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Abstract

Fractured reservoir characterization is becoming inéngasimportant for the petroleum industry.
Current methods for this task are developed based on efevtdia theory, which assumes the cracks or
fractures in a reservoir are much smaller than the seismielagth. A discrete fracture model has to be
used for large-scale fractures. We describe an approadirgg a finite difference method for modeling
seismic wave propagation in rock formations with interserfracture sets. We then use the code to
study the behavior of seismic waves, particularly scattgdiue to such fracture sets with various spacing
and compliances. The scattering pattern due to fractumssvazimuthally. We find that converted PS
and PSP waves from the bottom of the fractured layers shanginterference by the scattered waves.
We observe coherent scattered waves in shot gathers paoathe fracture orientation and significant
backscattering at near offsets and forward scatteringraiffsets in the gathers normal to the fracture
orientation. When two sets of fractures are present, soajtdbecomes stronger and more complex
scattered waves appear in the gathers. The scattering lescetmonger with increasing the fracture
compliances and decreasing spacing (still on the orderisinée wave length). When the fracture sets
are not orthogonal to each other, the gathers still showrenlhacattering in the fracture orientations.
Azimuthal characteristics of the scattered waves may be tssanalyze fracture orientations, spacing,
and relative compliance of intersecting fracture sets.

1 Introduction

The purpose of this paper is to describe a finite differencéhaaksfor modeling seismic wave propagation in
rock formations with intersecting fracture sets with spgain the order of the wavelength or larger. We in-
tend to provide a widely usable tool for aiding developmeritsiethods for extracting orientation, spacing,
and compliance of such fracture sets. We study the behal/sgismic waves, particularly scattering due
to such fracture sets. Fractured reservoir charactesizdiths drawn increasing attention in the petroleum
industry. Many people have studied seismic responses ¢tufess and characterized fractures using seis-
mic data based on effective media theory, which assumegdbtufes are penny shaped cracks (Hudson,
1986; Liu et al., 2000) or the spacing of the fractures satsmauch smaller than the seismic wavelength
(Schoenberg and Sayers, 1995). Using effective mediayththar fractured rocks can be approximated as
homogeneous anisotropic media of lower symmetries. Bagdtiis theory, azimuthal AVO of reflected
PP and converted PS waves are commonly used for determi@iogife orientation and other parameters



(Vetri et al., 2003; Shen et al., 2002). Schoenberg and H€l897) discussed a geophysically important
subset of orthorhombic media consisting of vertically fuaed transversely isotropic media with a vertical
symmetry axis (VTI) in great detail. They evaluated possiilethods to quantify fracture orientation and
compliance and background elastic parameters using amitiiuth surface seismic, VSP and cross-well
data. Natural fractures in reservoirs often contain two oremntersecting sets. They can be orthogonal or
non-orthogonal depending on the stress history (Reis€); 188 son, 1985). Nichols et al. (1989) described
the problem of modeling rocks with multiple sets of fractub®sed on the compliance addition theory out-
lined by Schoenberg and Muir (1989). They also showed d#glitcow to obtain the resultant compliance
tensor for an orthogonal fracture set embedded in an isotropdium and that such a fracture set renders
the medium orthorhombic. Grechka and Kachanov (2005) etlitie effective anisotropy of multiple frac-
tures in rocks, where networks of small fractures contrelftbid flow. They concluded that regardless of
the number of fracture sets embedded in otherwise isottugst rock, their orientations, or types of fluid
infill, the symmetry of the effective medium is approximgterthorhombic. They also showed that both
theories of Schoenberg and Kachanov describe the effetidkta well. For the long wavelength effect of
realistic fractures on seismic responses, i.e., when wagéhs are much larger than the fracture spacing,
we use Schoenberg’s formulation for the equivalent aropatrmedium in terms of elastic compliance.

The effective media theory has been widely used in varioissrée applications.Sayers (1998) analyt-
ically determined the misalignment of the orientation @ictures and the principal axes for P and S waves
in rocks containing multiple non-orthogonal fracture ses&hoenberg et al. (1999) showed the azimuth-
dependent tuning of seismic waves reflected from a thin veselayer containing one or more sets of
fractures. Bakulin et al. (2000a,b) and Bakulin et al. (Z)Qfitempted to invert various seismic signatures
for formation parameters.

However, when the fracture spacing is on the order of therseisvavelength, the effective medium
theory cannot capture the effect of fractures. Recent wi¥isei et al., 2002; Lynn, 2004; Willis et al.,
2004b,a, 2006) have studied the effect of discrete parfadietures because geological evidence shows that
fractures with spacing on the order of the seismic wavelergtmmonly exist in reservoirs. Zhang et al.
(2005) showed on synthetic seismic data that the azimutW@l properties are very different for penny
shaped cracks and discrete parallel fractures. In the fiedahy fractures are not parallel, but intersecting.
In modeling seismic responses to small fracture networkislange discrete fractures, it is important to be
able to represent the fractures at various scales properly.

Coates and Schoenberg (1995) developed a general forarufatimodeling multiple intersecting sets
of fractures with arbitrary orientations using a finite difince method. To model a linear-slip fracture when
the fracture is at an angle to the finite difference grid, thegd a suitable equivalent anisotropic medium
to replace the elastic medium within each finite differened intersected by the fracture, together with
the embedded segment of the fracture. Nihei et al. (2002)vdastos et al. (2003) modeled the seismic
responses of discrete sets of parallel fractures. We exterid approach to model multiple intersecting
sets of fractures. We represent them discretely in our nigleM/e present details on how to represent
orthogonally and non-orthogonally intersecting fractuirefinite difference modeling. We further simplify
the model building process, particularly on how to représiem areas near the fracture intersections. Then
we study the characteristics of seismic scattering dueténgacting fracture sets.
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Figure 1. Two intersecting vertical fractures passing tgiothe map view of a 3-D finite-difference cell.
Each fracture normal forms an andlgto the finite difference grid direction.

2 Effective Media Theory of Multiple Sets of Fractures

For multiple sets of vertical fractures, Nichols et al. (2p8how that the compliance matrix for the equiva-
lent medium is

m
S=58,+> AS (1)
i=q
wherem is the number of fracture setS; and AS; are the compliance of background medium and con-
tribution from thei-th fracture set (see Figure 1). It is obvious that the ordewhich the fractures are
included does not affect the final compliance. Assumingittte fracture strike forms an anglg to the
finite difference grid direction, the Bond transformatioatnix can be written as (Auld, 1990)

1+Cgs 20; 1-|ng5 20; 0 0 0 sin 26;
B=| _ %292' %291' 0 0 0 cos 20; (2
0 0 0 sin26; —cosb; 0
and
AS;, = BTZ;B, )

where in the fracture coordinate system, the complianceadf &racture set can be written as

z¥ 0 o
Zi=| 0 ZV 0 (4)
0o o zH

whereZ¥, ZV, and Z!* represent the normal, vertical and horizontal compliarfcthei-th fracture, re-
spectively. A rotationally symmetric fracture has equatieal and horizontal compliance. Inversion of the
compliance matrix yields thpe elastic stiffness matrixa@mberg and Sayers (1995) showed that the equiv-
alent media of isotropic host media embedding non-orthaliypmnd orthogonally intersecting fractures is
monoclinic and orthorhombic, respectively. If the fornpatishows horizontal stratification, we generally
represent it as transversely isotropic with a verticaltrotasymmetry axis (VTI). If only a set of vertical
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Figure 2: A 3-D finite difference cube containing fractuje(f. Fracture strike is parallel to one axis;
b. Strikes of two orthogonally intersecting fractures aseafiel to two axes; c. Only the strike of one
of the two orthogonally intersecting fractures is paraltebne axis; d. Only the strike of one of the two
non-intersecting fractures is parallel to one axis.

fractures embeds in it, the effective medium property offtaetured formation is orthorhombic (Schoen-
berg and Helbig, 1997). If two sets of orthogonally intetsesr fractures exist in the VTI formation, the
effective medium property of the fractured formation shiosiill be orthorhombic. If the two sets are non-
orthogonal in the VTI formation, the effective medium prayeof the fractured formation has been shown
to be monoclinic (Winterstein, 1990).

3 Representing Discrete I ntersecting Fracturesin Finite-Difference M odel-
ing

To model seismic responses due to orthogonally intergeftatture sets using the finite difference method

in a Cartesian coordinate system, we can choose one of thidiicate axes parallel to the fracture strike.
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Figure 3: Top view of a set of intersecting fractures ovarigyon the finite difference grid. Cells 1 to 9 can
use the same property based on effective media theory toedtia modeling complexity.

We assign the finite difference cells containing only onetfree the equivalent transversely isotropic (with
a horizontal rotation symmetry axis) (HTI) elastic proge(fEigure 2a) and assign the cells containing the
intersections the equivalent orthorhombic elastic priypéfigure 2b). For non-orthogonally intersecting
fracture sets, we can choose one set whose strike will béiglamanormal to the axes (Figure 2c). The
finite-difference cells containing intersection(s) ofdares (Figure 2c) possess the properties of monoclinic
media (Figure 2d), because the dimension of the grids is reo@iler than seismic wavelength and elastic
properties of these cells can be approximated using thetiefemedia theory (Schoenberg and Sayers,
1995). For cells containing only fractures normal or patat the coordinate axes, we can assign the cell
HTI properties. Otherwise, cells only contain the fractuirgersecting the axes with an angle other than 0
or 90 degrees. For these cells, we find the elastic stiffmeei current coordinate system using equation 6
and assign them to the respective cells. The propertiessétbells show the characteristics of monoclinic
media.

To simplify the model building process, we can assign theesaanameters to a small region surrounding
the intersections based on long wave equivalent mediaythBor example, finite difference cells 1 through
9 enclosing the intersection shown in Figure 3 can use the gaoperty if the cell size is much smaller
than the seismic wavelength. In some reservoirs, fracturgsoduction zones at different depth show
different orientation (Figure 4). In modeling the seisnésponse using the finite-difference technique, we
can choose fractures in one hydrocarbon zone with strikallphor normal to the axes, while fractures in
another zone make an angle with the axes other than 0 or 98efedgrFhe apparent elastic stiffness matrix
of the other zone resembles that of monoclinic media beaafusetrix rotation. To simulate the effects of
all fractures from the whole field, the finite-difference gram has to be able to simulate wave propagation
in a monoclinic formation. This situation further shows tteed for this study.

4 Finite Difference mplementation

In our finite difference implementation, we use a rotatedggaed grid scheme, which allows strong con-
trasts in the medium and leads to less dispersion errors higther computational efficiency (Saenger et al.,
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Figure 4: Fractures in different reservoir layers showiiifgrent strikes.

Figure 5: The locations of velocity, stress, and elastipprties in an elementary finite difference cell using
rotated staggered grid scheme.



2000). In such a scheme, all components of one physical gyofeg., stress, velocity, elastic stiffness,
and density) are placed at one single location as shown i€ It is not necessary to average any elastic
stiffness values as in the standard staggered method¥jri®86). Therefore, this scheme can incorporate
the high contrasts existing in fractured media without sthing the elastic stiffnesses, resulting in a more
accurate representation of the fractures.

To effectively absorb wave reflections from the model bouiedawe apply a perfectly matched layer
boundary condition (Marcinkovich and Olsen, 2003). We umefirst order velocity-stress equations for
orthorhombic media. Starting from Hooke’s law, we can write

1
OyTij = §Cijkl(vk,l + v k). %)

Using the Voigt notation, for orthorombic media, the skfs tensoe;;;; is given by

cin c2 c3 0 0 O
0 C29 (93 0 0 0
. 0 0 C33 0 0 0
10 0 0 ey 0 0 (6)
0 0 0 0 C55 0
L 0 0 0 0 0 C66

whereT;; andv; are elements of the stress tensor and velocity, respegtamtli, j = x,y, 2. To model
wave propagation in non-orthogonal sets of fractures oivatgnt monoclinic media, we need to extend
equation 6

[ c11 c2 i3 0 0 ci6 |
co2 c23 0 0 co6
0 C33 0 0 C36
0 0 Cq4 C45 0 (7)
0 0 0 C55 0
0 0 0 0 0 C66

Comparing equations 6 and 7, we find that modeling wave pdjgagin reservoirs containing non-orthogonal
fracture systems using the finite difference method demartia computation cost and memory storage.
Otherwise, no additional difficulty occurs.

5 Seismic Scattering dueto I ntersecting Fractures

In this section, we study the characteristics of the seigepsponses from fractured reservoirs. We assume
the background formation is isotropic. The fluid filling ttradtures is gas. The fractures are 1) orthogonal
or 2) non-orthogonal. In both cases, we consider a threzrdalymodel and fractures penetrate through the
second layer. Table 1 shows the elastic properties of thkgbawnd layers. The receiver arrays and the
source are located at the earth surface. Figure 6 shows tiegigieschematic diagram of the model. In
this three-layer reservoir model, the second layer costtia fractures. We first assume the fractures are
rotationally invariant and the normal and transverse cé@ampe of the fractures are equatte 10~ m/Pa.
Therefore, each set of fractures contributes equally teivecresponses. The source and receiver arrays are
located at the surface. We use Ricker wavelet as our poimtsauith center frequency at 40 Hz.



Figure 6: A fractured three-layered reservoir model. Twis s fractures penetrate through the second
layer.

Table 1: The elastic properties of background media fortihestlayer model.

vp (M/S) | vs (/s) | p (kg/n®) | Ap (M) | Ag (m)
Toplayer | 2460 | 1230 2300 60 30
Middle layer | 3300 | 1800 2200 80 45
Bottom layer| 2460 | 1230 2300 60 30

Orthogonally Intersecting Fractures

Depth

Figure 7: A 3D schematic of the reservoir model with two sétsrthogonally intersecting fractures.
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Figure 8: Elastic property distribution of two sets of omooally intersecting fractures as indicated by
different colors.

5.1 Casel: Two setsof orthogonally intersecting fractures

We first use the finite difference program to model seismicenawpagation in a medium containing two
sets of orthogonally intersecting fractures. Each setasftéires has a regular 30 m spacing. Figure 7 is a
3D schematic of the model. Figure 8 is a zoom-in view of a lamial slice of the fractured second layer.
Different colors represent the background, the two setsagtdires and their intersections.

To understand seismic scattering due to fractures, we alstuct modeling of seismic wave propagation
in the same layered background model without fracturesmadnodel with only one set of parallel vertical
fractures of 30 m spacing as references. Figures 9 showsthieal component of velocity acquired over
the 3-layered model without fractures in the middle layeguFes 10 and 11 show the vertical component
of velocity acquired over the model with one set of paraltacfure. Figure 12 and 13 show the vertical
component of velocity acquired over the 3-layered modéh it orthogonal fractures in the middle layer.
In each of the panels, the direct wave has been muted. We tenéfied reflected and converted waves
from the top and bottom of the reservoir.

To identify the events shown in Figure 9, we estimate thevartimes of the P, S, and converted waves
from the top and bottom of the middle layer at near offsetsngthese estimated arrival times, we identify
the reflected P and P to S waves from the top and bottom of thélenigyer. At near offsets, the reflected
P wave is very strong and the reflected P to S waves becomegstravhen the offsets get larger. At
intermediate to far offsets, immediately following the eetied P wave from the bottom of the middle layer,
a converted PSP wave appears. The shot gathers do not sh@zianthal difference.

Figure 10a shows a line collected over the fractured regegpeopendicular to the fracture strike. Scat-
tered energy from the fracture zones contaminates thesgemting in later time, especially for PS energy
converted at the top and bottom of the reservoir. Strongeveat waves are the dominant energy in this
case. Frequency-wavenumber spectra of these data shoviobotrd and backward scattered energy and
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Figure 9: Shot gathers for the three layer base model.

further analysis reveals that most of this energy is congppos&-waves. To compare seismograms for dif-
ferent fractured reservoir models, all the amplitudes efdbismograms are amplified 15 times. Comparing
the shot gather at zero azimuth relative to x coordinate iaxisgures 9a and 10a, we easily identify the
reflected and converted modes at the top and bottom of thevoiiseAt near offsets of Figure 10a for zero
azimuth, we see backscattered waves with almost the sameesds arrive as late as 0.7 s. The early arrivals
of the backscattered waves interfere the PP wave refleatedtfie reservoir bottom, so they arrive at the
receivers as P wave. However, the moveout velocity is sldlagr that of the P wave and the wavefront is
almost linear, which indicates the wavefront of the backecad waves due to the set of vertical fractures
is similar to a plane wave. At far offsets, we observe thatcih/erted PS and PSP waves from the reser-
voir bottom show strong interference by the scattered wavbie the PS reflection from the reservoir top
can still be seen clearly. We also see strong coherent fdragattered waves following the PS reflection
from the bottom of the second layer. These events appeawvovedocities slower than that of the shear
waves and form two plane wave packs. The dominance of badksezattering at near offsets and forward
scattering at far offsets indicates seismic waves tramsthio the fractured layer are mainly reflected by
and transmitted through the fracture sets at near and fegtsffrespectively. In the middle range of offsets,
the back scattered and forward scattered waves interfefeaumse some cancellation. With the increase
of azimuth, the backward scattered waves seem to becomemanstronger and the wavefronts become
flatter; the forward scattered waves become weaker.

At the 90 degree azimuth, where the receiver line is partlghe fracture strike, the scattered waves
appear to form coherent wavefronts from 0.5 s and later,lIphta that of the PS wave reflected off the
bottom of the reservoir layer. The scattered waves alsofarewith the PS wave from reservoir top and
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PSP from reservoir bottom and cause amplitude variatiotts afiset.
In summary, we observe the following from the azimuthal gfadhers for the single set fracture model:

1. Seismic responses show azimuthal dependence;

2. Backscattering becomes stronger with increase of ahilfesgs than 60 degrees). Forward scattering
exists at all azimuths at far offsets. At98zimuth, the scattering forms coherent wavefronts, though
tuning with offset appears.

3. The reflected PP from the top and bottom of the fracturegrfagre almost not affected and converted
PS waves can be clearly seen up to 75 degree azimuth. At 98alagimuth, the scattering waves
completely overwhelm the PS waves, but the scattered wausfiseem to have the same moveout
velocity as the converted PS wave from the bottom of the dract layer.

Figure 12 and 13 show shot gathers for two sets of orthogomatiérsecting fractures embedded in the
middle layer. Because the model is completely symmetratived to the 45-degree azimuth, and the two
sets of fractures are of the same compliance, the gatherarad ©0 degrees are the same. They show the
combination of characteristics of the scattering wavestdube single set of fractures at 0 and 90 degrees
as shown in Figure 10a and 11c. In other words, we observelzatk and forward scattering at near and
far offsets, respectively imposed upon the coherent sedftt@aves, though the scattering seems stronger
than that in the single fracture case. The reflected PP bfirora the bottom also shows strong interference
by the scattered waves. At the 45-degree azimuth, the smdtieaves become strong and appear at all
offsets. Figure 14 shows the snapshots (a) in a horizongaleptrossing the fractured layer and (b) in a
vertical plane including the source position parallel te thaxis. In the horizontal plane, the incident wave
keeps the circular shape of its wavefront, but the wavefiéimthe fractured medium mirrors the fracture
distribution. The snapshot in the vertical plane (Figurb)lghows the incident wavefront is separated by
the vertical fractures. The reflected P wave from the top efréservoir is not affected, but the waves that
follow it show considerable interference. At far offsetse teffects of the elastic property distribution on
wave propagation are more complicated than those at theoffeats.

5.2 Orthogonally intersecting sets of different spacing

To study the sensitivity of the scattered wavefield to thecisygpof the orthogonal fracture sets, we choose
the spacing of the fracture set with orientation at 90 degre0 degree azimuths to be 30 m and 42 m,
respectively. Figures 15 and 16 show the shot gathers. Tthergaat 0 and 90 degree azimuths also show the
combination of characteristics of the scattering wavestdube single set of fractures at 0 and 90 degrees
as shown in Figure 10. However, the coherent scattering alubeet fracture set of 42 m spacing is less
pronounced than the 30 m one. The converted PS and PSP warethi top and bottom of the fractured
layer are still recognizable from the 0 azimuth shot gatAethe 90-degree azimuth, the reflected PP arrival
from the bottom also shows strong interference by the seaft®@aves and the converted waves are difficult
to identify. Therefore, the spacing of a fracture set sigaiitly affects the scattering pattern.

5.3 Orthogonally intersecting sets of different compliances

If the two principal horizontal stresses are of differentgmigudes, it will cause the fracture sets to have
different compliances. To investigate the scattering & waves due to two sets of intersecting fractures
of different compliances, we choose the same 30 m spacinthéoorthogonal sets of fractures, but the
compliance of the set parallel to x axis is four times of thathe set normal to the x axis. The less
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compliant fracture has the same compliance as those for didelnwith equal strength fracture sets. Figure
17 shows shot gathers at 0 and 90 degree azimuths. Complagimytith the gathers at the same azimuths
in Figure 12a (the gathers at 0 and 90 degree azimuths arartteedue to geometric symmetry of the model
used for generating Figure 14), we see at 0 degree azimutl|gbdo the more compliant fracture set, the

coherent scattered waves are much stronger than that fremaine rigid fracture set whose orientation is

at 90 degree azimuth. Strong forward and backward scajtappears at almost all offsets in the gather at
90 degree azimuth besides the coherent scattering duectarigaset oriented at 90 degree azimuth. The
scattered waves due to the more compliant set also last rongkid to around 0.9 s.

6 Case?2: Two 45-degreeintersecting fracture sets

Figure 18 shows the model for non-orthogonally intersegctmacture sets, which make a 45-degree angle.
As in Figure 8, the different colors in Figure 19 representliackground, the two sets of fractures and their
intersections. The spacing of the set normal to the x axi@ i, 3and the spacing of the other set at 45-degree
azimuth is 42 m. Both sets of fractures have the same conagliafihe finite difference cells neighboring
the intersections of the fractures can be assigned the saiswrapic properties computed using effective
media theory, since the cell size is much smaller than th&rgeiwavelength. Here we choose 9 cells
surrounding an intersection including the intersectiselft Average properties of the neighboring cells can
also be considered when assigning properties to each ¢ed will be a bit more complicated, but we do not
expect it will make much difference since the size of thers#etion area is about one order of magnitude
smaller than the seismic wavelength.

The gathers in Figure 20 are best compared with those forrthegopnal intersecting fracture sets in
Figures 12 and 13 and those for a single fracture set in FBglBend 11. At the 0-degree azimuth, the shot
gather is similar to that for the single set of fractures. #helegree oriented fracture set apparently increases
the forward scattering at far offsets. Otherwise, this gattoes not show much sensitivity to the fracture set
at the 45-degree azimuth. At the 90 degree azimuth, the igstiiogvs significant forward scattering coming
from the 45 degree oriented fracture and weak backwardestegt The coherent scattered waves are still
clear around 0.4 — 0.5 s, but they show significant interfezeat later time from 0.6 and afterward. The
shot gather at 45-degree azimuth shows coherent scattanmigking those of 90-degree azimuth, since the
receiver line is parallel to the orientation of one fractset. Comparing to the gather at 90-degree azimuth,
we see the scattering coming from the fracture set of shggacing is stronger and interferes with the
coherent scattering.

Figure 21 shows the snapshots (a) in a horizontal planeingo#®e fractured layer and (b) in a vertical
plane including the source position parallel to the horiabaxis for the model including the two sets of
non-orthogonally intersecting fractures. In the horiabqlane, the wavefront of the point source is still
circular, but the wavefield within the fractured medium g the fracture distribution, particularly at near
offsets. The snapshot in the vertical plane Figure 21b shiogviicident wavefront is divided by the vertical
fractures in both azimuths. The reflected P wave from the fadpefractured layer is not affected. The
waves that follow it show stronger interference than thos€igure 14 and the wavefield becomes more
complex.

7 Conclusions

We describe a novel method for using a finite difference sehtarsimulate wave propagation in media
with intersecting fracture sets. We use effective mediarhéo compute the anisotropic elastic stiffness

14



for finite difference cells containing any segments of atlrex and assign the properties to those cells.
Surrounding the intersections of the fracture sets, wehisdonhg wavelength approximation and treat the
cells as homogeneous to simplify the elastic stiffnessutation. Our implementation uses the rotated
staggered grid and perfectly matched layer absorbing bayncbndition to achieve good accuracy for
scattered wave study.

We then use the finite difference program to model the wavpagation in layered formations with
one set of parallel fractures, two sets of orthogonallyrggeting fractures with the same spacing, different
spacing, and different compliances, and two sets of ndmgdnally intersecting fractures. The reflected
P waves from the top and bottom of the fractured layer are igoifcantly affected by the presence of
the fracture sets. The converted PS and PSP waves from ttwerbof the fractured layers show strong
interference except at small azimuths. We observe coheoatitered waves in shot gathers parallel to the
fracture orientation and significant backscattering at néfaets and forward scattering at far offsets. The
scattering pattern varies azimuthally. When two sets dftin@s are present, scattering becomes stronger
and more complex scattered waves appear in the gathers.hdhersthe spacing and the more compliant
the fracture, the stronger the scattering. When the fractats are not orthogonal to each other, the gathers
still show coherent scattering in the fracture orientagioBy capturing the azimuthal characteristics of the
scattered waves, one can analyze fracture orientatioasingp and relative compliance of intersecting frac-
ture sets. Detailed analysis of reflected and converted dataeobtained by using the proposed modeling
method, may provide insights on the applicability of effezimedia theory in fracture characterization. The
modeling method also provides a new, widely applicable fimolinderstanding seismic data from fractured
reservoirs.
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Figure 12: Shot gathers for two sets of orthogonally intetieg fractures embedded in the middle layer.
The spacing of each set of fractures is 30 m.
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Figure 13: Shot gathers for two sets of orthogonally intetieg fractures embedded in the middle layer.
The spacing of each set of fractures is 30 m.
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Snapshot of Vz (Z=310 m, time = 225 ms) Snapshot of Vz (Y=0 m, time = 225 ms)
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Figure 14: Snapshots of the wavefield in the fractured redef®) in a horizontal plane at z=310 m; (b) in
a vertical plane at y=0 m.
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Figure 15: Shot gathers for two sets of orthogonally intetieg fractures embedded in the middle layer.
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Figure 16: Shot gathers for two sets of orthogonally intetieg fractures embedded in the middle layer.
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Figure 17: Shot gathers for two sets of orthogonally inteting fractures embedded in the middle layer.
The spacing of each set of fractures both is 30 m. The fraseireriented at the 0 degree azimuth is four
times as compliant as the one oriented at the 90-degree tzimu
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Non-Orthogonally Intersecting Fractures

Depth

Figure 18: A 3D schematic of the reservoir model with two sétisitersecting fractures with an angle of 45
degrees.
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Figure 19: Elastic property distribution of two sets of 45gdes intersecting fractures as indicated by
different colors.
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Figure 20: Shot gathers of vertical velocity measured onstiréace of a fractured reservoir at 0, 90 and
45-degree azimuths.
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Snapshot of VZ (Z =310 m, t = 225 ms) Snapshot of Vz (Y =0 m, t = 225 ms)
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Figure 21: Snapshots of the wavefield in the fractured redef®) in a horizontal plane at z=310 m; (b) in
a vertical plane at y=0 m.
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