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ABSTRACT

One of the routing and scheduling problems faced by
an airline is to configure a route network. It seeks to
answer the following two questions: First, should scheduled
service be provided for a city pair market? Second, if
market entry is warranted, should the city pair be served
by a non-stop, multi-stop, or connect routing? A profit-
maximizing airline, in trying to answer these questions, has
to abide by the route regulations imposed by the Civil
Aeronautics Board. The airline has to take into account the
intercarrier route competition. It has to recognize that
its share of the passenger demand is a function of the level
of service offerred, and that passengers usually want to
reach their destination in the most convenient routing
for themselves.

An optimization model is formulated for the route
network configuration problem. Because of the huge combin-
atorial dimensionality inherent in the problem, a special
solution method has to be devised. Only a handful of the
most promising, feasible route candidates are identified
at a time. An optimal choice is immediately made out of the
few candidates. These route candidates are generated "as
needed" by graph theoretic schemes, while route selection
is performed by solving an integer program characterized by
an ill-behaved objective function. At each generation/selection
step, route network improvement is made by the optimal selection
of the route candidate (i) to add to an existing network,
(ii) to replace an unprofitable route, or simply (iii) to be
deleted from the route network.

The solution algorithm is based on the method of successive
approximation in dynamic programming. Primal feasibility is
maintained at all times. If the algorithm is stopped prematurely,
due to limited computational resources, an improved (but not
necessarily optimal) solution is always available.

A 40-routine computer software package for the algorithm
has been developed. It was successfully used to analyze a
case study from American Airlines. Our limited computational
experience showed that execution time is at least seven times
faster than a comparable algorithm.
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CHAPTER 1

ROUTE IMPROVEMENT IN AN AIRLINE NETWORK

Domestic passenger air transportation in the United States is provided

by a regulated industry made up mainly of eleven competing trunk carriers.

Each carrier offers scheduled service to accommodate and promote the travel-

ling public. Scheduled service is provided as a result of careful routing

and scheduling analyses. Currently, the routing and scheduling analysis

becomes even more critical. This is due to two factors. First, passenger

traffic slumped from a 15% growth in the Sixties to 1.4% in 1970. Second,

there has been a quantum increase in fleet capacity from the introduction

of wide-body aircrafts such as the B-747's and DC-10's. An exacting sched-

uling process, among other measures, is required by each airline to face

up to the sluggish traffic in an inter-carrier competitive environment.

In this dissertation, an analysis package is put forth for use in a

profit-oriented carrier for the following routing and scheduling questions.

From the competition and traffic potential point of view, (i) should the

carrier enter into a C.A.B.* authorized market in providing service between

the city pair; (ii) if market entry is warranted, should the city pair be

served by a non-stop, multi-stop route, connecting service, or certain com-

binations of the three?

*The C.A.B. is the United States Civil Aeronautics Board, delegated with *
the power of economic regulation in air transportation.

1 1_ -
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This chapter, and, to a certain extent, Chapter 2, are self-contained

overviews of the dissertation. Chapter 2, with its economic flavor, serves

as a transition from the general discussions of Chapter 1 to the formal

model building, solution and verification in the chapters that follow.

Mathematical technicalities are kept to a minimum in the first two chapters.

They are specifically written for a large number of leisure-deprived audi-

ence members. Those blessed with the inquiring mind will, at the same time,

find the overview an informative guide to in-depth reading of subsequent

chapters.

1.1 Routing and Scheduling in an Airline Network

The problem tackled in this piece of research has been identified as

belonging to a class of transportation analysis techniques called network

routing and scheduling. There is a large number of issues in routing and

scheduling. These issues, or subproblems, will be categorized in this sec-

tion. The categorization helps to identify our problem within the general

framework.

Two categorization schemes will be used. First, we classify according

to supply models vs. demand models. Second, we classify according to a

priority hierarchy -- typical of a decision process in an organization.

The classification scheme adopted here is tailored for introducing the anal-

ysis approach of our work. It is by no means the only way to break down

the routing and scheduling problem. Simpson [1969) has another informative

categorization which tends to be based on solution techniques. The author

lilkiiI I 11MIA III,
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acknowledges the benefits of his work.

1.1.1 A Supply/Demand Categorization

Transportation analysts today like to think in terms of the economic .

conceptual framework of supply and demand. Routing and scheduling models

lend themselves readily to the supply vs. demand functional classification.

Passenger demand models are those that forecast travel potentials be-

tween origin and destination pairs.* They usually employ econometric tech-

niques. The sophisticated ones relate demand as a function of the level of

service. That is to say, the demand function traces out how travel poten-

tial varies in response to service improvement or degradation.

Supply models are those that help to provide scheduled service in the

airline network. The main bulk of routing and scheduling models are supply

models..** The following are typical examples:

- route network configuration

- aircraft/fleet assignment

- frequency determination

- timetable construction/aircraft dispatching

- fleet routing and fleet size determination

- crew scheduling

- passenger routing

*For a bibliography on demand models, see Vandersypen [1971].

**Again, for a bibliography on routing and scheduling models, see Vander-

sypen [1971].



Again, sophisticated versions of the above supply models address the level

of service feedback loop between supply and demand. That is to say, a de-

mand function is used in the model formulation whereby origin-destination

travel potential changes as the scheduled service characteristics change.

In common practice, models are constructed such that they handle only

the demand or the supply side, holding an exogenously fixed demand or sup-

ply pattern. Such models may be quite serviceable as an aid to decision-

making. They yield, nevertheless, non-equilibrium solutions from a scien-

tific point of view.**

Ideally, a level of service feedback loop between supply and demand

should be built into the routing and scheduling process.* Models that

recognize such intertwining relationships would yield equilibrium solutions.

Viewed as a network flow problem, the procedure of equilibrium computation

can be envisaged conceptually as coordinating aircraft routings, crew

routings and passenger routings so that the appropriate number of aircrafts,

and crew would service the potential traffic at the suitable segments and

at the opportune time. All these are done so as to optimize a figure of

merit, which may be profit to the carrier, or public convenience and neces-

sity (some measure of welfare) to the Civil Aeronautics Board (C.A.B.).

The equilibrium solution(s) is (are) mainly manifested in two network

*See the "Schedule Planning Process" figure on page two of Simpson [1969],
for example.

**The only case where they are equilibrium solutions would be when the "real
world" demand/supply pattern is fixed.



characteristics: (i) a schedule(s) defined by a certain aircraft and crew

routing pattern(s) in the network,* and (ii) a traffic flow(s) defined by

a distribution of passenger routings in the network.*

Non-equilibrium models are more numerous than equilibrium models,

simply because the state of the art is such that analytical techniques are

by no means adequately developed for network equilibrium analysis.** The

routing problem addressed in this dissertation pays particular attention to

the level of service feedback loop. It is one of the exploratory researches

in the direction toward a network equilibrium analysis.

1.1.2 A Hierarchical Categorization

The last section groups scheduling models in a supply vs. demand clas-

sification. This present section will group them into a hierarchical cate-

gorization.

Viewing an organizational structure from a hierarchical, or multi-lev-

el, standpoint is a very intuitively appealing concept. In the airline cor-

porate structure, ranks go from "chiefs" to "indians" (probably with the

"medicine man" in between). The schedule planning decisions are broken up

accordingly. Inherent in the hierarchy is the sequential nature of the

*The term 'network' used in this context has a temporal dimension in addi-
tion to the usual geographical connotation. A more proper word for such a
kind of network is the "schedule map" (coined by Leven [1969]).

**For a bibliography of models that address the whole schedule planning pro-
cess, see Vandersypen [1971] once again.



"chain of commands" in problem-solving -- that the "chiefs" will handle the

higher priority routing and scheduling decisions and the "indians" the

lower ones. The output of the chief's office serves as input to the indi-

an's desk. Furthermore, parallel to the multi-level concept is the econom-

ic idea of long-run vs. short-run decisions. The higher priority decisions

are equated with a longer planning horizon, while the lower priority decis-

ions are generally construed as more myopic.

In the following discussion, we will give typical examples of long-run

vs. short-run vs. real time scheduling models. Included in the long run

are policy/corporate issues such as:

- charting legislational, regulatory (such as routes and fares)

policies

- forecasting economic activities and travel demand

- planning multi-period fleet acquisition and the associated financial

investments.

Included in the short run category are the familiar routing and scheduling

models that produce a cyclic (e.g., monthly) schedule:

- aircraft/fleet assignment

- frequency determination

- timetable construction/aircraft dispatching

- fleet routing and fleet size determination

- crew scheduling

- passenger routing.

Finally, there are the real time models that tackle "on line" schedul-
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ing decisions. The typical examples in this category are "dynamic schedul-

ing" and "schedule control."* Another name for dynamic scheduling is pro-

bably demand responsive scheduling, such as the Eastern Airlines shuttle

service and the "dial-a-bus" or taxi-cab operation. Schedule control, on

the other hand, refers to the contingency measures taken to replace a mech-

anically disabled aircraft scheduled for a flight or to remedy the situation

when several flights are cancelled due to unexpected bad weather.

In spite of the organizational "chain of command," the different levels

in the hierarchy do interact with each other. This is particularly true in

finalizing a schedule plan. A typical example is the interaction between

the crew scheduling and aircraft maintenance requirement teams with the

aircraft/fleet/frequency assignment and timetable construction teams. The

feedback process will be termed the "schedule refinement loop."** Such a

loop is presently done manually, for good reasons: because the state of

the art in modelling is by no means near the degree of sophistication

achieved by experienced personnel.

The route network configuration problem addressed in this dissertation

is neither a long-run nor a short-run model. It is most appropriately

called a medium-range planning problem. It takes the current route regula-

tory constraints (e.g., route authorities and fare) as given and suggests a

rational route network structure for use in the short-run scheduling models.

*Both terms are coined by Simpson [1969], the author believes.

**The idea is borrowed from Simpson [1969], who calls a similar iteration

the "schedule evaluation loop."
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Although the schedule refinement loop is not built into our problem formu-

lation explicitly, provisions are made for the feedback interaction. We

will come back to this looping discussion at the end of the chapter (section

1.4.3).

1.2 Problem Definition

The last section broke up the routing and scheduling problem into clas-

sifications, which allowed us to identify the role our route network con-

figuration problem plays in the general framework. It has been pointed out

that the route network configuration model yields equilibrium solutions,

since the level of service feedback loop is built into the formulation.

The routing model is used for medium-range planning purposes. It interfac-

es the long-run regulatory/economic policies with the short-run scheduling

operations.

The purpose of this present section is two-fold. First, we will out-

,line a formal definition of the route network configuration problem. Sec-

ond, a schematic optimization formulation will be offerred to model the

problem.

1.2.1 The Problem of Route Network Configuration

Perhaps a good way to introduce our route network configuration prob-

lem is via a graphic example. In Fig. 1-2-1 is shown a five-city map:

Chicago (CHI); Washington, D.C. (WAS); New York City (NYC); Dayton, Ohio

(DAY) and Columbus, Ohio (CMH). Two of the origin-destination (0-D) travel

demand potentials are shown: from NYC to CHI, and from CMH to WAS. Sup-

11m, 1141 , '111111NIM lolillillilil,



FIG. 1-2-1 ROUTE NETWORK CONFIGURATION



pose for the time being the airline under consideration has the necessary

equipment and personnel to provide scheduled service between these five

cities. Our problem is this: How should aircraft routes be configured in

this map to facilitate the passenger routings from their origins to their

destinations? This is question number one.

In the same diagram (Fig. 1-2-1) is drawn a particular route network

configuration. This route network consists of two non-stops: (i) between

CHI and NYC, (ii) between NYC and WAS; and one one-stop: between NYC, CMH

and DAY.* In this route network, passengers from NYC to CHI can simply

take a non-stop routing on the non-stop route between the city pair. Pas-

sengers who want to go from CMH to WAS, however, have to make a connect

routing via NYC, patronizing one leg of the one-stop DAY-CMH-NYC and then

the non-stop route NYC-WAS. It is part of our concern in this dissertation

to answer the following question: Is this particular route network and

passenger routing pattern the most desirable configuration, or can we im-

prove on it? This is question number two.

In order to answer the above two questions, considerations have to be

given to the context of the route network configuration problem. In our

analysis, we have identified four issues that a route planner should keep

in mind. First, route network configuration is subject to the route regula-

tion of the Civil Aeronautics Board (C.A.B.). An airline cannot serve a

city pair market unless it has been authorized a Certificate of Public Con-

*Notice that while this is a one-stop route for NYC-DAY, it is a-non-stop

route for NYC-CMH and CMH-DAY.

h



venience and Necessity (usually referred to as the route certificate). The

route certificate spells out specifically whether the city pair can be

served by a non-stop or multi-stop, and how. In spite of the apparent re-

strictions imposed by the certificate, there is still a.huge number of route

configurations that are possible within the confines of the authorization.

Second, route network configuration is subject to the route competition

pressure exerted by other carriers. Many city pair markets are served by

more than one airline. The carriers in these markets compete with each

other in a number of ways -- one of them being route competition. When

one's competitor(s) is (are) offering a non-stop service, usually there is

very little alternative course of action but to schedule a comparable route

("comparable" in this case probably means "non-stop"). Third, route net-

work configuration has to cater to the preferred routings of the passengers.

In general, passengers prefer to execute their trips on the most expedient

routing -- which can be interpreted as the shortest time path for most bus-

iness travellers. Route planning has to take this travellers' behavior

into account. Fourth, the route network configuration has to take into con-

sideration some facts about the profit potentials of a route. Due to the

pricing scheme and cost structure of operating an airline, short and low

density route segments are usually unprofitable while long and dense seg-

ments are profitable. One of the tasks in route planning would be to mini-

mize the profit disadvantages of short and low density segments.

Let us summarize the logic behind the route network configuration an-

alysis procedure. For a different set of aircraft routes introduced into
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the map, a different competition status and passenger routing pattern re-

sults. An example will make this point clear. Instead of the set of air-

craft routes shown in Fig. 1-2-1, we reconfigure a different set of routes

in the same five-city map (Fig. 1-2-2). Two one-stop routes now serve the

system: CHI-WAS-NYC and CHI-CMH-DAY. The competition status of Fig. 1-2-2

is entirely different from that of Fig. 1-2-1. While CHI-NYC was served by

a non-stop, now the same city pair is served by a one-stop. The passenger

I routing pattern is completely changed. The NYC to CHI traffic has to go via

WAS, and the CMH to WAS traffic makes the connection at CHI (instead of

NYC). We have witnessed a network relationship between an input set of

routes and the corresponding output competition and passenger routing pat-

tern. Profit to the carrier, at the same time, is a function of the air-

craft routes and passenger routings. To see this, it is convenient to re-

call that profit is the difference between revenue and cost. A non-stop

route draws more passengers than a multi-stop route, and hence more revenue.

To fly a longer route segment is more costly in direct operating cost than

a short segment. To service a route with a dense passenger flow segment

requires a higher route frequency than a route with all sparse density seg-

ments (Fig. 1-2-3 illustrates this point). And to operate a higher route

frequency means higher cost. In short, a particular route structure input

yields a corresponding output of competition and passenger routing pattern,

which in turn determines a specific profit figure for the airline.

The route network configuration problem can now be summarized. It is

analyzing how to alighn aircraft routes to the preferred passenger routings
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in a network. The air carrier' is cognizant of the regulatory and competi-

tive environment in which it operates. Consistent with the profit-making

motive of a corporate business, the airline plans a route structure that

minimizes the profit disadvantages of short and sparse-density segments.

This is achieved by judiciously feeding traffic to fill up the underutilized

seat capacities in the sparse density and/or short segments. Chapter 2

will elaborate on the route planning problem as a whole from a quantitative

economic framework.

At this point, the problem-oriented readers who have little interest in

optimization techniques may want to skip the rest of this chapter and pro-

ceed to Chapter 2. They should also take note that Chapter 5 contains a

case study on the route structure of American Airlines.

1.2.2 An Optimization Formulation of the Problem

The last section has defined our problem in terms of matching aircraft

routes to passenger routings. The routes provide the network structure be-

tween city pairs. They constitute the structural, or topological, part of

the problem. The routings, on the other hand, describe the traffic flow

pattern and the connectivity between city pairs on the route network. They

impart quantitative characteristics on the route network topology. The

structural aspect is usually handled by mathematical techniques classified

under graph theory or combinatorics, while the quantitative aspects are

usually solved by network flow or algebraic techniques.* In this section,

*A similar distinction is made by Elmaghraby [1970] and Fulkerson [1966].-+



a graph theoretic/network flow programming optimization formulation is put

forth to model our route/routing problem.

The optimization formulation will be presented in two steps: route

generation vs. route selection. The generation phase mainly addresses the

structure or topology of the network. The selection phase mainly addresses

the quantitative characteristics -- i.e., passenger flow and city pair con-

nectivities in the network. Generally speaking, generation is formulated

in terms of graph theoretic techniques, while selection is formulated in

terms of network flow programming. The generation step synthesizes all

topologically feasible routes to be included in the network flow program-

ming tableau. The selection step evaluates the set of feasible routes by

flowing passengers over them. A subset of routes is then chosen which is

deemed to be the optimal solution. The combination of generation and sel-

ection is referred to as the optimization package.

generation

Let us describe route generation. A route is topologically feasible

only if it complies with the C.A.B. route authorities. A "contiguity

matrix" is formulated to model this regulatory constraint. The route auth-

ority information is encoded graph theoretically in the matrix. By raising

the matrix to its first, second, third, ... , powers, all the authorized non-

stop, one-stop and two-stop, ... , routes are synthesized. If we denot.e this

The distinction is made mainly to "fix ideas." Network flow techniques have
been used to synthesize network topologies to satisfy a specified criterion.

- 11111
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set of routes by R, we can write Rs C, where we state that the set of feas-

ible routes is generated within the combinatorial space represented by C.

Routes synthesized this way are then inserted as columns in the mathemati-

cal programming tableau of the selection phase. They serve as candidates

for the final choice.

selection

A mathematical program is formulated to select among the route candi-

dates generated by the previous step. It is convenient to describe the

formulation in terms of constraints and an objective function.

There are two parts to the constraints: passenger flow vs. city pair

connectivity. Passenger flow is modelled as a multi-commodity (or multi-

copy) flow problem, while city pair connectivity is formulated as a set

covering problem. The passenger flow between each origin-destination pair

is a separate "commodity" and takes up a copy of a node-arc incidence

matrix (hence the term "multi-copy"). The node-arc incidence matrix is an

algebraic description of the network. These matrices for all the origin-

destination pairs align themselves in a block diagonal fashion in the tab-

leau. By the process of "problem manipulation,"* the various node-arc in-

cidence matrices can be transformed into equivalent arc-chain incidence

matrices (Fig. 1-2-3), which is more amenable to a decomposition solution.

The linking constraint for these various copies of arc-chain incidence mat-

rices is the set covering matrix. The set covering constraint specifies

*This term is coined by Geoffrian [1970].



CoPYI
cop-o

o-o

COPY 3

e
e

FIG. 1-2-4 INTEGER PROGR AMMING TABLEAU

FOR ROUTE SECTION

11,



323

that each city pair must be covered by a two-stop routing or better, one-

stop routing or better, or a non-stop .... In this way, intercarrier route

competition is quantified.

Let us write the passenger flow constraint in the functional form F =

f(R), which states that the passenger flow pattern F is a function of the

set of aircraft routes R. And let us write the route competition constraint

as K = c(R), which specifies that the routes R must contribute toward an

acceptable covering pattern K for all the city pairs. The two constraints

can be combined into an evaluation functional form E = e(R), which says that

the flow and covering evaluations on the set of routes R should yield a sat-

isfactory system performance E. Alternatively, we can think of it this

way: The input set of routes R is required to result in an output network

response of E.

To be consistent with the profit-making concern of a corporate busi-

ness, the mathematical program takes profit maximization as the objective

function. Profit is the difference between revenue and cost, both of

which are functions of the set of routes, the connectivities between the

city pairs and the traffic flow pattern. In other words, profit depends on

the input set of routes R and the output network system performance E. We

write the objective function as max I(R,E).
R

the optimization formulation

Having explained the generation and selection phases, let us view the

combined process as an optimization formulation. First, we recall that the



routes R are generated within the combinatorial space C via graph-theoretic

techniques -- (1) R S C. Second, we recall that this set of input routes

R is evaluated and required to yield an output network system performance

of E -- (2) E = e(R). The objective is to maximize profit to the carrier,

I, which is a function of both the routes R and the system performance E --

max I(R,E). In summary, the total optimization package bears the following
R

functional form:

max Z = I(R,E)
R

1. R C (1:2:1)

2. E =e(R)

Viewing the above formulation as a problem-solving tool, the reader may

want to ask: (i) What are the givens -- the information which is input to

the package? (ii) What are the decision variables manipulated by the pack-

age? And (iii) What are the solution outputs from the package? The fol-

lowing three lists will answer these application-oriented questions:

GIVEN

- passenger travel demand as a function of routings

- C.A.B. route authority

- specification of the minimal level of service for a city

pair in order to face up to inter-carrier route competition

- fleet specification (i.e., seat, speed and range)

- the airline city map (i.e., the specification of terminals

and inter-city distances)

- revenue and cost functions.



DECISION VARIABLES

- route acceptance or rejection

- realized passenger demand (i.e., that part of the poten-

tial demand actually served)

- route (or segment) passenger flow identified by origin and

destination

- assignment of aircraft type(s) to routes.

SOLUTION

- route network structure

- passenger traffic flow and routing

- realized passenger demand

- route frequency

- fleet type assignment

- fleet size requirement.

For an in-depth elaboration on the optimization formulation (1:2:1),

the reader is referred to Chapter 3.

discussion on the optimization formulation

The purpose of this discussion is two-fold. First, the dimension of

the optimization problem we are dealing with is given. Second, the special

mathematical programming characteristics of the formulation are identified.

The dimensions given here are extremely conservative estimates. The

contiguity matrix used in route generation at least measures N by N, where

N is the number of cities in the system. The mathematical program used in

route selection measures in the order of N x N in its original node-arc



incidence matrix form. In its arc-chain incidence form (i.e., the decompos-I 2 2
able form), it measures in the order of N x N .

Due to the huge combinatorics dimensionality of route generation, it

is practically impossible to generate all the routes in the generation phase

and include them all in the mathematical program for selection. The only

practical approach would be to identify only those few promising routes to

be included in the mathematical program for optimal selection.* We will

come back to this point in sections 1.3.3 and 1.3.4.

The optimization formulation given in equation (1:2:1) involves a non-

linear, discontinuous objective function. At the same time, we are dealing

with an all integer programming problem. The characteristics and dimension-

ality of the problem exclude the use of existing software packages or "off-

the-shelf" algorithms for its solution.

1.3 Methodologies for Network Routing Analysis

It has been pointed out that there are two parts to the route network

configuration problem. There is the structural aspect of a route network

and then there are the quantitative characteristics such as flow and con-

nectivity. These two qualities are found in many of the network routing

problems in transportation.

Network routing problems are observed to share the following common

*A similar approach is used by Hollaway [1970] in solving a special class
of mathematical programs. The precedure has been termed by Hollaway as
the combination of "identification" and "optimization."
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attributes. A transportation network has multi-terminals, or multi-

origin-destination pairs. Between a pair of terminals are routes, or

routings, along which traffic flows. Under normal conditions, the traffic

entering into a terminal equals the traffic coming out of the terminal.

For example, the number of aircrafts landing at airport XYZ must be the

same as the number of aircrafts taking off, over a planning cycle. Because

the traffic between all the origin-destination terminal pairs is accommodat-

ed within the same network, a phenomenon called link sharing, or link bund-

ling, would occur. By link sharing or bundling we mean that flows from

diverse origin-destination pairs may compete using the facilities of a com-

mon link. An airline example would be that in a particular route segment

we will find through and connect traffic as well as local traffic, all

sharing a limited number of seats available in the segment. The combination

of "multi-terminality," "conservation of incoming and outcoming flows," and

"link sharing" gives rise to complex "network effects." Network effect re-

fers to the interlocking relationship between the structural and quantita-

tive characteristics of a transportation network. For example, the removal/

addition of a link in a network would have profound effects on the traffic

flow pattern and terminal pair connectivities.

Although there exists a wealth of solution strategies on the network

routing problem, a great deal of frontier still awaits exploration, espec-

ially the more analytical approach to the problem. The emphasis on struc-

tural aspects of routing usually arises from network synthesis problems,

which are concerned with the construction of the network topology ab initio.



Generally speaking, network synthesis problems are solved by graphy theory

and combinatorics. The emphasis on quantitative characteristics of routing

usually arises from network evaluation problems, which are concerned with

the assessment of a particular network topology. Generally speaking, net-

work evaluation problems are tackled by network flow and mathematical pro-

gramming algorithms. In this section, we will briefly review these metho-

dologies. The frontier will be pointed out. And our modest advancement of

the frontier in the solution of the optimization formulation (1:2:1) will

be identified.

1.3.1 Network Synthesis Techniques

Network synthesis is defined as the construction ab initio of a network

topology to satisfy certain specified criteria. For example, in our route

network configuration problem, routes have to be synthesized according to

R S C to provide the desired connectivities between all the city pairs (so

that the route competition requirements are satisfied: K = c(R) ).

There is the manual way and also a more analytical way to synthesize a

transportation network. For years, experienced schedule planners in air-

line offices have been laying out route structures by sheer professional

judgment. The shortcoming of this approach is that the human mind is often

too feeble to comprehend all the combinatorial alternatives possible with a

transportation network of any realistic size. As a result, a number of po-

tentially more superior route configurations are missed in the schedule

planning process.

It is only recently that the more analytical approaches to transporta-

... M1.
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tion network synthesis have become possible from a practical standpoint.

Mathematicians and computer scientists share equal credit in their contri-

butions. Here are a few examples of the synthesis problem solved by graph

theory/combinatorics/network flow, among other techniques. The problem of

the minimum spanning tree [Fulkerson -1966, section II-10] is to come up

with a network structure which will connect all the nodes in the network

with the least costly set of arcs. For reliability purposes (e.g., in

communication networks), we may require that at least k arcs must be sup-

pressed in order to disconnect the network. This gives rise to the minimal

k-connected networks [Fulkerson and Shapley - 1961]. Then there is the

problem of "shortest path visiting specified nodes," [Dreyfus - 1969, sec-

tion 5] which has a hybrid flavor of both the shortest path and travelling

salesman problem. A final example is the "minimal chain covering of an

acyclic network" problem [Levin - 1969, Fulkerson - 1966, section 11-6].

The reader may notice that the above examples are chosen because they

are in some way related to our route network configuration problem. We

are concerned with the least costly way, among other figures of merit, to

connect the city pairs in the airline map. In a number of cases, a city

pair may warrant to be redundantly served by more than one type of route

-- e.g., both a non-stop and a one-stop. The C.A.B. route authority may

require a route from X to Y to visit the specified cities A and B or C.

Inter-carrier route competition requires an airline to structure a minimal

cost (and maximum revenue) set of routes to ensure that certain city pairs

are covered by two-stop routings or better, one stop or better, etc.
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It is safe to say that the state of the art does not allow for a total-

ly satisfactory solution of all the above four example problems.* For some

of the problems, not only are the theoretical bases incomplete, computa-

tional approaches likewise have dimensionality limitations. It is felt

tha4 while our problem is complex enough to encompass flavors of all of the

four examples, a reasonable solution approach would be to devise special al-

gorithms tailored to our problem. Our algorithm does not claim to solve a

general class of synthesis problems. But it is efficient for the route net-

work configuration problem at hand. Here is the logic underlying our syn-

thesis algorithm. A "promising" route network topology is synthesized.

The question of "how good is this particular synthesized network" cannot be

answered until after the evaluation step is carried out on the given net-

work.

1.3.2 Network Evaluation Techniques

Network evaluation is defined as the assessment, via quantitative

models, of the performance (or figures of merit) of a given network topol-

ogy. For example, in our route configuration problem, passenger traffic is

flown over the given network (i.e., F = f(R)) and the connectivities between

city pairs in the given network are checked (according to K = c(R)), just to

see "how good" the network is. The traffic flow and the connectivity checks

are carried out in the evaluation function E = e(R) formulated as a mathe-

matical program. In general, network evaluation techniques trace out the

*See, for example, Fulkerson [1966] and Dreyfus [1969], Held & Karp [1970].



complex network effects corresponding to different network topologies.

Quite a number of quantitative models have been developed to try to

answer the question "how good is a given transportation network." No at-

tempt is made here to review this literature in a comprehensive manner. -

Rather, only research results related to our problem are summarized. They

address the two quantitative characteristics: network connectivity and

traffic flow.

network connectivity

Special algorithms have been devised to calculate vertex pair connec-

tivity. They make use of special data structures in computer programming

and clever algorithmic shortcuts. One of the most recent algorithms that

comes to our attention is that by Steiglitz and Bruno [1971]. These two

authors revised Frisch's algorithm, giving it a new and conceptually simple

form. Their algorithm is related to the Ford and Fulkerson labelling al-

gorithm.

The connectivity problem of ours is a good deal more involved than the

one cited above. We make a careful distinction between the types of city

pair connectivities. A city pair connected by a 1-arc chain (i.e., a non-

stop) is different from that connected by a 2-arc chain (i.e., a one-stop).

Not only are we concerned with the fact that a city pair is connected, but

also that it be connected with the appropriate kind of chains.

The special algorithm used in this thesis is particularly adept for

use in conjunction with the "list structure" way of storing the set covering

matrix data. It reduces the connectivity computation procedure to a scan-



ning instruction on a row of (m + 1) entries, where m is the number of in-

termediate stops in a route.

traffic flow

The traffic flow part of network evaluation is actually much more in-

volved and challenging than the connectivity part. There have been, up to

now, two approaches to the traffic flow problem. They are: (i) the heuris-

tic techniques which are often called "traffic assignment," and (ii) the

mathematical programming techniques, generally using multi-commodity flow

algorithms. These two approaches are based on entirely different behavioral

assumptions on how a unit of traffic, which in our case is a passenger,

chooses it/his/her path from origin to destination.* The former (heuristic)

approach assumes that each transportation user tries to follow a path from

origin to destination which is most convenient for himself. We call this

the descriptive traffic flow assumption, or "user optimizing," as some re-

searchers like to call it. It describes the observed behavior of most tra-

vellers. The latter (mathematical programming) approach assumes each trans-

portation user can be persuaded to follow a path which is not necessarily

the most convenient for himself, but contributes toward promoting the glo-

bal objective for the system as a whole. We call this the prescriptive

(normative) traffic flow assumption, or "system optimizing." The decision-

maker "from above" (or the objective function of the mathematical program)

prescribes the travel routings of his subordinates (the transportation

*Credit is usually attributed to Wardrop [1952] for making the behavioral
distinction.
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users). There are advantages and disadvantages of both approaches. Des-

criptive flows are obviously based on a more behaviorally realistic assump-

tion. Generally speaking, computer packages based on this approach can

handle a practical size network. But they are heuristic algorithms, lack-

ing the convenience and theoretical "optimality" of the more analytic ap-

proaches. Prescriptive flows, on the other hand, are based on a normative

assumption which does not apply in the context of our problem. The reason

is that it would mean an air carrier can persuade his customers to travel in

such a way, not for their comfort and convenience, but to contribute toward

the system profit to the airline. Generally speaking, multi-commodity flows

can handle only limited size networks.* The merit of this analytic approach

is the convenience in carrying out sensitivity and parametric analysis.

Mathematically minded researchers find the multi-commodity flow approach a

more structured way to modelling. "Optimal" solutions are obtained.

DESCRIPTIVE FLOW

Descriptive (or user optimizing) flow models have been constructed by

a variety of researchers. Gagnon [1961] reported a "Passenger Allocation

Model" used by Air Canada for flowing passengers over an airline schedule

network. Gunn [1964] of Lockheed-California Company reported a similar,

although much more aggregate, model for the problem.** A familiar uncapaci-

*A typical multi-commodity (or multi-copy) traffic flow mathematical pro-
gram has a row dimension in the order of N3 , where N is the number of cit-
ies in the system.

**Gunn's model actually considers a number of other factors in schedule
planning besides traffic flow.



tated traffic flow model to the author is the "Schedule Planning and Evalu-

ation Model" [Kingsley - 1968], used by both the McDonnell Douglas Aircraft

Company and American Airlines.* The model evaluates "how good" a given

schedule is by flowing traffic over it. The traffic flow output reveals

over-loaded flight segments, city pair traffic demand not served, among

other statistics. The evaluation therefore prompts the schedule planner to

take the necessary remedial measures to upgrade the given schedule, such as

adding more frequency to an over-loaded flight, etc. Our survey would not

be well balanced if we leaft out the huge effort urban transportation plan-

ners have put into traffic flow research, which they prefer to call "traffic

assignment." The programs developed by the United States Bureau of Public

Roads [undated] have been widely used in transportation planning offices.

The M.I.T. Incremental Traffic Assignment method and its subsequent evolu-

tions have refined the capacitated traffic assignment techniques to a soph-

isticated level [Ruiter - 1968]. The M.I.T. researchers pay particular at-

tention to the fact that travel demand is a function of the level of ser-

vice. An "incremental assignment" method is used to handle the level of

service feedback loop between supply and demand.

It should be noted here that although all these descriptive methods are

heuristic in nature, they are generally based on some sort of minimum path

computations.

*The author worked on an extension of the model in both companies.



PRESCRIPTIVE FLOW

Prescriptive (or system optimizing) flow models are usually formulated

as a multi-commodity (or multi-copy) flow mathematical program. The appli-

cation of the multi-commodity flow formulation to transportation traffic

flow problems was initiated by Charnes and Cooper [1961]. These two authors

modelled the traffic from each origin node as a "commodity" flowing over a

copy of the network. The topology of the network copy is represented by a

node-arc incidence matrix. There are as many copies of these matrices along

the diagonal of the mathematical programming tableau as the number of origin

nodes (hence the term "multi-copy"). The linking constraint for the various

copies imposes capacity constraints on each link, which carries a "bundle"

of traffic from diverse origins. The advantage of a multi-commodity/multi-

copy formulation is that we can distinguish the components of the bundle of

traffic flow in a link. For example, in a flight segment of 'an airline

schedule, distinction is made between local vs. connecting traffic, since

passengers of each origin-destination pair could be identified as a separate

"commodity."

Tomlin [1966] was the first to show the mathematical relationship be-

tween the node-arc incidence matrix formulation and the arc-chain incidence

formulation. The transformation was related to the Dantzig-Wolfe decompo-

sition principle [1961]. Jarvis [1969] further extended Tomlin's findings.

He unveiled the relationship between the Ford and Fulkerson column genera-

tion procedure [1958] and the procedure of annexing a chain to the arc-

chain tableau. In a much more applied context, Jessiman, et al. [1970]
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overcame the "curse of dimensionality" problem in the multi-copy formulation

by using a special solution procedure for each subproblem copy, at the cost

of losing optimality. Their computerized package models traffic flow over

an airline network.

It should be commented here that all of the above mathematical pro-

gramming formulations have an essentially fixed (or perfectly inelastic)

travel demand.

DESCRIPTIVE VS. PRESCRIPTIVE FLOW

A couple of researchers have examined the relationship between the de-

scriptive vs. prescriptive flows. Jorgensen [1963] reported that if link

capacity is not reached, traffic assignment and single commodity (i.e.,

single copy) mathematical programming give the same traffic flow solution.

Here is our extension and interpretation of this finding to the multi-copy/

multi-commodity formulation. It is found that multi-copy prescriptive flow

computation without the linking capacity constraint would yield a descrip-

tive flow pattern. This is actually quite intuitively appealing. Without

the linking constraint, the various network copies along the diagonal of

the tableau would be "untied" into separate origin-destination minimum path

problems. The computation of separate minimum paths for each origin-desti-

nation pair precisely yields the uncapacitated descriptive flow solution.

At the final phase of this dissertation, Dafermos [1971] published research

results that established some theoretical connections between descriptive

vs. prescriptive flows (or, as she put it, "user optimizing" vs. "system

optimizing").

lmmiliiillll I j I I I I III ki. I'lil I, 11161111111o 111ININ1111111M UMNIIIVIII,". , .



In this piece of research, we have succeeded in using the more behav-

iorally accepted descriptive flow assumption but solving the flow problem in

an optimization scheme (instead of the usual heuristic approach). Travel

demand is formulated as a function of the level of service. Because a de-

scriptive flow assumption is formulated in a multi-copy integer program, we

end up with a discontinuous objective function (its exact form appears in

Chapter 3). It is added here that the row dimension of the original multi-

copy node-arc formulation is huge -- in the order of N 3 , where N is the

number of cities in the system. We consider it part of our contribution to

have partially bridged the gap between the heuristic descriptive flow and

the analytic prescriptive flow approaches. It is rather gratifying that

not only the solution method can handle the huge dimension of a multi-copy

formulation, but also that it yields a supply/demand equilibrium solution

(instead of the usual non-equilibrium solution).

1.3.3 Network Improvement Techniques

Network improvement is defined as upgrading the performance (or figures

of merit) of a network by a combination of synthesis and evaluation tech-

niques. For example, in our route network configuration problem, we may be

given the existing route network of the airline. The question is then asked:

"Can we do better than the existing route structure, and if so, how?" The

answer we offer is that improvement could possibly be made via a practical

optimization procedure made up of alternating synthesis and evaluation

steps. The synthesis step suggests alternative network configurations.

The evaluation step helps to select the configuration with the best figure



of merit. Through the iterative steps of synthesis and evaluation, the

route network could be improved, provided the initial route network is not

the "optimal" configuration to begin with. This iterative improvement

technique is a way to successively approximate the supply/demand equilibri-

um solution. Aircraft routes are successively aligned to the preferred

passenger flow routings (or routings to routes). This route/routing align-

ment procedure is exactly the level of service feedback loop between the

origin-destination travel demand and the supply of routes serving the city

pair. Network improvement can therefore be viewed as a process converging

toward traffic flow equilibrium in a transportation network.

There are two approaches to the network improvement problem. Again,

we categorize in terms of the more qualitative vs. the more quantitative

techniques.

qualitative techniques

Transportation network analyses are usually of such a complexity that

professional experience and judgment often play an important part in the

planning process. It is the present state-of-the-art to couple a large

amount of qualitative decisions with quantitative results to arrive at the

final output. The obvious example that comes to the author's mind is the

Schedule Planning and Evaluation Model used at McDonnell Douglas Aircraft

Company and American Airlines. The model by itself is purely a traffic

flow evaluation tool. It helps to show the inadequacies of an existing

schedule by evaluating it through passenger flow. The ultimate objective

of the schedule planning process, of course, is to improve the schedule,



which involves both the evaluation step and the synthesis step. The syn-

thesis step in this case is handled by the schedule planners. Based on the

nature and context of the shortcoming of a certain route in the existing

schedule, the schedule planner would synthesize in his mind a new alterna-

tive to replace the given mode of operation. A former multi-stop route

may be upgraded to a non-stop route or vice-versa. This new route would be

incorporated into the schedule, and the new system schedule is evaluated

again via the traffic flow model. In this way, a large amount of qualita-

tive judgment enters into the network improvement.

quantitative techniques

We will review only those quantitative techniques on network improve-

ment which are related to our routing problem. We recall the route network

configuration problem requires three analysis techniques. They are: (i)

the route synthesis techniques used in the generation phase, (ii) the set

covering and (iii) multi-copy flow evaluation methods used in the selection

phase. It was pointed out that the route synthesis techniques, being top-

ological in nature, are comprised of enumerative type combinatorial schemes.

Multi-copy/multi-commodity flow, on the other hand, belongs to a class of

network flow problems which has more algebraic flavor. The set covering

problem, however, has been solved by both enumerative schemes and algebraic

programming methods. With this in mind, we will review the literature on

network improvement in terms of algebraic vs. enumerative methods.

ALGEBRAIC METHODS

The matrix algebra underlying classical methods in mathematical pro-



gramming, such as the simplex method, is actually an improvement scheme. A

basic feasible solution is first obtained. Then the basic feasible solution

is improved upon via column (variable) entries and exits. More refined sol-

ution strategies used in large scale programming achieves savings in stor-

age requirements by synthesizing the columns only as needed. An evaluation

rule is set up to select the best column' to enter into the basis, resulting

in an improvement in the objective function. The multi-copy flow program-

ming algorithm follows the idea of this column generation scheme.

To solve the multi-copy flow problem, the original node-arc incidence

matrix formulation is first transformed into the decomposable arc-chain

master program [Tomlin - 1966, Jarvis - 1969, Wollmer - 1970], with the arcs

on the rows and chains as columns. Chain columns are synthesized as needed

by solving each subprogram (a "copy") as a minimum route/chain problem,

with arc costs modified by the shadow price from the master program. An

evaluation criterion is set up to select the most promising chain columns

to enter into the basis of the master program, resulting in an overall im-

provement in the objective function. The resulting shadow prices from the

master program are again fed back to the subprograms, modifying the arc

costs. New minimum route/chain computations are performed for each of the

subprograms and new chain columns are synthesized to be appended to the

master program. In this iterative manner, the traffic flow solution is in-

crementally improved.

Our solution strategy on the route network configuration problem pro-

ceeds in a similar manner as above. The aforementioned method used in pass-
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ing shadow prices (dual variable) back and forth is not applicable because

of the particular discontinuous objective function and the fact that we are

dealing with an integer program. Instead, we use a primal decomposition

approach where primal feasibility is always maintained. While the chain

column synthesis (or "column generation") part is the same, the evaluation

of chain columns for the best selection is based on a "marginal profit" con-

cept. The chain column with the largest marginal profit potential will be

accepted, resulting in an improvement of the route network configuration.

Further discussion on the marginal profit concept in our primal decomposi-

tion method appears in both Chapters 2 and 4. Chapter 2 motivates the mar-

ginal profit idea via its economic context. Chapter 4 exposes the algorithm

of determining marginal profit with a fair amount of technical detail.

ENUMERATIVE METHODS

Enumerative methods usually have less rigorous mathematical structure

than the algebraic methods. As a solution improvement tool, it has its

merits. Clever algorithms of the enumerative nature have solved a number

of practical problems which appear to be insoluble from a more rigorous

algebraic framework [Balinski - 1965]. In the generic name of enumerative

methods, we have included dynamic programming, implicit enumeration, branch-

and-bound, etc. Names like "tree search" or "combinatorial programming"

have been used to refer to the same method.

Enumerative algorithms can be viewed as an improvement scheme. A

tree structure is synthesized by a branching strategy. Evaluation of the

figure of merit is performed at certain nodes of this tree. The evaluation



step may take the form of simple max/min operators as in numerous common

uses of dynamic programming, or it may involve solving a linear program as

in the Land and Doig method [1960]. But invariably, the evaluation helps

the subsequent synthesis procedure by excluding obviously unpromising

branching strategies. The figure of merit is incrementally improved as the

result of the combination of the synthesis and evaluation steps.

Implicit enumeration and branch-and-bound can be viewed as special

cases of dynamic programming where the huge enumeration tree is "collapsed"

by clever feasibility/exclusion/dominance type pruning rules. The more

general context of enumeration techniques is dynamic programming in an "un-

bounded horizon," where the convergence scheme is achieved via the "method

of successive approximation" [Bellman, et al. - 1970, Wagner - 1969]. This

method involves looping through labelling the graph numerous times until

two consecutive solutions remain unchanged. The method of successive ap-

proximation can be viewed as a generalized network improvement algorithm.

Our route network improvement algorithm involves a tree synthesis and

connectivity/traffic flow evaluation sequence similar to the above-mentioned

framework. The tree is synthesized by raising the power of a "contiguity

matrix." The trees synthesized represent the minimum distance non-stop,

one-stop, two-stop, etc., routes between city pairs. At certain nodes of

these trees, connectivity between city pairs is checked and traffic flow

is updated according to the current route configuration. The evaluation

step computes marginal profit of a route and helps to prune the trees.

Branch-and-bound rules further accelerate the enumeration algorithm.

UNINNINN11111i i



Our route network configuration problem belongs to a class of "unbound-

ed horizon" problems in dynamic programming. The method of successive ap-

proximation has to be used to loop through the state-stage space a number

of times. Each looping improves the solution. If two successive loops

give no improvement, the algorithm is stopped since the optimal solution

has been found. Notice that since the method improves on the solution

while keeping primal feasibility, the algorithm can be stopped anytime and

an acceptable solution better than the one we started with is guaranteed.

This is one of the biggest advantages of the algorithm from a practical

application viewpoint.

1.3.4 Route Improvement, Synthesis and Evaluation -- R.I.S.E.

The route network configuration problem was defined and formulated into

an optimization format in section 1.2. Section 1.3 up to this point has

been devoted to a review of the techniques related to the analysis of our

routing problem. Here the total optimization procedure for our problem

is summarized. The readers will see how the original formulation is trans-

formed into a framework amenable to decomposition through "problem manipu-

lation,"* and how an acceptable, improved route configuration is obtained

within reasonable computational requirements through a decomposition "solu-

tion strategy."*

Recall that the route network configuration problem has two components

to it. They are the topological part concerned with network geometry and

*Terms borrowed from Geoffrian [1970).



the quantitative part dealing with connectivity/passenger flow attributes

in the network. Specifically, the route structure provides the city pair

connectivities whereby passenger flows are facilitated. Route candidates

are synthesized in the route generation phase. These candidates are then

evaluated in the route selection phase. Generation and selection cannot be

carried out as totally separate, independent processes, for this would mean,

for any reasonably sized network, that hundreds and hundreds of route can-

didates would be synthesized in the first step and they would be subject to

evaluation in a huge dimension in the second step. The dimensionality

problem would be overwhelming. The only computationally feasible approach

is to break the original problem up, or to decompose it, into a number of

partial generation/selection steps via "problem manipulation." The coupling

of generation/selection in a repetitive sequence means that a route would

be synthesized and then readily evaluated, so that obviously undesirable

candidates could be excluded from the dimension space "early in the game."

Through such a "solution strategy," the route network configuration is suc-

cessively improved, with prudent computational requirements.

problem manipulation

How do we manipulate the original constrained optimization problem for-

mulation into a decomposable form? The answer, in a nutshell, is by re-

writing the node-arc formulation into an arc-chain formulation. Recall

there are two parts to the optimization statement in Equation (1:2:1). The

first part, R e C, says that the set of route candidates R is generated by

enumerative scheme in the combinational space C. The second part, E = e(R),
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says that the route candidates R are selected according to the evaluation

function e(.), where the function is mainly a mathematical program expres-

sed algebraically in terms of node-arc incidence matrices. The two parts

represent the generation vs. selection phases, separately. The aim of

problem manipulation is to transform (1:2:1) into a format whereby the

enumerative generation step could be combined with the algebraic selection

step, so that only a handful of feasible routes would be considered at a

time. It turns out that by re-writing the node-arc incidence matrices as

arc-chain incidence matrices, the "chains" correspond physically to the

routes and routings. The routes/routings synthesized in an enumerative

fashion in R S C can therefore be readily inserted as columns in the math-

ematical programming tableau, to be evaluated in an algebraic manner E = I
e(R). Through problem manipulation, the gap between generation and selec-

tion is narrowed to an extent that the following improvement solution strat-

egy can be applied.

solution strategy

A primal decomposition solution strategy is used to improve the route

network configuration. The improvement procedure is comprised of elements

of both enumerative schemes like dynamic programming, branch-and-bound,

etc., and algebraic methods such as column/row generation in a mathematical

programming tableau.

The route synthesis step of improvement can be thought of as the tree

branching step in the solution algorithm. Route evaluation, being the

other step in improvement, is performed at certain nodes of the tree. The
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decomposition algorithm then proceeds as follows. Each origin-destination

city pair constitutes a subprogram. A city pair corresponds exactly to an

"arc," or route segment, of the arc-chain formulation. By considering one

city pair subprogram at a time, "arcs" are incrementally appended row-wise

to the mathematical programming tableau. Solving the shortest route prob-

lem for each of these city pair subprograms yields the chains to be in-

serted column-wise to the tableau. The shortest route algorithm can be vis-

ualized in the state-stage space of dynamic programming as tree construc-

tion. To summarize the decomposition scheme conceptually in one sentence:

The tree construction process via contiguity matrix manipulation provides

the shortest routings for the descriptive passenger flow by the multi-com-

modity mathematical program at the nodal points of the tree. In this man-

ner, the enumerative techniques work hand-in-hand with the algebraic metho-

dologies.

The algorithm is a primal one in the sense that no shadow prices are

used in the solution strategy. Instead, the concept of climbing in the

feasible direction with the best marginal profit is used. Because primal

feasibility is always maintained, the algorithm can be stopped prematurely

and an improved solution is still obtained.

The method of successive approximation used in our dynamic programming

solution strategy is a numerical way to align routes to preferred routings,

converging toward a network supply/demand equilibrium. The method of suc-

cessive approximation would converge more expediently if a good existing

route configuration is available to be used as the "initial policy."

.. MWM 1111,



comments

The name R.I.S.E. has been given to our route configuration model,

the solution algorithm of which has been encoded in a FORTRAN IV-G software

package consisting of forty routines. R.I.S.E. is an abbreviation for

Route Improvement, Synthesis and Evaluation, which adequately describes the

methodologies utilized in the solution procedure. Quite incidentally, the

connotation of the word "rise" conveys the idea of the successive approxi-

mation way of "climbing" toward a more and more profitable route configura-

tion.

Standing at his biased position, the author wishes those schedule

planners using our solution method to be executives 'on the RISE." For

the particularly aspiring types, the further details of the algorithm (to

success!) are contained in Chapter 4.

1.4 The R.I.S.E. Model in the Schedule Planning Process

It has been pointed out in section 1 that the route network configura-

tion problem modelled as R.I.S.E. is only one out of many routing and sched-

uling issues. The question is raised, "How does the contribution of this

dissertation fit into the schedule planning process?" In this section, we

will discuss how R.I.S.E. coordinates with the other scheduling models of

the hierarchy in a supply/demand equilibrium context. Although the discus-

sion will only be of a conceptual nature, the careful reader will find the

proposed ideas quite promising to be used in an extension of the present

piece of research.
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There are various ways to coordinate the different routing and sched-

uling tasks. Here, we have categorized them into three groups: sequential

coordination, simultaneous coordination and finally the simul-sequential

approach.

1.4.1 Sequential Coordination

The sequential way of schedule planning is the most widely practiced

scheme. It involves splitting up the logical tasks of routing and schedul-

ing in some sort of hierarchical sequence.' A quantitative model or quali-

tative analysis is used to handle each task. The sequential planning pro-

cedure then involves screening through such a series of models or analyses;

the output of one model/analysis serves as input to the next. For example,

the following is a common schedule planning sequence:

travel demand forecasting

route network configuration

fleet/frequency assignment

timetable construction

fleet routing and fleet size determination

In the above hierarchical series, the airline's share of passenger demand

for the season is forecasted in the first step. The existing route network

configuration is modified, usually manually, according to the forecasted

potential traffic. Then fleet type and frequency of service are assigned

to each route of the route network. The arrival and departure times at

the stations along a route come next, resulting in a timetable. Fleets are

now circulated in this timetable regarding overnight stays and routine
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maintenance. A by-product of fleet routing is the fleet size required to

satisfy a given timetable.

The sequential way of schedule planning has its advantages. It is a

logical way to break up the huge problem of schedule planning into its pri-

orly ranked components. The "curse of dimensionality" of the schedule

planning process is avoided. The serial ranking of long run over short run

tasks in this way roughly corresponds to the "chain of command" found in an

organization.

Actually, the sequential way of schedule planning is more than a "one-

way traffic" type chain of command. Analyses performed at the bottom of

the hierarchy may uncover some facts which the upper echelons might have

overlooked. This would require a revision of the initial plan from the top,

and then screening through the lower levels again. In section 1.1.2, this

feedback loop has been referred to as the "schedule refinement loop." For

example, in the fleet/frequency assignment model, an average fleet utiliza-

tion figure of x hours per day usually has to be assumed. This assumed fig-

ure cannot be verified until after the fleet routing model lower down in

the hierarchy has been analyzed. If the precise fleet utilization rate

determined in the fleet routing model is drastically different from the as-

sumed figure, the original fleet/frequency assignment has to be performed

once again, or revisions have to be made. The output from the revised as-

signment would be screened through subsequent analyses once again. And the

question of whether the assumed utilization is realizable arises one more

time. This looping may have to be cycled several times before an acceptable



schedule is finalized.

The sequential coordination approach to scheduling has the following

drawbacks. If the schedule evaluation loop is not cycled enough times, as

is usually the case due to time constraints, concessions have to be made.

Take the same fleet utilization example: Suppose the assumed fleet utili-

zation rate is too high and actually not enough fleet exists to satisfy the

frequency assignment. Instead of lowering the assumed utilization figure

and re-assigning fleet and frequency, the departure times in the timetable

may be shifter earlier or later. This allows the fleet to make more flights

by cutting down on the ground time. Such manipulation may just yield an

adequate number of flight hours to satisfy the assigned frequencies or, in

optimization jargon, the schedule is now fleet feasible. But the "rules of

the game" are violated in this case. By shifting the departure time away

from the passengers' most preferred time would result in losing patronage

to a competitor. Also, the ground crews may complain about the tight sched-

ule they have to follow in order to get an aircraft rushed to the next

flight shortly after it arrives. This example illustrates two points.

First, the sequential planning scheme may in practice give rather unsatis-

factory schedules (not to say "optimal" schedules). Second, the "level of

service feedback loop" is usually ignored. Seldom is analysis performed to

relate the passengers lost due to a less preferred departure time. In this

sense, a non-equilibrium solution, instead of a supply/demand equilibrium

solution, results.



1.4.2 Simultaneous Coordination

The truly simultaneous way of schedule planning could be described as

the utopia towards which many would aspire. It refers to a large-scale

model in which all the different issues in scheduling are resolved together.

A quantitative approach is used. The advances in mathematical programming

and computer technology have helped to partially fulfill the dreams of many

a simultaneous planning advocate.

The following is a graphic display of simultaneous schedule planning:

subproblem 1 <--> subproblem 2 <--> ... <-> subproblem n

One simultaneous approach would be to formulate the above n issues in a

large mathematical programming tableau. Solution techniques are then ap-

plied toward the tableau for the "optimal" schedule. It has to be commented

that quite usable codes such as MPSX/370 on IBM machines and OPHELIE/LP on

CDC machines do exist to facilitate the simultaneous method. Several re-

searchers have tried to attack the schedule planning process this way. In

cluded in the list is Vandersypen [1971], whose partial simultaneous model

includes a demand function, fleet/frequency assignment and the temporal as-

pects such as departure time.

The simultaneous approach to scheduling has obvious advantages. The

schedule evaluation loop and level of service feedback loop are built into

the large mathematical programming tableau. The schedule obtained would be

feasible, Qptimal and also in supply/demand equilibrium (if a demand func-

tion is used). On the other hand, there are numerous disadvantages. First

of all, there is the dimensionality problem. Row numbers in a mathematical

RIPPRIM"W"HIPRIPPI . W _ 0 low' I



program for networks grow in the order of N k, where N is the number of nodes

in the network and k is usually greater than two. With the existing compu-

ter technology, it is clearly impractical, if not impossible, to resolve all

scheduling issues in one gigantic mathematical program. Another difficulty

is in finding a solution algorithm once the program is formulated. Includ-

ing all scheduling issues in a tableau would introduce numerous non-linear-

ity, non-convexity, mixed integrality problems in the formulation. The

state of the art in mathematical programming theory is a far cry from solv-

ing a non-linear, convex and mixed integer program of the large size we are

talking about, not to mention production oriented computer codes.

Clearly, the simultaneous approach is at best utopian. Breaking up the

schedule planning process into parts is necessary, not only for dimensional-

ity reasons, but also in accordance with the division of labor philosophy in

an organization. And there do exist logical break points in routing and

scheduling, such as the crew scheduling problem's being logically different

from the problem of gate utilization at a station, etc. The crux of the

problem is where to segment the schedule planning process and how to coordi-

nate the interactions between the subproblems. The following section is

our proposed answer to this question.

1.4.3 A Simul-Sequential Approach

It has been pointed out that a number of scheduling decisions can be

quite naturally ranked in a hierarchy. The long-run or far-reaching issues

should logically be resolved before the short-run, or the more immediate,

details. But it should be recognized that there are interactions between



the different levels of the "chain of command" -- the result of short-term

analysis may reveal it is advantageous to revise the initial long-term

goals. This interaction has been named the schedule refinement loop.

Looking at the total scheduling system, we have identified another kind of

interaction. The demand for travel is a function of the level of service

offered by the schedule, and likewise a better schedule induces more patron-

age on the system. We call this interface between supply and demand the

level of service feedback loop. In short, there is a hierarchical, serial,

or sequential structure to the schedule planning problem and then there are

system interactive, or simultaneous coordinations between the individual

subproblems in this serial structure. The simul-sequential approach is a

proposed, quantitative analysis scheme designed to exploit the sequential

characteristics of scheduling to our computational advantage, while at the

same time an iterative algorithm takes care of the simultaneous interaction

of the subproblems in the sequence. The iteration converges on to an equi-

librium solution which is "optimal" with respect to the adopted figure of

merit. The original problem is not only decomposed longitudinally in a

multi-level fashion, but also laterally in a stagewise manner, as shown in

Fig. 1-4-1.

The following simul-sequential coordination scheme is specifically

tailored for the routing and scheduling problem. The nature of other large-

scale problems may motivate other ways to break up and structure the pro-

cess. The suggestions put forth here are therefore not to be taken as a
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generalized decomposition method.*

In the example given below, a coordination structure is put forth to

concatenate R.I.S.E. with the fleet/frequency assignment and fleet routing_

models. The above three models are structured hierarchically in a longi-

tudinal decomposition. There is another decomposition in the lateral di-

mension (see Fig. 1-4-2). The lateral decomposition is exactly the stage-

wise decoupling of routes into non-stops vs. one-stops vs. two-stops, etc.

Due to space limitations, the discussion here has to be cursory. A number

of statements will be made with an intuitive explanation at best. For a

more in-depth treatment of a similar approach applied in ground transporta-

tion networks, see the author's master's thesis [Chan - 1969].

longitudinal decomposition

The "chain of command," or hierarchy, of scheduling decisions is hung

onto the simul-sequential structure as a "leg" (see Fig. 1-4-2). A schedule

refinement loop is built into the "leg" to handle the interactions between

the models in the different levels of the hierarchy. The longitudinal de-

composition serves two functions in this example of simul-sequential struc-

ture. First, it puts into a route network configuration obtained in R.I.S.

E. the more detailed attributes such as fleet type, frequency, departure

time, etc. This is done by screening the output from R.I.S.E. through a

series of lower level models. The refinement allows for a more precise

evaluation, or assessment, of exactly how good the given route structure is

*For a inore "complete theory" of multi-level systems, see the work of
Mesarovic, et al. [1970].
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after we have considered frequency and departure time, etc. Second, the

longitudinal decomposition iterates on the sequence of three models in the

leg until feasibility and optimality (in the mathematical programming sense)

are obtained.

To facilitate the longitudinal decomposition, "conservative upper

bound" figures have to be used in the higher level models so that feasibil-

ity and optimality would be guaranteed in lower level models. We will elab-

orate this point immediately below.

The longitudinal decomposition starts with R.I.S.E. In R.I.S.E., tra-

vel demand is modelled only a function of whether the routing is non-stop,

multi-stop, or connection. Other attributes that affect demand, such as

frequency and departure time, are fixed in this level, but they will be con-

sidered in lower level models. The demand function used in R.I.S.E. would

have to, in the spirit of retaining optimality and feasibility in a multi-

level context, assume a practical upper bound of daily frequency and the

"best" departure times. This is done so that a route would not be prema-

turely rejected because of scanty traffic. If traffic is indeed scanty,

the route will be "knocked down" later on in the fleet/frequency assignment

model. For the same optimality and feasibility reasons, imaginary air-

craft types which can fly the shortest as well as the longest flight range

allowed in the fleet will have to be used. Similarly, the imaginary air-

craft has to be the least expensive to operate in the fleet for the partic-

ular route under consideration. Notice that no fleet size constraints ex-

ist in R.I.S.E.; the fleet requirement is actually an output. The primary



solution from R.I.S.E. is a route network configuration.

The next level in this longitudinal series is the fleet/frequency as-

signment model. In this level, a further dimension has been added to the

demand function. Travel demand is now not only responsive to whether the

routing is non-stop, one-stop or connect; but it .is also a function of the

daily frequency.* The demand figures should be practical upper bounds based

on the fact that all flights are dispatched at prime times, thus capturing

the best traffic possible. This is again done for feasibility and optimal-

ity reasons in this multi-level framework. If, in fact, some departure

times have to be scheduled differently from the prime times, the correspond-

ing patronage will be "knocked down" in the fleet routing model a level

down. As mentioned earlier, an average fleet utilization figure is assumed.

A fleet size availability constraint is placed on the system. The output

from this second level model is an assignment of fleet type and frequency

to the routes obtained from the first level model R.I.S.E.

In the third (and bottom) level is located the fleet routing model.

Yet another dimension is added to the demand function -- the time of day.

Demand in this case is assumed to vary over the day, assuming "peaks and

valleys." The fleet routing model actually selects the exact departure

time in the process of routing the fleet around. Passenger patronage is

further "knocked down" from that output from the second level model because

*This is actually referring to the market share curves used in some existing
models in the Flight Transportation Laboratory at M.I.T., where the author

is performing this piece of research.

I
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it may turn out that it would be a better trade-off to dispatch at slightly

off-peak times at some stations for a more expedient fleet routing over the

whole network. The result of the fleet routing model will be a finalized

timetable, with refined cost and revenue figures for each flight.* As we

mentioned in section 1.4.1, if the average fleet utilization figure given

by this fleet routing model disagrees with the assumed utilization in the

fleet/frequency assignment model, iteration has to be carried out between

the second and third level. That is why the schedule refinement loop is

present.

Notice that the different attributes of a schedule assume definite

figures as we screen through the longitudinal sequence of models. First, a

tentative route structure with aggregate estimates on cost, revenue and

fleet requirement is obtained from R.I.S.E. In the second level, some of

the routes suggested by R.I.S.E. may be rejected as more detailed assign-

ment of traffic, frequency and fleet types is made. The cost and revenue

figures are refined accordingly. Finally, in the third level, the time of

day is determined. And some of the frequencies assigned in the second level

may be rejected -- finalizing to a definite timetable. The exact cost/rev-

enue implications are obtained, correspondingly. The longitudinal decompo-

sition process, viewed in this light, serves as a refined evaluation on how

good the initial route structure really is. This refined evaluation is car-

ried out through a series of models, which successively introduce more de-

*For an illustrative example of such a model, see Chan, et al. [1970].



tailed parameters (first frequency, then time of day).

lateral decomposition

Lateral decomposition refers to partitioning the schedule planning pro-

cess into stagewise decisions as shown graphically in Fig. 1-4-2. The in-

teraction between the different stages in the lateral structure is the

supply/demand interface. A level of service feedback loop is built into

the lateral decomposition procedure to improve upon, until finally yielding

the equilibrium solution. It is to be noted that this improvement looping

is specifically designed to take place in the most aggregate level of the

hierarchy, where the route network is being configured, so that dimension-

ality problems would be minimized.

We are motivated by the inherent nature of the route configuration

problem to examine it in a number of stages. Schedule planners think of

non-stop routes first, then one-stops, two-stops, etc. R.I.S.E. partitions

the problem correspondingly into the non-stop stage, one-stop stage, two-

stop stage, etc. The existence of network effects, or system interactions,

requires a feedback loop to coordinate the various lateral stages. Let us

give an example. In the non-stop stage, a non-stop route may be configured

to serve a city pair. In the one-stop stage later, the same city pair may

warrant an additional one-stop service. There are two effects from the one-

stop stage decision. First, the total market share of traffic carried by

the airline for the city pair is likely to increase because of an upgraded

service consisting of both non-stop and one-stop flights. Second, there is

likely to be a diversion of some traffic from the former non-stop route to

FRIEND IN OMN HIM ININ 11wi



70

the one-stop route, which may necessitate cutting down on the frequency for

the non-stop. The traffic flow and cost/revenue picture is quite different

after the implementation of the one-stop route. These system effects are

due to (i) the interlocking relationship between the components of a trans-

portation network and (ii) a demand function which is responsive to the

routing level of service. The method of successive approximation is used

to loop through the various lateral stages in order to redistribute traffic

and re-adjust cost/revenue computations. Each iteration loop improves on

the route network configuration by matching supply and demand more closely

to the equilibrium solution. In a nutshell, the tree searching algorithm

generates and selects aircraft routes which are most aligned with the pre-

ferred passenger routings.

Let us describe how lateral decomposition articulates with longitudi-

nal decomposition. Graphically, the vertical schedule refinement loops are

suspended as "legs" from the various "stages" of the horizontal level of

service feedback loop (Fig. 1-4-2). The reader should notice that there are

no lateral interactions between the legs except at the top. All the supply/

demand matching is done in the aggregate route network level, where only the

spacial dimension, instead of both spacial and temporal dimensions, of

routing and scheduling is present. The author feels that this aggregate

level, where R.I.S.E. is located, is the most appropriate level to handle

the level of service feedhack loop, for obvious dimensionality reasons. It

is also the most suitable dimensional space to synthesize imaginative route

network alternatives which could represent innovative points of departure



from the existing practice. For example, the fundamental questions of

whether to enter into a city pair market, or to discontinue serving a city

pair, are raised, instead of the more day-to-day questions of whether to

advance the flight by five minutes. Since the dimensionality space is

still comparatively small, more combinatorial search can be carried out in

R.I.S.E. than when the schedule is as detailed as in the timetable construc-

tion level.

The lateral decomposition algorithm is an improvement procedure con-

sisting of the synthesis and evaluation steps. Only after careful evalua-

tion is performed on a synthesized route can the route be verified as being

able to improve the schedule. R.I.S.E. generates different route candi-

dates for consideration at each node of the combinatorial tree. The selec-

tion of the final set of routes can only be determined after subjecting the

proposed route network to the whole hierarchy of models in each leg of the

simul-sequential structure -- starting from connectivity and traffic flow

evaluation in R.I.S.E. to fleet routing evaluation. We have pointed out

that each longitudinal leg actually refines a route network configuration

to the last details such as departure time. The schedule refinement loop

can therefore be thought of as an extension of the evaluation step in

R.I.S.E. It carries the evaluation of a route network alternative to com-

pleteness. The vertical suspension from the horizontal structure therefore

(i) contributes toward a judicious route improvement algorithm, and (ii)

finalizes the route network to a schedule timetable.



1.5 Summary

This chapter has been written as a self-contained overview of the dis-

sertation. In the current section, we will recapitulate the salient points

made in the chapter, and, for that matter, the whole thesis. A more formal

summary of contributions is deferred until the final chapter, where conclu-

sions and extensions are discussed.

In this piece of research, a particular routing problem in the general

class of routing and scheduling problems is addressed. We call it route

network configuration. A profit-oriented airline is concerned with the

question of how to align non-stop/mulit-stop routes to the preferred pas-

senger routings in its network. The service offered by the airline has to

be acceptable in the given regulatory and competitive environment.

Such a problem is formulated in an optimization framework, where the

airline is maximizing system profit -- i.e., system/prescriptive optimizing

-- while the passenger is minimizing his individual travel time -- i.e.,

user/descriptive optimizing. The optimization formulation can be conceptu-

ally distinguished into two parts. First, the feasible set of non-stop/

multi-stop routes is defined within the space spanned, or generated, by a

"contiguity matrix." Second, the "optimal" subset ot routes is to be sel-

ected from the feasible set in an integer program. The integer program has

a discontinuous objective function. The constraints are made up of node-

arc incidence matrices and a set covering matrix. Because of the huge num-

ber of feasible routes that could be generated in the combinatorial space,

the optimization solution cannot be treated as two disjointed problems of
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generation vs. selection. Rather, a combination of generation and selec-

tion steps have to be carried out numerous times -- each time exploring a

certain part of the feasible region. In other words, a handful of promis-

ing route candidates is identified each time and an optimal choice is made

out of these few candidates. In order to do this, we have to first manipu-

late the original integer program into a decomposable form. Node-arc in-

cidence matrices are transformed into arc-chain incidence matrices. The

decomposable formulation is made up of a master program and a number of

subprograms.

Motivated by the solution strategy, the name R.I.S.E., standing for

Route Improvement, Synthesis and Evaluation, has been given to our optimi-

zation model. Repetitive application of synthesis and evaluation steps is

used to incrementally improve on the solution. The most promising route

candidates are synthesized via graph-theoretic techniques. The route can-

didates are then evaluated in terms of their marginal profits. The combi-

nation of synthesis and evaluation steps suggests the most promising feasi-

ble direction for route network improvement.

The solution strategy can be conceptualized in a graph of trees.

Raising the contiguity matrix serves as the scheme to synthesize, or gen-

erate, the trees in the graph. Multi-commodity flow computation at certain

nodes of the graph serves as the algebraic method to evaluate the alterna-

tive branches of the tree -- resulting in the selection of certain chains

in the graph as the solution subset of routes. The enumerative tree-build-

ing process also yields minimum paths (routings) to be used in the descrip-



tive traffic flow computation. The graph of trees allows for rapid scan-

ning to see that the set covering constraints are satisfied, thus ensuring

the specified level of connectivity between city pairs.

The R.I.S.E. algorithm is a primal decomposition procedure. It main-

tains a primally feasible solution as the iteration is carried out between

the subprograms and the master program. Each origin-destination subprogram

boils down to the solution of a-minimum-path problem. These minimum chains

(routes) synthesized by the subprograms are appended in the master program

for evaluation. The evaluation yields a marginal profit for each route.

Selection of the route to improve the route network is made on the basis of

these marginal profits.

The R.I.S.E. algorithm is a stagewise dynamic programming procedure,

where non-stops are examined prior to one-stops, and one-stops prior to two-

stops, etc. The solution trees of the dynamic program are trimmed by

branch-and-bound techniques. The method of successive approximation is em-

ployed to label the graph of trees repetitively until two successive sets

of labels remain unchanged. If a good existing route network is available

to be used as the "initial policy" in the algorithm, the rate of convergence

will be enhanced.

The R.I.S.E. model fits readily into a simul-sequential decomposition

framework for the schedule planning process. In this framework, the dimen-

sionality of schedule planning is broken down serially into sequential

stages/levels. The system interlocking effects, or network effects, are

coordinated by simultaneous looping. The simul-sequential approach is mo-



tivated by the nature of the routing and scheduling problem, where there is

a sequential hierarchy "chain of command" as well as a feedback between the

various levels,

R.I.S.E. serves as the backbone of the simul-sequential analysis.

Routes are aligned with preferred passenger routings in a supply/demand

equilibrium seeking fashion. The level of service feedback loop is exactly

the improvement step consisting of synthesis and evaluation phases. Other

scheduling models such as the fleet/frequency assignment and fleet routing

model can be "hung" onto the backbone as extensions of the evaluation phase.

The series of tagged-on models refines the route network to a finalized

schedule with the help of the schedule refinement loop among themselves.

Notice that this refined evaluation step can be performed as often or as

seldom as the computation time and budget would permit. An infrequent ap-

plication of the schedule refinement procedure yields a suboptimal, but

nevertheless improved, solution. Furthermore, since R.I.S.E. uses a primal

method, the algorithm can be stopped before completion -- where a feasible,

improved, though not optimal, schedule is always guaranteed.
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CHAPTER 2

MODELLING THE AIRLINE FIRM AND INDUSTRY

In order to construct a meaningful mathematical model of a managerial

or socio-economic system, the context from which the problem arises has to

be clearly understood. R.I.S.E.* models an airline operator. An airline

is an economic firm competing with other airlines to serve the public de-

mand for travel or shipping. Air transportation is a regulated industry in

the U.S. The Civil Aeronautics Board (C.A.B.) and the Federal Aviation Ad-

ministration (F.A.A.) have been delegated the regulatory powers. In this

chapter, we will provide a thumbnail sketch of the regulatory/economic en-

vironment in which the airline firm operates, the behavioral observations

of the travelling public, the institutional/managerial constraints that

face the airline, and finally the airline as a profit-oriented firm. To

each of these managerial or socio-economic factors, we offer an approach to

quantify and represent them in the state-of-the-art and/or research-extend-

ed mathematical tools. This chapter serves as a link between the problem

statement and subsequent model formulation/solution. It is written to

place the systems analysis techniques in their proper perspective, so that

the trees will not be taken for the forest.

*R.I.S.E. stands for Route Improvement, Synthesis and Evaluation. It is an

optimization model for route network planning.
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2.1 The Airline Industry

In this section, we will outline the regulatory, competition and be-

havioral aspects of the U.S. domestic trunk industry in which an airline

firm operates. The section that follows will then concentrate on the in-

dividual airline firm.

The impact of the regulatory and competitive industrial environment on

the performance of the airline operators is most profound. The impact is

dramatized by a comparative study of the U.S. vs. the Western European air-

line industries [E.A.R.B. - 1970]. As a general statement, Western Europe

is less than half of the size of the U.S., yet European airlines operate

close to twice the route miles of the U.S., at twice the average operating

cost. Such difference in performance can be attributed to a number of

socio-economic and cultural factors. Regulation and market structure, how-

ever, play an important part in bringing about this dramatic difference

[E.A.R.B. - 1970, Wheatcroft - 1956].

A systems analysis study which brushes off lightly a realistic model-

ling of the managerial, socio-economic and institutional constraints, or

makes idealized assumptions about them, has doubtful pragmatic use. There

has been some expressed skepticism,* for example, on the conclusion of R.E.

Miller's [1963] work on the U.S. domestic airlines. In his work, Miller

indicated that the U.S. domestic traffic in 1957 could have been served at

under half of the actual reported cost, given (1) a perfectly competitive

*See the work of J.C. Miller III [1968], which has expressed some reserva-
tion about R.E. Miller's conclusion.
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market, (2) a perfectly inelastic demand, (3) no indivisibility of produc-

tion, and (4) an exogenously fixed load factor of 60%. The contribution of

Miller is much more of a political economics nature than those made by this

dissertation. It has to be noted that Miller's thesis is on the exemplifi-

cation of the efficiency in pure competition. We, on the other hand, try

to point out what managerial improvement can be made recognizing the regu-

latory, competitive and institutional constraints that partially tie the

hands of the airlines.

2.1.1 Regulatory Environment

The U.S. domestic airline industry is regulated in the economic sphere

by the C.A.B. and safety-wise by the F.A.A. We address only economic reg-

ulation in this dissertation. The C.A.B. has the responsibility of deter-

mining the fare and routes granted to airlines. A specific fare level

places the air transportation industry at a certain competitive position

with other modes of transportation, such as buses, private automobiles and

trains. Route authorization, on the other hand, controls the entry of new

carriers and regulates the competition between carriers in a number of city

pair markets.

This dissertation will concentrate on discussing the route authori-

ties, while taking the fare as given. In order to operate in a certain

city pair market, an airline has to be granted a Certificate of Public

Convenience and Necessity, which spells out in specific terms how and

where the airline is allowed to provide service. Because of the way the

C.A.B. regulates the routes, the U.S. airline route structure is "linear"
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in configuration. By linear we mean that an airline is usually authorized

to fly a linear string of cities. When an airline is granted such a route

certificate, it is allowed to fly the string of cities in a large number of

ways. Generally, the airline can fly non-stop or multi-stop between any

city pairs in the string of cities, and can originate or terminate at any

city in the string.* Combinatorially, there is a great deal of freedom on

how the airline can serve the string of cities once the certificate is au-

thorized. In comparison, the route structure in Europe is "star shaped,"

in which non-stop hops eminate from the hub capital city to a number of

foreign capital cities. This is a result of the bilateral agreement be-

tween nations. Generally, there is less freedom compared to the linear

route structure of the U.S., to plan different route configurations. The

two different route regulatory system is attributed as one of the factors

causing the dramatically higher cost of operation in Europe [Wheatcroft -

1956, E.A.R.B. - 1970]. A linear route structure allows multi-stop flights

to be planned, whereby the passenger flow can be channelled in such a way

that the seats in each segment of the flight itinerary could be filled.

Traffic flow can be bundled up into high density operations by careful

multi-stop route planning to the extent that airline stations are economic-

ally utilized. A star shape route structure rules out, to a large extent,

the freedom of planning multi-stop routes and hence puts European airlines

*There are exceptions and complications about this general statement. A
fuller discussion on the Certificate of Public Convenience and Necessity
is given in Chapter 3.



at a cost disadvantage.

The practices of the C.A.B. have given the U.S. airlines even more

freedom in planning their schedules than what the formal specification of

the route certificate would suggest. Historically, there have been very

few cases where the C.A.B. strictly enforced the minimum service require-

ment [Richmond - 1961]. As a general statement, the C.A.B. has been regu-

lating the airlines on an approval or disapproval basis when a route appli-

cation/fare increase case is brought to its attention. Rarely does the

Board, out of its own initiative, assume the active role of prosecuting an

operator, for example, for not providing the minimum required frequency be-

tween a city pair. The airlines, therefore, could conceivably be able to

offer no service between cities where they are authorized or required to

do so. In Fig. 2-1-1, we show both the authorized non-stop routes out of

each city in the American Airline system in summer, 1970, and those that

are actually served. It is observed that only 41% of the authorized non-

stops originating from a city are scheduled. Thus it can be seen that

within the formal route authorization, there is a good deal of flexibility

left to the airlines to configure their routes.

In performing systems analysis for an airline, it is important to be

aware of all the route planning alternatives, from which we will select

those routing alternatives that best serve our purpose. In order to expe-

- dite generating these alternatives, we have quantified the qualitative

statements of the Route Certificate in graph-theoretic manner. We have

succeeded in representing the route authority of an airline in a research-

1W110 I,
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I
extended "contiguity matrix,"* A. Through pure algebraic manipulation,

viz. raising the matrix to its own power (A 2, A 3, etc.), we would generate

all the different route configurations within the confines of route author-

ization. Through such a graph-algebraic technique, we have modelled the

regulatory constraint facing the airline firm. A detailed discussion of

the contiguity matrix is deferred until Chapter 3.

2.1.2 Competition Environment

Airlines compete with other modes of transportation in providing and

inducing the movement of passengers and goods. Within the U.S. domestic

air transportation market, airlines ccmpete with each other for traffic.

In this piece of research, we focus our attention on inter-airline competi-

tion, taking two competitors at a time.

The U.S. domestic trunks operate in an oligopoly market. A cartel ar-

rangement is set up among the eleven trunklines. The fare is fixed by the

C.A.B. at a certain percentage above the cost of providing the service --

a percentage the C.A.B. deems to be the fair return on investment. The

entry into a city pair market by an "outside" airline has to be approved by

the Board. The airline firms already serving the market compete for profit.

Each airline in this case tries to offer a different type of service so as

to attract, certain sectors of the travelling public. In economic jargon,

*The contiguity matrix is a variant of the adjacency matrix. It records
the paths, rather than counting the number of paths, as it is raised to

its own power. The term "contiguity matrix" is coined by the author,
since he is not aware of a formal name given to this type of matrix.

W lbi
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competing firms try to differentiate their products in non-price competi-

tion. The oligopolistic market structure is quite unique to the U.S. dom-

extic operations. In Europe, for example, many of the carriers are flag

bearers of their nations. A European carrier may be heavily subsidized by

the government just to "show the flag around." In this case, non-economic

factors complicate the inter-airline competition picture.

Broadly speaking, the U.S. domestic trunks compete with each other in

three ways [Richmond - 1961]. First, they make themselves appealing to

different classes of travellers via a labyrinth of different promotional

fare structures. Second, they compete with each other in operational/mana-

gerial efficiency. Thirdly, they differentiate their "product" (or, more

appropriately, their service) via schedule competition, equipment competi-

tion and in-flight service competition. In this dissertation, we shall

confine our discussion to efficiency and schedule competition only. As

such, the applicability of our model would conceivably be limited to the

business traveller who usually patronizes the airline that offers the most

convenient schedule.

Let us define what we mean by efficiency competition and schedule

competition. An efficiently managed firm commands a more superior position

in the inter-airline competition picture. For example, an efficient, low-

cost operator can afford to offer a better level of service, which tends

to result in higher patronage. An efficient, low-cost operator is likely

to yield a higher profit. And a healthy record of corporate profit cer-

tainly helps in raising new capital for expansion or innovation -- which,
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in the long run, again places the efficient firm at an upper hand vis-a-vis

competing airlines.

Schedule competition is regarded as an important form of competition

actively manipulated in the industry today [Miller - 1968, Richmond - 1961].

There are three types of schedule competition -- departure time, frequency

and route. A scheduled departure at prime hours is likely to draw more pas-

sengers than one at off-peak hours. A higher daily frequency of departures

results in a larger share of the traffic. Finally, a non-stop flight be-

tween a city pair is a more favorable service than a multi-stop or connect

service. In our model, we address only route competition. Route competi-

tion is a good deal more involved than it may at first appear. It is com-

paratively straight-forward to talk about route competition for a city pair

alone, setting aside the rest of the network. Route competition should be

viewed as a network problem. Two airlines do not compete only between city

pair X-Y; they compete over all the other city pairs. Route competition is

actually network competition. Notice a city pair X-Y can be served non-stop

by a segment of a one-stop route X-Y-Z, or it could be served by a simple

non-stop route X-Y. Say airline A is offering route X-Y-Z to cover city pair

X-Y non-stop, while airline B is offering the route X-Y to cover the same

city pair. If we narrow our attention to city pair X-Y alone, the two air-

lines are offering comparable route service (i.e., both offering non-stop).

Taking network effects into account, airline A's X-Y-Z route serves not only

X-Y non-stop, but also Y-Z, and furthermore it serves X-Z via one-stop.

Viewed in this light, airline A's X-Y-Z route appears to command a better

competitive advantage over airline B's X-Y route. It can be seen that route

N1101 11,



competition is not only city pair route competition; it is actually route

network competition. Network effects (or system effects) are one of our

main concerns in inter-airline rpute competition.

The oligopoly market is an area where micro-economic theory has so

far been unsuccessful in describing the whole picture analytically [Bishop

- 1968]. We recognize the complexity of the oligopoly market and have

adopted an approach which takes only two competitors at a time. While air-

line A is examined, the-route'structure and schedule of the rest of the

carriers are held fixed. Then we look at carrier B, with airline A pooled

into the camp of competitors whose schedules are now held fixed. In this

manner, R.I.S.E. is applied to an airline firm at a time, ceteris paribus,

so as to simulate the trajectory of a series of partial equilibria in oli-

gopolistic competition.

The route competition pressure faced by an individual airline is ex-

pressed in a set covering matrix, B. On the row of this set covering mat-

rix are the city pairs. The columns of this matrix are routes. By ex-

pressing each row of the matrix as an inequality or equality, a city pair

is specified by the user to be covered by a non-stop, multi-stop, or con-

nect route (i.e., B : 1). The set covering formulation quantifies what

used to be a qualitative route competition statement. We would defer a

detailed discussion of the set covering formulation until Chapter 3.

2.1.3 Passenger Travel Behavior

In the last two sections, we have discussed the regulatory and compe-

titive environment facing an airline firm. Now we will turn our attention



to the travelling public (or the "consumers" or air travel) that we would

like to point out.

First, we recognize that demand for travel is a function of the level

of service. A higher level of service would result in a larger patronage,

while a lower level of service would result in a smaller patronage. There-

fore, there is a distinction between the potential demand and the actually

realized demand. The potential demand is expressed as a demand function.

In R.I.S.E., demand is expressed as a function of the level of service of

the route -- i.e., whether the routing is non-stop, multi-stop or connect.

A non-stop service draws a higher demand than a multi-stop, and a multi-

stop attracts a larger ridership than a comparable connection. The demand

function assumes the form of a "bar chart," which will be discussed in de-

tail in section 3.2.3 of Chapter 3, where we present the formulation of the

mathematical program. Given the potential demand function, the realized

demand is the number of passengers that actually travel for a particular

routing level of service.

Second, we recognize that for each passenger that travels (and we

focus on the average business traveller), he wants to go from origin to

destination in the most expedient manner. We interpret 'expedient' to mean

the shortest time and least stop/transfer path. Such a behavioral assump-

tion about the way passengers flow in a network is called the "descriptive"

traffic assignment [Hershdorfer - 1966, Dafermos - 1970). Descriptive flow

describes, or simulates, the travel behavior of passengers. It is to be

distinguished from the "prescriptive" flow assumption where the decision-
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maker prescribes the traffic distribution in such a manner so as to achieve

a certain normative goal (such as maximizing profit to the airline or max-

imizing aggregate social welfare). R.I.S.E. has adopted the descriptive

approach in order to realistically model, or simulate, the observed traffic

pattern. In doing so, we have to put minimum operators within a maximum

overall operator in the objective function, which looks like max{min(.),

min(.), ... }. For the realism we purport to include in R.I.S.E., we pay

the price of solving a more involved mathematical program.

To quantify the "descriptive" behavioral observations of passenger

flow, a matrix min-path method is used to assign traffic to the shortest

paths from all origins to all destinations. The matrix used is exactly

the "contiguity matrix," A, used in quantifying the C.A.B. route authori-

zations. By raising the matrix to its powers, A2, A, ... , not only are

authorized routes generated, passenger routings and the shortest paths are

also available. Section 3.1.4 in the next chapter will elaborate on the

subject. Passenger traffic assignment is formulated as a multi-copy (or

multi-commodity) flow problem with each of its block diagonal subproblems

representing an origin-destination copy (or commodity). For a schematic

illustration of this, please review Fig. 1-2-4.

2.2 The Airline Firm

In the last few sections under 2.1, we have outlined the industrial

environment in which an airline firm operates. In the current section, we

will concentrate on the airline firm. The practices and institutional



characteristics specific to an airline will be introduced. Then we will

present a model, R.I.S.E., constructed as a representation of an airline

firm. The background discussion on the managerial and economic aspects of

an airline is intended to help the reader to place our model in proper per-

spective.

2.2.1 The Firm and Its Market

The organization of this section is as follows. First, we will dis-

cuss the "product market" in which the airline sells its service. Then we

point out the "production process" by which an airline produces its ser-

vice. This is followed by a statement'of the corporate objective of an air

carrier. We conclude with a scheme to compute the demand/supply equilibri-

um for the given product market and production process, under the stated

corporate objective.

product market

We have pointed out that the airline firm operates in an oligopoly

market. External factors such as regulation, inter-airline competition and

the behavior of the travelling public all contribute towards defining a

particular product market which the airline firm faces.

The "product" an airline "sells" is not really a product in its usual

sense of the word. Economists, who like to view an airline as an example

of a general "firm," have been using seat-miles, or ton-miles, as a measure

of the "product" of an airline. Practitioners of the airline business,

however, like to think in terms of an airline offering a service. A pro-

posed unit to quantify this type of travelling service is seat-departure.

k
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We tend to endorse the latter point of view. The level of service that

attracts passengers cannot be characterized adequately by a capacity-figure

such as seat-miles. A jumbo jet of, say, 300 seats scheduled only once a_

day simply does not have the same appeal as a 100-seat B-727 with three

departures a day, although both offer the same number of seat-miles. A

unit like seat-departure takes into account the appeal of departure fre-

quency besides capacity. It is a more appropriate unit for measuring out-

put in the product market. We have included in the unit the notion that

demand is responsive to the frequency level of service.

In this dissertation it is recognized that an airline sells in a "pro-

duct" market where the passenger patronage is a function of level of ser-

vice offered by the airline. R.I.S.E. uses a rather simplified representa-

tion of the "product market." Origin-destination demand for an airline is

a function of whether the service is non-stop, multi-stop or connect.

Other more detailed levels of service attributes like frequency will be an

explanatory factor for demand market share in a lower level model in our

scheduling hierarchy. R.I.S.E., as an aggregate model in the hierarchy,

makes decisions only on how a non-stop vs. multi-stop vs. connect service

would affect demand.

To complete the description on the product market an airline faces, we

have to point out how revenue is derived by an airline via selling its pro-

duct (actually, service). Each passenger that 'buys' a seat brings in a

'yield'* to the airline. Yield per passenger is therefore our simplified -

*Yield per passenger, in airline practices, is the actual revenue from each
passenger after various promotional fare discounts have been taken into



representation of the 'product value' (a service value). In section 2.2.3,

a set of revenue functions and yield figures will be introduced, which will

serve as our straight-forward product value model.

production process

There are a number of characteristics found in the production process

of an airline firm. First is the indivisibility of production. A unit of

production (or service) is a flight. When a flight is scheduled, a quan-

tum of seats (say a 100-seat B-727) is offered. An airline does not con-

duct business by selling an individual, single seat. The basic unit of

production is a discrete quantity of seat-departures. The cost of operat-

ing the scheduled flight is essentially the same whether the flight is

filled to capacity or nearly empty. The revenue from a flight, however, is

highly dependent on the number of passengers carried on board [A.T.A. -

1961]. Such an indivisibility feature requires R.I.S.E. to take on 0-1

type binary variables. We have to resort to integer programming techniques

in our optimization model.

A second complication about the production process of an airline firm

is the "network effects" inherent in scheduling. A route that goes from A

to B to C carries not only the "local traffic" from A to B in segment A-B,

but also '.'through traffic" from A to C, and possibly connect traffic from

cities other than A, B or C. In such a context, when a schedule planner

considers whether or not to schedule a route, he must include in the mar-

ginal revenue not only the yield from the passengers that travel between

account.
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the three cities A, B and C, but also the connect traffic. In estimating

marginal cost for the route, network effects also come in. The cost of

serving the route depends on the number of times the route is flown (i.e.,

the route frequency). Route frequency is determined as a function of the

traffic density on each segment of the route. And traffic density, being

closely related to the passenger flow, is highly sensitive to the route

network configuration. When a route is added or deleted from a network,

the passenger flow pattern may be disturbed to such an extent that it re-

quires us to re-examine the assigned frequencies to all the other routes.

When route frequency is changed, so is the marginal cost of the route.

There is this particular network effect inherent in the production process

of an airline firm. R.I.S.E. is a network model specifically designed to

take care of the network effect complications in marginal analysis.

corporate objective

Among a number of objectives an airline may have, profit is one of the

prime considerations. There are a number of reasons why profit is of con-

cern to the airline. Similar to any other corporate business, the source

of funds is vital to the airlines. Retained earnings (profit) is a ready

internal source of funds. Other internal sources of capital such as depre-

ciation and amortization, deferred taxes and investment tax credit all de-

pend on the reported earnings figure for their ultimate realization [Varga

- 1970].

The eleven trunks had combined assets of $10 billion in 1969, of which

83% represented gross value of aircrafts. The financing of the fleet



mainly comes from external sources such as banks, stocks and the aircraft

manufacturers. The funds are not only used for new aircrafts. Much of it

is used to sustain debt that the carrier has previously incurred. Most of

the financers of external funds to an airline would tend to base their de-

cisions largely on the profitability of the business in which they invest

their money. Profit is therefore also critically important because of its

impact on the availability of outside funds.

Finally, profit is important for competitive reasons. We have pointed

out in section 2.1.2 that one type of inter-airline competition is opera-

tional/managerial efficiency. An efficiently run airline can afford to

offer better service at a lower cost and higher yield. It has an edge over

its competitors. For all the above reasons, R.I.S.E. has taken profit max-

imization as the objective function.

demand/supply equilibrium

Many transportation analysts of today like to think in the conceptual

framework of supply and demand. In our context, on the supply side is the

production process of an airline offering the transportation connectivities

between city pairs. On the demand side is the product market in which pas-

sengers purchase the offered service -- passengers who need to travel be-

tween origin and destination pairs. There has been a wealth of scheduling

research accumulated over the years. Much of it, as pointed out in Chapter

1, really consists of submodels in the sense that they deal with subsets of

the demand issues or supply issues. The application of these submodels

yields non-equilibrium solutions. Models like R.I.S.E. that address both
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supply and demand to bring about supply/demand equilibrium solutions, are

relatively scarce. R.I.S.E. takes into account both the product market

that faces the airline and its production process. We can visualize the

demand between origin-destination pairs as the 'desire lines' of travel,

and the airline trying to supply route connectivities to match the desire

lines between city pairs, so that high route load factors would result.

What complicates the picture is that the desire lines are ever-changing,

depending on the connectivity level of service supplied by the airline.

R.I.S.E. reflects the dynamics of equilibrating demand and supply in that

it utilizes an iterative computational scheme. The equilibrating or opti-

mizing algorithm, which employs dynamic programming and gradient search

techniques, will be described in Chapter 4.

2.2.2 Short-Run vs. Long-Run Analysis

In Chapter 1, we have categorized scheduling models in a hierarchical

structure. Those in the macro-level include models of fleet planning,

route structure configuration, etc. Those in the detailed level include

models for dispatching and schedule control. In the short run, we may find

fleet size, routes and even daily frequency fixed. In the long run, new

fleet can be acquired, new routes could be awarded by the C.A.B. and daily

frequency can be increased or decreased.

The economic concept of short-run vs. long-run schedule planning goes

hand in hand with our idea of multi-level optimization. In the macro-level

of s4 hedule optimization, the more aggregate decisions are made with mini-

mal constraints, since the usual constraints like fleet size can be expand-



ed or shrunk in the long run. After these high level decisions have been

made, they will be input as fixed constraints for the lower level decision

models, which assumes a short-run time frame in which fleet size, among

other variables, have been fixed by a higher level fleet planning model.

Short-run models are comparatively easier to construct and solve be-

cause they are non-equilibrium models in the supply/demand conceptual

framework. By non-equilibrium, we mean that these models usually assume an

objective function of cost minimization to satisfy a fixed demand, under a

given fleet size constraint and frequency pattern. Long-run models, on the

other hand, are more beyond the state of the art. Since they are equilib-

rium models, in which the demand is a function of the level of service, i-

terative coordination of supply and demand is required to arrive at the

solution.

Scheduling models require as input unit cost and revenue figures.

These figures are easier to come by for the short-run models. Cost is

typically estimated by statistical methods from historical operating data.

These historical data are the result of a fixed past operating condition --

i.e., a certain fleet composition, route structure, frequency pattern, etc.

If such cost figures are used in short-run models where these past operat-

ing conditions are upheld, we expect them to be accurate. In the long run,

however, past operating conditions are changed by definition. Historical

cost figures may be meaningless in the present-day framework. Reliable

cost figures are therefore more difficult to come by for the purpose of

long run models.
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Short run models have been useful tools in the airline business in the

1960's, for example. During the Sixties, traffic growth, economy and air-

craft technology had a definite trend or pattern. There was observable .

stability in the projection of the economic and technological environment.

Practitioners in the airline business had been able to, on a short term

basis, predict cost figures from past data. At the turn of the decade and

beginning of the Seventies, the U.S. traffic growth has dwindled sharply,

and a new fleet of wide-body aircrafts have abruptly increased the unwanted

production capacity of all carriers. It is under this time of change that

a more basic, scientific, long-run type scheduling model could have signif-

icant contributions toward the managerial/planning process. Airlines find

it necessary to examine on a more rational basis macro decisions such as

fleet planning, route structure and frequency pattern.

R.I.S.E. makes a close examination of the route structure. Such an

examination may reveal that a market formerly served by a non-stop may be

more profitably served by a one-stop due to the sluggish traffic growth or

a changed competitive condition. Alternatively, in a different city pair,

a former one-stop route could be upgraded to a non-stop with substantial

improvement in service yet negligible strain on fleet availability, since

there may be excess fleet capacity when wide-body jets are added to a stag-

nant traffic. Frequency, likewise, can be adjusted by R.I.S.E., although .

to a more limited extent. By judicial upgrading or degrading the service

via re-configuring route structure and frequency, a large portion of the

economic setback could be reversed.



2.2.3 Cost, Revenue and Profit

The purpose of this section is to take a closer look at the production

process of an airline firm and try to answer the question, "What parts of

the production process determine the profitability of operating an air-

line?" In more specific terms, we examine the prime determinants of cost/

revenues in the scheduling process. An understanding of these factors

would allow us to suggest profit maximization schemes.

There are a few items worthy of mention in regard to the production

efficiency (or scheduling efficiency) of an airline. Due to the existing

pricing scheme and cost structure, long and high density routes are recog-

nized as money makers, while short-hop and low density routes are usually

unprofitable. Part of the reasons that the Europeans are operating at a

cost almost twice that of the U.S. is related to their comparatively

shorter average stage length and the fact that the U.S. traffic density,

measured in passenger miles per station, is 4.5 times that of Western

Europe [E.A.R.B. - 1970]. The cost disadvantage of short-hop, low density

routes can be explained as follows. A portion of an aircraft hop is the

'unproductive' time spent in maneuvering at airport and acceleration/decel-

eration. The cost associated with this portion of the hop is minimized

when spread over the large seat-miles of a long trip, but becomes signifi-

cant when the trip is short. Moreover, a portion of the total operating

cost (over a third) is relatively fixed and can be regarded as an overhead

charge incurred. Longer and denser routes would spread this overhead cost.

It is our contention that by judicious arrangement of the route con-
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figuration, an unprofitable short segment could be tagged on to a profit-

able long segment to serve as a feeder. In such a manner, the cost disad-

vantage of the short leg is compensated by the additional profit from the

traffic fed into the long segment. Traffic density, on the other hand, is

a result of the passenger flow pattern in the network, which can be control-

led by manipulating the route structure and connectivity between origin-

destination pairs. Viewed in this light, we believe* that re-examining

existing route structure and frequency holds promise to overcome the profit

disadvantage of short and low traffic density segments. This contention of

ours will be verified by a case study of the American Airlines network sys-

tem in Chapter 5.

cost

In order to discuss the profit to an airline firm, we have to address

ourselves first to cost and revenue. Here we outline how cost is estimated.

It has been the practice of the U.S. airlines to classify costs into

direct operating cost (DOC) and indirect operating cost (IOC). DOC is a

cost item incurred as a necessary result of and directly related to flying

the aircraft. IOC, on the other hand, is incurred in providing operating

services on the ground, and the usual overhead associated with administra-

tion or management of business. Any classification is to some extent arbi-

trary. For the purpose of our model, we find it more systematic to cate-

gorize cost into fixed vs. variable costs. Whether a cost item is fixed or

*This belief is shared by [Wheatcroft - 1956].
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variable depends on the adopted time frame. Conceptually, all costs are

'variable' in the long run. R.I.S.E. is a medium range (i.e., neither

short nor long range) model. Based on this time frame, we offer -the fol-

lowing definitions for fixed vs. variable cost. Fixed costs refer to the

basic system overhead and joint costs associated with the institutional,

administrative and promotional functions. They are the costs that R.I.S.E.

does not assume control over. Variable costs, on the other hand, refer to

the traceable, incremental expenditures in providing an additional service

unit (e.g., a route or a flight). They include both aircraft operating

cost, aircraft financial costs, and the supporting ground, non-flight oper-

ating costs. R.I.S.E. assumes control over optimizing these costs. We

will elaborate our definitions on fixed vs. variable costs by reference,

wherever possible, to the C.A.B. Form 41 accounts.

Let us start with the fixed system costs. We include in this category

the following accounts from IOC and DOC.*

IOC - reservation and sales

- general and administrative

- advertising and publicity

- servicing administration

depreciation of ground property and equipment

- maintenance, ground property and equipment

*Strictly speaking, the cost of capital for financing ground property and
equipment should be included in this list, since R.I.S.E. has a longer
time frame than "short run." Practically, however, such an expense is
negligible (according to [Miller - 1968], p. 130).
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DOC - aircraft maintenance burden

Since the above are basic system costs which R.I.S.E. takes as given,

they vrill be computed for the whole network system in an after-the-fact, or

ex post, manner at the completion of the optimization procedure. To facil-

itate the computation, we include in Table 2*2*1 three regression equations

from Taneja and Simpson [1967] for estimating three major items of fixed

costs.

We now come to variable cost. Variable cost refers to the incremental

cost traceable to an additional service unit (which in our case is a route).

Since R.I.S.E. is a medium-range planning model, variable costs refers to

items with a longer time frame than the 'out-of-pocket' type expenses. The

following are the C.A.B. Form 41 accounts included in our definition of

variable cost:

- aircraft financial cost

DOC - flight operations (fuel and crew)

- maintenance, flight equipment (minus maintenance burden)

- ownership, flight equipment (depreciation and insurance)

IOC - aircraft servicing

- passenger service (in-flight)

- traffic servicing

The three DOC items can be aggregated into a fundamental unit cost

figure for each aircraft type -- cost per block hour. Cost per block

hour appears to be a constant independent of trip length (due to Simpson

[1970]). Furthermore, the cost per block hour figure for the common air-
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TABLE 2*2*1

ANNUAL SYSTEM EXPENSES

Domestic Carriers (1962 - 1966)

1. Reservation and Sales Cost ($)

6
= -0.619 x 10 + .00385 RPM + .0585 RM + 0.360 RPO

R = .989 F = 769 Std. Error = 2.56 x 106 ($/yr.)

2. General and Administrative Cost ($)

= .073 x 10 + .00156 RPM + .0483 RM

R = .979 F = 1359 Std. Error = 1.43 x 106 ($/yr)

3. Advertising and Publicity Costs ($)

= .744 x 106 + .00172 RPM

R = .950 F = 489 Std. Error = 1.77 x 106 ($/yr)

4. Aircraft Servicing Cost ($)

= -3.55 x 10 + .00421 RPM + 37.6 D

R = .933 F = 1456 Std. Error 2.09 x 106($/yr)

5. Passenger Service Cost ($)

= -0.784 x 106 + .00549 RPM

R = .994 F = 4654 Std. Error = 1.83 x 106 ($Iyr)

6. Traffic Servicing Cost ($)

= -12.96 x 106 + 2.46 E + 466000 E/D

R = .888 F = 96.7 Std. Error = 6.77 x 106 ($/yr)
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7. Sum of the Above six accounts

TOTAL IOC ($)

= -7.20 x 106 + .0146 RPM + .645 RM

6
R = .998 F = 4111 Std. Error = 5.58 x 10 ($/yr)

NOTE:

RPM = revenue passenger miles/year

RM = revenue aircraft miles/year

RPO = revenue passenger originations/year

D = aircraft departures/year

E = passengers enplanements/year

SOURCE: Taneja and Simpson [1967]
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craft types (fanjets) used in the domestic trunk lines are statistically

related to the gross weight of the aircraft [Chan - 1970a]:

(Cost per block hour (in $)) = 291 + 1.01 x (Weight of aircraft
in thousands of lbs)

2
R = .8930 F (1,9) = 75.12

For route planning purposes, such an aggregate unit figure is quite ade-

quate for variable cost estimations.*

Part of the output of R.I.S.E. is fleet requirement. R.I.S.E. tells

the user the mix and the number of flying hours by aircraft type required

to offer the most profitable level of service (in terms of whether a city

pair should be served non-stop, multi-stop or connect). In this context,

fleet size is regarded as expandable or contractable in the planning hori-

zon of the model. The acquisition of an aircraft involves financial costs

to raise the necessary capital, besides the depreciation and hull insur-

ance (jointly called ownership cost included in the DOC). In our defini-

tion, financial cost refers to the daily share of interest payments for the

use of the equipment purchase capital, while the ownership cost is the

daily share of aircraft purchase price. According to Miller [1968, p. 128,

the following is an estimate of the daily financial costs:**

*If required, trip cost, trip cost per seat, and cost per seat-mile curves

can be derived from the cost per block hour figure provided a block time

vs. distance curve is also available. See [Simpson - 1970] or [Chan -
1970b] for details.

**In arriving at these figures, Miller [1968] assumed a 10% rate of return,

a 12-year equipment useful life, and a zero scrap value.
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4 engine $ 1,841

3 engine $ 1,080

2 engine $ 785

These costs of capital can be added on top of the cost per block hour in

arriving at the total "long run" unit cost of operating an aircraft for an

hour.

Much of the components of aircraft servicing, passenger service and

traffic servicing are salary and joint costs which are not separable among

flight A or flight B* [P.R.C. - 1966]. The practical way of estimating

these expenses is by statistical regression on a system-wide annual basis

(see Table 2*2*1 for typical regression equations). It is rather out of

context to ask the traffic servicing personnel how much of his salary ap-

plies toward handling passengers for flight #123 vs. flight #456, or

toward servicing passenger Mr. A vs. passenger Mr. B. Although we have

been trying via a number of ways to attribute these joint costs to individ-

ual routes, we have had no success to date. R.I.S.E. is an aggregate model

for route planning. And considering aircraft, passenger and traffic ser-

vicing amount to only about a third of the cost per block hour figure (in

which aircraft financial costs are included), we propose the following way

to handle these joint, inseparable costs. In the same manner as we esti-

mate the fixed costs, we would compute the aircraft, passenger and traffic

*Over 85% of traffic servicing, 55% of aircraft servicing and 40% of pas-
senger service are salaries alone, not to mention other types of joint
costs (see Chan and Simpson [1971]).
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servicing cost on an ex post and annual system expense basis.

Let us summarize the practical way to estimate cost for R.I.S.E. The

traceable cost attributable to an individual route is computed from a cost

per block hour unit figure which includes in it the cost of financing an

aircraft. The rest ofthe cost is lumped under system annual expense and

is to be estimated ex post by equation 7 of Table 2*2*1.

revenue

We will confine our discussion mainly to the fare structure set by the

C.A.B. One of the rulings of the nine-phase Domestic Passenger-Fare Inves-

tigation is to set the domestic fare at a "cost-plus" scheme. Fare is set

at a certain percentage (such as a 'fair return on investment') above the

cost of providing the trip.* This cost-plus pricing scheme is commonly

found in an oligopoly market. The key rationale behind the rate structure

is quoted below [C.A.B. - 1968]:

- Fare should be primarily related to distance

- Fare per mile should decline with distance at a rate generally con-

sistent with the behavior of unit costs

- The structure should be based on jet day coach service

- Fares should be based on non-stop city center to city center great

circl-e distances.

The following structure is recommended for U.S. domestic fares in the find-

*After completing six phases of the nine-phase Domestic Passenger-Fare In-
vestigation, the C.A.B. reached a 12% figure as a reasonable rate of re-
turn for investment for the trunklines [Aeronautics and Astronautics -
1970].
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TABLE 2*2*2

A PERCENTAGE BREAKDOWN OF AIRLINE EXPENSES

Domestic Trunks - 4 th quarter, 1970

Variable, Traceable Costs:

Fixed, System Costs:

% of total
operating

cost
- flight operations (fuel and crew) 26.5

- aircraft ownership (depreciation and 13.6
insurance)

- passenger service (in-flight) 10.2

- maintenance, flight equipment (minus 9.0
burden)

- traffic servicing 8.2

- aircraft servicing 7.3

- aircraft financial cost (interest and
tax), equivalent to 6.5% of total
operating cost

- reservation and sales

- aircraft maintenance burden

- general and administrative

- advertising and publicity

- depreciation of ground property and
equipment

- maintenance of ground property and
equipment

- servicing administration

8.3

6.5

3.5

2.4

1.9

1.5
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ings of the final phase of the Investigation [C.A.B. - 1972]:

(Coach fare)* = $12.00 + 6.28 (0 < distance in miles < 500)

+ 5.86%(500 < distance in miles 4 1000)

+ 5.44((1000 < distance in miles < 1500)

+ 5.23o(1500 < distance in miles s 2000)

+ 5.020(2000 < distance in miles)

First class fare is set at 30% above coach fare. The new rate structure

(i) raises the intercept of the fare equation from what existed in 1966,

$ 6.44, to $ 12.00, and (ii) shows a greater taper in cost per miles in

longer stage lengths. Short range carriers are likely to be helped out by

the new fare formula.

It is seen that, unlike cost estimation, revenue rates are standard-

ized for the industry. However, the whole maze of promotional, discount,

and supplemental fares tends to complicate the picture. For computational

purposes, many find it convenient to talk about the actual revenue for

passenger, yield, which amounts to about 85% of coach fare on the average.

2.2.4 Marginal Profit Analysis

Profit is revenue minus cost. The total system profit from a route

network is the sum of individual profits from each of the routes that make

up the route network. Suppose when a route is included in the network only

vi *The fare formula actually notes that fares are computed from a $12.00
fixed charge and 6.28 /mile extra for the first 500 miles, 5.860/mile for
the second 500 miles, etc. Thus the plot of fare against distance should
be a continuous curve over the different 500-mile portions, instead of a
discontinuous curve, as some mathematically inclined readers may be led
to believe.

I 11W
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when it contributes toward increasing the system profit, then the resulting

route network would have a promise to be an acceptable one. This is the

intuitive idea behind the R.I.S.E. solution algorithm.

How do we compute the marginal profit due to a route? The marginal

profit is the passenger fare revenue from the route minus the variable cost

traceable to the inclusion of the route in the system. The passenger fare

revenue includes the total yield from passengers carried by the route.

For example, a one-stop route A-B-C would reap a total revenue from pas-

sengers between A and C, and A and B, and B and C, plus connecting passen-

gers. The traceable cost of the route includes the variable costs discus-

sed above. Essentially, it is the block time of the route multiplied by

the cost per block hour figure (which contains the aircraft financial cost).

As we pointed out before (section 2.2.1), the route cost is practically the

same regardless of whether the plane is 10% filled or 90% filled. The rev-

enue, on the other hand, is strongly dependent on the load factor [A.T.A.

- 1961]. We can see that marginal profit, being revenue minus cost, is

very much a function of how well the seats are occupied. The routing

strategy is therefore critically important to ensure picking out the most

profitable load of passengers in as many of the segments of the route as

possible.

There is a conceptual advantage of including only a route at a time

into the route structure. We mentioned earlier (section 2.2.1) that one

of the features of the airline firm is the indivisibility of production --

that the airline does not sell a seat mile at a time; it sells a quantum of
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seats in a departure. By choosing a route as a basic unit of the optimiza-

tion procedure, we have used the indivisibility of production feature to

the advantage of the algorithm. Also, by analyzing a route at a time, the

large network problem is decomposed into a series of samller subproblems.

The decomposition approach is essential for computational feasibility.

The marginal profit concept just outlined is the basis of the profit

maximization algorithm used in R.I.S.E. The idea of including in the route

network only the route with the greatest marginal profit potential is anal-

ogous to the idea of the "method of steepest ascent" used in "hill-climb-

ing" or "gradient search" optimization procedures [Wagner - 1969, Sargent

- 1971, Wilde and Beightier - 1967]. R.I.S.E. is a constrained optimization

problem. A primal decomposition solution algorithm with dynamic program-

ming flavor will be put forth in Chapter 4 for its solution.

2.3 The R.I.S.E. Model

In sections 2.1 and 2.2 we have discussed the economic and institu-

tional context from which our routing problem arises. We have indicated

ways by which a qualitative description of the problem can be quantified.

In this section, we will summarize how R.I.S.E. models the routing problem

under consideration as a constrained optimization problem. The model as-

sumptions will be recapitulated. This is done to lay the way for a .more

formal mathematical programming formulation in Chapter 3. We conclude the

present chapter by pointing out how the model can be useful in managerial

and possibly public sector decision-making.

mill
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2.3.1 Regulatory and Competition Constraints

R.I.S.E. is a constrained optimization model of an airline firm. In

reviewing how R.I.S.E. models the airline firm and industry, it is conven-

ient to present the summary in terms of the R.I.S.E. constraints and the

R.I.S.E. objective function.

Let us start with the model constraints in this section. The route

network of an airline is subject to the economic regulation of the C.A.B.

In order to enter into serving a city pair market, the airline has to be

granted a route certificate, which spells out the specific geographic

routing and conditions under which the airline can operate. These route

authority constraints have been quantified in R.I.S.E. in a graph-theoretic

manner via a "contiguity matrix," A. By raising the matrix to its powers,

A 2, A 3, ... , all the authorized routes as well as passenger routings can

be generated.

The U.S. domestic trunks compete with each other in an oligopoly mar-

ket. Each airline is to some extent constrained by pressure from its com-

petitors. When a city pair is served by a competitive carrier by a non-

stop route, for example, the airline under consideration often has to face

up to the competition by offering a comparable service in order to partake

in the market share. This aspect of route competition is quantified in a

set covering tableau, B > 1. Thus, given a particular route pattern of its

competitors, the airline concerned makes its decision based on this exist-

ing competitive condition.

The set covering tableau has city pairs on the rows and routes as col-
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umns. It is to be noted that these route columns are generated, where

needed, by raising the aforementioned contiguity matrix to its powers.

From the combinatorial space viewpoint, there is an astronomical num-

ber of route network configurations that will satisfy both the C.A.B.

route authority and competition pressure. The job of the R.I.S.E. algo-

rithm is to generate route column only as needed and delete dominated route

columns, where appropriate, to converge toward a final optimal route net-

work.

Whenever route columns are added or deleted, a different route network

results. The passenger flow from origin to destination is constrained by

the particular route network given. The passenger routings are a function

of the available aircraft routes. Therefore, as the solution algorithm

proceeds, we redistribute traffic. The passenger flow is modelled in the

set of constraints as a multi-commodity, or more accurately, multi-copy,

problem. There is a block-diagonal subproblem, R (i.e., a network copy

or a commodity) defined for each origin-destination pair, pq. The set of

R.I.S.E. constraints is therefore a combination of a multi-commodity (or

multi-copy) flow problem and a set covering problem:

R 12

R
13

R = d (2:3:1)
pq

RN -1
N-1 N

B - - - -

I ,I 11, INI III III III,
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2.3.2 Profit Maximization and Travel Time Minimization

What is the objective function of R.I.S.E.? R.I.S.E. is a mathemati-

cal model of an airline firm, which for financial and efficiency reasons

would be expected to value profit as one of the prime concerns. An air-

line is marketing its service to a travelling public, which R.I.S.E. as-

sumes to be time-consciencious travellers, each of whom wants to get to

his destination in the shortest path. Passenger routings are simulated by

such a 'descriptive' traffic assignment presumption. R.I.S.E. therefore

maximizes profit for the airline firm, keeping in mind that each passenger

wants to minimize his travel time from origin to destination.

To quantify the profit maximization motive for the airline and the

travel time minimization preference of the passengers, we have an involved

objective function for the optimization problem. A minimization operator

is applied toward the travel time between each origin-destination pair.

An overall maximization operator is used for the whole network with all its

origin-destinations. This results in a large number of minimization oper-

ators rested within a maximization operator:

max{min(.) + min(.) + ... + min(.)}

R
12

RR

RN-1,N

1
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2.3.3 Solution Strategy

Given these constraints and objectives, R.I.S.E. quantifies the com-

plex production process of an airline. It is a medium-range planning model

where fleet size is expandable or contractable. The production process of

the firm is characterized by the "network effects" -- that is, the passen-

ger flow pattern is constantly perturbed as routes are added or deleted

from the route network. An airline is also characterized by the indivisi-

bility of production. In R.I.S.E. we either offer a certain type of route

between cities A and B, or not at all. There is no fractional 'product'

(or service) like half of a route. Ap an optimization problem, R.I.S.E. is

an integer program.

The airline modelled in R.I.S.E. faces a travel demand function which

is responsive to the route level of service -- i.e., whether the passenger

routing is a non-stop vs. a multi-stop vs. a connection service. The sol-

ution method then matches the authorized routes to the routings preferred

by the passengers in order to arrive at a supply/demand equilibrium for the

profit-oriented airline firm. Considerations are given to inter-airline

competition and C.A.B. route authorization.

An iterative hill-climbing type algorithm is put forth in this disser-

tation to arrive at the network equilibrium. Each indivisible production

unit, a route, is taken as a subproblem. Each time a route subproblem is

solved, a reconfiguration of the route network results. Route networks

are redefined by the addition or deletion of a route column from the tab-

leau. With each reconfiguration, passenger flow pattern is improved. The

. Ifi I'd 11, , ,iiililililiwllimlllWomiliii llio 1,
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solution of a route subproblem yields a marginal profit to the airline

firm. It is based on this marginal return economic concept that we hill-

climb to a synthesized route network. And if the synthesized route network

is only a local optimum, we proceed with the hill-climb to improve on the

solution. All these are carried out in an adaptive, stagewise manner on

a large scale network. Alternatively, the existing airline route network

can be used as a starting feasible solution. The initial phase I of R.I.

S.E. is in this case substituted by using the existing route network. Im-

provements can then be made on this existing route network via phase II.

These procedures are carried out using the method of successive approxima-

tion of dynamic programming. The huge network problem is decomposed into

a series of route subproblems defined for each origin-destination pair. It

is a primal decomposition algorithm, in which primal feasibility is always

maintained as the solution is getting closer and closer to optimality. The

primal approach has an appealing practical advantage over dual algorithms

such as the classic work of Dantzig and Wolfe [1961]. If program execution

is stopped before completion due to budget limitations, a suboptimal solu-

tion is obtained which is better than the feasible solution we started out

with. In most practical applications, only improved solutions, not neces-

sarily optimal solutions, would be adequate, particularly when there are

only limited computer resources.

2.4 The Applications of R.I.S.E. in Management and Public Sector Planning

At the time this dissertation research is being carried out, the U.S.
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is facing a rather stubborn, stagnant economy. Passenger traffic growth

has slowed down from 15% per year in the Sixties to 1.4% in 1970. The in-

troduction of wide-body, large-capacity aircrafts has added a quantum jump

in the unwanted seat capacity. Keen non-price competition between carriers

in a "lean" market incurs additional strain on the airlines. In the auth-

or's opinion, it is a time when more basic, systematic planning is needed

for both the carriers and the regulatory agency.

In the previous section, it has been shown how the regulatory/competi-

tive environment and institutional factors have been abstracted and quanti-

fied in our model. One of the advantages of model construction is that

the model serves as a laboratory in which the consequences of managerial

and regulatory decisions can be readily tested.

R.I.S.E. would be a convenient tool in the planning level (such as the

corporate planning department) of an airline. It helps to re-examine ex-

isting route structure, fleet requirements and route frequency. In this

regard, it holds promise to make the best out of the route authority an

airline has been granted. By a careful channelization of the traffic flow

in a system of feeders and long-haul operations, formerly short-hop, unec-

onomical segments could become profitable to serve. A traffic flow pattern

that results in high route density operations would bring about cost sav-

ings to the carrier. In short, systematic route planning minimizes the

profit disadvantages of low density and short-hop operations.

The next higher level of the application of R.I.S.E. is obtained

through sensitivity analysis. Suppose an airline is considering the merits

.... MNAMN,
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of filing an application for a route authorization. The contiguity matrix

in which the C.A.B. route authority is encoded can be parametrically

changed to represent the inclusion of the route under consideration into

the network system. Analysis can then be carried out to assess the cost/

effectiveness of the hypothetical new route award.

We can carry the application further to the timely subject of mergers.

Obviously, R.I.S.E. cannot help merger decision in its entirety. It can,

however, serve as a tool to predict the routing/scheduling implications

when two sets of route authorities merged into a conglomerate network sys-

tem. It may assist in answering questions like: "Could economies of scale

in routing/sechduling be expected from the merger?" and "Would there be

diminishing marginal returns?"

The above-mentioned route awards and merger decisions obviously con-

cern a regulatory agency like the C.A.B. besides the carriers in considera-

tion. The regulatory agency can conceivably find R.I.S.E. useful. There

is an additional application of R.I.S.E. whichis of particular interest from

the regulation viewpoint. Many economists have used econometric models to

assess whether air transportation should be de-regulated. There are stip-

ulations that the existing non-price competition between carriers is intro-

ducing inefficiency. The micro-economic theory to explain oligopoly mar-

ket is far from complete [Bishop - 1968]. R.I.S.E. can be used as a simu-

lation, experimental tool in this regard to predict the effect of differ-

ent degrees of route competition. This is readily done by parametrically

varying the set covering matrix constraints, which quantifies the route
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competition pressure exerted on the airline under consideration by the rest

of the industry. When the total picture of all the domestic route carriers

is wanted, R.I.S.E. can be applied in the following pairwise manner. We

run R.I.S.E. on airline A given the existing competition pressure from the

rest of the carriers. Then we run R.I.S.E. on airline B with airline A now

grouped into the rest of the industry. This repetitive application of R.I.

S.E. is a way to empirically trace out the trajectory of the equilibrium

points for an oligopolistic competition industry.

If R.I.S.E. is to be useful to a regulatory agency such as the C.A.B.,

there should be an additional measure of effectiveness besides profit to

the carriers. One of the chief guidelines of the C.A.B. has been "public

convenience and necessity." In economic jargon, the Board is concerned

with the well-being, or welfare, of the users of air transportation. Wel-

fare is often quantified as "consumer surplus" or "willingness to pay."

Travel demand is modelled in R.I.S.E. as a function of whether the level of

service is a non-stop, multi-stop or connection. Such a formulation of the

demand function lends itself conveniently to a measurement of consumer sur-

plus. Together with the profit (or producer surplus) which is explicitly

computed as the objective function of R.I.S.E., the C.A.B. has a model that

addresses-itself to both the well-being of the travelling public and that

of the domestic air transportation industry.

III I iii III I 1 111111 kkkkkk 111111111 1
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CHAPTER 3

MATHEMATICAL MODEL FORMULATION OF ROUTE IMPROVEMENT

It has been pointed out in the previous chapters that the route

network configuration problem, viewed in a constrained optimization

framework, has two parts to it: route generation vs. route selection.

Feasible route candidates are generated by graph-theoretic techniques.

The candidates are then included in an integer program which selects

the best subset of routes. It was recognized that for dimensionality

reasons, generation and selection pannot be carried out as two disjoint-

ed steps, whereby the comprehensive set of route candidates are syn-

thesized in the generation step, and then subject to a final choice in

the selection step. Rather, only a most promising handful of candidates

should be identified at a time, to be evaluated simultaneously--

resulting in a choice of the route that appears to be optimal at the

time. Consecutive generation and selection have to be performed

cyclically over a number of times to come up with the optimal route

network. These three issues: (i) generation, (ii) selection, and

(iii) simultaneous generation and selection will be addressed in this

chapter. They will be formulated in a mathematical model with the

necessary amount of technical detail.

3.1 Route Generation: A Graph-Theoretic Approach

The route network configuration problem is basically a geometrical

exercise of drawing routes between city pairs on the map so as to

Nllwl
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provide the desirable connectivities. There are a number of rules that

must be observed in carrying out this exercise. An important rule is

that a route must abide by the Civil Aeronautics Board (C.A.B.) route

authorities. In this piece of research, we have devised a way of

encoding the C.A.B. route authorities in a contiguity matrix via graph-

theoretic techniques. The matrix, when raised to its own power, would

generate all the routes that are possible within the confines of route

authorization.

3.1.1 Configuring a Route Network

It is a well known fact that network topologies can be represent-

ed algebraically as matrices [Avoi'do-Bondino, 1962]. One of such

matrices is the adjacency matrix, in which two adjacent nodes connected

by a link or arc is recorded as a corresponding entry of "1" in a

square matrix with a dimension equal to the number of nodes in the net-

work. Figure 3-1-1 shows an example of such a matrix corresponding to

the given network.

If labels are put in the place of the "1"'s to denote the pair of

nodes that are connected to each other, as shown below for the same

network of Figure 3-1-1, we have written a "contiguity matrix"

1 2 3 4 5

1 (1,1) 0 0 0 (1,5) J

2 0 (2,2) (2.3) 0 (2,5)

A = 3 0 0 (3,3) (3,4) (3,5)

4 (4,1) 0 0 (4,4) 0

5 0 (5,2) (5,3) (5,4) (5,5)
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FIG. 3-1-1 A NETWORK AND ITS ADJACENCY MATRIX
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The contiguity matrix has the nice property that when raised to its

second power, all the one-stop routes can be generated, as can be seen be-

low:

Lrn

'H

'H

'H

Lrn

C0

'-*011

'Hn -tLrn
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If we read "." as "and" and "+" as "or" in the preceeding A2

matrix, it can be verified that city pair 1-4 can be served by a one-

stop route composed of the two segments (1,5) and (5,4). Similarly,

city pair 2-5 can be served, in the mathematical sense, by a one-stop

route composed of a "self-circuit" segment (2,2) and the segment (2,5),

or by a route made up of (2,3) and (3,5), or (2,5) and circuit (5,5).

The reader can check these algebraic results geometrically in Figure

3-1-1.

Raising A to the third power generates all the two-stop routes, as

can be shown for the city pair 2-4:

1 2 3 4 5

2 - -- (2,5)-(5,3)-(3,4)+(2,3)'(3,5)*(5,4) -
A 3 = A 2 A =3 - -

5 -- - -

In the above matrix, we have omitted all the entries except (2,4),

where only the non-circuitous two-stop routes from 2 to 4 are displayed.

There are two alternative routes: 2-*5-+-3+4 or 2-+3-*5+4.

The above method of representing the topology of route networks in

contiguity matrices can be used to quantify the C.A.B. route authorities

in an algebraic fashion. This will be the subject of discussion in the

following three sections 3.1.2, 3.1.3 and 3.1.4.
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3.1.2 C.A.B. Route Authority

The C.A.B. "Certificate of Public Convenience and Necessity"

spells out in specific terms the way a carrier is authorized to provide

service among a set of cities in a "route". An example of such a

Route Certificate for Route 63 of Western Air Lines is given in Appendix

A.l. The example is used in the discussions of 3.1.2 and 3.1.3. The

author acknowledges having the benefit of the work of Sobel [1969] and

the comments of Professor R. W. Simpson for the development of the

concepts documented here and the section that follows (3.1.3).

C.A.B. route authority convention

GENERAL GUIDELINES

A convenient "basic building block" to describe route authority

is a "subsegment"*. All the city pairs within a subsegment can be

served by non-stop flights.

Two or more subsegments make up a "segment". In order to serve a

pair of cities on different subsegments, at least one intermediate

stop must be made at a city common to both subsegments. The set of

cities common to both subsegments are called "subsegment junction

points".

Referring to subsegment {A-al (Figure 3-1-2), any city pair, like

between JSB and SLC, or between LGB and PSP..., non-stop flights can be

scheduled; similarly for the city pairs in subsegment {A-b}. To fly

5 from SLC to OAK, however, at least one intermediate stop must be made

*a term coined by Sobel [1969] for the purpose of our present discussion.

i ,,
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at one of the set of cities common to both {A-a} and {A-b}, e.g., LAS.

Two segments intersect in "segment junction points." Similar to the

case of subsegments, a service between two cities in different segments

must serve at least one segment junction point as an intermediate stop.

One or more segments make up a route. Services between routes must

visit at least one "route junctIon point" as intermediate stop(s).

At the "junction points," a city may belong to more than one subsegment,

segment or route. To illustrate this, the following examples are given

(refer to Fig. 3-1-3);

' - LAX, being a member of all 3 sets -- segment {B}, subsegments

{A-a} and {A-b}, can fly to and from any city in the system non-stop.

- OAK and SFO/SJC, being members of both segment {B} and subseg-

ment {A-b}, can fly to and from any city in {B} and {A-b}.

- LAS, being a member of both segment {B} and {A-b}, can fly to

and from any city in {B} and {A-b}.

Notice that since OAK and SFO/SJC are both in {BI and {A-bl, any junc-

tion point(s) between {B} and {A-a} or {A-b} and {A-a} can serve as inter-

mediate stop(s) between {OAK, SFO/SJC} and any city in {A-a}. Similarly,

since LAS is both in {A-a} and {A-b}, any junction point(s) between {A-a}

and {B} or 'A-b} and {B} can serve as intermediate stop(s) between LAS and

any city in {B}.

The relationships in the aboye examples are conveniently summarized

in the I'Venn Diagram" of Fig. 3-1-4.
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special qualifications to general guidelines

The above systematic description of route authority is unfortunate-

ly complicated by quite a few "exceptions" to the general rule:

"NO SINGLE PLANE" SERVICE

Example:

Clause (4) of the Western Airlines Route Certificate

specifies that no single plane service is allowed between LAS and RNO.

According to the general specification, LAS and RNO both belong to a

subsegment set (Figure 3-1-4) and one would expect that non-stop

service is allowed according to the general terms. Clause (4), however,

qualifies that LAS and RNO may not be served by single plane non-stop

or multi-stop flights.

"MUST ORIGINATE OR TERMINATE" SERVICE

Example:

Whenever American Airlines serves SAN on its route 4,

the flight must originate or terminate at a set of cities east of PHX

(PHX inclusive). From the general rule alone, one would have guessed

that a non-stop flight can be scheduled from any city to SAN, turn

around, and then return to the origin city (or the other way around).

"No turn around" service restriction is a special case of the

above where no origin or termination cities are specified.

3.1.3 A Graph-Theoretic Representation of Route Authority

With the background interpretation of the route authority from the

last section, we present here a graph-theoretic representation of the

route authority. The graph can be described by the contiguity matrix
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described in Section 3.1.1. Legal non-stop, one-stop ... routes can

then be generated by raising the contiguity matrix to its first,

second, ... powers.

representation of the general guidelines

In a subsegment, every city i (j) can reach another city j (i) in

the same subsegment by a non-stop flight. Representing an aircraft

hop by an edge (i.e. non-directional arcs), the number of edges incident

on a city vertex is (n-1), where n is the number of vertices in the

subsegment. A graph-theorist says that every city pair in a subsegment

is "strongly connected", and that every vertex in the subsegment is of

"degree" (n-1). The subsegment graph for subsegment {B} is shown in

Figure 3-1-5, where we also show the contiguity matrix representing the

graph. For a subsegment without special qualifications (such as those

given in Section 3.1.2) the matrix is solidly filled. The matrix

shown says that non-stop routes can be scheduled between all city pairs.

Multi-stop routes can be built by stringing together these basic non-

stop segments, in the manner explained in Section 3.1.1.

Two subsegment sets of cities intersect at junction points.

Connections between cities in two different subsegment sets are restrict-

ed to make intermediate stop(s) at the junction points. If the

intersection set contains only one city, that single city is an

"articulation point" in graph-theoretic terms. Without the articulation

point, the two subsegment sets of cities will be disconnected. If

there are two or more junction points, the two groups of cities are

said to "biconnect". In the example of Figure 3-1-6, the two subsegment
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sets {A-b} and {B} have three junction points, OAK, SFO/SJC and LAX, the

two sets are therefore biconnected, in the sense that connection

between cities in fA-b) and fB} can be made at OAK, or SFO/SJC or LAX

or any combination of those three cities. The contiguity matrix has a

submatrix of "O"'s in the cells corresponding to the restricted city

pairs. Notice that two subsegment sets are "connected" (in fact

"strongly connected", since route authority specifications are non-

directional) if the intersection set of junction points is non-empty.

representation of special qualifications

"NO SINGLE PLANE" SERVICE

"No single plane" services can be readily handled by "split-

ting" a subsegment into two more basic building blocks. If no single

plane service is allowed between SJC and LAX or LAS, splitting the sub-

segment in the way of Figure 3-1-7 can be shown to handle this route

restriction nicely. In Figure 3-1-7 we have separated the two sets

of restricted city pairs fi}-{j} into two "split" subsegments {i} and

{j}, with the non-restricted cities in the original subsegment duplicated

in both split subsegments. Notice the submatrix of zero's in the

contiguity matrix clearly shows that these two split subsegments are

disconnected from each other (Figure 3-1-7).

As an example, the "no single plane service" restriction for LAS-

RNO (Clause (4) of the Certificate) and between SJC and SEA, PDX, LAS,

LAX, LGB or SAN (Clause (6) of the Certificate) is represented in

Figure 3-1-8.
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In ge-neral, for each fi}-{j} single plane restriction, the

subsegment is split into two sets, one containing {i} and the cities of

tI subsegment not in {i}(call them {k}), and the other containing {j}

and {k}. Notice that by duplicating {k} two times in the two dis-

connected split subsegments we have increased the number of "dummy

cities" in our network and adjacency matrix by {k}, which may be a

large number. A modified procedure is substituted for this approach

in the software package RISE-I for computational efficiency.

"MUST ORIGINATE OR TERMINATE" SERVICE

"Must originate or terminate" services can be handled in the

graph-theoretic manner only in an ihdirect and rather inconvenient

manner. Let us say that any flight serving SAN must originate or

terminate at SLC on subsegment {A-a}. From circuity or other reasons,

we identify the few cities that may logically be qualified as inter-

mediate stops between SAN and SLC as LAS, PSP or both, PSP-LAS. In

Figure 3-1-9, aggregate nodes X, Y, Z are defined. Viewing SAN-X,

SAN'-Y, or SAN"-Z as links, it is rather obvious that all the flights

serving SAN would originate or terminate at SLC.

The drawback about this method is the dimensionality. If there

are m potential intermediate stops, the number of dummy aggregate nodes

would be m! If the Route Certificate says "must originate or terminate

at SLC or east of SLC," then depending on the number of cities east.of

SLC being considered, say n of them (including SLC), the number of

dummy aggregate nodes would be n.m! -Such a procedure is clearly not

practical. A modified scheme will be adopted in the software package
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RISE-I for computational efficiency.

Notice, the "no turn around" restriction is a special case of

the above, in which SLC is removed from the aggregate nodes X, Y and Z.

To summarize the graph-theoretic way of representing route

authority, we have ,coded the C.A.B. Route Certificate of Western Air

Lines in a contiguity matrix (Figure 3-1-10). The blocks of filled

entries represent subsegments. The blocks of "O"'s represent inter-

change between subsegments (segments, routes) or split subsegments.

For the sake of clarity, "no single plane" service restrictions are not

shown, except for that applied on segment B.

3.1.4 Generating Route Candidates via Graph-Theoretic Techniques

The readers have seen how a Route Certificate can be quantified

graph-theoretically into a contiguity matrix. The current section will

demonstrate exactly how route candidates and the associated passenger

routings can be generated via raising the power of the matrix.

Figure 3-1-11 shows two basic subsegments {CHI-DAY-CMH-NYC} and

{DAY-CMH-WAS} intersecting at the junctions points DAY and CMH. The

contiguity matrix corresponding to this hypothetical route authority

is shown below. We have assumed that there are no special qualification

terms ii the Route Certificate.

116,
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1 2 3 4 5

CHI NYC CMH DAY WAS

1 CHI (1,1) (1,2) (1,3) (1,4) 0

2 NYC (2,1) (2,2) (2,3) (2,4) 0

A - 3 CMH (3,1) (3,2) (3,3) (3,4) (3,5)

4 DAY (4,1) (4,2) (4,3) (4,4) (4,5)

5 WAS 0 0 (5,3) (5,4) (5,5)

The above A matrix consists of two parts, the upper left-hand submatrix

corresponds to subsegment {CHI-NYC-CMH-DAY} while the lower right-hand

submatrix corresponds to subsegment {CMH-DAY-WAS}. The junction points

CMH and DAY provide the connection between the cities in the two sub-

segments.

In its present form, A denotes the non-stop routes possible

between all the city pairs in the system. It can be checked that city

pairs within the same subsegment can be served by non-stops while city

pairs in different subsegments, such as CHI-WAS, cannot.

Raising A to its second power generates all the one-stop routes.

For the sake of clarity, we will show only the generated routes between

CHI and WAS:
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1 2 3 4 5
CHI NYC CMH DAY WAS

1 CHI - - - - (l,3)e(3,5)+(l,4).(4,5)

2 NYC - - - -

A =3CMH - - - -

4 DAY - -

5 WAS - - - -

The two one-stop routes possible between CHI and WAS are therefore

1+3+5 or 1-4-+5, corresponding to CHI+CMH-*WAS and CHI+DAY-+WAS respective-

ly. Thus, cities in subsegment {CMH-DAY-WAS} can be reached from cities

in subsegment {CHI-NYC-CMi-DAY} via either junction point city CMH or

DAY.

From a combinational viewpoint, the number of legal routes that

are possible between a terminal city pair is huge. For practical

applications, usually the shortest route is of interest.

the shortest route

The contiguity matrix way of route generation actually provides

more information than just the legal aircraft routes. Shortest route

computations can readily be performed in the algebraic framework for

each terminal pair. The minimum time route can be readily picked out

among a number of legal candidates that may serve the terminal pair.'

Let us illustrate with an example.
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Suppose we are given the following inter-city non-stop distances

in clock minutes for the cities in the two subsegments:

T = [t? i] =
2ij

1 CHI

2 NYC

3 CMH

4 DAY

5 WAS

1 2
CHI NYC

0 108

108 0

57 79

51 87

0 0

3
CMH

57

79

0

31

60

4
DAY

51

87

31

0

68

5
WAS

0

0

60

68

0

We will define the following matrix operation:

2 10 0
T = t.] = x (t 0  * to )

k=l ik kj
(3:1:1)

i,j = 1 .. N

m
where X (xk) is min (xi, x 2 ' '' X *

k=1

The operator a*b equals infinity if either a or b (or both) is (are)

zero, or the scalar sum of a and b otherwise:

0 if a or b (or both) is (are) zero

a*b = (3:1:2)

a+b otherwise

To illustrate (3:1:1), let us compute t 1 5 , which is the minimum time

one-stop distance between CHI (city 1) and WAS (city 5):



di

(t0 *tlk k5

min (to * t t * to tO * t )11 15' 12 25' 15 55

= min

= min

(0 * 0, 108 * 0, 57 * 60, 51 * 68,0 * 0)

(W, C, 117, 119, w)

= 117

The minimum distance between CHI and WAS is therefore 117 minutes of

block time. This corresponds to the routing CHI-CMH-WAS.

Minimum two-stop routes can likewise be computed:

3 2 N * t
T = It..] = X (t * t)

k=1 ik kj3

(3:1:3)

i,j = 1 ... N

In general, we write

Tn+1 = t: = (tn-1 * t )
1J k=1 ik kj

i,j = 1 ... N

n = 1, ... , M

(3:1:4)

where M-stop is the longest route to be considered. The (3:1:4)

operation is actually a dynamic programming algorithm.
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It has been shown, therefore, that the contiguity matrix

representation of route authority cannot only generate all the legal

mult4-stop routes, but also yield the minimum M-stop time distance

between terminal points. The actual route (i.e. in terms of the cities

that made up the route, e.g. A-B-C-D) that yields the minimum time

path between the terminal points (in this case between A and D) is

obtained via sheer bookkeeping.

passenger routings associated with an aircraft route

An aircraft route such as A-B-C-D provides through passenger

services between all the city pairs in the route, viz. between A-D,

A-C, B-D, A-B, B-C and C-D. In otlier words, through passenger routings

are available for all the paired combinations of city pairs in the

m+1
aircraft route. For an M-stop aircraft route, there will be ( 2 -

different passenger routings--l of them is m-stop, 2 of them are (m-l)-

stop, 3 of them are (m-2)-stop, ... , and (m+l) of them is 0-stop.

Besides through routings, there are connect routings. A connect

passenger routing between an 0-D pair is available when two or more

aircraft routes provide a continuous path from 0 to D. For example,

non-stops A-B and B-C would provide a one-stop connect routing from

A to C: A-B-C, making a transfer at station B. Similarly, a non-stop

A-B and a one-stop C-B-D would facilitate a one-stop connect routing

between A and D via A-B-D, connecting at B.

There would be quite a number of through/connect routings between

a city pair from a combinational viewpoint, but usually only the

shortest m-stop routings are of practical interest. The matrix-algebraic
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framework readily lends itself to shortest m-stop through/connect routing

computation. The, algebra is exactly the same as that of (3:1:4).

3.2. Route Selection: An Integer Programming Approach

The previous Section 3.1 discusses how we generate all the

topologically feasible route candidates. It has identified the

"feasible region" of our constrained optimization model R.I.S.E. This

section will be devoted to the technique of searching among the

alternative route candidates in the feasible region, resulting in a

selection of the best subset of routes. The route section problem
will be formulated as an integer program.

3.2.1 Selecting Among Route Candidates

Strictly speaking, R.I.S.E. is an optimization model that cannot

be formulated in an explicit way in terms of objective function and

constraints. In our formulation, R.I.S.E. sequentially generates

columns (which are the routes) of the tableau, and simultaneously

select the 'best' subset of routes. As route candidates are generated,

not only more columns are annexed to the tableau, but also rows.

In this sense, we are not working with a static tableau defined before

execution time (as is the case of the usual linear programming problems).

The row and column dimensions of the tableau keep growing as the algorithm

proceeds. In order to show the nature of our optimization problem for

illustration purposes, (e.g. to show the general structure of the

constraints and objective function), we have to assume that all routes

that comply with the C.A.B. route authority have been generated (hence
the number of rows and columns fixed). In practice, the number of legal
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routes that could be generated is astronomical. R.I.S.E. cannot be

viewed as a two part process, with generation being separate from

selection, in the sense that the former defining the feasible region and

the latter optimizing over the feasible region. Computationally, we

cannot combinat orily generate all legal routes and include every route

in the rows and columns of the tableau. This would mean literally

thousands and thousands of rows and columns. Rather, we would have to

decide sequentially which column to generate and include in the tableau

(and the associated row). In other words, we generate and select sim-

ultaneously. We will come back to this point in Section 3.3.

For obvious dimensionality reasons, we show here, for illustration

purposes, an example tableau describing only a three-city system where all

legal routes (see the route map in Figure 3-2-1) have been included into

the rows and columns. As represented in this example integer program

tableau, R.I.S.E. is reduced to a pure selection problem. We have to

keep in mind that R.I.S.E. is both a generation and selection problem

in the general case.

A brief description of our three-city example is necessary (refer to

Figure 3-2-1). There are only four routes in the route map--three non-

stop and one one-stop. Notice city pair 1-3 is served both by a non-stop

route and a- segment of a one-stop route.

3.2.2 Constraints of the Integer Program

Figure 3-2-2 shows that the tableau we are dealing with is a

very sparse tableau with a 'staircase' structure. The 'subproblem'

blocks are only "loosely tied together". The solution strategy, as will
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be outlined in the next chapter, resort to a decomposition algorithm

de-_ ;.-d by the author.

1 wor d about mathematical notations before we start writing

equations: most symbols are defined in the way described in the

report by Simpson [1969), except in a few cases where we have to

define new notationi for new variables not in his vocabulary. The

writer prefers to follow a superscript and subscript notation. Instead

of writing P .r i to denote the passenger flow on segment ij of

route r going from origin p to destination q on board aircraft type a,

we write pq r
a 13

competition requirement constraint

The first 'subproblem' block is represented by a "route-covering"

matrix* triangular in appearance (see Figure 3-2-2). The rows are
m

city pairs pq while the columns are route variables Yr. Each route is

identified by the superscript m which denotes the number of intermediate

stops in the route, and the subscript r, denoting the route number.

0 men the
For example y2 means the second non-stop route while y1 means the

first one-stop route. ym assumes a (0-1) value corresponding to
r

whether the route is included in or rejected from the route network.

*This term is coined by the writer for convenience, since he is not

aware of any official name given to this kind of matrix.
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Notice that the city pairs are repeated in two 'copies' along the

rows. In the "non-stop copy", all the city pairs are covered by non-

stop routings only. Notice that city pair 1-3 is covered by both a non-

stop route y2 and a non-stop segment routing of a one-stop route y 1
Notice also that city pair 2-3 is not covered by any non-stop routings,

since the row entries corresponding to city pair 2-3 in the "non-stop

copy" of the route covering tableau are all zeros. City pair 2-3 is

covered only by a one-stop route y 1 -a "1" is found corresponding to the

row 2-3 in the "one-stop copy" of the route covering tableau.

An m-stop route covers a number of city pairs via various routings.

These routings are n-stop or less. For example, a one-stop route 2-1-3

covers O-D pairs 2-1, 1-3 and 2-3. The first two O-D pair is covered

by a one-stop routing. Let R7 denote the set of m-stop routes cover-
pq

ing city pair pq by n-stop routings. In the example just quoted, city

pair 1-3 is covered by non-stop route y2 via a non-stop routing

(obviously), and we write 0R3 {y }. The same city pair is covered
13

by one-stop route y1 via non-stop routing since 1-3 is a segment of

y 1and we write R = {y } City pair 2-3 is only covered by a one-
1 13 1

stop route y1 via one-stop routing, we write R23 = {y1 } (with the empty
123 1

sets 0R = and 0 1 ). Notice 0RO are always single element23 23 pq

sets since there is only one non-stop route per city pair. R ,
pq

however, can be multi-element since there may be more than one one-

stop route with a common segment covering pq.

An important consideration in determining the route network is

competition between airlines. If a competitive carrier is serving a
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city pair non-stop, there is very little choice but to match up with a

non-stop, if the airline is serious about the share of that city pair

market. This kind of competitive pressure is recognized in our formu-

lation. Let us say that city pair 1-3 is such a city pair market in our

example. There are three alternatives open to the operator to cover 1-3

via a non-stop routing (refer to Figures 3-2-1 and 3-2-2):

(i) He can cover city pair 1-3 by a non-stop route

2> 1

(ii) He can cover city pair 1-3 by a segment of the one-stop

route

y> 11 -

Note that each of the above two constraints can be

written as

y m > 1 for a city pair pq
r-

rcoim and m-stop routes
pq

where ORm are trivially* single element sets:
pq

0R 3 2O} and R1 1 *i,1 f 2 0R13  1yJ

*Our three-city example is so simple that the equations in (i) and

(ii) appear trivial. Hopefully the oversimplification does not prevent

the reader to see the general case where R is a multi-element set.
pq

We have considered using a five-city example for illustration. But

that would "blow up" the size of our tableau in Figure 3-2-2.

1101IN110 IM 11114511.1,
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(iii) In our case, 1-3 can be covered by either y2, or

1 0 1
yi, or y2 l'dy

y + y > 1 for city pair 1-3

and non-stop routing

More formally,

I I y 1+ I yo > 1>
rEo R r rEoR o r -

13 13

which is the same as
1

m=O rcoRm

In general, we write

for city pair 1-3

and non-stop routing

> 1 for p -q and n=O

M

ym >1 m >p-q and n (3:2:1)
m=n rEnim r

pq

where M is the number of intermediate stops in the

longest route generated.

Equation (3:2:1) helps to explain the triangular structure of the

route covering tableau. Since (3:2:1) is written for all pq and n,

all city pairs in the network are repeated in Inl copies. The n h

copy denotes the city pairs covered by n-stop routings. Thus the first

copy depicts how city pairs are covered by non-stop routings. The

second copy depicts how city pairs are covered by one-stop routings,

etc. Suppose we look at the 2nd copy. By definition, non-stop routes,
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r0, would not be able to cover city pairs via one-stop routings. The

corresponding entries under the set of non-stop routes R in the route

covering tableau is therefore zero. For the same reasons, with the

3rd copy all entries under R and R1 would be empty and so on. This

explains the triangular structure of the route covering tableau.

Let us count the number of rows in this constraint. The upper bound

of this number is N(N-1)(M+1), where N is the number of cities in the

system and M, as defined before, is the number of intermediate stops in

the longest route generated. The set of O-D pairs is repeated in (M+l)

copies row-wise. For an 80-city system and the longest routes being

two-stop, the number of rows in this constraint alone could be up to

18,960.

connectivity constraint

A city pair in the network is either connected on the route

map (via through or connecting service) or a city pair is disjoint.

For a disjoint city pair, there is no service between them (either

connecting or through service). R.I.S.E. decides which city pair

market is worth servicing and if so, whether the city pair should be se

served by a non-stop, multi-stop or connecting service. When a city

pair pq is connected by the route network x assumes the value of "1".

otherwise x = 0. Similar to yim, x is a (0-1) binary variable.
pq r pq

The connectivity constraints relate the Origin-Destination (O-D)

m
variables x and the route variables ym. An O-D pair is connected

pq r

if routes exist to make the connection. Take the simple case of city

pair 1-2, these cities would not be connected (i.e., x1 2 would not be 1)

M
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unless non-stop route 1-2 exists (i.e., y 0 = 1). To put this dependency

b t.n x1 2 and y0 in a formal language

y0 - x > 0 (3:2:2)
1 12 -

The above inequality says that x1 2 cannot be 1 unless y0 is unity, for

if x12 were 1 when y 0 = 0, the inequality would be violated.

Take another example. City pair 1-3 will be connected if

either route y or route y1 exists. This either/or relation is

conveniently represented below

y + y1 - x1 3 > 0 (3:2:3)
2 1 13 y 1 ae1

It can be checked that x can be 1 if either y or y 1are "".

Finally, take a city pair which is connected via a change-of-plane

service--O-D pair 3-2. City pair 3-2 would not be connected unless

both routes y0 and y3 exist. This both/and relation appears as

1/2 y + 1/2 y" - 032  (3:2:4)

It can be checked that x1 3 cannot be "1" unless both y0 and y 3

are "1".

Let, us formalize what we have said so far about connectivity

between O-D pairs. Define R as the set of routes that cover or
pq

connect city pair pq. Equation (3:2:2) can be rewritten as

y x > 0 where R1 2 ={y"} (3:2:5)
m,rcR

1 2
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Equation (3:2:3) now looks like

y - x > 0 where R =yO, yl (3:2:6)

m,reR13

Equation (3:2:4) looks like

1/2 y - x > >0 where P {y0 , yo} (3:2:7)
mrr R 32 r32 1 3

where we have defined 1R32 as the set of routes connecting 3-2 in

exactly one change of plane. The following general constraint

includes all the equations (3:2:5),,%(3:2:6) and (3:2:7).

m,rER ym - x > 0 % pq for through service (3:2:8)
pq r pq -

1 ym - x > 0 pq (3:2:9)

Y.IR pq ,r q r pq -

£~ ~ m~r 1Rpq

for connecting service

In general we define R as the set of routes serving pq in

exactly k change of plane. Notice that pq may be served by both a one-

connection and two-connection routing (although the latter would

probably be negligible).

In case there are more than one connect routing between a

connecting city pair pq, additional constraints have to be written.

Take the following example: if city pair A-B can be served by both a

one-connection at W and a two-connection at Y and Z (i.e., the two
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alternative routings from A to B will be Jz and A - ),
o o o o o0yl Y 2 Y3Y4Y

(3:7-9) would look like

1/2 (yo + y2 ) + 1/3(y3 + y ) -xAB

Or more compactly

m >0m

1/2 ry + 1/3 y xAB

r,mB r,mERAB r AB-

The readers can check that xAB could be "T if some routes in set iRAB

and 2RAB are "l"'s (say yl = 1 and'y" = y4 = 1, making up a sum of

1/2-1+1/3- 2= 7/6 >1). Physically it means a passenger can be connected

from A to B by a routing of A-W-A-X-Y. This is obviously meaningless

because a passenger in general cannot take some segments in the 1RAB

routingsand some segments in the 2RAB routings to go from A to B. He

has either to take the routing specified in lRAB or that in 2RAB'

To prevent this from happening, we impose the additional constraint

which would make sure that all the routes in 1RAB are taken together or

not at all, y - y 0

- = 0
y - y4 = 0

In general, these additional constraints look like

(y -y )= 0 y m R (3:2:10)

V pq served by more than 1 connect routing

and I k
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The above constraints (3:2:9) and (3:2:10) are typically written

for a class of indivisible, dependent "projects" called "contingent"

projects*. A "project" in our case is defined as the acceptance or

I rejection of a route ym which is part of a connection routing** for

a city pair. Project A is contingent on project B if project A is

ineffective unless project B is implemented. Constrinats (3:2:9) and

(3:2:10) say that for connecting traffic, the potential revenue from

the O-D passengers cannot be realized unless all of the routes in

each of the various connect routings from p to q have been accepted.

DISCUSSION:

The set of routes R for the case of a connecting service has to
pq

be known before (3:2:9) can be written. This points out the fact that

*These terms are coined by mathematical programming minded applied

economists like Weingartner [1963]. An 'indivisible' project yields no

return unless the entire project is adopted. Projects are 'dependent'

if the effectiveness of a particular project depends on whether certain

other projects have been implemented.

**For the purpose of our discussion here, we have defined routes to be

the string of cities visited by an aircraft under the same flight

number. Routings, on the other hand, are paths followed by a passenger

in going from 0 to D. The routing may therefore consist of segments

from the same route or different routes.

IONS 11111
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it is not sufficient just to generate all the reasonable aircraft

routes between rll city pairs (which is a rather large number, as point-

ed our before), it is also necessary to trace out all the passenger

connect routings (which again may be large in number) between a city

pair not "satisfactorily" served by through service. This includes

those city pairs not connected by through service and those city

pairs, although connected by multi-stop through service (say a two-

stop), can be better served by a one-stop connection service, for

example. Again, the "curse of dimensionality" haunts us. The writer

again comes to the conclusion that route generation and selection should

be done simultaneously to make R.I.S'.E. computationally soluble. More

will be said about this point when we discuss the decomposition approach

for R.I.S.E.-in Section 3.3.

Let us count the number of rows. Constraints (3:2:8) and (3:2:9)

sum up to the upper bound of N(N-1), where N, as defined before is the

number of cities in the system. Assuming that one quarter of the city

pairs in the network are served by connecting service and each

connecting service is a one-stop and one-change of plane routing,

constraint (3:2:10) would amount to 1/2N(N-1). We write one equation for

each city pair. For an 80-city system, the total number of rows in

the connectivity constraint could be up to 9,480.

passenger flow constraint

Let us examine the passenger traffic between a city pair. A city

pair pq can be served by (i) a non-stop route p-q, (ii) a multi-stop

route p-...-q or (iii) a through/connect routing of a route/routes.
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Take the case where the city pair is served by a non-stop routing which

is a segment of a multi-stop route. For example, city B-C is served

by the non-stop routing B-C of the multi-stop route A-B-C-D. The

passengers in segment (B,C) could be from diverse origins and destina-

tions--they may originate from B and terminate at C (i.e., local traffic),

or they may be through traffic from A to C or B to D, and there may even

be connecting traffic making connections at A or B. The passenger

traffic in (B,C) can therefore be identified by (i) the route they are

traveling in and (ii) the O-D of the passenger. We say that the p

r

and the O-D pair pq -- Mnr. The 'passenger flow on route ym ispq ij r

said to be composed of "multi-commodity" flows (a term first coined by

the management scientists when they modelled the distribution of

multi-commodity goods between warehouses and shops). In our context, it

is more appropriate to call them "multi-O-D" flows because they are

passenger flows from diverse O-D's. When an individual passenger

wants to make a trip from 0 to D, he has a large number of alternative

paths open to him. Theoretically, he could take any combination of

segments in the whole network as long as they constitute continuous

paths from 0 to D. He can take a rather circuitous multi-stop and

multi-conn'ection route if he wants to "see the country". Or he may

want to go via non-stop if he is the average business traveller who'

has a schedule to meet. In our example, to model this path choice

phenomenon, the traffic between an O-D pair is given a whole copy of

the route map to choose from. Thus the O-D traffic from 2 to 3 is

IN,
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flown over copy 2 3 of the four copies of the route network (see

Figure 3-2-1).

A-t this point, we model builders have to make an assumption on

how an average passenger would make his path choice. The widely

accepted assumption is that he would take the shortest time path

from 0 to D. Each passenger would take the path most convenient for

himself. Seldom could he be persuaded to take a circuitous, inconvenient,

multi-stop routing between the city pair so that the airline could

save money in putting in a redundant non-stop service between the

same city pair (hence a higher profit for the airline). From the point

of view of the passenger, he just wants to go the most convenient

path from 0 to D. Such is the difference between "descriptive" versus

"prescriptive" traffic flows.

Referring back to Figure 3-2-1, for O-D flow 2 - 3 , we have a

min-path problem on the copy of network from 2 to 3 . In the

figure is shown four copies of the network corresponding to four O-D

-passenger groups making their path choice on their copy of the network.

Each group of O-D passengers trying to take the minimum time path from

0 to D. We are dealing with four min-path problems. In this objective

function we will find four minimization operators. This will be discuss-

ed more fully when we come to describe the objective function.

Each copy of the network is represented by a node-arc incidence

matrix. This matrix has nodes along the rows and arcs (in our case

route segments) along the columns. If we read row-wise for a given

node, say node 1 in our example, and put a "1" under the arc if it
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is incident from it (i.e., pointing away from the node) and a "'-1" if

-it is incident on it (i.e., pointing into the node), We have

opl +o"2 o 3 _ll 1P0P 1+ 0P 2 0P 3- 1P 1+ Pi
12 13 31 21 13

in the tableau (see Figures 3-2-1 and 3-2-2). One characteristic of

the node-arc incidence matrix is that each column has only two entries--

a "+1" and a "-1".

The route network is copied four times. Each passenger flow

variable mP. (the flow in an arc) is tagged with different O-D

U. designations in each copy __ mP* If we are talking about copy
* pq ij.

2 - 3 , we can write for node 1 , where no passengersooriginate or

terminate, the constraint

o 1 + 0P2 - o 3 o 1 + P = 012 13 12 31 12 21 12 13

which simply says "flow in equals flow out", which is best seen in the

following form

12 + 12 13 12 12 31 12 1

Since for this copy describing trips from 2 to 3 , no passengers

originate or terminate at node 1. Node.lis neither a "source "'or

"sink". It is a "bypass node". Let us generalize the node-arc

incidence equation for a bypass node k

I mpr-- m r =0 -V p qm~rdi pqik 3 pq kj =0

6
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The first term above represents the sum of the flow into node k,

the second term represents the sum of the flows from k. The flows

in and out must be equal for the bypass node k.

While 1 is a bypass node for copy 2 - 3 , it is an origin node

for copy 1 - 3 (i.e., a source). Passengers originate at 1 and

terminate at 3 in this copy. In this case, the bundle of flow into

node 1 would include the originating traffic P 13 We write the node-

arc incidence information for node 1 as

flow in flow out

P +m rmr

13 . 13 i3 13 33
m,r i m,r j

which is the same as

1M 3 m.Pr _13
m,r i mr 33 1

In general for k being an origin (source) p:

I p - I Impr. = _pq -Vpq

m,r i pqip m,r

It can be shown that if k is a sink q, the above equation is the same

except for a sign,

MP r M r P Jl pq

m,r iq mr pq qj pq

To summarize the node-arc incidence relation for an origin (source),

destination (sink) and bypass node, we write
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IP for k = origin p

p ik p pj pq = destination q
m,r i m,r jq kj

0 = bypass node

The copies of node-arc incidence matrices are linked to the

connectivity constraint via the following relation

-P x -
pqpq

MP ri mp P m..r Px (3:2:11)
m,r i pq ik m,r j pq kj pq pq

for k = origin p

= destination q

= bypass node

As an example of the above equation, the reader is referred to the

tableau in Figure 3-2-2. Notice that connecting traffic is taken care

-of in exactly the same way as through traffic. This can be seen in

the fourth copy of the node-arc incidence matrix (copy 3 - 2 ) where

we can check (Figure 3-2-1) that the shortest route (in fact the only

routing) between 3 and 2 is to go connect at city 1 . The ease

with which connecting traffic can be handled within this formulation is

rather satisfying.

A word about how we define the travel time on the links of the

route network: segment travel time is defined as the block time. For

a multi-stop route through service, the travel time for the whole route

III
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is the sum of the block time of all the segments. In general we write

mtr as the travel time of the m-stop routing from i to j on route r.

Such definitions would be a rather rough average figure over a cycle

time. Unfortunately at the level of aggregation we are dealing with,

a better method has not yet been found.

With our multi-copy formulation and the way link travel time is

defined, it is not necessary to assign 'weights' to a non-stop versus

multi-stop versus connecting route arbitrarily. The present formulation

will automatically find the shortest time path from all O's to all

D's.

The right side of constraint (3:2:11) shows in a nutshell how

R.I.S.E. defines the potentially profitable city pair market to serve.

x pq is either "l" or "O". If x = 1, city pair pq is served and
pq pq

routings have to be found via the min-path formulation in copy p - q

Otherwise (i.e., x = 0), the copy is not linked to the rest of the

tableau and we have one less min-path problem (from p to q) to worry

-about.

All four copies of the node-arc incidence matrices are linked

together by 'flow bundle' constraints. By a .'flow bunale' I mean

that the passenger flow in a route segment is composed of a collection

of flows from diverse O-D pairs, as explained earlier. Referring to

Figure 3-2-1, the effect of the flow bundle constraint is shown

graphically as 'superimposing' all the copies of route maps. into one

(see the graph at the bottom). In non-stop route yo, which leads from

1 to 2 , we will find flows from 1 to 2 (the local traffic),
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plus the connecting traffic going from 3 to 2 connecting at 1

We write that the flow in route v 0  P could be composed of flows

fro. all 0-D pairs,

0 p1  + 0pi + op1 + 0p1  =0 pl
12 12 13 2 23 12 32 12 12

Some of the 0Pl 's may be zero. In our case, an inspection showsI pq 12
that the O-D flows 0P 1 and O1 will not be found in segment (1,2).13 12 23 12

In general we write the following segment flow bundle equation

I mP r. = r Vm,r and ij (3:2:12)
pq pq ij ij

The diagonal structure of the tableau generated by this constraint

is shown in Figure 3-2-2.

It is necessary to define a segment flow variable ij. in

estimating the frequency of a route. Enough frequency has to be

scheduled to accommodate the traffic on a segment which carries the

largest bundle of passenger flow. Take the example of route A-B-D-D.

If there are 100 passengers from A to B, 200 from A to C, and 50 from

B to D and there is no connecting traffic, segment (A,B) carries 100

passenger., (B,C) carries 250 and (C,D) carries 50. Enough frequency

has to be scheduled to accommodate the peak segment flow, which in our

case is (B,D). Defining <-> as the upper integer of - , we can say in

general
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frequency > max I / r
ij pg pg ij fL *sa

where fL = load factor, and

sa = seat capacity of aircraft type a

If we look at the objective function we find that route frequency

is exactly determined in this manner.

DISCUSSION:

Multicopy formulation of traffic flow was originally suggested by

Charnes and Cooper [1961], Robert and Funk [1964], Tomlin [1966], etc.

We have extended the formulation to handle (i) 'descriptive' passenger

flow by each O-D pair, (ii) an airline route network (instead of a high-

way network*) and (iii) a distinction between through versus connect-

ing traffic (such distinction does not exist in ground traffic).

Let us count the number of rows in the passenger flow constrinat.

The number of nodes, N, in the network is replicated in an many copies

as the number of O-D pairs: N(N-l). Equation 3:2:11 could take up to

*Figure 3-2-3 puts both the. 'route network' and 'highway map' of our

three-city system side by aide for a comparison. There is no such

thing as a 'one-stop route' in a highway network. A route network, be-

sides having one-stop routes, also shows the segments of the one-stop

route, witif travel times, e:;i., t and t 1 Furthermore, there are non-
21 13

stop routes such as the one shown with. travel time 0t 2. A highway map,
12e

on the other hand,, only has- links between adjacent city pairs-.
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N N(N-1). The linking constraint Equation 3:2:12 written to bundle up the

various O-D flows in a segment, could take- up to the number of segments

in the network. Assuming 1 1/2 segmenta per route, there are 1/5 |R|
segments in the whole- network and hence that many- rows- in Equation

3:2:12. For an 80-city- system, and assuming two route candidates

generated per city pair (a rather conservative figure), there could be

524,560 rows- in the passenger flow all together!

3.2.3 Objective Function of the Integer Program

The mathematical program seeks to maximize income to the airline

operator. Income is revenue minus direct operating cost minus indirect

operating cost.

While the operator is trying to maximize profit, the travelling

public is concerned with minimizing their travel time from origin to

destination. This presents us with a game-theoretic problem where there

are two decision makers: the operator and the travelling public. The

operator, in order to achieve high profitability, must align its air-

craft routes with the preferred passenger routings so as to capture

the highest market share of passenger patronage.

revenue

Revenue is O-D passenger, p , times yield, y . p can be

either a function of the type of routings (.non-stop/multi-stop/

connect) or simply- a fixed number. In our formulation, p pq is to be

interpreted as the. potential O-D demand between a city pair. p-q

is- either connected or disjoint depending on the route structure.

The potential O-D demand ppq is served if the integer-Aprogram
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decides that it is a lucrative city pair market and a route network

is configured to connect p and cl. Otherwise, pq will be disjoint, and

thele will be- no traffic between the city pair. The actual demand

would he zero and there will he no revenue from that city pair.

For the sake of illustrative clarity-, the O-D demand p in our example

formulation (shown in Figure 3-2-2) is- a fixed number and not a function

of non-stop, multi-stop or connect routings. The revenue in such

a case is E y p x , where x is either "1" or "0" corresponding
pq pq pq

to whether city pair market pq is served by the route map.

A MORE GENERALIZED DEMAND FUNCTION

A more general formulation of demand where ppq is a function

of the type of routings is shown in Figure 3-2-4. In the demand function

shown, p0 is the passenger demand if a non-stop routing is provided
pq

between p and q. p1 is the passenger demand if a one-stop direct
pq

routing is provided, and so forht. Similarly, if a one-stop connect

1 1
routing involving one transfer is scheduled, p passengers will be

pq

attracted, etc.

The effect of O-D frequency on demand has not been considered in

the demand functions. of Figure 3-2-4. Frequency is assumed fixed

at the practical upper limit of the demand-frequency curve as shown

in Figure 3-2-5. The demand figures used in R.I.S.E. is therefore the

passenger patronage corresponding to a "saturated" market in which no

appreciahle. demand can he captured with. additiomal frequencies.

The effect of O-D travel time on demand has- also been neglected.

Travel time is assumed to be fixed at the minimum time for the type of

moil 161141IN 1A
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routing. For example, p1 would be the O-D demand corresponding to the
pq

shortest one-stop routing between p and q. Similarly, 1p would be the
pq

demand corresponding to the shortest two-stop connect routing between

pq involving only one transfer.*

It is assumed that O-D demands are additive. For example, if both

a non-stop and one-stop routings exist to serve city pair pq, the total

induced demand is the sum of the demand corresponding to a non-stop routing

and the demand corresponding to a one-stop routing, i.e., p0 + p.
pq pq

Similarly, if both a non-stop routing and a one-stop connect routing

serve the city pair, the total demand would be p0 + pl etc.**
pq pq

*The minimum-time assumption is made for computational efficiency.

It can be bypassed in a straightforward manner at a much higher

computational cost.

**By assuming that demands are additive, computational speed and

storage requirements are greatly reduced. The assumption can be

bypassed in a straightforward manner at a much. higher computational

cost.
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The above more generalized demand function calls for some revision

of some of the. connectivity- and passenger flow constraints. Constraint

Equation 3:2:8 will now read:

rm yn - om > 0
rER r pq -

for all m pq

where R7 is the set of routes connecting pq via m-stopspq

Constraint Equation 3:2:9 will read

-I

I RmI X m > 0 for all Z, m, pq(3:2:14)
,RF I r pq -

Pq re my

where Rm is the set of routes connecting pq via m-stops

in exactly k connections

Constraint Equation 3:2:10 becomes

for all ym. Ym, Rp
for ~ all pq sre ymr

(yM' - y ,) = 0 for all pq served by more
than 1 connect routing, and

for all k, m (3:2:15)

And constraint Equation 3:2:11 becomes

- pr m- m

for all pq and k

k= p origin; = q destin

- Y, m m

I kpq, XpqQ m p m

= Bypass node

(3:2:13)

(3:2:16)

mimmimmliimmimi 11011W
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Each row in Equation 3:2:8, Equation 3:2:9 and Equation 3:2:10 has

now been expanded to M rows, where M, as defined previously, is the

number of intermediate stops in the longest route. Equation 3:2:9 has

to be further replicated L times, where L is- the largest number of

transfers- allowed in a routing.

We summarize the general expression for revenue(REV):

REV = ypq p kPpq xq (3:2:17)
pq mZ

Cost

Cost is composed of direct operating cost (DOC) and indirect

operating cost (IOC). DOC is cost per block hour times the block

hours per flight times the frequency (flights/cycle)

am a m
DOC = ca tr nr

where anm = frequency (flights/cycle) along the r th M-stop
r

route using aircraft a

Frequency can he estimated if the maximum segment flow, the average

load factor on the segments., fL, and the seat capacity of an aircraft

type a, sa, is known. Dividing max(mp ) by fL sa, and rounding off to

the. next higher integer gives the frequency-:

am =f1 max (pr)

L Sa ijLr
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where Lm = set of link segments (i, j) making

up route m-r

<-> = operator to round off to the next higher

integer

For route r and aircraft type a, the direct operating per cycle

can be written as

ac =cat max mi Lscm atm /a mpr /f

ijeLm

and DOC for the whole system is

.DOC acm a t max m p rmj/fL s (3:2:18)
a m tr a m r rije-Lr i L

IOC is usually estimated by linear regression. The typical explanatory

variables are average passenger traffic per cycle, PAX, total system

departures per cycle, DEP, and revenue passenger miles per cycle, RPM.

IOC = c + c PAX + cDDEP + c RPM

0 p D CRR

PAX can be written as

PAX = I p X = - m £p
I p pq cm pq pq

DEP can be written as

DEP = L a4 = -- LmI 1s max p
a mr a m,r r fL sa ijCLr a u /

NINUIRIN
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And RPM can be written as

RPM mtr mpr

pq m roRq ijcLm ij pq ij
0p q r

where we have used time distance instead of mileage distance. The

coefficient cR is defined in a consistent manner.

DESCRIPTIVE TRAFFIC FLOWT

The above revenue passenger mile expression is based on a

particular passenger flow pattern {p }. In R.I.S.E., passengers

are modelled to minimize their travel time from 0 to D. To represent

this descriptive traffic flow behavior, we define the operator n
tMpq)

to denote that the passenger flow from p to q is distributed in the

network along the minimum time path (as shown by the expression min)
t

Hence

mn ( l mtr m r)
tip-q) m rE Rq ijcL

would mean that trips are executed from origin p to destination q in the

descriptive manner. The expression for revenue passenger miles can

now he put in its final form

REP=M min (m . r .p r.)!
pq t(p-q) m reRM ijcm ij pq ij

O'Ti r

whicF simply sums- up all the O-D trips from p to q.

Having defined the expressions for PAX, DEP, and RPM, we can

write the equation for indirect operating cost, IOC, as the sum of
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these three terms.:

[0C- co + c p Xp+ CDX
pq p

CR min
pq ttg)m reORm ij cpq Lr

- aL| max r/fL s+
mr ijCL m a ij L a> +

r

mtr mpr
ij pq ij

(3:2:19)

Notice that for illustrative clarity, we have shown a tableau

(Figure 3-2-2) with only one aircraft type. It can be

checked that if we rewrite constraint Equation 3:2:12 in several parts,

the multi-aircraft type case can be handled easily. First, we write

for all m, r and ijI p j - mp = 0
pg i

(3:2:20)

Second, Equation 3:2:12 is written as many times as there are aircraft

types,

m r m Ir>
p pij > pg

for all a, m, r and if (3:2:21)

Finally, we- specify that only enough aircraft types are assigned to

handle. the- traffic

m r m r
a a ij ~ Pij = Q

for all m, r and ij

Assuming there are. 1 1/2 segments- in a route on the average,

we have added 3|~a~IRi more rows to Equation 3:2:12, where |Il is the

(3:2:22)

01111wlwilllillmihl'k111111 J 11,1111011 M 11101111WWII 11111 16
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average number of aircraft types assigned to a route.

Income

Income is revenue minus cost: INC - REV - DOC - IOC.

the appropriate terms by the expressions 3:2:6, 3:2:17 and

INC = (y
pq pq

Substituting

3:2:18

- c ) Ipm k x - I (caat + ILrIcD
P m pq a m r

max ( pj/fL sa>- c min( mt . j r
ij EL aR pq t(p-q)m r E R ij EL ij q ipq r

= y Ipm 
x m

p Pqp m p q P

ScR I min(I I
pqt(pi m reoRmpq

a m r a

ij ELmr

miaxmK mPa /fL S a

mtr mpr) - c
ij pq ij 0

where ypq = y - c, and mc r= caat + ILrCD

The objective function seeks to maximize income (or profit, or net

revenue) per cycle. co, being a constant, is dropped form the expression

for INC.
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max{ = ~ p q m
pq pq t pq

- tf4 mtv )_.
Rpg V trc Rm ijcLm

pq r

-- mcr max /fL s (3:2:23)
a im r ijL a

discussion

The objective function takes into account the equilibrium

computation of demand and supply. On the demand side is the potential

O-D passenger kp ,q £pm is a demand function since it is responsive
pq pq

to the level of service expressed in terms of non-stop versus multi-

stop versus connecting routes. On the supply side is the airline

trying to offer the various kinds of connectivity level of service

(non-stop, multi-stop, connecting or disjoint) between the O-D pairs

in order to capture the passenger demand. The equilibrium point

represents a finalized route map providing the connectivity to serve

an economically profitable portion of the potential O-D demand market.

Let us count the number of variables. (0-1) variables kxm
pq

could he. 3M NN-1), where H and N, as defined previously, are the

maximum numher of multi-stops and the number of cities in the network.

Passenger flow variables by 0-D, route and segment, , r could be

as large as- 3N2(Nql) 2 ()+1) where we have assumed that, on the average,

there are only- two route candidates generated per city- pair (a rather

WIN " 1111611, "A' liii1liAllilillilillililliniiii 1.11119
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conservative figure) and there are 1-1/2 segments per route. Segment flow

variablcs, p , could take up to 3(M+1)N(N-1). For an 80-city system, and

two-stops being the longest route considered, the mathematical program can

take up to 341,602,800 variables!

We have only counted the variables that appear in the objective func-

tion. The route variables, ym s, have not been considered. The y ms are
r r

'coordinating variables' and there are as many as the number of route candi-

dates included in the mathematical program. The number is large, as men-

tioned numerous times before. The route candidates define the route network

The route network provides the connectivity between city pair markets, and

it facilitates passenger flow. Although ym's do not appear in the objective
r

function, it is through {ym} (i.e., the route network) that x ,m p. and
r pq pq 1j

mp are associated with each other (see the structure of the tableau in

m k m mrIFig. 3-2-2, particularly see how y link the variables x and p..).rpq pq 13

y s coordinate the variables on the demand (revenue) side x , and those
r pq

on the supply (cost) side, mp . and mpr., to bring about a demand/supply

equilibrium (profit maximization). We are continuously coordinating the

revenue and cost (demand and supply) sides as we generate route candidates

m
7r'

3.2.4 Discussion on the Route Selection Integer Program

Let us look back on the whole integer program (summarized in Fig.

3-2-6) and try to answer these questions:

(a) What aspects of the 'real world' have we included in the

model?



Figure 3-2-6 ORIGINAL INTEGER PROGRAMMING FORMULATION

Objective Function

max z =
pq

ypq ppq
m 9

m
xpq -rRX

pq
min ( X

t(p-q) m re R ijLmo pq r

mt mp r
ij pq ii

- I

a m
m rc

r
max mapj/f L-sa>
ij eLr

Constraints

Competition requirements

M

men
rnRm

pq

y m>r>1 for all n and the specified pq

O-D Connectivity

om
re R

pq

ym o m > 0
r pq

1/| Rm
A pq m

re Rq

for all m, pq

m _xpE > 0 for all k, m, pq
r pq -

(3:2:23)

(3:2:1)

(3:2:13)

(3:2:14)



(Continued - Figure 3-2-6 ORIGINAL INTEGER PROGRANMING FORMULATION)

(y - y ,)= 0r r
for all y , yr ,,E, pR7 (3:2:15)

for all pq served by more than one connect routing

and for all t, m

Passenger flow M i m
S pq xpq
M

m r m r
Sr i-pq ik pq kj
m r j

m r m r
pqPij - Pij

pq

m r m r
pqpij a ij

p r m r

a aij -Pj

- 0

> 0

=-0

Ym Y m
9, mmppq xpq

k - origin

k - destination for all pq and k(3:2:16)

k - bypass node

for all m, r and ij

for all a, m, r and ij

for all m, r and ij

(3:2:20)

(3:2:21)

(3:2:22)

and ym - (0-1) variable
r

m pr and mpr .-integer variable
pq ij iJ

(positive)

=..o ONNO. -naw -am -i IV - - -NNW

x
pq

Wa ' -on M M
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(h) What type of mathematical program are we dealing with?

Linear or nonlinear, convex or nonconvex, single or

multiple objective?

An airline operates- in a regulatory environment provided by the

C.A.B. The model takes as input a given fare structure and route

authority. The route authority- restrictions- are not explicitly shown

in constraints of the integer program, since the formulation is only

for the selection phase of R.I.S.E. The generation phase of R.I.S.E.

has already quaranteed that every route candidate is allowed by the

C.A.B. route authority.

An airline operates in a competitive market. The competition

requirement constraint takes into account the route competition between

a city pair. Given that competitor X is serving city pair A-B by a

one-stop route the airline concerned can match up the competitive

service by specifying in the constraint that A-B be served by a one-stop

or better.

An airline faces a passenger O-D demand that is responsive to the

level of service. In the integer program, O-D passenger demand for

an airline has been modelled as: a function of the quality of service

the airline offers. A non-stop service hetween a city pair would

attract a different numher of O-D passenger patronage than say a

connecting service.. Given this, demand function facing an airline, the

integer program decides on the best level of service to offer between

a city pair.

-_-MIM11MMERMI
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An airline tries to satisfy their customers--the travelling public.

Passengers, as individual consumers, try to minimize their travel time

from 0 to D. Given a schedule, a passenger would take the flight and

connection most convenient for himself. This 'descriptive' behavior is

simulated by the passenger flow constraint and the expression in the

objective function for each O-D pair.

min ( m m mtij mpq )
t(p-q) m re Rpq ijELr

Among the prime objectives of an airline is profit maximization.

The objective function of our model seeks to maximize profit to

the operator given the regulatory/competitive environments and the

passenger behavior.

We will identify the type of integer formulated above. The

constraints are all linear. It follows that the constraints define a

convex hull. The complication comes from the objective function.

Conceptually, the objective function is of the form (refer to Figure

3-2-6 for the actual objective function)

max {z = h(x) - min ( ai b 0)-max (g (x)>) (3:2:24)
Eaii j

Notice there are min and mqx operators 'nested' within a max operator.
Eiai J

The nexted iin operator comes from a descriptive passenger flow. The
ial

nested mex operator comes from frequency estimation. The objective
J

function is therefore a nonlinear, nonconcave, and nonconvex function.

It is best described as being discontinuous, or 'zigzag'.
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The above Equation 3:2:24 assumes a dual objective. While the air-

line operator is maximizing system profit, each transportation user

(i.e., the passenger) is minimizing his/her own travel time. There

are two decision makers, typical of a game-theoretic formulation. The

equilibrium solution to the "game" played between the operator and

passengers would be tor the operator to align their routes to the

preferred minimum-time passenger routings, so as to capture the

maximum system profit.

The biggest hurdle of solving R.I.S.E. is not so much the

nonlinear, nonconcave and nonconvex properties of the objective

function of the integer program. The problem lies in trying to carry

out an optimization problem before the constraints and the objective

functions are defined. Remember we are making an assumption when we

show the above integer. programming formulation. Namely., that all the

route candidates have been generated. The integer program in such

a case is reduced to a route selection problem. The set of route

-candidates that can be generated in finite. But it is a typical

combinatorial problem where finiteness also means large. Literally

thousands and thousands of routes that are allowed by the C.A.B. route

authority can be generated. It is impossible, in terms of the

dimension we will be dealing with, to include all the legal routes (or

even those 'reasonable', e.g., noncircuitous ones) in the integer program

for selection. However, the objective function and constraints will

not be defined unless all the qualified route candidates yr have been

generated. As discussed before, the generation and selection problems
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cannot be separated. The only approach is to do generation and

selec-ion simultaneously. In other words, we are dealing with an

,tin..ation problem where the objective function and the constraints

are not known explicitly a priori. The objective function and constraints

are incrementally developed as we carry out the optimization problem.

We are exploring the shape of an unknown objective function and

constraints as we carry out the solution algorithm. The R.I.S.E. solution

algorithm carries out column and row generation at the same time that

it improves on the current 'feasible solution' in a 'hill climbing'

fashing typical of an ill-behaved optimization problem (see Wilde and

Beightler -[1967]).

Let us, for a moment, pretend that a magic route screening

criterion have reduced the potential route candidates per city pair to

two as input to the selection integer program. (Notice that by

limiting ourselves to only such a small subset of route candidates we

may have rejected the global optimum to start with.) Let us further

.assume that passenger O-D demand is perfectly inelastic, i.e., ppq

is not a function of whether the route is non-stop/one-stop/two-stop or

connecting, and that we are dealing with only one aircraft type. We

will still have N(N-1)(M+N+2) + 1.51RI rows and 3N(N-l)[N(N-l)(M+l) +

2M + 1] variables. In an 80-city system with two-stops being the

longest route, it would mean 553,000 constraints and 341,571,200

variables--a formidable problem!

Hopefully by now, the type and complexity of optimization problem

we are dealing with in R.I.S.E. has been'identified. A method will
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be discussed in the next section which the author personally believes

would solve the problem. It combines generation and selection in a

decomposition type approach.

3.3 Generation and Selection: A Decomposition Approach

The first section of this chapter deals with the generation of

route candidates. The second section deals with the selection among

these candidates. The current section will combine these two

processes and we will see how they work together simultaneously.

3.3.1 Simultaneous Route Generation and Selection

Sections 3.1 and 3.2 have emphatically pointed out that it is

not feasible to generate all 'reasonable routes' and then select among

these routes in an integer program. Route generation and selection .;

have to be carried out simultaneously. Routes should be generated only

as needed. This means that the conventional notion of defining a

feasible region and then searching among the region for the optimum

does not apply in R.I.S.E. Because the complete set of feasible routes

are too expensive to generate computationally, we generate only those

few routes which hold the greatest promise to be selected. In the

R.I.S.E. optimization problem the feasible region is so expansive

that we cannot define the boundary of it a priori. Only those few spots

where the dhance of obtaining the optimum is the greatest will be

identified and search is carried out only among these few spots. Put

in another way, the exact expressions for the constraint equations and-

the objective function cannot be put down at the start of the algorithm.

More constraint equations are generated and more variables (routes) are

111111111N
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included in the objective function and the mathematical program as

the zlgorithm proceeds. We refer to this process as column and row

generation. In order to facilitate column/row generation in the

simultaneous generation and selection algorithm, the original integer

program (Figures 3-2-2 and 3-2-6) has to be transformed into a

decomposable formulation. The current section is devoted to discussing

how to rewrite the integer program, as given in the last section, into

a decomposable form. It serves as a transition from the model formu-

lation discussion of the present chapter to the model solution

discussion of the next chapter.

3.3.2 The Primal Decomposition Formulation

When dealing with large mathematical programs with a 'block

diagonal' or 'staircase' structure (as is the case of our integer

program), we often have to resort to decomposition. Some of the

classical papers on decomposable systems are Dantzig and Wolfe [1961],

Tomlin [1966], Jarvis [1969], and Benders [1962]. Simpson [1969]

-discussed a decomposable fleet planning model. Manheim [1966] viewed

the highway location problem as a multi-level decision process.

Chan [1969] addressed a special case of the network investment problem

as a two level problem--the 'aggregate' and the 'detailed' levels. The

more recent works in the subject include Geoffrian [1970] and

Mesarovic, et. al. [1970].

In this section, we will transform our original integer program

tableau (Figure 3-3-1) into a decomposable form (Figures 3-3-2 and
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Figure 3-3-3 THE DECOMPOSABLE FORMULATION

Objective Function

max z I I pm x m - c min mtr m r +
q pq M pq R X t(p-q) MrC C

pq

mtr
m,r, r r
c C?
pq

m r + m'tm ,m2 ''' m ,m2''')
pq r m',mrt...r, pq r

, E C"
pq

- m maxm L-/ sa-1 1 ar a'ij'L@ Sa)
a m,r ijLr

Constraints

Master program

S mpr + m r +
m,,r p m,rr pq r m,r',m ,m2'' 
s R E R' cR"
o pq o pq pq

M

X mp r) >1
m=n rEn Rm pq

pq

(3:3:9)

m mm 2 '.. = pm £m for all pq(3:3:1)
pq r k m pq pq

for all n and the (3:3:2)

specified pq



(Continued - Figure 3-3-3 THE DECOMPOSABLE FORMULATION)

Revenue computation

( ?pr _ o m > 0
Srp q pq -

m ,r

E Rm
o pq

/IRm rI x (pr _ k m > 0
Apq ml ,r p q Mq

R RM
ppq

m il r) n r?
Ip ,m ,,p) = 0

p q p q

for all m, pq

for all Z, m, pq

for all m'-r, Mn"-r's R7
zpq

(3:3:3)

(3:3:4)

(3:3:5)

for all pq served by more than one

connecting service

and for all k, m
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(Continued - Figure 3-3-3 THE DECOMPOSABLE FORMULATION)

Cost computation
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pq rmr pq
pq ij

pij +

pq
m r +

r rpq r
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pq ij

m ,m m2 ... r

mrmCr
pq ij
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for all a, m, r, ii

m' m 2''- m r
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mCr
pq ij

= 0 (3: 3:7)

for all m, r, ij

m r m r m' m,m2', mp
pq pq r pq r a ij

xm 0-1 variable
pq integer
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3-3-3). The original problem is cast into a 'master program' and the

associated 'subprograms' in the spirit of Dantzig and Wolfe, Tomlin and

Benders. First, let us briefly review the above three pieces of litera-

ture.

In view of the large dimensions of the original tableau, the

above mentioned authors transform the original problem into an

equivalent, but much smaller, master program as a start. Columns or

rows are annexed one at a time to the master program only 'as needed'.

The philosophy is that hopefully the algorithm converges to optimality

before too many columns or rows are generated. The column/row generation

is carried out as follows. After one iteration of the master program,

each subprogram receives new input from the master. With these inputs

(e.g., in Dantzig and Wolfe/Tomlin, these inputs are the dual variables

of the linking constraint of the master, which modify the cost

coefficients of the subprogram), the subprograms are solved. The

subprogram solution(s) suggest(s) the most promising column/row to be

annexed to the master. (This step is analogous to route selection in

R.I.S.E.). The master is resolved and the next iteration begins. The

algorithm terminates when optimality condition is achieved in the

master. (The check on optimality is analogous to the evaluation step

in R.I.S.E.)

R.I.S.E. decomposition works in a similar manner except that a

primal approach, instead of the above dual method, is employed. Instead

of using a dual price to communicate between the master program and

subprograms, its primal analog-marginal profit-serves the role.
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Through a three-node example network, we show here how the original

'sta-rc'ase' integer program tableau (see Figures 3-2-6 and 3-3-1)

is transformed into its equivalent problem (Figures 3-3-2 and 3-3-3),

with its master program and subprograms.

master program

The transformation boils down to combining the route covering

matrix and the different copies of node-arc incidence matrices (shown

in Figure 3-3-1) into an arc-chain tableau (shown as the master

program in Figure 3-3-2). By doing so, we greatly reduce the dimension-

ality. Such a transformation is an extension of the papers by Tomlin

[1966] and Jarvis [1969], who gave a physically appealing network flow

interpretation of the Dantzig-Wolfe decomposition. In a graphic form,

we show how the node-arc incidence matrix formulation is cast into an

arc-chain formulation in Figure 3-3-4.

Notice that the transformation results in fewer rows but at the

expense of more columns. The row reduction is a result of the fact that

each O-D copy of node-arc incidence matrix is 'squeezed' down to a

single row of l's, while the linking constraint has the same number

of rows in both tableaux. Let us refer to our three-node example

tableau in Figure 3-3-5. This is an equivalent formulation of the

original tableau of Figure 3-2-2. The constraints on connectivity and

constraint Equation 3:2:12 on flow bundling are essentially unchanged.

The constraints on competition requirements and constraint Equation

3:2:11 on O-D passenger flow have been cast into an arc-chain formu-

lation shown in the part of the tableau outlined by heavy lines
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(Figure 3-3-5). This arc-chain tableau has the 'arcs', or more

3 precisely the O-D pairs, on its rows and the chains/routes on its

ColUnL11S. It has 'multi-copies' by O-D pair. The left-most copy is

for city pair 1-2. The next copy for 1-3 ... up to the last copy for

3-2. In o r n t t n3-In our notation, a route is identified by (i) the number of

intermediate stops m, (ii) a sequence number, and (iii) the origin

city p and termination city q. As an example, m-r: p- ... -q denotes

I the rth m-stop route originating at p and terminating at q. Notice

also that the route m-r = p - ki - ... -km - q may provide routings

for through and connect passengers. Also we denote m r as the
pq

passenger from p to q travelling in the r m-stop route p- ... -q,

ip i as the flow from p' to q' in the through service routing r' of
Mm mm2'''

route m-r = P- *.. -q, and pngnpr" as the flow from p" to q"

in the m-stop connect routing r" utilizing a number of different routes

and making intermediate transfers at mi, m2 ... Examples of these

-notations will be given in the paragraph below.

We pointed out that an rth m-stop route makes it possible to

carry passengers from diverse O-D pairs via through or connect routings.

These routings, which are made possible because of the existence of

rth m-stop route, would appear in the corresponding O-D copies. As

I an example (Figure 3-3-5) the first 
of the one-stop routes 2-1-3 can

carry passengers from 2 to 1, 1 to 3 and 2 to 3, we find the four

variables 21P 1 13p1, 23p2 in the corresponding O-D copies for 2-1, 1-3

and 2-3. (Due to the fact that no demand exists between 2-1, the copy
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3 2-1 is not shown). Notice that besides the route (represented by

11 11 11flow variable 21p), we include the routings 13p1 and 23p2 , in the

of the arc-chain tableau. Another example of a routing is the

connection made at 1 in going from 3 to 2 (i.e., 3-1-2) which shows up

1 1 1 1in copy 3-2 as 32 p1. Let us explain the clumpsy adscripts of 1'

m3m thp q l is read as the r M-stop connection route from p to q. The
pq r

routing is made up of two portions, connecting at the transfer station m.

An example would make this clear. 32p1 denotes that the first one-stop

connect routing 3-1-2 between 3 and 2 is consisted of two trips--3-1 and

1-2, making a connection at 1. Each of the trips, 3-1, 1-2 is a non-

stop segment. In general, the connection may involve more than one

transfer station, mpm1  should be generalized to pm 2-
pq r 'pq r

The former O-D copies of node-arc incidence matrices are 'squeezed'

into rows of l's along the diagonal of the arc-chain tableau. There

is a physical interpretation of this "squeezing' transformation. Take

copy 1-3, the row of l's constitute the following constraint:

o 2 1 1
13P + 23p1  p 13 '1 3

where x13 is a 0-1 variable denoting whether

city pair 1-3 is served.

which reads that the O-D passengers from 1 to 3 can travel both on

the second non-stop route 1-3 and a segment (1,3) of the first one-

stop route 2-1-3. It can be thought of as saying that a fraction of

the solution 0-D flow goes on route 0.2 and the other fraction goes
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via r are 1.1. These two routings constitute two smaller problems.

The rows of l's combine these small problems solutions to arrive

at the solution for an O-D problem for city pair 1-3. These rows of

l's appear in a similar context in the arc-chain formulations of

Tomlin [1966] and Jarvis [1969].

Theoretically, if we assume passengers do take circuitous

routings to 'see the country' , there is a high number of routings that

carry passengers between a city pair p and q. For example, between

city pair 1-3, it is possible that a passenger would backtrack by

going to city 2 and then make a connection via the one-stop route

2-1-3 to 3(refer to Figure 3-3-6). If this circuitous routing is

considered, we would have another 1 in the row of l's for copy 1-3,

thus increasing the number of columns. To avoid the 'curse of

dimensionality' , only the most reasonable route or routing (e.g., the

shortest route/routing) is annexed to the column of the tableau. In

this way we only generate the column (route/routing) as needed, in

the full spirit of the column generation scheme of Dantzig and

Wolfe. We will come back to this point later.

Let us formally write down the constraint equation corresponding

to the rows of l's.

m r + m r + m m19,I02. pq
pq , pq r ,pq r pq pq

m,r m,rr m,r

ER cOR r F-R"oRpq pq pq

for all pq
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where: R is the set of routes connecting pq.
o pq

R is the set of through routings connecting p-qo pq

R" is the set of connect routings connecting p-q.
pq

For O-D demands which are a function of the type of routing (i.e.,

whether non-stop, one-stop, two-stop, through or connect), the above

constraint has to be replicated M by L times, where M is the number

of intermediate stops in the longest route and L is the largest

number of transfers allowed in a connect routing (as defined in

Section 3.2). The passenger flow node-arc incidence matrices

represented by Equation 3:2:16 have now been transformed into an

equivalent arc-chain format

m r + m r + m mPm2
pq , pq r pq r

m,r m,r,r m,r . 2
E R E R' E R"

o pq o pq pq

S p x m for all pq (3:3:1)
Z pq pq

The rest of the arc-chain tableau is similar to the route

covering matrix of our original integer programming formulation (see

constraint Equation 3:2:1 of Figure 3-2-6). Essentially, if an O-D

pair is covered by a route, a 1 is entered under the route in the row

corresponding to the city pair. For example, the route 2-1-3 covers

1 1
2-1, 1-3 and 2-3, a 1 appears under 2 3p in the rows corresponding to

2-1, 1-3 and 2-3, (refer to Figure 3-3-5). The competition require-
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ment thaL a city pair is to beccovered by an m-stop or ber.ter routing

is specified by writine a ">1" on the row corresponding to the city

pair concerned. The only complication in the arc-chain formulation

is that instead of dealing with the former (0-1) vinary route variable

ym , we are dealing with a pure integer variable. We introduce the
r

operator (-), where we define (-) to be unity if the variable

exists and (.) = 0 if it does not. This converts the entries of

the arc-chain covering matrix mpr we are dealing with back to the
pq

m
familiar 0-1 variable y found in the route covering matrix of our

r

original integer programming formulation. This operator (-) however,

converts what used to be a set of linear constraints to a set of

non-linear ones. Let us formally write the competition requirement

constraint.

M
(,pr) > 1 for all n and the p (3:3:2)

mnn rEnRm
pq specified pq

(To refresh the reader's memory on notation, n is the number of

intermediate stops in a routing. Also the adscript "n" was there in

the original integer program formulation to denote the different

copies of the O-D pairs repeated along the rows, the first copy for

non-stop routings, the second for one-stop routings, etc., hence

accounting for the triangular shape of the route covering matrix

(refer to Figure 3-3-1).)

In the above equation we are summing over the routes only. The

routings (through or connect) do not enter into the picture in this

I M E Ehi iUilijI
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constraint at all. One final note-by specifying the competition

requirement within the arc-chain' tableau, we have eliminated one set

of Linary route variables ym, thus decreasing the column dimension

of the tableau.

We will show that unlike the way we indicated in the original

integer programming formulation, it is actually not necessary to

replicate the copy of O-D pairs (M+1) times along the rows of the

route covering matrix. Only one copy will suffice. The following is

an intuitive argument why this is so. Recall that the route covering

format allows for the specification of competition requirements on the

route map. By putting a '>1' corresponding to an O-D pair in row copy

n of the route covering matrix, the user specifies that the city pair

must be served by a n-stop routing or better. The key words are 'or

better'. If the user of R.I.S.E. specifies that a city pair A-B must

be served by two-stop or better services due to competitive pressure,

it would be logically inconsistant if he again specified that the same

city pair must be served by one-stop or better. It is either that

city pair A-B must be served by two-stops or better or one-stop or

better. The user simply does not know what he is doing if he specifies

A-B to be served .by both two-stops or better and one-stop or better.

This means if a '>' appears in the row corresponding to A-B in the two-

stop row copy ofThe route covering matrix, there would not be a 'a1' for

AB in the one-stop row copy, or vice-versa. To rephrase it, the '_l'
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ccns-raint can only be written for city pair A-B once in all the (M+l)

row copies of the route covering matrix. The finalized master program

with each city pair appearing only once in the route covering matrix

is shown in Figure 3-3-7.

DISCUSSION

Let us count the number of rows and columns in the master program.

Constraint Equation 3:3:1 takes N(N-1) rows, which can be approximated

as N2 , and in the case of a symmetric demand matrix function, N2/2

(where N is the number of cities and M the number of intermediate stops

in the longest route). Similarly, constraint Equation 3:3:2 takes

at most N(N-1) rows. For a symmetric route map, we can approximate

by N2/2. This number N2/2 can be further reduced since not every

city pair in the system is connected by through service. As an

example, in the 26-city system of Northeast Airlines, only 64 city

pairs are connected by through service(as of February 1971, and

2
counting only one way). This represents about 20% of the N /2 city

pairs. This reduction factor of 20% can theoretically be applied

towards N 2/2 to arrive at N 2/10. However, this reduction factor will

vary from airline to airline. The R.I.S.E. software package has to

be coded to cater for the worst case. Assume (i) a 50% reduction

factor, (ii) symmetric O-D demand matrix function, (iii) symmetric

route map, there would be N 2/2 + .5 x N /2 = 4800 rows for an 80-city

£ system.

While we have 'squeezed down' the number of rows considerably in

our present master program (notice we have not discussed the dimensions
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of the sa'oprograms yet), the number of columns (routes and routings)

remains large, if not larger than before. As we mentioned earlier,

the decomposition procedure reduces the number of rows at the expense

of the columns. The whole merit of the decomposition approach is

that routes/routings will be generated judiciously only 'as needed',

thus limiting the number of columns to a minimum.

Let us count the number of columns. The columns are route and

routing variables. By passenger routing we mean the path a

passenger follows in executing his trip from 0 to D. The routing,

as defined in R.I.S.E., may consist of segments from different

routes if the passenger makes connections. Assuming (i) 50% of the

city pairs are connected by through service routes, and the remaining

50% by connections, (ii) each route has 1.5 segments on the average,

(iii) each route generates 1.5 through service routings and (iv) all

routes and routings are symmetric, we expect 1.5 x 1.5 x N2 /2 x .5

+ N 2/2 x .5 = .8125 N2 columns. For an 80-ctiy network we could expect

5200 columns.

subprograms

Each origin-destination pair constitutes a subprogram. For an

N-city system, we have subprograms for city pairs 1-2, 1-3, ...

(N-1) - N. For each O-D pair, there exists a corresponding row of

l's in the master tableau (see Figure 3-3-5). Since each O-D

subprogram is solved sequentially, we expect to increase the number of

the rows of l's in the tableau as the solution algorithm proceeds. In

this sense, more and more rows are generated as additional O-D .
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subprograms are tackled.

The solution of the subprogram for city pair p-q involves

generating one or more aircraft routes, or connect passenger routing

between p and q. With the demand function as defined in Section 3.2.2

(Figure 3-2-4), only the shortest route (and its associated 'through'

routings) and/or the shortest connect routing between p and q need

to be found. The route/routings constitute the chains to be considered

as columns for the master program. The routes/connect-routings with

the largest marginal profit will be chosen to enter the master tableau

in our column generation procedure, as will be explained immediately

below.

marginal profit computation

In a dual decomposition method such as that of Tomlin [1966] and

Dantzig/Wolfe[1961], the selection of route/routing columns to be

annexed to the master program is based on dual prices. The primal

decomposition of R.I.S.E. does not employ dual prices. Instead

routes/connect-routings are selected according to its marginal profit

during the column generation procedure.

There are two parts to the marginal profit calculation--the

revenue ,part and the cost part as shown in Figure 3-3-3. The

marginal profit of a route is evaluated by solving for the revenue

potential and cost potential corresponding to the particular route.

The route with the best marginal profit is annexed to the master

program. This, in a nutshell, is the column generation scheme of

R.I.S.E.
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1. REVENUE COMPUTATION

The revenue potential of a route is computed by solving the

'connectivity' constraint of the original formulation (refer to Figs.

3-2-2 and 3-2-6). The revenue computation determines whether a city

pair is connected (served) and hence revenue can be expected from

the passengers that travel between that city pair. The revenue

potential of a route is a complex function of the network structure.

The addition of a route not only brings about new revenue from all the

routings between all the city pairs, within that route, but it might

also be the 'missing link' which makes a connect routing between a

formerly disjoint city pair possible. If this is the case, additional

revenue is expected from the connect traffic.

If we replace the route variables y in connectivity constraint
r

m rof the original integer program by ( tp ), we have the constraintI p q
equations for revenue computation. We will work out the case of

'fixed demand (i.e., perfectly inelastic demand) first and then general-

ize to a demand which is a function of the routing:

Sm(,qpr) x pq> 0 for all pq
m,r~p q

CoRpq for through service

R (r , pqIpr) -x > 0 for all pq
A m,r,p q

Ek R for connect service

I p

- IIIIIII1111110 II ,
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( m ir) m r')=0
P I V ) p ) = 0 for all m-r,m-r' E kRpq

for all pq served by more than

one connection service, and

for all k

In the last equation, we again use (-) to convert p, r to the

former y .
r

It is rather straightforward to extend to the case of a demand

function:

( ,mr o m > 0
p Vq1 pq -

for all m, pq (3:3:3)

I , ( , T ry _ pq > 0 (3:3:4)

m- R qm for all Z, m, pq
k pq

f Pr') = 0
p q

(3:3:5)

for all m'-r, m"-r' Rm
k pq

for pq served by more than

one connection service

for all Z, m

DISCUSSION

Let us count the number of constraints. We will assume (i) a

symmetric route network and (ii) half of the city pairs are served by

m ,r
E Rm

o pq

1

1 m I
Spq

( , r
p q
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2
th 1 -.,ice whi'e the remaining half by connections. Equation 3:3:3

. toi /2 N2/2~ J, whereRpqI is the average number of direct routes
pq

scz%,ng city pair pq. Equation 3:3:4 takes up 1/2 - N /2 - ICpql,

where lICpqI is the average number of connection routings serving a
city pair. If we have assumed that out of the city pairs served by

connections 50% can be connected by more than one routing. Equation

3:3:5 takes up 1/4 N2 /2 le | I, where I denotes the average number
pq

of transfer stations in a connect routing. For the case of

RI|T = 1, IC I = 1, IC' | = 2 and £ = 2, we have N 2/ + N /8 + N /2pq pq pq

=5600 rows for an 80-city system.

Tye columns involved in revenue computation consist of the

route and routing variables mp- 's and the connectivity variables
pq

zm m ' ax .q Since the p . 's have been counted in the master program, we

need to count only the x 's. If we assume (i) two-stops being the
pq-

longest route, (ii) only one transfer station in connecting service,

- and (iii) a symmetric demand matrix function, we would have 5/2 N2

columns. For an 80-city system, we have 16,000 columns.

It has to be noted that it is not necessary to write the full

3 set of revenue constraints for all the routes in the network. Only

several rows and columns, instead of the whole set need to be

-1 solved for each O-D route subprogram.

II. COST COMPUTATION

The second part of calculating the route marginal profit is

mi cost computation. Cost computation involves estimating the direct

110 1 W 1W , I I 1 '11 kil 11 0111MIN
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operating cost (DOC) and the part of the indirect operating cost

(IOC) associated with system departures. DOC of a route is evaluated

by multiplying the DOC per block hour, ca, by the length of the route

a m a m
in block hours, t , and by the route frequency n . The I0C

r r

associated with system departures is the unit cost per departure, cD'

times the number of departures, D. And we recall that D is the product

of the average number of segments in a route |TI and the route
r

frequency n . Therefore, once route frequency is known, computing
r

route cost is a matter of multiplication.

The main task in computing cost is frequency estimation. We

recall that the route frequency is the frequency of the route segment

carrying the largest flow volume in the route. We further recall that

in our multicopy traffic flow formulation, a segment flow could be

made up of through or connect traffic from diverse O-D pairs. In our

original integer programming formulation, the various copies of

node-arc incidence matrices are linked together by a flow bundling

constraint. The flow bundling constraint 'bundles up' the through and

connect traffic on a segment, allowing segment frequency (and thus

route frequency) to be computed. Once route frequency is known, DOC

and the part of IOC related to system departure for the route is

directly obtainable. The cost subprogram in our present arc-chain

formulation is essentially the flow bundling constraints 3:2:20,

3:2:21 and 3:2:22 of the original formulation.

The following constraint says that segment flow is a bundle of
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through and connect traffic from diverse O-D's.

m r m r
rij + pPr + m m 2 ''

pq je mCr pq m ,m 1,m2 '..,r pq r

pq ij m r
pq ij

- p . > 0 for all a, m, r, ij (3:3:6)
a ij

In the above equation, the first term is the local traffic from i to j

and segment (i, j), the second term is the through traffic within the

same route while the third term is the connect traffic from different

m r
connection routes. mC . stands for the set of chains (through or

pq ij

connect routings) that facilitate O-D flow from p to q in a segment

ij of route m-r.

The following additional equation says that only enough aircraft

types are assigned to handle the traffic on the route:

m r +. m r + mp m,m2-.-
pLJ ,m pq r Ptpr

pq r'EMmC.p pq m',m 1 ,m2...,r pq r

pq ij E mC .
pq ij

,- mp. 0 for all m, r, ij (3:3:7)
a 13

a.

DISCUSSION
Let us count the number of constraints involved in cost computation.

Equations 3:3:6 and 3:3:7 take up |RI a11- and IRI Iti rows respectively,
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where JM is the average number of segments in a route and a is the
r

average number of aircraft types assigned to a route. Assuming that

on the average, there is one route per city pair, each route is 1.5

segments long and flown by 1.1 aircraft types. For an 80-city

system where the route map is symmetric the total number of rows

amounts to |R||I l (a+l) - N2/2 x 1.5 x 2.1 = 10,080.
r

The number of columns involved in cost computation are made up

of two types of variables--the route and routing variables, ppq

and the segment variable p... The p 's have been counted while we
a 13 r

mr
discuss the master program. We will count only the mr 1 s here.a ij

Given the same assumptions about the number of routes per city pair,

2
segments per route and aircraft types, there are .825N columns. For

an 80-city system, this amounts to 5280.

It has to be noted that it is not necessary to write the full

set of cost constraints for all the routes in the network. Only

several rows and columns, instead of the whole set, need to be solved

in order to select the next route to enter the master program.

objective function

The objective function is profit maximization, where profit is

revenue minus DOC minus IOC. DOC is cost per block hour, ca, times

M m
block hour, tr, times frequency, nr. IOC is related by regression

to the explanatory variables passenger traffic, PAX, system departure,

DEP, and revenue passenger miles, RPM.

10C = c + c PAX + c DEP + c RPM
o p D R

(3: 3: 8)
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The expression for maximizing the system income (profit) is very

similar to that in our original integer program formulation.

max zm i m
p pq Mgt pq pq

m m r + m r m rmm m m
-c min ( t m r tr + m'tml,m2.'m'pmjm2
R r pq r pq r r pq r

pq t(p-q) m,r m,r~r rmvS2 i
c C m,r,m' ,m1,m2...pq C C' C C2

pq pq

mCr max mp /fL- (3:3:9)
a,m,r ijEL a ij

where C = the set of route chains' serving pq
pq

C'= the set of through routings serving pq
pq

C"= the set of connect routings serving pq

To refresh our reader's memory, y' is a 'discounted' yield per
pq

passenger figure because y' = ypq - c where we have taken the
pq pq P

coefficient of P in Equation 3:3:8 from the actual yield. mcr isI a
an aggregate unit cost figure where we have combined the cost per

block hour figure and the coefficient of DEP in Equation 3:3:8:

mcr t C atm + IjL ca a r r D

And the operator min () denotes that traffic is assigned according
t(p-q)

to the descriptive flow criterion among the chains that connect p to q.

Let us give some physical interpretations to the three terms of

Mill
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Equation 3:3:9. The first term gives a discounted system revenue figure

where the IOC per passenger has been taken off from the yield figure.

The second term gives a system IOC figure related to the revenue passen-

ger miles served. The last term gives a system cost figure that consists

of both the DOC and the IOC per departure. The first term is evaluated

by revenue computation, and the third term is evaluated by cost

computation. If we examine the structure of the tableau in Figure

3-3-2 the first and second terms of the objective function lies directly

above the cost computation constraints. The master program is situated

in between the two sets of constraints, allowing communication between

'the revenue side of the picture' and 'the cost side of the picture'.

The master program is an arc-chain formulation of the route network and

it provides passenger flow information on the network. From the route

network the revenue constraints evaluate the O-D connectivities to see

whether a city pair is served. If a city pair is served, revenue could

be expected from that city pair. From the passenger flow information on

the route network, the cost constraints evaluate the route frequency and

system departures. Once route frequency and system departure are

obtained, we can estimate the cost of operating a route. The master

program can be thought of as a coordinating mechanism between the

revenue side (demand) and the cost side (supply) to bring about profit

maximization (demand/supply equilibrium).

3.3.3 Route Network Configuration via Primal Decomposition

The R.I.S.E. optimization model, with its simultaneous route

generation and selection featrue, has been formulated in a decomposition

mv __
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framework consisting of O-D subprograms and a master program.

The current section will discuss how the subprograms are coordinated

with the master program through the use of 'marginal profit'. The

marginal profit concept is the primal analog of the shadow prices of

the dual decomposition method of Tomlin [1966] or Dantzig and Wolfe

[1961].

We will examine in detail the coordination role assumed by

the master program. In Figure 3-3-7 is shown the tableau of the master

program. The lower half of the tableau is the familiar route cover-

ing matrix, in which the inter-airline route competition information

is expressed as constraints. The upper half of the tableau is

actually the interesting part. We will name it the revenue-cost matrix.

On the rows of this matrix are the O-D pairs. On the column are the

routes and routings. To each O-D route we assign a 'primal revenue'

k mI
variable u . To each route on the column we assign a 'primal cost'

pq

variable pv . A route mar (which denotes the r m-stop route) is
pq

'accepted as a new column for the master arc-chain tableau only if its

associated primal revenue minus primal cost satisfies certain 'entry

criteria'. The primal revenue and cost of a route are determined by

solving several rows and columns of the revenue and cost constraints

in conjunction with the master program.

The introduction of a route into the route network has its

revenue implications and cost implications. On the revenue side, the

introduction of a new route means that more city pairs are connected

and/or served better. This means more revenue. Take a hypothetical

-awauftl 11001111hillilwlwil W, i
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example from our three-city network shown in Figure 3-3-8. Let us say

that the existing route network had only non-stop routes 1-2 and 3-2.

We are considering the addition of one-stop route 3-1-2. The addition

would mean opening up the revenue potential of the following city pair -

markets via through service: 2-1, 3-2. The primal revenue of the route

u is the sum of the potential revenue from all these new routings.

Let us write down the shadow revenue of route l'1.

1 o ool1
32 u1  21  p21  y3 2 P32

where the first term is the revenue from the non-stop passengers of

the demand curve for city pair 2-1 and the second term is from the one-

stop through service passengers of the demand curve for city pair

3-2. (The reader is reminded once again the y' 's are the discounted
pq

yield figures, where the IOC associated with passenger traffic is

subtracted from the yield per passenger.) Formally, we define the

primal revenue for route m'r as:

mp, , (3:3:10)
pq r , p q p q

p q,m p

E SM
pq r

where Sm = the set of cities served by through routings as a result
pq r

o m
of the introduction of route m-r: p- ... -q. If we define up , as

p q
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ypq ,pmq ,, the above expression becomes

m o m
pqur pq , m pq (3:3:11)

eSM
pq r

The U pI s are exactly the primal revenue variables we assign to
p q

each row of the revenue-cost matrix of the master program (refer to

Figure 3-3-7).

On the cost side, the introduction of a new route means more

system block hours of flying time and more system departures. This

means more cost. Take the same hypothetical example from above.

Enough frequency has to be provided to accommodate all the attracted

through and connecting traffic. There is one complication, however.

City pair 3-1 is now served by both the original non-stop route 0.1 and

a segment of the one-stop route 1-1. The non-stop passenger demand from

3 to 1 is diverted into two routings, one via route 1-1 and the other

via the first segment of route 1-1. What this means is that we can

cut down on, the frequency on route 0.1 due to the decrease traffic

volume on this route. The cost of introducing route 11 is in part

offset by the savings from decreasing the frequency on route 0-1. We

write the following expression for the cost of operating route 1-1.
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3V' 1 1C1 1n 1 1 oCll 1 ol132 1 a a , a a

where the first term is the cost of providing route 1-1 flown by aircraft

types a and the second is the savings obtained by cutting back on the

frequency of route 0-1 flown by aircraft types a'. We can formalize
the above expression:

vtm= mcr mr m'c r' mnr (3:3:12)pq r a a , , a a
a m ,r a

pq r

where Hm is the set of routes whose frequency is
r

reduced due to the introduction of route m-r and

m r
c a is an aggregate cost coefficient that includes

both DOC per block hour and the IOC unit cost

per departure.

If we write v as i mcr mnr and v",m' as cr m'nr, we can
pq r a a r' , a aa a

rewrite the above expression as

vim = vm vilm (3:3:13)
pq r pq r m'r, r

pq r

Still, we have left out a cost item in the above route cost

expression. We have not included the IOC associated with the revenue
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passenger miles RPM. This inclusion is rather straight forward. The

gross cost associated with RPM is

c (t m pr + t , ,,pr) (3:3:14)
R pq pq r' m , qm r p q p qmr(

pq r r

where Cm is the set of routings introduced as
pq r

mra result of route m-r : p- ... -q and mSr, is

the set of O-D pairs served as a result of routings

The gross cost is offset by the savings resulting from the decreased

traffic on the old routings.

cDI mr + t , , ,
m',r' p W q q m',r',r p'q' p p

E H'm Sm E Hm m r
pq r r pq r r

+ I t , , A , p 2m2 ' ')(3:3:15)
m'mm2 r p q p qr

E Hm Em , l,m2 '''
pq r r

where Hm = set of routings from where passenger
pq r

flow has been diverted to new routings resulting from

the introduction of route m-r: p- ... -q.

Sm /M'Sir t/m ,m2'' = set of city pairs whose
ri rl rf

O-D flows are diverted as the result of the intro-

duction of route m-r.
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Call Equation 3:3:14 and Equation 3:3:15 the net IOC cost associated

with RPM for route m.r, cr
pq r

In our example, the old routings on route 0-1 and the new routing

on segment (3,1) of route 1-1 are equidistant in block hours. The IOC

associated with ROM for the passenger flow from 3 to 1 is therefore

the same before and after the introduction of route 1-1. The route

primal cost is

vm = ,m + cm (3:3:16)
pq r pq r pq r

The vm 's are exactly the primal cost variables we assign to
pq r

each route column of the revenue cost matrix of the master program (see

Figure 3-3-7).

A similar set of primal cost and revenue equations can be written

for each connect routing, such as the one-stop connect routing 3-1-2.

For the connect routing m' m, m2 , ... *r" (which reads as the r"th

-mi'-stop connect routing making transfers at mi, m2 ... ) between O-D

pair p-q, Equation 3:3:11 reads

u ,,= u m(3:3:17)
pq r pq

Notice revenue is expected from a single O-D pair p-q, since by definition

the connect routing carries only traffic from p to q. A generalized

expression for Equation 3:3:11, including the case of a connect routing

would be
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UM u m (3:3:18)

E Sm
pq r

Equation 3:3:13 reads the same except vIM stands forpq r

VIM mcr A mr
pq r m,r a a a

E C"
pq

which sums up the cost associated with the increase in frequency on

the routes that provide the connect routing.

Equations 3:3:14 and 3:3:15 remain unchanges if we read m-r-r' as

m'mm2 ...-r".
The route marginal profit, defined below,

wM =( u - v ) (3:3:19)
pq r pq r pq r

will help to determine whether a route/connect-routing will enter the

master tableau. The actual entry criterion for route/connect-routing

entry is to make sure system profit is increased by the introduction

of the candidate:

wm = max ( wMA Inr) (3:3:20)
ppq qr m',r, q r

p mE:pq r
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where Q is the set of routes/connect-routings that serve a comparable

pq
set of demands as route m-r, and A p ,w , is the change in marginal

profit in route m''r' due to the introduction or removal of route m-r.

The primal revenue um is supplied by the revenue computation.
pq r

The primal cost vm is supplied by the cost computation. The primal
pq r

revenue and cost help in the selection of a route to enter the master

tableau. The revenue and cost constraints, in return, receive the

passenger flow information from the master program without which the

primal revenue and cost cannot be determined. Such is the coordination

between the master and subprograms in our primal decomposition procedure.

3.4 Summary

This chapter represents the formal discussion of the optimization

formulation of the R.I.S.E. model. First, a graph-theoretic method

is put forth to generate the comprehensive set of C.A.B. authorized

routes. An integer programming formulation is then devised to select

the optimal subset of routes to be included in the route network. Due

to the huge combinatorial dimensionality, it is not feasible to separate

the route generation and the route selection as two disjointed problems.

It is computationally possible only if a few routes are generated at

a time, from which the best is selected immediately. In other words,

routes have to be generated and selected simultaneously.

To facilitate simultaneous generation and selection, the integer

program has to be transformed into a decomposable format. Each handful

of routes (and routings) generated graph-theoretically can then be

readily appended as columns in the decomposable tableau for selection.

MWIWM 11
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This chapter lays the algebraic background for an enumerative

solution algorithm to be discussed in the next chapter.
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CHAPTER 4

A SOLUTION ALGORITHM FOR THE MODEL

In the last chapter, we have presented the R.I.S.E. optimization

formulation. Route/routing generation was formulated in a graph-theoretic

framework while the route selection problem was cast into an algebraic

integer program format. Finally, the decomposable arc-chain formulation

married the generation and selection problems, in the sense that the

I .algebraic tableau used in route selection is structured to readily

I accept routes/routings generated graph-theoretically 
as columns. Still,

a solution algorithm needs to be devised to solve the decomposable progral.

This will be the subject of the current chapter.

4.1 A Dynamic Programming Solution Scheme

The difficulty with solving the R.I.S.E. optimization model centers

around three problems. First, it has a dual objective function in which

system profit is maximized by the airline operator while individual travei

time is minimized by the transportation user. We find min and max opera-

tors nested within a max operator. Second, an all integer solution is

required. Third, the combinational dimension of R.I.S.E. is huge. With

these ill-behaved properties, the author was in vain in the search of an

"elegant" algebraic solution method. He ccnes to thr ccnclusi-r that
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clever enumerative techniques would he the practical, feasible approach*

In 1964, Nemhauser [1964] published a dynamic programming approach to

decompose block diagonal linear programs. Instead of having to solve each

subprogram iteratively for more than once as in the original method of

Dantzig and Wolfe, subprograms are solved sequentially, one at a time in

each stage of the dynamic programming algorithm. Each svubprogram is

solved only once by parametric programming. The linking constraint of

the block diagonal subprograms is handled by an artificial "state" vector,

which coordinates the parametric subprograms in the various "stages" of

dynamic programming.

If we look back on the master program of R.I.S.E. in Figure 3-3-2 we

recall that each of the rows of l's along the diagonal corresponds to

an O-D subprogram. Drawing an analogy from Nemhauser, we put forth a

dynamic programming approach to solve the series of O-D subprograms.

The problem context of R.I.S.E. has an inherent sequential property.

We tend to think of non-stop routes first, one-stop routes second, two-

s.top routes third and so on. In dynamic programming terms, we have the

non-stop stage, the one-stop stage, two-stop stage ... . Within each stage,

we look at each.0-D pair. Each O-D pair therefore constitutes a "sub-

stage".** Each O-D substage is solved for the non-stop stage, the one-stop

*This point of view is shared by Balinski [1965].

**The term substage is coined here simply for convenience. It does not

belong to the set of standard terminology in dynamic programming.
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stage, two-stop stage ...

The linking constraint of the R.I.S.E. master tableau is the set

covering matrix, which ensures that each city- pair be "covered" by

an m-stop or better routing. On the row- dimension of the set covering

matrix are city pairs, while on the column dimension we find routes/

routings for each O-D pair. An artificial state vector, with each entry

corresponding to a city pair, will be introduced in our dynamic program

(D.P.) to play the role of the linking constraint-i.e., to coordinate

the routes/routings of the various 0-D subprograms.

Unlike Nemhauser's problem, the "network effects" in the R.I.S.E.

optimization model necessitate each O-D subprogram to be solved

iteratively for more than once. When two successive solutions to R.I.S.E.

are identical., the optimal solution is obtained. We call this class of

problem dynamic program with an unbounded horizon. The method of

successive approximation is used to converge towards the final answer.

The plan of this chapter is as follows. Section 4.2 describes how

the arc-chain formulation of the master tableau from last chapter is

represented as a state-stage diagram, and how route/routing generation

is carried out in the diagram. Section 4.3 discusses how each route/

routing is evaluated in terms of the cost/revenue computations. Section

4.4 then re-examines the selection criteria for entering a route/routing

in the state-stage diagram. Section 4.5 summarizes the whole D.P.

algorithm via an example. Finally, Section 4.6 throws an overview on

top of the total primal decomposition approach from a theoretical frame-

work.
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4.2 Route/Routing Synthesis

It will be shown in this section that a state-stage diagram of dynamic

programming (D.P.) can be readily defined for the master program of the

arc-chain formulation of R.I.S.E. Further, the readers will see how the.

"contiguity matrix" way of route/routing generation can be conveniently

represented in the state-stage diagram. The diagram facilitates the syn-

thesis of route/routing candidates for the subsequent evaluation stage of

the solution algorithm.

4.2.1 A State-Stage Space Diagram

Let us describe the state-stage space of our D.P. The states are the

city pairs 1-2, 1-3, ... , (N-1)-N. The stages correspond to non-stop, one-

stop, two-stop, ... , which we denote as m = 0, 1, 2, ... , M. The artific-

ial state vector b = (b2 b 3 bm ) denotes the various city

pair states for stage m. Graphically, we show in Fig. 4-2-1 an example of

such a state-stage for a three-city network with only the non-stop and one-

stop stages.

A careful comparison of the grid space of the state-stage diagram and

the structure of the decomposition master tableau (in Fig. 3-3-7) would

reveal certain similarities. They both have city pairs on the vertical

dimension-and non-stop/one-stop/two-stop/etc. route/routings on the hori-

zontal dimension. Notice also that the set covering way of specifying

that a city pair must be covered by an m-stop or better routing can be

readily handled by the state vector b M. If bm is assigned a value of "1"
pg
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when city pair p-q is covered by an m-stop routing and a value of "0"

otherwise, the requirement that city pair p-q be covered by a mo-stop

or better routing can be written as-

I bm >1 (4:2:1)
LU= pgm=0

The state-stage diagram therefore serves as a compact representation of

the master tableau. The equivalence between the state-stage diagram

and the master program will be even more obvious as the discussions

proceed in the next few sections.

4.2.2 Synthesizing Routes/Routings in the Diagra

The graph-theoretic way of synthesizing routes/routings (Section

3.1) can be readily represented in the state-stage diagram. Take the

three-city example where cities 1 and 2 form one subsegment and cities

2 and 3 form the other. According to the C.A.B. route authority as

explained in Section 3.1.2, non-stops can be scheduled between 1 and 2,

and between 2 and 3. To represent these authorized non-stops, let us

put a circle around the corresponding grid points in Figure 4-2-2. To

serve city pair 1-3, an intermediate stop must be made at city 2 in

compliance with the route authority. The one-stop route serving 1-3 is

shown in Figure 4-2-2 by a circle and two arcs, which denote that the

one-stop route 1-2-3 is built up from segments 1-2 and 2-3.

To extend the route building concept, two-stops, three stops

can he successively synthesized in the diagram. Take Figure 4-2-3, the

two-stop route 1-2-3-4 is shown to be built upon segments- 1-2, 2-3 and
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3-4. At the same time, all the through routings in the route are

graphically shown in the diagram: one-stop routings 1-2-3/2-3-4, and

non-stop routings 1-2/2-3/3-4.

A connect routing made up of two or more routes can also be drawn

in the state-stage diagram. Take the example of the two-stop connect

routing 1-2-3-4, made up of the one-stop route 1-2-3 and a non-stop

route 3-4, with city 3 being the transfer station. Its graphic

representation is shown in Figure 4-2-4. As another example, let us

suppose that the connect routing 1-2-3-4 is made up of route 1-2-3

and the non-stop segment 3-4 of the one-stop route 2-3-4. Such a connect

routing is displayed in Figure 4-2-5.

Through the use of the state-stage diagram, we have conveniently

represented the dimensionalities of the master program in a compact form.

The state-stage diagram also shows graphically the way a multi-stop

route is built up from segments, and the through routings contained within

the route.

4.3 Route/Routing Evaluation

In the last section, the reader has seen how routes/routings can be

synthesized and be included in state-stage diagrams, similar to the way

a route/routing column can be inserted into the decomposition master

tableau. It will be seen in this section how each route/routing

candidate can be evaluated in terms of its primal cost and revenue

following the method of cost/revenue computation given in Section 3.3.2

of the last chapter. Furthermore, a route/routing candidate will be

ik"
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evaluated to ensure that it contributes to provide the required m-stop or

better routing between certain city pairs.

4.3.1 Passenger Flow Evaluation

It has been poihted out in Chapters 1, 2, and 3 that for each struc-

tural change in the route network topology, there is a corresponding change

in the passenger flow pattern and the type of connectivity between city

pairs. We have named the flow and connectivity characteristics the quanti-

tative attributes in a network (to distinguish them from the structural or

topological network features). In this section, we will see how the passen-

ger flow information can be recorded in the state-stage diagram.

Let us overlay the passenger demand function on the state-stage dia-

gram in Fig. 4-3-1. The demand function shown represents only the demand

corresponding to through service. Additional sets of arrows should be

drawn if connect routings are considered. For the sake of clarity, we will

ignore connect routings for the time being.

. To demonstrate how the traffic flow pattern is represented in the

state-stage diagram, consider the example shown in Fig. 4-3-2. Say in the

stagewise D.P. algorithm we instituted a non-stop route 1-2 in stage m = 0.

The non-stop passenger demand between 1 and 2 would then be "discharged" on-

to the non-stop route. The depletion of the non-stop demand from 1 to 2

is shown graphically by, ahading the corresponding demand arrow. Suppose

at the ml Atage, a one-stop route 1-2-3 is introduced. The state-stage

diagram conveniently shows that pl can be discharged onto the route -

y13
(shown by a different type of shading in the p13 arrow).
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Furthermore, the non-stop demands p12 and po can be carried. City pair

1-2 is now redundantly served by- both the former non-stop route 1-2

and a segment of the one-stop route 1-2-3 (the p02 arrow is shown shaded

twice). A certain portion of the 1-2 non-stop traffic could have been

diverted to segment 1-2 of the route 1-2-3. The frequency on the former

non-stop 1-2 can conceivably be decreased.

The traffic flow is distributed among the different routes according

to the descriptive (or user optimizing) criterion. With the demand

function as defined in Section 3.2.3, only the shortest routes/routings

need to be synthesized to serve the O-D demands, since passengers are

assumed to follow only the shortest routing.

cost

Cost for a route/connect-routing is computed in exactly the way as

in Section 3.3.3. Briefly, route frequency is first computed to provide

enough seats for the segment with the heaviest traffic load. The direct

operating cost (including financial cost) is calculated by taking the

product of route frequency mnr; the number of block hours in the route
a

mtr; and the cost per block hour unit cost ca. As an example, the routeIa'
cost for the one-stop route 1-2-3 will be (refer to Figure 4-3-3)

avl c ltr max Apr /f s , lpr If s (4:3:l)
13 r a a a 12 L a a 23 L a

mcr mnra a

for aircraft type a, where mcr is the route cost per departure.
a
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Since fleet availability is not a constraint, the least cost air-

craft type with the suitable range should be chosen to fly the route

in order to maximize system profit:

vl = min ( avi) (4:3:2)
13 r a 13 r

For the sake of illustrative clarity, we have, for the time being, ruled

out the possibility of a mixed fleet to s-erve the same route.

In the case where a city pair is served redundantly- by more than

one route (such as the example in Figure 4-3-2), traffic would be

distributed among the two routes so as to achieve the lowest cost. In

our example, it means diverting just that much traffic from the non-stop

route to the one-stop route so that the route frequencies of both

routes combined would cost the least. Notice that the cost minimization

is carried out with no infringement on the user travel time minimization

(descriptive) criterion, since the passengers will be traveling in

the shortest time paths in all cases.

revenue

Revenue from a route/connect-routing is simply the sum of all

revenues for all the O-D demand carried by the route. In the state-

stage diagram, the revenue computation is a straight-forward counting

procedure. For example, revenue from route 1-2-3 in Figure 4-3-2 comes

from the one-stop passengers p1 , and the non-stop passengers p ,
13 23

but only the appropriate fraction of revenue from the non-stop demand

12, since the remaining fraction of the revenue from those passengers
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have been counted towards the system revenue as we went through the

non-stop route 1-2 in the m=O stage. It is to be noted that the demand

function formulation used in this example assumes that passengers

show no preference among aircraft types.*

4.3.2 Tabulation of Cost and Revenue

A table corresponding to the state-stage space would be used to

keep account records of cost/revenue/frequency information. For example,

in conjunction with the example of Figure 4-3-2 is a table shown in

Figure 4-3-4. The table accounts for the basic "unit costs" and "unit

revenues". For example, route 0.1 (i.e., the first of the non-stop

routes) costs Ocl to flyper departure using aircraft type a. It is

expected that if city pair 1-2 is served by a non-stop routing, a total

revenue of 1 2u
0 will be forthcoming. These unit cost/revenue figures

can be easily computed at each stage by the addition of unit cost/revenue

figures from the previous stages following the arcs between the grid

points. For example, the unit cost figures for route 1-2-3 in the m=1

stage can be obtained by (refer to Figures 4-3-4 and 4-2-2)

1c2 = ocl + Oc3
a a a

since the block time for the one-stop route is simply the sum of the

block times. for the two non-stop segments. The unit revenue figure for

the onle-stop route 1.2 can likewise be calculated

*This. assumption can be relaxed at a rather high computational cost.
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ul = u + uo + uo
13 1 13 12 23

which says that the revenue to be expected from the route is the sum of

the revenue from all O-D pairs served by the route. This table shows

the additional advantage obtained from representing routes/routings

on the state-stage diagram in the manner des-cribed in Section 4.2.2.

The additivity property is certainly- a big computational advantage.

4.3.3 Connectivity Evaluation

The other quantitative attributes associated with a network

topology, besides traffic flow, is city pair connectivity.' The state-

stage diagram allows for a convenient way to check city pair connectivity.

If we want to see what type of routings serve a city pair p-q, we need

only to count the number of grid nodal points along the state p-q which

are either circled or on which an arc is incident. For example, if we

want to check the type of routings which serve city pair 2-3 in Figure

.4-3-2, a quick scan along the state 2-3 reveals that the city pair is

served only by a non-stop routing, since only the grid point corresponding

to b0 has an arc incident on it. Similarly, city pair 1-3 is covered23

by a one-stop routing since a circle is found around the grid point

corresponding to bl-.
13'

The reader should recall that a circle around a grid point bm
pq

denotes that a route m - r p-....-g (read: the rth m-stop route

beginning at p and ending at q) s-erves between the terminal points

p-q, and bm assumes the value of "1"H.pq
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When a grid point b111 has an arc incident on it, it means that
ij-

the city pair i-j is served via a routing of a certain route, in which

case b also assumes a value of "1". The scanning operation alongI ij
state p-q merely ensures that p-q is- to be covered by an mo-stop or

better routing, i.e., such that

MO2 bm > 1
m=Q pq

4.4 Route/Routing Improvement

Section 4.2 discusses how route/routing candidates are synthesized.

Section 4.3 points out how a route/connect-routing is evaluated in

terms of its cost/revenue potentials and the city pair connectivities it'

provides. The current section will marry these concepts to come up with

a route network improvement scheme. The marginal profit for a route/

connect-routing will be computed from the primal cost and revenue

figures derived in the last section. It is based upon the marginal

profit and the connectivity evaluation that a route/connect-routing is

selected to enter the state-stage diagram to bring about the best

incremental improvement towards the route network system.

1 4.4.1 Marginal Profit Computation

It has been pointed out in Section 3.3 of the last chapter that

a primal decomposition method is used to tackle the route/routing

improvement problem. Instead of using dual prices-, primal costs-/

IN 1 "I",
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revenues are used. A route/connect-routing is selected to enter the

master tableau if it yields the highest marginal profit among the

alternative route/connect-routing candidates.

From the way- that the basic unit cost and revenue figures are

kept (Section 4.3.2) the marginal profit for a route can be calculated in

a straightforward manner. The appropriate basic unit figures, after

adjustment for traffic flow distribution, yield the cost/revenue for a

route. Once route cost and revenue are obtained, marginal profit is

simply- revenue minus cost. An example will make this clear.

Refer to the one-stop route 1-2-3 in Figure 4-2-2 and the associated

table in Figure 4-3-4. Route primal cost v , is just frequency times
13 2

the basic cost for a departure:

a l 1 2 1 2v = n c (4:4:1)
13 2 a a

12.where route frequency n is the result of passenger traffic assignment
a

on the route, as described in Section 4.3.1 (Equation 4:3:1). (Notice

that aircraft type a is the least expensive aircraft to fly the route,

in the way specified in Equation 4:3:2.)

Route primal revenue, on the other hand, is essentially the unit

revenue figure as. documented in the table in Figure 4-3-4 adjusted for

the distribution of traffic among the two non-stop routings that serve

city pair 1-2. We recall that city pair 1-2 is served both by a non-stop

route 1-2 and a segment of the one-stop route 1-2-3. When the question

is raised regarding the total revenue expected from the one-stop route,
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the revenue from city pair segment 1-2 must be first resolved.

To the passengers, both the non-stop route and the segment are non-

stop routings.; they have no preference of one over the other according

to the demand function as defined in Section 3.2.3. The passengers, in

either case, are making their trips from 0 to D by the shortest time

path, which satisfies the descriptive (or user optimizing) criterion set

forth as one of the dual objectives (Section 3.2.3). The airline

operator, therefore, has the freedom to assign passenger traffic among

the non-stop route and the segment of the one-stop route so as to minimize

operating cost--hence maximizing system profit. The least expensive

alternative would determine the fraction of passengers from 1 to 2 (po2

carried on the non-stop versus the segment of the one-stop route. It

may be found that by carrying x% of the traffic on the non-stop and y%

on the segment of the one-stop, it will require the least number of

departures to satisfy the demand pl2. The formal expression for computing

the route primal revenue 13u2 is given in the last chapter as Equation

3:3:10.

Route marginal revenue can now be computed as the difference

between primal revenue and cost:

13  
1 2 13 v1 (4:4:2)

The best incremental improvement in the route network is achieved by

selecting the best "project" among two comparable "projects" to serve the

equivalent set of demands, as discussed in Section 3.3.3 (Equation 3:3:20)
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For our example,

Vi = max ( I wm') (4:4:3)
13 13 2m, pq r

C Q1

13 2

where 13Q2 is. the set of existing routes/connect-routings which would

serve an equivalent set of demands as route 1.2:1-2-3., After substitut-

ing the appropriate quantities, the above equation reduces to

ma (W 1 w 0  (4:4:4)13w m=ax (13 121

where 1 contains only one element 0-1:1-2, since the only other

authorized route which would serve any of the set of demands Pl3'

P12 and p23 is route 0-1:1-2. Recall A 12w Is the change in marginal

profit of 0-l due to the introduction of route 1-2. Please take note

that wm is written for each grid point of the state-stage diagram.
pq

4.4.2 Labelling the State-Stage Diagram

The marginal profit computed from the last section will be "labelled"

on the state-stage diagram during the execution of our algorithm. For

00example, the marginal profit 12w10 will be labelled on the grid point b12

as 12v0, as shown in Figure 4-4-1.

In conjunction with the labelling process, a table (aside from the

basic unit cost table) is used for bookkeeping. For example, in the

table shown in Figure 4-4-2 are (i) the route frequency-,Onl; (ii) the
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aircraft types that fly the route, a; and (iii) the primal revenue for

the route, p u. The table is needed because the information stored

is required in subsequent steps of the algorithm.

Let us bring out a few more points via the example of labelling

route 1-2:1-2-3. Suppose we come to grid point b in the algorithm
13

with an existing set of labels and an existing table as- shown in

Figures 4-4-1 and 4-4-2. The question at hand is whether to include the

one-stop route 1-2-3 in the route network. Following Equation 4:4:4, we

examine the marginal profit of route 12 and the marginal profit of

route 0-1, Notice that the marginal profits- are computed based on a

redistribution of po2 between 0-1 and segment 1-2 of 1-2 which costs

the least for the carrier, as explained in the last section. Very likely,

this redistribution of traffic would mean a new w0 (and a new label
12 1

12wo'), since the number of passengers carried in 0'1 is now changed due

to the introduction of 12. Defining A 12w 0 to be (2' 0 ) we11 121i 121'

have Equation 4:4:4:

1 3w = max w1 2 1 0 ) (4:4:5)13 2' 12 1

1.-

Suppose 1 3w2 is the larger of the two, the one-stop route will be

included-in the route network. In the state-stage diagram, we label the

grid point b1  relabel b.0 and make the appropriate entry- and correction
13 12

in the table for the two routes. The resulting state-stage diagram and

table are shown in Figure 4-4-3. The above one-stop route example

illustrates the relabelling and retabulating procedures-, as well as the

mechanics of making new labels and new tabulations-.
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4.4.3 Phase I Versus Phase II of the Algorithm

Over the previous sections, the basic improvement operation of

the algorithm has been introduced. This basic improvement operation based

on Equation 3:3:20 is the crux of the whole algorithm. Before we

actually go ahead with going through the total algorithm with an example,

the following question should be answered: "How does- the algorithm

get an initial feasible solution?" The current section is devoted to

providing an answer to the question.

Take the example we have been using. The first "pass" or the first

"loop" through the two stages m=0,l would be to obtain an initial

feasible solution. The subsequent passes through m=0,l would then

incrementally improve on the solution, until finally the optimal route

network is obtained.

Suppose we impose the constraint that city pair 1-3 must be covered

by a one-stop or better routing. How could we cope with this constraint

in arriving at an initial feasible solution? The method used is the

commonly known "penalty method". A large negative label is put over the

1 1
grid point b, say = - which corresponds to a route with infinite

13' 13

cost. Imagine we are given a labelled state-stage space and the

bookkeeping table as. appeared in Figure 4-4-4 and the algorithm now

comes up to grid point bl . The question at hand is to determine whether
13*

route 1-2 should be included into the route network. Substituting the

appropriate quantities in Equation 4:4:3, we have

13W = max (1 w , ) (4:4:6)
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which automatically would include route 1-2 into the route map, hence

satisfying the constraint that city pair 1-3 be covered by a one-stop

routing or better.

The question that logically arises at this point is, "Under what

circumstances should the -= label be put at a grid point bm ?" The
pg

answer is: only when both of the following two conditions are true.

First, the city pair p-q is specified to be "covered" by an m-stop or

better routing; and second, the city pair is not covered by any route

or routing up to the (m-1)th stage. Take the example we just used--

since we specify that city pair 1-3 be covered by a one-stop or better

routing, and no route or routing at the non-stop stage cover 1-3, a -CO

is labelled over the grid point b1 3. To generalize, we say that a

m = -M is put over grid point bm if both

Upg pg
m M
I b > 1

%= 0  pq ~

and (4:4:7)

ma-1
(ii) b = 0

m%=1 
p

The -m label would then force the inclusion of a route/connect routing

to satisfy the "city pair coverage" constraint.

We call the first pass (or first loop) around the various stages to

obtain an initial feasible solution Phase I of the algorithm. The

subsequent passes- (or loops) to improve on the solution constitute

J
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Phase II.

4.5 Route Improvement, Synthesis and Evaluation

The various components of the algorithm: (i) route/routing synthe-

sis, (ii) route/routing evaluation, and (iii) route/routing improvement

have been introduced in the earlier sections- of this chapter. Here in

this section they will be put together as a coordinated set of solution

steps, which we call RISE (short for Route Improvement, Synthesis and

Evaluation). The RISE algorithmic procedure will be illustrated via an

example.

4.5.1 An Example

A simple three-city example network with all the essential

features of the route improvement problem is given below. The reader will

notice that it is essentially the example we have been using all along

in this chapter.

The demand function {Rp } which. vill be used is shown in Figure

4-5-1.* For the sake of illustrative clarity, no distinction is made be

.between through or connect service, which means that both an m-stop

through routing and an m-stop connect routing induce the same passenger

demand (hence Yp is reduced to p ). For the same reason, demands are

assumed to be additive, i.e., referring to Figure 4-5-1, the demand from

1 to 2 when both non-stop and one-stop'services are offered would be

the sum of 15Q and 75, giving 225 passengers. Finally, please note that

*The reader should recall that kpm is read: the passenger demand from
pq

p to q via an m-stop routing making k transfers. I
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O-D demands are symmetric--the demand pm, is the same as pp.pq q

To cut down on the length of the discussion, the given C.A.B. route

authority will be pointed out as each route/connect routing is synthesized.

It is specified, from inter-carrier competition pressure, that city

pair 1-2 be covered by a non-stop service, and that city- pair 2-3 be

covered by a one-stop or better routing. In other words, the following

constraints are imposed:

bo > 1
12 -

and (4:5:1)
1

bhm > 1
23

m=0

There are two types of aircraft: a = 1, 2. The first aircraft

type has a 100-seat capacity while the second has a capacity of 160 seats.

An average segment load factor of 50% is assumed, which cuts down on

the number of actually available seats, resulting in effective capacities

of Sl = 50 and 32 = 80, respectively. The block times (in minutes)

required to fly the direct distances between the city pairs are given be

below. We have neglected wind velocities and assumed a symmetric

city pair block time, i.e., t = ta
ij ji
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1 2 3

1 0. 6Q 801
T =[t ] 2 60 0 120

3 [0 120 0

(4:5:2)
1 2 3

-1 0. 50 70

T 2 50 0 100
3 70 100 0

It can he seen that aircraft type a = 2 is the faster of the two.

Only direct operating cost (with aircraft financial cost included)

will be considered in the cost function. Cost per departure for a route

is simply the cost per block hour times the total block hour times the

total block time (in hours) of the route. Since block times are given

in minutes, the cost per block minute will be specified:

c1 = T 833 dollars/min

(4:5:3)

c2 = 9 167 dollars/min

It is seen that aircraft type 2 is more expensive to operate.

On the revenue side, a simplified figure of yield per passenger

is given in dollars:
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1 2 3

1 0. 20 25

Y = [y- 2 20 0 30 (4:5:4)
pq

3 25 30 0

At this point, the example problem is fully defined by the

above set of given parameters. The RISE algorithm will be able to take

off from here and determine the routes/connect routings to be included

in the final route network.

4.5.2 The Solution Algorithm

We will now go through the solution algorithm in all its stages

and substages, for both Phases I and II.

Phase I

Phase I is the first loop through the stages m=0,1. It will provide

an initial feasible solution, subject to improvement in the subsequent

loops of Phase II.

STAGE m=0

This stage will handle all the non-stop routes. Three sub-

stages are contained in each stage corresponding to the three states:

1-2, 1-3, and 2-3.

>substage 0-1

The algorithm starts out with an unlabelled state-stage

diagram and two empty- tables (one for the basic unit costs/revenues and
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the other for route frequency and aircraft type bookkeeping). Noting

that city pair 1-2 is required to be covered by a non-stop routing, a

-- is labelled on the grid point b02 . Non-stop route 0-1:1-2, an

authorized route, is generated/synthesized. Its inclusion into the

route network is considered. This non-stop route is actually forced by

the -= penalty cost to enter the state-stage diagram. It immediately

satisfies the coveragt constraint on 1-2. Figure 4-5-2 documents the

current state-stage diagram and the two tables. Notice, that the entire

quantity of p1 2 is carried by the non-stop route 0-1 (to record this, the

p2 arrow is shaded). Route 0-1 is flown twice a day by aircraft type

2, at a cost of Onl Oc2 = $916 and yielding a revenue of $3000. Grid
2 2

point bo is labelled with the route profit of $2084, and bo2 = 1, as
12 1

denoted by the circle around the grid point.

>substage 0-2

No authorized non-stops can be synthesized to fly between 1-3. The

grid point b13 remains unlabelled. But the basic unit cost/revenue

associated with this grid point is entered into the unit cost/revenue

table, as shown in the corresponding cell in Figure 4-5-3.

>substage 0.3

Similarly, no non-stop route is authorized to serve city pair 2-3.

The basic unit costs/revenues for this grid point are recorded in the

table of Figure 4-5-3. After this substage, the whole stage m=0 has

been completed. We proceed to the next stage - - - m=l.

STAGE m=1

In this stage, all the one-stop routes will be synthes-ized and

evaluated. Again we will go through the three substages corresponding

6111110111 Idlim M111011"I "
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to the three states.

>substage l'l

Route 1-1:1-3-2, being an authorized (as well as the shortest*) one-

stop route between 1 and 2, is synthesized from segments 1-3 and 2-3. The

basic unit cost for this grid point b is computed by simple addition as

explained in section 4.3.2 (see the upper table in Fig. 4-5-4). By assign-

ing traffic, computing route frequency and substituting the appropriate

cost/revenue figures in the basic improvement Equation 3:3:20 (as explained

in section 4.4.1), it is decided that route 1-1:1-3-2 should be flown. We

label the grid point b . The associated bookkeeping procedures are docu-
12*

mented in Fig. 4-5-4. The route network, up to this point, looks like Fig.

h-5-ha.

>substage 1-2

No authorized one-stop routes exist to serve city pair 1-3. Only a

connect routing 1-2-1:1-2-3 (read: the first of the one-stop connect rout-

ing making a transfer at 2, with the actual routing being 1-2-3) can be syn-

thesized. The connect routing uses the non-stop 0-1:1-2 and segment 2-3 of

the one-stop 1-1:1-3-2. It would require only increasing the frequency of

0.1 by 1, incurring a cost of only $458. The improvement operation equation

(3;3:20) indicates adopting the connect routing project. The necessary

bookkeeping -is shown in Fig. 4-5-5. It is seen that in the lower table of

*Notice that in a three-node network, there is only one one-stop route/
routing possible between a pair of cities, which will automatically qualify
it as the shortest route/routing. For this reason, we will save using the
adjective "shortest" for all subsequent one-stop routes/routings.
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the figure that we have increased the route frequency for 0.1 from 2 to 3.

>substage 1-3

The authorized route 1-3:2-1-3 is synthesized. However, the improve-

ment operation equation reveals that the do-nothing alternative with zero

profit is better than instituting route 1-3 (which incurs a loss). The de-

cision is then to leave p unserved. Notice no penalty cost of -o is as-

signed to grid point b since the requirement that city pair 2-3 be covered
23

by a one-stop or better routing has been satisfied by the presence of the

non-stop segment 2-3 of the one-stop route 1-1:1-2-3.

At this point, we have come to the conclusion of Phase I of the algo-

rithm. It is seen that an initial feasible solution has been obtained.

Furthermore, all the shortest aircraft routes have been synthesized in the

state-stage diagram. The bookkeeping at the end of Phase I is shown in full

in Fig. 4-5-6.

Phase II

Phase II begins with a second loop around the various stages and sub-

stages. At each grid point, a perturbation method is used to examine whe-

ther there exists a comparable project to replace the accepted project which

will result in a higher system profit. The perturbation examination is no-

thing more than the basic improvement operation expressed in Equation 3:3:20.

STAGE m = 0

We start out again with. the non-stop routes. For each stage, the three

substages are gone through step by step.

>substage 0-1
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Once again, we question the merit of including route 0-1:1-2 in the

route network: "Can a comparable project serve as a replacement for 0-1,

giving rise to a higher system at no expense of rerouting passengers via

longer routings?"

The comparable route which can carry p0 can be readily picked out from

the state-stage diagram in Fig. 4-5-6. Route 1-3:2-1-3 clearly can cover

city pair 1-2 on one of its non-stop segments. The alternative of using

route l'3 as a replacement for 0-1 would incur a cost of 1 n3 - 1 3 = 2 x

1 0 2 2
1398 = $2796, and would yield a revenue of 23u + 1 2u = 300 + 3000 = $3300.

The marginal profit is therefore w1 = 3300 - 2796 = $504. The basic im-
12 3

0 1)=ax(04
provement operation*Equation 3:3:20 shows: max (1 2w1  2 3 3  max (2084

504) = $2084, which says that the existing project of 0-1 is superior. The

decision is therefore to retain the present label 13wl and the associated

0
bookkeeping for grid point b .

Notice that in the improvement operation computation, we have made a

short-cut in the arithmetic. We have left out considering whether segment

1-2 of the connect routing 1-2-3 should be provided by 0-1:1-2 or 1-3:2-1-3.

Due to the author's familiarity with the algorithm, he knows off-hand that

using 1-3:2-1-3 to provide the segment would cost more, and as a result the

arithmetic can by bypassed. He will share his insight on this regard in

the next section, entitled "Some Computational Aspects."

>substage 0-2

No re-examination is necessary at this grid point since there exists no

0.route 02:1-3 (and hence w is zero by definition).
13W2
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> substage 0-3

No reexamination is necessary for the same reason as above.

This is. the end of stage m=o. We proceed to the next stage.

STAGE m=l

The perturbation method for route network improvement is carried

out in exactly the same way in this stage, as will be seen.

>substage 1-1

At grid point b1 , let us reexamine the merit of route 1-l:1-3-2.

A comparable set of routes which will serve the demands p , p and
13 23

p12 carried by 1-1 would consist of only route 1-3:2-1-3, which can

merely carry p03. The basic improvement operation Equation 3:3:20

then compares between w and 233 = max (12w1 ' 23w3) = max (386, 216)

= $386. The decision is therefore to keep 1 1 1-3-2.

>substage 1-2

Under the given route authority restrictions, there is no alternative

way of carrying p other than via the connect routing 1-2-3. Without
13

.any improvement computation, we decide to keep the present connect

routing.

>substage 1.3

The question arises, just as for substage 1-3 of Phas.e I, whether

the route 'l-3:2-1-3 should be included in the route network. Since the

state-stage diagram is. labelled exactly- the same way it appeared when

we faced the same decision before, the cost/revenue computations are

identical to what they were. The decision is: reject route 1-3 and

1
leave p 23 unserved.

... M MMIIIIIM 16 AMINNIMMIJIMM11101111111'', "
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CONCLUDING COMMENTS

It is seen that the labelling in two consecutive loops- around the

stages remain exactly the same. According to the method of successive

approximation, an optimal solution has been obtained. We graph the

resulting route network in Figure 4-5-4a (with On increased to 3). The

system profit is the sum of the labels, which equals $3101. The other

statistics such as costs, revenue, passenger flow, the passenger demand

actually carried, route frequencies, aircraft type assignments and fleet

size requirements can be deciphered form the final version of the

bookkeeping table and the state-stage diagram.

4.5.3 Some Computational Aspects

In 3.3, R.I.S.E. was "manipulated" into a decomposable form in

the spirit of Dantzig-Wolfe/Tomlin. In this chapter an enumerative

algorithm of the dynamic programming type has been given to solve the

problem. In this section, we will examine (i) computer storage require-

ment and (ii) computation speed of the algorithm.

We have previously counted the number of rows and columns in the

decomposable formulation. Given the assumptions such as symmetry,

degree ofconnectivity, etc., the master program takes roughly 3/4 N2

rows, the revenue equations~ takes 7/8 N2 and the cost equations, 1.575 NE.

For an 80-city- system, 4800, 5600 and 10,080 rows are required

respectively, giving a total of 20,480. There are .8125 N2 columns in

the master program. The revenue computation adds 2.5 N2 more columns
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while the cost computation adds another .825 N2 . For an 80-city system,

this means 5200, 16,000 and 5280 columns respectively, giving a total of

26,480.

The tableau size of 20,480 by 26,480 is actually not meaningful.

There are two reasons. First, we are mainly dealing with the 4800

by 5200 master tableau. The subprograms are solved one at a time. It

is never necessary- to solve the entire master program. Only several rows

and columns of the master program need to be enumerated at a time.

Second, we are not dealing with a simplex type algorithm, where the

number of rows determines the size of the linear program basis. The

dimension of the tableau does, however, give a rough idea about the

huge size of the problem. It would be formidable to try to solve a

problem of this size without decomposition. Also, particular attention

must be paid to design a computed data structure capable of storing the

542 million entries of information in this tableau (of which a large

percentage are zero entries, fortunately-).

Viewed as a dynamic program, the amount of data storage required to

be in core is only a small subset of the tableau. Simpson[1969] gives

some guidelines on the data storage requirements of a dynamic programming

algorithm. The high. speed memory- requirement is quoted to be at least

twice the state space, while the low speed memory- requirement amounts to

the dimension of the state-stage space. Let us- give a rough extimate in

the state-stage space of the R.I.S.E. problem on this- basis. If we

assume that (i) for a city-pair only- the shortest routes are considered,

(ii) a symmetric route network, and (iii) only half of the city pairs

connected by through service, the state space is theoretically N3/4 in
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dimension. For an 80-city system, the high speed memory requirement is

2 x N3/4 = 256K storage locations*. Assuming that two-stops are the long-

est route generated, there will be three stages in the D.P. algorithm.

The low speed memory requirement is 3 x N
3/4 = 384K storage locations.

Add them together, the total speed memory requirement of 630K fits well

within the 1500K core of the IBM 370/65. By a careful data structure

design, we have avoided using secondary storage, during the execution of

the algorithm, thus saving the time necessary to bring the data into

core from disk/tape/data cell, as well as the total secondary storage

requirement. The actual storage requirement and computational speed

will be documented in Chapter 5.

As a rule of thumb, the execution time of a dynamic programming

computation grows exponentially as the number of decision variables

and only linearly with the number of stage subproblems, i.e., the

"substages" in our terminology. In our context, there are N2/2 substages

for each non-stop/one-stop/two-stop stage. We would speculate, there-

fore, that the computational speed grows roughly as N
2/2, although tree

pruning techniques such as branch-and-bound (to be discussed immediately

below) will speed up the algorithm significantly. Some computational

experiences will be shown in the next chapter.

We recall that the route/connect-routing selection procedure is

based on the primal revenue/cost/profit figures. To derive these

*In our problem, additional arrays are neces-sary to record the C.A.B.

route authority, route frequency, etc.



285

figures involves post-optimality procedures on passenger flow and other

computations. To evaluate each of these route candidates by reassigning

passengers for each route network configuration would be rather time

consuming, especially if we are repeating for all city pairs and again for

non-stop, one-stop and two-stop routes. A short cut is- obtained by way

of a branch-and-bound routine. By watching out for monotone functions a

and upper/lower bounds., a good deal of computation can be saved through

the "exclusion" and "rejection" rules-. The branch-and-bound procedure

allows us to bypass a large part of the computational burdensome task

of reassigning traffic and other optimization steps-.

Rather than go into the cumbersome details of the branch-and-bound

rules, let us just outline the basis upon which it works. A close

examination of the cost and revenue primal price expressions in Section

3.3.3 reveals some interesting facts, which we assert below without

elaboration:

- system revenue is monotonically increasing as more

routes are generated

- a conservative figure for route cost can be obtained by

neglecting the second term of Equations 3:3:12 and 3:3:13

- a conservative cost figure for revenue passenger mile can be

obtained by counting only- the RPM for the new traffic induced

by the introduction of the new route.

These assertions. are the basis of the branch-and-bound refinement to the

D.P. procedure.

oil,
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Let us make some concluding remarks on the RISE algorithm and its

storage and computational requirements. We can think of the RISE dynamic

program as a tree construction routine. The branching logic is the

route/routing generation procedure, in which legal routes/routings are

generated by raising the contiguity matrix to its powers. A route is

evaluated as soon as it is generated, by reassigning passengers on the

route network. An unacceptable route/routing can be rejected "early

in the game" and the corresponding branch of the tree pruned so that

no further branching occurs from that node. This, in a nutshell, is

how generation and selection interplay- and how they are carried out

simultaneously, rather than treated as two separate, disjointed procedures.

A dynamic programming algorithm can be coded inefficiently-. Our

claim that D.P. can be used to solve R.I.S.E. is based on several

characteristics of R.I.S.E. which work in our favor. Storage requirements

are not prohibitive because: (i) we are dealing with a macro-problem

expressed in terms of a route network, rather than detailed models

expressed in a "schedule map" in which the additional dimension of time

is present; (ii) three stages corresponding to non-stop/one-stop/two-

stops are quite sufficient to model the U.S. domestic trunk line network.

Only very seldom do we need to define a fourth stage corresponding to

three-stop routes, which-are negligible for most purposes; (iii) the

C.A.B. route authorities are geographically symmetric; and (iv) the

sequential way in which the routes are generated readily- lend themselves

to a space saving LIST data structure bookkeeping scheme. Computation

time is acceptable because: (i) a branch-and-bound procedure is used to
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speed up to regular recursion equation of D.P. in the route selection

stop; (ii) when reassignment of passengers is necessary in the evaluation

step, a set of efficient post-optimality rules modelled after that of

Murchland (1969] and Chan [1969] is us-ed; (iii) part of the route/routing

generation scheme is essentially- a minimum path algorithm for which

efficient matrix solution techniques exist; and finally (iv) no execution

time is wasted in accessing data from secondary storage, since all

information is in core.

Let us say a word about the convergence of the algorithm. The

basic improvement operation, Equation 3:3:20, is actually a clever

enumerative step. The combinatorial space, though huge, is nevertheless

finite. The number of enumerative improvement steps will therefore be

finite also.

4.6 Theoretical Generalization

About a year ago, Geoffrian [1970a],[1970b] published two papers

which shed some light on the general theory of decomposition in

mathematical programming. We will view the decomposition of R.I.S.E. in

this framework.' This section serves as a review of the whole R.I.S.E.

decomposable approach in a more generalized theoretical term.

The decomposable formulation of R.I.S.E. as summarized in Figure

3-3-3 is rather involved. There are the master program, 0-D subprogram,

primal revenue and cost computations. Conceptually, the core of R.I.S.E.

has a much simpler form. It consists of essentially the route covering

matrix of the master program, with only one type of decision variable--
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the set of non-stop, one-stop, and two-stop routes/routings Ro, R

and R2 . The generalized form of R.I.S.E. has the following appearance:

max (r0 (RO) o rl(Rl) o r2 (R
2 ) )

c0 (RO) + c (R1 ) + c2 (R2 ) ) > 1

R 0  0 C (4:6:1)

Rl 1 C

R2  E 2C

where the first constraint is a linking constraint of the remaining

three constraints. It corresponds to what we referred to as the route

covering constraint in Chapter 3. The right hand side of this constraint

is a vector of l's, each of its entries corresponds to a city pair which

is required to be covered by m-stop routing routes or better. co(Ro),

cl(R), c2 (R2 ) simply denote the route covering matrices corresponding

to the set of non-stop, one-stop and two-stop route/routings. The

remaining three constraints simply state that route/routings are

generated within the combinatorial spaces of non-stop, one-stop and two-

stops, or raore specifically that the set of non-stop routes RO are

selected from the non-stop chains OC, R from 1 C, and R2 from 2 C. The

objective function is to maximize profit which comes from the returns-

of the non-stop routes r0(RO), from the one-stop routes r 1(R ) and two-

stop routes r2 (E
2 ).
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Viewing RISE as a aequential optimization procedure, the system

profit cannot be obtained b simply adding up individual returns r0 , r1

and r 2 . The returns r0 , r1 and r2 are interdependent since the

introduction of one-stop routes may- affect the traffic flow- on the

non-stop routes and affect the income from the non-stop routes, ro.

Take a simple example, suppose a city pair A-B is formerly covered by

a non-stop route, a one-stop A-B-C is now- introduced that redundantly

covers the city pair A-B by the first segment of the route. Traffic

will be diverted from the non-stop to the A-B segment of the one-stop.

Setting all other things aside, the system income (or profit) from the

non-stops, ro(Ro), is decreased due to a decision made in the set of one-

stop routes R1 . The symbol "o" is introduced to take into account this

interdependent effect between R, R and R2  We call "o" the

"composition" symbol. The objective function then reads: "The system

income is composed of the non-stop, one-stop and two-stop incomes",

instead of the more familiar, additive objective function, which says

"system income is non-stop income plus one-stop income plus two-stop

income".

Notice that the nested min and max operators are absent from the

objective function. The nested min operator has been taken care of

by- generating only the shortest routes/connect-routings via the contiguity

matrix method (represented as RiciC constraints). The nested max

operator has been absorbed in our procedure of computing primal cost.

Formulation Equation 4:6:1 is essentially the master program without

the rows of l's- for each O-D pair. The primal revenue and primal cost,
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hence marginal profit, are imbedded in the return functions ri's.

Instead of writing the route/routing passenger variables, we explicitly

use the set of routes R0, R and R2 as decision variables. Passenger

flow- is determined implicitly when we compute the primal cost of a

route. O-D pair connectivity- is, evaluated implicitly when we evaluate

the primal revenue. Equation 4:6:1, though simple in appearance, contains

all the information shown in the detailed R.I.S.E. selection formulation

of Figure 3-3-3. In addition, the route generation aspect of RISE is

also shown as the constraints RiciC.

Geoffrian pointed out that there are two decomposition approaches:

the "primal" method or resource-directive approach and the "dual"

method or price directive approach. The resource-directive method

determines iteratively a series of artificial resource variables, b ,

such that we solve iteratively each subproblem:

max ( ri(Ri) )

c i(Ri) > b i = 0,1,2

i iCR E C

The price directive method determines iteratively a series of dual

prices X-'s such. that ve solve iteratively- each subproblem:

max r iCR + XT ci(Rl)

i = 0,1,2

R E C
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RISE uses the resource directive (primal) approach while Tomlin/

Dantzig and Wolfe used the price directive (dual) approach. We prefer

a primal method for two reasons. First, it enables a good initial

feasible solution to be utilized. This allows RISE to be used as an

improvement algorithm where we start with the existing route map and go

straight to Phase II without stepping through Phase I. Second, a

primal method, by definition, maintains primal feasibility throughout

the execution of the algorithm. If the iterations in the algorithm are

stopped prior to optimality due to computer time restrictions-, a good

feasible solution better than the one we start out with is still avail-

able.

The artificial variables b2's used in our resource-directive

method have a physical interpretation. They are vectors comprised of

either o's or l's. b0 = indicates that while the first city pair

is not covered by a non-stop route, the second and third city pairs are.

b = indicates that the first city pair is covered by a one-

stop while the second and third city pairs are not. Jointly

bO+b_ {= } + = { says all city pairs are covered. The

physical interpretation of b2 's are borne out more explicitly when we

look. at the complete decomposable formulation after the introduction

of these artificial "resource" variables:
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max r0 (B) o r 1 (R1 ) o r 2 (R2

c (R >b 0

c (R ) > b (4:6:2)

c 2(.R2) > b 2

bo + hi + b2  > 1

with the Ri 's to be selected from the chains- iC 's

If we compare the above formulation with Equation 4:6:1, we would notice

that in the linking constraint the ci(RIs are replaced by the b 's.

The linking constraint states that the three sets of routes RO, R and

R2 taken jointly must cover the specified city pairs. The formulation

-Equation 4:6:2 explicitly brings out the fact that to cover a city pair,

we can allocate the task to the non-stops, one-stop or two-stops.. In

other words, a job of covering city pairs by routes/routings is to be

split up among the non-stops, one-stops and two-stops in the amount bo,

b and b2. The term "resource directive" is derived from this context

of splitting up a central task (resource) among different subsystems.

The word "resource" has been used historically- because in most for-

mulations the linking constraint is a resource constraint such as the

budget constraint.
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In order to handle route generation and selection simultaneously,

a flexible tree search scheme like dynamic programming and branch-and-

bound is used. Dynamic programming solves Equation 4:6:2 via the follow-

ing set of recursion equations:

non-stop: f 1(,) = max r0 (_b, RO)
Ro

one-stop: f2b2) = max ( r (b1 , R ) o f (b ) (4:6:3)
Ri

two-stop: f3 (b3) = max ( r2 (b2, R2) 0 f2(b2)

where bi's are the artificial resource vectors and the

chains 1c's are generated by raising the contiguity

matrix to its own power.

The composition symbol "o" remains with us. It says that the system

income in the objective function is composed of returns from non-stops,

one-stops, and two-stops in a non-additive manner. In this set of

recursion equations, it is easy to see hov generation and selection

interact with each. other. The state transformation, or branching scheme,

from OC to lC to 2C (hence from bo to b1 to b2) is the route generation

aspect of RISE. The max (') operators handle the selection aspect. In

each stage of the D.P. algorithm, generation and selection are done

simultaneously-.

For reference purposes, a flor diagram of the D.P. algorithm is

J1,1,1111011 __MMMMWWWMWMM 11w11hi1i ,,,



FIG. 4-6-1 FLOW DIAGRAM OF RISE
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shown in Figure 4-6-1. RISE is broken up into three stages (i = 0,1,2)

in the figure, corresponding to non-stops., one..s.tops, and two-stops. In

the i=0 stage, non-stop route/routings Ro yield a return (or income) of

r 0 , one-stops- R1 yield r1 etc. Coordinating the various stages is the

artificial resource variable bi s. The sum of bi's- have to ensure that

certain city pairs gre covered by- the specified m-stop or better

routing, as shown by the expression b +- b + bo + bi + b2 > 1 in the

figure. The first pass through the algorithm is Phase I, in which an

initial feasible route network is configured. Subsequent passes through

the stages constitute Phase II, where the route network is incrementally

improved until two successive route networks remain unchanged. The

optimal solution is then obtained, and the algorithm terminates in

accordance with the method of successive approximation.

In this section, we hope we have reviewed from a theoretical

standpoint the plan of the whole chapter. We have seen how R.I.S.E.

can be conceptualized in a simple decomposable formulation like Equation

-4:6:1. By introducing an artificial "resource" variable bi in Equation

4:6:2, we show how R.I.S.E. can be solved using a resource-directive

or primal approach.. Finally, we see how Equation 4:6:2 directly lends

itself to the recursion equations of D.P. in Equation 4:6:3 where route

generation and selection are. treated as. parallel rather than disjointed

processes.

11 Md I IJ IIIN III,
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CHAPTER 5

A CASE STUDY AND SOME COMPUTATIONAL EXPERIENCES

In the previous chapters, we have gone through the following steps in

our analysis: problem identification (Chapter 2), model building (Chapter

3), and solution (Chapter 4). The present chapter will be devoted to model

verification, in which the usefulness of the model will be tested on a case

study from industry.

There are three parts to the chapter. First, we will point out that

part of the mathematical model which has been implemented on the computer

and available for running case studies. Second, we will use the software

system to run a case study from American Airlines. The role that the com-

puter model plays in analyzing "real world" problems will be discussed.

Third, we will report on the computational efficiencies of the program with

several test cases of different sizes.

5.1 The Status of Software Development

It was pointed out in Chapter 3 that the optimization problem addres-

sed in this piece of research is characterized by (i) a huge combinatorial

space which iecessitates a repeated application of "identification" and

"optimization" steps, (ii) a special shape of the objective function, and

(iii) an integrality requirement. These peculiarities exclude the use of

"off-the-shelf" software packages such as MPSX/370 or OPHELIE/LP for the
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solution of the model. It has been a solid two man-year effort of software

development by the author just to have an available solution algorithm to

verify the validity and usefulness of our optimization model.

5.1.1 The Computer/Software System

Software development has been carried out in both the IBM 360/67, a

time-sharing machine, and the IBM 370/155, used in a batch mode. Each in-

dividual program was debugged and tested on the time-sharing system CP/CMS

with the 360/67. The debugged programs were then added one at a time to

the software package and tested out in the batch processing mode with the

370/155. Currently, an operational software package -- RISE-I -- is avail-

able on the batch processing environment for production runs.

RISE-I is coded in the FORTRAN-G language. The software system con-

sists of a total of 40 routines (not counting system programs). Programs

are organized in a "modular" design so that future extension to the system

can be implemented with minimal difficulty.

The object code of RISE-I takes up approximately 120 thousand bytes,

including all the systems routines called and the common area. The array

size required for a 25-city system is about 35 thousand bytes, and is pro-

jected to be about 353 thousand bytes for an 80-city system. The core re-

quirement of RISE-I for most airline networks therefore falls well within

the core capacity of 1500 K bytes available on the 370/155. RISE-I re-

quires negligible secondary storage support, which is used merely to store

the programs and to handle approximately N /2 (where N is the number of

1 cities in the system) pieces of input card records. This means about 300

.. AWWO =WNJNJJ I
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input records for a 25-city system and 6400 input records for an 80-city

system.

5.1.2 The Implemented Part of the Model

The software package RISE-I, in its present status, has only incorpor-

ated certain parts of the optimization model as formulated in Chapter 3.

The C.A.B. route regulation constraint has been implemented in full. The

inter-carrier route competition constraint, however, has not been program-

med. The algorithm in RISE-I only carries out Phase I of the optimization

procedure, in which a good feasible route network is constructed ab initio.

Phase II of the algorithm which successively improves on the initial feas-

ible solution has not been developed, although all the program modules for

the improvement step exist within the current Phase I package. It is a

matter of coordinating these modules via some data links to fully implement

the Phase II improvement step.

RISE-I has incorporated only a fixed (i.e., totally inelastic) set of

origin-destination passenger demand functions. The author refrained from

programming the full set of demand functions since there is no way he

could obtain such a set of demand functions directly from American Airlines.

Such a set of demand functions has to be estimated from statistical studies,

which would constitute a thesis by itself.

Only the case of a symmetric passenger demand matrix has been pro-

grammed. The extension to the case of an asymmetric demand can be carried

out fairly readily. ,t
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RISE-I currently can only handle a single aircraft type. The exten-

sion to multi-aircraft types would simply involve coding a couple more

routines.

Presently, only direct operating cost (with aircraft financial cost)

is computed. Indirect operating cost calculation has been left out thus

far. This is not a drawback in any sense, since the algorithm works only

on direct operating costs, as explained in section 2.2.4 of Chapter 2. In-

direct operating cost is just computed ex post anyway.

There is an assumption made in the coding of RISE-I regarding the pas-

senger flow distribution. The entire origin-destination (0-D) traffic is

assigned to the first available route constructed to serve the city pair.

For example, if a non-stop route is constructed first in the route map to

serve city pair X-Y, all the O-D traffic between the city pair goes onto

the non-stop. Even if a one-stop route/routing is constructed later on to

serve the same city pair, it would not carry any traffic from X to Y, since

all the 0-D demand has been loaded onto the former non-stop already. Along

the same line, if a one-stop route X-Y-Z is again constructed to cover city

pair X-Y, the segment X-Y in X-Y-Z would still carry no traffic from X to

Y, since all the O-D demand is assumed to have been loaded onto the origi-

nal non-stop route X-Y. This particular traffic flow assumption was coded

for computational convenience, since the author was operating under time

constraints. The assumption cannot be defended rigorously. Given a rea-

sonable amount of time, a more refined traffic assignment procedure, as de-

veloped formally in sections 3.2.3 and 4.3.1, in its mathematical rigor,
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can be worked out quite straightforwardly.

5.2 A Case Study

In this section, RISE-I will be used to synthesize a route network in

the American Airlines system. A comparison will be made between this syn-

thesized route network and the existing network used by the carrier. Such

a comparative study is a good way to bring to light exactly how serviceable

the model is in routing analysis.

5.2.1 Definition of the Case Study

An analysis is carried out for the B707-320 fleet of American Airlines

in the August peak season of 1970. The 707-320 fleet served 24 cities in

the system. It was the longest range aircraft with the largest seat capac-

ity at the time for American. The fleet mainly carries the east-west long-

haul traffic.

In order to carry out an objective comparative study, we have attempt-

ed to follow the same "rules of the game" as the schedule planners in Amer-

ican in constructing our route network. The O-D passenger demand carried

by the 707-320 fleet is supplied directly from the carrier. Similarly, I
they have supplied the C.A.B. route authorities, the fleet characteristics

(such as seat capacity, speed and range), intercity distances and block

time, revenue function, etc. However, the method of computing direct oper-

ating costs is different. The algorithm in RISE-I evaluates direct oper-

ating cost based on unit cost per block hour [Chan - 1970].* American Air-

*See also Chapter 2, section 2.2.3 for our method of costing. 3
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lines has its own method of costing. In general, we would say the route

network configuration procedure of RISE-I is based upon the same premises

as that used by the carrier.

5.2.2 Analysis Results

In this section, we will discuss the similarities and differences be-

tween the route network synthesized by RISE-I and the existing version used

by American.

In spite of the huge combinatorial degree of freedom that is allowed

by the C.A.B. route authority, the network suggested by RISE-I shows re-

markable similarity to the existing American system in general appearance.

An examination of Figs. 5-2-1 and 5-2-2 will bear this out. As a whole,

there are more routes in the American system (henceforth called the AA sys-

tem, standing for American Airlines) than in the RISE-I network. This is

due to the asymmetric route pattern of AA, while RISE-I assumes symmetry in

its route network. For example, AA may serve city pair X-Y by a non-stop,
but Y-X by a one-stop. Thus there are two routes serving between the

cities X and Y. RISE-I, with its symmetrical algorithm, would suggest

serving X-Y in the same way as Y-X. There is only one route between cities

X and Y. The asymmetry of the AA practice is rather puzzling to the au-

thor, since 'the C.A.B. route authorities are always symmetric and the O-D
passenger demand of the AA system is symmetric. The asymmetry could have

been necessitated by fleet routing to meet maintenance requirements and/or

the difference in eastbound vs. westbound route frequencies due to time

zone changes.
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market entries and exits

Out of the 552 city pairs of the 24-city system, RISE-I provides 707-

320 services between 186, or 33.7% of them. This compares with the 137

city pairs served by AA, which is 24.8% of the city pairs in the system.

The comparison indicates that there are a number of profitable city pair

markets which AA is allowed to serve, yet they have not gone into serving

these markets by 707-320's. In a total of 46 city pairs where service is

introduced by RISE-I, service neither existed in the eastbound nor the

westbound direction before. We call these brand new service introductions

"market entries" for the 707-320 fleet. In spite of the fact that route

competition has not been incorporated into RISE-I, and the fact that we

are analyzing only one of of six fleet types, 12 of the city pair market

entries have been substantiated by the carrier as a sound decision after

considering all aircraft types and all the other factors in schedule plan-

ning.* There is an additional couple of city pair market entries, namely

between CVG-SDF* and SDF-CVG, where AA has been considering instituting

service since passenger demand potentials appear promising.***

While there are market entries, there are also market exits. RISE-I

suggests a number of city pairs where service in both directions should be

*This refers to the analysis by the passenger flow model used in American
Airlines.

**CVG is Cincinnati, Ohio, while SDF is Louisville, Kentucky.

***This service introduction was recommended by the passenger flow model
used in American Airlines.
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discontinued altogether. Fig. 5-2-3 indicates that it is suggested that

the carrier should consider stopping service in a total of 28 city pairs by

the 707-320 fleet. An example of market exit is the service to Acapulco,

Mexico (see Fig. 5-2-1). Partly because of the scanty traffic in the sum-

mer and partly because of the RISE-I traffic flow logic bias as explained

in section 5.1.2, the particular computer run suggested that the 707-320

service to Acapulco be scrutinized. Rigorous analysis done by the author

shows that the traffic assignment logic of RISE-I has, in this particular

case, biased us against serving an acceptable market.

RISE-I suggests 46 city pair market entries and 28 city pair market

exits. In other words, for each market exit, RISE-I suggests 1.64 market

entries. As explained above, 26.1% of the market entries are further sub-

stantiated by the carrier's own analysis.

service improvement/degradation

Fig. 5-2-4 shows a distribution plot of the number of city pairs served

by non-stop, one-stop, and two-stop or longer routings. For example, there

are 86 city pairs served by non-stop routings in the RISE-I route network,

compared with 60 city pairs in the AA network. The distribution depicts

that the RISE-I network provides more non-stop and one-stop connect rout-

ings than the AA network, while the latter provides more one-stop, more-

than-two-stop routings and more-than-two-stop connect routings. Very

qualitatively, we can sense that RISE-I tries to serve passengers via

shorter (improved) routings than does AA.

Referring to Fig. 5-2-3, RISE-I picks out a total of 53 city pairs for
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service degradation. In other words, for every degraded city pair, there

are 4.82 upgraded city pairs. Ten city pairs, or 18.9% of the city pairs

with improved services, are endorsed by the carrier's own analysis.

system summary statistics

On the whole, RISE-I suggested slightly more capacity can be provided

to capture a higher traffic volume in the 707-320 system. RISE-I recom-

mends an available seat mile (ASM) figure of about 18,796,000, which accom-

modates about 12,166,000 revenue passenger miles (RPM). This compares with

17,579,000 ASM and 11,263,000 RPM of the existing AA system. Both RISE-I

and AA achieve a comparable system load factor -- they are 64.7% and 64.1%,

respectively.

With the 6.9% increase in ASM capacity, a slightly larger fleet re-

quirement of 305 block hours per day compared with the existing AA figure

of 282 block hours is needed. This represents an 8.3% increase in fleet

requirement.

The expanded activities suggested by RISE-I are justified by very

favorable cost and revenue figures. It is indicated that the additional

traffic would increase revenue from $555,000 to $613,000 per day -- a 10.4%

increase. Direct operating cost will be cut down from $255,000 to $170,000

per day without considering aircraft financing cost, and to $243,000 a day

with aircraft financing cost included.* They represent a cost reduction of

33.2% and 8.4%, respectively.

*The readers are reminded that RISE-I and AA use different cost formulae,
as pointed out in section 5.2.1.
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5.2.3 Conclusive Comments

The analysis so far speaks quite favorably of the serviceability of

RISE-I. To be professionally objective, we would like to remind the reader

that there are assumptions made in the coding of RISE-I. The assumptions

have been explicitly pointed out in section 5.1.2. There is one more res-

ervation we would like to bring out here. The route network as constructed

by RISE-I does not take into account the routing of aircrafts for mainten-

ance considerations. For example, in Fig. 5-2-2 there is an eastward route

out of Tulsa, Oklahoma, in the AA route network which is absent in the

RISE-I network. The eastward route out of Tulsa is actually an unprofit-

able route. It is used merely to ferry planes out of the maintenance cen-

ter at Tulsa. RISE-I, which works on a marginal profit basis, therefore

rejects such an unprofitable route out of Tulsa. The way RISE-I configures

the route network implies, from the point of view of profit, that planes

after maintenance work has been performed on them, should be brought back

into the network system on westward flights. It is economically unsound

to route them directly to the east portion of the United States.

The aircraft routing consideration can actually be considered if nec-

essary. The routing analysis can be incorporated with RISE-I in a simul-

sequentialmanner as suggested in Chapter 1. In that light, the aircraft

routing problem is by no means a shortcoming of RISE-I. And, as a matter

of fact, we may want to ask: "Why choose Tulsa as a maintenance station

when planes have to be ferried empty in and out of the city in order to

get serviced?" Would it not be more rational, in the long run, to place

,, , JINII MMMI I
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the maintenance center at a more accessible city in the network?

Let us make some conclusive remarks about the whole case study. Table

5*2*1 summarizes all the vital statistics of the comparative study between

the RISE-I route network and the AA network. It was observed that although

both 707-320 networks have general similarities in topology, the level of

service can be improved significantly by slightly expanding the system a-

vailable seat-mile. The system capacity expansion would open up a number

of potentially profitable city pair markets and upgrade a large number of

services. While the expanded capacity would necessitate a slightly higher

fleet requirement, the decision is more than justified by the increase in

revenue.

5.3 Other Computational Experiences

Besides the formal case study, a number of computer runs have been

performed to assess how fast the algorithm executes. The observed compu-

tational speeds have been quite encouraging.

In Table 5*3*1 is recorded the running time for each of four test

cases -- 5-city, 9-city, 16-city, and 24-city systems. They take, respec-

tively, 4, 7, 17, and 51 system seconds on the 370/155.

For comparative purposes, we have displayed also in Table 5*3*1 a com-

parable software package developed by Peat, Marwick, Mitchell and Company

[Jessiman, et al.- 1970]. Their reported running times for a 6-city and

25-city network are 54 and 380 system seconds, respectively, which consume

at least seven times as much computation time. Considering that they are
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TABLE 5*2*1

SYSTEM SUMIARY STATISTICS

AA

City pairs served

RPM

ASM

System load factor

Fleet requirement (block hours/day)

Revenue ($)

DOC ($)

137

11,263,000

17,579,000

64.1%

282

555,000

255,000*

RISE-I

186

12,166,000

18,796,000

64.7%

305

613,000

234,000**

*based on a method of costing based on American Airlines data

**based on cost per block hour computation, with aircraft financial cost
included

111111
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TABLE 5*3*1

APPROXIMATE PROGRAM RUNNING TIMES

(in system seconds)

RISE-I (IBM 370/155):

5-city 9-city 16-city

4 7 17

PMM (CDC 6600):

6-city

24-city

51

25-city

380
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using a CDC-6600, which is supposedly a faster computational machine than

the IBM 370/155, we have reasons to feel gratified about the algorithmic

efficiency of RISE-I. Credit is attributed to two areas: (i) the primal

decomposition method, in which the pruning rules of the dynamic programming/

branch-and-bound algorithm are quite effective, and (ii) the computer cod-

ing has been carefully designed and cautiously programmed.

''WHINNO IMN11110hW1,
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CHAPTER 6

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

In this dissertation, .we have set out to improve the route structure of

an airline network. The "real world" problem was first identified ,in its

economic and corporate context. A mathematical optimization model was then

built to represent the pertinent issues of the problem. We followed by of-

ferring a solution technique and verifying the model with a case study.

What has been learned after going through this process? What bearing does

our experience have on future research and development in this subject area?

This chapter will attempt to answer these questions.

The plan of presentation is as follows: We will summarize our contri-

bution in modelling, solving and verifying the route network improvement

problem. The summary will provide the author with the necessary substanti-

ations to advance his viewpoint, or his thesis, on the subject matter at

hand. Based on this reasoned viewpoint, he will recommend future exten-

tions to the work that has been performed in this dissertation.

6.1 Modelling the Route Network Improvement Problem

The airline route structure improvement problem is one out of many is-

sues in routing and scheduling. It is a more long run problem than, for

example, the real time decisions involved in schedule control - in the

sense that while an airline is unlikely to change its route structure

day-in day-out, weather or mechanical malfunctions would necessitate
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minute-to-minute alterations in aircraft movements. It is on the

recognition of the difference between the far-reaching planning horizon

vs. the more myopic decision time frame that we have proposed to model

the scheduling process in a hierarchical structure, in which the prob-

lem is broken up into a number of priorly ranked issues, with route

configuration being one of them.

Routing and scheduling can be classified as the "supply" side of

a transportation system, since the process provides the service for

people and goods movement. It is well known, however, that different

levels of transportation service would induce different quantities of

demand. For this reason, we have modelled our passenger demand as a

function of whether the scheduled service is a nonstop, multistop, or

connect routing.

U.S. domestic trunks are regulated by the C.A.B. Each carrier is

restricted by the terms of Route Certificates regarding whether and how

service can be provided between city pairs in the network. A graph-

theoretic method using the concept of a contiguity matrix is devised

to represent the route certificate quantitatively. Through straight-

forward manipulations of the matrix, the schedule planner automatically

obtains all the different ways city pairs can be served under the C.A.B.

route authority.

The eleven domestic trunks compete with each other in an oligopoly

market. Route competitition is one of the ways they try to differenti-

ate their "products" (or more appropriately, service) to the travelling

public. Very often, when a competitor is offering an m-stop service
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between a city pair, the carrier concerned has very little choice but

to match up with a comparable service. The route competition pressure

exerted on a carrier has been formulated as a set covering matrix in

which a city pair is specified exogenously to be "covered" by an m-stop

or better routing.

In the U.S. airline industry, private corporate operators are

rendering a service to the travelling public. While a private operator

is concerned with profit maximization, usually an average business

traveller wants to make sure he/she executes his/her trip in the mini-

mum time path. They are two decisions makers with two different objec-

tives--the prescriptive system optimizing operator versus the

descriptive user optimizing traveller. An insightful carrier would

try to align its aircraft routes with the shortest passenger routings

so as to capture the highest revenue without unduely incurring extra

operating costs. A dual objective function with min (-) operators

nested within a max (-) operator is used to model this phenomenon.

6.2 Optimization Techniques for Problem Solution

After a mathematical optimization model, R.I.S.E., had been formul-

ated for the route configuration problem, the research went into its

problem solution phase. The progress of research went through a

number of evolutions before a satisfactory technique was found. The

nature of the physical problem in many cases motivated the technique.

In our constrained optimization problem, the feasible region is a

huge combinatorial space of routes generated by raising the contiguity
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matrix to its own power. Search is carried out over this feasible region,

resulting in a selection of the best routes to be included in the

route network. The selection is carried out by an integer program

characterized by (i) nonconvexity, (ii) a dual objective function, and

(iii) a max <-> operator nested within another max () operator in the

objective function.

If route generation and selection are treated as two disjointed

processes, in which the former is solved first to provide the feasible

region for the latter, the dimensionality- problem is formidable. The

only practical approach would be to simultaneously generate a handful

of routes/routings 'as needed" and to simultaneously select among them.

To facilitate this, the integer program is recast into a decomposable

format where the most promising routes/routings are generated and

immediately subject to selection. The selection criterion is based on

the marginal profit of a route/connect-routing. No dual prices are

used. Hence it is classified as a primal decomposition method.

The decomposable scheme has an additional computational advantage.

It enables us to solve the dual objective function in a straightforward

fashion. If only the minimum time routes/routings are generated to be

appended to the decomposition tableau, the dual objective function

reduces to-a single maximum system profit objective. And we recall that

the minimum time route/routing computation can be readily handled with-

in the contiguity matrix framework. The transformation of the original

optimization problem into a decomposable format therefore not only

cuts down on dimensionality, but also facilitates the solution of the
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dual objective function.

Still, the decomposable format is plagued with the remianing ill-

behaved properties, (i) integrality, (ii) nonconvexity, and (iii) the

nested max <-> operator. The author feels that from a practical view-

point, it is not cost-effective to search for an elegant, algebraic

solution method. Instead, an enumerative approach is followed.

The adoption of an enumerative solution technique such as

dynamic programming (D.P.) has been notivated by a number of factors.

First, the master program subprogram, and column/row generation scheme

of the decomposition formulation suggests to the author a D.P.

state-stage space. Second, the marginal profit selection criterion of

primal decomposition can readily be turned into a recursive operation

of D.P. Third, the nature of the route structure problem is such that

we think of non-stops first, then one-stops, two-stops, etc.--which is

exactly a multistage formulation.

Dynamic programming is such a technique that nonconvexity and

integrality presents no computational problem. The only remaining ill-

behaved property at this point seems to be the nested max <-> operator

in the objective function. As will be seen, it can be accommodated

in a straightforward manner in the evaluation step below.

The algorithm consists of three basic steps: synthesis, evaluation

improvement. In the synthesis step, a route/connect-routing is

synthesized in the state-stage diagram via the contiguity matrix

method. In the evaluation step, traffic is assigned on the synthesized

route/routing and its cost/revenue is computed explicitly (hence
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marginal profit is available which is revenue minus cost). Because cost

is calculated explicitly, the max <-> presents no mathematical

difficulty (as it would, if a formal algebraic type "elegant" method

is used). In the improvement step, a recursive, basic improvement

operation is used to incrementally improve the solution. By ensuring

that the specified city pairs be covered by an m-stop or better routing

in this step, primal feasibility is always guaranteed during the

algorithm. In fact, the competition requirement that a city pair be

served by m-stop or better routing helps in pruning the combinatorial

tree.

A repeated application of the above three steps constitute the

RISE algorithm (which stands for Route Improvement, Synthesis and

Evaluation). The first pass through the state-stage diagram provides

an initial feasible solution. Subsequent passes successively improve

on the solution. This technique is called the method of successive

approximation in dynamic programming. The method can be visualized as

g numerical way to equilibrate supply and demand incrementally. If the

algorithm is stopped before its formal completi'on due to limited

computational resources, a feasible solution better than the one we

start out with is always available.

A 40-routine software package RISE-I for the algorithm has

been implemented. During program developemnt, familiarity with the

nature of the route network configuration problem leads to compu-

tational refinements using branch-and-bound, which speeds up the

enumerative scheme. Because the software package is tailor-made, it
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offers an inexpensive and practical problem-solving tool.

6.3 Results and Findings

After three years of research, it is rather heartening to obtain

results and findings which substantiate our viewpoint, or thesis, on

the subject matter at hand. The presentation in this section will

consist of (i) the results of a case study from American Airlines,

(ii) the computational experience of the algorithm, and (iii) a state-

ment of the author's reasoned viewpoint (or his thesis) based on the

findings cited.

RISE-I has been used to analyze the 707-320 fleet of American

Airlines for the peak season of 1970. This is a private sector

application of the model, since we are dealing with a profit-oriented

corporation (instead of the C.A.B., which has concerns over "public

convenience and necessity"). The case study indicates a slight

expansion of the system capacity in terms of total available seat

miles (ASM) would be desirable. The expansion of ASM would appreciably

(i) upgrade the overall system level of service, (ii) open up a number

of authorized city pair markets, all at a favorable system load factor,

revenue and direct operating cost. It shows that within the existing

route authority held by American, there are a number of superior

combinatorial route structure configurations apparently not considered

by the carrier at the time. An analysis of the total 53-city system of

American Airlines for the summer of 1970 substantiates this point. The
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analysis reveals that on the average only two out of five authorized non-

stops were actually served by the carrier.

The computational efficiency of the algorithm is quite encouraging.

From the computer storage requirement standpoint, our research progress has

reduced the original integer program size from the order of N x N through

the decomposable formulation (N2 x N 2), to the D.P. state-stage space which

measures in the order of N x M, where N is the number of cities in the

system and M-stop being the longest route generated. It is estimated that

almost all of the trunk line networks can be accommodated by RISE-I in a

machine such as the IBM 370/155 (which has a 1500K core). From the execu-

tion speed point of view, a number of test cases have been run ranging from

a five-city to a 24-city system. Computation time is at least seven times

shorter than a comparable software package produced by Peat, Marwick,

Mitchell and Company.

It is the viewpoint of the author that analyzing routing and schedul-

ing problems on a network system framework is an insight-providing tool to

transportation planning, because the huge number of combinatorial alterna-

tives possible and the profound system/network effects are often too feeble

for the unaided human mind to comprehend. Mathematical optimization tech-

niques and computer technology have made available to analysts/planners

network models which would suggest to him/her a number of worthwhile sys-

tem alternatives to be considered. Some of these alternatives may prove

to be more superior than the existing practice. This viewpoint has been

substantiated to a certain extent by the case study cited above.
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The process the author has gone through in problem identification,

model building, solution and verification is extremely educational.

The experience has led him to believe that problems that arise from

the transportation network context without undue simplifying assumptions,

are of such complexity that existing solution techniques are usually

not available. This can be witnessed from the original integer program

formulated for route selection. Flexible techniques, which often may

not be highly mathematically elegant, promise to be the most expedient

methods to solve such problems in a practical context. In many cases

efficient solution methods can be motivated by the intrinsic nature of

the problem under consideration. The research experience from the

initial integer programming formulation, through decomposition, to the

final enumerative solution techniques speak for these viewpoints. From

an applications standpoint, the solution method must be well suited to

the capabilities of the contemporary computer. Usable solutions to

the problem at hand should be available for use even if the optimi-

zation technique fails to reach at the "optimum". These last two points

are again the observations from our computational experience.

The thesis advanced above is found to be endorsed by two authorities

in the field. Bellman, et. al. [Chapter 2, 1970] speaks for the use

of a flexible technique suited for the computer, and motivated by the

physical problem. Balinsky [1965] thinks highly of the practicality of

enumerative approaches to integer programming.
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6.4 Research Status and Recommended Extensions

To answer the questions of "where do we stand, and where do we

go from here?", we will proceed in two parts. The first part pertains

to the applications side of the model, while the second part deals with

the optimization techniques.

The application of R.I.S.E. has been solely with the private

sector up to this point. The case study was drawn from a corporate

organization-American Airlines. The only place where public sector

is modelled is in the dual objective function where the travelling

public is identified as consumers maximizing their own convenience in

travel. The extension to the problem of C.A.B. route appiication by

a carrier involves only carrying sensitivity analysis with the model

inputs. R.I.S.E. needs little extension before it can be useful in

public sector applications by a government agency such as the C.A.B.

The model already has a dual objective function (one for the carrier,

the other for the travelling public). The formulation of demand as a

function of the level of service lends itself handily in measuring

social welfare in terms of consumer surplus or the willingness to pay.

The C.A.B. can use the model to analyze granting route awards, the

network routing issues in merger studies, and can even address the

issue of regulation/de-regulation in the present oligopoly market

using R.I.S.E. as a simulation tool. These applications have been 4
discussed in Section 2.4 of Chapter 2.

On the optimization techniques side, a clear distinction has to

be made between the mathematical model versus the part of the model that
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has been coded on the computer. In spite of the two solid man-years

of programming, the capability cf the software package is tiny in

comparison to that of the general mathematical solution algorithm

presented. The existing 40-routine coding can only handle (i) a fixed,

or perfectly inelastic demand, (ii) a single fleet type, and (iii) a

monopoly market without intercarrier route competition. The obvious

extension, as far as computer programming is concerned, is to expand

the coding to catch up with the general capabilities of the mathematical

model and solution method. This means additional routines would be

coded to accommodate a demand function, multi-aircraft types and inter-

carrier route competition. It is projected that these extensions are

straightforward since the core of the mathematical algorithm,

including the complete C.A.B. route authority has already been im-

plemented.

As far as the mathematical optimization formulation and the

method of successive approximation algorithm are concerned, they have

'been fully developed in this piece of research. Refinements in the prun-

ing rules of the branch-and-bound type may further accelerate the

already efficient algorithm. We recommend the main thrust of the

optimization research be devoted to integrate R.I.S.E. with other

existing routing and scheduling models in a comprehensive, multilevel

optimization procedure. It would be a significant contribution if a

rigorous method can be devised to break up a large scale schedule

planning problem into its logical hierarchical levels and stages, in the

spirit of the simul-sequential approach outlined in Chapter 1.
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APPENDIX Al Issued pursuant to
Order No. E-25644

UNITED STATES OF AMERICA
CIVIL AERONAUTICS BOARD

WASHINGTON, D.C.

CERTIFICATE OF PUBLIC CONVENIENCE AND NECESSITY

(as amended)

for Route 63

WESTERN AIR LINES, INC.

is hereby authorized, subject to the provisions hereinafter set forth,

the provisions of Title IV of the Federal Aviation Act of 1958, and the

orders, rules, and regulations issued thereunder, to engage in air

transportation with respect to persons, property, and mail, as follows:

1. Between the terminal point Los Angeles, Calif., the inter-

mediate points San Francisco--San Jose and Oakland, Calif.,

and Portland, Oreg., and the terminal point Seattle, Wash.;

2. Between the terminal point San Diego, Calif., the intermediate

points Palm Springs, San Bernardino, Long Beach, and Los

Angeles, Calif., and Las Vegas, Nev., and (a) beyond Las Vegas

Nev., the intermediate points Oakland, San Francisco--San

Jose, and Sacramento, Calif., and the terminal point Reno, Nev.

The service herein authorized is subject to the following terms,

conditions, and limitations.
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Western 63

(1) The holder shall render service to and from each of the points

named herein, except as temporary suspensions of service may be

authorized by the Board; and may begin or terminate, or begin

and terminate, trips at points short of terminal points.

(2) The holder may continue to serve regularly any point named

herein through the airport last regularly used by the holder to

serve such point prior to the effective date of this certificate;

and may continue to maintain regularly scheduled nonstop service

between any two points not consecutively named herein if nonstop

service was regularly by the holder between such points prior to

the effective date of this certificate. Upon compliance with such

procedure relating thereto as may be prescribed by the Board,

the holder may, in addition to the service hereinabove expressly

prescribed, regularly serve a point named herein through any

airport convenient thereto, and render scheduled nonstop service

between any two points not consecutively named herein between

which service is authorized hereby.

(3) The holder shall not deplane at Las Vegas, Nev., persons,

property, or mail enplaned at Las Vegas, Nev., for the period during

which Bonanza Air Lines, Inc., is authorized to provide service

between Las Vegas, Nev., and Riverside-Ontario, Calif.

(4)The holder shall not engage in single-plane service between Las

Vegas, Nev., and Reno, Nev.
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(5) The holder shall not deplane at San Francisco-San Jose or

Oakland, Calif., persons, property, or mail enplaned at Sacramento,

Calif., or deplane at Sacramento, Calif., persons, property, or

mail enplaned at San Francisco--San Jose or Oakland, Calif.

(6) The holder shall not schedule single-plane service through

the San Jose airport between San Francisco--San Jose, Calif., and t

the following points: Seattle, Wash., Portland, Oreg., Las Vegas a

and Reno, Nev., and Los Angeles, Long Beach, and San Diego, Calif.

The exercise of the privileges granted by this certificate shall

be subject to such other reasonable terms, conditions, and limitations

required by the public interest as may from time to time be prescribed

by the Board.

This certificate shall be effective on September 7, 1967.

IN WITNESS WHEREOF, the Civil Aeronautics Board has caused this

certificate to be executed by the Secretary of the Board, and the seal

of the Board to be affixed hereto, on the 7th day of September 1967.

HAROLD R. SANDERSON

Secretary

(SEAL)


