probabilistic topic model was introduced using LDA to

analyze text corpora and infer descriptions of the entities and relationships between those

entities using Wikipedia [22]. Moreover, to apply LDA to tweets a TwitterRank system

was developed using authors pooling [183]. To discover groups among the entities and

topics among the corresponding text both simultaneously a scalable implementation of a

semi-supervised learning model (labelled LDA) was developed [179, 144]. Futhermore, a
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new model was introduced to incorporate LDA into a BERT community detection process

[201]. LDA was also expanded to a managed form, and its implementation was studied in a

micro-blogging context [145, 144].

Data Augmentation

Automatic DA techniques are used regularly in the computer vision and speech domain to

enhance model’s robustness to perform better by increasing the training data [33, 80]. DA

techniques are mostly used when working with smaller datasets [156, 160, 76]. Due to the

large dataset requirement, it is challenging to develop deep learning models with novel text

augmentation methods with generalized rules for transforming language. As a result, fewer

comprehensive research has been done that is devoted to novel text augmentation techniques.

Researches have been focused on synonym replacements by using predictive language

models and data noising methods for smoothing augmented text [77, 187]. Augmenting sen-

tences by replacing tokens with their respective synonyms shows efficient results for training

sentence classifiers [182]. Even though these synonyms replacement techniques are entirely

valid, they are often not used because it is computationally expensive to use these methods

for text augmentation [196].

A DA technique, Easy Data Augmentation (EDA), was proposed that augments text by

using four simple operations: synonym replacement (SYR), random insertion (INS), random

deletion (DEL), and random swap operation (SPR) [182]. The EDA method is beneficial,

especially for smaller datasets, since it uses these operators to increase the training dataset.

The EDA technique has been shown to increase the performance of text classification tasks.

However, EDA does not perform well when used with pre-trained models such as ULMFit,

and ELMO, BERT [182]. Furthermore, EDA has also shown signs of overfitting due to
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having a similar type of data and meaning semantic information also can get deleted when

using the random deletion technique. Also, when random tokens are generated using the

random insertion operator, the tokens can cause the text to have more noise. Another DA

method, “MixDA” was proposed by that allows text to be partially altered so that the

augmented data is not distorted [111]. It conducts a convex interpolation on the augmented

data and original data, and the result is used as the training data [111]. The interpolation

step between the actual existing example and the augmented example would yield reduced

inconsistency.

Semi supervised approaches

Most current semi-supervised approaches use labelled data to guide an unsupervised topic

model. Expectation Maximization (EM) uses both labelled and unlabelled data to determine

generative classification parameters, such as naive Bayes, is a common technique for Semi-

Supervised Learning (SSL) [124]. Another approach for semi-supervised learning is to use

labelled reviews from the same domain to optimize the supervised model. For example,

manually selecting seed words for the topic modeling [25, 26, 121, 94].

However, this approach requires manually defined domain knowledge and does not solely

rely on labelled reviews. In the aspect mining model [188], the concept of pre-training was

used to learn in advance domain-specific word embedding from unlabelled reviews.

Other researches have used external linguistic tools to obtain adequate word information.

It may be considered as a special case in semi-monitored approaches for solving the sentiment

classification problem [86, 107, 18] .

MixMatch is a semi-supervised learning paradigm proposed recently. It enhances the pre-

vious self-training method by using labelled and unlabelled data interpolations [9, 8]. A new
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technique called MixMatchNL has been adapted from MixMatch technique [9]. MixMatch

was used in the computer vision domain for training image classifiers [9]. MixMatch achieved

higher accuracy in classifying images compared to earlier SSL algorithms with small number

of labelled images. MixMatchNL uses huge amount of unlabelled data by guessing the labels

and interpolation. For an unlabeled instance, MixMatchNL produces a “soft” guessed label.

The guessed labelled is later used as training data.

A deep learning model typically works best when trained on a large set of data with

appropriate labels. However, generating a large dataset of manual labels could be a con-

siderable investment for domain-dependent aspects. One solution is to use semi-supervised

learning to take advantage of unlabelled reviews. Current semi-supervised learning methods

split the training process into two stages: pre-training and supervised learning [188]. A sig-

nificant disadvantage of these methods is that the first stage of representation learning has

no advantage from any labelled reviews. Another semi-supervised learning method is Cross

View Training (CVT), which performs semi-supervised learning by rotating the training

process with labelled and unlabelled data [29]. CVT algorithm improves the representations

of a Bi-LSTM sentence encoder using a mix of labelled and unlabelled data. On labelled

examples, standard supervised learning is used. On unlabelled examples, the model acts as

both a teacher who makes predictions about the examples and a student trained on those

predictions.

4.3 Proposed Model

This section explains the strategy of solving the aspect mining problem using unlabelled

datasets. The proposed system targets removing the need to use large amounts of labelled

data which is very costly and time-consuming to collect and label. However, there is a need
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for ground truth when solving problems with unlabelled datasets. As a result, the proposed

system uses labelled datasets, of which the labels have been removed and held as ground

truth for comparing the predicted values. The dataset is divided into five-folds, where one

fold has been labelled through an unsupervised approach using LDA and BERT models. The

remaining four folds have been kept intact for implementing a semi-supervised approach at a

later stage. Semi-supervised learning is mainly defined as an approach that requires a small

amount of labelled and with a large amount of unlabelled data during training [8]. As Semi-

supervised require a large dataset for training, therefore, to increase the training dataset,

various DA techniques have been used. Figure. 4.1 shows the overview of the proposed

model. First, an unsupervised approach is applied, followed by DA, then a semi-supervised

approach using the CVT method to fine-tune a language model.

Unsupervised Learning

For performing aspect extraction, Attention- Based Aspect Extraction (ABAE) was utilised

[53]. The ABAE learns a series of aspect embeddings by searching the nearest or represen-

tative words in the embedding space. This learning involves four steps. First, identifying a

neural word that co-exist within a similar context nearby its embedding space [115]. Second,

the word is filtered from the sentence using the attention mechanism [4]. Third, the filtered

words are used to create aspect embeddings. Fourth, the common factors are extracted from

the embedded sentences using dimension reduction.

MixDA

DA is a way to automatically increase the size of the training data without using human

experts. DA has been found helpful in tasks related to computer vision and NLP tasks. DA
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Labelled Data

Unlabelled Data (1/5)

Sentiment/Aspect Extraction

Labelled dataUnlabelled data (4/5)

Fine-tuned language model

Dataset split into five folds
and labels are removed

Topic modeling
e.g., LDA and
BERT

Data Augmentation
using DA-op e.g.,
MixDA and EDA

Cross View training

Unsupervised Learning

Semi Supervised Learning

Figure 4.1: Overall architecture of the proposed model

has operators useful in NLP related tasks, such as token substitution with a synonym, token

addition, token removal and token swap. A DA trained model can help in identifying the

unchanged properties in the data. However, DA has limitations when used for NLP tasks, as

DA operators may hamper the semantics of the generated sentence. To counter these issues,

MixDA is used for augmenting data [111]. In MixDA, x is considered as a text sequence and

y as the one-hot label vector, MixDA trains the model by first applying a data augmentation

operator to obtain (xaug, yaug). MixDA then performs interpolation on the original input

pair (x, y) and the augmented pair (xaug, yaug) to get (BERT (x′), y′). Bert(x′) represents

the encoding of the sequence lying between the actual and augmented sequence x and xaug
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respectively. Later, the resulting BERT (x′) is fed to the remaining layers, calculating the

loss over y′ and back-propagation to minimize the loss [111].

Cross View Training

CVT is a semi-supervised learning algorithm that enhances the representations of a Bi-

LSTM sentence encoder using labelled and unlabelled data [29]. The core concept of CVT

is to use labelled and unlabelled reviews from the same domain. CVT helps in restoring

the model’s representation learning by using auxiliary prediction modules from the primary

model’s predictions since the primary model in CVT has a more robust and complete view

of the input [95].

4.4 Experimental Results

Datasets

SemEval ABSA datasets from three domains (restaurant, beer and laptop) were considered

for validating the opinion mining tasks. The SemEval datasets include laptop reviews from

Amazon Review [54] and restaurant reviews from Yelp Review Dataset [3]. Moreover, two

Twitter datasets were also used to extract opinions from Tweets [88]. They are Stanford

Twitter Sentiment (STS) and Sanders Twitter Corpus (STC). STS contains 1.6 million

tweets with equal number of positive and negative tweets. STC, however, only contains

5K manually classified tweets [88]. Table 4.2 shows the properties of the SemEval ABSA

datasets and Figure 4.2 provides a visualization of the datasets. All the datasets contain

annotated aspects, but in the proposed model, the annotations were removed, and the model

was trained using an unsupervised approach.
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SubTask Sentence Aspect
Aspect term extraction I liked the service and the staff, but not the food Service, Staff and food
Aspect term polarity The fajitas are their first plate neutral
Aspect category detection The restaurant was too expensive price
Aspect category polarity The restaurant was too expensive negative/-1

Table 4.2: Shows the task description for ABSA [137]
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Figure 4.2: Shows the number of data points of the SemEval ABSA datasets used for opinion
mining tasks

Training details

The dataset was trained with 20 epochs at a learning rate of 5e−5 and batch size of 32 for

unsupervised learning. For data augmentation, the MixDA technique replaced 5% of words

with synonyms and deleted 10% of words. The MixDA technique also generated data by
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inserting 5% of the words and swapping 5% of words. For training on CVT a learning rate

of 0.005 was set with batch size of 64 having a maximum of 200 words per sentence. The

hyperparameters used are listed in detail in Table 4.3.

Topic Modeling Data Augmentation Cross View Training
No. of epochs: 20 No. of epochs: 5 No. of epochs: 50
Learning rate: 5e−5 Learning rate: 5e−5 Learning rate: 0.005
Batch size: 32 Batch size: 64 Batch size: 64
Embeddings dimension: 200 Mixup parameter: 0.2 Maximum sentence length: 200
Vocab size: 9000 SYR: 5% Maximum word length: 20
Optimizer: adamax INS: 5% Dropout probability: 0.5
Regularizaiton: 0.1 DEL: 10%

SPR: 5%

Table 4.3: Lists all the hyperparameters.

Results

Each dataset was split into five folds, and topic modeling was applied to one-fifth of the

dataset to mine each sentence’s aspect. Table 4.4 shows the F1-scores obtained from LDA

and BERT models. The results show that the BERT model outperformed LDA model in

predicting the appropriate topic for each sentence. The BERT is a transformer-based model

which is already pre-trained with a large corpus of Wikipedia (2,500M words) and a book

corpus (800M words) [37]. Based on the results, it can be observed that the BERT model

tries to learn high-level features from the textual data. Furthermore, during the training

phase, BERT learns the feature representations bidirectionally making its memory much

stronger than LDA, whereas LDA was unable to capture correlations between the topic

words of each of the sentences.

After extracting the aspects using the topic modeling approach, the DA techniques were
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Model Restaurant Beers Laptops Stanford Twitter Sentiment Sanders Twitter Corpus
LDA 75.7 72.12 74.0 79.59 77.79

BERT 81.57 74.25 78.85 81.46 83.29

Table 4.4: F1-scores of topic modeling using LDA and BERT models

used to increase training data. The two techniques used for data augmentation were EDA

and MixDA. DA methods were used in such a way that it produces only augmented instance

for each original instance. The number of folds increased from five to six. Now one-third

of the total dataset has aspects extracted and two-third is unlabelled. These techniques

helped the model to increase performance on the benchmark datasets, shown in Table 4.5.

The increase in performance is because the input was more generalized and similar data due

to data augmentation. Table 4.5 shows the LDA and BERT model’s result with EDA and

MixDA. The results show that the model obtained better results with MixDA augmented

data than with EDA. The reason is that the EDA only performs SYR, INS, DEL, SPR.

However, during the data augmentation phase, the target aspects could get swapped or

deleted. These operations would change the overall meaning of a sentence and lead the

model to perform poorly. For example: In the sentence, “Everybody was very nice. (+1)”,

if the DA operators replace “nice” with a negative/neutral word (e.g., “poor”,“okay”) then

the statement label would no longer be +1. Similarly, If DEL drops “nice”, INS insert

“sometimes” after “was”, or SPR replaces “Everybody” with “Nobody” then the sentiment

label will be wrong. Compared to the EDA approach, the MixDA also performs interpolating

on the data with MixUp interpolation. As a result, the encoding of a sequence is within

the augmented sequence xaug in the original sequence x. Moreover, the MixDA uses a

backpropagation technique, which adds the interpolated encoding sequence to the remaining

layers to calculate the predicted aspect’s loss and updates the model to reduce the loss.
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The DA operators can change the length of the sequence if the tokens get deleted with the

Random deletion operator, thus MixDA aligns the label of the sequence yaug with the original

y in case the target aspect gets deleted.

Model Restaurant Beers Laptops Stanford Twitter Sentiment Sanders Twitter Corpus
LDA+EDA 83.69 77.02 80.68 83.27 80.43

BERT+EDA 84.06 81.25 85.39 88.19 84.72
LDA+MixDA 83.72 78.51 86.11 86.82 83.35

BERT+MixDA 89.93 84.65 90.20 90.77 88.55

Table 4.5: F1-scores of data augmentation using EDA and MixDA with LDA and BERT
models

After performing MixDA, the dataset includes more similar instances, which may cause

data overfitting. The semi-supervised approaches are used to reduce the overfitting of data

by generalizing and distributing data. After using semi-supervised approaches the overall

F1-score have decreased illustrated in Table 4.6 and Table 4.7. For training the proposed

model, first data augmentation was applied followed by two semi-supervised approaches:

MixMatchNL and CVT. The overall F1-score decreased for all the datasets when the data

augmentation was used with the BERT and LDA methods. Table 4.6, shows that the

MixMatchNL approach with the BERT model performed better over the MixMatchNL ap-

proaches with the LDA method. Also, when the CVT semi-supervised approach was imple-

mented with the BERT, the model performed significantly better than the LDA method’s

approaches, shown in Table 4.7.

Comparing Table 4.6 and Table 4.7, it can be concluded that the CVT method has per-

formed better than the MixMatchNL method. The CVT model’s performance is because the

CVT trains the auxiliary modules to observe partial sentences to match the model predic-

tions. In other words, the auxiliary prediction modules are implemented on unlabelled data

with different types of views of the input. Training is done by masking the input partially
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Model Restaurant Beers Laptops Stanford Twitter Sentiment Sanders Twitter Corpus
LDA+EDA+MixMatchNL 79.37 72.16 78.5 80.53 79.00

BERT+EDA+MixMatchNL 81.63 78.27 84.11 82.86 80.75
LDA+MixDA+MixMatchNL 82.87 77.24 80.49 81.41 83.89

BERT+MixDA+MixMatchNL 84.52 82.96 85.76 86.60 83.12

Table 4.6: F1-scores of semi-supervised approach: MixMatchNL with a combination of EDA,
MixDA, LDA, and BERT models

and is trained with the primary prediction module. By this type of training, the auxiliary

modules enhance the contextual representations produced by the model. Moreover, each

of the auxiliary models is composed of two layers of CNN-BiLSTM sentence encoder. The

CNN-BiLSTM process inputs in two directions enabling model’s memory to be very strong

by learning the representations of a sentence bidirectionally. Whereas the MixMatchNL

method generates a “soft” label for each unlabelled sentence estimated by the model. How-

ever, a major problem with the MixMatch method is that the labels generated can be noisy

depending on proposed model’s quality. This issue can be partially resolved using the in-

terpolated label rather than using the “soft” label to reduce noise. However, the noise still

exists which can reduce the overall performance of the model [111].

Based on the above observations, it can be concluded that the aspect mining task is

best performed with the CVT semi-supervised approach combined with MixDA and BERT

methods to extract the linguistically rich semantic information of the input sentences.

Model Restaurant Beers Laptops Stanford Twitter Sentiment Sanders Twitter Corpus
LDA+EDA+CVT 80.62 73.38 80.93 82.73 82.60

BERT+EDA+CVT 84.06 80.76 86.69 85.83 86.28
LDA+MixDA+CVT 81.37 80.18 82.17 86.52 84.43

BERT+MixDA+CVT 88.14 85.00 87.30 88.14 88.35

Table 4.7: F1-scores of semi-supervised approach: CVT with a combination of EDA, MixDA,
LDA, and BERT models
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4.5 Conclusion

This chapter proposes a novel opinion mining system that extracts aspects and opinions from

the text. In the proposed model, an unsupervised approach is used to extract the aspects from

the text using topic modeling methods. Afterwards, different DA augmentation techniques

are used to generated training data. The augmented data generated helps in improving

the performance of the proposed model. However, using the data augmentation technique

caused the model to overfit due to having more alike instances. To reduce the overfitting

problem, the semi-supervised method was used to generalize the distribution of data. The

CVT semi-supervised method helped in further increasing the performance of the proposed

model. The proposed model can achieve state-of-art results in multiple opinion mining tasks

with a very small amount of training data comparatively. In future, the model can be further

optimized for multitask learning and to reduce the requirement of labelled data.
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Chapter 5

Conclusion

In this thesis, at first, a survey is presented in Chapters 2 focusing on the state-of-art

language models, specifically on the transformer based models because of their significant

contributions in the field of NLP. This survey has enabled us to pinpoint the research gap

and drawbacks of language models when conducting text mining analysis tasks for the social

media domain. It served as a point of reference for researchers to gain an understanding of

the recent developments and breakthroughs in the field of language models. Expanding on

what has already been developed, in Chapter 3, we introduced two TweetBERT models that

have been pre-trained on millions of tweets and are domain specific language presentation

models. These two models were evaluated and compared with a number of BERT models

on numerous datasets. The results have ensured that TweetBERT models have performed

significantly better than the traditional transformer based BERT models when performing

Twitter text mining tasks. The outcomes of this research have also demonstrated that

continuously training language models over time improves the performance of these models

on Twitter datasets.

Later in Chapter 4, we have proposed a unique opinion mining system from unlabelled
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data, ONSET. The primary aim of ONSET is to resolve the need for vast volumes of high-

quality labeled data to fine-tune state-of-the-art pre-trained language models. The model is

designed with a language model via an unsupervised approach in which the labels for each

of the texts are extracted by topic modeling methods. Finally, the model is improved by

using various data augmentation techniques to increase the size of training data so that the

model can perform more efficiently.

The work presented in this thesis was to encourage more extensive work that is highly

needed to development models for text analysis for online platforms. Users on online plat-

forms prefer to write texts in an informal manner without following any grammatical rules.

The text is written in a radically unstructured manner than conventional writings mainly

due to a limit in the length of the post. As a result, it extremely challenging for traditional

language models to conduct text mining tasks on such texts that are hardly grammatically

correct and highly unstructured. The concerns raised in each chapter can impact various

NLP tasks, so finding solutions to mitigate or fix those issues is extremely important.
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