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Abstract

Recently, unexpected connections have been discovered between characters of repre-
sentations and lattice models in statistical mechanics. The bridge was first formed
from Kuperberg's solution to the alternating sign matrix (ASM) conjecture. Ku-
perberg's proof of this conjecture, which enumerates ASMs, utilized a Yang-Baxter
equation for a square ice model from statistical mechanics. In earlier work, Tokuyama
and okada gave representation theoretic quantities as generating functions on certain
symmetry classes of ASMs or generalizations of them. Brubaker, Bump, and Pried-
berg used a Yang-Baxter equation to reprove Tokuyama's result and this work seeks
to do the same for a generalization of Okada's results in type B.

We begin by defining the particular lattice model we study. We then imbue the
lattice model with Boltzmann weights suggested by a bijection with a set of symmetric
ASMs. These weights define a partition function, whose properties are studied by
combinatorial and symmetric function methods over the next few chapters. This
course of study culminates in the use of the Yang-Baxter equation for our ice model to
prove that the partition function factors into a deformation of the Weyl denominator
and a generalized character of a highest weight representation, both in type B. We
conjecture that the resulting function is connected to metaplectic spherical Whittaker
functions. In the last two chapters, we deal with two rather different approaches to
computing Whittaker coefficients of metaplectic forms - one using a factorization of
the unipotent radical to perform an integration and the other via Hecke operators on
the metaplectic group.

Thesis Supervisor: Benjamin B. Brubaker
Title: Cecil and Ida B. Green Career Development
Assistant Professor of Mathematics
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Chapter 1

Introduction

This thesis studies Whittaker coefficients of metaplectic forms, using three very differ-

ent methods each associated to a different classical Lie group. In the main component

of the thesis we investigate a deformation of highest weight characters of SO(2r + 1)

using methods of statistical mechanics, similar to the recent work of Brubaker, Bump,
and Friedberg [7] for Cartan type A. In addition, we explore Whittaker coefficients

of metaplectic Eisenstein series on Sp(2r) using an explicit factorization of elements

in the unipotent radical of a certain maximal parabolic subgroup. For this, we draw

inspiration from the paper of Brubaker, Bump, and Friedberg [6], which again focuses

on the type A case. Finally, we make a brief exploration of Hecke operators on the

metaplectic group in a specific example - the six-fold cover of GL(3) - and draw a

few conclusions about the orbits of Whittaker coefficients under two operators which

generate the Hecke algebra. We now describe these results, and the previous work

that motivated them, in more detail.

In 1996, Kuperberg [20] produced a remarkable proof of the alternating sign matrix

(ASM) conjecture. The conjecture of Mills, Robbins, and Rumsey [25], first proven by

Zeilberger [29], enumerates sets of ASMs - matrices with entries 0, 1, or -1 satisfying

certain conditions. Kuperberg's proof used techniques from statistical mechanics.

In particular, he employed a combinatorial equivalence between ASMs and states

of a two dimensional square lattice model known as the six-vertex model or square

ice. Following ideas of Baxter [2], he used the Yang-Baxter equation of this model,
proven by Izergin [16] and Korepin [18], to evaluate a partition function relevant to

the conjecture. This thesis exhibits a similar connection between statistical mechanics

and the combinatorics of representation theory in Cartan type B.

Our approach is motivated by the work of Tokuyama [28] and Okada [26] on

generating functions identities for characters of classical groups and deformations of



their Weyl denominators. Tokuyama discovered the following identity, a deformation

of the Weyl character formula in Cartan type A:

(t + 1)s(T)tl(T) 1 J(zi(T)) = [7 (zi + z St) -S(Ap)(Zi, . Z. ,zr). (1.1)
TESG(A) i=1 .1Ii<jir

The generating function on the left side of (1.1) is summed over strict Gelfand-Tsetlin

patterns (GTPs), triangular arrays of integers whose rows decrease and interleave (see

Definition 2.5), with fixed top row equal to the strict partition A. The functions s,
1 and mi are statistics on the entries of GTPs. On the right side, SA_, is the Schur

function associated with the partition A - p for p = (r, r - 1, . . . , 2, 1). This partition

may be viewed as a highest weight of GLr(C). So the right-hand side is the product of

a deformation of the Weyl denominator in type A and a character of a representation

of GL(C) with highest weight corresponding to the set of Gelfand-Tsetlin patterns

having associated fixed top row.

Brubaker, Bump, and Friedberg developed a square ice interpretation of this for-

mula [7]. They were able to show that the partition function of their ice model satis-

fied a similar identity to Tokuyama's generating function by proving a Yang-Baxter

equation for their model, drawing from [2].

Okada established similar generating functions to Tokuyama's in Cartan types

B, C, and D, using ASMs with certain symmetry properties to index the generating

function. He produced deformations of the Weyl denominator formulas in these cases

in [26]. In this thesis, we start with the work of Okada in Cartan type B. In Chapter

2, we define a new variant of a square ice model, called half-turn ice, corresponding

to each distinct partition A. We prove that the trivial case A = p for the model

has admissible states in bijection with ASMs possessing certain rotational symmetry.
Further, in Chapter 3, we choose Boltzmann weights related to the statistics of Okada,
to realize his generating function as the partition function of our model for A = p.
Hence, for arbitrary A, the resulting partition function of the lattice model generalizes

okada's work in a direction similar to Tokuyama's theorem stated above. Indeed,
using techniques of Baxter [2], we determine certain star-triangle relations on the

ice which help factor the partition function into a deformed Weyl denominator and a

polynomial, which we show to be a deformed character in Chapter 5. This relationship

is stated more precisely as follows.

Theorem 3.10. We may write the partition function Z\ of half-turn ice indexed by



A= (All A21... IAr) as

Zx; t) l [F(Xi - ti)]- [ (Xk - Xjtjt k) (XjXk - ti tk)]0 ~b(X; t), (1.2)
.i=1 . 1<j<x~r

for #,X a polynomial invariant under the Weyl group of type B.

Then Theorem 5.15 shows that the special value #,\(x; 1) is a character of SO 2r+1 (C).

We also prove that these deformed characters #) satisfy a certain formulation of

Clebsch-Gordan decomposition, using several original proof techniques that appeal

to the combinatorics of square ice. With some small computable examples we have

stated a conjectural deformation of Pieri's Rule for them as well, and along with a

conjectured "base case," a recursive formula for these deformed characters for all A

would follow. The precise meaning of these deformed characters is still unknown, but

the fact that this deformation satisfies so many of the relations known for characters

suggests that the 0, should be modules for some algebra, e.g. a quantized envelopping

algebra. In the type A case [7], the analog of #A is a Schur polynomial, which can be

considered the value of a Whittaker coefficient by the Casselman-Shalika formula. Our

case is more complicated, as the ti are not removable from #A by a simple change of

variables. Nevertheless, the similarities suggest our #A may be a Whittaker coefficient

on some metaplectic cover of SO(2r + 1) or Sp(2r), though many of these coefficients

have never been computed, nor even conjectured.

The final two chapters of the thesis use completely different to study the Whit-

taker coefficients of automorphic forms and their metaplectic generalizations. The

first of these studies the Whittaker coefficients of Eisenstein series on Sp 4, and more

generally SP2r, by writing them recursively in terms of lower rank Eisenstein series.

This approach is inspired by the type A case studied in [6], but the details of the

computation differ from that case significantly. More precisely, we express the Sp 4

Whittaker coefficients a (defined in (6.8)) in terms of combinations of SL2 coef-

ficients afL (defined in (6.22))and certain exponential sums Hp (defined in (6.20))

as follows:

Theorem 6.9. For two integers m 1, m 2 E

a M 2; = Ho(di)a .1) ( m 2 ; )

d1,d2,d3 E(JD S\{01)/Dj d1,d3,d2 2



The second computational method, exemplified over the six-fold cover of GL3 in

the last chapter, is joint work with Cathy Lennon. Our strategy takes advantage of a

metaplectic form being an eigenfunction of Hecke operators. We explicitly compute

the Whittaker integral of a form acted on by each of two generators of the meta-

plectic Hecke algebra. The action of the first of these generators on a theta function

was computed by Hoffstein in [13]. He showed that the theta function's Whittaker

coefficients, already known to be periodic, have further restrictions that amount to

four independent orbits of the coefficients. We determine that the second generator

applied to the theta function gives the same orbits, by finding a bijective map between

the sets of right coset representatives of the double cosets of the two generators. The

explanation of this redundancy of information is observed to be the equivalence of

choosing the two orderings of the positive simple roots of SL3 . The work over Sp 4 by

Brubaker and Friedberg in [8] was a helpful reference for this calculation.



Chapter 2

Combinatorial background

Our purpose in this chapter is to define half-turn ice, a combinatorial structure to

be used in a two-dimensional model (in the sense of statistical mechanics). As we

will explain, this model will be closely connected to the representations of complex

Lie groups of Cartan type B. Our construction generalizes that of Kuperberg [21]

and is a natural extension of that for type A in [7]. To motivate the construction, we

begin by describing three combinatorial objects: square ice, alternating sign matrices,

and Gelfand-Tsetlin patterns. We then show certain bijective equivalences between

subsets of these three objects, and these connections will guide the invention of half-

turn ice.

2.1 Square ice

The square ice in this paper is a variation of the six-vertex model detailed in [2]. The

particular notations and diagrams we use emulate [7].

An arrangement of square ice is a finite square grid whose edges are assigned a

positive or negative sign. In general, any given vertex has 24 = 16 possible arrange-

ments of signs on the four adjacent edges, but only six of these combinations, called

vertex fillings, are allowed. These are shown in (2.1).

(2.1)

Remark 2.1. There are equivalent formulations which give the edges a direction [21].

In those models, the six vertex fillings in (2.1) are those having two incoming edges



and two outgoing edges. The choice of + and - in our formulation amounts to a

choice of orientation of arrows.

We consider finite pieces of ice within a certain boundary. Square ice boundaries

are indexed by distinct partitions A. A partition A = (A, 2,... , Ar) is a finite nonin-

creasing sequence of positive integers. A partition is distinct if it is strictly decreasing

(i.e. none of the integers repeat).

First, fix the indexing partition as (r, r - 1, r - 2, ... , 2, 1) for some fixed integer

r. Throughout the paper partitions of this form for a given r will be called p, so this

is the A = p case. Then p-square ice is a square piece of r 2 vertices in r rows and

r columns. The boundary edges are those that only have one of their two vertices

in the r x r array; to these we assign with the following signs. The bottom and left

boundary edges have a + sign, and the top and right boundary edges have a - sign.

The following examples show the type A p-square ice boundaries for r = 2 and r = 3.

& -0- Q- -~(2.2)

Once we have given boundary conditions for a piece of square ice, we can consider

its collection of fillings, which are assignments of + or - signs to the interior edges

such that all r 2 vertices have one of the six allowed vertex fillings. For example, the

r = 2 p-square ice has the following two fillings.

Now, for a general distinct partition A = (A, A2 ,..., A,), we alter the dimensions

and boundary signs of our finite grid of square ice in the following way. The piece

of ice is now rectangular, with r rows and A1 columns of vertices (remember that in

this paper partitions are always written in decreasing order, so A1 is the largest part



of A). We assign a + to the boundary edges on the left and bottom sides, and a -

on the right side. This leaves the top boundary to be assigned.

We label the columns of vertices 1, 2, 3, ... , A, -1, A, in ascending order from right

to left. Each top boundary edge in a column whose label is some A\ is assigned a -

sign, all others are assigned a + sign. As an example, here is the boundary for the

(3, 1)-square ice, and its three fillings.

3 2 1 3 2 1

(2.3)

3 2 1 3 2 1

A distinct partition A contains all of the information about the boundary of a

piece of square ice. The number of terms, or length, of A gives the number of rows

r of the piece of ice, and the largest term, A1, gives the number of columns. The

columns are labeled from the right, and we know all boundary values by knowing the

entries of A.

Remark 2.2 (Flowlines). Here we observe a useful property of square ice fillings. In

(2.1), we see that the allowed vertices are exactly the ones that have the same total

number of +'s on their top and left edges as they do on their bottom and right

edges. This conservation can be illustrated globally in any given filling by overlaying

flowlines at each vertex which depend on its vertex filling.



+ (2.4)
These lines connect like signs on adjacent edges. Once they are connected in a

filling, the signs can be thought of as 'flowing' from the top left of the filling to the
bottom right, following the flowlines. We note these three principles of flowlines.

1. The sign of a flowline is constant, so it is determined by the boundary edge
through which the flowline enters the piece of ice.

2. Flowlines always flow down or to the right, and each edge is covered by exactly
one flowline.

3. Flowlines of like signs never cross, but flowlines of unlike signs may or may not
cross.

The restriction of the square ice fillings to be composed of the six vertex fillings (2.1)
is equivalent to the flowlines of sign being restricted to the forms in (2.4). Thus the
three principles of flowlines encode the allowable fillings of a piece of square ice.

2.2 Alternating sign matrices

Definition 2.3. An r x r matrix A is an alternating sign matrix (ASM) if the following
three conditions hold.

1. Every entry of A is 0, 1, or -1.

2. In each row and column, the nonzero entries of A alternate between 1 and -1.

3. Every row and every column of A has entries that sum to 1.

These three conditions imply that in each row and column, the first and last
nonzero term is 1. Also, we have that any partial sum of a row or column will be
either 0 or 1. Some examples of matrices of this type are given below. Note that any



permutation matrix is an alternating sum matrix.

0 0 1 0 0(o 1 0 0
01 0 -1 1 0
1i -1 1 0
I0 0 1 -1 1

10 100 00000 00 1 -1 1 00 0 0 1/ \0 0 1 0 Of
Mills, Robbins, and Ramsey [25] conjectured the following beautiful formula for

the number of r x r ASMs.

#!xr ASMs}= 14! - (3r - 5)! - (3r - 2)!
r! - (r + 1)!. - - (2r - 2)!(2r - 1)!

A proof of this formula was only found fairly recently. The highly computational first

proof was due to Zeilberger [29]. Later, Kuperberg [20] found a much shorter proof

utilizing a six-vertex model equivalent to the p-square ice presented earlier.

We generalize to nonsquare ASMs.

Definition 2.4. For a distinct partition A with first (largest) entry n and length r,

a A-alternating sign matrix A is an r x n matrix satisfying the following conditions.

1. Every entry of A is 0,1, or -1.

2. In each row and column of A, the nonzero entries begin with 1 and alternate

between 1 and -1.

3. Every row of A and the columns of A that, when counted from the right are

entries in A, have sum 1, and the other columns have sum 0.

Note that from Condition 2, the columns that sum to 0 still must have first

(topmost) nonzero entry equal to 1. As an example, the following three matrices are

a complete list of the (3, 1)-ASMs:

(1 0 0 0 0 1 0 1 0

0 0 1) (1 0 0)1-11

2.3 Gelfand-Tsetlin patterns

The third combinatorial objects of interest are Gelfand-Tsetlin patterns. Gelfand-

Tsetlin patterns were originally used to describe characters for highest weight rep-



resentations of GLr+1 (C) by making use of the multiplicity-free branching rule from

GLi+ 1 to GLi [12]. These patterns were generalized to classical groups by Zhelobenko

[30] (see also Proctor [27]), and are often still called Gelfand-Tsetlin patterns.

Definition 2.5. A type A Gelfand-Tsetlin pattern (GTP) is a triangular array of

positive integers of the form

a1,1  a1 ,2  a1 ,3  ... a,r

a2,1  a2 ,2  ' a2,r-1

a3 ,1  * a3,r-2

ar,1

with weakly decreasing rows and aij satisfying the interleaving condition:

aij > ai+1,j > aj+1 Vi < i,j r - 1 and i +j < r. (2.5)

If the entries aij of the pattern are strictly decreasing in rows, we say the Gelfand-

Tsetlin pattern is strict. They are referred to as monotone triangles in [26]. We will

deal almost exclusively with strict GTPs.

We index strict GTPs by their top row, a distinct partition. So we may consider

the finite collection of strict A-GTPs, those that are indexed by A.

2.4 Bijections

Now we exhibit bijections between these combinatorial objects. One of the uses of

strict Gelfand-Tsetlin patterns in this paper is to establish the bijective link between

square ice fillings and ASMs detailed below.

For a distinct partition A, we define a function <DA from strict A-GTPs to A-square

ice fillings. Let <DA map the strict Gelfand-Tsetlin pattern {aij} to the filling whose

signs lying on columns between the i - 1st and ith rows are -'s in exactly the columns

labeled with the numbers aij for j = 1, 2,... , r + 1 - i. For example, the (3, 1)-square



ice fillings in (2.3) are the respective (b(3,1)-images of the strict (3, 1)-GTPs below.

{unfilled pattern} 3 1

{ { 3 1}{3 1 
3 1

2 3

Lemma 2.6. For A any distinct partition, (A is a bijection between strict A-Gelfand-

Tsetlin patterns and A-square ice fillings.

Proof. This is a result of Lemma 1 of [7], but we give a slight variant of the proof

here.

Given a GTP (aij) with top row A, to find its image under D,, we first fill in the

vertical edges of a A-square ice piece according to the aij. For example,

4 3 2 1

4 3 1

4)(4,3,1) : 4 2 4
2 -

Once the vertical edges are filled in, the signs of the horizontal edges in the filling

are determined by the restriction that we use only the six allowed vertex fillings. To

see this, we may employ the flowline description of square ice from Remark 2.2. In

the ith row of horizontal edges, the negative flow entering in the column labeled aij

must flow out the column labeled ai+,, except for the rightmost flow. This last flow

enters in the column labeled air+1-i and flows out the rightmost horizontal edge.

The principle that flowlines always flow down and right is equivalent to the first

of the interleaving inequalities (2.5). The fact that like-signed flowlines never cross

one another is equivalent to the second. N

Finally, Okada ([26], Proposition 1.1) gives a correspondence between A-ASMs

and strict A-GTPs, which we will not make explicit use of here.

Lemma 2.7. For any distinct partition A, there is a canonical bijection between the

set of A-ASMs and the set of strict Gelfand-Tsetlin patterns with top row A.



With a bijective correspondence among the three combinatorial objects, one might

ask what is the use of three 'equivalent' ideas. Throughout the paper, we will demon-

strate that the different mathematical frameworks allow for different approaches,

arguments, and generalizations, in such a way that they all are of help. Here we will

list a few key differences between the three objects, and the strengths of each.

* Square Ice is the most locally defined of the three objects. That is, checking the

allowability that any given filling of a fixed boundary involves only looking at the

four edges out of each vertex independently of the other vertices. This allows

for 'local' arguments to be very small, for example the star-triangle identity

below that only involves three vertices. The locality of square ice also makes it

easier to generalize, because it more flexibly fits into an arbitrary boundary.

9 In contrast, Alternating Sign Matrices are the least locally defined of the

three objects. This is because the information about the alternation of the

signs requires looking at arbitrarily many entries of the matrix simultaneously,

either horizontally or vertically. However, we take advantage of the connections

between ASMs and representation theory from the work of Okada [26] and

Tokuyama [28].

e Finally, Gelfand-Tsetlin Patterns have already been useful by helping draw

the bijection between the other two objects. In general, GTPs lend themselves

to arguments by induction on rank, according to the branching rule. We return

to this later.

2.5 Type B versions

We now define the versions of square ice and ASMs for Cartan type B, which we refer

to as half-turn ice and half-turn symmetric ASMs, respectively. We draw inspiration

from [26] and [27] for the proper formulations in the p case.

Definition 2.8 (Half-turn ice). The type B version of ice is A-half-turn ice. The

lattice structure of square ice is still used, but the shape and boundary conditions of

the piece of ice are changed. For A = (r, r - 1,... ,2,1) has the following shape and

boundary values.



r r-1 2 1

1 - (2.6)

1 -

r-1®-- -Q

Notice that the number of rows is now 2r, twice the length of the partition. Also, the

right boundary has U-shaped vertices with two edges linking the ith and (2r + 1-i)th

rows. Fillings of half-turn ice must use the same six vertex fillings (2.1) of square

ice throughout, with the following extra condition concerning the right boundary. A

filling requires each of these U-shaped vertices to have one of the following two vertex

fillings.

(2.7)

This implies that the right boundaries of half-turn ice have 2' allowable variations.

Finally, in (2.6) there are two colors for the vertices. The meaning of these shadings

will be discussed later.

To generalize this ice to arbitrary distinct partitions A, we insert columns just
as we did in the square ice. So the A-half-turn ice boundary has 2r rows and A,

columns, for A, the largest part of A. The columns are indexed from the right exactly

as in the type A case, so the column of vertices attached to the half-turn pieces are



in column 1, and the leftmost column is labeled A,. The top border again has -'s

exactly in each column that is labeled with a part of A and +'s elsewhere. The left

and bottom boundaries are assigned all +'s, and the right boundary has exactly the

same restriction: each filling must assign values to the U-shaped vertices so they are

of one of the forms in (2.7). Here is an example of the A = (3, 2) boundary and one

possible filling (of 35 total fillings).

3 2 1 3 2 1

2 2

2 2

Definition 2.9 (Half-turn symmetric ASMs). Now we consider the type B version of

alternating sign matrices, which are detailed in Kuperberg's work [21] for the A = p

case. Kuperberg calls them 2r x 2r HTSASMs, which stands for half-turn symmetric

alternating sign matrices. As the name implies, a 2r x 2r alternating sign matrix

A = (aij) is a HTSASM if aij = a 2r+ 1-i, 2r+l-j for all ij.

Lemma 2.10. For any r, 2r x 2r HTSASMs are in bijective correspondence with

p-half-turn ice fillings.

Proof. This is implicit in Kuperberg [21], but we give a brief constructive argument.

Given a (r, r-1,... , 2, 1)-half-turn ice filling, we can extend it to a (2r, 2r-1,... , 2, 1)-

square ice filling by taking two copies of the half-turn ice filling, reversing all the signs

in one copy, and then attaching the reversed copy to the original along the half-turn

boundary (first rotate the reversed copy a half-turn). The restriction on the fillings

of the U-shaped vertices ensures that the signs match up, and so the curved edges

straighten out and we are left with a 2r x 2r square ice filling invariant under rotation

by a half-turn and sign reversing. U



Chapter 3

Boltzmann weights and the

partition function in type B

We are studying these combinatorial objects due to their connection to representation

theory. As noted above, in type A, Gelfand-Tsetlin patterns parametrize basis vectors

of highest weight representations of GL,(C). The highest weight may be read off the

top row, regarded as an element in the weight lattice with the usual identification

with Z'. Each pattern having this top row is a basis vector in the given highest weight

representation, and patterns having identical row sums are in the same weight space

(see [27]). However, the representation theoretic meaning of square ice is more subtle,

since these are in bijection with strict GTPs.

In type A, a much deeper connection between square ice and representation theory

was given by Hamel and King [14], building on work of Tokuyama [28]. They showed

that the partition function for square ice produces the character of a highest weight

representation, up to a deformation of the Weyl denominator formula, in Cartan

types A and C. This was later studied using techniques of statistical mechanics,

particularly the Yang-Baxter equation, by Brubaker, Bump, and Friedberg in type A

[7] and Ivanov in type C [15].

We will demonstrate a similar result leading to a deformation of a highest weight

character in type B using the half-turn ice defined above. We begin with the general

definition of Boltzmann weights and the partition function on ice.

Definition 3.1 (Boltzmann weights). In an ice model with a set of allowed vertex

fillings U, we define a set (or choice) of Boltzmann weights for the ice model to be

the assignment to each element u E U a rational function ku(x, t) E C(x, t). Given

a piece of ice with rows indexed by {1, ... , r} and a vertex v in row i, each filling T



of the piece of ice assigns to v some vertex filling u. Then for a set of Boltzmann

weights ku, the Boltzmann weight of v in the filling T is

B(v, T) = ku(xi,ti).

Finally, the evaluation of a filling T of a piece of ice is defined to be the product of the

Boltzmann weights of its vertices. In the literature, this may be called the Boltzmann

weight of a filling.

So, applying this definition to our half-turn ice model, we need to choose polyno-

mials for the six vertex fillings in (2.1), and the two U-shaped vertices in (2.7). We

label the Boltzmann weights as follows.

W &(3.1)

a1(x, t) a2(X, t) bi(x, t) b2(x, t) c1(x, t) c2(xt) di(x, t) d2(x,t)

Now, given an ice model with a set of Boltzmann weights, we can define the

partition function of a piece of ice with boundary conditions.

Definition 3.2 (The partition function). Given a piece of ice with fixed boundary

conditions and rows indexed from 1 to r, we define its partition function Z(x; t) for
x = (Xi, ... , Xr) and t = (ti, ... , tr) as

Z(x; t) = 1f B(v, T). (3.2)
T v

In (3.2), the sum is over all allowable fillings T of the piece of ice and the product is

over v vertices of the piece of ice. The product is the evaluation of the filling T.

Remark 3.3. A note about the word partition, which has two different meanings

in this paper. The first meaning is the number theoretic definition of a partition:

an expression of a positive integer as the unordered sum of positive integers. In this

paper we notate this as a non-increasing tuple of positive integers A = (A1, A2, ... , Ar).
The second meaning is the statistical mechanical definition of a partition function: a

quantity encoding the statistical properties of a model. We denote this as Z = Z(x; t),
and always use the full name "partition function." The word is well established in

both fields of study, so we decided to use it in both cases. We hope this does not

cause confusion.



3.1 Okada's theorem and a choice of Boltzmann

weights

To choose a set of Boltzmann weights in type B, we draw inspiration from the work

of Okada. In [26], he develops statistics on certain sets of HTSASMs which allow him

to write deformations of the Weyl denominator in types B and C as sums indexed by

these sets. These statistics on HTSASMs, once translated to functions on p-half-turn

ice fillings, will serve as our Boltzmann weights. First we state the relevant theorem

of Okada (i.e., the one concerning type B).

Let B, denote the set of 2r x 2r HTSASMs. Okada defines a set of four statistics

i , i2 , i, and s on 2r x 2r HTSASMs, certain functions from B, -+ R detailed in [26],

we have the following result.

Theorem 3.4 ([26], Theorem 2.1).

j7(I - txi) fJ (1 - t2x 3xj)(I - t2XiX 1)
i=1 1<i<jsr

= (-1)if(A)+i2(A)/2ti(A) 1- A) 3(B))-A(B)
AEBr

where 6 (Br) = t(r - d, r -(a 2 .-. Xar for

a = t (a1, . .. , ar, -ar, . .. , -ai).-

We state this result to give the precise deformation of the Weyl denominator (LHS

of (3.3)) appearing in [26] and to give the general shape of the generating function. To

avoid a long digression, we will omit the definition of the particular statistics i+, i 2 , i,

and s. The important point is that they may be translated from statistics on entries

of HTSASMs to Boltzmann weights on square ice in such a way that the sum on the

RHS of (3.3) can be written as a partition function on p-half-turn ice. Using the

bijective correspondence established in Lemma 2.10, this can be done. The resulting

Boltzmann weights are in the following table.
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(3.4)

We note a few important details about the Boltzmann weights in the table.

" The normal four-edged vertices used in square ice come in two versions: clear

ice (drawn as a hollow dot) and black ice (drawn as a solid dot). These two

versions are used to differentiate the weights used on vertices in the top half of
the half-turn ice with those used on vertices in the bottom half appearing in

(2.6). This is necessary because the statistics on the HTSASMs from [26] we
need to encode differentiate between the two independent pairs of quadrants of
the HTSASM.

" The complex number -1 appears in some of the weights.

Clear ice Weight Black ice Weight



" The variables x and t in the weights are subscripted by i, the index of the vertex.

As explained in Definition 3.1, this index corresponds to the row in which the

vertex belongs. The top half of the 2r rows are labeled r down to 1 from top

to bottom. Then, the rows bend around by the half-turn pieces, so the bottom

half of the rows are labeled 1 back up to r from top to bottom. The indices are

labeled in (2.6).

" The U-shaped vertices on the right boundary of the half-turn ice have constant

weights; they are independent of i, the index of the row.

These Boltzmann weights were selected so the partition function of p-half-turn ice

would match the deformed Weyl denominator formula, by Theorem 3.4. The advan-

tage to the half-turn ice formulation is that its Boltzmann weights, being completely

local data, can equally apply to A-half-turn ice for general distinct partitions A. We

study this particular partition function now.

3.2 The half-turn ice partition function

Given any distinct partition A, we assign boundary conditions for half-turn ice as

above and use Boltzmann weights as in (3.4). Then let ZA(x; t) denote the resulting

partition function as defined in (3.2). Z, is a (finite-degree) polynomial in the 2r

variables x = (x1,.. ., xr) and t = (ti,..., t,).

To compare with the result of Okada, we set ti = t for 1 < i < r, and set A = p.

r

ZP(x;t) = J(xi - t) 7 (t2 _ xxj)(xit 2
-Xj).

i=1 1<i<jsr

Then Zp(x; t), with subscripts back on our ti's, is a generalization of this factorization.

From the first few computable examples, we conjecture, and later prove, the following

form.

Proposition 3.5.

r

ZP(x; t) = 1(xi -ti) J7 (xixj - titj)(x3 - xitit3 ). (3.5)
i=1 1<i<jsr

Our goal for this chapter is to state a generalization of (3.5) valid for all A and offer

a proof using a Yang-Baxter equation for half-turn ice. The Yang-Baxter equation will



precisely describe the effect symmetries of A-half-turn ice have on the factorization of

the partition function Z\.

3.3 The star-triangle relation

The first symmetry we look for in our partition function is one to describe the re-

lationship among the r indices of variables x and t. We study this symmetry us-

ing the group action of S, the symmetric group on r letters, on polynomials in

C[x,. . . ,Xr, ti, ... , tr]. The action of or E Sr on f E C[Xi,. .. , ,, ti, ... , tr] is

( o f)(Xi, .. . , xr; ti, .. . , tr) = f(X (1), ... , xz,(,); to(1), ... , tory), (3.6)

the identical and simultaneous permutation of the indices of x and t. We call a

polynomial f bisymmetric if it is invariant under this action, i.e. o o f = f Vc E Sr.

The index of x and t in the Boltzmann weight of a vertex comes from its row

positioning. Thus, the ice interpretation of this Sr action is the switching of the indices

of the rows. In order to employ the local structure of square ice, we start by studying

the actions of adjacent transpositions, the set of permutations {(i i-+-1)|1 < i < r -1}

(writing the elements of S, in cycle notation). This subset of S, generates the entire

group, so we may reduce the problem of the general action of a E S, to the action of

adjacent transpositions.

The action of each adjacent transposition on ZX corresponds to switching the

labels of two adjacent rows (since the rows bend around, we are in fact switching the

labels of two pairs of adjacent rows, which are linked by the U-shaped vertices on the

right).

Twisted ice Twisted ice are special ice vertices rotated by 45 degrees counterclock-

wise and inserted into pieces of ice. Their purpose is to demonstrate symmetries of

the partition function of the piece of ice. The six allowed fillings of twisted ice vertices

and their (as yet undetermined) Boltzmann weights are in the following table.



These Boltzmann weights are treated the same

(3.7)

as for normal square ice. Given

a choice of Boltzmann weights for twisted ice (the six hatted polynomials in (3.7)),

a partition function for a piece of ice including twisted ice vertices may be defined

and evaluated just as before. One difference is that now a weight of a single vertex

involves two separate indices, i and j. This is due to the way that twisted ice fits into

a normal piece of ice, which is illustrated in (3.8). These particular notations come

from [7] (with inspiration from [2]).

(3.8)

Thoughts to take away from (3.8) are below.

* All four edges attached to

square ice.

a twisted ice vertex connect horizontally to regular

" A piece of twisted ice fits between adjacent columns, and lies in two adjacent

rows simultaneously. This is why the Boltzmann weight of a twisted ice vertex

is a rational function on variables with two indices.

" If the rows to the left of the twisted ice are labeled with j over i, to the right

of the twisted ice the labels are swapped: i is over j.

So if we can pass a piece of twisted ice across a column, we will have switched the

labels of the two intervening vertices. This suggests how we can locally address the

j iJ



problem of swapping the indices of entire rows. The star-triangle relation exhibits

the identity that will allow a twisted ice vertex to cross a column.

Lemma 3.6 (Star-triangle relation). There exists a choice of Boltzmann weights for

twisted ice such that the partition functions for the two pieces of ice in (3.9) are equal,
for any choice of boundary signs a, #, y, 6, e, E E {+, -}.

a a

(3.9)

6 6

Remark 3.7. We have stated this in terms of black ice. It is also true for clear ice,
with two separate sets of Boltzmann weights for twisted black ice and twisted clear

ice.

Proof. Remember that these partition functions are the sums over the allowed fillings

of the product of Boltzmann weights of each filling. For each choice of signs on the

boundary, we write down a linear equation for the weights of the twisted ice vertices.

Let us look at these linear equations in a bit of detail.

Observe that in both ice pieces flowlines enter the piece through a, (, and e and

exit out the other three edges. So the two multisets of signs {a, (, E} and {1, -y, 6}

are equal (i.e. they have the same number of -'s). This reduces the number of linear

equations from 26 = 64 to a somewhat more manageable 20.

We demonstrate the derivation of one of these equations. Let the choice of bound-

ary signs be +,+, -,+-, -,, so we have the two pieces of ice in (3.10).

(3.10)

To compute the partition function for the left piece of ice, we find all its allowed



fillings. There are two:

(3.11)i/Ti\
Therefore the partition function for the left piece of ice in (3.10) is the sum of the

evaluations of the fillings (3.11),

2(X, Xj; ti, tj) -1 - t l / 1 + k1(i i X,; ti, ti) -xi(1 -ti) -1.

The right piece of ice in (3.10) has only one allowable filling.

(3.12)

Therefore the partition function for the right piece of ice in (3.10) is simply the

evaluation of (3.12),

a2 (Xi, iX ; ti,7 tj) - itiV/ -I.

Equating these partition functions gives the following relation between the rational

functions bi and a2.

a2(Xi, X; ti, tj) - -1 t I + b1(xi, xj; tj, tj) - zi(1 -i ) = 22(Xi, Xj; ti, tj) - xiti/ 1 .

So we have eliminated one of the six "unknowns" (Boltzmann weights of twisted ice)

of the system of equations, with (3.13):

(xiti - xyty ),/~ Ibi(xi, X; tit) = ci( - t) 1
2(xi, X; ti, tj). (3.13)

xi(1- tj)

For the system to have a nontrivial solution, a number of redundancies would be

required, based on the number of equations (twenty) and variables (the six Boltzmann

weights of twisted ice). This turns out to be the case, however, and the weights

(determined by hand by solving this set of linear equations generated by the method



that produced (3.13)) are in the following table.

Notice that we once again have both clear and black twisted ice, which will later

be used to introduce a twist to either the top or bottom halves of our square ice.

3.4 The train argument

Once we have the star-triangle relation, we can use it (in the method of [7] for square

ice) to translate a piece of twisted ice horizontally across half-turn ice. The crucial

observation is that the global partition function of the (entire piece of) half-turn ice

in not affected.

We can see this by separating the piece of half-turn ice into two regions. The

first region is made up of the twisted ice vertex and its two neighboring vertices
to the right, which is the shape of the LHS of the star-triangle relation (3.9). The



second region consists of the rest of the half-turn ice. We can then write the partition

function of the entire piece of ice as a sum over assignments of + and - to the six

boundary edges separating these two regions. Each summand is the product of the two

partition functions of the two parts of ice with the given assignment to the boundary.

By Lemma 3.6, we know that in each summand (and thus for fixed boundary values),

the partition function for the first region can be replaced with the partition function

for the RHS of the star-triangle relation with the same boundary values. Of course,

the sum then becomes the partition function of the entire piece of ice with the twist

moved past one column.

So we can translate a piece of twisted ice across columns. This leaves three places

which require additional attention to complete the train argument.

1. We must study the initial effect on the partition function of introducing a

twisted ice vertex into the piece of half-turn ice.

2. We need specialized arguments beyond the star-triangle identity to handle the

effect of passing a twisted ice vertex past the half-turn right boundary.

3. Finally, we must analyze the effect of removing the twisted ice vertex from the

half-turn ice, which returns the partition function for the (untwisted) half-turn

ice with two adjacent rows swapped.

We would like to insert a piece of twisted ice into the square ice pattern in a way

that minimally alters the partition function. Thus we insert the twist at the place we

have the most control over the signs of the edges: the left boundary of the pattern.

If we insert the twist on adjacent rows indexed by i and j, in clear ice, we get the

following picture (note this picture only shows cropped view of the half-turn ice).

Let Z(x; t) be the partition function of the half-turn ice piece before the twisted

vertex is attached, and Z(x; t) be the partition function of the piece with the twist

added. Since the left two edges of the twisted vertex are assigned +'s, the only



allowed assignment of its right two edges are also +'s. Furthermore, once these +'s

are entered, the rest of the ice is exactly the original half-turn ice whose partition

function is Z(x; t). This argument gives the equation

Z(x; t) = (Xi - xytity) -Z(x; t). (3.15)

Now the star-triangle relation can be employed to move the twisted vertex to the

right through the half-turn ice, switching the labels i and j as it moves rightward,
while the partition function of the ice remains equal to Z. After n applications of the

star-triangle relation, we end up with the twist bordering the U-shaped vertices on

the right boundary. Now we arrive at the second point requiring attention, we need

to get the twisted ice around the bend. We compare the two partition functions for

the following two pieces of ice, for a fixed list of + and - signs {a, 0, , }.

i j i

Once again we only need to trouble ourselves with the cases for which {a , #,y, }
give at least one allowed filling, which means that there are exactly two +'s and two

-'s in the set. There are six equations to check, and it turns out that for all six the

partition functions for the two pieces of ice are equal. So the clear ice twist can be

pulled around the U-shaped pieces and it becomes a black ice twist.

We once again use the star-triangle another n times to work it back across the

half-turn ice. As it goes, it switches the places of i and j on the black ice. After n

applications, it finally rests to the left of all the ice again.



- - -(316)

Now we are able to remove the twisted ice from the pattern by the same logic that

we added the twist to the clear ice. The only allowed filling of the right two edges of

the twist are both +'s, so we have that the Boltzmann weight of the black ice twist

factors out:

Z(x; t) = (xj - xitit3 ) - (i j) o [Z(x; t)]. (3.17)

The transposition (i j) acts on Z by swapping the indices i and j on both x and t.

Equating the two formulas for Z, (3.15) and (3.17), we get

(xi-xytitj)Z(x; t) = (x 3-x tjty).(ij)o[Z(x;t)] = (i j)o[(x2 -x tit3 )Z(x; t)]. (3.18)

Thus the product on the LHS of Equation (3.18) is invariant under the transposition

(i j). The following argument then implies that the product

( rik (xi - xjti t) Z(x; t) 
(3.19)

\1<i<jsr/

is invariant under the transposition (k k + 1) for every 1 < k < r - 1. For any fixed

such k, we factor the product (3.19) as

( (x - x.tity) ((Xk - xk+ltktk+1)Z(x; t)).
1s<isr

(i~j)#(k,k+1)

Both factors are invariant under the action of (k k + 1), so the product is as well.

Since the product is simultaneously invariant under every member of a generating

set of Sr, it is invariant under all of Sr. The action of each element of Sr permutes

the indices of both x and t equally, hence the name bisymmetry. We have shown the

following.



Proposition 3.8. For any distinct partition A = (A1 , A2 ,--- , Ar), the product

n(zi - zytity) Zx(x; t)
1<i<jsr

is unchanged by simultaneous and equal rearrangements of the indices of x and t, i.e.,
it is bisymmetric.

3.5 Gray ice

The train argument above gives a symmetry of the partition function by observing

how it behaves upon switching adjacent rows of the ice pattern. The adjacent rows

were assumed to be any two that are in the bottom half of the ice pattern, and

resulted in also switching the corresponding adjacent rows in the top half of the

pattern. However, we are still left with one pair of adjacent rows that we do not

know how to switch: the middle pair of rows in the half-turn ice. This is because

these two rows actually have different weights. To observe this additional symmetry

we employ gray ice, which is twisted ice that twists a row of black ice with a row of

clear ice.

Just as in the above case, we want a star-triangle relation to hold so that the

twist can propagate through the pattern without changing the partition function.

To choose the appropriate Boltzmann weights, we solve a similar set of 20 linear

equations to those for twisted black and clear ice. The results are in the table below.

Gray ice piece Weight Gray ice piece Weight

j o -. Jo -

0 : )( o j 1 - xixgtitj i *:n * 3 xixj - titj
jo i o -i

x j (ixti - t3 )l -1 * * (ti - xxjt)v -1

0 j Xj (1 - t?) i * *>: j X,(1 - t2)

As we did with twisted ice, we start with a piece of half-turn ice with partition

function Z(x, t). We then attach the gray ice to the far left of the innermost rows

that are both indexed 1. The partition function for the piece of ice with this new



twisted vertex we will call Z(x; t). By an identical argument to the one that gave us

(3.15), we have

Z(x; t) = (1 - x t) . Z(x; t). (3.20)

Once the gray ice vertex is attached, we send it to the right through the half-turn

pattern. As the gray ice vertex crosses the pattern it switches the black ice from

top to bottom, and clear ice from bottom to top. By the star-triangle relation, the

partition function remains unchanged, and so we can slide the twist all the way to the

right of the pattern. Now, because these two rows are the middle rows, the picture is

strictly different from the twisted ice case studied above.

10

(3.21)

Untwisting this piece of ice would create another symmetry of Z. So we compare

two partition functions: the one of the untwisted U-shaped ice alone and the one of

the pictured gray ice vertex and U-shaped ice. For each of the two boundary choices

for these pieces of ice, the untwisted versions have only the trivial filling and the

twisted version has two fillings. The partition functions are in the table below.

Boundary Untwisted Twisted

1 o-e

19-0 1 (Xi - ti)(1+ xiti)

1 - (x1 - t1 )(1 + xiti)v

We find that for the two boundaries, the partition function of the ice with the

extra gray ice vertex is the same multiple of the untwisted Boltzmann weight of the

half-turn ice. This means that we can factor this multiple out of Z and get the

untwisted partition function of the pattern with the black ice and clear ice switched

in the rows indexed 1 (we can denote this partition function Z(1)). So we have

Z(x; t) = ((Xi - ti)(1 + xiti)) -Z()(x; t). (3.22)



Now we relate ZM) to Z by computing the effect of switching the black and clear

ice of the two middle rows. By studying the two tables of Boltzmann weights, we

find that the only difference between the weights of a piece of black ice and a piece

of clear ice is whether a power of x1 appears. Since the weights are all multiplied

together, the only visible difference between these is the total power of x.

The contribution of the row of clear ice to the exponent of xi is the number +'s

assigned to horizontal edges that aren't the leftmost one, and for black ice, it is the

number of -'s not counting the rightmost edge. Swapping the types of ice counts

exactly the opposite signs, so we get that if the power of xi in the filling before the

black ice and clear ice are swapped was zi, then the power after the switch is precisely
2n-1-k

X1

Since this holds for all possible fillings of our fixed boundary, the partition func-

tions Z and ZM) are related by the equation

ZM(Xzi, X2,i ... , xr; t 1, t 2 , .. . , tr) = z"1 Z(x- 1, x2 , ... , xr; t 1 , t 2, ... , tr). (3.23)

We now can combine the three equations involving Z, Z, and ZM) ((3.20), (3.22),
and (3.23)) to get a relation for our original partition function Z:

(1 - Xzt2) - Z(x; t) = Z(x; t)

= (z1 - ti) (1 + ziti) -M Z (X; t)

= (X1 - t1)(1 + Xiti) -1 Z(- 1 , x 2 ,- , r; t).

Dividing by (1 + xt 1 ), we find that

(1 - xiti) - Z(x; t) = (Xi - ti) - z 1 Z(z--1 , X2 , ... , Xr; t). (3.24)

So we have found a new functional equation for the partition function Z.

It is useful to consider this symmetry in more abstract terms. We let the operator

Ti, for some 1 < i < m, take a polynomial f(X 1 , x2 ,... , Xm) to the polynomial

for s the highest degree of x in f, and s' the lowest degree of x in f (i.e., s' is the

highest power of x dividing f). We will call a polynomial fixed by T palindromic in

Xi.



We can easily observe that the ri are involutions, because they reflect the powers

of x about its 'average' power, (s + s')/2, in each term of the polynomial. The T are

also multiplicative: for two polynomials f(x) and g(x),

r o (fg) = (Ti o f) - (ri o g).

Since we have that

71 0 (1 - xiti) = (xi - ti),

we see from Equation (3.24) that (1 - xiti) - Z is palindromic in x1 . So we have

proven the following proposition.

Proposition 3.9. For any distinct partition A, the product

(1 - xiti) -ZA(x; t)

is invariant under T1, i.e., it is palindromic in x 1.

3.6 Factoring the Weyl denominator

We now show that these symmetries of the partition function actually imply that the

deformation of the Weyl denominator on the RHS of Equation (3.5) factors out of Z\

for any A of length r.

Theorem 3.10. We may write the partition function ZA of half-turn ice with A =

(A1 ,A 2 ,... ,Ar) as

Z\ (x; t) = [ (xi - ti) - (k - Xjtjtk)(XXk - titk) # q(x; t), (3.25)
i=1 . 15j<k~r

for #. a bisymmetric polynomial that is palindromic in every xi.

Remark 3.11. We quickly note the meaning of these properties of #X. We prove that

this polynomial is invariant under the actions of Sr and T for each i. The group that

the actions Sr U {T} generate is isomorphic to the Weyl group of S0 2r+1(C), a rank

r type B Cartan group. For this reason, we call a polynomial that is invariant under

both Sr and the T Weyl-invariant.

Proof. We come to this conclusion as the result of the work done in Propositions 3.8



and 3.9. Let us consider the product

r

(xi - xztity) JJ (1-xixttJJ(i - xiti)ZA(x; t). (3.26)
1 i<jsr 1'i<j<r i=1

If we group the leftmost product in (3.26) with the partition function, we have a

bisymmetric polynomial by Proposition 3.8. By inspection, the middle and right

products are each bisymmetric as well, so the entire product (3.26) is bisymmetric.

Also, by grouping the rightmost product in (3.26) with the partition function, we

get a polynomial that is palindromic in xi by Proposition 3.9. Every term in the left

product with an xi must have i = 1, since i < j, so is of the form (xi - xztity). Then
T 1 sends this to the term of the middle product corresponding to the same indices.

Since r 1 is an involution, T just swaps the positions of these 2r - 2 terms, so the

entire product is both bisymmetric and palindromic in x1. The bisymmetry further

implies that (3.26) is in fact palindromic in xi for all i, and thus Weyl-invariant.

We now use these properties to determine the factorization of the partition func-

tion in (3.25). By its bisymmetry and the fact that (xi - xtity) divides (3.26) for all

i < j, we must have that (xz - xititj) also divides the product. Since these terms are

coprime to all three products, they must divide ZA. So we have that the product

H (xj - xitity) (3.27)
1 i<j<r

divides ZA(x; t).
The product (3.26) is also palindromic in every xi, so by the multiplicativity of

Ti, the set of factors of the product is closed under action by each Ti. For any i < j,
consider

ry o (xi - xjtit3 ) = (xixj - tjtj).

This doesn't appear as a factor of any of the products, so must also divide the partition

function (it is irreducible since i # j). Thus the product

fi (sxizx - tity) (3.28)
1 i<j<r

divides ZA(x; t).
Finally, the third product in (3.26) is invariant under Sr but not the ri. We

can act upon (1 - xiti) nontrivially only with Ti, which gives (xi - ti) as a factor of

the product. This factor once again does not appear in the three products, so must



divide the partition function. So the third product we have that divides the partition

function is

(Xi - ti). (3.29)

Since the three products (3.27), (3.28), and (3.29) all divide ZX and are pairwise

coprime, we may define a polynomial #x (x; t) which satisfies (3.25). Now we show

that it is bisymmetric and palindromic in xi for all i.

We consider (3.26), but now use Equation (3.25) to substitute for the partition

function. This gives that the product

r r

JJ (Xi - xtity) 17 [(xix - tity)(1 - xizxtity)] JJ [(xi - ti)(1 - Xiti)] #(x; t)
i,j=1 1si<jsr i=1
isij

(3.30)

is bisymmetric and palindromic in all xi. But each of the three products in (3.30)

are bisymmetric, so #x must also be bisymmetric. Also, each T exchanges the 2r - 2

relevant terms of the first product with those of the second, and switches the order

of the ith term in the third product. Therefore the entire polynomial which is being

multiplied by #bX in (3.30) is both bisymmetric and palindromic in xi for all i. Hence

#5 inherits these properties, and we have completed the proof. U

As a corollary, we explicitly compute the p partition function by a degree count.

Corollary 3.12. For p = (r, r - 1, r - 2, ... , 2, 1), the polynomial Op in Equation

(3.25) is equal to 1.

Proof. Let us consider Z, as a polynomial in x. Each filling of the p boundary has

total degree in x1 determined by the Boltzmann weights in the middle two rows. If we

want to find the maximal degree of xi in Z,, we can limit our view to those two rows.

The highest power of x1 that we can get from a single vertex is 1, so we attempt to

force every vertex in these two rows to contribute one x1 to the product. Immediately

we find that the leftmost vertex in the black ice row cannot contribute an xi, since

its left edge is always a +. Other than this vertex, we can arrange the signs of edges

so that every other vertex contributes an xi, for example, if the edges are assigned as

in (3.31).



(3.31)

So the largest possible power of x1 in Z, is 2r-1. Now we consider the factorization

of Z,, and see the degree of x1 in each term.

r

ZP(x; t) = (x - ti) R (xk - Xjtjtk) 171 (xjxk - tjtk) -$,(x; t)
i=1 1<j<k<r 1<j<k<r

r1X-1 Xr-1

x1  x 1

So the total degree of x1 in the three products is 1 + (r - 1) + (r - 1) = 2r - 1. Since

this is the maximal possible degree of xi in Z,, we know that #p must be of degree

zero in x1 . By bisymmetry, #p has no terms with an xi in them, and so is entirely a

polynomial in t.

Now we can argue similarly for the powers of ti. We can first look at the Boltzmann

weights of the vertices. This argument is trickier than the last, because each such

Boltzmann weight can have t-degree of 0, 1, or 2, according to (3.4). However the

only vertex filling with degree 2 has a - to the left and a + to the right, and so

between any two of them must be a vertex filling with a + sign to the left and - sign

to the right. The only vertex filling with this property has Boltzmann weight 1, and

so the average weight of ti using these vertex fillings is at most 1. This suggests a

maximal t-degree of 2r, but by being careful we can reduce this to 2r - 1.

We know that the leftmost horizontal edges are both +'s, and the rightmost

horizontal edges must differ in sign, since there is a half-turn piece of ice connecting

them. Therefore one of the rows must have an odd number of vertices whose left and

right edges are assigned different signs (the row that ends in a -). These vertices,
read left to right, begin and end with the allowable vertex filling having with + on

the left and - on the right, and so we observe that we have an extra vertex with

weight 1, i.e. t-degree 0, which is not paired with a vertex with ti-degree 2. Thus

our maximal degree must be reduced by 1 to 2r - 1.

Now we can once again see that the degrees of the factors other than #p sum to



this number:

r

ZA(x; t) = fJ(xi - ti). ( xk -Xjtjtk)- ( (xx - tjtk) -#(x; t).
i=1 1<j<k<r 1<i<j<r

ti tr -1 r-1

So the total degree of ti in #p is 0. By bisymmetry, this implies that #p is a constant

polynomial.

To compute this constant, observe that from (3.25) there is precisely one term

of Z, that is of ti-degree 0 for all ti. The coefficient of this term is the constant #,.
So we catalog the fillings of the A = p boundary that do not contain the two vertex

fillings with Boltzmann weights are divisible by ti. The remaining four vertex fillings

are exactly those that do not have their flowlines cross (see Remark 2.2), so the only

possible filling is the one with zero flowline crossings, as in the following picture.

r r-1 2 1

1 9 9-(3.32)

r - 1-(D9- -- WT-

r /T1 -1\

We can find the evaluation of the filling in (3.32) (and thus its contribution to

Z) by finding the product of its vertices' Boltzmann weights row by row. From the

black ice, the row corresponding to xi has i - 1 vertices with weight xi and the other



vertices have weight 1. Every clear ice vertex has weight xi, so this gives r vertices
with weight xi for each i. Finally, the U-shaped ice pieces all have weight 1. So the
total weight of this filling is

r

17 4 +i-1.
it1

Since this term of Zp has coefficient 1, the constant #p must be 1.



Chapter 4

Yang-Baxter equation

We have seen above that the star-triangle relation gives a very powerful local symme-

try of the partition function of square ice. In particular, we can use it to compute the

effect of swapping the indices of adjacent rows of the ice. One may then ask how this

action interacts with itself. That is, with multiple twistings of rows, do additional

symmetries of the partition function become apparent? This question is answered by

the Yang-Baxter equation, a local symmetry of the partition function of twisted ice.

The Yang-Baxter equation can be stated in the following form that is very similar to

the star-triangle relation.

Lemma 4.1 (Yang-Baxter equation). If {a, 3, -y, 6, 6, (} is any list of + or - signs,

then the partition functions of the two pieces of twisted ice with indexed vertices

(4.1)

and

(4.2)

are equal.

Remark 4.2. As was the case with the star-triangle relation, this lemma also holds for



clear ice. We note that in the literature, both Lemmas 3.6 and 4.1 may be referred to
as Yang-Baxter equations. Throughout this paper we will always differentiate them

using the name 'star-triangle relation' for Lemma 3.6.

The Yang-Baxter equation is a braid relation between adjacent twists of the square
ice pattern. This relation tells us that the order of twisting doesn't matter: it is only
the final positions of the rows (or indices) that matter. In fact, we already could
reason this implication from the train argument above, since #A is in fact unchanged
by switching indices, and the other factors of ZA depend only upon the ordering

of the indices. So the new fact represented by the Yang-Baxter equation is that
this symmetry occurs locally, rather than only globally. In essence, the star-triange
relation gives a set of functional equations represented by the generators of Sr, and
the Yang-Baxter equation shows that they respect the group law of Sr.

The proof of Yang-Baxter is again a series of 20 linear equations to be satisfied.
For example, we have that the two boundaries given by

{a, ), y, 6, ,( = {+, -, +,+,, -}

are equal. The fillings for the first arrangement of twisted ice are twofold.

k i kw

i k i k (4.3)

The local partition function for this arrangement is the sum of the evaluations of the
fillings in (4.3):

(xjti - xitj)i . (xk - Xititk) - + x(1 - t(I - xk(1 - tk - (Xktj - Xjtk)i

= (xj - xititj) - (xkti - Xitk)i xk(1 - tX( .

This final product is the evaluation of the only filling of the other arrangement of

twisted ice with the same signs at the boundary pictured in (4.4).



(

k (4.4)





Chapter 5

A conjectural recursive equivalence

So far we have shown that each partition function Z\ factors as the product of the

deformation of the Weyl denominator and a Weyl-invariant polynomial #,X. In this

chapter we attempt to compute #X using a recursion. The recursion requires three

parts: a base case and two independent recursive steps. These two steps specialize

(by setting ti 1 for each i) to Pieri's Rule and Clebsch-Gordan theory, two known

relations between characters of highest weight representations of type B. So given a

proof of the recursion, a corollary would be that each 0,\ has special value the character

of a highest weight representation of type B. However, even with the recursion, we

would obtain an algorithm for computing the partition function, not a closed formula.

Remark 5.1. Throughout this chapter, we will refer to r, the length of A, as the rank.

This is due to the fact that the special value of 0, discussed above turns out to be

the character of a representation of a group of rank r.

Also, we note that to correspond #,\ (for distinct A) with the character of a rep-

resentation with highest weight pt (a not necessarily distinct partition), we have the

following offset:

A = p+ p.

This substitution must be done for the following reformulations of Pieri's rule and

Clebsch-Gordan theory.

Unfortunately, two of the three parts of the recursion have only partial proofs.

The conjectured statements are below, and have been verified for all examples of 0,\

so far computed (r < 3 and A, 10). While we don't prove the recursion, in the

final section of this chapter the special value at ti = 1 is computed directly, and is

shown to correspond to the expected type B character.

Before delving into the recursion, we define a convenient reformulation of #A that



will simplify the statements of the conjectures and propositions below.

Definition 5.2. For A = (A, A2 , ... , Ar) any distinct partition, and 4A the polynomial

from (3.25), let OA (x; t) be the rational function defined by

#3(x; t)
O(X; t) := ,X _,. (5.1)

where

U = Z/-( +1i

Remark 5.3. From our knowledge of #A, we can infer that OA is bisymmetric. Also,
by similar degree counting arguments to those found in Corollary 3.12, the largest
degree of #,\ in any x is 2 - (A, - r) and the smallest degree is zero. Therefore these

values for OA become (A, - r) and -(A, - r). So #x being palindromic in each xi
implies that Ox is invariant under each of the r substitutions

Finally, the u factor will simplify the statement of Conjecture 5.5 and Theorem 5.15
and ensure that ? is real. This factor will be ignored for the proof of Proposition 5.6,
since it factors out of the equation to be proved, (5.4).

5.1 Base case

From Corollary 3.12 we obtain the first base case for any rank r, that Op = 1 for each
p = (r, r - 1, ... , 2, 1). In order to make use of our recursive relation, we will need

more than just the Op case. Hence we make the following conjecture for the form of
O for A = (a, r - 1, r - 2,..., 2, 1) for arbitrary a > r. We will continue to refer to

this as the base case.

Conjecture 5.4 (Base Case). For A = (a, r - 1, r - 2, ... , 2, 1), with a > r, we have

OA(x;t)= ( t . (5.2)
1,--,iEZ i1,...,JrEZ, jk !lik|Vk \l 1 k=1 /

|ikIa-r [ \a-r-1EZi :a-r, jk-ik (2)Vk J
Letting a = r, we force all the ik's and jl's to be zero, and we are left with the

known equality Op = 1. For arbitrary a, if we specialize by setting ti = 1 for all i,



the inner sum has all summands equal to 1. So the inner sum becomes a count of the

number of sets of indices j, satisfying the requirements.

5.2 A deformation of Pieri's rule

One of the two recursions needed for our engine specializes to Pieri's rule for charac-

ters. The conjecture takes the following form.

Conjecture 5.5 (Deformation of Pieri's rule). For A = (A,..., Ar) a distinct parti-

tion with r > 1, Ar = 1, and A2 = r when r > 2,

OA (X t) ' (r+1,r-,r-2,... ,2l)(X; t) p (x; t). (5.3)
i distinct

E Ai-PiI=1

The sum on the RHS of (5.3) is over length r distinct partitions y that only differ

from A by exactly one at a single entry.

We have not yet found a proof of this step of the recursion. The method (from

the proof of Lemma 3.6) of splitting the half-turn ice into two regions, a local one

and a global one, has not been fruitful.

The way we employ this formula in our recursion is detailed below; first we intro-

duce the other piece of the engine.

5.3 Clebsch-Gordan theory for the deformation

Clebsch-Gordan coefficients give formulas to factor the tensor product of two highest

weight representations into the direct sum of irreducible representations. The char-

acter of a tensor product of representations is the product of the characters of the

factors. Thus we can derive relations between characters via Clebsch-Gordan coeffi-

cients. Here we show that the collection of rational functions VLA for varying A also

satisfy the same relations. We start with the rank two formulation.

Proposition 5.6 (Deformation of Clebsch-Gordan, Rank 2). Given a > b > c > d >

0,

0(a,c) . (,A -- (a,d) ' /(b,c) + 4 (a,b) * 0(c,d). (5.4)

We will give a proof of this result, but first we state the more general cases. For

arbitrary rank r, we have the following "lifted" version of Proposition 5.6.



Proposition 5.7. Given a > b > c > d > r - 2, we have in rank r that

1) (b,d,r-2,...,1) 1 (a,d,r-2,...,) - 0(bc,r-2,...,1) + 4 (a,b,r-2,...,1) - 4 (c,d,r-2,...,1).

This follows by emulating the proof of 5.6. This result then gives rise to the most

general form of this recursion:

Proposition 5.8 (Deformation of Clebsch-Gordan, General form). For r > 1, let

A = (A1, ... , A2r) be a partition with no more than two of any particular integer (i.e.,
Ai > Ai+ 2) and at least four unrepeated entries. Let T C S2, be the set of permutations

- that satisfy the following three conditions.

1. If Ai is the largest entry of A that is not repeated, then o-- 1 (i) < r.

2. The r-tuples (A,(1), Ao( 2), ... Ao(r)) = AM )() and (Aa(r+l), Ao(r+ 2 ), -... Ao(2r)) =

A(2) (-) are both distinct partitions.

3. If Ai = Ai+ 1, then o-'(i) < r.

Then

sgn(o) - #4 (o) 4'A() = 0. (5.5)
oET

Before proving this result, we must introduce several new concepts regarding half-

turn ice. But to connect the above three propositions, we first show how Proposition

5.6 is a special case of Proposition 5.8.

Letting r = 2 and A = (a, b, c, d) distinct in the hypothesis of Proposition 5.8, we

compute that

T = {1, (2 3) , (2 4 3 C S4

in cycle notation. Therefore (5.5) becomes

4 (a,b) ' 0(c,d) - O(a,c) * O(b,d) + (a,d) * 0(b,c) = 0,

a restatement of Proposition 5.6. Similarly, for general r, taking A = (a, b, c, d, r -
2, r - 2, r - 3, r - 3, ... , 2, 2, 1, 1) specializes Proposition 5.8 to Proposition 5.7.

We prove Proposition 5.6 by appealing to the combinatorics of square ice. The

following concepts are utilized in this proof.

O-Boltzmann weights Proposition 5.6 is stated in terms of OA. This polynomial is
determined from A-half-turn ice by first computing ZX, factoring out #X, and finally



dividing by the monomial in (5.1). Since we want to prove a result about the V)A

using arguments about the ice, it is in our interest to more directly connect them.

We achieve this by altering our choice of Boltzmann weights.

If we multiply both sides of (5.1) by the deformation of the Weyl denominator in

(3.5), we get
ZAZf - = , A-r (5.6)

11i=1 zi

noting that we may ignore the u factor in the definition of @ for the entire Clebsch-

Gordan argument (see Remark 5.3). This equation can be rewritten

ZP . (5.7)

So we see that when working with OA, the more natural partition functions are the

quotients

ZA (5.8)
[-r x11

For this to be a partition function, we need a choice of Boltzmann weights that would

evaluate to it. This turns out to be a very simple change from our original choice of

Boltzmann weights. A piece of A-half-turn ice has A, columns, and since there are

two rows with each index i, there are exactly 2A, vertices associated to each xi. Thus,

by dividing each Boltzmann weight chosen above (both clear and black ice, but not

U-shaped ice) by x?, we get exactly (5.8) as our partition function. We will call this

choice of Boltzmann weights the O-Boltzmann weights.

Infinite half-turn ice An additional benefit to using @-Boltzmann weights comes

in the form of infinite half-turn ice.

For some distinct partition A, consider A-half-turn ice. This has A, columns, 2r

rows, and a half-turn boundary on the right. Now, extend this piece of ice by tacking

on a column of 2r vertices on the left. We still assign +'s and -'s to the boundary

edges with the same formula: +'s are assigned to the left and bottom boundary edges,

and +'s are assigned to the top boundary edges unless they lie in a column whose

label is in A.

However, now the leftmost column is labeled A, + 1, so it is assigned a + on the

top. Because of this, any filling of this extended A-half-turn ice is forced to assign +'s

to edges adjacent to vertices in its leftmost column. That implies that the product of

the weights may be factored out of the partition function of the extended piece of ice,



and we are left with the normal A-half-turn ice to be filled. This factor, the product

of the 2r O-Boltzmann weights of the inserted column, is (from top to bottom)

1 1 1 1 1 1
2~ 2 2 .2 2 2 1

Zr Zr1 ... Z Zi Z2 ... Zr

Thus the extended piece of ice has an identical partition function.

Applying this principle repeatedly, we develop infinite half-turn ice. This is a

piece of half-turn ice of some fixed rank r that has been extended infinitely to the

left. The beauty of this new shape of half-turn ice is that every distinct partition A

of length r is associated to an assignment of boundary edge signs for the same ice

shape.

5 4 3 2 1
a5  a4  43  42  al

2..

1 .. 0--0--0--0--0-(5.9)

2se

The figure in (5.9) shows the form of infinite half-turn ice for rank two. Given any

(a, b), a distinct partition of length two, we fix the top boundary values as aa = ab = -

and all other ai = +. Then the partition function for this piece of ice, using 4-
Boltzmann weights, will be

Z(a,b)(X 1, x 2; t1, t 2 )

the 4'-weight partition functions from (5.8).

Remark 5.9. We must clarify the definition of the partition function of an infinite

sheet of ice. The difficulty lies in the infinite product over the vertices for each filling.

We will use the ad hoc solution which takes the limit as N -+ oc of the partial

product over the rightmost N columns of vertices. By the extension argument above,
as long as there are exactly r -'s in the top boundary, this limit exists because the

partial products stabilize for N ;> A, the column of the leftmost -. So the limit

equals the partition function generated by the V'-Boltzmann weights (5.8).
If instead there are more than r -'s in the top boundary, there are no allowed



fillings because only r negative flowlines can leave the piece of ice. If there are fewer

than r -'s, the limit of the partial products does not exist because at least one

negative flowline extends infinitely left, and this leads to an infinite power of some ti.

Double half-turn ice Now we are ready to define double half-turn ice in the rank

two case, which will be the combinatorial object used in the proof of Proposition 5.6.

While this definition assumes we are working in rank two, its generalization to arbi-

trary rank is straightforward.

Definition 5.10. Given a > b > c > d > 0, we define (a, b, c, d)-double half-turn ice.

The shape of this piece of ice is the same as rank two infinite half-turn ice, as in (5.9).

However, the boundary conditions are fundamentally different: in double half-turn

ice, each boundary edge is assigned an unordered pair of signs (++, +-, or -- ).

In the boundary conditions for (a, b, c, d)-double half-turn ice, the bottom boundary

edges are all assigned ++, the top boundary edges in columns not labeled a, b, c, or

d are also assigned ++, and the last four edges are assigned +-.

Fillings of double half-turn ice will be called double fillings, they consist of un-

ordered pairs of fillings of the infinite half-turn ice such that the combination of signs

on each boundary edge matches the boundary condition. So, if the boundary edge is

assigned ++, in both fillings that edge is assigned a +, similarly for -- , and if the

boundary is assigned +-, then the boundary edge is assigned + in one of the fillings

and - in the other.

Note that both fillings of a double filling must be an allowable filling of the piece

of infinite half-turn ice. Thus the right boundary must have U-shaped vertices with

opposite signs on its edges, and every vertex must be one of the six allowed vertices

in (2.1). Given any double filling T of a piece of double half-turn ice, define the

evaluation of T to be the total product of all the Boltzmann weights of the vertices in

the two fillings, in the limiting sense of Remark 5.9. So for (a, b, c, d)-double half-turn

ice, the evaluation of any double filling occurs as a single summand one of the three

products below (up to a factor of the deformed Weyl denominator).

?'(a,b)O(c,d) 
4 (a,c)

4'(b,c) 4(a,d)4 '(b,c) (5.10)

Silhouettes Given a double filling of a piece of double half-turn ice, we may consider

the flowlines (see Remark 2.2) of each of its two fillings. In particular, we only draw

the negative flowlines from each of the fillings, which contain all the information

about the filling (any edge in a flowline is assigned a -, and the other edges are



assigned a +). Now we overlap the two fillings onto one piece of infinite half-turn ice
and superimpose the negative flowlines from both fillings to form the double filling's
silhouette. An example of a double filling and its silhouette are shown in (5.11) and
(5.12), on (4, 3, 2, 1)-double half-turn ice.

4 3 2 1

0-\ T

3 2 1

10-

2

G

We note several important features of silhouettes.

* A silhouette 'forgets' which flowline comes from which filling. More precisely,
silhouettes even forget from which filling each segment of each flowline comes.

* Silhouettes do remember the number of negative flowlines along an edge (either
0, 1, or 2). Negative flowlines in a silhouette will be called singular or double
at an edge depending on whether there are one or two negative flows that are
superimposed onto it.

* The partition A indexing a piece of double half-turn ice may be recovered from
the a silhouette of a filling of that ice, by observing the numbers of columns
where flowlines originate. This allows us to index a silhouette by the partition
of its piece of double half-turn ice. The silhouette in (5.12) is indexed by the
partition (4, 3, 2, 1).

* We will usually crop out the parts of the infinite half-turn ice whose silhouette

(5.11)

(5.12)



is blank.

Silhouettes are useful because we can group double fillings which share the same

silhouette. This allows us to compare the evaluations of double fillings contributing

to the three products in (5.10), which are also the products that occur in the state-

ment of Proposition 5.6. If we can show that the equation in the proposition, (5.4),

holds for every collection of double fillings having the same silhouette, then summing

these equations shows that the proposition holds. We will say that a silhouette is

satisfactory when the contribution of the collection of double fillings that form that

silhouette balance (5.4).

Given a rank two silhouette S indexed by the distinct partition (a, b, c, d), we

define the function

Xa ,b) (c, d) (X; t)

to be the sum, over double fillings {T(a,b), T(c,d)} with silhouette S such that T(a,b) is a

filling of (a, b)-half-turn ice, of the evaluation of the double filling. The two functions

X(a,c)(b,d)(x; t) and X(a,d)(b,c)(X; t)

are defined similarly. Then a silhouette S is satisfactory exactly when

Xa,c)(b,d) X(a,b)(c,d)(X; t) + Xa,d)(b,c)(X; t). (5.13)

Our strategy for the proof of Proposition 5.6 will be to show that all rank two

silhouettes are satisfactory by induction. Before beginning the proof, we first prove

a simple lemma concerning the vertices of silhouettes and describe the statistic over

which we will induct.

Because we use silhouettes to group double fillings, we study the information lost

about a double filling by only considering its silhouette. We check this at the vertex

level, which means asking the following question. Given a single vertex in a silhouette,

can we determine the two vertex fillings of the double filling which produced it? It

turns out that the answer to this question is "Yes, in all but one case." The only

ambiguous silhouetted vertex is the one with a singular negative flowline on all four

adjacent edges, pictured in (5.14) below.

(5.14)



Lemma 5.11. A vertex of a silhouette has a unique unordered pair of vertex fillings

which create it unless it is of the form shown in (5.14).

Proof. If the vertex is not of the form in the figure, then it has at least one edge with

0 or 2 (negative) flowlines. Every flowline that enters the vertex must exit it, so the

total number of flowlines on edges must be even. Then at least two of the edges have

0 or 2 flowlines. The signs of these two edges are determined in the double filling,

since they are either both + or both -.

If the other two edges each have a singular flowline, then arbitrarily choose one of

them, and assign the first vertex a + at that edge and the second vertex a - at that

edge. Then by a parity argument, the final edge can only be chosen in one way to

create two allowed vertices. Finally, if one of the other two edges has 0 or 2 flowlines,

both of them do and the two vertices that create them are fixed and identical by the

argument in the last paragraph. U

Remark 5.12. The silhouette vertex that is the exception to Lemma 5.11 can be split

into the three distinct pairs of unordered vertex fillings in (5.15).

(5.15)

Collisions In a silhouette, a collision is a vertex where two negative flowlines meet,

so there is at least one negative flowline coming into the vertex along its left edge

and at least one along its top edge., Collisions come in two types. Type 1 collisions

occur when the "ambiguous" vertex (5.14) is formed. Type 2 collisions include every

other possible collision, those in which at least one edge of the vertex has a double

flowline. The example of a silhouette given in (5.12) above has one Type 1 collision

in the bottom left, and two Type 2 collisions to the right.

We finally prove Proposition 5.6 by showing that every silhouette is satisfactory.

We use induction on the number of collisions in a silhouette.

Proof of Clebsch-Gordan, Rank 2. We begin with the following base case of our in-

duction.

Lemma 5.13. For a > b > c > d > 0, if a silhouette S indexed by (a, b, c, d) has no

collisions, it is satisfactory.



Proof. We consider such a silhouette. We will use (5.16) as an example of this general

form.

0

0 10 0

(5.16)0

p p p P

0 t 0 0 0 0 0 0

Now consider the silhouette's partition functions Xa,b)(c,d)' Xa,c)(b,d), and Xad)(b,c).
By inspection, we find that exactly two double fillings have S as a silhouette. The

first has evaluation contributing to Xa,b)(cd). It is the pair of fillings in (5.17).

a b c d

S

S

* 5

S

. . .0

(5.17).

* 0 S

* S S

The second double

fillings.

filling contributes to xac)(bd) and splits into the following two

S S

S

* 5 S S

. . . . (5.18)

5 0 S 5 5 5

Because the silhouette has no collisions, in particular it has no Type 1 collision.

Therefore, each vertex has a unique unordered pair of vertex fillings that superimpose

to make it, by Lemma 5.11. This implies that the two double fillings above have

identical evaluations. So we get the two equations

S s
X(a,b)(c,d) - X(a,c)(b,d)

S
X(a,d)(b,c) - 0.

0

S

S



Summing we get that S is satisfactory:

S S S
X(a,c)(b,d) - X(ab)(c,d) + X(a,d)(b,c)-

This proves Lemma 5.13, the "base case" of our induction; note that it holds for an

arbitrary distinct partition (a, b, c, d). U

Now we state the inductive hypothesis. Assume that, for some fixed k > 0,
all rank two silhouettes indexed by distinct partitions with at most k collisions are

satisfactory.

Now we are given a rank two silhouette S indexed by (a, b, c, d) distinct with

precisely k + 1 collisions. Since k + 1 > 1, there is at least one collision in S. Of these

collisions, find the one positioned furthest left. If there is a tie, choose the topmost

of these collisions. We have two cases, depending on whether this collision is Type 1

or Type 2. Due to the simplicity of the Type 2 case, we will solve that first.

If this leftmost collision is Type 2, then it must be one of following three cases

(where, in each case, we label flowlines according to the column from which they

originate).

1. Flowline a enters the vertex from the left and b enters from the top, and they

flow out along the same edge (either right or down).

2. Flowline b enters from the left and c enters from the top, and they flow out

along the same edge.

3. Flowline c enters from the left and d enters from the top, and they flow out

along the same edge.

This can be deduced from the assumption that this is the "first" collision along the

flowlines, which flow down and to the right. Because they flow out of the vertex along

the same edge, any pair of fillings that results in this silhouette cannot pair the two

flowlines involved together in the same filling.

Consider if the first case above occurs, so a and b flow in from the left and top

edges of the vertex respectively. Now, we fix an arbitrary double filling which give this

silhouette. This double filling contributes either to XSac)(bd) or XS,d)(b,c). The crucial

observation is that whichever it is, we can simply swap the flows coming into this
leftmost collision between the two fillings in our pair. This will switch the flowlines

a and b, so it will swap the partition function to which it is contributing between the

two possible ones above. These two partition functions of S are on different sides



of (5.13), and the swap of flowlines does not involve any Type 1 collisions, so must

preserve the evaluation. Therefore the double fillings with silhouette S may be paired

up in such a way that shows that S is satisfactory.

If instead we are in the second or third case listed above, the same argument is

applied. If the two flowlines entering the vertex are b and c, then the two possible

partition functions are those with subscript (a, b)(c, d) or (a, c)(b, d), which also are

on opposite sides of (5.13). In the final case, the subscripts cannot pair c and d, and

we are back to the same pair of partition functions as in the first case. Therefore in

all cases, the double fillings may be paired up to show that S is satisfactory.

An example of this pairing of double fillings is illustrated below. We start with a

silhouette

(5.19)

0 0

with the leftmost (Type 2) collision circled.

silhouette, in (5.20).

* *-.-

* S S

S* 0 0 0 0 0

We pair this double filling,

filling

Now we are given double filling with this

(5.20)

0 0

which contributes to X()3,' with the following double

0

T (5.21)

0 0 0 * 0

*0 0 0 0 0 & -S---

which contributes the exact same value to X, 3S , balancing the equation.

So now we must deal with the second case: if this leftmost collision is Type 1.

1 0-



We will start with a silhouette S whose leftmost collision is Type 1, and we reduce

to a silhouette with one fewer collision by separating this leftmost collision. This will

enable us to apply the inductive hypothesis, and with careful bookkeeping we will

have shown that S is satisfactory.

To separate the leftmost collision of S, we insert a new column of vertex fillings

directly beneath the collision vertex. This can be done by "cutting" from the bottom

right of the collision's column in S, straight up across the edges separating the colli-

sion's column and the column to its right. When the cut gets to the collision, which

is Type 1, it turns diagonally left and cuts through the collision. An example of this

cut is illustrated in the LHS of (5.22) below.

a b c d

(5.22)

Once this cut is made, the flowlines of S are separated into two parts. So we can

take the left half of the flowlines that were severed by the cut and pull them all rigidly

to the left one vertex. The affected flowlines are exactly the flowline coming in from

the left of the collision vertex, and all those that originated to the left of that one.

So the Type 1 collision has been replaced by the two vertices in (5.23)

(5.23)

Now we fill the vacant vertices directly beneath where the collision was. These

new vertices have horizontal flowlines only, rejoining the severed flowlines. So now

we have replaced S with a new silhouette, S'. We show S' in (5.24), with the two

vertices which separated the collision boxed and the vertices which extended flowlines



circled.
a+1b+1c+1 d

(5.24)

This new silhouette is indexed by a different partition, since the originating columns

of some of the flows were moved left one, but the important fact is that S' has only

k collisions. Therefore it is satisfactory, by the inductive hypothesis.

Since S' is satisfactory, we have the relation (5.25) among its partition functions.

Following along with the picture, we use the partition (a + 1, b + 1, c + 1, d) to index

S', even though it could also be (a + 1, b + 1, c, d) or (a + 1, b, c, d).

S/ -t st(5.25)
X(a+1,c+1)(b+1,d) - X(a+1,b+1)(c+1,d) + X(a+1,d+1)(b+1,c).

Now we want to relate the partition function of the extended silhouette S' to the

partition function of the original silhouette S. Note that the extensions (the circled

vertices in (5.24)) and the separation (the boxed vertices in (5.24)) that we added

to S never contain a Type 1 collision. By Lemma 5.11, the Boltzmann weights of

these vertices are fixed for every double filling and will factor out of all three partition

functions for S'.

Therefore we can divide (5.25) by this factor, essentially erasing these boxed and

circled vertices from S'. However, we must note that when two singular flowlines

are joined by a singular flowline without collisions, they are forced to be in the same

filling of a double filling. So when we erase the vertices, we need to remember these

joinings, which can be drawn by dashed lines as in (5.26) below.

a + 1 b+ 1 c + 1 d

(5.26)



Now we can actually see that the satisfactory silhouette we have is essentially

our original silhouette S with the collision vertex erased, but the flowlines that went

through the collision connected in such a way that they do not cross. These dashed

lines are important because they restrict how the silhouette can split up into two

half-turn ice fillings.

We let R be the silhouette S with leftmost collision replaced with the dashed lines

in (5.26). By the factoring argument, we have that R is satisfactory:

Xa,c)(b,d) t X(Z,b)(cd)(X;t) + Xa,d)(b,c)(X; t)-

Now we relate XS to xR. We need to break this into three cases depending on

which flowlines are involved in the leftmost collision (which we will let be in a row

indexed by i). First, we assume they are the a and b flowlines. Then we immediately

get that

Siateg x. - 2 ),ye (5.27)X(a ,b)(c,d) - i X(a,b)(c,d) (.7

because in this case, since a and b are paired together, the erased vertex gets filled

in by a vertex with all - edges in the (a, b) filling and a vertex with all + edges in
1 1

the (c, d) filling. One of these will have 0-weight xo and the other Xi 2 (although the

order depends on whether it is black ice or clear ice).

We next observe that

1 1 1 1

)(a,c ) =z 2 -z(1 - t ) XZ,c)(b,d) + Xi tii - ziix)b,c) (5.28)

and

Xia,d)(b,c) = xi x(1 - i*) - X7a,d)(b,c) + Xi 2 tji - XtiiX'a,c)(b,d). (5.29)

Here a is not paired with b, so there are two possible fillings of the erased vertex.

Either the a flow can turn and flow downwards, and the b flow can turn and flow

right, or they can both flow straight and cross each other (allowed, since they are

unpaired). When they do not cross we get the first summand of the right hand side

which does not switch the subscript, because in R it is assumed that a and b do

not cross by the dashed lines. For this reason this first summand has product of the

i-weights of the two vertex fillings



as its coefficient (neither of these depend on whether the ice is black or clear). When

the two flows continue straight on in their respective fillings, and thus cross in the

silhouette, we get the second summand of the right hand side. The coefficient of this

summand is the product of the p-weights of the two filled in vertices shown here.

Here the subscript of X changes because a and b cross each other.

Now, combining (5.27), (5.28), and (5.29) we get

S -1_t2) . XI'2 R
X(ac)(b,d) i X(a,c)(b,d) -i X(a,d)(b,c)

- I 2 R -t2 R
= X(a,c)(b,d) -i * X(a,c)(b,d) i- X(a,d)(b,c)

= (Xab)(c,d) + Xfa,d)(b,c)) - X (,c)(b,d) ~ (Xfa,d)(b,c)

= Xab)(c,d) + (1 - ti) XRa,d)(b,c) - X(a,c)(b,d)

= Xfab)(cd) + X (a,d) (b,c)

Thus S is satisfactory. The other two cases of the pairs of flowlines involved in

the collision are resolved similarly. This completes our induction, and so all rank two

silhouettes indexed by distinct partitions are satisfactory, which implies the Proposi-

tion.

5.4 The conjectural recursion

Now we can gather the conjectures stated and the results proven above to derive a

general formula for V)/X. First, we write out the steps for a few small rank cases.

For rank one, the base case actually gives the full formula:

0L(a) (X; t) =(tP) I

iEz jEZ,i=j(2)
|ilIa-1 a-2 jsa-1,|ilj _

In rank two, we start with a general A = (a, b) with b > 2. Using the Clebsch-

Gordan result:

O(a,b) =b(a,2)0(b,1) - 0(a,2)V)(b,1)-



Then, if b = 2, we can instead use the Pieri's Rule result to get

0(a,2) = 0(a,1)0(3,1) - V)(a+1,1) - 0(a-1,1).

So we have reduced to the case where b = 1, which is the base case for rank 2.

In rank three, the following equations reduce our general A = (a, b, c) for c > 2 to 4

functions evaluable by the base case. We again begin with the rank 2 Clebsch-Gordan

result, this time lifted to rank 3.

4 , (a,b,2)0(a,c,1) - 0(a,b,1)0(a,c,2)
'Y(a,b,c) -

'Y(a,2,1)

If c = 2 and b > 3, we use the Clebsch-Gordan in this way:

0(a,b,2) = 0(a,3,2)0(b,2,1) - 0(a,2,1)0(b,3,2)-

If c 2 and b = 3, we must instead employ Pieri's Rule:

0(a,3,2) = V(a,3,1)0(4,2,1) - 0(a+1,3,1) - 0(a,4,1) - 0(a,2,1) - 0(a-1,3,1)-

Note that if a = 4, two of the partitions on the right hand side are not distinct, in

this case those V, functions are taken to be zero and the equality holds. So we have

reduced to evaluating partitions with final entry 1. If c = 1 and b > 3, we can use

Clebsch-Gordan to get:

O(a,b,1) = 0(a,3,1)V)(b,2,1) - 0(a,2,1)0(b,3,1)-

With b = 3, we use Pieri's Rule:

4(a,3,1) = 0(a,2,1)0(4,2,1) - 0(a+1,2,1) - O(a-1,2,1),

and we have again managed to reduce to the base case, c = 1 and b = 2.

Look at the final two steps after we have reduced to the case of c = 1. We see

that the method used is identical to the rank 2 reduction. This pattern remains; the

rank r reduction is composed of a lifted rank 2 reduction and a rank r - 1 reduction,
in the following way.

Given an arbitrary rank r, we begin with a partition A = (ai, a2, ... , ar) and we



assume a, > 2. Then

- (a1 ,...,ar-2,ar_1,2) (a1,...,ar-2,ar,1) - (a ... ,ar-2,ar-1,1)
4 

(ai ,..., ar-2,ar,2)

. . . . .(a1,....,ar-2,2,1)

If a, = 2, we instead need Pieri's Rule to get

.(a,...,ar-1,2) ( a... -,1) 4 (r+1,r-1. 1)

r--

- ( (a1,...aj_ 1,aj+1,aj+1...,ar-1,1) (+ -(a j...aj -,aj1,aj+1..,ar-1,1))

j=1

Just as above, if any of the partitions in the subscripts in the sum are not distinct,

that @ function is taken to be zero. This reduces to rank r 4 functions with partitions

that end in 1.

So then, given A a length r partition ending in 1, we can create t a length r - 1

partition by subtracting 1 from each entry and dropping the final 0. The formulas

used to reduce these rank r -1 ,, functions all work for the 0x functions with Ar = 1.

Thus we have inductively shown that for any rank r, the base case, Pieri's Rule, and

Clebsch-Gordan results stated above give an algorithm for evaluating every 0,x(x; t)

uniquely.

5.5 A special value of OA

Now we will use a five-vertex model to prove the special value of ZA where the ti's

are set to 1.

Proposition 5.14. For A a length r distinct partition and ZX computed with 4-
Boltzmann weights (see discussion concerning (5.8)), we have the following.

r

Z,(x; 1) = u' sgn o (x'% - x,), (5.30)
oESr i=1

for u' the following power of i/4 1:

r(r 23)±

u' = (-) 2 Z (5.31)

Proof. Once we have set the tj = 1, our six-vertex model is shrunk to a five-vertex



model because the weight of the vertex filling

becomes zero (for both clear and black ice). The lack of this vertex filling makes the
half-turn ice fillings much less flexible. This rigidity is easiest to see by altering the
flowline viewpoint (first found in Remark 2.2) to best fit our argument. The flowlines
below will only apply to arguments in this proof.

For the five vertex fillings in this specialized model, we use the flowlines in (5.32).
We have only changed what happens when two negative flowlines meet at a vertex:
now they are required to cross each other.

Under this new flowline scheme, negative flowlines cannot turn right. Since every
flow enters from the top and exits at the right, each negative flowline must have a
single left turn, and so it takes the shape of a large 'L'. The right boundary's U-shaped
vertices each require exactly one of these negative flows. So the fillings may be listed
by bijectively mapping the input flows A,, A2,..., A, to the r U-shaped vertices on
the right boundary. For each mapping, there are 2' choices of filling, since each flow
can exit through the black or clear ice attached to its U-shaped vertex.

This gives a total of 2' r! fillings, one for each element of the Weyl group. We first
compute the evaluation of one filling: the one with no negative flowlines crossing, and
all of them exiting out of the black ice. With careful calculating, this can be found
to be

i=1

for u' in (5.31).

Then, we find that if we switch the exit rows of two adjacent negative flowlines,
causing them to cross, we simply negate the product and switch the powers of the
two relevant x's. Finally, if we choose the clear ice exit for a given negative flowline
which enters at Ai, this negates the product and divides it by x2A- 1. Summing these
evaluations into the equation for the partition function gives (5.30). U



With this formula, we may compute the special value of Zp in the rank r case to

be

r

Zp(x; 1) = (v 1) r(r+) sgn(o-) J(x(ri)l - )

yESr i=1
r

r(r-1 2 sno X(r+1-i)-1 _ -(r±1-i)\.
= (-1)*2~S sgn o- 0(xi) (

cyESr i=1

Thus we obtain the following formula for the special value 0,\(x; 1):

_ _Z_ u'Zq e sgn oH > (x - x () =c a(
rr Z char(V--)

U p u(-1) 2 , (
(5.33)

(a simple calculation shows u' - u-- - (-1) 2 = 1, for u defined in Remark 5.3).

The final equality of (5.33) is a restatement of the Weyl character formula in type B

for V, the highest weight representation of SO(2r + 1) with highest weight the (not

necessarily distinct) partition y, where y + p = A. So we have the special value of

±,+p(x; 1) expected from the conjectured recursion.

Theorem 5.15 (Special value of 4@x). For y a length r partition, p = (r, r - 1,..., 1),

and V, the unique representation of SO2r+1(C) of highest weight p,

p/+p(x; 1) = char(V,).





Chapter 6

Whittaker Coefficients of an Sp 4

Eisenstein Series

In this chapter we describe a calculation of the Whittaker coefficients of a minimal

parabolic Sp 4 Eisenstein series. Our approach parallels the work done by Brubaker,

Bump, and Friedberg [6] on SLr+i Eisenstein series. The goal is to write these Whit-

taker coefficients in terms of the Whittaker coefficients of an Sp2 (= SL2) Eisenstein

series. We then discuss methods to generalize the work to higher rank groups of

Cartan type C (SP2r for r > 2), which would enable a recursive expression of the

Whittaker coefficients of SP2r Eisenstein series.

We obtain this expression by an explicit decomposition of the unipotent radical

of our Borel subgroup according to a convenient ordering of the positive roots. In

particular, the ordering behaves nicely with respect to induction on rank. Our results

may be viewed as an alternate approach to the Casselman-Shalika formula for SP2,

Eisenstein series. The idea behind this unipotent factorization is implicit in [6], but is

explicitly described in [9] in this context and [24] in the context of p-adic Whittaker

functions. However, each special case presents its own intricate details, and our main

advance here is to carry these out for the symplectic group.

Furthermore, this approach is amenable to generalization on the metaplectic group

as defined by Matsumoto [23] and Kubota [19]. These calculations on covering groups

require many evaluations of the cocycle of the group. The block-compatability of this

cocycle, proven by Banks, Levi, and Sepanski [1], implies that our decomposition of

the unipotent radical reduces these evaluations to the Kubota symbol on SL2.

This computation is independent of the work on half-turn ice from the earlier

chapters of the thesis. However, there is hope that the two calculations will eventually

find common ground. In Theorems 3.10 and 5.15, we showed that the partition



function of half-turn ice factors into a deformation of the Weyl denominator and a

deformation of a highest weight character. We suspect that this deformed character

could be a value of the spherical Whittaker function on some algebraic group related

to SO2,1, by a metaplectic extension of the Casselman-Shalika formula.

Deciding this question remains out of reach to date. That being said, if the

generalizations of the work in this chapter to higher rank and metaplectic covers are

realized, we will have a recursive definition for the Whittaker coefficients of these

Eisenstein series. This recursion may be comparable to the algorithm developed for

our half-turn ice partition function, either generalizing a version of type B or type C

denominators.

6.1 Preliminary definitions

Our setup will follow that of Brubaker, Bump, and Friedberg [6], and other papers

about similar computations (e.g. [4] and [3]).

Let F be a number field with ring of integers D. We choose a finite set S of places

of F such that the following conditions hold.

1. S contains all the archimedean places of F.

2. S contains all the places of F ramified over Q.

3. The subring of F consisting of x with |x, < 1 for v V S is a principal ideal

domain. We call this subring Ds.

Such an S may be chosen by inverting sufficiently many places corresponding to

representatives in the ideal class group.

We define the ring Fs = Hjes F,. Both F and Ds may be embedded diagonally

into Fs, and this embedding of Ds is discrete and cocompact.

For any ring R, we define Sp4 (R) to be the set of 4 x 4 matrices g over R such

that

g w0o = I

Here

wo-1 1



and 'g denotes the transpose of g.

We define the representation 7r(si, s2) of Sp 4(Fs) as the space of smooth functions

f : Sp 4 (Fs) -+ C satisfying

t2* * *

f tj = |t1| 2s1|t 2 |2 s1+2 2f (g) (6.1)
tI*

t-1

with the action of right translation. Then for any f E wr(si, s2) we define the Eisen-

stein series Ef : Sp 4(Fs) -+ C by

Ef (g) = f(7g), (6.2)

where -y is summed over right coset representatives of the quotient

Bsp(4) (DS)\ Sp 4 (Ds)

for Bsp(4) the Borel subgroup of upper triangular matrices of Sp 4.
We will study this Eisenstein series by computing its Whittaker coefficients. With

an eye toward generalizing to arbitrary rank, we will show that the computation

reduces to one over Sp 2(Fs) = SL 2 (Fs). This reduction is possible for the larger even

symplectic groups, and so the computation generalizes to a recursive calculation of

the Whittaker coefficients for Sp 2,(Fs) in terms of those for SP 2 (rl-)(Fs).

We define four embeddings t. : SL2(Fs) -+ Sp 4 (Fs) as follows:

Ia b\ a b

a b 1a b a b
t c( 1 c)( d) C d

\c d c d
/a -b1

a b -c d ,a b a b
c3 d ab t c d)c d

\ c d 1



We also define the function

Of (g) = S f (t'(7')g), (6.3)

where y' is summed over BSL(2) (Ds)\ SL 2 (Os) for BSL(2) the Borel subgroup of upper

triangular matrices of SL2 .
We prove a useful reformulation of Ef in terms of 0.

Proposition 6.1.

Ef (g) = 8(yg), (6.4)
yEP(Ds)\ Sp(ODs)

where P is the parabolic subgroup of Sp 4 of the form

P ESP4}.

Proof. The equality (6.4) can be found by expanding its RHS using (6.3) into the

double sum

f (t'(')Yg).

Now assume that two choices of 7 and 7j (i = 1, 2) in the indices of this double sum

are redundant, i.e., the two products t'('4)7; lie in the same right coset of Bsp(4). This

is equivalent to

t'(')717'(7) E Bsp(4)(Ds) C P(Os).

From this we have 7yi E P(Ds), so these two matrices represent the same coset, and

thus are equal. Since they cancel, we have that -,/21 E BSL(2)(DS)- So the double

sum gives a bijection with a set of coset representatives for Bsp(4)(DS)\ SP4(Os). U



6.2 The Whittaker coefficients

Let Nsp(4) be the upper triangular unipotent subgroup of Sp 4 , so for any ring R,

Nsp(4)(R) -

* *

* *1
1 *

1,I

C SP4(R) .

Then for X a character of Nsp(4)(Fs) trivial on Nsp( 4 )(Ds), the Whittaker coefficient

of Ef indexed by X is

Ef (won),(n)dn. (6.5)
JNSp(4) (S)\Nsp( 4) (FS)

In this chapter our aim is to compute (6.5) explicitly, so we will use the particular

structure of Sp 4. A short calculation shows that the general form of n E Nsp(4) (R) is

X12 X13 X14

1X23 X13 - X12X23

1-X12

1

(6.6)

for xij E R. We use the shorthand n+(xij) = n+(x12, X13 , X14, x23 ) to notate the

matrix (6.6). We may then use the xij as our variables of integration. The region of

integration and differential become

Nsp(4) (DS) \Nsp(4) (FS) (s/Ds)4

and

dn '-* dx 12dx 13dx 14dx 23 =7J dxij.

We will write R for the compact region Fs/Os to tidy up our integrals.

Fix an additive character 0 : Fs -+ C with conductor Ds. Then there is a choice

of Mi1 , M 2 E Ds that gives the following reformulation of the character X:

(6.7)X(n+(xij)) = O(mix 12 + m 2x 23 ).

Thus our Whittaker coefficients are indexed by pairs (Mi, iM 2) E S.



Combining the above observations, we may rewrite (6.5) as

I4 E
x 14X12 X13

X23 X13

-X 12

1

We will use as o(Mi, M 2 ; @) to denote this quantity. Substituting (6.4) into (6.8)

gives

/4 E Of (-ywon+(Xi))V)(-mlXl 2 - m 2x 23) fJ dxj.
'YEP(Ds)\ sp4(Os)

(6.9)

We will determine a parametrization of 7 in terms of its bottom row, whose entries

we label (B4 , B 3, B 2, B1 ) from left to right. First, we show that we may ignore those

7y with B1 = 0 with the following lemma.

Lemma 6.2. The summands in (6.9) that have -y with bottom right entry zero have

trivial integral.

Proof. Consider the integral of the summand for a fixed -y with bottom row (B4 , B3, B2, 0).

Using (6.3),

* * *1
* * *1

B3 B2 0;

'() (0* * *

* * *

B2 B3 B 4)

4'(-mi 1 2 -

n+(xi) 4

m2x23)]J dxog

(-miX2

So for each fixed ' E P(Ds)\ Sp 4(Ds), we observe that the product of the matrices

(1

(1I * * *
-B 2 B3 B4 )

has bottom left entry is zero.

V)(miX 2 + m 2x23) f dxv. (6.8)

= E ff' Z4
- m 2x 23) J dxci.

744, 

*f

\B4



This zero entry implies that in the Bruhat decomposition, t'(7')wo7 E Bsp(4)wBsp(4)

for some w # wo in the Weyl group W of Sp4. Since w # wo, there is a simple positive

root a such that w(a) is still positive. There are two simple roots in Sp4, so we have

two cases.

If the long root, a1 , has w(ai) > 0, we may write that

1 T23  )w-1 E Bsp(4)(F)

for any x23 E F. In the second case, w(a 2) > 0 for the short root a 2. Here we have

(1 x12
X12

W I -12 U_ (- EBSp(4) (F).
1 -1121

Whichever case, we can factor n+(xij) and bring the appropriate matrix across w,

keeping it in Nsp(4)(Fs). Then using the left-translation property of f, we see that

the integral over either X23 (case 1) or X12 (case 2) will be trivial, because the value

of f is independent of the variable of integration and ' integrates to 0. U

So we remove from the sum all terms with bottom right entry of -y zero.

Multiplying -y by some p E P(Os) on the left, we see that the bottom row of 7 is

simply multiplied by the bottom right entry of p, some element of D'. So we may

parametrize the remaining summands by the 4-tuples (B 4, B 3, B 2, B1 ) with

" B1 E (s \ {0})/*S,

" Bi E Ds for i = 2,3,4, and

" gcd(B1 , B 2 , B3 , B 4 ) = 1.

That each 4-tuple is represented as the bottom row of some -y E Sp4(Ds) is a conse-

quence of the following lemma.

Lemma 6.3. Given (B4 , B 3, B2, B1 ) satisfying the three conditions above, there are



unique c1 , c3 C Ds and d1, d2 , d3 E (Ds \ (0})/Ds such that the product

a2  b2  ai b1  a3  b3
2 l 3  )

c2 d2 / c d c3 d
(6.10)

has bottom row (B4 , B 3, B2 , B1 ) for a proper choice of the other matrix entries (of
course, these choices must also place the argument of each t2 in SL 2(Os)). Fur-

thermore, a choice of a3, b3 E Ds integers satisfying a3d3 - b3c3 = 1 fixes c2 E Ds
uniquely.

Proof. We begin with the 4-tuple (B 4 , B3, B 2, B1) and, assuming that such a factor-

ization exists, we prove the declared uniqueness of the matrix entries. Multiplying

out the product (6.3), we get

a2  b2  aki
a2 b2

C2 d2H
C2 d2 c1

b1 a3

1 -c3
1)

di *

I * *

'ascid2 -

a3

c3

b3
d3

*

c2c3 c2d3 - bac1d2 ca

. (6.11)

1d2 d1d2d3
1

From (6.11), we have that did2d3 = B1 and c3did2 =B 2.
1 for each of the assumed factors, we determine that

Since we have gcd(ci, di) =

did 2 = gcd(Bi, B2 ),
B1d3 = gdB, )

ged(B1, B2)
and

B 23 gcd(Bi, B 2 )

(we remind the reader that gcd(a, 0) = a for any a).

Now that we have fixed c3 and d3 , we compute that

d3B4 + c3 B3 = d3(a3cid2 - c2c3 ) + c3 (c2d3 - b3cid2 ) =(a3d3 - b3c3)cid2 = cid 2 .

So having fixed c1d2 and did2, we use the fact that gcd(ci, di) = 1 to compute the

following three matrix entries.

c1d2

d2
d2= gcd(did 2 , c1d2)

-b3

da

di = d2
d2



This shows the claimed uniqueness of all the entries but c2. Now, we can choose

a3 , b3 E DS such that a3d3 - b3c3 = 1. Then we use these values to determine c2

uniquely:

b3B 4 + a3B3 = b3(a3cid2 - c2c3) + a 3(c2d3 - b3cid2) = (a3d3 - b3c3)c 2 = c2.

We have determined the values of each ci and di, and so we can choose ai and

bi for i = 1, 2 so that aidi - bici = 1. Then we have found formulae for the matrix

entries in the above factorization, and we have also demonstrated that every bottom

row in our parametrization has a representative in Sp 4(Ds). 0

We will let -y(B4, B 3 , B 2, B1 ) E Sp4 (Ds) be the product of these factors, deter-

mined in the above way from the values Bi.

Remark 6.4. This particular factorization is chosen because the relationship between

the Bi and the ci and di is as simple as possible. However, the order of matrices in

(6.10) could be predicted by studying the root system of Sp4. We choose a minimal

decomposition (into simple reflections) of the long element of the Weyl group. The

two simple roots correspond to the reflections below.

1 -12

One choice of decomposition is U2U1u2o1 = wo. This decomposition gives an ordering

on the positive roots of Sp 4 as follows (see for example, Proposition 21.10 of Bump

[10]). For I+ the set of positive roots of Sp 4 and w E W, we defineThen consider the

sets w"#+ for each of the partial products w in our choice of decomposition of wo:

1+ = {a1,

20i D+ = {a1, ai, + a 2},
12r1 (+ = {aI, ai- + a 2 , ai + 2a 2},

W04I)+ - D+

This gives rise to an ordering of roots: ai, a1 + a2, a1 + 2a 2, a 2. The ordering suggests

the ordering of matrices as in (6.10), because each positive root corresponds to an



embedding of SL2 -

o1 + 202  t1

0 1 + a2 t2

a 2  t3

a1 6

Thus, we would expect the ordering t 2 , L1 , L3 when inducing from t'(SL2) to Sp 4.

Using Lemma 6.3 we rewrite the Whittaker coefficient as

j S O(Bf 7 i won+ (xj)))(-miXl2 - m 2x 23) ij-
RZ4 B1E(Ds\{O})/DOS

B2,B3,B4EJDs

The sum is primed because we require gcd(Bi, B 2, B3 , B 4) = 1. Next we 'unfold' the

integral using the following proposition.

Proposition 6.5. For a fixed nonzero B1 E Ds, we have the equality

B2 ,B 3 ,B 4 EDs

Of (7(Bj)won+(xij ))(-mix1 2 - m 2x23 )dx12dx13dxi 4dX23

s B2,B3,B4 (B1)

4

f (7(Bi) won+ ())@(--miz12 - m 2x 2 3 )11 did23
j=2

Proof. We observe the effect of an insertion of a matrix of the form

1

n+(a, b, c, 0) =

b c

b

1 -a

I/
between wo and n+(xij) in the argument of Of.

for a, b, c E Os

If we combine this matrix with

n+(zij), we find that

n+(a, b, c, 0)n+(x 12, X13 , X14, X23 )

- n+(Xi 2 + a, X13 + ax23 + b, x14 + a(X13 - x 12x 23 ) - bx12 + c, X23).



We observe that letting a, b, c vary over Ds and summing is equivalent to expanding

the integrals of x12, x 13, X14 from Fs/Ds to all of Fs. The easiest way to see this is

first to fix a and b and sum varying c, which expands x 14 . Then if we just fix a and

sum over b, we are expanding x13. Finally, summing over a expands X12.

Now we instead move the matrix n+(a, b, c,0) across wo and observe its effect on

-y(Bi). The computation is

* * * *

7 (Bi)won+(a, b, c, 0)w- 1 =
* * * *

B4 - aB3 + bB2 + cB1 B 3 + bB1 B 2 + aB1 B1

Here, if we sum a, b, c over all of Ds it is equivalent to summing B 2, B 3, and B 4 over

a fixed set of residues of Ds mod B 1. In other words, for a fixed B 1, if we let B2, B3 ,

and B4 vary over a fixed set of representatives mod B1 and let a, b, and c vary over

all Ds, that is equivalent to B 2, B 3, and B4 varying over all of Ds.

These arguments show that we can insert n+(a, b, c, 0) into the integral, with a, b, c

summed over Ds, and reduce the sum over Bi to be summed mod B1 for i > 1. Then

we can move the inserted matrix to n+(Xij) and remove it by expanding the integrals

of xi. So in short, for fixed B 1,

fS JF dxi= J J *j1fidx] dX23.4

B2 ,B 3 ,B4 EDS B2 ,B3 ,B4 (Bi) j=2

This gives the following form of the Whittaker coefficient:

4Jf (Y(Bi)won+(xij))0(-m1X12 - m 2X 23) 7 dxljdX23- (6-12)
1Z F3 B1E(Ds\{O})/Ds j=2

B2 ,B3 ,B4 mod B 1

Now we want to substitute the factorization of -y(Bi) from Lemma 6.3 and convert

this parametrization over Bi to one over ci and di.

From the proof of Lemma 6.3, we see that given a set of Bi, we can directly

compute the ci and di, except that c2 can run over a set of elements of a single

residue mod c1 d2, which is fixed only when a choice of a3 and b3 is made. Now we

ask: if we only vary Bi, i > 1, over a fixed set of residues mod B 1, what do the ci and

di vary over?



Lemma 6.6. For a fixed nonzero B1 E Ds, define the set

DB1  (d1 , d2, d3 ) C ((DS \ (O})/OD)3 Idid 2d3 = B1 }.

For a fixed (d1, d2 , d3) E DB1 , let 0 d1 ,d2 ,d3 be a set of triples (c1 , c2, c3) such that each

ci runs over a fixed set of representatives of the following moduli:

ci (mod did2), c2  (mod did 2), and c3  (mod da),

that satisfy (ci, di) = 1 for i = 1, 2, 3. Then there is a bijection between the parameters

Bi, i > 1, in the sum in (6.12) under B1 and the set

{((di, d2, d3), (ci, c2, c3)) E DB1 x DIs (ci, c2 , c3) E Cdi,d 2 ,d3 }

that respects the factorization in Lemma 6.3.

Proof. We will show the equivalence of these indices by the following procedure. For

each B1 , we choose a fixed complete set of representatives of Ds /(B 1Ds), MB1 . Now,

given any 4-tuple (B4 , B 3, B2, Bi), with B 2, B 3, B4 ranging over all of Ds, we can find

ci and di as described above. Now we perform the following substitutions to move

(B4 , B3, B 2, B1 ) to Mj1 x {B 1}, so each B with i > 1 is one of the chosen set of

representatives.

First, we choose t 2 E DS so that B 2 + t 2B1 E MB1 and perform the following

replacements.

B2 F--B 2 +t 2B1

B4 B4 - t2B3

C3- c3 + t 2d3

a3  a a3 + t 2 b3

Next, we choose t3 such that B3 + t3B1 E MB1 and substitute the following.

B3 B 3 + tB 1

B4 B B4 - t 3 d1 d2c 3

C2+ c2 + t3 d1d2



Finally, we correct B 4 with a proper t 4.

B 4 -+ B 4 + t 4 B1

c1 - c1 + t 4 d1d2

c2 -+ C2 + t 4 b3d1d2 d3

The important properties of these subsequent substitutions are that the output ci

are equivalent to the input ci modulo the following.

ci (mod did )

c2  (mod did2 ) (6.13)

c3 (mod d3 )

Also, crucially, in the t3 substitution, B 2 is not changed, so it stays in MB1 . Similarly,
in the final substitution, B2 and B 3 stay fixed, so the output Bi are in MBi for i =

2, 3, 4. This implies that any chosen cosets ci, c2 , c3 modulo did2, did 2, d3 respectively,
with gcd(ci, di) = 1, are represented by some 4-tuple in {B 1} x MB1 . To show the

equivalence, we want this surjection to be a bijection. For each B 1, these two sets of

cosets are finite. Since we already have the surjection, that is, that every valid choice

of ci is represented, we need only show that the size of these sets is equal.

For a given B 1, we want to count the number of triples (B 2, B3 , B4 ) E MB1

with gcd(B 1 , B 2, B 3, B 4 ) = 1. Let D1 = gcd(B1 , B2 , B3 ), D1 D2 = gcd(B 1 , B2 ), and

D1D 2D 3 = B 1. If we fix these Di, then B 4 is chosen from p(D1 )D 2D3 possible cosets

mod B 1, since it must be relatively prime to D1 . Also, B 3 is divisible by Di and so

the quotient runs over cosets mod D2D 3 that are relatively prime to D2. The number

of cosets is p(D 2 )D3 . Finally, B 2 is divisible by D1 D2 , and the quotient runs over

W(D3) cosets. Thus the total number of choices of (B 2 , B 3 , B4 ) for a fixed B1 and Di

is

(p(D1) W(D2)(p(D3) D2D .

Since we would like the Di to vary, the total number of valid 4-tuples with a given

B1 is

(p(D1)(p(D2)(p(D3)D2D .
D 1 D2 D 3 =B1

Here the sum is taken so that the Di are chosen modulo D, since they only represent

the greatest common divisor of integers.

Now to count the other parametrization. Given a B 1, the di must multiply to B1 .



Then, given a choice of di, the ci run over a set of cosets according to (6.13). The

numbers of choices are p(di)d2 for c1, p(d2)di for c2, and W(d3) for c3 . Thus the total

number of choices of di and ci for a fixed B1 is

E
d 1d 2 d3 =B1

the exact same formula for the number of choices of the other set of parameters. This

shows that the map between the two parametrizations is a bijection, and thus they

are equivalent. 0

Before we get back to the Whittaker coefficient, let us study

'y(Bj) further. We have factored it into the three matrices

this factorization of

b2 ai

a2  b2
d2

C2 d 2 J \ci

b1 a3

-C3

1)

Each of these matrices is an element of an embedding t SL 2 (Fs) -+ Sp 4(Fs). Since

each di E Ds and is nonzero, we can use the following SL 2 (Fs) decomposition for

each factor: a b) 1
c d)

which leaves us with a total of nine

position, we can rearrange (6.14) to

A d-1 k1
d , (6.15)

matrices in the factorization. Using this decom-

get the following result.

Lemma 6.7. The factorization of 7(Bi) in (6.14) can be rewritten as

* * I
1 * I'~1 d2 ,d3

1 J

(1Ia
d3-*

*

1
2b 3c 2 d3 + b3

d 1 d2  d1
*

(6.16)

1

for Od1 ,d 2 ,d 3 the diagonal matrix

dl 1d d3l

d1d2d3

a2

C2

(6.14)
b3

d3/

(p(d1)di 2P(d2 )d1 (ds ),



Proof. We first pull the three upper triangular matrices of the nine-matrix decompo-

sition to the left of the entire product. On the far left we already have

b2
d2

d2

1

1j

Next, to move the matrix below (the upper triangular matrix from the ti embedding)

across the two matrices to its left (the ones above the arrows), we conjugate it by

these two matrices in sequence. So the arrow represents conjugation by the matrix

above the arrow.

b1

I\ ~

i
1//

6 1 \ (

1 c2
d1 d2 d

1 2 /

/i C

\ 1 d2
1d 1d2

b1 c2
did 2

1

bi c2
d1 d 2

1

1\
bi

bid1d-2

b1 /
d 1 d2

d1d2



The rightmost upper triangular unipotent matrix is conjugated by four matrices.

a \ _d3 d3
1 ci/di 1

1b

3C1

di3d

d3  dd 1d3
1 dif

b3C1  1b P b3C1  1 3
did3  d3  d3 dd 3

d id3  d3b3 c1 b3

di d3 1
1 c2/d2 1)

b3C 1 -- bpc 2b3C2  1 -
d 3  did 3  d3 dd 2d3  did3

b3c1  1  -b 3C1 1
\d3 /

(1b 3 1 b3 d
d1 d3  t2 

1 1 d2]

-b~acl 2b3c2 i 3 _brd b3~d
d3  d 1 d 2 d3  d 1 d3  d1d3  d1d3

The conjugations have added lower diagonal entries to this last matrix, but we can

factor this final matrix as

b3

d~d1

ddid3 d

1 3 b3Cld2 2b3C2d b2  I(6.1id7)
d1 d3  d3 d 1 d3  d 1d

1

b3c _2

d3  id

to group all the upper triangular part of 7(Bi) together on the left. These three

matrices are then

b (1 _ 3 c
d1 d2  d1 d d 1 d3

(~1~2/1/ __c_ \
did

1 1_1C bbii __23~d
d3d did id



and we see that this product takes of the form

**

*

1 *1'
1]

the leftmost matrix in (6.16).

Now we pull all the lower triangular factors to the right in the same way, con-

jugating them by the diagonal matrices of the decomposition. We begin with the

rightmost matrix, which is the lower triangular factor

1

da/

Next we have the middle factor's lower triangular matrix, which we need to conjugate

past one diagonal matrix.

/di

\1

1 ) d3(
(d 3)

1J

Then we have the left factor's lower triangular matrix, which gets conjugated by two

diagonal matrices.

(1

d2

1

C2
d1 d 2

1

C2 1
d2 1

1

_ii

C2 1
d1 d2 1

C2
did 2

C2
d 1 d2

L3

d1 d 2

11

1)
C2

d 1 d2

Finally, we have the lower triangular matrix factored from (6.17), which needs to be

S(
di)

3 ad )



conjugated by all three diagonal matrices. The final result is below.

(1

Sb 3 C1
d1 d3

1 2

b3c1 d2 2b 3 c2 d2 ± b c1d2
d3  d 1 d3 d 1 d3

_b 3 c 1 d2
\ d3

1
2bac 2 d3 + b2c1

d 1d 2  d1
b3C1
did3

Now that the lower triangular matrices are grouped together, we take their product
and show its form matches the right matrix in (6.16).

1
b3 ci _ 2b 3 c 2 d3 + b2 i
d 1 d3  d1 d 2  d1

b3 C
dd1d3

C2
d 1 d2

C2
d 1 d2

C3=13

1 2

Sdi

1
2b 3c 2d3 + b2C1

d 1 d2  d1

*

Lastly, in the middle of the factorization, the three diagonal matrices combine
into

/d-1ldq1l-131d1

d1d2d3]

So by Lemma 6.7, the argument of 8f in the Whittaker coefficient (6.12) can be
written

1
_ 263c2d 3 +

d1d2 d
1 wor+(xij).

a1)/3

If we moved the lower triangular matrix across wo, it becomes the upper triangular

11
1i

(6.18)
11

* *

1* I
1 J

= Od1,d2,d3 -

1

Odi'd2,d3 d3



unipotent

2
2b 3 c 2 d3 __ bc,
d1d2  d1

1

Then, we can combine this with n+(xij) and make linear substitutions for the xij to

eliminate this matrix. The substitutions are additive and so don't change the measure

of the integral, but the changes to x 12 and X23 are recorded in the argument of the

character 4@.
The resulting Whittaker coefficient is

1 *

ef

* *\

*/
i,d 2 ,d3 won+ (xij)

C3 2b3c2d3  b2c 1- y-mix12-~) -- m 2  2 3 - d +d2  + i d2
d3 djd=d

m( 2b3c2d3 _ b

(i * *\
4

IZ F K 1 Li VdiWOwo+ (xij) ?P(-MlX12 - m2X23) 1j d 23-
j=2

Now we remove the leftmost matrix in Of's argument by the following logic.

Lemma 6.8. For any g E Sp 4(Fs),

Of *

1 g ~ =ef(g).1JJ

Fi c
JZFS di,(



Proof.

* *

* I
1)

1

=EI

*

a

C= dlbf)
l .(a bl

/1
=y f

*

* *

be

d*
1/

* *\

* I
1 *

1,j

I
= f(g). U

Combining all the work done so far, the (Mi, m2)-Whittaker coefficient of our

Eisenstein series Ef can be written

H (di, d2, d3) I Ef (OdjWon+(Xij)) @(-mix12 - m2x23)2 dxlzj
di R LFS' j=2

d23,9

(6.19)

H(di, d 2 , A) = i C3 + M2  2b3c2d3
(djd 2

We notate the quantity (6.19) by as(mim2 ; M2).

6.3 The recursion

Now we reduce the Whittaker calculation over Sp 4 (Fs) to one over SL 2(Fs). For

f E 7r(s, s 2 ), min E Ds, and g' E SL 2 (FS), we define f& (g') by the following

where
-2 .cdi b )c1 (6.20)

Of1



integral:

fd = f

F 3

By (6.1), we have that

K111

/)

n+(X12, x1 3 , X1 4 , 0) I4(mix12)dxi.

f d md 3 (( ti -) g') = Iti 2 sif(g'). (6.21)

Following the definition of 7r(si, s2) to define the rank one SL 2(Fs) representation

7r(si), we see that (6.21) implies that f () C 7r(si). Then we can define our

Eisenstein series over SL 2 (Fs) in the natural way. For g' C SL2 (F) and f E 7r(si),

ESL( 2 ) =

y'EBSL(2)(DS)\ SL2(ODS)

f ()'g').

We introduce the two notations

w/ =( and n'+() = (1
X

Then, given a choice of @, we may define the Whittaker coefficient of ESL(1) indexed

by mi E Is as

(6.22)a (mi; ) (x))V(-mix)dx.

Theorem 6.9. The rank two Whittaker coefficients (6.19) can be written in terms of

their rank one counterparts in the following way.

a (4)(Mi M 2 ; 4) = H,(di) a S() m2;
,d 2 (d2

di,d 2 ,d 3 E0s\{O}/D

Before we prove this, we observe the following calculation.

(6.23)



Lemma 6.10.

ESL2
fd d2,d3

(wo+ (X23))

= ff (did 3,d2wOn+(X12, X13, 1 4 , d X23 ) (-mix 12 ) dxij
F3

Proof. Substituting in our earlier definitions, we have

wtr+(x23)) = 'S
'Y' EBSL(2)(IDS)\ SL2 (JS)

f ,d 3 (7/ 0 +(X23))

4

f (t' (y'w'n+(x 23)) 0d i1(wo)n+(X12, X13 , X14 , 0)) (mix1 2 ) J dxij
7' F3 j=2

Jef (Odi,d 3,d2wO+ d12, 13,x14, 2 3 )
F3

?)(-m 122 )dxij.

Remark 6.11. The subscripts d2 and d3 get switched in Od because the middle two

entries are conjugated by w'. Also, the coefficient of x23 comes from conjugation by

Proof of Theorem. Substituting Lemma 6.10 into (6.19) gives the following form of

the rank two coefficient.

s(4) = Hp(d)- ESL(2)
d 1,d2

( + d2 )23 V/(-m 2X23 )dX23 -

Now we use the substitution x23 -+ 2X 23. This variable change only alters the region
d2

over which we are averaging from Fs/Ds to Fs/((d )2Ds). So these two integrations

are equal, as long as they are both defined.

(d2d 2
D)\F

(-*-)d (dX23
\ 2

3
2

(- * -)dz23

With careful inspection of H, we may see that d Im2dj or this character sum is

trivial, so we know that the second integral is well-defined. So we can finally write

ESL2
di,d2,d3

)= J,



the Whittaker coefficient as

aS4 (Ml m2; V))= H (di)da M2; . (6.24)

ddl'd3 , d2 2

The Casselman-Shalika formula [11] gives Fourier-Whittaker coefficients of Eisen-

stein series as characters. In particular, it can be used to compute the local contribu-

tion to this coefficient at almost every place. By noting that the coefficient is Eulerian

in the nonmetaplectic (n = 1) case we may apply the Casselman-Shalika formula to

get the following restatement.

Theorem 6.12.

Xso(2r+l)(mi, m2) = H(di)xGL(2 ) (dM2 (6.25)

In this formula XG are highest weight characters for the complex Lie groups G(C),
and the arguments of xG are the coefficients of fundamental weights in the associated

highest weight representation.

6.4 Higher rank cases

Above we have reduced the Whittaker calculation from Sp4 to Sp2 = SL2. The natural

follow-up question is whether higher even-rank symplectic groups can be dealt with

in the same manner. In short, the answer is yes, although the calculation becomes

more complicated at certain steps.

We begin with Sp 2r(Fs) with the following natural embedding t' of SP2(r-1) (Fs):

1

t'(g') = (g') ,

for g' E SP2(r-1)(Fs). We have the natural generalization to Ir(si, S2, ... , sr), the

right regular representation of Sp 2r(Fs) on the set of smooth functions f with

f(bg) = t =2. (g),

for b E Bsp( 2r)(Ds) with diagonal elements (tr, tr_1,.. . , ti, t-1 , 2 t,2.-. ., t,-1).



This leads to the definition of E( : Sp 2r(Fs) -+ C by

E;SP )(g) = f (7g).
7fEBsp(2r)(ODS)\ SP2r (OS)

Just as in the rank two case, this Eisenstein series has Whittaker coefficient defined

as the integral

ap2r (mij, ... ,p2r mr @): n+ (zij)) mEk + 15 ~ dzij.

i+js2r+1

In this formula we define wo as the long element of SP2r with nonzero entries only

along the opposite diagonal which are -1 in the bottom left quadrant and 1 in the

top right quadrant. Also, n+ (xi), for i, j running over the indices 1 < i, j < 2r with

i + j < 2r + 1, is the unique upper triangular unipotent matrix in Sp 2r(Fs) with the

xij in its ith row and jth column.

As in the work above, we use the function

8 Pr(g)= f (yg),
7YEPSp(2r)(DS)\sP2r(DS)

where Psp(2r)(R) is the maximal parabolic subgroup of Sp 2r(R) defined as

Psp(2r)(R) = {(aij) E Sp 2 (R) i 0 for i > 1, and a2r,j = 0 for j < 2r}.

We may then substitute E into E p(2 r) by summing over the lowest row

(B2r, B2r-1, ... , B 1 ) of -y, using a higher rank version of Proposition 6.1. Lemma 6.2

and Proposition 6.5 also easily generalize, so we know that we may drop the terms of

the sum with B1 = 0, and expand the integrals over x1j to all of Fs which restricting

the sums over Bi to be modulo B 1.

Now we want to factor y(Bi) into SL2 embeddings to generalize Lemma 6.3. As in

Remark 6.4, we use a decomposition of wo into simple reflections to guide the order



of the factorization. Our simple reflections are

/Ir-i

-1 Ir1
ori = 12i-4

for i = 2, 3, ... , r. A convenient decomposition of wo is

r

wo = (o-r+1-i-r-i -- - 0'20~102 - -r-i-r+1-i)
i=1

So, for example, if r = 1, 2, 3 the decompositions are

wo =o-1 wo =(0 -2-1C2)0-1 wo =(0 -30-20-10-20-3)20-10-2)0-1.

By checking which roots are negated by partial products of the above decomposition,
we are left with the following ordering of the relevant roots (those including ar):

r r r r

E i, E i +2, i+2 + C+3, ... , 1 +Z2ai,
i=1 i=1 i=2

(6.26)aer ar-1+ar,...,IE a.

i=2

To convert the ordering (6.26) to a factorization of 7y, we look at the relevant SL2

embeddings. We index them by i = 1, 2,..., 2r - 1. For i = 1 we have

( a
C

a

C

b

I12r-2 
-)

-Ir-J



For i 2, 3, ... r we have

a b

ti (c d)

Ii-2

I2r-2i

Finally, for i = r + 1, r + 2,..., 2r - 1, we have

(a
ti

(C

/ a

12r-1-i

-c

12i-2r-2

12r-1-i

The ordering of roots (6.26) suggests the following ordering of factors:

y(Bi) = r(-)tr-() tI(-)t2 r-I(-)t 2 r- 2 (-) -.. tr+1(-). (6.27)

Remark 6.13. The arguments of each tj in (6.27) is the 4-tuple (ai, bi, ci, dz) E F 4 with

aidi - bici = 1.

The values for these matrix entries are determined by the Bi up to choices similar

to the ones found in rank two (see Lemma 6.3), though the relationships get more

complicated as r gets large. We have

2r-1

B1 = dj,
j=1

and for 1 < i < r,
r i-2

Bi = C2r+1-i J dj f1 d2r-k-
j=1 k=1

These fix the values of di and ci for i > r, and also it fixes the product did2 ... dr.



The remaining ci and di (i < r) can be determined by the Bi and choices of ai

and bi for (i > r). First, we have

d2r-1(d2r-2(- (dr+lB2r + Cr+1Br+1) + -) + C2r-2B2r-2) + 2r-1B2r-1

= cid 2d3 - dr,

which fixes ci, di, and d2d3d4 . Then we take the left hand side of the above equation

and replace d2r-i with b2r-1 and C2r-1 with a2r-1, and it becomes equal to c2d 3d4 ... dr,

which fixes c2 , d2, and d3 d4 ... dr. Then the layers are peeled off, with bi and ai

replacing di and ci respectively, and we get 2r+1-id2r+2-id2r+3-i ... d2r-1 which fixes

C2r+1-i, d2r+1-i, and the product d2r+2-id2r+3-i ... dr, for i = 2r - 2, 2r - 3, ... r + 1.

The final equation is thus

br+lB2r + ar+1Br+1 Cr-

Once this factorization is determined, the same steps of determining the moduli

over which the ci are summed and breaking the factorization into lower triangular,
diagonal, and upper triangular parts determine the exponential sum in front of the

lower rank Whittaker integral. We content ourselves with onlly the explicit rank two

computation here.

6.5 The metaplectic calculation

Another way in which the above calculation can be generalized is by considering

metaplectic covers of Sp 4 , or more generally SP2r. For some fixed n > 1, let p2n
be the 2nth roots of unity in F, and assume (p2n) = 2n. Also, to S our set of

bad places S, include every place v dividing n. Then an n-fold metaplectic cover

is constructed by defining a cocycle, o SP 2r(Fs)2 
-+ An, and then defining the

product on SP2r(Fs) x An by

(g, () - (g', ') = (gg', (('o(g, g')).

The group Sp 2r (Fs) x Pn endowed with this product is the metaplectic group Sp 2r (Fs).

This construction is explained in detail in [23] and [17], but because this is only a

discussion of a direction of generalization we do not include the explicit cocycle here.

The definition of the metaplectic Eisenstein series utilizes the fact that the group



~_(n)SP2r(Ds) lifts to SP2r (Fs). This lift is a homomorphism

__ -(n) (
Sp 2r(OS) - §2r (FS)

g -+ (g, r,(g)),

for , : Sp 2r(Os) -+ An the Kubota symbol. The image of this map is denoted
of§(n)SP2r,(Ds), a subgroup of Sp2r (Fs). Similarly, any subgroup of SP2r (Os) can be lifted

by the same map, and its image will be denoted with a superscript *.

We also define the section

~P(n) (
: Sp2r (Fs) - S2r (FS)

g -- + (g, 1)-

Note that this is not a homomorphism for any n > 1, but we have s(g)s(h) =

o-(g, h)s(gh).

We say a function f: Sp 2r (Fs) - C is genuine if

f (0) = (f W)

for all §(n) n
for all g E 8 ¢p2r (Fs) and ( E pa.

Now we define our metaplectic Eisenstein series. For # E Sp 2r (Fs), let

ESp(2r)'() = Z(n)f(s(y)#).
yEBsp(2r) (ODS)\ sP2r (OS)

Here f is an element in 7r(n) (si, ... , sr), the right regular representation of SP2r (Fs)

of smooth genuine functions satisfying the following left translation condition.

For the nth-order Hilbert symbol (-, -)s = HE S(-, -),, an isotropic subgroup

of FS' is a subgroup with (x, y)s = 1 for all pairs of elements x, y in the subgroup.

Then, we consider the maximal isotropic subgroup of Fj, Q = iD(Ff)". Then the



left translation condition for f E 7r())(s, t

tr * --- * * --- *

tr-1 --- * * - - *

t- 1

rr

\t r /I

for tj E Q.

In addition we have the trivial lift of unipotent upper triangular matrices of

Sp 2,(Fs), because the cocycle can be defined to be trivial on these matrices. This lift
allows us to define our Whittaker coefficient as the integral

7Z E '"((wo, 1)(n+(zij), 1))o mizei'i+1 dz.

From here, the calculation follows exactly as it did in the nonmetaplectic case,
except that at each step in which matrices are being multiplied or moved past one
another, the cocycle must be evaluated. This leads to the accumulation of Hilbert
symbols, and the hope (and expectation) is that a careful account of this will result
in a more complicated version of our earlier exponential sum He but now twisted
by nth power residue symbols. This has been carried out for metaplectic covers of
SLr+1 (Fs) by Bump, Brubaker, and Friedberg [5]. If the higher rank complexities
are surmountable, a generalization of this work could determine a general recursion
leading to new explicit formulas for SP2r -Eisenstein series Whittaker coefficients.

. .. , Sr) is that





Chapter 7

Metaplectic Hecke operators on

GL 3(F)

In this final chapter we carry out a second computation of Whittaker coefficients, this

time of an arbitrary metaplectic form # on the six-cover of GL 3. Our approach is

to explicitly compute the Hecke operator action on #, and then use that the form is

an eigenvector of the action to observe relations on its Whittaker coefficients. This

method comes from the work of Hoffstein [13], who computed the action for the lift

of the matrix
P6

We extend this calculation to the other generator of the Hecke algebra, namely the

lift of
P6

We show this second action gives only redundant information about the structure

of the coefficients of #, by demonstrating that the 72 action may be reduced to the

y1 action. In fact, we see that the difference between the two actions amounts to a

choice of ordering of the simple positive roots of GL3 -
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7.1 Foundations

We begin with a number field F and its ring of integers D. We also assume the

constructions of the metaplectic group G, the n cover of G = GL,(F) for integers

r, n > 1. By the work of Matsumoto [23] and Kubota [19], this construction admits

a lift of F = SL,(D), which we will write P. This lift can be explicitly determined

by the Kubota symbol. When r = 2, the Kubota symbol has the conveniently simple

expression

a b) (f)n if c # 0,

c d) 1 otherwise.

Here () is the nth-power residue symbol.

We will be working with the 6-cover of GL3(F), so we would like to know how

the Kubota symbol generalizes to the r = 3 case. By the result of Banks, Levi, and

Sepanski [1], the Kubota symbol obeys a block compatibility property on GL,. This

means that for each of the following three embeddings of SL2 into SL3 :

*:* (1) **(7.1)

the Kubota symbol for the SL3 matrix is simply that of the embedded SL2 , which

was given above. Since matrices of these three types generate F, this determines the

Kubota symbol for all matrices in F.

7.2 Hecke operators

We now describe the Hecke algebra action on the space of metaplectic forms. Observe

that we can act on functions on G by left translation; that is, for f a function and

g, h E G, the action of g on f is given by

(f lg)(h) = f(gh).

Also, we call a function on G genuine if

f(Cg) = (g)
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for all g E G and ( E p,. Metaplectic forms are then defined to be smooth, genuine

functions on G which are automorphic with respect to the action of IF* described

above.

For an element g of G, we write the double coset of F*gf* as a disjoint union of

right cosets
M

f*gf* = UF*gi
i=1

for some choice of coset representatives gi E G. Then the action of the Hecke operator

associated to g, Tg, on a metaplectic form # is given by

M

Tgq# = #|gj..
i=1

We note that this is well-defined because automorphicity implies that it is in-

dependent of the choices of representatives. Also, Tg# is a metaplectic form itself

because
M

(Tgq#)(yh) = d(gigyh).
i=1

Now gj'y E F*gF* for each i, and this multiplication just permutes the representatives

because

Pgi-y = i*gj-y -=> *gi = f*gj ==> i =

Since the set {gijy} is another choice of right coset representatives, we have shown

that

(Tg#)(-yh) = (Tg#)(h),

and thus Tg preserves automorphicity.

7.3 Computing T,,,

For any element of G of the form g = (h, 1), we write T(h,l) = Th to denote the

associated Hecke operator. The first computation we discuss is determining the effect

of T, on the space of metaplectic functions, for

P 6

103



with p a fixed prime in D. The steps for this computation are as follows.

1. First we find a convenient set of right coset representatives of F* 1 P* with which

to compute.

2. Next we find the Kubota symbol for these coset representatives.

3. Finally we calculate the Whittaker coefficients of T.,# in terms of those of #.

Each of these are detailed below.

7.3.1 Right coset representatives

Throughout this section we ignore the metaplecticity of F*, and only concern ourselves

with determining the right cosets of F in Py 1F. The root of unity attached to each

coset representative will be determined in the following section.

Proposition 7.1. The set

p' a c

H { i+j+k=6, i,j,k>O, O<a<p, (7.2)
pi k O bc pk , and the p-rank of 71 is two

is complete set of right coset representatives for P71F.

Note that the inequalities on a, b, c require them to run over a fixed set of residues

of the moduli pi and pk in D, in the case that this set of integers is not Z.

Proof. To show H is a sufficient set of representatives we must have that any element

of 7y1P can be multiplied on the left by an appropriate element of F to get it in the

form of an element of H. If g C y1 F, then we have det g = p6 , g E GL3 (F) with

entries in D, and g has p-rank 2. If g = (a2, 3) for 1 < i, j < 3, we can act on the left

by a matrix h = (bij) constructed as follows.

First, let the vector that is the bottom row of h, (b31 , b32, b33) = b3 , be in the

direction of the cross product of the first two columns of g:

a11a22 - a12a 21 I 12a 31 - a11a32b131 =d , b3 2 =
d d

b a21a32 - a22a31

d

where d just divides out the common divisor of the actual cross product. Then the

vector b3 is perpendicular to both vectors ail and ai2 (explanation of notation: to
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find the vector, let the unknown subscript run over the set {1, 2, 3} to obtain its co-

ordinates). Now, consider the sublattice of D3 of vectors perpendicular to the vector

ail. One element of this lattice is b3 . Another element would be ail x b3j, which

is perpendicular to the first. Thus this is a lattice of rank exactly two. Because we

divided b3 out by its gcd, the vector can serve as the side of a fundamental parallel-

ogram of this 2-lattice. Choose the other side of the fundamental parallelogram, and

let b2j be the coordinates of that vector.

So we have chosen the bottom row of h to be perpendicular to the first two columns

of g and the middle row of h to be perpendicular to the first column of g. This implies

that hg is upper triangular. Also, because the bottom two rows of h generate the

lattice of D3 points that are in the plane they generate in F 3, we can choose a third

vector that forms a fundamental parallelopiped for the lattice D3 and fix this (or its

negative) as the first row of h. This ensures that h has determinant 1, so h E F. So

we have picked an h E F such that hg is upper triangular.

Now we note that because det hg = p6 , we must have that the diagonal elements

are powers of p exactly as described in (7.2), the definition of H. Finally, by multi-

plying on the left by matrices of the forms (and in the order)

1 r 11 t

1 ,(7.3)

we can ensure that the diagonal elements remain fixed while terms above the diagonal

are shifted to a particular set of coset representatives modulo the diagonal elements

directly beneath them. We first shift a because using the r-shift of the first matrix

can alter the value of c modulo pk, and this is why we must be careful to pick a fixed

set of residues modulo the diagonal elements for any given values of i, j, and k.

Now, to show that every element of H is necessary, suppose T1, Y2 E H have that

71 = ?'2 for 7 E F. We can then write

p'M am Cm

?7m Pi- bm for m = 1, 2 and then

-1~ kmpmk

p-m -p -ima -p-i-kmc+p-6ab

p-km
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Then y = 217 1 is upper triangular, so is of the form

/ - _-1-1al1 + p- 3'a 2 -pi2ikc + pi2 6 aib - p-31-kl bia 2 + P- C2

p2-31 _p]2-1-k1b 1 + p-ki b2  -

P k2-k1

Since this is in F, we immediately get that i1 = i2Ji = j2, and ki = k2. Removing

the subscripts on these terms and canceling, we get

p-i(a2 -a1) p-k (C2 - ci) + p-i-k bi(a1 - a2)

7 1 p-k(b2 - bi) E F.

1,,

So we have that a1 - a2 (mod pi), which implies that ai = a2, since we fixed our

residues. Now we see that the second summand in the top right entry disappears, so

we also simply get that ci 1  c2 (mod pk) and b1 - b2 (mod pk). Thus ci = c2 and

b1 = b2 , and so T11= 12.

7.3.2 Computing the Kubota symbol

Now we must consider the metaplectic group in our calculation. We know how to

represent the right cosets of F'y1F, but we actually need to know how to represent the

right cosets of F*(71, 1)]F*. This means each right coset representative above needs to

have a particular sixth root of unity attached to it. For any 71 E H, let (1 denote the

corresponding root of unity. To find the particular root of unity associated to any

given matrix, we can build the matrix from 71 by multiplying on the left and right

by block matrices whose Kubota symbols are easy to determine. We start with the

most general form of T7, an element of H:

P' a c

y = pi b,

p k

and we assume that min{i, j, k} > 0, which implies that p { a and p { b from the

p-rank restriction on q. In the below computations, x, y, x', y' are always chosen to
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make the matrix have determinant 1. We begin with

-1 x
xp k) -pi+j

y p i+j

-b)

Now we can use

b x':
1 ) 

-p i

y'

cb'p - a
)(Pi

1

a - cb'pi

pk)

for b' an inverse of b modulo pk. So finally we may left multiply twice:

c(1 - bbl)p-k 1 a - cb'pi pi

pk)

c

b

pk)(i 

P

The only block matrices with nontrivial Kubota symbols are the first two matrices
that were multiplied on the right, their Kubota symbols are

- i+j)
=(-b ) ( cbP Jicb'pj- a)

(b)i+j a )i

p p

Now we fix i = 0, and assume minfj, k} > 0, so p { b. Then we have

-1 ) 11

1
p6 )

and then we get that

11
x -y

-p1 b
p b).

pk)

P6

107

b
1 .)

-1 p i+j

x 'p i 1

y /

1b ( -p

b -

cb'p - a

1))
( x

_ pi+j



So we can right multiply to get the matrix:

C

1 =

1

The only nontrivial Kubota symbol we come across is

((
- b p

-pi -b

If instead we have j = 0 and min{i, k} > 0, so

matrix is built from the three multiplications

-1 ) (i 1
Y)(

a = 0 and p { c. Then the entire

l b
1

and the only nontrivial Kubota symbol is

3;40X
_p ( -i

1 i = (-i
We now assume k = 0 and min{i, j} > 0, so b = c = 0 and p { a. Then

-1

xpj

y p
-

1>

and the Kubota symbol of the right matrix is

Sx40 -pi
Y

-a)

Finally we assume that each of i, j, and k are 6. If i = 6, then the only repre-

sentative if 71 itself, which clearly has trivial Kubota symbol. If j = 6, then we can
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use
-1 )1 1 a 1 a

and again the Kubota symbol is trivial. Finally if k = 6, we have

1 1)7(
1 1

1

C

1

1/

1

lb =

and once again the Kubota symbol is trivial.

7.4 The Whittaker coefficients of T,1t0

Let # be a metaplectic form and write a(ni, n 2) to refer to its (ni, n 2)-Whittaker

coefficient. This can be computed by the equation

IN(0)\N(F) 1

=a(ni, n2)|nl n22|

X3

x2 ,11

(nin2 n2 )7)

where N(R) denotes the group of elements of GL3 (R) of the form

C

b

1)

Also, exp : F -+ C is a unitary additive character on F with kernel 0, and ni, n 2 E

0. This integral is well defined by the automorphicity of # and the fact that N(0)

lifts to G by the map n -+ (n, 1) (that is, the cocycle is trivial when restricted to

N(0) 2).

Remark 7.2. We have yet to define the Whittaker function WO : GL 3(F) -+ C.

Instead, we may simply require # to be scaled so that a(1, 1) = 1, and then we get

that WO is defined by (7.4) as a Whittaker integral of #. Also, we note that the
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normalization In 2 21 is used to simplify the later calculations.

The strategy for determining the coefficients of our metaplectic form # is as fol-

lows. We apply a Hecke operator Tg to the form, and then compute the Whittaker

coefficients of T_,#1 by taking the above Fourier integrals. The integrals can be rewrit-

ten to be in the form of Fourier integrals of #, and so we can rewrite the coefficients

Tg# as linear combinations of the coefficients of #. Finally, we use the fact that the

form is an eigenfunction of the Hecke algebra to rewrite the T# as A#, and so the

linear combinations of coefficients of # may be equated to the original coefficient of

# multiplied by the eigenvalue A.

Now consider the Hecke operator T-,. In order to compute the Fourier integral of

T,#1 0, we must first calculate the integrals #|, for each q E H, the set of right coset

representatives described in Proposition 7.2. Write rj E H as

= (

c
b.

pk)

Then the (ni, n 2 ) Whittaker coefficient of #|, can be determined using (7.4). We have

(F)

# Pi I

0( lI

a

pi

'x 1 +

pi

2-3 x1

c 1 x 3  \
b 1 x2 T exp(-nix1 - n2
k1

a p'x 3 + ax 2 + C

p'x2+ b T exp(-n 1x1 - n
pk

+ ap-3 pi-k x 3 + ax2p-k + cp-k p

1 pi-k x 2 + bp-k

1 1k
exp(-ix1

V2)dxidx2dx3

2x2)dxidx2dX3

p-

- n2x2)dxidx2dx3

Now apply the substitution

U1 = pbix 1 + ap-

dx1 = pj-'du1

U2 = pi-kx2 + bp-k

dx2 = pk-idu2

dx1dx2dx3 = p2k-2idudu2dus.

U3 =pi-k x3 + ax2pjk + cp-k
dX3 = p k-dus - apk- -jdu 2
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The integral above is then equal to

<1 3 p

U2

1) \
Pi k) T) exp(-n 1 (P! u1 - ap- ) - n2(pk-u2 - bp-i))p 2 k- 2idui

1 Ui U3 p

= p2k-2i| exp(anlp-i + bn 2 p 4) U2 Pj T

exp(-nip3 - ui - n 2pk-ju 2)duidu2 du 3

p2k -2i exp(an 1p-i + bn 2Pj)a(nip , n2p k-j - -2(n2pk-j)-2

n1n2pk-i P i
-WO n2p k-i Pi T

p k n1n2

=ex p(anlp-i + bn2 p )a(nlp -, n2p k-j)n2 2-2|wo p k n2

This proves the following identity which will be used later on.

Lemma 7.3.

p' a c 1 I iX3

<p pi b 1X2 T eXp(-nlx1 - n2X2)dx~dX2dX3

N(Q)\N(F) p k

= exp(an 1p-i + bn2 p j)a(nlpj-z, n2pk-)InI 2 -2 21

p k n1n2

-WO p n2 r

p k 1

T) .

(7.5)

To simplify notation, we define the sixth or zeroth power of our residue symbols

to be 1 identically, even when p, the modulus, divides the residue. Now we finally
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combine all of the calculations above. We have that

T)
IN(O)\N(F)

X3

X2,EH

i+j+k=6 0<a<pj
i,j,k>O Lo<b,c<pk

a -cp

-a(np- , n2p -)In n2 W

b exp(anip-i + bn2 p 3 )

nin2
pk )(pk

Where the prime on the inner sum means that we require the additional restrictions:

" p a exactly when min{i, j} > 1,

" p {b exactly when min{j, k} > 1, and

* p { c exactly when min{i, k} > 1 and j = 0.

Now, we claim that in all cases, the inner sum can be written as the product of two

Gauss sums. When j -f 0, we have

exp(anip-)]
0<b<pk

b\ )'

P~ exp(bn 2p 3 )

where it is assumed that p { a unless i = 0, and similarly p { b unless k = 0. If j = 0,
we instead have

LO< c<pk(P)

since the product of b and b' cancel. In fact, this sum equals zero unless i = 0 or

k = 0, in which case it equals p12 or 1, respectively.

Now, we know that the Whittaker coefficients of #, a(ni, n 2), are multiplicative,

a(nin', n2n') = a(ni, n2)a(n', n')
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exp(-nizi - n2x2)dxidX2dX3

exp(-nix - n2x2)dxidX2dX3

(7.6)

T) .

O<a<pj

(7.7)

(TY3,1)#) 
(



when (nin2, n'n') = 1. This implies that if the p-power coefficients (i.e. a(p"1, pa2))

are known for every p, then all of the coefficients may be calculated. Therefore, we

restrict our computations to the prime power case.

So we let ni = pas for i = 1, 2, and ai > 0. Then for each fixed i, j, k triple in the

above sum there are only certain values of (ai, a 2) for which the Gauss sums in (7.7)

are nonzero. The notation, and evaluation, for our Gauss sums is:

pigi(1,p) ifj+1=k,6{i

gi(p,p)= Z ( exp = i(P pk if j > k,6|i
a (mod pk) otherwise.

(pta)*

The condition in the sum that p f a is dropped when 6|i.

This evaluation allows us to determine which right coset representatives contribute

to which coefficient, indexed by pairs (ai, a 2). First, assuming j $ 0, we can rewrite

the above equation as

Sk . [gi(PQai-ijy)] .[g,+j(pQ2-j+k ak)]

Then to make the evaluations of both Gauss sums nonzero, we require either

1. ai = i - 1 and a2 = j - 1 when i, k > 0,

2. ai = i - 1 and a 2 > j when i > 0, k = 0,

3. a 2 = j - 1 when i = 0, k > 0, or

4. a 2 > 6 when i = k =0 (and thus j = 6).

In the case that j = 0, we already noted that the only nonzero cases are when

i = 6 (which further requires ai > 6) or when k = 6, and the Gauss sums equal 1

and p12 in these cases respectively.

Now, assuming that # is a theta function of the type discussed in [13], its Whittaker

coefficients are periodic - the values of a(pa1+6, pa2) and a(pai , pa2+ 6 ) are determined

by a(pc" , p12). Then the above restrictions and the fact that # is an eigenfunction of

the Hecke operator imply that the dependencies between the Whittaker coefficients

a(pa, pa2) are in four independent 'orbits'. These orbits may be written as the sets

of pairs (ai, a 2), for 0 < ai < 5 (by periodicity these are the only cases we need to
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study). In this notation, we have the four orbits

{(0, 0), (3,0), (4, 1),(4, 4), (1,4), (0, 3)}, {(1, 0), (2,1), (3, 2),(4, 3), (2,4), (0, 2)},

{(0,1 1), (2, 0), (4, 2),(3, 4), (2, 3), (1, 2)}, f{(1, 1),(3, 3)}.

The ratios of two coefficients in the same orbit is fixed, so we are left with four degrees

of freedom for our metaplectic form # (if (ai, a 2) does not appear for 0 < a < 5,

then a(p1,pa2) can be shown to be forced to be zero).

These results agree with Hoffstein's work in [13]. We now ask whether additional

information about these dependencies can be determined by a similar analysis of the

7Y2 coefficient.

7.5 Computing T,2

7.5.1 Right coset representatives from 7y1

Again fix a prime in D and consider now the Hecke operator T 2 ,1) where y2 is the

matrix
P6

72 = Pa

Recall from the previous section that

pE-H

where H is an explicit set of right coset representatives given in (7.2). We now use

these to provide a complete list of right coset representatives for Fy2I.

Theorem 7.4. Let

-1 p6

W1 an d  63 P6

1 p6

Then the set of elements

H' = {w - 3 - (P- 1)T - 1
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is a complete list of upper triangular right coset representatives for P y2 .

This will be a straightforward consequence of the following claim.

Proposition 7.5. The set

( p6 6 )
-1}

p6eH

is a complete list of left coset representatives for F'72F.

Proof. Since Py1 F = UpCH Fy, in particular for each pt

such that y1 = 3p6, or equivalently,

-1 -1 1-1.

Multiplying both sides by the matrix

p6

73 := t i

p 6

we have the relation

E H, there are some #, 6 E F

= 7 71l

p6)

and thus also the relation

(6w-) 72 (wO) = 1 (7.8)

(7.9)

This shows that 3 1 E 1721 for each p E H. In addition, each element y3 ,- 1 is in

a unique left coset of F-y2r. This follows from the fact that

73 lp= 7T3 -1F
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Finally, we show that if vF is a left coset of F7217, there is some some p E H such

that 73p-iF = v7. By the same method as in (7.8) it follows that 7Y3vl1 E F7117. By

the coset decomposition from before, this implies that there is some p E H such that

713 v E Fu, or equivalently,

17 3 v 1 = Fp.

Inverting and multiplying both sides by 73 then gives

We have now shown that the double coset 72F can be decomposed as a union of

disjoint left cosets as

Y21F U 73P-f 1 .
pEH

To prove Theorem 7.4 we observe that taking the transpose of both sides swaps left

and right cosets, while fixing y2F. Therefore we have

F7 2F = U F7 3(p-1).
peH

7.5.2 The Kubota calculation

In this section we show how we can obtain the appropriate Kubota symbol attached

to each of the coset representatives in H'. Recall that each element of H' is of the

form w - 73- (t I)T- w- 1 where each [ E H. Recall also the following notation:

711 72= P 6 73 p 6  ) andw= 1 .

In the previous section, we provided for each p E H matrices ai, ... , ak, i1, ..., # m E
F such that

al -...- a -Y1 - ...- m=p (7.10)

and such that the Kubota symbols of a and #, were easy to compute. For short, we

denote the products of these matrices by

a = a... ak
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Inverting both sides of (7.10) we have

and multiplying by 73 then gives

Because

72 = 7371 1

we have the relation
1~ -- 1 Cl=7/-1-

Taking the transpose then gives

Finally, conjugate both sides by w:

w(a-)w 2 1~)w = W7~3 (g)Tw.(.1

On the right hand side of (7.11), we have a right coset representative for the double

coset IF721. On the left hand side, we have an expression for this representative as a

product of known matrices with simple to compute Kubota symbols. In fact, since

taking the transpose or inverting a matrix inverts the Kubota symbol, and since w has

trivial Kubota symbol, we actually have that the bijection of Theorem 7.4 preserves

the Kubota symbol.
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7.6 The Whittaker coefficients of T,<20

Now we compute the Whittaker coefficients of the metaplectic form T.,2 4 using the

computations for T.,. We have:

((( 1EH

:1 X3

((1 X
= j E j(b (W.y.(-1)T.W-1,(,))

77EH

bp'

pi+k
IN(O)\N(F)

_apk

7) exp(-nix - n2 x2)dxidX2dX3

T) exp(-niix - n2x2)dxidX2dX3

3
X2 ,l 1T exp(-"-7)dzidz2dza

,1

-exp(-nizi - n 2x2 )dxidX2dX3]-

Using (7.5), the integral is equal to

exp(bp'n 1p-' - apk n2P i-k a(nlp(i+k)-(i+j), n2p(j+k)-(i+k) ) 2 -2

pji+k

.W4

k 1) 2
n2 T) .

We can substitute this into the work above to express the Whittaker coefficient
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i+j+k=6 0<a<pj
i,j,k>O O<b,c<pk

a -cb'pi b

z3

X2

I1)

T)

fN(0)\N(F) M2



a - cb'pi exp(bnlp-i - an2p-i
i+j+k=6 0<a<pj
i,j,k>O O<b,c<pk

P+k nin2

a(np-i n2jin2 -2 pj+k n2 ) ) (7.12)

pj+k )(1)

The result (7.12) is identical to the result for 71 in (7.6), except that ni and n2 are

switched, and the arguments of a(-, -) are swapped.

So we have answered the question posed: we do not end up with any new infor-

mation about the Whittaker coefficients of <5 by using TY2 ,I). The explanation is that

the choice between 'y1 and -2 is equivalent to a choice of ordering of the two simple

roots of SL3 . This result would be expected for other metaplectic covers, n, but the

worry is that the complexity of calculation would increase with n using the methods

above. Additional interest concerns higher rank groups: with more generators for

their Hecke algebras but also more roots, how many independent relations can be

determined on their Whittaker coefficients?
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