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Abstract

A method to jointly invert for azimuthal angle and dispersion relations from cross-dipole data is
presented. Dispersion curves from the joint inversion are compared to both Prony’s method and a simple
back propagation schema and an agrrement is found. The azimuthal angle estimate is shown to differ
from a frequency domain rotaion that takes no account of dispersion within the waveforms indicating
the importance of joint inversion.

1 Introduction

Spatial ordering on a scale smaller than the investigating wavelength will be seen as anisotropy by a cross-
dipole acoustic borehole tool. The anisotropy can be intrinsic to the formation as caused by crystal structure,
grain orientation, or micro cracks, or it can be extrinsic due to fractures, faults, stress, or bedding planes.
The alignment of these phenomena causes a directionally preferential stiffness, which causes directionally
dependent velocities. Either form of anisotropy can cause shear wave splitting, which is the polarization of
the vertical and horizontal shear waves into their fast and slow components. Anisotropy information can be
used to calculate fracture orientation (Tichelaar and Hatchell (1997)) and fracture density (Tatham et al.
(1992)). Combining azimuth and the dispersion information it is possible to calculate ’in-situ’ stress fields
(Huang (1998)) and (Sinha and Kostek (1996)), which, if present, is necessary information for optimization
of well placement and production.

In the low frequency regime, cross-dipole acoustic tools excite the lowest order dipole mode known as the
flexural mode. The flexural mode is the motion of the borehole ’flexing’ from side to side in the formation,
and the flexural wave is a guided mode which travels along the borehole-formation interface. This dipersive
mode assymptotes to the shear velocity at low frequencies and the stoneley wave velocity at high frequencies
(Kurkijian and Chan (1986)). In a transversly anisotropic formation, the borehole flexural mode dispersion
is sensitive to radial position, and can therefore be used to calculate anisotropy (Sinha et al. (1994)). If
the waveforms are not corrected for dispersive effects, velocity processing such as semblance can lead to
erroneous results (Kimball (1998)).

In this paper we present a method to invert cross-dipole data for azimuthal angle of anisotropy with
respect to the dipole tool axis and for the dispersion curves of the fast and slow shear waves simultaneously.
Current processing does each of these steps individually: first the recorded wave forms are projected onto
the fast and slow axes to find the azimuthal angle and then the fast and slow wave components are processed
seperately for shear wave velocities. If the mode is undispersive, Alford rotation (Alford (1986)) can be
used to project the waveforms onto the fast and slow shear mode components. Dispersion of the flexural
mode is a function of the geometry of the borehole, the formation, and the fluid parameters. Although
the cross-diopole tool excites waves in the low frequency regime, there can be substantial dispersion (Tang
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et al. (1995)). Thus, any rotation scheme that does not consider dispersion in the waveforms may produce
eroneous results (Huang et al. (1998)).

Tang and Chunduru (1999) et al have shown the feasibility of combining this two-step process into a
one-step inversion, using the cross-dipole waveforms to find azimuthal angle and shear wave velocities. The
work presented here follows a similar methodology but inverts for the full dispersion curves as well as the
azimuth.

2 The Objective function and Inversion Method

(Please refer to appendix for a detailed discussion on cross-dipole data.)
To set up this problem as an inversion, it is necessary to form an objective function whose minimum cor-
responds to the correct values of the paramaters being inverted for. (ie vf (ω), vs(ω) and θ). If the two
inversions for azimuth and phase velocities are performed separately, the second inversion result is condi-
tional on the first. This conditionality means that any error in the first result will be carried into the second.
Performing a joint inversion gives the global best estimate for all of the parameters simultaneously and
provides an unconditional result.

We know that for the correct azimuth, θ, the back rotated signals fn(ω) and sn(ω) will be maximized.
We can therfore find the derivative of equations 15 and 16 and set it to zero (or minimize, in the case of an
inversion) to obtain the azimuthal angle,

∂fn(ω)
∂θ

= (yyn − xxn) sin 2θ + (xyn + yxn) cos 2θ = 0 (1)

∂sm(ω)
∂θ

= (xxm − yym) sin 2θ − (xym + yxm) cos 2θ = 0 (2)

where n and m refer to the receiver number for the fast and slow arrays, respectively. Because both ∂fn

∂θ (ω)
and ∂sm

∂θ (ω) would ideally be zero independently, for the correct azimuth, their difference ∂fn

∂θ (ω) − ∂sm

∂θ (ω)
also vanishes. In order to have an objective function that is also sensitive to correlations in the data (i.e.

between receivers), we chose to minimize the quantity
∫

dω
∣∣∣∂fn

∂θ (ω)− ∂sm

∂θ (ω)
∣∣∣2. Note also that when the

signal is incorrectly back-rotated, the fn and sn data both contain fast and slow components which are
correlated and correctly picked-up by such an objective function.

For the propagation, we know that if the correct velocity was used at each frequency, the data at each
receiver will be back propagated to the source function. Thus if we undo the propagation correctly and
subtract the signal from any receiver pair the absolute value of their difference should vanish.

Therefore, our choice for an objective funtion is

O[vf (ω), vs(ω), θ] =
∫

ω

∑
n,m

∣∣∣∣∂fn(ω)
∂θ

− ∂sm(ω)
∂θ

∣∣∣∣2 + |fn(ω)− sm(ω)|2 . (3)

which is sensitive to both azimuth angle and fast and slow dispersion. In addition, this objective function
combines all the data from all receivers, and its minimization should therefore enable one to obtain the best
fitting parameters (azimuth as well as fast and slow mode dispersion curves) taking into account the maximum
amount of information contained in the data. This method is to be contrasted with more traditional methods
(for example, first estimate the azimuth independently of dispersion and then seperately analyze the fast and
slow mode data), that only partially take into account all the information contained in the data. Equation 4
is another representation of 3, it shows in matrix form how the inversion calculates the value of the objective
function for the trial functions vs−t, vf−t and θtrial for a receiver spaced a distance zn from the source
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One can see from inspection of 4 that if θt = θ, the two off diagonal terms will be zero and the diagonal
terms will be maximized. If vs−t = vs and vf−t = vf , the two diagonal terms will be zero but the off diagonal
terms will still have a contribution unless the trial angle is correct. The full dispersion curve speciincr fies
a velocity for each frequency component in the data. Depending on the size of the fourier transfom used
to convert the data into the frequency domain, there can be a large number of parameters to invert for.
Typically if the traces have 512 samples in time and a 512 fast fourier transform is performed, there will
be 256 frequencies to invert for on each dispersion curve. This leads to an inversion search space of 513
parameters (2 × 256(frequencies) + 1(angle)). In order to avoid inverting such a large model space the
dispersion curves can be parametrized by using piecewise constants, for example. Essentially this divides
the frequency space into a number of bands over which the dispersion curve is described by a constant. The
inversion code implements a variable grid algorithm, which dynamically updates the placement and size of
the frequency bands with each iteration. The algorithm has two stages. The first, known as the spinup, uses
regularly spaced bins to estimate the rough form of the data’s dispersion curve. At each spinup iteration
the code doubles the number of piecewise constants it uses to fit the curve. At the first iteration it fits
one constant which represents some average phase velocity; at the next iteration it fits two, and at the
next 4, and so on. The spinup is typically run for 4 iterations, which means that the dispersion curve has
been parametrized by 8 evenly spaced (in frequency) constants. These iterations provides the best possible
starting guess for the second part of the algorithm which uses the variable spacing. After each minimization
iteration the grid refining code allocates the number of frequency bins to be used acording to the shape of
the dispersion curve at those frequencies. In other words, the algorithm adds more frequency bins where the
gradient of the curve is largest, ensuring that the inversion has enough parameters to capture the character
of the curve while keeping the number to a minimum so that the inversion runs efficiently. Figure 2 shows the
objective function space for some synthetic flexural wave forms. The data was created using the dispersion
relations and source spectrum shown in figure 1. The plots were made by dividing the frequency axis into
4 regions (shown as the red vertical dotted lines in 1) and holding three of the phase velocities constant, at
the correct value, while varying the fourth. The objective function surface is shown for the low, mid-low,
mid-high, and high regimes and the pink star marks the true minimum of the surface. Figure 4 shows a
similar view of the surface as a function of aximuthal angle; here one of the dispersion curves is held at a
constant while the angle and second dispersion relation are varied in the 4 frequency bins. These figures are
shown to illustrate a few important results regarding the inversion. It is obvious from the number of minima
in the plots that the objective function has a strong frequency dependence: as the frequency increases, so
does the complexity of the surface. This is due to the phase wrap around between source and first receiver.
Figures 3 and 5 show the inversion space when the initial offset is reduced to zero. The distance between
each of the receivers is small compared to the shortest wavelength in the dipole data spectrum and thus
there is no phase wrap around of the signal between receivers. However, between the source and the first
receiver there is a large offset meaning the phase has gone through many cycles before reaching the first
receiver. This can be calculted by considering the phase velocites of one of the modes in adjaccent minima
and calculating the difference in phase between them. For example if we consider the minima at 3100 ms−1

(the true mode velocity) and the adjacent minima to the left at around 2800 ms−1 in the high end frequency
block with average frequency 11kHz. Using the middle receiver which is a distance 4.573m from the source
we find a phase difference between the two minima of aproximately 2π radians. Back propagation to the
source is therefore difficult because it involves unwrapping this large phase exactly. A small error in the
velocity can result in a change of this phase by 2π, thus leading to a local minimum in the objective function.
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Figure 1: Dispersion Relations for fast and slow modes and the spectrum of synthetic data used for objective
function surfaces.
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Figure 2: Objective function surfaces for 4 different frequency bands and the correct rotation angle.
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Figure 3: Objective function surfaces for 4 different frequency bands and the correct rotation angle with
zero offset to first receiver.
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Figure 4: Objective function surfaces for 4 different frequency bands with one dispersion curve held at the
correct values.
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Figure 5: Objective function surfaces for 4 different frequency bands with one dispersion curve held at the
correct values and zero offset to the first receiver.

It is clear from figure 5, where the data were created using zero offset, that without this phase wrap, the
objective function space is reduced to one smooth minimum. Unfortunatley this phase wrap around cannot
be removed from the data, if anisotropy is present, by simply subtracting the phase at the first receiver from
each of the wave forms. Hypothetically if the source was positioned with the first receivers at distance z1

and fired in the x-direction, the recorded signal for the cross-line components at distance z1 would be zero.
For a signal to be recorded at the cross-lines the wave must have propagated some distance. If the phase
at the z1 receiver is just subtracted out from all of the waveforms, the effects of the rotation through the
offset have not been removed, and the data have been corrupted making inversion for the shear velocities
impossible. This means that an inversion using real data must be back propagated to the source.

The slant of the minima in figures 3 and 2 is due to a correlation between the fast and slow velocity
modes. When inverting the data, the objective funtion is looking to find the values of vf and vs that back
propagate the data to the source function. Although only one choice for each of these dispersion curves will
give the correct answer, there can be some trade off between the two modes. In other words, if the inversion
chooses the fast mode to be a little slower and the slow mode to be a little faster, there is still a good match
of the source functions. This trade off is intrinsic to the objective function, however by using all possible
receiver pairs the length of the correlation is reduced. If the same figure were shown for just one reciever
pair, the correlation would stretch; conversely, if there were more than 8 pairs of recievers, there would be a
shrinking of the minimum in the diagonal direction. Figure 1 shows the spectrum of the synthetic data (the
black curve), and from the values on the colourbars on 2 it is clear that the frequencies with higher spectral
content have a greater influence on the value of the objective function. For the high and low frequency
bands where the spectrum has less magnitude the contribution to the objective function is less. This fact
has important consequences for the inversion as the results are likely to be inaccurate where the spectrum
has lower magnitude.
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3 Results

In this section we present some results from real cross-dipole data from a well in Venezuela. We compare
three methods; the joint inversion, simple frequency domain Alford rotation followed by Prony’s method
and, simple frequency domain Alford rotation followed by a back propagation scheme which inverts each
frequncy individually. The simple frequency domain rotation scheme is similar to that of the joint inversion
but is calculated without taking into acount the effects of dispersion. Figures 8, 6 and, 12 show reasonable
agreement between the three results for depths of 7000, 7500, 6700 and, 8000 ft. Below each inversion result
is a calculation of semblance from the data after rotation onto the fast and slow axes. (Figures 7, 9,11
and, 13. The maximum contour corresponds to the velocity of coherrent energy in the waveforms. Table 1
shows the angle calculted by the joint inversion, the angle calculated by the simple frequency domain alford
rotation, the difference betwwen these two inversions and, the difference in shear mode velocities taken from
semblance of the rotated data. There is a correlation between the depths that have the least anisotopy and
the uncertainty in the angle.

Depth Joint Inversion Simple Inversion difference Difference in velocities from
ft degrees degrees degrees fast and slow modes

m/s (from semblance)
6700 39 27 12 250
7000 57 59 2 500
7500 57 56 1 700
8000 49 43 6 400

Table 1: Angle between fast plane and tool x-axis for joint inversion and simple angle inversion

4 Conclusion

We have shown a method for the joint inversion of cross-dipole acoustic tool data presented the results for
some real data. Whilst the inversion gives a good estimate of azimuthal angle the dispersion relationships
can be difficult to invert in this manner for due to phase wrap around between the source and first receiver.
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Figure 6: Dispersion analysis results for depth 7500ft.
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Figure 7: Semblance analysis results for rotated data at depth 7500ft.
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Figure 8: Dispersion analysis results for depth 7000ft.
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Figure 9: Semblance analysis results for rotated data at depth 7000ft.
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Figure 10: Dispersion analysis results for depth 6700ft.
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Figure 11: Semblance analysis results for rotated data at depth 6700ft.
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Figure 12: Dispersion analysis results for depth 8000ft.
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Figure 13: Semblance analysis results for rotated data at depth 8000ft.
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A Appendix

A.1 Cross-Dipole Data

The cross-dipole tool belongs to the family of wireline acoustic tools. It is used primarily to estimate acoustic
velocties as a function of radial position in slow formations, (i.e. those whose shear velocity is less than the
borehole fluid velocity). Although tool design varies from company to company, all tools have similar general
features and consist of two pairs of dipole sources and eight pairs of dipole receivers. The dipole acoustic
transducer source pairs are oriented orthogonally on the tool, one pair along the x direction and one along the
y direction. The transducer receivers are similarly oriented with the first pair having a large offset from the
source and subsequent receivers being evenly distributed with a separation of aproximately 15 cm. (Figure
14 shows a cartoon of a generic cross-dipole tool). This source receiver configuration permits a directional
measurement of the formations’s acoustic response. The two sources fire separately, and after each excitation
the receivers in both the x and y direction record the formation response. This recording results in 4 arrays
of 8 (the number of receivers) traces, X source to X receiver referred to as XX, X source to Y receiver referred
to XY, and similarly for YX and YY.

When the medium is excited with a dipole source, a set of axisymmetric borehole-guided modes and
refracted shear and compressional waves are formed. The guided modes of lowest cut-off frequency, known
as flexural modes, are polarized in the x-y plane perpendicular to their direction of propagation that is along
the z-axis. If the medium is anisotropic, the flexural wave motion splits into a fast and slow component
dependent on the directional velocities of the rock and the frequency component of the excitation. When
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Figure 14: Schematic of generic Cross-Dipole tool.

the source transducer pair oriented along the x-axis is excited, the displacement vector of the flexural wave
generated is also in the x direction. The fast and slow axes of the formation make an angle θ with respect
to the x and y axes so that the displacement vector has projections cos θ and sin θ on the fast and slow
directions, respectively. The fast and slow flexural waves then propagate with their respective (frequency
dependent) velocities and are recorded at the receivers. Since the receivers are also oriented along the x and
y axes, the displacement measured is a second projection of the fast and slow modes back onto the x and y
axes.

Let Sx(t) and Sy(t) represent the source excitation functions for the x and y oriented dipoles, and let
sx(ω) and sy(ω) be their fourier transforms. Also let g

(n)
f (ω) and g

(n)
s (ω) be the formation propagation

function from the source to the nth receiver, i.e.,

g
(n)
f (ω) = exp{i ω

vf (ω)
zn} (5)

g(n)
s (ω) = exp{i ω

vs(ω)
zn} (6)

where vf (ω) and vs(ω) are the fast and slow frequency dependent phase velocities, respectively, and zn is
the distance from the source to the nth receiver. The signals recorded by the cross dipole tool are therefore
given by

13



xxn(ω) = g
(n)
f (ω)sx(ω) cos2 θ + g(n)

s (ω)sx(ω) sin2 θ (7)

xyn(ω) = [g(n)
f (ω)sx(ω)− g(n)

s (ω)sx(ω)] cos θ sin θ (8)

yxn(ω) = [g(n)
f (ω)sy(ω)− g(n)

s (ω)sy(ω)] cos θ sin θ (9)

yyn(ω) = g
(n)
f (ω)sy(ω) sin2 θ + g(n)

s (ω)sy(ω) cos2 θ. (10)
(11)

Assuming the same source function for both the x and y transducers, sx(ω) = sy(ω) = s(ω), and letting
fn(ω) = g

(n)
f s(ω) and sn(ω) = g

(n)
s s(ω), we can now represent equations 7 to 11 in matrix form

(
xxn(ω) xyn(ω)
yxn(ω) yyn(ω)

)
=
(

cos θ − sin θ
sin θ cos θ

)(
fn(ω) 0

0 sn(ω)

)
×(

cos θ sin θ
− sin θ cos θ

)
. (12)

(13)

A.2 Rotation

We can use equation 13 to create synthetic waveforms for a given source function and dispersion relations.
Figures 15 and 16 show the difference between the borehole flexural mode recorded with a tool whose x
and y axes are at an angle θ = 25o with the formation fast and slow axes, and the borehole flexural mode
recorded with a tool which is aligned with the formation fast and slow axes. In matrix terms, if the tools
and formation axes are aligned, the diagonal components of equation 13 are maximized and the off diagonal
components vanish.

We can invert 13(
fn(ω) 0

0 sn(ω)

)
=
(

cos θ sin θ
− sin θ cos θ

)(
xxn(ω) xyn(ω)
yxn(ω) yyn(ω)

)
×(

cos θ − sin θ
sin θ cos θ

)
, (14)

which gives the fast and slow propagation functions as

fn(ω) = xxn(ω) cos2 θ + [xyn(ω) + yxn(ω)] sin θ cos θ + yyn(ω) sin2 θ (15)
sn(ω) = xxn(ω) sin2 θ − [xyn(ω) + yxn(ω)] sin θ cos θ + yyn(ω) cos2 θ. (16)

Aditionally, it is easy to see from equations 15 and 16 that if θ = 90o or 0o there will be no xyn(ω) or yxn(ω)
dependence.

A.3 Propagation

Next, the effects of propagation through the formation are undone. Figure 17 shows the data from Figure
16 after the propagation has been undone. If the correct dispersion relation is used (i.e., each frequency
component is back propagated at the correct velocity), only the source function remains at each reciever on
the inline arrays, and since the correct rotation has been applied, there is no signal on the crossline arrays.

Remembering that fn(ω) = g
(n)
f s(ω) and sn(ω) = g

(n)
s s(ω), we can write equation 14 as,(

s(ω) 0
0 s(ω)

)
=

(
e
−i ω

vf (ω) zn 0
0 e−i ω

vs(ω) zn

)
×(

cos θ sin θ
− sin θ cos θ

)(
xxn(ω) xyn(ω)
yxn(ω) yyn(ω)

)(
cos θ − sin θ
sin θ cos θ

)
. (17)

14



which is valid for any receiver n.
The propagation function has been moved to the righthand side. There is now a complete expression

for the rotation and propagation of a source function to each of the array receivers. In other words, if the
correct azimuthal angle and dipserion relations, vf (ω) and vs(ω), are used in equation 17, we recover the
source function s(ω) at every receiver.
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Figure 15: Time series representation of the borehole flexural mode with tool at angle θ = 25o with the
formation axes.
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Figure 16: Time series representation of the borehole flexural mode with tool aligned (θ = 90o, 0o) with the
formation axes.

0 1 2 3 4 5

x 10
−3

0

1

2

3

4

5

6

7

8

9

10
Inline XX

0 1 2 3 4 5

x 10
−3

0

1

2

3

4

5

6

7

8

9

10
Crossline XY

0 1 2 3 4 5

x 10
−3

0

1

2

3

4

5

6

7

8

9

10
Crossline YX

0 1 2 3 4 5

x 10
−3

1

2

3

4

5

6

7

8

9
Inline YY

Figure 17: Time series representation of flexural mode after back propagation with the correct dispersion
relation.
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