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Abstract

Time-lapse geophysical measurements and seismic imaging methods in particular are powerful tech-
niques for monitoring changes in reservoir properties. Traditional time-lapse processing methods treat
each dataset as an independent unit and estimate changes in reservoir state through differencing these
separate inversions. We present a general least-squares approach to jointly inverting time-varying prop-
erty models through use of spatio-temporal coupling operators. Originally developed within the medical
imaging community, this extension of traditional Tikhonov regularization allows us to constrain the way
in which models vary in time, thereby reducing artifacts observed in traditional time-lapse imaging for-
mulations. The same methodology can also accommodate changes in experiment geometry as a function
of time thus allowing inversion of incremental or incomplete surveys. In this case, temporal resolution is
traded for improved spatial coverage at individual timesteps. We use seismic traveltime tomography as a
model problem although almost any geophysical inversion task can be posed within this formalism. We
apply the developed time-lapse inversion algorithm to a synthetic crosswell dataset designed to replicate
a CO2 sequestration monitoring experiment.

1 Introduction

Time-lapse geophysical measurements provide a powerful toolbox of techniques for monitoring subsurface flow
processes including the enhanced recovery of oil and gas (6), CO2 sequestration (2) (5), and contaminant
remediation (4). Seismic methods in particular are increasingly used to generate quantitative maps of
variations in fluid saturation or pressure over spatial domains ranging from 10s of meters for environmental
problems to 10s of kilometers for field-wide production monitoring.

Most traditional time-lapse processing techniques treat each acquired dataset as an independent mea-
surement. Temporal variations in subsurface properties are typically determined by subtraction of image
pairs. Naive image subtraction tends to be sensitive to survey-to-survey changes in S/N ratio and variations
in acquisition geometry, both of which can generate artifacts in the resulting time-lapse images. This con-
ceptual approach also fails to acknowledge a key component of prior knowledge, mainly that the changes in
subsurface seismic response in these environments are due to variations in fluid properties or effective stress
and not changes in geologic structure. Significant artifacts in time-lapse processing results have spurred
development of cross-equalization algorithms (8) designed to match the geometry and signal characteristics
of repeated surveys.

Joint inversion of a series of time-lapse surveys seems to be a natural approach to decreasing image
artifacts which result from naive differencing. Through use of constraints on how the model can change in
time, we can suppress non-repeatable noise while providing a more consistent reconstruction of real variations
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in subsurface properties. Day-Lewis et.al.(3) demonstrated a technique for integrating time-lapse imaging
based on using smooth basis functions with a time dimension for tomographic inversion. They effectively
applied their method to dynamically image the flow of a saline tracer through a large aperture fracture
using borehole radar. We adopt an approach developed within the medical imaging community based on a
straight-forward extension of Tikhonov regularization to include a time dimension. Brooks et.al. (1) apply a
temporal constraint operator within a least-squares framework for the inversion of electrocardiography data.
Zhang et.al. (9) perform a comparison of spatio-temporal inversion approaches including both the Tikhonov
approach and Kalman filtering. We largely follow the formulation of Brooks et.al. with the exception of our
choice of regularization operator and the techniques used for solving the coupled system.

2 Linear Formulation

We will initially consider the general linear inverse problem where a linear operator G, maps a model (m)
to a dataset (d),

G m = d. (1)

Consider a series of n datasets (di) acquired at different times (ti), possibly with different source/receiver
geometries as encapsulated by variations in the kernel (Gi) but equivalent model parameterizations. In the
naive case, the inverse problem would be solved independently for each dataset by minimizing an objective
function of the form

Φ(m1, ...,mn) =
n∑

i=1

‖Gimi − di‖2
2 + λ2

s

n∑
i=1

‖Dmi‖2
2 (2)

where D is a weighting operator and λs is a regularization parameter. The first term in equation 2 measures
data misfit while the second measures model length as modified by D. If D = I than the resulting
minimization of equation 2 is simply the damped least-squares solution. Neither of the terms in equation 2
couple solutions across multiple time steps since modification to mi does not effect either the data misfit or
length of model mj (i 6= j); this approach seems most applicable in cases where models are not correlated
in time.

In the case of our time-lapse seismic problem, models have a strong temporal correlation since the
underlying geologic structure is clearly not changing in the relatively short (geologically speaking) time
between repeat surveys. We can modify equation 2 to include a temporal cross-coupling term which minimizes
the time-lapse change in some model attribute in addition to decreasing data misfit and model norm for
individual surveys. Consider a combined objective function of the form

Φ(m1, ...,mn) =
n∑

i=1

‖Gi mi − di‖2
2 + (3)

λ2
s

n∑
i=1

‖D mi‖2
2 +

λ2
t

n−1∑
i=1

‖D mi+1 −D mi‖2
2

∆ti
.

where ∆ti = ti+1 − ti. Minimizing equation 3 is equivalent to the least-squares solution of an augmented
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system with operator Gc,

Gc =



G1 0 · · · 0

0 G2 0
...

... 0
. . . 0

0
... 0 Gn

λsD 0
... 0

0 λsD 0
...

... 0
. . . 0

0 · · · 0 λsD

λt

∆t1
D

−λt

∆t1
D 0 0

0
. . . . . . 0

0 0
λt

∆tn−1
D

−λt

∆tn−1
D



(4)

Gc


m1

m2

...
mn

 =



d1

d2

...
dn

0
...
0


. (5)

The numerator in the third term of equation 3 penalizes the differences between models which are temporal
neighbors while the denominator scales this weight by the time elapsed between surveys. The second regu-
larization parameter, λt, controls the strength of the temporal constraint. If D = I this component can be
thought of as a time damping term.

For the simple case of two surveys (n = 2) and 0th order Tikhonov regularization for both the spatial
and spatio-temporal terms (D = I), equation 4 can be reduced to

G1 0
0 G2

λsI 0
0 λsI

λt

∆tI − λt

∆tI


[

m1

m2

]
=


d1

d2

0
0
0

 (6)

Although damping is the simplest type of temporal regularization to add, different types of operators
should also be considered. Minimizing change in the first or second spatial derivatives of the model are two
alternatives. We can imagine computing the associated pseudo-inverse inverse of our augmented operator,
G−g

c , which allows us to write the model resolution matrix as, R = G−g
c Gc where R can be seen as a filter
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which shows how the imaging experiment and the choice of G−g
c modify the true model. In this case R gives

us insight into not only the spatial aspects of model resolution but also shows us temporal “smearing”, the
process by which information is spread between our multiple experiments.

This inversion formalism also provides a good approach to incrementally acquired seismic surveys where
the survey geometry at any particular time step n is relatively sparse. Although independent inversion of a
single survey might yield an image with very low spatial resolution, by jointly inverting a series of surveys
we can effectively add spatial aperture in exchange for losing temporal resolution.

3 Traveltime Tomography

Up to this point, our formulation has been relatively general with no assumption regarding the operation
which G performs, the model parametrization represented by m, or the type of data stored as d. We will now
apply our formulation to the concrete example of seismic traveltime tomography with one temporal dimension
and two spatial dimensions. In this case we choose each m to be a rectalinear mesh of homogeneous slowness
cells while d is a vector of picked first-arrival traveltimes and G is the ray-path matrix. For the examples
presented in this paper, we will use straight rays to preserve the linearity of the coupled inverse problem but
extensions to the non-linear case seem quite feasible. We use a split laplacian operator (Dxx, Dzz) to allow
anisotropic regularization with two spatial parameters (λsx, λsz) and two spatio-temporal parameters (λtx,
λtz) for the respective terms in equation 4. Regularization parameters are chosen by observation although
use of the L-surface technique advocated by Brooks et.al. (1) would decrease the amount of manual tuning
required in the inversion process. The resulting coupled systems were solved using the LSQR algorithm (7).

3.1 A Synthetic CO2 Monitoring Problem

Several field experiments to date have attempted to monitor the subsurface extent of active CO2 injections
including the McElroy (5) and Weyburn (2) EOR projects. For our synthetic experiment we have generated
four time-lapse images of a CO2 flood progressing through a permeable layer shown in row (A) of figure
1. Data was synthesized for a crosswell geometry with 40 sources and 40 receivers evenly spaced near the
boundary of the model; the resulting arrays allowed tomographic imaging within a 40 x 98 m subdomain of
the 115 x 49 m initial model. Gaussian noise (∼ 3%) was added to the traveltime picks for all four synthetic
surveys.

The lower 3 rows of figure 1 show the inversion results for the uncoupled case (B) and the effect of including
the spatio-temporal coupling term (C and D) using a 30 x 70 cell mesh. In all three cases the same spatial
regularization parameters were used [λsx = 10, λsz = 8] while the weak and strongly coupled examples used
spatio-temporal coupling parameters of [λtx = 16, λtz = 12] and [λtx = 64, λtz = 48] respectively. While
all three inversions successfully imaged the target CO2 flood, visible at approximately 70 m depth, stronger
spatio-temporal constraints appear to suppress velocity artifacts. Figure 2 shows the result of differencing
the tomograms between the four sequential surveys with the same ordering of conditions. Similar trends in
noise levels are visible in the difference images. In the uncoupled case (row B) the artifacts are of the same
order of magnitude as the CO2 flooded region making confident interpretation difficult. The use of strong
spatio-temporal coupling clearly decreases this interpretation ambiguity at the expense of accurate difference
velocity estimates and spatial resolution.

4 Conclusion

Temporal regularization provides a natural approach for jointly inverting time-lapse datasets. A key topic
of future research is understanding the trade-offs between spatial and temporal resolution displayed within
our synthetic example. While we have not discussed the non-linear tomography problem in this paper,
the same techniques could be easily integrated within iterative imaging algorithms. Recent developments
in the medical imaging community suggest several routes to improving these methods including the use
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Figure 1: Tomography results with variable temporal coupling : (A) True model used to generate synthetics,
(B) Uncoupled, (C) Weak temporal coupling, (D) Strong temporal coupling (regularization parameters in
text)
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Figure 2: Difference tomograms with variable temporal coupling corresponding to the tomograms in figure
1 : (A) True model used, (B) Uncoupled tomograms, (C) Weak temporal coupling, (D) Strong temporal
coupling

6



of L-surface techniques for regularization parameter selection (1) and the incorporation of prior temporal
covariance models (9). Our future work will attempt to integrate and extend these techniques to the seismic
monitoring problem within the context of full wave-equation tomography.
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