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ABSTRACT 
 
Deepwater reservoirs use highly deviated wells to reduce cost and enhance hydrocarbon 
recovery. Due to the strong anisotropic nature of many of the marine sediments, 
anisotropic seismic imaging and interpretation can improve reservoir characterization. 
Sonic logs acquired in these wells are strongly dependent on well deviations. Cross-
dipole sonic logging provides apparent shear wave anisotropy in deviated wells, which 
can be far from the truth. Although anisotropic parameters have been successfully 
obtained using data from wells of several deviations or using single well data based on 
weak anisotropy approximation, estimation of strong shear wave anisotropy from single 
well data remains a challenge.  
 
Using sensitivity analysis, we find Stoneley wave velocity has good sensitivity to qSV 
and SH wave velocities in deviated wells. We create a linear inversion scheme to 
estimate shear wave anisotropy using SH, SV, and Stoneley wave velocities logged in 
one well. We first apply the method to laboratory measurements from boreholes of 
various deviations relative to the symmetry axis of an anisotropic material. We then apply 
the method to a field data set acquired in a deviated well. We also compute the vertical 
and horizontal shear wave velocity logs in this well using the inverted elastic shear wave 
constants.  
 

INTRODUCTION 
 
In recent years, significant discoveries of hydrocarbon reservoirs have been made in the 
deepwater fields. Offshore development uses high-angle wells to reduce drilling cost and 
enhance recovery. Since these offshore reservoir formations often exhibit strong 
anisotropy, it becomes very important to take into account anisotropy in sonic and 
seismic data processing and interpretation (Tsvankin, 1995, Ren et al., 2005). For 
example, converted P-S waves can image through a gas cloud that would obstruct P wave 
imaging because shear waves are sensitive to theformation frame but not the fluid 
content. Therefore, when we can obtain both P and S wave images, they show different 
amplitude and polarization. Joint interpretation of the data may yield formation fluid 
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information that cannot be obtained by P wave data alone (Zhu et al., 1999, Li et al., 
2001). Anisotropy information is crucial for such application as well as for standard P 
wave imaging. 

Sonic logging data provide high-resolution formation velocity measurements for seismic 
imaging and other interpretation techniques. However, the velocities acquired in deviated 
wells penetrating anisotropic formations can be significantly different from the vertical 
velocities (Furre and Brevik, 1998). Therefore, inversion of anisotropic parameters and 
correction to sonic logs obtained in deviated wells are necessary.  

Tang (2003) developed an inversion method to determine shear wave anisotropy using 
shear and Stoneley wave data measured in vertical wells. For deviated wells, people 
routinely use cross-dipole sonic logging data to estimate formation shear wave anisotropy 
of a transversely isotropic formation with vertical rotational symmetric axis (TIV 
formation). The SH and SV velocities measured by cross-dipole tools vary with well 
deviations and are not the horizontal and vertical shear wave velocities except in 
horizontal wells. Therefore, the anisotropy obtained using cross-dipole data is an 
apparent anisotropy and may not be the true formation shear wave anisotropy. Zhu et al. 
(2006) showed shear wave velocity variations with well deviations for a Phenolite model 
(Figure 1a). Figure 1b shows apparent cross-dipole anisotropy varies with well deviation 
significantly and does not measure the true formation shear wave anisotropy except in a 
horizontal well. Tang and Patterson (2005) provided field examples of anisotropy 
variation with well deviations. One of their examples shows that shear wave anisotropy 
goes through a 90 degree azimuth change through a transition angle. Below this angle, 
the fast shear is the qSV wave. Above this angle, the fast shear becomes the SH wave, as 
explained by the theoretical curves in Figure 1. 

Norris and Sinha (1993) showed how to determine the parameters for weak anisotropy in 
deviated wells using data from one well, but their method may not work well for strongly 
anisotropic formations. The previously described methods limit their applications to 
vertical wells or deviated wells in weak anisotropic formations.  
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Figure 1: Shear wave (SH and SV) velocities and apparent anisotropy at 
various well deviations  

 
Hornby et al. (2003) created an iterative inversion scheme to invert shale anisotropy 
parameters using multiple wells penetrating shale sections at different angles. The 
inversion involves fitting the sonic log data at a range of borehole angles to the 
compressional group velocity surface. Thomsen anisotropic parameters, ε  and δ , and 
vertical P wave velocity are obtained. These information are very important for P wave 
seismic imaging and reservoir analysis. For converted PS wave imaging and anisotropy 
analysis for reservoir properties using shear wave data, inversion of shear wave 
anisotropic parameter is necessary.  

We attempt to develop a method that can extract anisotropy parameters, particularly the 
shear wave anisotropic parameter, in strongly anisotropic formations. We apply our 
method to our laboratory data and a set of field data. We also address the issue of using 
log data acquired in dipping formations using the field example. 

 
BASIC THEORY 

 
A TI formation is described by the following 6x6 elastic stiffness matrix, in which five 
elastic constants are independent: 
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In the above matrix, the elements are zero in upper matrix except those filled in. The 
matrix is symmetric. It is also should be noted that 12 11 662c c c= − . 

In TI media, the qP and qSV wave phase velocities are dependent on their propagation 
direction. Daley and Hron (1977) gave the following formulae: 

( ) ( ) ( )

( ) ( ) (

2 2
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2 2
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2
1 sin ,
2
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ρ θ θ θ
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⎡ ⎤= + + − −⎣ ⎦)
 (2) 

where ρ is density of the media and phase angle θ is the angle between the wavefront 
normal and the rotational symmetry axis. ( )θD  is a compact notation for the quadratic 
combination: 

( ) ( ) ( ) ( )( ){
( ) ( ) }
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33 44 13 44 33 44 11 33 44
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11 33 44 13 44
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and 

θθρ 2
66

2
44

2 sincos ccVSH += .              (4) 

From equations (2), (3), and (4), we obtain equations for calculating the vertical and 
horizontal formation moduli for P and S wave propagation as: 

2
44 SVVc ρ= ,                  (5) 

2
66 SHVc ρ= ,                 (6) 

2
33 PVVc ρ= ,                 (7) 

2
11 PHVc ρ= ,                 (8) 

and  
c12 = c11 -2c66.                 (9) 
where ρ  is the bulk density,  and  are the horizontal P and S wave velocities, 
and  and  are the vertical P and S wave velocities. Using P or S wave phase 
velocities at 45 degrees, we express c

PHV SHV

PVV SVV
13 as (Hornby et al., 2003) 

( )([ )] 2
12

454433
2

4544114413 22 VccVcccc ρρ −+−+±−=           (10) 
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where V45 is a compressional (qP) or shear (qSV) wave velocity taken at angle of 45 
degrees relative to the axis of symmetry, and the minus sign and the plus sign are for qP  
and qSV wave velocity, respectively. Thomsen (1986) defined three anisotropic 
parameters, ε, δ, γ , as follows: 

11 33

332
c c

c
ε −

= ,   (11)  

( ) (
( )

)2 2
13 44 33 44

33 33 442
c c c c

c c c
δ

+ − −
=

−
,  (12) 

66 44

442
c c

c
γ −

= ,                (13) 

for characterizing anisotropy of TIV media. 
 

ESTIMATION OF SHEAR WAVE ANISOTROPY USING SONIC LOGGING 
DATA IN A DEVIATED WELL 

 
We first investigate how to use acoustic logging in deviated including horizontal wells to 
resolve the two shear moduli , which determine the shear-wave propagation 
characteristics in a TI formation. From inverted shear moduli , the shear-wave 
TI parameter γ can be simply calculated. We also explore means to obtain the shear-wave 
TI parameter using cross-dipole and Stoneley-wave measured anisotropy in deviated 
wells. 

44 66and c c
c44 66and c

Sensitivity analysis 
 
To study the feasibility of using cross-dipole and Stoneley-wave data to determine 
anisotropic information in deviated wells, we conduct a sensitivity analysis using the 
theory of partition coefficients (equivalent to normalized partial derivatives, see Cheng et 
al., 1982, Ellefsen et al., 1992). We use the VTI formation properties described in Zhu et 
al. (2006) in our analysis (Table I). The fluid density is 1000 kg/m3. 
 
In a deviated well penetrating a TIV formation, horizontally polarized SH wave velocity 
is sensitive to horizontal and vertical shear wave velocities according to equation (4). 
Furthermore, Figure 3a shows that in a vertical well, the SH wave velocity is only 
sensitive to the vertical shear wave velocity; but as well deviation increases, the SH wave 
velocity becomes more sensitive to the horizontal shear wave velocity. The qSV wave 
polarizes normal to the borehole axis and its velocity is sensitive to formation properties 
along the borehole axis direction Figure 3b shows that the qSV wave velocity is 
controlled by the vertical shear wave velocity in near vertical or horizontal wells. 
However, it is not sensitive to the shear wave velocity around 45 degree well deviation. It 
is sensitive to the P wave velocities instead.  

At low frequencies, the Stoneley wave radially deforms the borehole, and the Stoneley 
wave velocity provides an independent measurement of formation properties transverse 
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to the borehole axis. Integration of SH, qSV and Stoneley velocity measurements may 
provide sufficient information to invert shear wave anisotropy using single well data.  

Chi and Tang (2006) derived a three-dimensional analytical solution for low frequency 
Stoneley-wave velocity in deviated boreholes penetrating a transversely isotropic with a 
vertical symmetry axis (VTI) or general anisotropic formation. The sensitivity of the 
Stoneley-wave velocity in a slow TIV formation can be partitioned into six model 
parameters: the borehole fluid velocity fV , formation horizontal shear velocity 

66shV c ρ= , vertical shear velocity 44svV c ρ= , horizontal compressional velocity 

11phV c ρ= , vertical compressional velocity 33pvV c ρ=  and the modulus c13. The 
sensitivity is defined as the normalized partial derivatives [ ( )][ ( )ST STV V V V ]γ γθ θ∂ ∂ , where 
the subscript γ  denotes the subscripts f, sv, sh, ph, pv, and c13, respectively. The 
Stoneley-wave phase velocity ( )STV θ  is calculated using the 3-D analytical solution in the 
absence of a logging tool.  

As Figure 3c shows, Stoneley-wave sensitivity to the VTI formation is mostly controlled 
by shV  or  in a vertical well. The sensitivity decreases as the well deviation increases. 
With increasing well deviation, 

66c

svV  or  becomes an important parameter to affect the 
Stoneley-wave propagation velocity. It can be seen that the summation of the three 
sensitivities of 

44c

fV ,  and , is close to 1 at small deviation. According to 
the theory of partition coefficients, this indicates that the Stoneley wave sensitivity to 
other TI parameters, , is low at relatively small deviation for this slow TI 
formation. From the sensitivity analysis of Stoneley-wave velocity to various model 
parameters, we can see that for a well deviation up to 30

44orsvV c 66orshV c

11 13 33, ,andc c c

o, the velocity is mainly 
controlled by . Within this deviation range, the sensitivity to  is more than 
twice that of . Thus, the method for determining formation shear wave transverse 
isotropy developed for a vertical well (Tang, 2003) can still be applied in a moderately 
deviated well. For wells with higher deviation, Stoneley wave velocity sensitivity to 

 increases and becomes higher than it to  at round 50 degrees (Figure 3c). 
Horizontal  cannot be estimated robustly from the Stoneley wave velocity in 
highly deviated wells. The qSV velocity also becomes much higher than the vertical 
shear wave velocity. Therefore, the method that works well for a vertical well cannot 
accurately determine shear wave anisotropy for a highly deviated well. We may have to 
integrate Stoneley data with other acoustic logging measurements such as qSV and SH 
wave velocities to determine the shear wave anisotropy. 

66orshV c 66orshV c

44orsvV c

44orsvV c 66orshV c

66orshV c
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Figure 3: (a) SH and (b) SV wave velocity sensitivities to the formation shear 

wave velocities. (c) Stoneley wave sensitivity to fluid compressional velocity and 
formation shear wave velocities. 

 
Approximations for qP, qSV, and Stoneley velocities 
 

Because the analytical formulation for qP, qSV, and Stoneley wave velocities are 
nonlinear and complicated in terms of the elastic stiffnesses, we seek a good 
approximation that can lead to a linear inversion of the shear moduli and shear 
anisotropic parameter.  

Although Norris and Sinha (1995) obtained relatively simple expressions for qSV and 
Stoneley wave velocities using the first order perturbation method, Chi and Tang (2003) 
derived better approximations of the moduli of qP, qSV, and Stoneley waves in cases of 
any well deviation and strong anisotropy. Figure 4 shows that Chi and Tang’s 
approximations are better than those obtained by weak anisotropy approximation for a 
Phenolite model (Zhu et al., 2006). For qP wave velocity (Figure 4a), Thomsen’s 
approximation works well only for small phase angles; the weak anisotropy 
approximation is fairly accurate; and Chi and Tang’s approximation almost overlays with 
the theory. Figure 4b shows that for the qSV wave velocity, Thomsen’s and the weak 
anisotropy approximations work almost equally well at all phase angles, but at around 45 
degrees, Chi and Tang’s approximation works much better. For Stoneley wave velocity, 
Figure 4c shows that Rice’s model introduces the biggest error (Rice, 1987), and Chi and 
Tang’s approximation still performs the best. The approximations have common terms 
involving elastic stiffnesses, but the constant coefficients of these terms are different. 
Combining the formula of the modulus of SH waves, we can solve for the shear moduli 
c44 and c66.  

In deviated wells, the qSV and Stoneley wave moduli are approximated as follows: 
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1 2 sinqSV qSV

c
V c

f
sε δ θ

μ ρ
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,  (15) 

( ) 4
332 2

44 66 2

sin1sin cos
4 1 2 sinST

c
c c

f
ε δ θ

μ θ θ
ε θ

−
= + +

+
,  (16) 

where 44

33

1 cf
c

= − . These approximations are compared with other existing ones in 

modeling the velocity of qSV, and qP waves in various formations. From Figures 4a and 
4b, we can see the new approximations are far more accurate for large anisotropy and 
large well deviations.  
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Figure 4: Comparisons of various approximations for (a) qP, (b) qSV, and (c) 
Stoneley wave velocities. 
 

For SH waves, the modulus is expressed in the following form exactly: 
2 2

44 66cos sinSH SHV c c 2μ ρ θ= = + θ .  (17) 

Provided that we have cross-dipole and Stoneley logging data in the same well, all the 
three moduli can be computed, we can solve the linear system of three unknowns, c44, c66 

and a third complicated term ( ) 33
2

2
1 2 sin

c
P

f
ε δ
ε θ

−
=

+
. Solving c44, c66 and P from equation 
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(15), (16) and (17) gives the following analytical formulae after complicated 
manipulation: 

 

( )4 2 2 4
44

1cos sin cos sin
8SH ST qSVc μ θ μ θ θ μ θ θ⎛= − +⎜

⎝ ⎠
⎞ Δ⎟ , (18) 

( )2 2 4 2 2
66

1 1cos sin cos sin cos
8 8SH ST qSVc μ θ θ μ θ μ θ θ⎛ ⎞⎛ ⎞= − + − Δ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

θ  (19) 

( ) ( )2 2 2 2cos sin cos sin sinSH ST qSVP 2μ θ μ θ μ θ θ θ θ⎡ ⎤ ⎡ ⎤= − + + − Δ⎣ ⎦⎣ ⎦  (20) 

where ( ) 4 2 2 1cos sin cos sin
8

4θ θ θ θΔ = − + θ . (21) 

Then the shear anisotropic parameter can be computed simply using the following 
definition: 

66 44

442
c c

c
γ −

= .             (22) 

When equation (21) is equal to zero, the system of equations for inversion becomes 
singular. Two angles about 47 and 69 degrees satisfy the singular condition (Norris and 
Sinha, 1993). An optimization algorithm may reduce the inversion errors.  

Considering the fact that the measurement of well deviation in the field may not be 
accurate, we test the sensitivity of the inversion procedures to it. By introducing 1 and 2 
degree errors in the well deviation, the inverted parameters are compared with the true 
value (Zhu et al., 2006). The shear moduli are generally pretty accurate. From Figure 5, 
for a 1 degree error, the error of γ is small except around 47 degrees, which make the 
linear system singular. For a 2 degree error, the error of inverted γ is large when well 
deviations are around 47 and 69 degrees. Therefore, fairly accurate well deviation 
measurement is desired to accurately obtain γ. 

 

 11



0 10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

Deviation (degree)

A
n

is
o

tr
o

p
y 

γ

True
+1o

+2o

 
5a 

0 10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

Deviation (degree)

A
n

is
o

tr
o

p
y 

γ

True
−1o

−2o

 
5b 

Figure 5: Sensitivity of inverted anisotropy to well deviation errors. 

 

Joint inversion of shear-wave anisotropic parameter using cross-dipole and Stoneley 
wave anisotropy 
 

Using cross-dipole or Stoneley wave along in deviated wells, formation anisotropy can be 
assessed to some degree, but the true shear-wave anisotropic parameter cannot be 
obtained. We try to express the shear anisotropic parameter in terms of Stoneley-wave 
measured anisotropy and cross-dipole anisotropy and well deviation. This result provides 
a simple way to obtain the true shear anisotropic parameter using existing anisotropy 
measurements.  
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The cross-dipole anisotropy is defined as: 

2
SH qSV

qSV

μ μ
η

μ
−

= .  (23) 

For convenience, define ( ) 33 44
2

2
1 2 sin

c c
N

f
ε δ

ε θ
−

=
+

. Substituting expressions for the moduli, 

equations (15) and (16), into the definition yields 
2 2 2

2 2

sin sin cos / 2
1 sin cos

N
N

γ θ θ θη
θ θ

−
=

+
.  (24). 

 

The Stoneley-wave measured anisotropy is defined as: 

2
ST qSV

qSV

μ μ
ξ

μ
−

=   (25). 

The sum of the two anisotropies can be written as 
2

2 2

2 2

sinsin cos
16

1 sin cos

N

N

θγ θ θ
η ξ

θ θ

⎛ ⎞
+ −⎜ ⎟

⎝+ =
+

⎠ .  (26) 

Eliminating N from equation (24) and (26) gives a simple expression of γ as 

( ) ( )

2
2 2

4
4 2 2

sin cos cos
8

sin1 2 cos 1 2 sin cos
8

θη θ ξ θ
γ

θη θ ξ θ θ

⎛ ⎞
− +⎜ ⎟

⎝ ⎠=
+ − + +

 (27) 

We attach the details of the derivation in the appendix. 

 

APPLICATION 

 

We apply our inversion method to laboratory data and field data in this section. 

 

Inversion using Laboratory Data in one borehole 
 

Zhu et al. (2006) used an anisotropic Phenolite as the laboratory material and drilled 
boreholes at different angles with respect to the slowest P-wave principle axis. From the 
measured qP, qSV, SH, and Stoneley wave velocities extracted from monopole and 
dipole logging data, they constructed a equivalent TIV model for the Phenolite to 
interpret their measurements. Since all the boreholes were drilled in the same symmetry 
plane, a TI model can fit well for the measured for the qP and qSV wave velocities.  
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Figure 6. The Phenolite borehole model 
 

We use the same TI model for the laboratory measurements (Table I). We also use the 
laboratory measured P, SV, and Stoneley wave velocities, and theoretically predicated 
SH wave velocity for our inversion.  
 
C11 (GPa) c33 (GPa) c66 (GPa) c44 (GPa) c12 (GPa) c13 (GPa) 
13.94 10.57 3.42 2.97 7.10 5.70 
 
Table 1. The elastic stiffness of an equivalent TI model for the Phenolite block 
 
 
Shear wave anisotropy is 10.8%. The Stoneley velocity in a horizontal well is only 2.7% 
higher than the velocity in a vertical well. The measurement errors of Stoneley velocity in 
wells at 45 to 90 degree deviations are significant comparing to the velocity changes due 
to well deviation difference. This renders the anisotropy inversion results with relatively 
large errors. However, except for the results at 45 and 60 degrees, others are still fairly 
good estimates. Around 45 degrees, the SV wave velocities are not sensitive to the 
vertical shear wave property as shown in Figure 3b. Therefore, the SV wave velocities 
around 45 degrees do not have good constraints on inversion results. This is another 
reason that the inverted anisotropy tends to have large errors. 
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Angle (degree) 0 15 30 45 60 75 90 
Log P 2720 2760 2864 2950 3100 3150 3144 
Theory P 2830 2846 2900 2999 3119 3214 3250 
Error P (%) -3.89 -3.00 -1.24 -1.65 -0.61 -1.99 -3.26 
        
Log SV 1452 1463 1516 1554 1493 1489 1433 
Theory SV 1460 1488 1539 1556 1526 1481 1460 
Error SV (%) -0.55 -1.70 -1.51 -0.13 -2.15 0.57 -1.85 
        
Theory SH 1460 1471 1499 1537 1574 1600 1610 
        
Log ST 1168 1160 1150 1160 1150 1150 1170 
Theory ST 1165 1162 1154 1145 1139 1135 1134 
Error ST (%) 0.25 -0.16 -0.35 1.29 1.01 1.34 3.19 
        
Anisotropy (%) 11.5 10.6 8.2 130.4 -4.0 15.5 13.1 
Error Anis (%) 6.5 -1.9 -23.8 1107.4 -137.0 43.5 21.3 

 
Table 2. Measured and theoretical velocities of P, SV, and Stoneley waves and the 
theoretical SH wave velocity used for anisotropic inversion of the TI model. The unit 
of velocities is m/s. The inverted anisotropy and its errors are shown as well. 
 
 
Field Example 
 

The new method has been applied to an acoustic logging data set from a deviated well. 
The well was drilled in Mississippi canyon. The goal is to characterize the TI property of 
the shale formation from 2800 to 2880 meters. Acoustic cross-dipole and monopole 
waveform logging data were acquired throughout the formation. The low-frequency end 
of the monopole data was set to 0.2 kHz to allow for the acquisition of Stoneley waves in 
the waveform data. Figure 7 shows information about this zone. Track 1 of the figure 
shows the gamma curve and the deviation curve. The apparent well deviation is about 50 
degrees. Track 2 is the migrated scattered fields, from which we can see clearly the 
dipping of the formation. The dip angle is estimated to be about 33 degrees. The true well 
deviation with respect the symmetry axis of the TI formation can be obtained as the 
apparent well deviation less the dip angle. The caliper, density and apparent well 
deviation logs are also presented in Figure 8. 
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well axis

Formation layers

TI symmetry axis 
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θ 

Borehole axis

 
Figure 7: Apparent well deviation and formation image. The red curve in left track 
is the apparent well deviation, and the right track is the migrated formation image 
around the wellbore. The center of the right track is the borehole axis. 
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Figure 8: Measured caliper, density and apparent well deviation logs  
 

First, we use the direct inversion method to compute c44 and c66 (see Figure 9). We see 
that the inverted c66 are consistently higher than c44, which is as expected for realistic 
shale formations. Then the SH and SV wave velocity logs are computed based on 
equations (5) and (6).  

The computed SH wave velocities are consistently higher than the dipole measurements; 
the computed SV wave velocities are consistently slower than the dipole measurements 
(Figure10). This is also consistent with the scenario shown in Figure 1a. 
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Figure 9: Inverted shear formation modulus logs 
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Figure 10: Comparison of measured and corrected vertical and shear wave slowness 
logs. 

Then shear-wave anisotropic parameter γ is calculated. The zero-frequency parameter γ is 
Stoneley wave modulus is computed using the method developed by Tang (2003). The 
inverted parameter γ is compared with Stoneley and cross-dipole anisotropic parameters. 
The cross-dipole anisotropy is generally small in this zone around 10%, while the 
Stoneley-wave measured anisotropy is around 15%. This is reasonable because the true 
deviation of this well around 33 degree. The inverted parameter γ is higher than the 
Stoneley-wave measured anisotropy as expected from theoretical results, and it follows 
the trend of variation of the Stoneley-wave measured anisotropy curve. However, at the 
some depth, the inverted parameter γ is lower than the Stoneley-wave measured 
anisotropy.  

Secondly, the cross-dipole and Stoneley-wave measured anisotropy are used with the 
estimated well deviation to calculate the parameter γ. The inverted parameter γ is slightly 
different from the previous result. However, they are still in very good agreement. This 
method is more straightforward.  
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Figure 11: Measured dipole anisotropy, inverted Stoneley anisotropy, and inverted 
shear wave anisotropy. 

 
Discussion 
 
The proposed TI-estimation method using borehole Stoneley waves has several aspects 
that need be discussed here. These discussions will help clarify the strength and weakness 
of the method in practical applications. 

Since the Stoneley wave velocity is sensitive to the borehole fluid modulus, we need to 
understand how the fluid modulus varies as a function of cuttings, temperature and 
borehole fluid pressure. 

As in the shear slowness analysis using Stoneley waves, the Stoneley wave method is 
applicable mostly in slow formations where the formation shear rigidity is comparable or 
below the borehole fluid modulus. In this case the Stoneley wave is quite sensitive to 
formation shear wave properties, isotropic or anisotropic. However, in fast formations, 
the sensitivity becomes low (Ellefsen, 1990). With the help of the cross-dipole 
measurements, the shear moduli and shear TI parameter may still be reliably obtained. 
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Formation permeability will significantly affect the Stoneley wave propagation velocity, 
especially at low frequencies (Tang et al., 1990). Thus the TI parameter estimation 
method using low-frequency Stoneley waves is not applicable in permeable formations 
unless the permeability effect can be accounted for. 

The proposed Stoneley-wave estimation method obtains only the shear-wave anisotropy 
information. However, in seismic migration/imaging using P- and/or converted waves, 
the P-wave anisotropy parameter ε  (Thomsen, 1986) is desired. Fortunately, in many 
rocks, such as shales, P-wave anisotropy and shear-wave anisotropy are strongly 
correlated (Thomsen, 1986; Wang, 2001). In this case, the shear-wave anisotropy can be 
correlated with the P-wave anisotropy data to delineate the magnitude and variation of 
the latter anisotropy.   In this regard, the obtained shear-wave anisotropy still provides 
important information for seismic migration/imaging. Even better, we can possibly utilize 
the P wave measurement and the correlation in additional to our inverted shear moduli, to 
obtain all the 5 elastic constants of a TI formation. The anisotropy parameters ε and δ can 
then be calculated easily. 

The earth formations are not horizontal in general. Therefore, we must be able to find out 
formation dip through scattered wave migration or some other methods. The well 
deviation must be fairly accurately given to obtain the true anisotropic parameters. If the 
well deviation is around 47 and 69 degrees, the inversion must be done carefully.  

In deviated wells, cross-dipole measurement usually consists of fast and slow waves, 
corresponding to SH and qSV waves. In most cases, qSV wave is slower than SH wave. 
However, in some formations, qSV wave can become the fast wave in cross-dipole 
measurement (Figure 1a). Therefore, we may need the polarization information to decide 
which one of the two measurements corresponds to the qSV wave. Then the computed 
qSV and SH moduli can be used to invert for parameter γ. 
 
 

CONCLUSIONS 
 
We create a linear inversion scheme to estimate shear wave anisotropy using SH, SV, and 
Stoneley wave velocities logged in one well. Using sensitivity analysis, we find Stoneley 
wave velocity has good sensitivity to qSV and SH wave velocities in deviated wells. The 
approximations to qSV and Stoneley wave velocities for strongly anisotropic formations 
make the linear inversion possible.  
Application of the method to laboratory data from boreholes with deviations of 0, 15, 30, 
75 and 90 degrees yields fairly good estimation of the shear wave anisotropy of the 
Phenolite material. For boreholes at 45 and 60 degrees, due to the near-singularity of the 
system of equations for linear inversion, the inverted anisotropies show significant 
difference from the know value.  
Application of the method to a field data set acquired in a well with about 33 degree true 
deviation yields a continuous profile of the shale formation. The inverted shear wave 
anisotropy log shows higher anisotropy variation with depth than the apparent anisotropy 
measured by cross-dipole data and the anisotropy inverted by Tang’s method for vertical 
wells. The inverted SH wave velocities are consistently higher than the dipole 
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measurements; the inverted SV wave velocities are consistently slower than the dipole 
measurements. 
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Appendix: Derivation of the joint inversion formula of shear-wave anisotropic 
parameter using cross-dipole and Stoneley wave anisotropy 
 

Let’s list again the formulae of the moduli of SH, qSV and Stoneley waves: 
2 2

44 66cos sinSH SHV c c 2μ ρ θ= = + θ ,  (A1) 
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( ) 2 2
332

44 2

2 sin co
1 2 sinqSV qSV

c
V c

f
sε δ θ

μ ρ
ε θ

−
= = +

+
θ

, (A2) 

( ) 4
332 2

44 66 2

sin1sin cos
4 1 2 sinST

c
c c

f
ε δ θ

μ θ θ
ε θ

−
= + +

+
, (A3) 

where ε and δ are anisotropic parameters (Thomsen, 1986) and 44

33

1 cf
c

= − .  

Then let’s re-introduce three definitions of anisotropy.  

The cross-dipole anisotropy is defined as: 

2
SH qSV

qSV

μ μ
η

μ
−

= ,  (A4) 

The Stoneley-wave measured anisotropy is defined as: 

2
ST qSV

qSV

μ μ
ξ

μ
−

= ,  (A5) 

The shear-wave TI anisotropy is defined as: 

66 44

442
c c

c
γ −

= ,  (A6) 

For convenience, define ( ) 33 44
2

2
1 2 sin

c c
N

f
ε δ

ε θ
−

=
+

. Substituting equation (A1), (A2) and (A6) 

into (A4) yields:  
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66 44 44

2 2
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2 2 2
44 44

2 2
44 44

2 2 2

2 2

sin sin cos
2 2 sin cos

2 sin sin cos
2 2 sin cos

sin sin cos / 2
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2θ θ θ
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θ θ

γ θ θ θ
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−
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−
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  (A7) 

Solving N from equation (A7) yields: 

( )
2

2 2

sin
1/ 2 / sin cos

N γ θ η
η θ θ

−
=

+
  (A8) 

The sum of the Stoneley and cross-dipole anisotropy can be written as:  
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Expanding equation (A9) gives: 

( )
2

2 2 2 2sinsin cos sin cos
16
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Plugging N into equation (A11) yields: 

( ) ( )
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sin sinsin1
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Gathering terms of γ gives: 
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Multiplying both sides of equation (A13) by ( ) 22 1/ 2 cosη θ+ gives: 
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Simplifying equation (A14) yields: 
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Applying trigonometric relationships yields: 
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After minimum algebraic manipulation, one gets the simple expression of γas follows: 
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In two special cases, when 
2
πθ = , γ η= , the cross-dipole anisotropy; when 0θ = , 

0η = , and 
1 2
ξ ηγ ξ

η
−

= =
+

, the Stoneley-wave measured anisotropy. 
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