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Abstract

In this thesis, we undertake an in-depth study of the Seiberg-Witten equations on manifolds
with boundary. We divide our study into three parts.

In Part One, we study the Seiberg-Witten equations on a compact 3-manifold with
boundary. Here, we study the solution space of these equations without imposing any
boundary conditions. We show that the boundary values of this solution space yield an
infinite dimensional Lagrangian in the symplectic configuration space on the boundary. One
of the main difficulties in this setup is that the three-dimensional Seiberg-Witten equations,
being a dimensional reduction of an elliptic system, fail to be elliptic, and so there are
resulting technical difficulties intertwining gauge-fixing, elliptic boundary value problems,
and symplectic functional analysis.

In Part Two, we study the Seiberg-Witten equations on a 3-manifold with cylindrical
ends. Here, Morse-Bott techniques adapted to the infinite-dimensional setting allow us to
understand topologically the space of solutions to the Seiberg-Witten equations on a semi-
infinite cylinder in terms of the finite dimensional moduli space of vortices at the limiting
end. By combining this work with the work of Part One, we make progress in understand-
ing how cobordisms between Riemann surfaces may provide Lagrangian correspondences
between their respective vortex moduli spaces. Moreover, we apply our results to provide
analytic groundwork for Donaldson's TQFT approach to the Seiberg-Witten invariants of
closed 3-manifolds.

Finally, in Part Three, we study analytic aspects of the Seiberg-Witten equations on a
cylindrical 4-manifold supplied with Lagrangian boundary conditions of the type coming
from the first part of this thesis. The resulting system of equations constitute a nonlinear
infinite-dimensional nonlocal boundary value problem and is highly nontrivial. We prove
fundamental elliptic regularity and compactness type results for the corresponding equa-
tions, so that these results may therefore serve as foundational analysis for constructing a
monopole Floer theory on 3-manifolds with boundary.
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0 Introduction

0.1 Historical Overview and Motivation

The Seiberg-Witten equations have played a fundamental role in the study of gauge theory
and low-dimensional topology since their introduction in 1994 by Edward Witten. On a
closed Riemannian 4-manifold, the smooth invariants one obtains from the Seiberg-Witten
equations have proven to be remarkably tractable (in contrast to the invariants obtained
via Donaldson theory), and by now there is a vast literature on how the Seiberg-Witten
invariants behave on a wide class of 4-manifolds (see e.g. [37] for a survey). Applications of
these invariants, to name a few, include a simplified proof of Donaldson's Theorem and a
proof of the Thom conjecture and its generalizations. When the 4-manifold in question is a
cylinder R x Y, one can study the Seiberg-Witten equations in the context of Floer homology
and hope to produce topological invariants of the 3-manifold Y. This point of view has been
brought to its full fruition through the monumental work of Kronheimer-Mrowka [21], and
the study of the Seiberg-Witten-Floer invariants they define on 3-manifolds constitutes an
active area of research.

Recently, there has been interest in how one may extend Floer homology theories to
manifolds with boundary, particularly the Seiberg-Witten-Floer (also known as monopole
Floer) homology of Kronheimer-Mrowka and also the Heegaard Floer homology of Ozsvdth-
Zsibo. Indeed, in the Heegaard case, there is now ample work on bordered and sutured
Heegaard Floer homology, which study Heegaard Floer homology in the case when the
3-manifold has boundary, possibly equipped with some sutures on the boundary. In the
monopole case, there is also a construction of sutured monopole Floer homology due to
Kronheimer-Mrowka [22]. However, this latter work does not truly consist of a theory
on manifolds with boundary, since the invariants one obtains consist of closing up the 3-
manifold in a particular way from the sutures. In comparison, the bordered Heegaard Floer
homology of Lipshitz, Ozsvith, and Thurston [26] brings in a wealth of new structures
and data coming from the boundary components of the 3-manifold in question. In light
of recent work by Kutluhan, Lee, and Taubes [23] in relating monopole Floer invariants
and Heegaard Floer invariants on closed 3-manifolds, one might ask what the form of a
"bordered monopole Floer theory" should be.

While this question is probably the most pertinent to ask given the current trends in
Floer homology theory, the main inspiration for this thesis came from trying to mimic the
construction of the instanton Floer homology theory of Salamon and Wehrheim [42] in the
monopole Floer setting. This latter work is a Floer homology theory for the pair of a 3-
manifold with boundary and a Lagrangian submanifold of the configuration space of SU(2)
connections on the boundary. In the instanton case, naturally occurring Lagrangians are
those that are obtained by specifying a Lagrangian submanifold of the moduli space of
flat SU(2) connections on the boundary surface. After some considerable analytic work,
Salamon and Wehrheim are able to show that the associated instanton Floer equations
with Lagrangian boundary conditions yield a well-defined Floer theory. That is, one can
construct a chain complex generated by gauge equivalence classes of solutions to these
equations, and the homology of this complex produces an invariant of our pair of data.

One of the goals of this thesis is to explore how the above story plays out for the
Seiberg-Witten equations. As we will explain in detail later on, the resulting analysis one
needs to perform, both in obtaining Lagrangian data for the equations on a manifold with
boundary and in studying the associated Floer boundary value problem on the cylinder,



become excruciatingly more difficult in the Seiberg-Witten case. (As if the instanton Floer
case were not difficult enough!) This is in sharp comparison to the case of a closed manifold,
in which case the Seiberg-Witten equations are more tractable than the instanton equations
due to their well-behaved compactness properties.

Nevertheless, we are able to prove a variety of results concerning the Seiberg-Witten
equations on manifolds with boundary. This includes proving strong analytic results for the
Seiberg-Witten equations supplied with Lagrangian boundary conditions, in particular that
the resulting equations are well-posed and obey certain compactness properties. These latter
results therefore constitute what is a detailed study of the analytic aspects surrounding a
particularly daunting boundary value problem. We leave the potential geometric fruits of
this work, which would be to complete the construction of a monopole Floer theory on
3-manifolds with boundary, to future study.

0.2 Outline of Contents and Results

We divide our study of the Seiberg-Witten equations on manifolds with boundary into four
major parts:

Part I. We begin by studying the Seiberg-Witten equations on a compact 3-manifold
with boundary. Here, we study these equations without imposing any boundary conditions,
and thus the resulting solution spaces and their boundary values are infinite-dimensional.
This makes the analysis very delicate, and because of certain analytic necessities regarding
its future applications to Floer homology, we are forced to perform our analysis within
a wider class of function spaces when specifying the Banach space topologies of our con-
figurations. Specifically, because we will end up considering boundary values of Sobolev
configurations with exponent p > 2, we are forced to work with Besov spaces, these latter
spaces being boundary value spaces of Sobolev spaces. Our main result, Theorem 1.1, shows
that the space of boundary values of all monopoles on a compact 3-manifold with boundary,
in Besov topologies, produces for us a Lagrangian submanifold of the boundary configura-
tion space. Some additional and rather nuanced analysis is also developed in Part I in order
to understand analytic properties of these Lagrangian that are fundamental to the boundary
value problem we study in Part III, which takes as input the Lagrangians obtained in Part I.

Part II. Next, we present work in progress on the Seiberg-Witten equations on a
3-manifold with cylindrical ends. Given the analysis of Part I, the main task is to under-
stand the asymptotic behavior of finite energy solutions on the ends. In contrast to the
abstract nature of Part I, which deals mainly with the abstract functional analytic nature
of elliptic boundary value problems and variants of the implicit function theorem, Part II
is a more concrete analysis of the Seiberg-Witten equations themselves. This is because
we are required to study the Seiberg-Witten equations on a cylindrical end [0, oo) x E as
a Morse-Bott flow of a Chern-Simons-Dirac functional on the surface E (obtained from the
Chern-Simons-Dirac functional on the 3-manifold S' x E by considering S' invariant con-
figurations), suitably interpreted in this infinite dimensional gauge-theoretic setting. While
such techniques are well documented in the instanton case (see [28], [9]), a translation of
this material into the Seiberg-Witten setting appears to be absent from the literature. (In
[21], only the Morse nondegenerate case is considered.) Via Theorems 7.2 and 7.6, one con-
clusion we arrive at is that the moduli space of finite energy monopoles on a semi-infinite
cylinder [0, oc) x E is weakly homotopy equivalent to a Hilbert bundle over the moduli



space of vortices (see [141) on the surface E. One should think of this moduli space as
the infinite-dimensional stable manifold of the critical set of the Seiberg-Witten flow on
[0, oo) x E.

At the conclusion of Part II, we piece together our analysis on a semi-infinite cylinder
with the results of Part I to study the general case of a 3-manifold Y with cylindrical ends.
We show that after a suitable perturbation of the Seiberg-Witten equations, the space of
finite energy monopoles on Y yields an immersed Lagrangian within the product of the
symplectic vortex moduli spaces associated to the ends. This result is a starting point for
setting up a relationship between the Seiberg-Witten equations on 3-manifolds with bound-
ary and Lagrangian correspondences between the vortex moduli spaces on the boundary.
We also explain how our work provides analytic foundations for Donaldson's TQFT inter-
pretation of the Seiberg-Witten invariants of a closed 3-manifold.

Part III. We now turn our study to the Seiberg-Witten equations on cylindrical 4-
manifolds supplied with Lagrangian boundary conditions. What we obtain are the equations
describing a Floer homology theory for the pair of a 3-manifold Y with boundary E and a
Lagrangian submanifold Z of the boundary configuration space on E. The resulting bound-
ary value problem is a nonlinear infinite-dimensional nonlocal boundary value problem and
is therefore highly nontrivial. Nevertheless, we are able to prove the typical results that
show that these equations are well-posed. Namely, we show that any weak solution to the
problem is gauge equivalent to a smooth solution, that the equations obey a weak form of
compactness (namely that any sequence of solutions uniformly bounded in an appropriate
Sobolev norm contains a subsequence convergent modulo gauge on compact sets), and that
the linearization of the equations in a suitable gauge yields a Fredholm operator. However,
there is still much work to be done in order to push the work done here to obtain a Seiberg-
Witten Floer theory on 3-manifolds with boundary. These issues are thoroughly discussed
in Part III.

Part IV. Finally, in the last part of this thesis, we give a thorough exposition of the
many tools and results from analysis that we use throughout this thesis (mainly Parts I and
III). Among these tools and results are the fundamental properties of a variety of function
spaces (classical function spaces, anisotropic function spaces, and vector-valued function
spaces), an interpolation result for (nonlinear) Lipschitz operators between Banach spaces,
and the calculus of (parameter-dependent) pseudodifferential operators in the context of
elliptic boundary value problems. We use these tools to derive some analytic results which
we need but which, to our knowledge, do not appear (at least explicitly) in the requisite
form in the literature. The latter two topics we just described, in particular, fill in some
analytic details that were omitted in [35]. Specifically, we prove Theorems 14.8 and 15.32.
In hindsight, it is surprising that we had to use such a vast array of analytic tools that
are not within the standard repertoire of most differential geometers, although this seems
to have been a necessary consequence of the unusual nature of the difficulties involved in
the Seiberg-Witten equations on manifolds with boundary (which we duly emphasize at the
places where they occur). From these considerations then, Part IV is written as a purely
analytic section in a sufficiently self-contained manner, both for the benefit of the reader
and also as a possible reference for independent use.

The appendix to the thesis contains some additional functional analysis that we need
in the thesis. These include basic properties of (symplectic) Banach spaces and their sub-
spaces as well as fundamental relationships between Lagrangian subspaces and self-adjoint



extensions of symmetric operators. The division between the material in Part IV and the

appendix is not a sharp one, the only conscious difference being that the material in Part IV
is developed in more technical detail and contains some results of a more specialized nature.

Note: Parts I and III are versions of the papers [34] and [35], respectively, that are adapted
to this thesis.



Part I

The Seiberg-Witten Equations on
a Compact 3-manifold with
Boundary

1 Introduction

The Seiberg-Witten equations, introduced by Witten in [58], yield interesting topological
invariants of closed three and four-dimensional manifolds and have led to many important
developments in low dimensional topology during the last 15 years. On a closed 4-manifold
X, the Seiberg-Witten equations are a system of nonlinear partial differential equations for
a connection and spinor on X. When X is of the form R x Y with Y a closed 3-manifold,
a dimensional reduction leads to the 3-dimensional Seiberg-Witten equations on Y. These
latter equations are referred to as the monopole equations. Solutions to these equations are
called monopoles. For both three and four-dimensional manifolds, the topological invariants
one obtains require an understanding of the moduli space of solutions to the Seiberg-Witten
equations. On a closed 4-manifold X, the Seiberg-Witten invariant for X is computed by
integrating a cohomology class over the moduli space of solutions. On a closed 3-manifold
Y, the monopole invariants one obtains for Y come from studying the monopole Floer
homology of Y. This involves taking the homology of a chain complex whose differential
counts solutions of the Seiberg-Witten equations on R x Y that connect two monopoles on
Y. For further background and applications, see e.g. [21], [29], [37].

In this thesis, we study the Seiberg-Witten equations on manifolds with boundary. In
Part I, we study the monopole equations on a compact 3-manifold with boundary, where no
boundary conditions are specified for the equations. Specifically, as is done in the case of a
closed 3-manifold, we study the geometry of the space of solutions to the monopole equa-
tions. However, unlike in the closed case, where one hopes to achieve a finite dimensional
(in fact zero-dimensional) space of monopoles modulo gauge, the space of monopoles on a
3-manifold with boundary, even modulo gauge, is infinite dimensional, since no boundary
conditions are imposed. Moreover, we study the space obtained by restricting the space of
monopoles to the boundary. Under the appropriate assumptions (see the main theorem),
we show that the space of monopoles and their boundary values are each Banach manifolds
in suitable function space topologies. We should emphasize that studying the monopole
equations on a 3-manifold with boundary poses some rather unusual problems. This is be-
cause the linearization of the 3-dimensional Seiberg-Witten equations are not elliptic, even
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modulo gauge. This is in contrast to the 4-dimensional Seiberg-Witten equations, whose
moduli space of solutions on 4-manifolds with boundary has been studied in [21]. What we
therefore have in our situation is a nonelliptic, nonlinear system of equations with unspec-
ified boundary conditions. We will address the nonellipticity of these equations and other
issues in the outline at the end of this introduction.

The primary motivation for studying the space of boundary values of monopoles is that
the resulting space, which is a smooth Banach manifold under the appropriate hypotheses,
provides natural boundary conditions for the Seiberg-Witten equations on 4-manifolds with
boundary. More precisely, consider the Seiberg-Witten equations on a cylindrical 4-manifold
R x Y, where BY = E, and let Y' be any manifold such that DY' = -E and Y' Ur Y is a
smooth closed oriented Riemannian 3-manifold. We impose as boundary condition for the
Seiberg-Witten equations on R x Y the following: at every time t E R, the configuration
restricted to the boundary slice {t} x E lies in the space of restrictions of monopoles on
Y', i.e., the configuration extends to a monopole on Y'. This boundary condition has its
geometric origins in the construction of a monopole Floer theory for the 3-manifold with
boundary Y. We discuss these issues and the analysis behind the associated boundary value
problem in Part III.

In order to state our main results, let us introduce some notation (see Section 2 for a
more detailed setup). So that we may work within the framework of Banach spaces, we
need to consider the completions of smooth configuration spaces in the appropriate function
space topologies. The function spaces one usually considers are the standard Sobolev spaces
Hk,p of functions with k derivatives lying in LP. However, working with these spaces alone
is inadequate because the space of boundary values of a Sobolev space is not a Sobolev
space (unless p = 2). Instead, the space of boundary values of a Sobolev space is a Besov
space, and so working with these spaces will be inevitable when we consider the space of
boundary values of monopoles. Thus, while we may work with Sobolev spaces on Y, we are
forced to work with Besov spaces on E. However, to keep the analysis and notation more
uniform, we will mainly work with Besov spaces on Y instead of Sobolev spaces (though
nearly all of our results adapt to Sobolev spaces on Y), which we are free to do since the
space of boundary values of a Besov space is again a Besov space. Moreover, since Besov
spaces on 3-manifolds will be necessary for the analysis in Part III, as 3-manifolds will arise
as boundaries of 4-manifolds, it is essential that we state results here for Besov spaces and
not just for Sobolev spaces. On the other hand, there will be places where we want to
explicitly restate1 our results on Besov spaces in terms of Sobolev spaces (we will need both
the Besov and Sobolev space versions of the analysis done in Part III), so that the separation
of Besov spaces from Sobolev spaces on Y is not completely rigid, see Remark 4.17. With
these considerations then, if Y is a 3-manifold with boundary E, consider the Besov spaces
B-'P(Y) and B8 'P(E), for s E R and p > 2. The definition of these spaces along with their
basic properties are summarized in Section 13. When p = 2, we have B', 2 = H,, 2 , the
usual fractional order Sobolev space of functions with s derivatives belonging to L2 (usually
denoted just H'). For p # 2, the Besov spaces are never Sobolev spaces of functions with s
derivatives in LP. The reader unfamiliar with Besov spaces can comfortably set p = 2 on a
first reading of Part I. Moreover, since we will be working with low fractional regularity, the

1 Besov spaces and Sobolev spaces are "nearly identical" in the sense of Remark 13.5, so that having
proven results for one of these types of spaces, one automatically obtains them for the other type.
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reader may also set s equal to a sufficiently large integer to make a first reading simpler.
Let Y be endowed with a spinc structure s. The spinc structure yields for us the

configuration space
ES'P(Y) - VS'P(Ys) := BS'P(A(Y) x F(S))

on which the monopole equations are defined. Here F(S) is the space of smooth sections
of the spinor bundle S = S(s) on Y determined by s, A(Y) = A(Y,s) is the space of
smooth spinc connections on S, and the prefix B"'P denotes that we have taken the BS'P(Y)
completions of these spaces. The monopole equations are defined by the equations

SW3 (B, ') = 0, (1.1)

where SW3 is the Seiberg-Witten map given by (2.2). Here, s and p are chosen sufficiently
large so that these equations are well-defined (in the sense of distributions). Define

9DSP(Y, s) = {(B, T) :E Es'P(Y, s) : SW 3 (B, T) = O} (1.2)

to be space of all solutions to the monopole equations in EY'P(Y). Fixing a smooth reference
connection Bref c A(Y), let

M4'P(Y, s) = {(B, T) :E ('P(Y, 5 ) : SW 3 (B, T) = 0, d*(B - Bref) = 0} (1.3)

denote the space of B'P(Y) monopoles in Coulomb gauge with respect to Bref.
On the boundary E, we can define the boundary configuration space in the BS'P(E)

topology,
S'P() ~- ES'P(E, s) B 8 'P(A(E) x F(SE)),

where SE is the bundle S restricted to E, and A(E) is the space of spinc connections on
SE. For s > 1/p, we have a restriction map

(B, IF) - (BIE, P IE) (1.4)

which restricts a connection B E A(Y) and spinor T E F(S) to E. Observe that when
p = 2, this is the usual trace theorem on H' spaces, whereby the trace of an element of
H5 (Y) belongs to H8- 1/2 (E). Thus, we can define the space of boundary values of the space
of monopoles

V"-I/P'P(Y, s) := rt(TT',P(Y, s)) C V"-'/PP(). (1.5)

We will refer to all the spaces 9iV', M8 'P, and L 1/1'P as monopole spaces.

The boundary configuration space C(E) carries a natural symplectic structure. Indeed,
the space E(E) is an affine space modeled on 9 1 (E;ilR) E F(Sr), and we can endow Q(E)
with the constant symplectic form

w((a, #), (b, V))) = a A b + j Re (#, p(v)@), (a, #), (b, V) E Q'(E; iR) E) F(SE).

(1.6)

Here, p(v) is Clifford multiplication by the outward unit normal v to E and the inner
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product on spinors is induced from the Hermitian metric on Sr. The symplectic form (1.6)
extends to a symplectic form on ( 0,2 (E), the L2 configuration space on the boundary. Since
VIP(') C 0 '2 (E) when s > 0 and p > 2, these latter spaces are also symplectic Banach

configuration spaces (in the sense of Section 19).
Let det(s) = A2S(s) denote the determinant line bundle of the spinor bundle and let

c1(s) = ci(det(s)) denote its first Chern class. Then under suitable restrictions on s and Y,
our main theorem gives us the following relations among our Besov monopole spaces 2:

Theorem 1.1 (Main Theorem) Let Y be a smooth compact oriented Riemannian 3-manifold
with boundary E and let s be a spine structure on Y. Suppose either ci(s) is non-torsion
or else H 1(Y, E) = 0. Let p > 2 and s > max(3/p, 1/2). Then we have the following:

(i) The spaces MRs''P(Y,s) and MA'P(Y, s) are closed3 Banach submanifolds of VY'P(Y).

(ii) If furthermore, s > 1/2 + 1/p, then -1/PP(Ys) is a closed Lagrangian submanifold
of v'- 1/P'P(EZ). The restriction maps

r 2 :91',P(Y, s) E- /P'P(Y, s) (1.7)

r M''P(Y,,s) -+ L ~/P'P(Y, s), (1.8)

are a submersion and covering map, respectively. The fiber of (1.8) is isomorphic to
the lattice H 1(Y, E). In particular, if H 1(Y, E) = 0, then (1.8) is a diffeomorphism.

(iii) Smooth configurations are dense in 9J1',P(Y,s), MP(Y,s), and E2-l/P'P(Y,s).

Thus, in particular, our main theorem tells us that our monopole spaces are smooth
Banach manifolds for a certain range of s and p. Let us make some remarks on the condition
s > max(3/p, 1/2). We need s > 3/p because then B'P(Y) embeds into the space C0(Y) of
continuous functions on Y. This allows us to use the unique continuation results stated in
Part IV. Unfortunately, for p < 3, this means we need s > 1, which does not seem optimal
since the monopole equations only involve one derivative. For p > 3, we can take s < 1,
in which case, the monopole equations are defined only in a weak sense (in the sense of
distributions). We consider this low regularity case because it arises in the boundary value
problem studied in Part III. Specifically, we will use the Lagrangian submanifold £s-1/pAP

as a boundary condition for the 4-dimensional Seiberg-Witten equations. Here, Lagrangian
means that every tangent space to C"/P'P is a Lagrangian subspace of the tangent space to

2The main theorem also holds with the Besov space B"'P(Y) on Y replaced with the function space
H" '(Y). The space H"'P(Y) is a known as a Bessel-potential space and for s a nonnegative integer,
H"'P(Y) = W 8 'P(Y) is the usual Sobolev space of functions having s derivatives in LP(Y), 1 < p < oo.
Thus, the H"'P(Y) can be regarded as fractional Sobolev spaces for s not an integer. See Section 13 and
Remark 4.17.

3For Banach submanifolds modeled on an infinite dimensional Banach space (see Definition 20.1), we
use the adjective closed only to denote that the submanifold is closed as a topological subspace. For finite
dimensional manifolds, closed in addition means that the manifold is compact and has no boundary. As an
infinite dimensional Banach manifold is never even locally compact, this distinction in terminology should
cause no confusion.
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Q.~1/P'P(E), i.e., the tangent space to LS-1/pAP is isotropic and has an isotropic complement
with respect to the symplectic form (1.6). The Lagrangian property is important because
it arises in the context of self-adjoint boundary conditions. These issues will be further
pursued in Part III. We should note that the analysis of the monopole equations needs to
be done rather carefully at low regularity, since managing the function space arithmetic that
arises from multiplying low regularity configurations becomes an important issue. In fact,
the low regularity analysis is unavoidable if one wishes to prove the Lagrangian property
for -1/P'P, since we need to understand the family of symplectic configuration spaces

s-1/P>P(E) as lying inside the strongly symplectic configuration space Ea,2 (E), the space of
L2 configurations on E (see Section 19 and also Remark 2.1). If one does not care about the
Lagrangian property, then the main theorem with s large can be proven without having to
deal with low regularity issues. At low regularity, the requirements s > 1/2 and s > 1/2+1/p
in the theorem are other technicalities that have to do with achieving transversality and
obtaining suitable a priori estimates for monopoles (see Section 4). Let us also note that
statement (iii) in the main theorem, which establishes the density of smooth monopoles in
the monopole spaces, is not at all obvious. Indeed, our monopole spaces are not defined
to be Besov closures of smooth monopoles, but as seen in (1.2), they arise from the zero
set of the map SW 3 defined on a Banach space of configurations. This way of defining
our monopole spaces is absolutely necessary if we are to use the essential techniques from
Banach space theory, such as the inverse function theorem. However, since our monopole
spaces are not linear Banach spaces, and since they are infinite dimensional modulo gauge,
some work must be done to show that a Besov monopole can be approximated by a smooth
monopole.

Let us make the simple remark that our theorem is nonvacuous due to the following
example:

Example. Suppose ci(s) is torsion. Then every flat connection on det(s) yields a solution of
the monopole equations (where the spinor component is identically zero). If H1 (Y, E) = 0,
the main theorem implies that the monopole spaces are smooth nonempty Banach mani-
folds. In fact, using Theorem 4.8, one can describe a neighborhood of any configuration in
the space of monopoles on Y, in particular, a neighborhood of a flat connection.

Our main theorem will be proven in Theorems 4.2 and 4.13. In addition to these, we
have Theorems 4.8 and 4.15, which describe for us certain smoothing properties of the local
chart maps of our monopole spaces. These properties are not only of interest in their own
right, since our monopole spaces are infinite dimensional Banach manifolds, but they will
play an essential role in Part III.

Finally, let us also remark that our methods, and hence our theorems, carry over straight-
forwardly if we perturb the Seiberg-Witten equations by a smooth coclosed 1-form r. That
is, we consider the equations

SW3 (B, 1I) = (r, 0). (1.9)

We have the following result:

Corollary 1.2 Suppose either c1(s) : 2[*?7] or else H 1(Y, E) = 0. Then all the conclu-
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sions of the main theorem remain true for the monopole spaces associated to the perturbed
monopole equations (1.9).

Thus, for any s, the corresponding perturbed spaces of monopoles will be smooth for generic
coclosed perturbations. Moreover, these monopole spaces will be nonempty for many choices
of rq, since given any smooth configuration (B, 'I) such that 'I lies in the kernel of DB, the
Dirac operator determined by B (see Section 2), we can simply define r/ to be the value of
SW3(B, T), in which case (B, T) automatically solves (1.9).

Outline: Part I is organized as follows. In Section 2, we define the basic setup for the
monopole equations on Y. In Section 3, we establish the foundational analysis to handle
the linearization of the monopole equations. This primarily involves understanding the
various gauge fixing issues involved as well as understanding how elliptic operators behave
on manifolds with boundary. The presence of a boundary makes this latter issue much more
difficult than the case when there is no boundary. Indeed, on a closed manifold, elliptic
operators are automatically Fredholm when acting between standard function spaces (e.g.
Sobolev spaces and Besov spaces). On the other hand, on a manifold with boundary,
the kernel of an elliptic operator is always infinite dimensional. To fully understand the
situation, we need to use the pseudodifferential tools summarized in Section 15, which allows
us to handle elliptic boundary value problems on a variety of function spaces, in particular,
Besov spaces of low regularity. From this, what we will find is that the tangent spaces to
our monopole spaces are given essentially by the range of pseudodifferential projections.
Having established the linear theory, we use it in Section 4 to study the nonlinear monopole
equations and prove our main results concerning the monopole spaces.

As we we pointed out earlier, the linearization of the 3-dimensional Seiberg-Witten equa-
tions are unfortunately not elliptic, even modulo gauge. To work around this, we embed
these equations into an elliptic system and use tools from elliptic theory to derive results
for the original equations from the enlarged system. This procedure is described in Section
3.3, where issues regarding ellipticity and gauge-fixing intertwine. Furthermore, when we
restrict to the boundary, passing from the enlarged elliptic system back to the original non-
elliptic system involves a symplectic reduction, and so there is also an important interplay
of symplectic functional analysis in what we do.

2 The Basic Setup

We give a quick overview of the setup for the Seiberg-Witten equations on a 3-manifold.
For a more detailed setup, see [21]. Let Y be a smooth compact oriented Riemannian 3-
manifold with boundary E. A spin' structure s on Y is a choice of U(2) principal bundle
over Y that lifts the SO(3) frame bundle of Y. The space of all spin' structures on Y
is a torsor over H'(Y; Z). Any given spin' structure s determines for us a spinor bundle
S = S(s) over Y, which is the two-dimensional complex vector bundle over Y associated
to the U(2) bundle corresponding to s. Endow S with a Hermitian metric. From this, we
obtain Clifford multiplication bundle maps p : TY - End(S) and p : T*Y -* End(S),
where the two are intertwined by the fact that the Riemannian metric gives a canonical
isomorphism TY a T*Y. The map p extends complex linearly to a map on the complexified
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exterior algebra of T*Y and we choose p so that p maps the volume form on Y to the
identity automorphism on S. This determines the spinor bundle S = (S, p) uniquely up to
isomorphism.

Fix a spinc structure s for the time being on Y. Only later in Section 4 will be impose
restrictions on s. A spinc connection on S is a Hermitian connection V on S for which
Clifford multiplication is parallel, i.e., for all T e F(S) and e E F(TY), we have V(p(e)') =
p(VLce) T + p(e)VIJ, where VLC denotes the Levi-Civita connection. Let A(Y) denote the
space of spinc connections A(Y) on Y. The difference of any two spinc connections acts on
a spinor via Clifford multiplication by an imaginary-valued 1-form. Thus, given any fixed
spin' connection B0 c A(Y), we can identify

A(Y) = {Bo + b: b E Q1(Y; iR)},

so that A(Y) is an affine space over Q'(Y; iR).

Let
C(Y) = T(Y, s) = A(Y) x F(S)

denote the configuration space of all smooth spinc connections and smooth sections of the
spinor bundle S. It is an affine space modeled on Q1(Y; iR) e F(S). By abuse of notation
we let the inner product (., -) denote the following items: the Hermitian inner product on S,
linear in the first factor, the Hermitian inner product on complex differential forms induced
from the Riemannian metric on Y, and finally the real inner product on Q1 (Y; iR) e F(S)
induced from the real part of the inner products on each factor.

The Seiberg-Witten equations on Y are given by the pair of equations

- * FBt -+ p-l (IFP*)o = 0
2 (2.1)

DBkP = 0,

where (B, T) E E(Y). Here Bt is the connection induced from B on the determinant line
bundle det(s) = A2 (S) of S, the element FBt E Q2 (Y, iR) is its curvature, and * is the
Hodge star operator on Y. For any spinor T, the term (JW*)o E End(S) is the trace-free
Hermitian endomorphism of S given by the trace-free part of the map p -+ (<p, IF) T. Since
p maps Q1 (Y; iR) isomorphically onto the space of trace-free Hermitian endomorphisms of
S, then p- 1 (TW*)o E Q1 (Y;iR) is well-defined. Finally, DR : F(S) -- F(S) is the spin'
Dirac operator associated to the spinc connection B, i.e., in local coordinates, we have
DB = p(ei)VB,e, where VB is the spinc covariant derivative associated to B and the
ej form a local orthonormal frame of tangent vectors.

Altogether, the left-hand side of (2.1) defines for us a Seiberg-Witten map

SW3 : f(Y) -+ Q (Y; iR) x F(S)

(B, I) -+ * Fat + p~1( I *)o, DB' . (2.2)

Thus, solutions to the Seiberg-Witten equations are precisely the zero set of the map SW 3.
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We will refer to a solution of the Seiberg-Witten equations as a monopole. Let

9R(Y, s) = {(B, Q) E T(Y) : SW 3 (B, T) = 0} (2.3)

denote the solution space of all monopoles on Y. Fixing a smooth reference connection
Bref c A(Y) once and for all, let

M (Y, s) = {(B, T) c E(Y) : SW 3(B, T) = 0, d*(B - Bref) 0} (2.4)

denote the space of all smooth monopoles that are in Coulomb gauge with respect to Bref.
Without any assumptions, the spaces 9J(Ys) and M(Ys) are just sets, but we will see
later, by transversality arguments, that these spaces of monopoles are indeed manifolds
under suitable assumptions on Y and s. Since &Y = E is nonempty and no boundary
conditions have been specified for the equations defining 9)(Y, s) and M (Y, s), these spaces
will be infinite dimensional, even modulo the full gauge group. Note that the space M (Y, s)
is obtained from 9(Y,s) through a partial gauge-fixing, see Section 3.1.

Let the boundary E be given the usual orientation induced from that of Y, i.e., if v is
the outward normal vector field along E and dV is the oriented volume form on Y, then

VLdV yields the oriented volume form on E. On the boundary E, we have the configuration
space

E(E) = A(E) x F(SE),

where SE is the bundle S restricted to E, and A(E) is the space of spin' connections on
Sy. We have a restriction map

rE : C(Y) -* E(E)

(B, T) (B~r Q t (2.5)

From this, we can define the space of (tangential) boundary values of the space of monopoles

L (Y, s) = rr (9J(Y, s)). (2.6)

Observe that the space L(Y, s) is nonlocal in the sense that its elements, which belong to

(E), are not defined by equations on E. Indeed, L(Y,s) is determined by the full Seiberg-
Witten equations in the interior of the manifold. This makes the analysis concerning the
manifold L(Ys) rather delicate, since one has to control both the space M(YS) and the
behavior of the map rE.

Ultimately, we want our manifolds to be Banach manifolds, and so we must complete
our smooth configuration spaces in the appropriate function space topologies. As explained

in the introduction, the topologies most suitable for us are the Besov spaces BsP(Y) and

Bs'P(E) on Y and E, respectively, where s E R and p > 2. These are the familiar HS

spaces when p = 2 and for p f 2, the Besov spaces are never Sobolev spaces, i.e., spaces
of functions with a specified number of derivatives lying in LP. Nevertheless, much of the
analysis we will do applies to Sobolev spaces as well, since the analysis of elliptic boundary
value problems is flexible and applies to a wide variety of function spaces. To keep the
notation minimal, we work mainly with Besov spaces and make a general remark at the

end about how statements generalize to Sobolev spaces and other spaces (see Remark 4.17).
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The Besov spaces, other relevant function spaces, and their properties are summarized in
Part IV. On a first reading, one ray set p = 2 and s a large number, say a large integer,
wherever applicable, so that the function spaces are as familiar as desired.

Thus, for p ;> 2 and s E R, we consider the Besov spaces B'P(Y) and B'P(E) of scalar-
valued functions on Y and E, respectively. These topologies induce topologies on vector
bundles over Y and E in the natural way, and so we may define the Besov completions of
the configuration spaces

ES'P(Y) = B'P(Y) closure of T(Y) (2.7)

-P(E) = B'P(E) closure of C(E). (2.8)

Of course, when defining Besov norms on the space of connections in the above, we have
to first choose a (smooth) reference connection, which then identifies the Besov space of
connections with the Besov space of 1-forms.

For s, p such that the Seiberg-Witten equations make sense on C'VP(Y) (in the sense of
distributions), we have the monopole spaces

J''P(Y,s) {(B, 1P) E ESP (Y) SW 3 (B, IF) = 0} (2.9)

M''P(Y,) = {(B, 1P) E s'P(Y) SW 3(B, I) = 0, d*(B - Bref) = 0.} (2.10)

in (E'P(Y). Observe that for the range of s and p that are relevant for us, namely p > 2 and
s > max(3/p, 1/2), the Seiberg-Witten equations are well-defined on 'FP(Y). This follows
from Corollary 13.14 and Theorem 13.18.

For s > 1/p, the restriction map (2.5) extends to a map

rE : EV'P(Y) V E-1/P'P(E), (2.11)

and so we can define
S-1/P'P(Y, := r(9RS'P(Ys)).

Having defined our monopole spaces in the relevant topologies, we now begin the study of
their properties as Banach manifolds. With s and Y fixed, we will often write 93(Y) or
simply 9N instead of 9R(Y, s). Likewise for the other monopole spaces.

Remark 2.1 In the remainder of Part I, we will be stating results for various values of s
and p. Unless stated otherwise, we will always assume

2 < p < oo. (2.12)

Many of the statements of Part I are phrased in such a way that the range of permissible
s and p is quite large and moreover, several topologies are often simultaneously involved
(e.g. Lemma 3.4). This is not merely an exercise in function space arithmetic and there are
several important reasons for stating our results this generally.

First, we will need to work in the low regularity regime with s < 1 for applications in Part
III. In particular, when a first order operator acts on a configuration with regularity s < 1,
we obtain a configuration with negative regularity and hence our results must be stated
in enough generality to account for this. Second, as mentioned in the introduction, the
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Lagrangian property of C-'/PP, even at high regularity (i.e. large s), requires an analysis

of the C'-/PP at low regularity. Indeed, among all the spaces t'P(E), only Co, 2 (E) is

modeled on a strongly symplectic Hilbert space (see Section 19), and we will need to study

all the symplectic spaces (V'P(E), s > 0, as subspaces of the space Q0, 2 (E). Thus, in
a fundamental way, we will generally be considering multiple topologies simultaneously.

Observe that from these considerations, it is necessary to have the pseudodifferential tools
summarized in Section 15. Indeed, we need to understand elliptic boundary value problems
at low (even negative) regularity, and furthermore, we have to deal with the fact that there
is no trace map tl/2,2 (y) _ Qo,2p

Hence, it is natural to state our results for a range of s and p that are as flexible as

possible. In fact, based on the function space arithmetic alone, many of the proofs involved
are natural for the range s > 3/p say (since then BS'P(Y) is an algebra), and it would be

unnatural to restrict the range of s based on the particular applications we have in mind.
Finally, it may be desirable to sharpen the range of s and p considered in Part I and so we
try to state our results in a sufficiently general way at the outset.

Notation. Given any space X of configurations over a manifold X = Y or E, we write
B8 'PX to denote the closure of X with respect to the BS'P(X) topology. We define LPX,
COX, and H8 'PX similarly. For brevity, we may refer to just the function space which defines
the topology of a configuration, e.g., if X is a space of configurations on Y, we may say an

element u E B8 'PX belongs to B5'P(Y) or just B8'P for short. If E is a vector bundle over
a space X, we write B"'P(E) as shorthand for Bs'PF(E), the closure of the space F(E) of
smooth sections of E in the topology B8 'P(X). If X has boundary, we write Eax to denote
Elax, the restriction of the bundle E to the boundary 0X.

From now on, we will make free use of the basic properties of the function spaces em-
ployed in Part I (multiplication and embedding theorems in particular), all of which can be

found in the Part IV.

3 Linear Theory

To study our monopole spaces, we first study their linearization, that is, their formal tangent

spaces. This involves studying the linearization of the Seiberg-Witten map. Furthermore,
since we have an action of a gauge group, we must take account of this action in our frame-

work. This section therefore splits into three subsections. In the first section, we study the

gauge group and how it acts on the space of configurations. Next, we study how this action

decomposes the tangent space to the configuration space into natural subspaces. Finally, we

apply these decompositions to the study of the linearized Seiberg-Witten equations, where

modulo gauge and other modifications, we can place ourselves in an elliptic situation.

3.1 The Gauge Group

The gauge group g 9(Y) = Maps(Y, Sl) is the space of smooth maps g : Y -+ S', where

we regard S= {e= 9 E C : 0 < 0 < 27r}. Elements of the gauge group act on E(Y) via

(B, T) + g*(B, T) = (B - g- 1 dg, g x). (3.1)
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It is straightforward to check that the Seiberg-Witten map SW 3 is gauge equivariant (where
gauge transformations act trivially on Q'(Y; iR)). In particular, the space of solutions to
the Seiberg-Witten equations is gauge-invariant.

The gauge group decomposes into a variety of important subgroups, which will be im-
portant for the various kinds of gauge fixing we will be doing. First, observe that 7ro (g),
the number of connected components of g, satisfies

7ro(9) e H 1(Y; 27ri7Z). (3.2)

The correspondence (3.2) is given by

g [g- dg|, (3.3)

where the latter denotes the cohomology class of the closed 1-form g-ldg. Among subgroups
of the gauge group, one usually considers the group of harmonic gauge transformations, i.e.,
gauge transformations such that g-'idg c ker d*. However, on a manifold with boundary,
ker(d + d*) is infinite dimensional and we need to impose some boundary conditions.

On a manifold with boundary, Hodge theory tells us that we can make the following iden-
tifications between cohomology classes and harmonic forms with the appropriate boundary
conditions4

H'(Y; R) {a Q1 (Y) da = d*a = 0, *al = 0} (3.4)

H'(Y, E; R) a {c E Q'(Y) :da = d*a = 0, afr = 0.}. (3.5)

In fact, we have two different Hodge decompositions, given by

Q1 (Y) = im d eD im *d, (D H1 (Y; R) (3.6)

= im dt E) im *d (D H1(Y, E; R). (3.7)

where

d, : {a E Q'(Y) : *ajl = 0} - Q2 (Y) (3.8)

dt : {a E Qo(Y) : aIE = 0} - G'(Y). (3.9)

Any gauge transformation g in the identity component of the gauge group gid(Y) lifts to
the universal cover of S' and so it can be expressed as g = e for some (E )0 (Y; iR).
For such g, we have g-idg = d, and thus we see that g/gi is isomorphic to the integer
lattice inside ker d/im d, which establishes the correspondence (3.2). Corresponding to the
two cohomology groups (3.4) and (3.5), we can consider the following two subgroups of the

4 For a differential form a over a manifold X with boundary, alox always denotes the differential form
on OX obtained via the restriction of those components tangential to OX. Otherwise, given a section u of a
general vector bundle over X, ulx denotes the restriction of u to the boundary, which therefore has values
in the bundle restricted to the boundary. This clash of notation should not cause confusion since it will
always be clear which restriction map we are using based on the context.
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harmonic gauge transformations

9h,.(Y) = {g9 E : g-ldg E ker d*, *dglE = 0} (3.10)

gh,a(Y) = {g E 9 g-ldg c kerd*,glE = 1}. (3.11)

The group (3.10) is isomorphic to Si x H1 (Y; Z), where the S1 factor accounts for constant
gauge transformations, and the group (3.11) is isomorphic to the integer lattice H 1 (Y, E; Z)
inside (3.5).

Next, we have the subgroup

9 1 (Y) = {e E gid : = 0}.

Thus, identifying constant gauge transformations with S', we have the decompositions

gid(Y) = S1 X 91 (y)

9(Y) = 9h,n(Y) x 91 (Y).

We have the following additional subgroups of the gauge group consisting of gauge trans-
formations whose restriction to the boundary is the identity:

ga(Y) = {g E 9(Y) : g = 1} (3.12)

gid,a(Y) = 9ia(Y) n ga(Y) (3.13)

Thus, we have
ga(Y) = gh,a(Y) x gid,(Y) (3.14)

and
Tidgid,a(Y) ={ E Qo(Y; iR) : (le = 0}. (3.15)

Since we consider the completion of our configuration spaces in Besov topologies, we
must do so for the gauge groups as well. Thus, let g9'P(Y) denote the completion of 9(Y)
in B8 'P(Y) and similarly for the other gauge groups.

Lemma 3.1 For s > 3/p, the BS'P(Y) completions of 9(Y) and its subgroups are Banach
Lie groups. If in addition s > 1/2, these groups act smoothly on V-1'P(Y).

Proof For s > 3/p, the multiplication theorem, Theorem 13.18, implies BS'P(Y) is
a Banach algebra. Thus, !9'P(Y) is closed under multiplication and has a smooth expo-
nential map. The second statement follows from (3.1), Theorem 13.18, and the fact that
d : Bs'P(Y) -+ Bs-l'PQ1(Y) for all s e R by Corollary 13.14. Here the requirement s > 1/2
comes from the fact that we need s + (s - 1) > 0 in Theorem 13.18. E

Fix a smooth reference connection Bref. From this, we obtain the Coulomb slice and
Coulomb-Neumann slice through Bref, given by

C"Pg(Y) ={(B, T) C C"'P(Y) : d*(B - Bref) 0} (3.16)

tc(Y) ={(B, T) E c'P : d*(B - Bref) =(B - BB - Brer)| = 0}, (s > 1/p) (3.17)
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respectively. The next lemma tells us that we can find gauge transformations which place
any configuration into either of the above slices.

Lemma 3.2 Let s+1 > max(3/p, 1/2). The action of the gauge group gives us the following
decompositions of the configuration space:

(i) We have5

Vl'p() .- Gs"P('Y) x Q 8 (Y). (3.18)

(ii) Suppose in addition s > 1/p. Then we have

VSP(y) = gs+"P(Y) x Csg?(Y). (3.19)

Proof (i) Since s+1 > max(3/p, 1/2), the previous lemma implies g'+(Y) is a Banach

Lie group and it acts on t!'P(Y). If u = e E G'" puts a configuration (Bref + b, T) intoid,a
the Coulomb slice through Bref, then ( satisfies

( A =d*bcBS-l'P(Y;iR), (3.20)
(|E = 0.

The Dirichlet Laplacian is an elliptic boundary value problem and since s + 1 > 1/p, we
may apply Corollary 15.22, which shows that we have an elliptic estimate

|VBs+1,P C( ACJB,P + 11 0 BS'P)

for ( satisfying (3.20). A standard computation shows that the kernel and cokernel of
the Dirichlet Laplacian is zero, and so we have existence and uniqueness for the Dirichlet
problem. This implies the decomposition.

(ii) The analysis is the same, only now we have a homogeneous Neumann Laplacian
problem for (: { A( =d*bEB-l'P(Y;iR) (3.21)

*d(|E = *b E E Bs-/P'PQ(E; iR).

Since the Neumann Laplacian is an elliptic boundary value problem, we can apply Corollary
15.22 again. The inhomogeneous Neumann problem A = f and B,( = g has a solution if
and only if fy f + fr g = 0, and this solution is unique up to constant functions. Since we
always have fy d*b + fj *b = 0, then (3.21) has a unique solution ( E Bs+1 ,P(Y) subject to
fy (= 0. The decomposition now follows. n

In light of Lemma 3.2, we can regard the quotient of t"'P(Y) by the gauge groups
Gs+"p and s"P as subspaces of V'P(Y), namely, those configurations in Coulomb and
Coulomb-Neumann gauge with respect to Bref.

5 The direct products appearing in (3.18) and (3.19) mean that the gauge group factor acts freely on the
subspace appearing in the second factor so that the space on the left is equal to the resulting orbit space
obtained from the right-hand side.
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Remark 3.3 In gauge theory, one usually also considers the quotient of the configuration
space by the entire gauge group. In our case (which is typical) the quotient space is singu-
lar since different elements of the configuration space have different stabilizers. Namely, if
(B, T) E E(Y) is such that T # 0, then it has trivial stabilizer, whereas if XP =_ 0, then it
has stabilizer S1 , the constant gauge transformations. In the former case, such a configu-
ration is said to be irreducible, otherwise it is reducible. We will not need to consider the
quotient space by the entire gauge group in Part I, and we will only need to consider the
decompositions in Lemma 3.2.

3.2 Decompositions of the Tangent Space

The action of the gauge group on the configuration space induces a decomposition of the
tangent space to a configuration (B, IF) into the subspace tangent to the gauge orbit through
(B, T) and its orthogonal complement. More precisely, let

7
TB,fl :-:) T(B,,V)C(Y) = Q1 (Y; ilk) @ F(S) (3.22)

be the smooth tangent space to a smooth configuration (B, T). Define the operator

d(B,Q) Q(Y; iR) B,)

$ a (-d(, (), (3.23)

and let

J(B,T) := imd(B,) C ,) (3.24)

be its image. Then observe that J(B,r) is the tangent space to the gauge orbit at (B, T).
Indeed, this follows from differentiating the action (3.1) at the identity. We also have the
adjoint operator

d* Q,0 :3,) 0(Y; iR)

(b, 4) s -d* b + iRe (iW, T ), (3.25)

and we define the subspace

)C(B,Q) ker d* ,p) C 7 sjI). (3.26)

On a closed manifold, K(Bp) is the L2 orthogonal complement of im d(BW). In this case, the
orthogonal decomposition of 7

7B,F) into the spaces J(B,,) and K(B,p) plays a fundamental
role in the analysis of [21]. In our case, since we have a boundary, we will impose various
boundary conditions on these spaces, and the resulting spaces will play a very important
role for us too. Moreover, we will take the appropriate Besov completions of these spaces.

Thus, let (B, T) E &tq(Y) be any configuration of regularity Btq(Y), where t E R and
q > 2. For s c R and p > 2, let

T78 := B"'9P(Q1 (Y; iR) e F(S)) (3.27)

be the Besov closure of 7TB,,). It is independent of (B, kI) and is equal to the tangent space
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T(B,IV)"'P(Y) when (s, p) = (t, q). So long as we have bounded multiplication maps

Bt,q(Y) x B+ 1',P(Y) - Bs'P(Y) (3.28)

Bt4(Y) x B"'P(Y) -- B" 1 'P(Y), (3.29)

then we can define maps

d(BTy : Bs+1,PPo(Y; iR) T"'P

( (- d , ( I),

d*as : T("pe B8-1'PQ0(Y; iR)

(b, @) a -d*b + iRe (iI,4@),

respectively. In particular, if (t, q) (s,p) and s > 3/p, then by Theorem 13.18, the
multiplications (3.28) and (3.29) are bounded.

Thus, when (3.28) and (3.29) hold, define the following subspaces of T":

ITS1 ) = im (d(,) Bs+1,PQo(Y; iR) - 7" (3.30)

1T$' = {(-dd, (4') E 784 J = 0} (3.31)

L = {(-d,, () E = O} (3.32)

KPIV) = ker (d*B) : TSP-+ B-l'PQO(Y; iR)) (3.33)

(B,),n = (b, ) ,) *b = 0}. (3.34)

Observe that when (B, T) E S'P(Y), then jSP'" J8 "g are the tangent spaces to

the gauge orbit of (B, IF) in VIP determined by the gauge groups 8+1,P(Y), g 1 lP(Y), and

g+1,P(Y), respectively. Note that the subscript t appearing in f("p is a label to denote
that the (tangential) restriction of ( to the boundary vanishes; it is not to be confused with
a real parameter. This is consistent with the notation used in (3.9). Likewise, the subscript
n appearing in K and (3.8) denotes that the elements belonging to these spaces have
normal components for their 1-form parts equal to zero on the boundary. We also have the
linear Coulomb and Coulomb-Neumann slices:

CsP - {(b, @) E T b = 0} (3.35)
(BIT) =-E'18''P

( = E{(bE, ) ETCqS : d*b 0, *bJE = 0}. (3.36)

The following lemma is essentially the linear version of Lemma 3.2. The statement is
only mildly more technical in that one may consider the basepoint (B, T) and the tangent
space TB,') in different topologies. We do this because we will need to consider topologies
on T(B,'I) that are weaker than the regularity of (B, xI), which occurs, for example, when we
apply differential operators to elements of T8"' when (B, T) E ES'P(Y), thereby obtaining'(B,'q')

spaces such as T(* P. These spaces and their decompositions will become important for
us in the next section, when we study the linearized Seiberg-Witten equations and try to
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recast them in a form in which they become elliptic.

Lemma 3.4 Let s + 1 > 1/p and let (B, 9) E &I (Y), where t > 3/q, q > 2 are such that
(3.28) and (3.29) hold. In particular, if q = p, then we need t > s and t > max(-s, 3/p).

(i) We have the following decompositions:

(r ~ I ,t IC,9)p (3.37)

7(B,,) 71 ( C ). (3.38)

(ii) If in addition s > 1/p, then

(e) ( Cp (8 . (3.39)

If IF % 0, then furthermore

(Be ,QD ),n. (3.40)

Proof We first prove (3.37). Given (b, b) E TI consider the boundary value prob-
lem

A(B,T)( = f E B-1P(Y; iR) (3.41)
(|E =0,

where f = d* Bb and

A(B) := d= 2 (3.42)

We have d b E B- 1 'P(Y; iR) since we have a bounded multiplication B''P(Y) x B'P(Y) -+

Bs- 1 'P(Y) by the hypotheses. Likewise, since we have a bounded map B''P(Y) x Bs+1P(Y)
B-'P(Y), we see that multiplication by |p|2 c Bt'P(Y) is a compact perturbation of A
Bs+1,P(Y) -+ Bs-l'P(Y). Thus, the Dirichlet boundary value problem (3.41) is Fredholm
for s + 1 > I1/p (where the requirement on s is so that Dirichlet boundary conditions make
sense, cf. Corollary 15.22). Moreover, since jI W2 is a positive multiplication operator, a
simple computation shows the existence and uniqueness of (3.41). Indeed, if Aa = -|p|2a
and alE = 0, then repeated elliptic boostrapping for the inhomogeneous Dirichlet Laplacian
shows that a E Bt+ 2 q (Y) C B 2,2 (Y) since t > 0 and q > 2. Then

0 = (A(BT)a, a) = Vafl2 2 (y) + HaHL2(y),

which implies a is constant. Hence, a= 0 since alW = 0. Thus, (3.41) has no kernel
and since the adjoint problem of (3.41) is itself, we see that (3.41) has no cokernel as well.
Thus, the existence and uniqueness of (3.41) is established. Let A- denote the solution(B , qJ),t

map of (3.41). We have shown that A- : Bs-l'P(Y) -+ BS+1,P(Y) is bounded. The

projection onto V(IP9) through VCP is now seen to be given by

S = d(Bq,)A B,))td (3.43)
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and it is bounded on Ts'g since d(B,Q) : Bs+1,PQO(Y;iR) -+ BI'PQ'(Y;iR) is bounded.(B, IP)S

This gives us the decomposition (3.37). Similarly, we get the decomposition (3.38) if we
replace ALB,T) with A in the above.

For (ii), if we consider the inhomogeneous Neumann problem for A(B,,P) instead of the
Dirichlet problem, proceeding as above yields (3.40), since when T # 0, a similar com-
putation shows that we get existence and uniqueness. Here, we need s > 1/p so that
s + 1 > 1 + 1/p and the relevant Neumann boundary condition makes sense. Similarly,
considering the inhomogeneous Neumann problem for A yields (3.39). El

For any s, t E R, we can define the Banach bundle

T'PW(Y) 4 QtpJ(y) (3.44)

whose fiber over every (B, T) E CI'P(Y) is the Banach space T"'"i. Of course, all the T("P

are identical, so the bundle (3.44) is trivial. If s = t, then (3.44) is the tangent bundle of
Et'P(Y). If s, t satisfy the hypotheses of the previous lemma, decomposing each fiber T")
according to the decomposition (3.37) defines us Banach subbundles of T8 'P(Y). This is the
content of the below proposition, where we specialize to a range of parameters relevant to
the situations we will encounter later, e.g., see Lemma 4.1.

Proposition 3.5 Let s > 3/p. If max(-s, -1 + 1/p) < s' < s, then the Banach bundles

K8'P(Y) -+ C"'7),

whose fibers over (B, 'I) c VYP(Y) are 3 and K (',I)' respectively, are complementary

subbundles of T''P(Y).

Proof The restrictions on s and s' ensure that we can apply Lemma 3.4. From this,
one has to check that the resulting decomposition

(B,) (B,)t (B,'I)

varies continuously with (B, qI) E (s'P(Y). For this, it suffices to show that the projection

II js' given by (3.43), with range XBp, and kernel K , varies continuously with
(B,T),t

(B, T) E VSP(Y). Once we prove that Jt, 'P(Y) is a subbundle, it automatically follows that
K"'P(Y) is a (complementary) subbundle, since then the complementary projection

IIB,', =I1 - US" (3.45)
(BP) 7(B, q), t

onto K5 " varies continuously with (B, 9).(B,TI)

From the multiplication theorem, Theorem 13.18, since

A(B,,y : f{ C B'+,P(Y; iR) : (| =0} -+ Bs'-'P(Y;iR)



3. LINEAR THEORY

varies continuously with (B, qI) E B8 'P(Y) and is an isomorphism for all (B, I), its in-

verse A-' also varies continuously. Likewise, d : -+ B8'--lPQO(Y;iR) and(B , 'I),t ( J BT

d(B,9) : Bs'+1,PQo(Y, iR) - T' vary continuously with (B, T) E ('P(Y). This estab-

lishes the required continuity of 1-I = d(d,*)A- d with respect to (B, T). R
'(B, )(B 

B

The Banach bundle K/''P(Y), with s' = s - 1 will be used to establish transversality
properties of the Seiberg-Witten map SW3 , see Theorem 4.2.

3.3 The Linearized Seiberg-Witten Equations

In this section, we study the linearization of the Seiberg-Witten map SW 3 to prove basic
properties concerning the (formal) tangent space to our monopole spaces on Y and their
behavior under restriction to the boundary. If the linearization of the Seiberg-Witten equa-
tions were elliptic, this would be quite straightforward from the analysis of elliptic boundary
value problems, the relevant results of which are summarized in Part IV. However, because
the Seiberg-Witten equations are gauge-invariant, its linearization is not elliptic and we have
to do some finessing to account for the gauge-invariance. To do this, we make fundamental
use of the subspaces and decompositions of the previous section.

Before we get started, let us note that our main theorem of this section, Theorem 3.13,
proves a bit more than what is needed to prove our main theorems. Indeed, it is mostly
phrased in such a way that the results of this section can be tied into the general framework
of the pseudodifferential analysis of elliptic boundary value problems in Section 15.3 (see
the discussion preceding Theorem 3.13). Moreover, some of the consequences of Theorem
3.13 will only be put to full use in Part III. Thus, the reader should regard this section
as a general framework for studying the Hessian and augmented Hessian operators, (3.50)
and (3.54), whose kernels are equal to the tangent spaces to 91 and M, respectively, via
(3.51) and (3.55). Much of this framework consists in the construction of pseudodifferential
type operators associated to the Hessian and augmented operators, namely the Calderon
projection and Poisson operators, see Lemma 3.12 and Definition 3.14. For the augmented
Hessian, an elliptic operator, these operators are defined as in Definition 15.15, and for the
non-elliptic Hessian, they are defined by analogy in Definition 3.14. In a few words, the
significance of these operators is that they relate the kernel of the (augmented) Hessian
with the kernel's boundary values in a simple and uniform way across multiple topologies.
This is what allows us to relate the tangent spaces to 9N and M with the tangent spaces to
L, the latter being the boundary values of the kernels of the Hessian operators via (3.52).
Unfortunately, the infinite dimensional nature of all spaces involved and the presence of
multiple topologies makes the work we do quite technical. As a suggestion to the reader, it
would be best to first absorb the main ideas of Section 15.3 and to understand the state-
ments of Lemma 3.12 and Theorem 3.13 before plunging into the details.

Let

T = Q1 (Y; iR) eD r(S) (3.46)

be a fixed copy of the tangent space 7 3,9) = T(B,,)1(Y) to any smooth configuration
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(B, T) E C(Y). 6 Thus, all the subspaces of 7 B,W), namely J(B,W), k(B,I), and their asso-
ciated subspaces defined in the previous section, may be regarded as subspaces of T that
depend on a configuration (B, 4) e C(Y). We let

C = {(b, @) E T: d*b = 0} (3.47)

denote the Coulomb-slice in T. Likewise, let

T = Q'(E; iR) D I'(SE) (3.48)

denote a fixed copy of the tangent space to any smooth configuration of C(E). The restriction
map (2.5) on configuration spaces induces a restriction map on the tangent spaces

rr:T - E

(b,,O) (bJE, 01E). (3.49)

From (2.2), the linearization of the Seiberg-Witten map SW3 at a configuration (B, 4) E
E(Y) yields an operator

(B,) T

H(B, ) (*d 2iImp- 1(-4*)) (3.50)
NBW= (.) ID DB (.0

which acts on the tangent space T to (B, 4'). We call the operator 7 (B,'I) the Hessian.7

The Hessian operator is a formally self-adjoint first order operator. For any monopole
(B, 4') c SW31 (0), we (formally) have that the tangent spaces to our monopole spaces 9A
and L are given by

T(B,9)9N = ker R(B, 1 ) (3.51)

Tr (B,9p)IC = rT(ker 7t(B,P)). (3.52)

Indeed, this is just the linearization of (2.3) and (2.6). Thus, understanding 9N and L at
the linear level is the same as understanding the kernel of R(B,W)-

Unfortunately, 7 1(B,I) is not elliptic, which follows from a simple examination of its
symbol. In fact, this nonellipticity follows a priori from the equivariance of the Seiberg-
Witten map under gauge transformations. In particular, since the zero set of SW 3 is gauge-
invariant, then the linearization 7i(Bq) at a monopole (B, 4) annihilates the entire tangent
space to the gauge orbit at (B, T), i.e., the subspace J(B,P) C T. Furthermore, even if we
were to account for this gauge invariance by say, placing configurations in Coulomb-gauge,
i.e., if we were instead to consider the operator 7L(B,,P) D T -* T e QO(Y; iIR), we still
would not have an elliptic operator in the usual sense.

6 There is no real distinction between T and a particular tangent space TBql) to a configuration, since
C(Y) is an affine space. However, when we study the spaces 9Y and M as subsets of E(Y) in Section 4, we
will reintroduce base points when we have a particular tangent space in mind. For now, we drop basepoints
to minimize notation.

7 0n a closed manifold, 7R(B,) would in fact be the Hessian of the Chern-Simons-Dirac functional, see
[21].
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However, there is a simple remedy for this predicament. Following [21], the operator

7i(B,,) naturally embeds as a summand of an elliptic operator. Namely, if we enlarge the
space T to the augmented tangent space

ij : = T D 00(Y; iR), (3.53)

then we can consider the augmented Hessian8

S;q(,qj - (= F d . (3.54)

The augmented Hessian is a formally self-adjoint first order elliptic operator, as one can
easily verify. This operator takes into account Coulomb gauge-fixing via the operator d*
Q1 (Y;iR) -+ Q0 (Y;iR), while ensuring ellipticity by adding in the adjoint operator d
Q0 (Y;iR) - Q'(Y;iR). The advantage of studying the operator 7 ((B,IJ) is that we may

apply the pseudodifferential tools from Section 15.3 to understand the kernel of 7
l(B,,) and

its boundary values. Moreover, have (formally) that

T(B,Q)M = ker(7(B,w)IT). (3.55)

The space of boundary values for T is the space

Tr E 0 (E; iR) D Q 0 (E; iR). (3.56)

Indeed, one can see that T r, T via the full restriction map r : T - T given by

r :Q 1(Y;iR)e F(S) eQ 0(Y;iR) - Q1(E;iR)e F(S)E)eQ0 (E;iR)QeQ0 (E;iR)

(b,@, a) (bjE,V@|r,,-b(v), ajr), (3.57)

where in (3.57), the term b(v) denotes contraction of the 1-form b with the outward normal
v to E. Thus, the two copies of Qa(E; iR) in t are meant to capture the normal component
of Q1(Y; iR) and the trace of Qa(Y; iR) along boundary. The map rr : T - T, appears as
the first factor of the map r, and it is the tangential part of the full restriction map. Since
we can regard T C T, then by restriction, the map r also maps T to Tr.

As usual, we can consider the Besov completions of all the spaces involved. Thus, we
have the spaces

C",T' , "-',p T', T'P

which we use to denote the B8 'P completions of their corresponding smooth counterparts.
The restriction maps rr and r extend to Besov completions in the usual way. We also have

81n [21], the operators d(B,,) and d*,) are used in the definition of '(AB,q) instead of -d and -d*,
respectively. Our definition reflects the fact that we will work with Coulomb slices C(B,T) instead of the

slices /C(B,q) inside T. The presence of the minus signs on -d and -d* in R(B,P) lies in the relationship

between ii(B,p) and the linearization of the 4-dimensional Seiberg-Witten equations, see Part III. Thus, the
augmented Hessian operator is not an ad-hoc extension of the Hessian operator, but is tied to the underlying
geometry of the problem.
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the spaces J(') CI and their subspaces from the previous section, which we may all
regard as subspaces of T',P.

The plan for the rest of this section is as follows. First, we investigate the kernel of the
elliptic operator W(B,qp). We do this first for smooth (B, T), in which case the tools from
Section 15.3 apply, and then we consider nonsmooth (B, T), in which case modifications
must be made. Here, one has to keep track of the function space arithmetic rather carefully.
Next, we will relate the kernel of 7 (B,P) to the kernel of W(B,*) and see how these spaces
behave under the restriction maps r and rr, respectively. For this, we place these results
under the conceptual framework of Section 15.3 by way of using the Calderon projection
and Poisson operator associated to an elliptic operator. For the Hessian 7 1(B,q), the main
technical issue here is its non-ellipticity (i.e. gauge-invariance). The results of our analysis
are summarized in the main theorem of this section, Theorem 3.13.9

T = T D 0 0(Y; iR)I
T >T = Q1 (Y; iR) (D F(S)

(3.58)

r > T2 = T, e Q0(E; iR) E Q 0(E; iR)

T Tr>,T= Q'(E; iR) (Dr(Sr,)

In studying the augmented Hessian operators ?I(BWP) for smooth (B, P) E E(Y), observe
that they all differ by bounded zeroth order operators. Indeed, if we write (b, ') = (B 1, WI' )-
(Bo, To), then

(B1,1i) ~ i(Bo,o) = (b, ,)#

where (b,@)# is the multiplication operator given by

(b, V))# : T -+ T

(b', 0') F-- (2iIm p-1 ('@1*)o, p(b)V)'). (3.59)

In general, we will use # to denote any kind of pointwise multiplication map. Let Bref be

9 The complexity of the function space arithmetic in this section can minimized if one does not care about
the symplectic properties of the spaces involved, namely, the Lagrangian properties in Lemma 3.11 and
Theorem 3.13(i). See Remark 3.10.
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our fixed smooth reference connection. Define

o := (Brf,o)

Ddgc e DBrof (3.60)

where DB,,f : F(S) -* F(S) is the Dirac operator on spinors determined by Bref and Ddgc
is the div-grad curl operator

Ddge =(* d ' Y i R) 6 Q0o(Y; g) 0 (3-61)

The operator Ddgc is also a Dirac operator. Thus, the operator 1-o is a Dirac operator and

every other N(B,) is a zeroth order perturbation of No. Our first objective therefore is to

understand the operator Nqo.
Let us quickly review some basic properties about general Dirac operators. Let D be

any Dirac operator acting on sections F(E) of a Clifford bundle E over Y endowed with a
connection compatible with the Clifford multiplication. Here, by a Dirac operator, we mean
any operator equal to "the" Dirac operator on E (the operator determined by the Clifford
multiplication and compatible connection) plus any zeroth order symmetric operator. Let

(.,.) denote the (real or Hermitian) inner product on E. Working in a collar neighborhood
of [0, c] x E of the boundary, where t c [0, E] is the inward normal coordinate, we can identify
F(EI[0o,6]x) with F([0, E], F(Er)), the space of t-dependent sections with values in F(EE).
Under this idenfication, we can write any Dirac operator D as

d
D = Jt - + Bt +C , (3.62)

dt

where Jit, Bt, and Ct are t-dependent operators acting on F(Er). The operator Jt is a skew-
symmetric bundle automorphism satisfying J2 = -id, the operator Bt is a first order elliptic
self-adjoint operator, and Ct is a zeroth order bundle endomorphism.

Definition 3.6 We call B0 F(EE) -* I(EE) the tangential boundary operator associated
to D.

Observe that the above definition is only well-defined up to a symmetric zeroth order
term. By abuse of terminology, we may also refer to the family of operators Bt in (3.62) as
tangential boundary operators as well.

The significance of the decomposition (3.62) is that the space of boundary values of the
kernel of D is, up to a compact error, determined by the operator B0 . More precisely, we
have the following picture. Since B0 is a first order self-adjoint elliptic operator, the space
F(EE) decomposes as

r(EE) = ZB (DZ Bo Zo (3'63)

the positive, negative, and zero spectral subspaces of B0 , respectively. Moreover, since
the projections onto these subspaces are given by pseudodifferential operators, we get a
corresponding decomposition on the Besov space completion:

BS'P(EE) =e Bs'PZ E B'PZ , (3.64)



Part I

for all s E R and 1 < p < oc. If we let D : B8 'P(E) -+* BS-l'P(E), then we can consider
the boundary values of its kernel r(ker D) C Bs1/P'P(EE). Then what we have is that
the spaces r(ker D) and B'-/PPZB are commensurate, that is, they differ by a compact
perturbation' 0 (see Definition 18.2). Furthermore, from Proposition 15.18, we have that
r(kerD) is a Lagrangian subspace of the boundary data space B ~/PP(EE), where the
symplectic form on the Banach space B'1/P'P(EE) is given by Green's formula"' for D:

J Re (u, -Jov) = Re (u, Dv)L2 y) - Re (Du, 'v)L2(y). (3.66)

Summarizing, we have

Lemma 3.7 The Cauchy data space r(ker D) C BS-1/P'P(EE) is a Lagrangian subspace
commensurate with Bs-'/P'PZ+B. Furthermore, for s > 1/p, the space ker D is complemented
in B'P(E).

The last statement follows from Corollary 15.17. Thus, while r(ker D) is a space determined
by the entire operator D on Y, it is "close" to the subspace B'-/'PZ , which is completely

BO'

determined on the boundary.

Let us now apply the above general framework to our Hessian operators. Let B denote
the tangential boundary operator for 7-o. By (3.60), B splits as a direct sum of the tangential
boundary operators

Bdgc : Q1(Z; iR) e 0 0(E; iR) e Q0(Z; iR) 0

BS : F(SE) 0,

for Ddgc and DB,,,f, respectively. For the div-grad-curl operator Ddgc, we can compute the
tangential boundary operator and its spectrum rather explicitly. As before, we work inside
a collar neighborhood [0, e] x E of the boundary of Y, with the inward normal coordinate
given by t E [0, e], and we choose coordinates so that the metric is of the form dt2 + g
where gt is a family of Riemannian metrics on E. We can write b E Q1(Y) as b = a + /3dt,
where a E F([0, e), Q'(E)) and 0 E P([0, e),Q0 (E)). Let i denote the Hodge star on E with
respect to go, and let dE be the exterior derivative on E.

So with the above notation, we have the following lemma concerning Ddgc (where for
notational simplicity, we state the result for real-valued forms):

"More precisely, the range of r(ker D) and Z+ are each given by the range of pseudodifferential projec-
tions, and these projections have the same principal symbol. See e.g. [6, 45, 46).

"For a general first order differential operator A acting on sections F(E) over a manifold X, Green's
formula for A is the adjunction formula

(u, Av)L2(x) - (A*u, v)L2(x) = f(r(u), -Jr(v)), (3.65)

where A* is the formal adjoint of A. The map J : Eax -+ Eax is a bundle endomorphism on the boundary
and it is determined by A. Hence, (3.66) is an "integration by parts" formula for A. If E is a Hermitian
vector bundle, we will always take the real part of (3.65) in order to get a real valued pairing on the boundary.
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Lemma 3.8 Let Y be a 3-manifold with boundary E oriented by the outward normal. Then
with respect to (a, 3, a) E 1([0, E), Q1(E) e Q0(E) e QO(E)) near the boundary, the div-grad-
curl operator can be written as Ddgc = Jdgc( i + Bdgc,t + Cdgc,t) as in (3.62), where12

-0 0

Jdgc 0 -1, (3.67)
0 1 0

0 d, MdE
Bdgc = Bdgc,o d* 0 0 . (3.68)

-idz 0 0

The positive, negative, and zero eigenspace decompositions for Bdgc are given by

Zage Z e Z (3.69)

span if ) , span 0 (3.70)
0 ±f\2

Za~ge H i(E; R) e H'(E; R)EDH0 (E; R), (3.71)

where the f\2 span the nonzero eigenfunctions of A = d*d, and AfA2 = A2
f\2.

Let Q0 (E) = {a E Q(E) : f a = 0} be the span of the nonzero eigenfunctions of A.
Then for every s E R, and 1 < p < oo, Bs,PZ± is the graph of the isomorphism kdrA- 1/ 2

BSPQI(Z) -+ B 8'Pimdz. Similarly, the spaces B',pZP are graphs of the isomorphisms

: B8SPQ (E) -+ B 8 'Pim d.

Proof The proof is by direct computation. LI

Altogether, we have the following spectral decompositions

Tr = Z+ e Z- @ Z 0, (3.72)
Q1(E; iR) E QO(E; iR) E Q = Z+ m 7g (3.73)

F(SE) = Zj e Z~ ( Z~S, (3.74)

corresponding to the positive, negative, and zero spectral subspaces of B, Bdgc, and Bs,
respectively. Since B = Bdgc e Bs, we obviously have

Z* = Zdge 4 ZG f E +, -, O}. (3.75)

In particular, we have

Z+ +c Z (3.76)

Ze Z (3.77)

by Lemma 3.8. All the above decompositions hold when we take Besov closures. In light

1 2Note the signs, since t is the inward normal coordinate.
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of Lemma 3.7, the explicit decomposition (3.77) will be important for us in the analysis to
come.

Next, we work out the associated symplectic data for ';Qo on the boundary, following the
general picture described previously. Namely, Green's formula (3.66) for the Dirac operator
-o induces a symplectic form on the boundary data space Tr. Moreover, because 7-o is a

Dirac operator, the endomorphism -Jo is a compatible complex structure for the symplectic
form. Explicitly, the symplectic form is

c((a, #, ai, ao), (b, 0,0#1, #A)) =j a A b + I Re (#, p(v)V) - (a1o - ao#1), (3.78)

and the compatible complex structure is

A:TF2 -4 'fr:

(a, 4, azi, 0-0) -- (-sa, -p(v)#, -ao, ai). (3.79)

Observe that since f-to = ?(Breo0) 6 -(d+ d*), the symplectic form and compatible complex
structure above are a direct sum of those corresponding to the operators 11(Bref,O) and
(d+d*). In particular, Green's formula for 1 (Bref,0) = *d e DB,,f yields the symplectic form

w : Ty 6 T - R

w((a, #), (b, ,)) j a A b + j Re (#, p(v)4V) (3.80)

and compatible complex structure

JE:TE -4 TF,

(a, #) F-- (- a, -p(v)#). (3.81)

Since the tangent space to C(E) at any configuration is a copy of TE, we see that w gives
us a constant symplectic form on ( This symplectic form extends to C0,2 (E), the L2

closure of the configuration space, and since B3'P(E) C Bo,2 (E) = L2 (E) for all s > 0 and
p > 2, we also get a constant symplectic form on the Besov configuration spaces V8 P(E).
From now on, we will always regard QS'P(E) as being endowed with this symplectic struc-
ture. Likewise, we always regard Tys'" as being endowed with the symplectic form (3.78).
Indeed, the symplectic forms w and C' are the appropriate ones to consider, since they are
the symplectic forms induced by the Hessian and augmented Hessian operators, respectively.

Having studied the particular augmented Hessian operator WO = W(Bref,O), we now

study general augmented Hessian operators n(BT). Here, (B, T) E VS'P(Y) is an arbitrary
possibly nonsmooth configuration. Suppose we have a bounded multiplication B8 'P(Y) x
Bt'G(Y) -+ Bt-l'4(Y), for some t E R and q ;> 2. It follows that ?i(B,T) : ' -t-l'q and
7N(B,,P) ' Tq - ' are bounded maps. To keep the topologies clear, we will often use
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the notation

yt,q .- L,q - 1,q

(B, F)

(B, P)

so that the superscripts on the operators specify the regularity of the domains. The next

two lemmas tell us that ker f and r(ker (B , ,)) are compact perturbations of ker Njo',
and r(ker Qt'q), respectively, for (t, q) in a certain range. We also give a more concrete

description of this perturbation using Lemma 18.1.

Lemma 3.9 Let s > 3/p. Let (B, T) E V*P(Y) and suppose t G R and q > 2 are such that

we have a bounded multiplication map BSP(Y) x Bt '(Y) 4 Bt'-1,q(Y), where t' > 1/q and

t < t' < t + 1.

(i) We have that ker f{, is commensurate with ker 71 ,q and the restriction map r

ker ( ) -4 T~ qq is bounded. More precisely, we have the decomposition

ker II'( = {+ x : X X6}e F, (3.82)

where X6 C ker 4 has finite codimension, T X6 - it''q and F C i is a finite

dimensional subspace. Moreover, one can choose as a complement for X6 c ker J4 '4
a space that is spanned by smooth elements.

(ii) The space ker Stiq varies continuously13 with (B, T ) E ('2P(Y).

Proof (i) Let (b, @) = (B - Bref, T). The multiplication map (b, V))# = ?(B,W) - to
given by (3.59) yields a bounded map

(b, @)#:F'q __'4 eit'- 1'q (3.83)

by hypothesis. This map is a compact operator since it is the norm limit of (bi, @i)#, with

(bj, ?i) smooth. Each of the operators (bi, Qb)# is compact, since it is a bounded operator
on it',q and the inclusion fp',q " it'-1,q is compact by Theorem 13.17. Since the space of

compact operators is norm closed, this proves (3.83) is compact.

Since t' > 1/q, then ker SWa'' is complemented in it'' by Corollary 15.17. Let X1 c i''
be any such complement. Thus,

7io : X1 e it'- ', (3.84)

is injective. It is also surjective by unique continuation, Theorem 17.2. Hence (3.84) is an
isomorphism and the map

7(B,W) : X1 - T' (3.85)

being a compact perturbation of an isomorphism, is Fredholm. This allows us to write the
kernel of Qt,q perturbatively as follows.(B i 1)

1 3 See Definition 18.9.
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Let x c ker HQ ). Then Qox = (b, V)#x E T' -1,q and we can define

x= - (e '|x 1 ) (b, 7P)#x E Xi C

Then if we define xo = x - xi E 'T''4, we have

&o0 =7-o(x - Xi)

= ((B,T) - (b, )#) x - ox

= -(b, @)#x + (b, @)#x

=0.

Hence, xo E ker 7-'q. Thus, we have decomposted x E ker 7- Lq as x = zo + x1 , where

zo E ker ko'j is in the kernel of a smooth operator and x 1 E t is more regular (for t' > t).
We also have

0 = 7 i(B, I)X

= (B,4,) (Xi + xo)

h(BAI)X1 + (b, @)#xo. (3.86)

By the above, we know that S(B,q) : Xi -- t'-1,q is Fredholm. Thus, from (3.86),
we see that there exists a subspace X6 C ker Sto' of finite codimension such that for all
xo c X', there exists a solution xi E X1 to (3.86). This solution is unique up to some
finite dimensional subspace F C X 1; in fact F is just the kernel of (3.85). This proves the
decomposition (3.82), where the map T is given by

T : Xo -+ X(

zo - - (W (B,)|)-b I) o (387

where X' is any complement of F c X1 . The map T is compact since the map (b, 0)# is
compact. The rest of the statement now follows, since the restriction map r : ker SQ'4 -+
.~ is bounded by Theorem 15.14(i), and r '-+ ' c 'q is bounded
since t' > 1/q. Moreover, since smooth elements are dense in ker 4 by Corollary 15.17,
any finite dimensional complement for X6 C ker 5t'q can be replaced by a complement that
is spanned by smooth elements if necessary.

(ii) Let (Bo, To) G jS'P(Y). By Definition 18.9, we have to show that ker 5 is a

graph over kerW-lP) for (B, T) close to (Bo, To). We do the same thing as in (i). Let X2

be any complement of ker 7Qt', in i'4, which exists since ker 5 is commensurate

with ker So'' by (i), and the latter space is complemented. Then (Boo) X 2 -

is an isomorphism. For (B, IF) sufficiently close to (Bo, To), the map S(B,') X 2 -+ 1''

is injective, hence surjective (the index is invariant under compact perturbations), and
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therefore an isomorphism. Then from the above analysis,

ker )= {x + T(B,)x : x E ker 7- (B0,)}, (3.88)

where

T(Bp) : ker7(o,) X 2  
(3.89)

X -(fi(BRq)1X2)~- (b, @)# x (3.90)

and (b, 4) = (B - B0 , T - To). The map T(AT) varies continuously with (B, T) E QP(Y)
near (Bo, To). F

Remark 3.10 In applications of the above lemma, instead of (t, q) satisfying the very
general hypothesis

(i) t c R, q > 2,

(ii) the multiplication Bs'P(Y) x Btq(Y) . Bt'41(Y) is bounded, where t' > 1/q

and t < t' < t + 1,
(3.91)

we will primarily only need the cases

(t, q) E {(s + 1, p), (s, p), (1/2, 2)}, (3.92)

with corresponding values

(t', q) E {(s + 1, p), (s + 1, p), (1/2 + e, 2)}, 6 > 0. (3.93)

The last case of (3.92) arises because we want to consider the space of boundary values in
the L2 topology, i.e., the spaces Tr ,2 and t. 2 . In this particular case, the above lemma
allows us to conclude that for (B, I) c VsP(Y), we still get bounded restriction maps

r : ker7- 1/2S -+ '~ ,2, just like in the case where (B, T) is smooth via Theorem 15.14.
The boundedness of this map will be important when we perform symplectic reduction on
Banach spaces in the proof of Theorem 3.13. The case (t, q) = (s + 1, p) will be important
for Proposition 3.20 and its applications in Section 4. In what follows, we will consider the
operators 5" but they equally well apply to 5 in light of the analysis in Lemma

3.9, for t, q satisfying (3.91).

Lemma 3.11 Let s > 3/p. For any (B, T) E (s'P(Y), we have the following:

(i) The Cauchy data space r(ker?-" ) is a Lagrangian subspace of T8'~l/P'p commen-

surate with B'- 1/'PZ+ and it varies continuously with (B, I).

(ii) We have a direct sum decomposition ~P'p = r(ker fl3 )) D JEr(kerNhS)).

Proof (i) For any (B, T) c VP(Y), the space r(kerl A) is isotropic since R"B() y (Btu )

is formally self-adjoint. Since s > 3/p, then (B, TI) G L'(Y) and we can apply the unique
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continuation theorem, Theorem 17.1, which implies that r : ker "P T -+"P'p is injec-

tive. In fact, it is an isomorphism onto its image, since this is true for r : ker R'" -+ 7 '
(by Theorem 15.14(i) and unique continuation applied to the smooth operator 7 "'P) and
ker '"P is a compact perturbation of ker R"' by Lemma 3.9. Hence, we get that

B1,p : r(ker7"- ) varies continuously with (B, T), since ker71 ) varies contin-

uously by Lemma 3.9 and r : ker k P is-/"p'p is an isomorphism onto its image. For

(B, 4) smooth, we know that Li'"Pp C T' 1 1 ""' is a Lagrangian subspace by Proposition(B,,P)

15.18. By continuity then, L '_' .5 is a Lagrangian for all (B, XP) E Q
8
'P(Y). Moreover, all

the L '-( ' are commensurate with one another, in particular, with r(ker5'"-47 'P), and
this latter space is commensurate with Bs-I/P'PZ+ by Lemma 3.7.

(ii) When (B, T) is smooth, this follows from Proposition 15.18. Now we use the conti-
nuity of the Lagrangians with respect to (B, T) E VYP(Y) for the general case. D

We want to apply the previous results concerning the augmented Hessian ?1(B,q') to
deduce properties about the Hessian 'K(B,). To place these results in a context similar
to the pseudodifferential picture in Section 15.3, let us recall some more basic properties
concerning the smooth operator No. By Theorem 15.14, the operator N-to, by virtue of it
being a smooth elliptic operator, has a Calderon projection R+ and a Poisson operator
PO. These operators satisfy the following properties. The map P6 is a projection of the

boundary data i7/4 onto r(ker5q"'), the boundary values of ker78'p, and the map

Po is a map from the boundary data T-i/'r into ker(N') C T7,P. Moreover, the maps
r ker '" -+ r(ker '"P) and PA : r(ker ]'jP) -+ ker fz'" are inverse to one another, and
rPo = P6. This implies that the map * := Por : TSP -+ ker(7)t') is a projection. We
also have that im P6 = r(ker -t'P) is a Lagrangian subspace of B-l~/P'PiTh by Proposition
15.18.

For a general nonsmooth (B, I) E Y'P, we have 'H"" is a compact perturbation of the(B,T')

smooth elliptic operator 7'(". The previous lemmas imply that ker NQ , and r(ker R")

are compact perturbations of ker W"'P and r(ker N"), respectively, and moreover, we still

have unique continuation, i.e., r : ker 7 T ' is an isomorphism onto its image.

It follows that there exists a Calderon projection P+ and Poisson operator PAT) for

7-i" as well, which satisfy the same corresponding properties (see Lemma 18.1). We also

have a projection r(B,T) := P(B,)r : TS'P a ker N" We summarize this in the following(B, T esmmrieti nth olwn
lemma and diagram:

Lemma 3.12 Let (B, T) E V'YP(Y). Then there exists a Calderon projection P+
8-s/pp 8-1/ krN"

-+ r(ker7i%)) and a Poisson operator P : '' "- ker Bi'. The maps

r : kerfi(B,q) - r(ker" ) and (B,) : r(ker 71"',) -> ker R" are inverse to one

another, and rP(AT) = .
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ker W"' S) (B ) TSP BT - 1'P
(B,()

r 3 P(B,) r (3.94)

r(ker')' I V)
(B,'*)

In studying the Hessian W") we want to establish similar results as in Lemmas 3.11 and
3.12. These results are summarized in the main theorem of this section.

Theorem 3.13 Let s > max(3/p, 1/2) and let (B, T) E 9Z'1P(Y). Suppose t(Bq) T', P

KS is surjective.14 Then we have the following:
(B,'I')

(i) The space rz(ker n" is a Lagrangian subspace of T 1-'/ commensurate with

Bs-/P'P(imd e Zjs). Moreover, we have the direct sum decomposition

78-1/PP=rt(ker NL ,)) e Jerr(ker7L'p ). (3.95)

(ii) Define

P(+ 7r-1/PP - rr(kerR' ) (3.96)
(B,'IV)

to be the projection onto rs(kerWN' )) through JErr(kerR-t' ,)) as given by (3.95).

Let 7r+ : T, -+ im d D Z+ denote the orthogonal projection onto im d e Zj through
the complementary space kerd* e (ZE- e Zi). Then 7r+, being a pseudodifferential

projection, extends to a bounded map on T , and it differs from the projection
P+o,) by an operator

(P+ - r+ -1/PP 8-1/P+1,P. (3.97)

which smooths by one derivative.

(iii) There exists a unique operator

P(Bq) : ''' -+ ker(N(B,P)1csPP) (3.98)

that satisfies rEP(B,ql) = P+ The maps rr : ker(R(BP)JcsP) - r(keri")

and P(nP) rz(kerN'h ) -4 ker(n(B,P)JCsP) are inverse to one another.

Furthermore, let (B(t), I(t)) be a continuous (smooth) path in 93TSP(Y) such that N ,t

T (s) - ,'K" t )is surjective for all t.

1 4 This holds under the assumption (4.1). See Lemma 4.1.



Part I

(iv) Then ker ' and r (ker N' ) are continuously (smoothly) varying fam-
ilies of subspaces15. Consequently, the corresponding operators P and P(B,,Pt
vary continuously (smoothly) in the operator norm topologies.

Keeping 9J"'P(Y) fixed, the statements in (i), (iii), and (iv) remain true if we replace the
B8 'P(Y) and B8-1/P'P(E) topologies on all vector spaces with the Bt6(Y) and B-1/qqp
topologies, respectively, where t, q satisfy (3.92) or more generally (3.91). If we do the same
for (ii), everything also holds except that the map (3.97) smooths by t' - t derivatives.

The theorem implies we have the following corresponding diagram for the Hessian W(Bxp:

ker(N(B1P) csP) 7r T'P ( Ts~1 'P

rrI P(,) Ir (3.99)

rr (kerW"' ) Tzi/'
(B , P)

Here, 7r(B,) := P(B,p)rE is a projection of T'P onto ker(W(B,1I)|csP).

Definition 3.14 By abuse of language, we call the operators P" and P(B,) defined in(B,'IP)
Theorem 3.13 the Calderon projection and Poisson operator associated to 71' respec-(B, T)'I
tively (even though N' is not an elliptic operator), due to their formal resemblance to
Calderon and Poisson operators for elliptic operators (as seen in the diagrams (3.94) and
(3.99)).

Note that the Calderon projection P and Poisson operator P(B,T) we define above
are unique, since we specified their kernels. In the general situation of an elliptic operator
(such as 7-("p above) one usually only specifies the range of the Calderon project.ion, in
which case, the projection is not unique (see also Remark 15.16). Our particular choice
of kernel for P is made so that P is nearly pseudodifferential, in the sense of
the smoothing property (3.97). This property will be used in Part III, where analytic
properties of the tangent spaces to the Lagrangian C'- 1 'PP and the projections onto them
become crucial.

Remark 3.15 The continuous (smooth) dependence of P+ and P in Theorem(B ,'F) P(B, 1P) i hoe
3.13(iii) with respect to (B, '), as well as all other continuous dependence statements
appearing in the rest of Part I, will only attain their true significance in Part III. There, we
will consider paths of configurations, and so naturally, we will have to consider time-varying
objects. For brevity, we will only make statements regarding continuous dependence from
now on, though they can all be adapted to smooth dependence with no change in argument.

Proving Theorem 3.13 is essentially deducing diagram (3.99) from diagram (3.94). Let
us first make sense of the hypotheses of the theorem. From Lemma 3.4, in order for /C'-"P

"5See Definition 18.9.
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to be well-defined when (B, T) e 'P(Y), we need s > max(1 - s, 3/p), which means
we need s > max(3/p, 1/2). This explains the first hypothesis. Next, observe that for
(B, I) E M(Y) a smooth monopole, we have

J(B,q) 9 ker H(B,T), (3-100)

im't(B,) C A(Br). (3.101)

One can verify this directly by a computation or reason as follows. As previously discussed,
the Seiberg-Witten map (2.2) is gauge-equivariant and hence its set of zeros is gauge-
invariant. Thus, the derivative of SW 3 along the gauge-orbit of a monopole vanishes.
This is precisely (3.100). For (3.101), observe that the range of ?I(B,P) annihilates J(B,q),t
by (3.100) and since W(Bfl is formally self-adjoint. From the orthogonal decomposition

T = J(B,P),t e K(B,T), we conclude that im ?I(B,qp) C C(B,) . We want to establish similar
properties on Besov spaces. Namely, we want

qTS, P C ker 7 , (3.102)L(B, T!) - (B,IT)' 312

im 7 -t(B 4 J KAc-,I. (3.103)

However, this follows formally from (3.100) and (3.101) as long as we can establish on Besov
spaces the appropriate mapping properties of the differentiation and multiplication involved
in verifying (3.102) and (3.103) directly. Thus, (3.102) holds because the map 1H(B,W)
T''P --> T-l',P is bounded when s > 3/p. Likewise, (3.101) holds because d* TlP --

B -2,pQa(Y; iR) is bounded when s > max(3/p, 1/2). In drawing these conclusions, as done
everywhere else in Part I, we make essential use of Corollary 13.14 and Theorem 13.18.

Thus, from (3.103), we see that the hypotheses of Theorem 3.13 make sense. In fact,
for (B, T) E 3sP(Y), we have the following result concerning the range of :

Lemma 3.16 Let (B, I) E T93'P(Y). Then im 71" C K'-"' and : Tsp -+

K~I-' has closed range and finite dimensional cokernel.(B,'I')

Proof It remains to prove the final statement. Pick any elliptic boundary condition for
the operator R51' such that one of the boundary conditions for (b, V), c) E T'P is ci= 0.

Such a boundary condition is possible, since the subspace B- 1/P'P(T e Q0(E; iR) D 0) of

5-1/P,P with vanishing 0 T 0 e B'- 1/P'PQ 0(E) component contains subspaces Fredholm16

with r(ker 'Hl) by Lemma 3.7, Lemma 3.8, and (3.77). For such a boundary condi-

tion, observe that im (t')) n C im)Cs-. This is because if da E Kc l' with

oIlz 0, then da = 0. Since we chose elliptic boundary conditions for R this means

im P C (B)pis closed and has finite codimension, which implies im(5 ) (nBK ,

is also closed and has finite codimension in KI?'l ". Hence, the same is true for im -N' .
(B~qf) (B, P

Next, we relate the kernel of ' to the kernel of W"' along with their respective
boundary values.

1
6 See Definition 18.4.
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Lemma 3.17 Let s > max(3/p,1/2) and (B, T) E 9RS'P(Y)

(i) We have a decomposition

ker~,T) = ker(n(Bag)|c-,,) ) e T(s$* (3.104)

ker 5"j 4 ) = ker(-(BP |cs) &T''E , (3.105)

where r,'1 C T''P is the graph of a map 00 : ker A -- + T'P, where A is the Laplacian
on B'PQO(Y; iR), and the domain of 80 has finite codimension.

(ii) We have

rr (ker W r kr((g C,) (3.106)

r(ker7-( ) =r(ker(7(B,v)|cs,)) e P'p, (3.107)

where F ' --1 r(I7s'") is the graph of a map Go : 0 e 0 e B--1 /P'PQ 0 (E; iR) -- +

T and the domain of 80 has finite codimension.

(iii) We have r(ker 7'" )) is commensurate with Bs-l/P'P(Ze e Zs') and rE(ker R"t I
is commensurate with Bs-/P'P(imd e ZS ).

Proof (i) The first decomposition (3.104) follows from (3.38) and J( 7 )", C ker hJ.

For (3.105), observe that ker(7i(B,)|cqf,) = ker l(-B,T) |rs8P. Thus, the elements of ker W"j

that do not lie in ker H(Bp) |TsP have nonzero B'PQO(Y; iR) component. To find them, we
need to solve the equation

R(B,)(b, ~ da = 0, (3.108)

with a nonzero. Since im 71S C Kp'q-~P by the previous lemma, we need da E K -(B,qP) - "(B,xP)(B P

whence a C kerA. Since im-(' has finite codimension in Cs-lP by Lemma 3.16, then
(3.108) has a solution (b, @') for all a in some subspace of ker A of finite codimension. The
(b, @) is unique up to an element of ker W Thus, picking a complement 17 of ker W"is (B, IV) - picking
in T"" specifies for us a map 00 : ker A -- + Ts'P whose graph "oP is a complementary

subspace of ker(N(Ba)|TsvP ) in ker 'hs , and which parametrizes solutions to (3.108).
(B,TI) BTI

(ii) This follows from applying rr and r to (i). The graph property of P''/P'p comes0
from noting that any element of F"'P is uniquely determined by the 0 e0e B- 1/P'PQO(E; iR)
component of its image under r. This follows from considering the homogeneous Dirichlet
problem for A, namely

Aai =0

al =#.

This problem has a unique solution for every #.
1 7 The reasoning used in the proof of Lemma 3.16 shows that W(B,) : T

8'' -+ K'-"' has a right

parametrix. This implies that kerHs'P C T'" is complemented.
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(iii) By Lemma 3.7, we have r(ker7 ) is commensurate with B"~1/'PZ+. Let

-8-1 /p p
7ro : -' 00e 00 B-'/P'PQO(E; iR)

denote the coordinate projection onto the last 0-form factor in '9"1/P. By Lemma 3.8 and

(ii), we have

7ro : Bs' -+ 0 0 B /PPQO(E; iR)

7ro : Bs-/PPfo -+ 0 0 0 0 B 1/P'PQ0(E; iR)

are Fredholm. We now apply Lemma 18.6 with X = Tl/P'p and complementary subspaces

X1 T 8-'P E Bs- 1 /P'PQO(E; iR) 0 0,

Xo - 0 0 0 0 Bs-1/P'PQ0(E; iR).

Let U = r(kerl" ) and V = BS/P'PZ+ in the lemma. Then from that lemma and (ii),

we conclude that r(ker(7-(B,,)|csP)) = U n X1 is commensurate with Bs-l/P'P(Ze+ D 0Zs)_

V n X 1 . This proves the first part of (iii). For the second part, consider the coordinate

projection of Xi onto T7"~ P'P. This restricts to an isomorphism of V n X1 onto its image

B8-/PP(imd e ZS), by Lemma 3.8. It follows that this projection maps U n X1 onto a

space commensurate with V n X1, and this space is precisely rx(ker R" ). E

Corollary 3.18 Let (B, T) E SR''P(Y) and suppose 7ABT) : T5' -> C~iP is surjective.

Then

(i) the maps E''P and G'71"p'p are defined everywhere;

(ii) rE : ker(7(B,1)1caP) -+ TE p'p is an isomorphism onto its image.

Proof (i) This follows from the constructions of 6 0 and 0 in the previous lemma.

(ii) By unique continuation, the map r : ker(NH )) -* 'P is an isomorphism onto

its range. By restriction, it follows that

r : ker(7-(B,w)|Cs,P) -4 l/p'p (3.109)

is injective. To prove (ii), it suffices to show that

rE : ker(W(B,I)CsP) -+ T 1/me (3.110)

is injective, since 7'(B,T) ICsP = W(B,aI)ICsP,. So suppose (3.110) is not injective. Since (3.109)

is injective, this means there is an element of the form ((0, 0), a, 0) E r(ker(7(B,) 1cAp)) with

a Bs-
1
/P'PQ

0 (E) nonzero. On the other hand, r(ker7h-t ) is a Lagrangian subspace of

7- 1,/PP by Lemma 3.11. This contradicts (i), since if 6"0'7' is defined everywhere, then

(0, 0, a, 0) cannnot symplectically annihilate P81I P'. Indeed, the spaces 0 D Q0 (E) 0 0 and
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0 D 0 D Q0 (E) are symplectic conjugates with respect to the symplectic form (3.78). D

Proof of Theorem 3.13: (i) We will apply the method of symplectic reduction,
via Theorem 19.1 and Corollary 19.2. By Lemma 3.9, we may consider the operators
7-i' and WH

11 ,2 their kernels, and the restrictions of these latter spaces to the boundary.(B P (B,4)'
Indeed, let us verify the hypotheses of Lemma 3.9. Since p > 2, we have the embedding
B 5'P(E) C Bs-e,2(E) for any e > 0 by Theorem 13.17. Choose e small enough so that
s - E > 1/2 + e. Then (t, q) = (1/2, 2) and t' = ' + E satisfies the hypotheses of Lemma 3.9
since we have Bs-, 2 (Y) x B'/ 2,2 (Y) -+ Bt'-l 2 (Y).

Let U = L2 (T e Q0(E; iR) e 0). It is a coisotropic subspace of the strongly symplectic
Hilbert space L 2 t7 2 If we apply Theorem 19.1 to the Lagrangian L = r(ker S )

the symplectic reduction of L with respect to U is precisely r, (ker 2)) by Lemma

3.17(ii). It follows that rE(kerR 1/, ) is a Lagrangian inside U n JU = L 2TE. We would
like to make the corresponding statement in the Besov topologies. By Lemma 3.17(iii), we
know that rr (ker Wj) is commensurate with B~l/P'P(im de Z+). On the other hand, we

have that Bs~l/P'P(im d e Z+) and JE Bs-/P'P(im d D Z+) are Fredholm in T" P'P. Indeed,
the Hodge decomposition implies im d and im * d are Fredholm in Bs-1/P'PQ1(E; iR), and
since p(v) interchanges the positive and negative eigenspaces Z+ and Z- of the tangential
boundary operator Bs associated to the spinor Dirac operator DBref, we have that the
Bs-/P'P(E) closures of Z+ and p(v)Z+ Z- are Fredholm in BS-1/P'P(S). That these
decompositions are Fredholm in Besov topologies follows from the fact these spaces are given
by the range of pseudodifferential projections whose principal symbols are complementary
projections, and pseudodifferential operators are bounded on Besov spaces. We now apply
Corollary 19.2, with X = T2 and Y == T' P'P, to conclude that ry(kerWN' ) is a

Lagrangian subspace of Bs-1/P'P76

(ii) By Lemma 3.11 and (i), r(kert''p) is commensurate with Bs-/PPZ+ and rE(ker7-''p)
is commensurate with Bs-/P'P(imd D Z+), respectively. Since 7-(o is smooth, then we can
even say more: there exist pseudodifferential projections onto r(ker fH"P) and B'-'/P'PZ+
that have the same principal symbol, which means that their difference is a pseudod-
ifferential operator of order -1. It follows that the projection of r(ker "'P) onto any
complement 18 of Bs-1/'PpZ+ is smoothing of order one. Consequently, letting U'-/PP --
B"- 1/P'P(T 1 e Q0 (E;iR) e0), then the projection of r(ker SQ'P)fnU onto any complement of
BI-/PPZ+nU is smoothing of order one. (Here, we use the fact that U8~1/PP+B8~1/PPZ+

has finite codimension in -1~/P'P.) Applying symplectic reduction with respect to Us- 1/'P,
it follows that the projection of rE(ker 71''P) onto any complement of Bs-/PP(im d e Z+
is smoothing of order one.

For a nonsmooth configuration (B, T), we also want to show that the projection of
r (ker ) onto any complement of Ba-/P'P(im d E Z ) is smoothing of order one.
For then this will imply the corresponding property with respect to the pair of spaces

18More precisely, in what follows, when we speak of some unspecified complementary subspace, we mean
one defined by a pseudodifferential projection. This is convenient because pseudodifferential operators
preserve regularity, i.e., they map B"(E) to itself for all t, q E R, and so we never lose any smoothness once
we have gained it.
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Jr(rB(ker 1" ))) and B-l/P'PJE(im d D Zj), the latter being of finite codimension in

Bs-l/P'P(ker d* e (Z? e Zj)). We can then apply Lemma 18.7(ii) while noting Remark 18.8,
to conclude that the projection P+ differs from 7+ by a operator that is smoothing of
order one.

Thus, by our first step, it suffices to show that the projection of rz(ker 7'1 ) onto any

complement of rE(kerW-''P) smooths by one derivative. This follows however from Lemma
3.9. Indeed, we can take (t, q) = (s, p) and t' = s + 1 in Lemma 3.9, and since there exists
a projection of ker W'i onto a complement of ker 7s'" that smooths by one derivative,
the corresponding statement is true for the spaces rE(ker NSI) and rE(ker HgP). Here,
it is important that all finite dimensional errors involved are spanned by elements that are
smoother by one derivative (so that the finite rank projection onto the space spanned by
these elements smooths by one derivative), which is guaranteed by Lemma 3.9. From these
properties, one can now apply Lemma 18.7(ii), with

Uo Bs- /P'P(imd E Z+)

U1 = B- /P'P (ker d* E (Z~ e ZS))

V1 = rE(kerUh )

V2 = Jz(rE(ker NX)).

In our case, we know that X = Uo e U1 = Ve V1, and that the Ui and V are commensurate,
i = 0,1, where the compact error is smoothing of order one. Thus, by Remark 18.8,

P(+B,'f) = rv,v 1 and r+ = 7oui differ by an operator that smooths of order one.

(iii) Let
TSR : r(kern" ) +E (ker )

be the symplectic reduction as in (i), i.e., the map IFSR is the map which projects r(ker ) c

T " P onto rr(ker W ), induced by the projection P' -4 8- 'P onto the first

factor. This map is an isomorphism by Corollary 3.18(ii). Hence, r-1 exists and is bounded.
Define

P(BT) = P(BT)(7SR) 1P+,B)

where P(B,) is the Poisson operator of W" . By construction, P )+ T, -1/PP-+

rE (ker VWP) and P(BfI)(WSR) rz(ker X('P) -+ ker(-(B,W)IC6P). Thus, P(BT) T T -4

ker(i(B,) Cs',P) and rEP(BeP) = (B,) Moreover, from Corollary 3.18(ii), it follows that

P(BT) : T" ' -+ ker(7(BP)|c,,P) and rz : ker(N(B,)ICsP) - ' are inverse to each
other.

(iv) We establish the smooth case, with the continuous case being exactly the same. It
is easy to check that all the subspaces and operators involved in the construction of the
maps in (ii) and (iii) vary smoothly with (B(t), T (t)). Indeed, since /Csl1P(Y) is a bundle,
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by Proposition 3.5, we can locally identify its fibers, i.e., the maps

are all isomorphisms for all (B(t), 'Q(t)) sufficiently B"'P(Y) close to a fixed (Bo, TO). Then
restricting to t on a small interval for which this is the case, then we have ker 7 (B(t),(t)) =
ker (HKS 1:. W(B(t),T(t))), and UJS -, T 8 'P -4 K 1B 'Q are all surjective for

(Bo T0  (B0,'1i 0  (~T) (Bo,To)

all t. From this, it follows that ker N varies smoothly, and since ET)t

k B for all t, this implies ker((t)(B(t)q(t)) CsP vary smoothly. Indeed, one argues

as in Lemma 3.9 for the continuity of ker W with respect to (B, IF), only now we have

in addition that all objects vary smoothly. Since r, : ker(N(B(t),P(t))C'P) -+ is
an isomorphism onto its image for all t, it follows that rE(ker N' t) ) varies smoothly.
Since this holds for all t on small intervals, it holds for all t along the whole path.

To prove the final statement, we observe that all the above methods apply to (B4 ti)

and H without modification in light of Lemma 3.9. See also Remark 3.10. E

We conclude this section with some important results that will be used later.

Lemma 3.19 Let (B, TI) E 9)1'P(Y), assume all the hypotheses of Theorem 3.13, and
suppose (t, q) satisfies (3.92) or more generally (3.91). Then the space

L '4 :=~ JErE(ker'" )E Bt- 1 'qq Q (E) (D 0 (3.112)

is a complementary Lagrangian for r(ker ,3,, ) in The space L varies

continuously with (B, TI) G 9JWs'P(Y) (as long asH"',) T"'P - P is always surjective).(B,,P)(B,TI)

Proof By Theorem 3.13(i), JErs(ker ) and rx(ker N t,)) are complementary

Lagrangians in T By Lemma 3.17(ii) and Corollary 3.18(i), it is now easy to see

that (3.112) is a complement of r(kert ' ,)) in T 'q . Since ry(ker N )) depends
continuously on (B, P) E 9)i1P(Y) by Theorem 3.13(iv), the last statement follows. E

For t > 1/q, define

k , (b,@,a) E i ' : r (b, ), a) GE rr(ker ) e Bt-1/ 'QO (E) e 0}, (3.113)

the subspace of Tr'l whose boundary values lie in (3.112). Likewise, define

0 t C,q j ~t,q C 7tX( = CP ' n J cB TI') (3.114)

By the above lemma, the domains Z and Xtq are such that their boundary values

under r and rE are complementary to the boundary values of ker 5 and ker (B,q

respectively. Thus, we expect these domains to be ones on which the operators J{ tJq and
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iRtq are invertible elliptic operators. This is exactly what the following proposition tells(B,T~)
us.

Proposition 3.20 Let (B, T) G MR')P(Y) and assume all the hypotheses of Theorem 3.13.
Let t > 1/q and q > 2 satisfy (3.92) or more generally (3.91). Then the maps

W(BQ) : Zt 'q T '~1', (3.115)

(,):X(~ P) +4 Kt-1,q (3.116)

are isomorphisms. Moreover, we have the commutative diagram

(3.117)

( BT) (B R )

In particular, we can take (t,q) = (s + 1,p) in the above.
The previous statements all remain true if kt" and X are replaced with kt,'

and X tq,/, respectively, for (B', ') G 931',P in a sufficiently small B8'P(Y) neighborhood

of (B, I).

Proof The map R(B,'I) t,q _ Tt-1,q is surjective, by unique continuation, and by
t~~~q jt,q lqq

restricting to Z , we have eliminated the kernel. Indeed, r : ker 4' .- 1/ is an

isomorphism onto its image and r(ker t ,) n L 0, whence ker ft q n tlq = 0.

This proves (3.115) is an isomorphism. For (3.116), the same argument shows that (3.116)
is injective. Indeed, rr: ker(1L(B|Ctq) - 'is injective by Corollary 3.18(ii) and
Remark 3.10, and

rE (ker 7(B,) ICta) n Er Xt4 = ry (ker 7-L{")) n JErE (ker )1 tq 0

by Theorem 3.13(i). It remains to show that (3.116) is surjective. We already know that

7(B ) : T q K_ tl is surjective by assumption. So given any (a,#) E T8 'P, we need

to find a (b, @) E Xt,) such that 1 (BT) (b, V)) = 7-(B ,P)(a, #). Without loss of generality,

we can suppose (a, #) c C4 by (3.38) and since Jtq C ker W). Since the condition

(b, 0) C Xtq imposes no restriction on the normal component of b at the boundary, we

only need to make sure that rr(b, V)) E Jrrr(ker t,)). Since we have a decomposition

T q,' = rz (ker htq) D JErr (ker 7-t ),

we can write rr(a, #) = (ao, #o) + (a,, #1) with respect to the above decomposition. Now
let (b,4') = (a,#0) - P(B,)(ao,#Oo), where P(B,) is the Poisson operator of N with

range equal ker(1-(BF)|ct,,) as given by Theorem 3.13. It follows that (b,4') E Xt,q
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since rE(b,@) = (ai,#1) E J~r(ker RtN ) and that (b, J) E Ctq since both (a,4) and

P(B,T)(ao, 4o) belong to C Thus, (b, 4) E X )and we have , (b, V) = a,

So (3.116) is surjective, hence an isomorphism.
The commutativity of the diagram (3.117) now readily follows since (3.115) is an isomor-

phism which extends the isomorphism (3.116). Finally, for the last statement, we know that
the space ktZq varies continuously with (B, T) since the space L tl'4 varies continuously.(B,TI)

Since Ttq),t - (q,.) for all (B, qI), it follows that

X -= Hc {z E Tx ' : r(x) E Lt },

where Uc, is the projection of T" onto C given by (3.38). From this, we see that

Xtq varies continuously since L and I vary continuously. The continuity of(B,'I') ( ) '( ,P

Xtq and X with respect to (B, T) implies the last statement. E

The above proposition will be important when study the analytic properties of the spaces
9J1'P(Y) and M''P(Y) in the next section, where we will need to consider the inverse of
the operator (3.116). The point is that by restricting the domain of the Hessian operator
R(B,T), it becomes invertible and its inverse smooths by one derivative in a certain range
of topologies depending on the regularity of the configuration (B, T). Thus, the inverse of
7 (B,'I) behaves like a pseudodifferential operator of order -1 in this range, which is what
one would formally expect since 7 (B,I) is a first order operator. In particular, for (B, IF)
smooth, we have the following corollary:

Corollary 3.21 If (B, qI) G 9) is smooth, then for all q > 2 and t > 11q, the maps

((B) (, ) (3.118)

(,) (B,) (B,)(3.119)

are isomorphisms.

4 The Space of Monopoles

Having studied the linear theory of the Hessian operators W(B,p) and W(B,I) in the previous
section, we now study the space of Besov monopoles 9)''P(Y, s) and M''P(Y, s) on Y. Under
suitable hypotheses, we show that these spaces are Banach manifolds and their local coor-
dinate charts satisfy smoothing properties important for the analysis of Part IV. Moreover,
we show that smooth monopoles are dense in the spaces 93''P(Y,s) and M8 'P(Y,s), so that
these Banach manifolds are Besov completions of the smooth monopole spaces 9M(Y, s) and
M(Y,s), respectively. These analytic properties are crucial for the analysis in Part III.

Notation. Recall that TS"P T
'(B,) T(Bl)C"'P(Y) is the tangent space to a configuration

(B, T) E Cs'P(Y). Since all these tangent spaces are identical, in the previous section we
worked within one fixed copy and called it T8'P. Now that we will work on the configuration
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space level, it is appropriate to keep track of the basepoint at times and we reintroduce this
into our notation, though there really is no gain or loss of information by adding or dropping
the basepoint from our notation.

Recall that we have fixed a spinc structure s from the start, which up to now, has not
played any role in the analysis we have done. We now consider the following assumption:

ci(s) is non-torsion or H1 (Y, E) = 0. (4.1)

The following lemma is the fundamental reason we make the above assumption:

Lemma 4.1 Suppose (4.1) holds. Let s > max(3/p, 1/2). Then for every (B, T) G
oP (Ys), we have N(B,T) : T, .B 1

, is surjective.

Proof There are two cases s > 1 and s < 1. We deal with the latter case, with the

more regular case s > 1 being similar. So for s < 1, there are two main steps. First,
we proceed as in the proof of Theorem 17.2 to show that any element in the cokernel of

1H (B,) -> -) '" must be more regular, in fact, it must lie in K""P This follows
because an element in the cokernel of 7(B,) satisfies an overdetermined elliptic boundary
value problem, and thus we can bootstrap its regularity. Once we have enough regularity,
we can integrate by parts, which shows that any element (b, @4) c E'+1'P in the cokernel

of N must satisfy 7-(BP)(b,@/) = 0 and r,(b,@) = 0. From here, the second step is
to apply the unique continuation theorem, Corollary 17.5, to deduce that the cokernel of

1H P is zero.

For the first step, by Lemma 3.16, we know that 1N(B,) : -+ Kr' ~ has closed

range and finite dimensional cokernel. Let (b, V) E T1 , p'= p/(p - 1), be an element in

the dual space of Kf'-"p which annihilates imt'h Indeed, we have that T ' is the
(BT )-(B,'I')

dual space of 'T(B by Theorem 13.15. Next, we have the topological decomposition

(BI' (4.2)
T l-''P' - 1 - S'P' e -5'P' (4.2)
(BT) ~ -(B,1P),t " (B,,P)'

This follows from the decomposition (3.37), since one can check that the map (3.43), by

duality, is bounded on T "I_ . More precisely, by our choice of s, we have the multiplication
maps

B"'P(Y) x B8'P(Y) - B"'P(Y)

B8 'P(Y) x Bs-81 P(Y) -±B8~P(Y L

which by duality means that the multiplications

BS'P(Y) x B-',P'(Y) B-"'P'(Y), (4.3)

BS'P(Y) x Bl~-'P'(Y) - Bl-'P'(Y). (4.4)

are also bounded. Thus, repeating the proof of (3.37) shows that there exists a bounded

projection of T "gf onto Jij / through I -SP , for (B, T) E iV'P(Y). This proves (4.2).
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Since -" and K B, annihilate each other, we see can choose our annihilating element

(b, V) E K since im (7-H')) C K- 1. Moreover, the fact that (b, @) annihilates

im (hs))) also means that 71(BP)(b, )) = 0 (weakly, i.e., as a distribution). Altogether
then, we see that we have the weak equation

Wo(b, #) = (B - Bref, P)#(b, 4). (4.5)

Everything now proceeds as in the bootstrapping argument in Theorem 17.2, but with
modifications since the multiplication term is not smooth. Because of the multiplication

(4.4), we have (B - Bref, q')#(b, @) E T-s'P' By Theorem 15.19(i), rE(b, V') E T1jsl/PP
is well-defined. Applying Green's formula to the symmetric operator N((B,4), we obtain for
all (a, #) E T that

0 ( (B,) (a, #), (b, 0) L2(y) - ((a, 0), 71(B, I)(b, )) L2(y)

- -w(rE(a, #), r,(b, V)). (4.6)

In the first line, we used that (b,@V) annihilates im (-(B,T)) and W(B,)(b, 4) = 0 (weakly).

In the second line, we use that rE(b, V)) E T 'P is well-defined. Since (4.6) holds for
all (a, #) E T, we have rr (b, ') = 0. This boundary condition together with (4.5) implies
that we have an overdetermined elliptic boundary value problem (cf. Proposition 3.20, we
have r(b, @) E 0 e B1-s-1/P''P'Q0(E; iR) e 0). By Theorem 15.19, this means we gain a

derivative and so (b, 4) E TB I_)'. This implies (B - B0 , T)#(b, 4) is more regular than

an element of T -~1/P'P', and we can elliptic bootstrap again. We keep on boostrapping
until we obtain (b, 4') C T', which is one derivative more regular than the maximum

regularity of (4.5) since (B, T) E 9318'P(Y). Thus, (b, 4') E K is now a strong solution

to -(BT)(b, 4') = 0.

We can now use Corollary 17.5, since K C /K4',2 as p > 2. This theorem implies

the following. Either (b, V') = 0, in which case the cokernel of H(B,J) : T (B,T

is zero, or else (B, T) = (B, 0) and ' = 0, b E H 1(Y, E; iR). In the former case, our map

1h(B') IV) $) )- K j' is surjective and we are done. For the latter case, we apply
assumption (4.1). In case ci(s) is non-torsion, det(s) admits no flat connections, hence, we
cannot have a reducible configuration (B, I) = (B, 0) be a monopole, else Bt would be a
flat connection on det(s). In case H'(Y, E) = 0, then we see (b,@O) = 0 and the Hessian is
surjective. This proves the lemma. D

Assumption: For the rest of Part I, we assume (4.1) holds.

So let us fix Y and s satisfying (4.1), and write M9'P = 9''P(Ys) and M'' - 91'P(Y, s)

for short. The conclusion of the lemma guarantees that we have transversality for the
monopole equations. This implies the following theorem:

Theorem 4.2 For s > max(3/p, 1/2), 9JP and M''P are closed submanifolds of VsP(Y)

Proof For any smooth (B, T) E C(Y), one can verify directly that SW 3 (B, T) c
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K(B,T).19 Thus when (B, T) E EY'P(Y), we have SW 3(B, ') E E J, since the map

d* 'TB)P - Bs 2,pQo(Y; iR) is still bounded by our choice of s. Proceeding as in

[21, Chapter 12], we can therefore think of SW 3 : V'P(Y) --+ K-l'P(Y) as a section of the

Banach bundle /(--l'P(Y) -+ ES'P(Y) (see Proposition 3.5). The previous lemma shows that

SW3 is transverse to the zero section. More precisely, from Proposition 3.5, we have that
V-1,P(y) -o V(Y) is Banach bundle complementary to the bundle 73l"P(Y) -> .SP(Y),
which means that for any configuration (Bo, To) E ES'P(Y), there exists a neighborhood JA
of (Bo, To) in Es'P(Y) such that

(BoI'o)(4.7

is an isomorphism for all (B, T) E it. Here, HI,p : 'T(B B (Bo"P is the projection

through 17'P given by (3.45). Thus, if SW3 (Bo, WTo) = 0, we consider the map(Bo,'I'o),t

f = -1 ,,lP SW 3 : J - K (4.8)
(B0 ,Io) (BoqIo)

Then f(B, T) = 0 if and only if SW3 (B, IF) = 0, and at such a monopole, we have

D(B,T)f = UI<3 7VS4 : K"' .->lc- (4.9)

By Lemma 4.1, 7W(BT) :T"') -* p is surjective, and so since (4.7) is an isomorphism,

this means D(B,Q)f is surjective for all (B, T) E it. Thus, we can apply the implicit
function theorem to conclude that f-'(0) is a submanifold of ts'P(Y). Since we can apply
the preceding local model near every monopole, it follows that 9i1',P = SW31 (0) C 'P(Y)

is globally a smooth Banach submanifold. Lemma 3.2 implies that we have the product
decomposition

DXP- g5+'P(Y) x M'P. (4.10)

Thus M8 'P is also a submanifold of VP(Y), since g9"+'P(Y) is a smooth Banach Lie group

by Lemma 3.1. The closedness of 9J18,P and M',P readily follows from the fact that these
two spaces are defined as the zero set of equations. D

Remark 4.3 Note that we can take the open neighborhood It C V'P(Y) of (Bo, To) to
contain a ball in the L2 (Y) topology (so that it is a very large open subset of VP(Y)).
Indeed, this is because K'- 1 ' and ( o)1,p are complementary for any (B1,xP1) in a(Bi,'PI') LI(Bo 'Io),trecmlmnayfrnyB,'h)ia

sufficiently small L2 (Y) neighborhood of (Bo, To), and so the map (4.7) is an isomorphism

19 This is no coincidence. On a closed-manifold Y, the Seiberg-Witten equations are the variational equa-
tions for the Chern-Simons-Dirac functional, see [21]. In other words, SW 3 (B, T) is the gradient of the
Chern-Sinons-Dirac functional CSD, i.e., the differential of CSD at (B, T) satisfies D(B,q)CSD(b, 0) =
(SW 3 (B, T), (b,V)) so that SW3 (B, T) vanishes precisely at the critical points of CSD. When DY is
nonempty, we still have D(B, )CSD(b, @) = (SW 3 (B, F), (b, 0)) = 0 for (b, V)) vanishing on the bound-
ary, in particular, for (b, 0) E J(B,P),t. Since CSD is invariant under the gauge group gid,D(Y), this means
(SW 3 (B, l), (b, iD)) = 0 for all (b, V') E J(B,w),t. So SW3(B, T) E /C(13, ,), the orthogonal complement.
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for (B, I) = (B1, 'i). To show this, it suffices to show that

K/8Sl1P 8-1, =0. (4.11)

Indeed, this will show that (4.7) injective. However, it must also be an isomorphism, since
k 8-1,p varies continuously with (B, I) C 'P(Y) as a consequence of Proposition 3.5.(B,T)
Namely, since (4.7) is an isomorphism for (B, I) = (Bo, WPo), then if it is injective for all
(B, T) = (B(t), 'I(t)) along a path in ES'P(Y) joining (Bo, kIo) to (B 1 , Ti), then it must also
be an isomorphism for all such (B, P).

We now show (4.11). Note that an element of K ' n is determined by a

E BS'PQO(Y; iR) that solves

A + Re (I 1,Wo) = 0 (4.12)

(|E = 0. (4.13)

Using elliptic regularity for the Dirichlet Laplacian, we bootstrap the regularity of ( to
obtain E B 2,2Q2 (Y; iR). Writing A + (TI1, To) =A + JIpol2 + Re (T1 - 'o, 'o), we see
that the operator A + (Ti, To) is a perturbation of the operator

A +|I0|2 : B 2 ,2q0(Y; iR) -+ L2Qo(Y; iR),

whose domain B 2,2Q0(Y;iR) consists of those a E B 2,2Qo(Y;iR) such that al = 0. We
showed that this latter operator is invertible in the proof of Lemma 3.4. It follows that if
the multiplication operator Re (TI1 - bo, To) has small enough norm, as a map from B 2,2 (y)
to L2 (Y), then the operator A + Re (kIi1, To) remains invertible and the only solution to
(4.12)-(4.13) is ( = 0. We have

|lRe (kh1 - To, Who)allL2(y) 0 i - W'olL2(y)1'hoILo(Y)lcklLo(Y) (4.14)

< C11 - 'IollL2(y)ol''OflBsP(Y) IaHB2,2(y).

since both B8'P(Y) and B 2,2(Y) embed into L (Y). Hence, if ||01 - 'WOfL2(y) is sufficiently
small, we see that the only solution to (4.12)-(4.13) is ( = 0, which establishes (4.11).

Theorem 4.2 proves the first part of our main theorem. However, to better understand
the analytic properties of these monopole spaces, we want to construct explicit charts for
our manifolds 9M'P and MA'P. Furthermore, we want to show that smooth monopoles are
dense in these spaces. These properties are not only of interest in their own right but will
be essential in Part III.

In a neighborhood of (B, T) c Ms'P, the Banach manifolds 9)',P and MsP are modeled
on their tangent spaces at (B, T), namely ker h ' and ker(N(Bq) sP) = ker(N(B,) ITsP),

respectively. Moreover, the tangent space to our manifolds at (B, T) are the range of opera-
tors which are "nearly pseudodifferential". Indeed, in the previous section, we constructed a
Poisson operator P(B) whose range is ker(N(B,\yJ)rTP). Since this operator is constructed

from the Calderon projection P+ and the Poisson operator P+ for the augmented Hes-(B,TI) (B,4)

sian ?H(B ), both of which differ from pseudodifferential operators by a compact operator,
it is in this sense that P(B) is close to being pseudodifferential.
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Let (B 1 , I1), (Bo, 'Po) E CV'P(Y) and write (b, @) (B 1 - B0 , T, - To). Then we have

the difference equation

SW3 (B1 , I) - SW 3 (Bo, T o) = (B,To) (b, + (p l('*)o, p(b)@b), (4.15)

which reflects the fact that SW 3 is a quadratic map. The linear part, is of course, given by
the Hessian, and its quadratic part is just a pointwise multiplication map. Thus, we define
the bilinear map

q :7x T-

q((b1 ,V'1), (b2,4#2 )) (p,1(@102*)o, 1(p(bi)@ 2 + p(b 2 )1i) (4.16)

which as a quadratic function enters into the Seiberg-Witten map via (4.15). The map q
extends to function space completions as governed by the multiplication theorems. Observe
that q is a bounded map on T'P since B5 'P(Y) is an algebra. This is key, because then the
Seiberg-Witten map SW3 is the sum of a first order differential operator and a zeroth order
operator, and using Proposition 3.20, we have elliptic regularity for the linear part of the
operator on suitable domains.

From these observations, we can prove the following important lemma which we will
need to show that smooth monopoles are dense in 91'P.

Lemma 4.4 Let s > max(3/p, 1/2). Let (Bo, 'Po) E M'P. Then B+ 1',P(Y) configurations
are dense in the affine space (Bo, APo) + T(B030)M -p.

Proof Pick any smooth (Bi, 91) E C(Y) in Coulomb-gauge with respect to Bref. Let
(b, 4') = (B1 - Bo, 1 - APo). Then from (4.15) together with the Coulomb-gauge condition,
we have

IR81 0 (b, V) = SW3 (B1 , IF1) - q((b, 4)), (b, 4)), (4.17)

where on the right-hand side the first term is smooth and the second term is in T'P. Apply-
ing Proposition 3.20 with (t, q) = (s+ 1,p), we see that (b,@0) c (b', ') +ker(N(BoTo)TsP)
for some (b', 0') E X(+ C T+ 1,P. In other words, if we invert W" in (4.17), wefo om b' ")C (B0, T ) in (4.17), w
find that (b,@4) is equal to a smoother element (b',0'), modulo an element of the kernel
of 7tr'' TP. It remains to show that Bs+1,P(Y) configurations are dense in the latter

space. First, we have BS+1,P(Y) configurations are dense in ker -"P c T'P by Corollary(Bo,'i'o) TPb oolr
15.17 and Lemma 3.9. Similarly, BS+1,P(Y) configurations are dense in ro, the subspace
given by (3.105). This follows from the construction of FO. First, we have 1 o is a graph of
the map 0 0, which is defined over ker A C BS'PQO(Y; iR), and smooth configurations are
dense in ker A by Corollary 15.17. We now apply Proposition 3.20 with (t, q) = (s + 1, p),
since the map 0 0 is defined by inverting the Hessian. Altogether, we see that B+ 1',P(Y)
configurations are dense in Fo. Because of the decomposition (3.105), it now follows from
the density of Bs+1,P(Y) configurations in ker -) and To that Bs+1,P(Y) configurations(B0  o ht Sl Y)cnfgrain
are dense in ker(fi(Bo,qo)|s,P) = T(Bosso)r8''

Altogether, we have shown that (Bo, Wo)+T(Bo0 o)M8 'P = (B1 , P1)+(b', 4')+T(B0 0)M8'P,
where (B 1, T1) is smooth, (b', 0') E Ts+1,P, and Bs+1,P(Y) configurations are dense in
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T(B.,,)M4',P. This proves the lemma. D

From Theorem 3.13, given (Bo, Wfo) E M 8 'P, we have a projection W(Boo)) P(Bo,qI0)rE

T ) - T(Bo, 9o)9A"P onto the tangent space T(Bo ,Io)91sZP for any (Bo, To) E 2T'P. Thus,
locally 9M',P is the graph of a map from T(Boggym9RP to any complementary subspace in

T(ISo) We wish to describe the analytic properties of this local graph model in more detail.
First, we record the following simple lemma which describes for us natural complementary
subspaces for T(BoTo) 9 P.

Lemma 4.5 Let s > max(3/p, 1/2). Given any (Bo, To) c M3ZP, we have the direct sum
decomposition

TP' T(Bo 9o)9S P e X (4.18)

for any (B, T) G 9J',P sufficiently BS'P(Y) close to (Bo, TO), where XSPsi) is defined as in(B,')

(3.114).

Proof By Lemma 4.1, (Bo,'Vo) :Bo ) IS Surjecti Thus, (4.18) fol-

lows readily from T(Boo) 8 'AP = kerW-C', and W(Bo'1Vo) : X S -1 P being an(BoI) (B,'I') (Bo,qjo) nga
isomorphism by Proposition 3.20. Note also that X8 P is the kernel of the projection

7r Ts 8P -* T(B,T)Ms'p. 7I

Using any one of above complementary subspaces for T(B,,, 9o)9R'P (we will always use

X(BS"') for simplicity), we can describe the Banach manifold 9R'P locally as follows. In the

proof of Theorem 4.2, we introduced the local defining function f in (4.8) on a neighborhood
it C 'P(Y) so that 91,P n J = f-1(0). In other words, we used the implicit function
theorem for f to obtain 9)'P. On the other hand, we can describe 9M'P in an equivalent
way using the inverse function theorem, as in the framework of Theorem 20.2, whereby

9i'P is given locally by the preimage of an open set under diffeormophism rather than the

preimage of a regular value of a surjective map. This means we need to construct a local

straightening map as in Definition 20.3. Following the same ansatz in Theorem 20.2, we
have the following:

Lemma 4.6 Let (Bo, To) E 9'P, and let X = ' ," ) X0  T(Boo)9'P, and X 1 =

X'p . We have X = Xo e X1 and define the map(BoilTO)*

F( Bogo) : XO e X 1 -+ X

x = (xo, x1) i-+ zo±+ (1(Bo go) i) Es-1,P SW 3 ((Bo, To) + x). (4.19)
(Bo,'o)

(i) Then F(B0 ,ql0 )(O) = 0, DoF(BTo) = 0, and F(Boo) is a local diffeomorTphism in a

B8'P(Y) neighborhood of 0.

(ii) There exists an open set V C X containing 0 such that for any x C V, we have
(Bo, To) + x c MS,'P if and only if F(B,,0)(x) C XO. We can choose V to contain an

L 2 (Y) ball, i.e., there exists a J > 0 such that

V D {x C X : ||x2(y) < 6}.
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Furthermore, we can choose S = 3(Bo, Po) uniformly for all (Bo, TO) in a sufficiently
small L (Y) neighborhood of any configuration in 9i''P.

(iii) If (Bo, To) C M''P then for any x C V nC"P, we have (Bo, o) + x c M8 'P if and

only if FB o,qf()(x) c Xo X n C8

Proof (i) We have F(Bo,,o)(0) = 0 since SW 3 (Bo, 'jo) = 0. Furthermore, the differen-
tial of F(Bo,,Io) at 0 is the identity map by construction; more explicitly,

(DoF(B0 ,qPo))(x) = O (7i(B0,qo)~X) 1 HIVs-1,P R(B,,o)(x)
(Bo,1Vo)

= Xo + (W(B,Wo)IXi) IW(B0 ,T0 )(x) = xo + X1.

So by the inverse function theorem, F(Bo,qo) is a local diffeomorphism in a Bs'P(Y) neigh-
borhood of 0.

(ii) Observe that F(BO,9))(x) C Xo if and only if the second term of (4.19), which lies in
X1 , vanishes. Let (B, T) = (Bo, qJo)+x. Then for x in a small L2 (Y) neighborhood of 0 E X,
call it V, we know by Remark 4.3 that (4.7) is an isomorphism. Since SW 3 ((Bo, 'Wo) +x) E

/ 8- and (7[(B0,qo)|X 1)~ is an isomorphism, it follows that the second term of (4.19)

vanishes if and only if SW 3 ((Bo, qho) + x) vanishes, i.e., if and only if (Bo, To) + x E i 8'P.
Equation (4.14) shows that the size of this L2 (Y) ball depends only on |J|'oHLOO(Y), and this
implies the continuity statement for 3.

(iii) Since X1 C C(", 0  by (3.114), we have that F(Bo, 0 )(x) E C"',pI) if and only if

X E C"(, 0 ), Then (iii) now follows from the previous steps via intersection with C( l

Thus, the map F(Boqo) in the above lemma is a local straightening map for 9x',P (where
we translate by the basepoint (Bo, To) so that we can regard 9N'JP as living inside the
Banach space 'TLO )) such that its restriction to C("o) yields a local straightening map

for M''P if (Bo, To) c M8 'P. In Theorem 4.8, we will show, in the precise sense of Definition
20.3 that F(Bo,90 ) is a local straightening map for M''P within a "large" neighborhood of
(Bo, To), where large means that the open set contains a ball in a topology weaker than
the ambient B8'P(Y) topology. First, we need another important lemma, which allows us
to redefine F(Bo,Po) on weaker function spaces:

Lemma 4.7 Let (Bo, TO) E MA'P for s > max(3/p, 1/2).

(i) If x E T'S , then we can write F(Bo,P0 ) (x) as

F(Bo,wo)(x) =x + (N(Bo,wo)IXP 1 K8v q (x, x), (4.20)

x + Q(B0,To)(x, x), (4.21)

where q is the quadratic multiplication map given by (4.16).

(ii) The map (W(Bo,10) Xs+1,p ) 1 flK- ) : T"p -4 Ts+1 ,p extends to a bounded map
(Bo,'mo) (Bo,P o)

((Bo, IV|X + 1, ) ~1H1c . LqT -- H l'q7 (4.22)
(Bo,*oP) (B0,*o0)
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for any 1 < q < oc.

(iii) Let 3 < q oc. For x E LqT B, o), define F(Bo,Po)(x) by (4.21). Then F(Bo,po)
Lq(Bo,90) -+ LqB,9 0 ) is a local diffeomorphism in a Lq(Y) neighborhood of 0.

Proof (i) With x = (xo, xi) as in Lemma 4.6, we have

F(x) = o ( (BO,,Io)XWP ) 1 f U -1,p SW 3 ((Bo, Wo) + x)
(BO,*PO) (Do"Po)

= o + + ((BoWo)) X "' lIP (1(B, 1o)(X) ±'q(xx))
(BO,1 o) (B , o)

- XO ± X1 + (7H(Bo,wPo)1X"P -1llcsi~p q(Xlx). (4.23)

Next, since B8'P(Y) is an algebra, then q(x, x) c T'P. It follows that in (4.23), we may re-
place fl.S-1,P with IIJcs,p . From Proposition 3.20, we know that we have isomorphisms

(Bo,(,o) (Bo,4o)

XsB,1YlX P K 8 1c P(BOB'O) (BO, Io)

(Bo,o) Bo o) ( Bo,o)'

from which it follows that if y E xC'P then R- (y) E (B0 ,o). The decomposition

(4.20) now follows.
(ii) First, we note that Lemma 3.4 extends to Sobolev spaces, since its proof, which

involves studying elliptic boundary value problems, carries over verbatim to Sobolev spaces
(see Section 15) so long as the requisite function space multiplication works out. In this
case, we want HJks,p to yield a bounded map on LqT, in which case, the bounded

(BO , 'o)
multiplications that we want are the boundedness of

B"'P(Y) x Hl'q(Y) - Lq(Y) (4.24)

B8'P(Y) x Lq(Y) H- H1,'(y), (4.25)

cf. (3.28) and (3.29). However, these are straightforward, because we have the embedding
BS'P(Y) " L (Y), and we have the obvious bounded multiplication L (Y) x Lq(Y) -+

Lq(Y), which therefore trivially imply the above multiplications.
From this, it remains to show that (M(Bo,o)|X-+1,P )-1 extends to a bounded map

(Bo,'Po)

LT - H1',q. However, the exact same considerations show that this is the case due to
the boundedness of the above multiplication maps.

(iii) We have a bounded multiplication map Lq(Y) x Lq(Y) -+ Lq/ 2 (Y), and for q ;> 3, we
have the Sobolev embedding H1,q/ 2(Y) " L(Y). Hence (ii) implies that the map F(Bo,Po)
is bounded on LqT for q > 3. Since F(Bo,%o)(O) = 0 and DoF(Bo,P0o) = id, the inverse func-
tion theorem implies F(Bo,)o) is a local diffeomorphism in a Lq(Y) neighborhood of 0. E

Thus, from now on, we may work with the expression (4.21) for F(Bo,wo) since it coincides
with (4.19) when the latter is well-defined.

Given the local straightening map F(BO,)o) and the various properties it obeys above,
we now import the abstract point of view in Section 20 into our particular situation to
construct charts for 9R',P. This gives us the following picture for a neighborhood of the
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monopole space 9M'P. At any (Bo, To) E EIM''P, letting X1 = X(', be a complement of(Bo TIo)

T(BogO))MSP as in Lemma 4.5, then near (Bo, To), the space M''P(Y) is locally the graph of
a map, which we denote by ElB,), from a neighborhood of 0 in T(B0,gPm)-P to X 1 . The
local chart map we obtain in this way for £i''P(Y) is precisely the induced chart map of
the local straightening map F(B,),1 0 ) above, in the sense of Definition 20.4. In addition, we
show that the map ElI, 0 ) is smoothing, due to the fact that the lower order term Q(B,,o)
occurring in F(BJo), as defined in (4.21), is smoothing, i.e., it maps T" to TS+lP(o~)'(Bo,'I'o) (Bo,kPo)'
Moreover, for any q > 3, we show that F(Boo) is a local straightening map in some Lq(Y)
neighborhood of (Bo, To). Consequently, the induced chart maps we obtain yield charts
for Lq(Y) neighborhoods of 9N''P, which are large neighborhoods when viewed within the
ambient Bs'P(Y) topology. This latter property will be very important in Part III, and it
is the analog of how the local Coulomb slice theorems for nonabelian gauge theory allow
for gauge fixing within large neighborhoods (i.e., neighborhoods defined with respect to a
weak norm) of a reference connection (see e.g. [53, Theorem 8.1}).20

We have the following theorem:

Theorem 4.8 Assume s > max(3/p, 1/2).

(i) Let (Bo, To) G 9N''P and X 1 = X"' be a complement of T(BonPo)9R"P in T
Then there exists a neighborhood U of 0 G T(B0,,o)9R''P and a map E 0 : U -+ X1UBo
such that the map

E(Bogo) : U -+ 9R'p

x - (Bo, To) + x + ElBOg (x) (4.26)

is a diffeomorphism of U onto an open neighborhood of (Bo, To) in 9M',P. We have

E(B0 T0 )(0) = 0, DoE )= 0, and furthermore, the map ElBono) smooths by one

derivative, i.e., E (x) ch 1 +'O for all x G U.

(ii) Let q > 3. We can choose U such that both U and its image E(B0oo)(U) contain
Lq(Y) neighborhoods, i.e., there exists a 6 > 0, depending on (Bo, To), such that

U _ {x G T(B0,W0)
9 l8'P : MXHLq(y) < 6

E(Boq1o)(U) ; {(B,'I) E M8"' : ||(B, @I) - (Bo, 'ho)f|Lq(Y) < 6}-

The constant 6 can be chosen uniformly in (Bo, xho), for all (Bo, To) in a sufficiently
small Lm (Y) neighborhood of any configuration in 93',P.

(iii) If (Bo, To) G M''P, then the map E(Bo,'Po) restricted to UnC8'P is a diffeomorphism(Bo,'To)
onto a neighborhood of (Bo, TO) in M 8'P.

(iv) The smooth monopole spaces 9) and M are dense in 3''P and M''P, respectively.

20 Such gauge fixing properties are important for issues related to compactness, since in proving a com-
pactness theorem, one considers a sequence of configurations that are bounded in some norm, hence strongly
convergent along a subsequence but with respect to a weaker norm. If one wants to gauge fix the elements
in the convergent subsequence, one therefore needs a gauge fixing theorem on balls defined with respect to
the weaker norm.
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M pP C It(Y )
X1

El (X)

(Bo, To)

Figure I-1: A local chart map for 9RP at (Bo, <Do).

Proof (i-ii) Given q > 3, consider F(Bo,qo) as defined by (4.21). By Lemma 4.7(iii),
F(Bo,To) has a local inverse F-1 defined in an Lq neighborhood, call it V, of 0 E(Bo,'o)

. First, we show that F (equivalently, F(Bo,Po)) is regularity preserving, namely,

that F-' (x) if and only if x E T" Vq. In one direction, suppose
F(b to 7 Then since F(B,,)) is continuous on T"' , then x

(Bo ,l 0 )(x) belongs t P (Bo, To) '(Bo, To)'

F(BoWo)(F(B 0)(x)) E T' . In the other direction, if x E T,p we apply (4.21) to
obtain

F- (x - Q(Bo 0 ) (F(s p 0)(x),F p 0) (x)).

A priori, we only know that F- 1,- (x) E L7Boo). However, in the above, we have

x E ~7~ ) and Q(Bq/2)(x) E H / 2 T by Lemma 4.7. When q > 3, then Q(BoWO) always

gains for us regularity, and so we can bootstrap the regularity of F- 1 , )(x) until it has the

same regularity as x. Thus, this shows that x E T''P if and only if F-1 (x) E T5 '.

Shrink Vq if necessary so that V n T'P C V2 , where V2 is defined to be the open set in
Lemma 4.6(ii). This is possible since V2 contains an L2 (Y) ball and q > 2. Then if we let
V = Vq n T5'P, then V satisfies the key property of Lemma 4.6(ii), namely if x C V, then
(Bo, To) + x E MA'P if and only if F(x) E Xo. The key step we have done here is that we
have shown that F-1 is well-defined on the open set V, so that F(Bo,yo) becomes a local

straightening map for 9X,'P within the neighborhood V of (Bo, Wo) E 9RS'P. Indeed, with
just Lemma 4.6, we would only know that F(BoPo) is a straightening map for a small B8 'P(Y)
neighborhood of (Bo, Wo) E 9X''P, which is what we get when we apply the inverse function
theorem for F(Boqo) as a map on T'P. Here, by rewriting F(Bo)o) in Lemma 4.7 in a way

that makes sense on Lq , we get an Lq open set on which we have the inverse F( 1 . The(Bo,'I'o)'
smoothing property of Q(Bo0,V) allows us to conclude the regularity preservation property

of F- , i.e., it preserves the B8'P(Y) topology, so that altogether, the map F(Bo,To) is a(Bo, T o) I
straightening map for 91',P on the large open set V C T'P.

Once we have the local straightening map F(BoTo), the construction of induced chart
maps for 9X'lP now follows from the general picture described in the appendix. Letting
U = F(V) n Xo, the map E(BOo) is given by

E(BPo)(x) = (Bo, TIo) + F(B d )(x), x C U. (4.27)
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The map El(Bo,To)(x) is just the nonlinear part of E(Bo,,Po)(x), and it is given by

ElB0,P0)(x) F/- 0 )(x) - x (4.28)

- (Bo,)(F (x), Fx U. (4.29)

The smoothing property of E(B, 0) now readily follows from the smoothing property of

Q(Bo,Po). By construction, U contains an LI(Y) ball since V does. This implies E(Bo,Po)(U)
contains an Lq(Y) neighborhood of (Bo, qJ'o) E 93''P(Y), since 9)1 n ((Bo, TWo) + V)
E(Bo,'o) (U).

Finally, the local uniform dependence of 6 can be seen as follows. First, the constant
6 of Lemma 4.6 can be chosen uniformly for (Bo, TO) in a small L*(Y) neighborhood of
any configuration in 9R'P. Next, the map F(Bog) : LqT _ OT varies continuously as
(Bo, To) varies in the L'(Y) topology. It follows from the construction of V that we can
find a fixed 6 such that V contains a 6-ball in the Lq(Y) topology as (Bo, To) varies inside
a small L*(Y) ball. We have now established all statements in (i-ii).

(iii) This follows from the above and Lemma 4.6(iii).
(iv) By Lemma 4.4 and the smoothing property of E we have that M 1',P is

dense in M''P. Iterating this in s, we see that M is dense in M'P. Since smooth gauge
transformations are dense in the space of gauge transformations, it follows from the decom-

position 9Mw' -- 91'i+P(Y) x M''P that 9N is dense in 9R',P as well. [l

Retracing through the steps in the proof of Theorem 4.8, one sees that the chart maps for
91''P define bounded maps on weaker function spaces. This allows us to extend these chart
maps to L (Y) balls inside the closures of the tangent spaces to 9J''P in weaker topologies.
This yields for us the following important corollary:

Corollary 4.9 Let (Bo, To) E 9)',P. Let 1/p t < s and pick q ;> 3 according to the
following: for t = 1p, set q = 3; else for t > 1/p, choose q > 3. Consider the open subset

Ut'P = {x E Bt'P(T(Bgo)9)1sP) : HXHLq(y) < 6

of BtP(T(Bo,P))9'P), the Btp closure of T(BI,1Po)9AS)P.

(i) For 6 sufficiently small, E(Boo) extends to a bounded map E(Bo0 ,Po) : Ut'p - Qt'P(Y)
It is a diffeomorphism onto its image and is therefore a submanifold of &'P(Y) con-
tained in 9 1 tP.

(ii) The constant 6 can be chosen uniformly for (Bo, kPo) in a sufficiently small L*(Y)
ball around any configuration of 9A''P.

The corresponding results hold also for M',P. Finally, all the previous statements hold with
the Bt'P(Y) topology replaced with the Ht'P(Y) topology.

Proof We only do the lowest regularity case t = 1/p, since the case t > 1/p is simpler
and handled in a similar way. For t = 1/p, then in trying to mimic the proof of Theorem
4.8, we show that the map F(Bo,'Y) : L3 TBo,) - La7Bop o) preserves B 1 /P'P(Y) regularity
on a small L 3 (Y) neighborhood of 0.
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In one direction, starting with x G B ,i0 , we want to show that F(Bog')o) E

This means we must show that Q(BP is bounded on TP. We have the embedding

Bl/P'P(Y) " L3p/ 2 (Y). Hence, we have a multiplication map Bl/PP(Y) x Bl/P'P(Y) "

L 3p/ 4 (Y). Next, the projection flU.,p onto IK"' extends to a bounded map on
(B0 ,910) (Bo,'I'o)

L3p/4 T since (Bo, Wo) is sufficiently regular (see the proof of Lemma 4.7). Finally when
we apply the inverse Hessian, we get an element of H1 ,3p/ 4 (Y) (Proposition 3.20 gener-
alizes to Sobolev spaces, see Remark 4.17). Since we have an embedding H1, 3p/ 4 (y) "

Bl-/P'P(Y) C B 1/P'P(Y), this shows that Q(Bogo) is bounded on B'/PP(Y). In the other

direction, suppose x E LT(BOq)) and F(BOxF)(X) E Bo,/o). In this situation, we have'(Bo, T o) *

Q(BOWo)(X) E H 1 3/2-(Bogo), which embeds into , and so it follows that x E 7,jP).

(For t > 1/p, we do not have Q(Bo,1Io)(X) E T , which is why we need q > 3 so that we

have room to elliptic bootstrap.)
All the steps in Theorem 4.8 follow through as before to prove the corollary for t = i/p.

The arithmetic for the HtP spaces yields the same result. E

4.1 Boundary Values of the Space of Monopoles

Define the space of tangential boundary values of monopoles

ES~1/P'P X ) = (9 J 8-1/P'P(Y, s)). (4.30)

By (4.10), we also have
Es-1/P'P(Y, r) rA(M''P(Y, s)). (4.31)

With Y and s fixed and satisfying (4.1), we simply write '~1£/P'P - L.-1/P'P(Y,)
We know that Ms',P is a manifold for s > max(3/p, 1/2) by Theorem 4.2. Under further

restrictions on s, we will see that s-1/'PP is also a manifold and the restriction map rE :
Ms- 1/pAP -+ Es-1/PP is a covering map with fiber gh,a(Y), which, as defined in (3.11), is
the gauge group of harmonic gauge transformations which restrict to the identity on E.
Furthermore, this covering map implies that the chart maps for M''P push forward under
rE to chart maps for the manifold ES-'/P'P. Consequently, the smoothing properties of
the chart maps for MsP in Theorem 4.8 induce chart maps for E- 1/P that have similar
smoothing properties.

First, we establish several important lemmas.

Lemma 4.10 For s > max(3/p, 1/2), rE : MsP a Es-1/P'P(E) is an immersion.

Proof This is just Corollary 3.18(ii). 0

The following important lemma allows us to control the norm of a monopole on Y in
terms of the norm of its restriction on E.

Lemma 4.11 Let s - /p > 1/2 or s > 1 if p = 2. Then there exists a continuous function

M,,p + R R+ such that for any (B, IV) G MS,P, we can find a gauge transformation
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g G gh,a(Y) such that

|g*(B - Bref, PI)||BP(Y) 5 P/,p (||r,(B - Bref, ,1)|1Bs-1/PP()) . (4.32)

Proof For the moment, assume (B, IF) E 'E(Y) is any smooth configuration. Define
the following quantities

San(B, T) = JF t 2 2  (s/2)) - (4.33)

Etop(B, T) = - (Da T, T) + (H/2)|W| 2. (4.34)

Here s is the scalar curvature of Y, H is the mean curvature of E, and Da is the boundary
Dirac operator

(D' T)|r = (p(v)-D )|Ir - (VB,v j) E + (H/2)' T,

where VB is the spinc covariant derivative determined by B. Thus, Da only involves
differentiation along the directions tangential to E.

If we view (B, T) as a time-independent configuration for the four-dimensional Seiberg-
Witten equations (see the discussion before Theorem 17.3), then the above quantities are
the analytic and topological energy of (B, l), respectively, as defined in [21]. According to
[21, Proposition 4.5.2], we have the energy identity

gan(B, Q) = EtoP(B, Q) + |SW3 (B, T)||12 (y) (4.35)

Observe that

EtOP(B, 'I') C ("1l/2( ) + H'|| 3(l)|(B - Bref)|EWL3(E) + (E)

< C'lIrE(B - Bref, TI)|1/2 ,2 (r)

for some constants C, C' independent of (B, IF). Here we used the embedding B1 /2,2) c

In what follows, we will use x < y to denote x < Cy for some constant C that does
not depend on the configuration (B, l). Now consider a smooth solution of the three-
dimensional Seiberg-Witten equations. Then we have SW3 (B, T) = 0, and so it follows
that

Ean(B, T) < ||rr (B - Bref, p)||131ur.(.6

From this and the definition of Ean(B, f), we get the a priori bound

||0|44(Y) < 1 + 11rr(B - Bref, p)||1/2(2). (4.37)

If (B, I) E 9X1'P is not smooth, we can approximate (B, T) by smooth configurations by
Theorem 4.8(iii). We have rE(B - Bref, q) E T for any E > 0 by
Theorem 13.17. Since s > 1/2 + 1/p, we can choose E so that s - 1/p - E > 1/2. Thus,
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we have uniform control over the B1 /2 ,2 (E) norm of the tangential boundary values of an
approximating sequence to (B, T). Thus, taking the limit, we see that (4.37) also holds for
(B, T) E 918P(Y).

Our remaining task is to use the a priori control (4.37) and the elliptic estimates for the
Seiberg-Witten equations in Coulomb gauge to bootstrap our way to the estimate (4.32).
By Corollary 15.22, we have the following elliptic estimate on 1-forms b:

|b|lBtq(y) $ fdbIIBt-1 q(y) + J d'bHIt-1,q(y) + bdI Bt-1/q,q(E) + ||bht-1,q(y) (4.38)

where b" is the orthogonal projection of b onto the finite dimensional space

H'(Y, E; iR) L-- {a E ff (Y; iR) : da = d*a = 0, alyr = 0}. (4.39)

Here t > 1/q and q > 2.

Now let (B, T) E M8 'P be any configuration. Since it is in in the Coulomb slice deter-
mined by Bref, then equation (4.38) implies

||(B-Bref) |Btq(Y) I |FBt -FBt 1Bt-1,qY )+rE(BBref)B 1/qq )+|( BBref)|q|(y)

(4.40)
where t, q will be chosen later. Since Dirichlet boundary conditions are overdetermined for
the smooth Dirac operator DBrf, we have the elliptic estimate

||W||Bt'(Y) ||DB Btl-,l(Y) + k'Bt- 1
/q(). (4.41)

There exists an absolute constant C such that for any configuration (Bo, TO), we can find a
gauge transformation g E gh,a(Y) such that g*(Bo, To) satisfies | (g*(Bo-Bref))h1Bt-1,q(Y) <

C, since the quotient of H'(Y, E; iR) by the lattice gh,a(Y) is a torus. To keep notation sim-
ple, redefine (B, T) by such a gauge transformation. Such a gauge transformation preserves
containment in Ms'P since the monopole equations are gauge invariant and the Coulomb-
slice is preserved by gh,a(Y). So using the bound ||(B - Bref)hflst-1,q(y) < C and the
identity SW 3 (B, T) = 0, the bounds (4.40) and (4.41) become

11 (B - Bref)lBtq(Y) < I20yBt-1,q(y) + |[(B - Bref)IE IBt-1/q,q(E) + 1. (4.42)

Il'|Bt|q(Y) < ||p(B - Bref)'P 1Bt-1, (Y) +/( (4.43)

We will use these estimates, bootstrapping in t and q and using the a priori control (4.37),
to get the estimate (4.32).

Let us first consider the case p = 2 and s > 1. Letting t = 1 and q = 2, (4.42) and
(4.37) yield

B - Bref 1Bl,2(y) < 1 + | '|W|L4(y) + ||(B - Bref)|H||B1/2 ,2 (F)

< 1 + |ry(B - Bref, qI)|1/22()'

This yields control over |IB - BrefIL 4 (Y) since we have the embedding B 1,2 (Y) " L6 (Y).
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Using this estimate in (4.43) with t = 1, q = 2, to control p(B - Bref), we have

|I|j|Bi,2(y) ; |B - Bref||L4(y)1I 'L4(Y) + 1JP||B1/2,2(E)

< 1 + jr (B - Bref, p)|1 /2,2(g) -

This proves the estimate for s = 1. The estimate (4.32) for s > 1 now follows from
boostrapping the elliptic estimates (4.42) and (4.43) in t. Indeed, once we gain con-
trol over ||(B, ')flBt,q(y), we can control the quadratic terms ||JJ 2 II1Bt'-1,q(y) and ||p(B -
Bref)'PI|Bt'1,q(y) for some t' > t as long as t' < s. After finitely many steps of bootstrap-
ping, we get (4.32), where the function p,, can be computed explicitly if desired.

For p > 2 and s > 1, we use the imbedding - 1/P'P(E) c Es-1/p-e,2 (E), for any

e > 0. From the previous case, we find that we can control ||(B, 'P)||B,2(Y) in terms of
(B,'P)||1-1/2,2(E). Since Bs,2 (Y) C B 1,2 (Y) -4 L6 (Y), the quadratic terms in (4.42) and

(4.43) lie in L 3(Y). Since we have the embedding L 3 (Y) C B0'4(Y), where q = max(3, p),
we can repeat the bootstrapping process (in t) as in the previous case to the desired estimate
(4.32) for any s > 1 and p < 3. Suppose p > 3. Then with q = 3 in the previous step, we
have established (4.42) and (4.43) with t = 1 and q = 3. Since B 1,3 (Y) " Lq(Y) for any
q < oo, we have control of the quadratic terms of (4.42) and (4.43) in LP for any p < oo.
Thus, we have the estimate (4.42) and (4.43) for t = 1 and q = p, since LP(Y) C BO'P(Y).
We can then bootstrap in t to the estimate (4.32) for any s > 1 and p < oo. Thus, we have
taken care of the case s > 1 and all p > 2.

Finally, suppose s < 1 and p > 2. We employ the same strategy of bootstrapping in q
until we get to p. Since s - 1/p > 1/2, we have BS-l/P'P(E) " B1/ 2 ,2 (E) and so we have

control of 1 (B - Bref, I)||11,2(y) and |1(B - Bref, 'P)|e(y) in terms of ||(B - Bref)|E||B1/2,2(E).
Let 1/2 < t = s < 1 and q = min(3, p) in (4.42) and (4.43). We have control of the quadratic
terms on the right-hand side since L3 (Y) C BO',(Y) C Bs-l'q(Y), since s - 1 < 0. Thus,
we have the control (4.32) for p = q. If p < 3, we are done. Else p > 3 and we bootstrap
in q. Indeed, starting with qi = 3, we have a map Bs',q(Y) x Bs'4 (Y) -+ B 2s-3/qi,qi(y) "
Lqi+1(Y) C Bs-l'qi+1(Y), where qi+1 = qi/(2(1-sqi)) > qj. Using (4.42) and (4.43), we thus
bootstrap to the estimate (4.32) with p = qi+1 from the estimate (4.32) with p = qi. The
qi keep increasing until after finitely many steps, we get to the desired p, thereby proving
(4.32). D

The next lemma tells us that any two monopoles which have the same restriction to E
are gauge equivalent on Y.

Lemma 4.12 Let s > max(3/p, 1/2). If (B1, T1), (B2, T 2) C f)Z'P and rr (B1, T1) =

rE(B 2 , XF2), then (B1, '1) and (B 2 , T2) are gauge equivalent on ,s'P(Y).

Proof Because of (4.10), without loss of generality, we can suppose (Bi, Ti), (B 2 , XP2) E
M''P. There are two cases to consider. In the first case, one and hence both the config-
urations are reducible. Indeed, if say (B1, Q1) is reducible, then T2|r = 'ilz = 0. Since
DB2 '2 = 0, by unique continuation for DB2, we have XI2 = 0 so that (B 2 , XP2) is also re-
ducible. In this reducible case, then B1 and B2 are both flat connections and so by (4.1),
we must have H'(Y, E) = 0. Since d(B1 - B 2) = d*(Bi - B2) = 0 and by hypothesis

(Bi - B2)IE = 0, we must then have B 1 - B2 = 0 since H 1 (Y, E) = 0. So in this case,
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B1 and B2 are in fact equal. In the second case, neither configuration is reducible. In this
case, consider the 4-manifold S1 x Y and regard (B1 , i) and (B 2 , T2) as time-independent
solutions to the Seiberg-Witten equations on S' x Y. We now apply Theorem 17.3. O

Piecing the previous lemmas together, we can now prove the rest of our main theorem
concerning the monopole spaces:

Theorem 4.13 Let s > max(3/p, 1/2 + 1/p). Then 2-I/P'P is a closed Lagrangian sub-

manifold of s-/PP(E). Furthermore, the maps

r,:9RJP L 1 l/P (4.44)
r : M' L-'IPP (4.45)

are a submersion and a covering map respectively, where the fiber of the latter is the lattice

gh,a(Y) H'(Y, E).

Proof By (4.10), it suffices to consider the map (4.45). By Lemma 4.10, the map r:
M"'P a Es-1/P'P(E) is an immersion, hence a local embedding. The previous lemma implies

that (4.45) is injective modulo G := gA,O(Y), since the gauge transformations which restrict
to the identity and preserve Coulomb gauge are precisely those gauge transformations in
G. Moreover, G acts freely on MA'P(Y) by assumption (4.1), since when there are reducible
solutions, we have G = 1.

It remains to show that rr : MA'P/G - s-1/PP(E) is an embedding onto its image. Let

(Bi, 'I) E M'P, i > 1, be such that ry(Bi, W') -- r(Bo, TWo) in -14/P'P(E) as i -+ oc. We

want to show that given any subsequence of the (Bi, Ti), there exists a further subsequence
convergent to an element of the G orbit of (Bo, To). This, combined with the fact that
(4.45) is a local embedding will imply that (4.45) is a global embedding, modulo the covering
transformations G. Indeed, the local embedding property tells us that there exists a open
neighborhood V(Bo,o) D (Bo, To) of MA'p such that rz : V(Bo,o) --+ V P'P(E) is an

embedding onto its image, and moreover, rE(g*V(BoWo)) = rE(V(o,))) for all g E G.
Proving the above convergence result shows that given a sufficiently small neighborhood U
of r,(Bo, To) in V-~/P'P(E), then U n L'~1/PP is contained in the image of any one of the

embeddings rr : g*V(Bo'To) -_ C8l/P'P(E), g E G. Otherwise, we could find a subsequence

(Bg, <bg) of the (Bi, WI) such that rE(Bg, D/) -> rr(Bo, To) but the (B, 4j) lie outside

all the g*V(Bo,Po), a contradiction.
Without further ado then, by Lemma 4.11, we know we can find gauge transformations

gi E G such that gi(Bi, ji) is uniformly bounded in Bs'P(Y), since ry (Bi, Ti) -+ rE(Bo, To)
is uniformly bounded. For notational simplicity, redefine the (Bi, Ti) by these gauge trans-
formations. Thus, since the (Bi, 'i) are bounded in B8'P(Y), any subsequence contains a
weakly convergent subsequence. Let (B,, To) E MsP(Y) be a weak limit of some sub-
sequence (Bgi, T). We have rr (Bo, WP) = rE (Bo, To), and so (Bo, TP) and (Bo, To)
are gauge equivalent by an element of G. If we can show that that (Bg, Pi) -* (Bo, PW'o)
strongly in B 8'P(Y), then we will be done. Due to the compact embedding BS'P(Y) "
BtP(Y), for t < s, we have (Bi, Ti) -+ (Bc,, WP,) strongly in the topology B8 -''P(Y), E > 0.
If we can boostrap this to strong convergence in B8 'P(Y), we will be done. To show this,
we use the ellipticity of 7(B,,,,). Let (bi, 0j) = (B - B,, x'1 - To). We have the elliptic
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estimate

1 (bi, )|| BSP(Y) $ N(Boio)(bi, ii BS-1,P(Y) +- ( /i BS-Up,( )' (4.46)

This follows because N(B.,wI) is elliptic and the boundary term controls the kernel of

R(B,'ICs,P by Corollary 3.18(ii). The last term of (4.46) tends to zero and for the first
term, we have

N(B0 ,qT)(bi, ?1 i) = (bi, V@i)#(bi, 4i) (4.47)

from (4.15), since (Bi, Ti), (Bo, To) E M''P. We have a continuous multiplication map
BS-''P(Y) x B 8 ~e'P(Y) -+ B 8 -P(Y) C BS~1'P(Y) for s - e > 3/p. Since (Bi, Ti) -+ (Bo, To)

strongly in B 8-'P(Y), we have that (4.47) goes to zero in B'- 1 'P(Y), which means (bg, @g)
goes to zero in B9 'P(Y) by (4.46). Thus, (Bi, Ti) -+ (BO, WoI') strongly in B8 'P(Y).

It now follows that rE : 93'P(Y) e E-1/P'P(E) is a covering map onto a embedded

submanifold, where the fiber of the cover is G. Moreover, the proof we just gave also shows
that E"1/P' is a closed submanifold, since if rE(Bi, Ti) is a convergent sequence, it is con-
vergent to rE(Bo, To) for some (B0, TO) E M-/PP. Finally, Theorem 3.13(i) shows

that Es1/AP is Lagrangian submanifold of V-/PP(E), since its tangent space at any point

is a Lagrangian subspace of P'P. n

Since rr : M8 'P -s E 1 P is a covering, the chart maps on M',P push forward and
induce chart maps on E 1/AP. Indeed, at the tangent space level, we already know we have
isomorphisms rr : T(B0,x 0)M 8

'P -+ Trr(B0 ,F 0)Z'-l/PP and P(BoT') : TrE(Bo,,p)-
1
/P'P -+

T(Boo)A'1P inverse to one another, where recall P(BoTo) is the Poisson operator given by
Theorem 3.13. Because MA'P is locally a graph over T(BOw))M''P, then E2 1/'P is locally a

graph over Tr,(BoIg)EC-11 'P. To analyze this properly, we also want to "push foward" the

local straightening map F(BogoP) for M''P at a configuration (Bo, TO), defined in Lemma

4.6, to obtain a local straightening map Fr,(B,,,g) for E'- 1 /'P at rE(Bo, To).

Lemma 4.14 Let s > max(3/p, 1/2 + lp) and let (Bo, To) c M''P. Define the spaces

T= - 1/p,p, XE,o = Tetse go)E"- P, XE, 1 = JrXr,o.

We have XE = XE,0 E XE,1 and we can define the smooth map

FE,(B0,TO) : VE - Xr,,o (D Xr,1i

x = (xox1) > (xo, xi - ry:E ( (4.48)

where Vs c XE is an open subset containing 0 and El is defined as in Theorem 4.8.(Bo,1o) a nTerm~8
For any max(1/2, 2/p) < s' < s - lp, we can take VE to contain a B"P(E) ball, i.e., there
exists a 3 > 0, depending on rE(Bo, To), s', and p, such that

V ;D {x E Xs : ||X||B8/,P() < 6}.

Moreover, we have the following:

(i) We have FE,(BoTo)(0) = 0 and DoFE,(Boqo) = id. For V sufficiently small, FE,(Bogo)
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is a local straightening map for C- 1/P,P at rE(Bo, TO) within the neighorhood V.

(ii) We can choose 8 uniformly for r2 (Bo, To) in a sufficiently small B',P( E) neighborhood
of any configuration in 8-11/P,P.

Proof We have FE,(Bo,o)(0) = 0 since E(Boo)l (Boo)(0)) = B0 0)(0) = 0, and

DoF,(Boo0 ) =id since DoE(Bo,To) = 0 by Theorem 4.8. Moreover, we see that FE,(Bo,Po)

can be defined on a BS',P(E) ball containing 0 E XE. Indeed, P(BoVo) maps such a ball into

a Bs'+'/PP(Y) ball inside T(Bo,Wo)MS"P, we have the embedding BS'+1/PP(Y) -+ L (Y) by

our choice of s', and the domain of El contains an L (Y) ball by Theorem 4.8. Take

VE to be such a Bs',P(E) ball.
It now follows from jy-/PP C L'P and the fact that ry: M '+1/P,P - C',P is a covering

map onto a globally embedded submanifold (by Theorem 4.13) that FE,(Bo,)) is a local

straightening map for '-1/AP within a B',P(E) neighborhood of 0 E X 2 . (Shrinking V2 if
necessary, let this neighborhood be VE.) In more detail, if x E VE and FE,(Bo,,W)(z) E XEC o
then

r2 (Bo, IFo) + x = rz (Bo, T o) + (xo, rE ElBOW)(P(BoWo)xo)), (4.49)

which means that

rE(Bo, To) + x = r2 ((Bo, To) + P(Bopo)xo + E(Bolo)(P(Boqo)xo)), (4.50)

where (Bo, Wo)+P(Bo,Wo)xo+E1B0 m0 )(P(Bo,To)xo) C M',P by Theorem 4.8. Thus, r2 (Bo, To)+

x C rE(MSP) = £'1'PP. Conversely, if x E V2 is such that rE(Bo,q0 ) + x E V-~ P'P, then

(having chosen VE small enough) we must have

rE(Bo, 'Po) + x = rE ((Bo, To) + x' + ElBopo)(x'D). (4.51)

for some x' c T(Bo,qo)Ms'+1/P'P since -1s'/P,P C LS',P and r: Ms' +/pp - CS',P is a

local diffeomorphism from a neighborhood of (Bo, To) E Ms'+I/PP onto a neighborhood of
rE(Bo, To) E E"',P. Since P(Bo,qpo) : TrE(B0 ,q 0)CS - T(Bo,To)Ms'+ 1/P'P is an isomorphism,

then x' = P(Bo,qIo)xo for some xo E Trr(B,1ho) C' P and so (4.50), hence (4.49) must hold. By

definition of FE,(Bo,Wo), which extends to a well-defined map on the BS'+/PP(E) topology,

(4.49) implies xo = Fr,(Bo,Wo)(x). But FE,(Bo,,po) acting on a neighborhood of 0 in TS'

preserves the B~ 1 /PP(E) topology, so xO E TE(B0,Wo)E"~1/P since x E /'P. Thus,

FE,(Bo,()W (E X2 ,o. Moreover, both FE,(BO,90) and F- B ) are invertible when restricted

to VE, since the inverse F, 1  is simply given by
r2,(Bo ,'Io)

FE (B0,(x) = (xo, x1 + rE EgB0o,)(P(BoWo)xo)). (4.52)

Altogether, this shows that Fr,(B0 ,wo) is a local straightening map for £s-i/pP within V2.

(ii) This follows from the uniformity statement of Theorem 4.8(ii) and the continuous

dependence of P(Bo,o) : 'I -+ Ts'+1/Pp -* L'T with respect to (Bo, To) (see Theo-

rem 3.13(iv)). Here, we use the fact that if r2 (Bo, To) C E 1 !I'P varies continuously in a
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small BS'P(E) neighborhood, then one can choose (Bo, To) E M8 'P continuously in a small
B8'+1/PP(Y) neighborhood, since rr : MS'+1/P,P - C",P and rr : M',P - L-1/V'P are

covers. O

With the above lemma, we have local straightening maps for our Banach manifold
S-1/P'P. Then from Theorem 4.8 and the general framework of Section 20, we have the

following theorem for the local chart maps for L- 1/P'P.

Theorem 4.15 Let s > max(3/p, 1/2 + 1/p).

(i) Let (Bo, To) G M8 P. Then there exists a neighborhood U C Tr:(B,()>SL-1/P'P of 0

and a map E : U -+ Xr,1 , where XE,1 is as in Lemma 4.14, such that the
map

Err(Bo,Io) ' - C"-1/p'p

x -+ rE (Bo, To) + x + E (4.53)

is a diffeomorphism of U onto a neighborhood of rE(Bo, To) in L- 1/P'P. Furthermore,

the map E' smooths by one derivative, i.e. El +(B0 /,(x) T p for all
x C U.

(ii) For any max(1/2,2/p) < s' < s - 1/p, we can choose U such that both U and

Er,(Bo,IJo)(U) contain Bs''P(U) neighborhoods, i.e., there exists a 6 > 0, depending
on rE (Bo, To), s', and p, such that

U D {x E TrX(BoB)L/ : ',P(E) < 3}

Err (Bo,iIo)(U) 2 {(B, q) c Es-Ip'" : |(B, I) - rE(Bo, To)| |,BP(E) < 6,

The constant 6 can be chosen uniformly in ry:(Bo, o), for all rE(Bo, To) in a suffi-
ciently small B'-/P'P(Y) neighborhood of any configuration in LV- 1/AP.

(iii) Smooth configurations are dense in L- 1/PP.

Proof (i) As in (4.27), the chart map Er](Bo,I) is determined by restricting F-1

the inverse of the local straightening map FE,(Bo,qo), to a neighborhood of 0 in the tangent

space Tr,(B,l 0) s-1/p,p. Thus, we have

Er,(Bo,Wo)(X) = rx(Bo, Wfo)+F-B 0) (x), x E U:= F, )(

(4.54)
where Vs is defined as in Lemma 4.14. The expression for F 1  is given by (4.52).r,,Bo,'I'o)

Thus, (4.54) and the definition of El in (4.53) yields

E- r E(B0 ,,0 )(P(B 0 ,I 0)x) (4.55)

The mapping properties of El now follow from Theorem 4.8.

(ii) This is a direct consequence of Lemma 4.14(ii).
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Figure 1-2: A chart map for MP" at (Bo, Do) induces a chart map for Li- at rs(Bo,<bo).

(iii) This just follows from rE : M 8 'P -+ E£~ 1/PP being a cover and the density of smooth
configurations in Ms',P by Theorem 4.8. D

Corollary 4.16 Suppose (Bo, To) E M''P.

(i) If U is a sufficiently small LP(Z) neighborhood of 0 in LPT,(BO,WoPC))L/PP, then

ErE(Bo,,Po) extends to a bounded map

Err(Bo,o) : U -+ LPT(E). (4.56)

The map (4.56) is a diffeomorphism onto its image and hence Er,(Bo,qIo)(U) is an LP
submanifold of LPC(ZE) contained in LPL.

(ii) The LP( L) topology above can be replaced with Bt'P(Z) for any 0 < t < s - 1p and

Ht'P(E) for any 0 < t < s - i/p.

Proof We use Corollary 4.9 to show that E , is bounded on the LP(E) topol-rE(BoV)

ogy. We only prove the lowest regularity case s = 0, since the other cases are similar (and

more easily handled). We have the inclusion LP C B0'P since p >_ 2. By Theorem 3.13,
the Poisson operator P(Bo,4'o) maps B 0'P(E) to B'/P'P(Y) for s > 0 since (Bo, To) is suf-

ficiently regular. In the proof of Corollary 4.9, we showed that El maps B1/PP(Y)(Bo,4 o) t(, )

to H', 3 p/4 (Y). Hence when we apply rF,, we find altogether from (4.55) that Elr(BOT4o) (W
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belongs to Bl- 4 / 3P, 3P/ 4 (Z) " LP(E). Thus, El is bounded on LP(E) and Bo'P(E). In

the above calculation, we implicitly used the fact that H 1/PP(Y) -+ L 3 (Y), so that P(Bo,To)
maps a small LP(E) ball into the domain of ElB0o 0 ), which contains an L3 (Y) ball by
Corollary 4.9. O

Remark 4.17 We have mentioned before that since our analysis works on a variety of
function spaces, it is merely a matter of convenience that we worked primarily with Besov
spaces on Y. In the above corollary and elsewhere, we see how the usual LP spaces can be
employed as well. Corollary 4.16 will be significant in Part III, since we will need to consider,
locally, LP closures of L. We conclude by noting that every instance in which the B'P(Y)
topology is used in Part I, the topology H'P(Y) may be used instead. These spaces, known
as the Bessel potential spaces, are defined in Section 13. For s a nonnegative integer and
1 < p < oo, we have Hs'P(Y) = W 8'P(Y), the Sobolev space of functions having s derivatives

belonging to LP(Y). When p = 2, H', 2 (Y) = B, 2 (Y) for all s. Furthermore, the spaces
H8 'P and B8 'P are "close" to each other in the sense that HS1'P(Y) C B52,P(Y) C H 83'P(Y)
for all si > 82 > S3. Moreover, one sees that all the foundational analysis in Section 15
applies equally to Bessel potential and Besov spaces.

We should note that two particular places where it is important that Sobolev spaces
may be used in addition to Besov spaces are Lemma 3.4 and Proposition 3.20. Indeed, their
proofs rely only on function space arithmetic and elliptic estimates arising from elliptic
boundary value problems. For both of these, Sobolev spaces can be used all the same, and
so we can replace every occurrence of the B*''(Y) topology with the H'(Y) topology in
Lemma 3.4 and Proposition 3.20. One can now check that the statements of all our lemmas
and theorems concerning Besov spaces on Y also hold for their Sobolev counterparts.

For the purposes of Part III, it is also important that we can replace Besov spaces on E
with Sobolev spaces on E as well, but with some care, since the space of boundary values
of a Sobolev space is still a Besov space. We already saw how to do this in Corollary
4.16. We should note that for the Calderon projection P(+ in Theorem 3.13, where(Bo,'I'o)
(Bo, To) e Bs'P(Y), one also has that

P+ : Htl/P'PT -+ Ht-/PPT, t < s + 1. (4.57)(Bo, T'o))

is bounded. This follows from the fact that 7r+ is bounded on H-/'PPTr, as it is a pseu-
dodifferential operator, and

(P+ - 7r+) : Ht/P'PP CT-'lp" m min(s-1/P+1, t-1/p+1),p C Ht-1/PTE

by Theorem 3.13(iv) and Theorem 13.17.

From the above remark, the Sobolev version of our main theorem, with the H'P(Y)
topology replaced with the B8 'P(Y) topology, holds. In fact, one can see from this that the
Besov monopole space M8 'P is actually equal to the Sobolev monopole space H8'PM.21

2 1From the density of smooth configurations, it suffices to show that the tangent space to HSPM and M'
at a smooth monopole (B, T) are both equal. However, this follows from the fact that the kernel of an elliptic

operator (in our case, the operator 7iBP ) in the H' and B"'P topologies are equivalent. This follows
from the results of Section 15.3, which shows that these spaces are isomorphic (modulo a finite dimensional
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Finally, let us remark that the proof of the main corollary of Part I easily follows from
the work we have done.

Proof of Main Corollary: For every coclosed 1-form 7, the zero set of SW 3(B, <)
(77, 0) is gauge-invariant. Thus, all the methods of Section 3.3 apply to the linearization
of the monopole spaces associated to the perturbed equations. Next, we still have the
transversality result Lemma 4.1 so long as we modify the assumption (4.1) to c1 (s) # 2[*r/]
or H 1 (Y, E) = 0. The energy estimates in Lemma 4.11 still hold in the perturbed case
since we still have (4.35) and the uniform bound lSW 3 (B,XI)||L2 = ||7llL2. Finally, the
unique continuation results from Section 17 still apply, since we always apply these results
to the difference of solutions to the perturbed Seiberg-Witten equations, and the equation
satisfied by the difference is independent of 7]. Thus, all our methods and hence results
carry through in the perturbed case.

subspace) to their space of boundary values, which is a fixed subspace of B8 ' on the boundary.
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The Seiberg-Witten Equations on
a 3-manifold with Cylindrical Ends

In Part I, we studied the Seiberg-Witten equations on a compact 3-manifold with boundary.
We now consider the case when our 3-manifold Y is allowed to have cylindrical ends. Our
main task in to study the case when Y = [0, oc) x E is a semi-infinite cylinder. From this,
the general case can be understood by decomposing Y into a union of semi-infinite ends
and a compact manifold with boundary and then piecing together the results on each of
these parts.

A summary of the results we obtain is as follows. First, on a semi-infinite cylinder,
we study the space of finite energy solutions to the Seiberg-Witten equations. We relate
this space to the moduli space of vortices on E. Specifically, in Theorem 7.2, we show
that the moduli space of all finite energy monopoles on Y is a Hilbert manifold weakly
homotopy equivalent to the space of those monopoles with small energy. Furthermore, the
restriction map to the boundary data on {0} x E sends this moduli space to a coisotropic
submanifold of the the symplectic quotient of the boundary configuration space. Here, we
have a moment map arising from the symplectic action of the gauge group 9(E) on the
boundary (see Proposition 5.1). In Theorem 7.6, we prove that for sufficiently small energy
Eo, the moduli space of monopoles on Y = [0, oc) x E with energy less than Eo, suitably
topologized, is a Hilbert manifold diffeomorphic to a Hilbert bundle over the moduli space
of vortices on E. Moreover, the space of all finite energy monopoles is weakly homotopy
equivalent to those with small energy, and hence topologically, we see that these monopole
spaces have a very simple structure.

Our explicit description of this boundary value space of monopoles is particularly conve-
nient, because we have now have a way of obtaining Lagrangians in the boundary configu-
ration space whose topology, rather than being completely mysterious, is equivalent to that
of a finite dimensional manifold. Via Theorem 7.7, if we pick a Lagrangian submanifold
2 of the finite dimensional symplectic moduli space of vortices, the boundary values on
{0} x E of those monopoles on Y that converge modulo gauge to vortices in Y produce
for us a Lagrangian weakly homotopy equivalent to a Hilbert bundle over 2. This is in
contrast to the results of Part I, where the homotopy type of the Lagrangians we obtain
from a compact 3-manifold is unclear how to determine.

Finally, in Theorem 8.2, we piece together the results here and those of Part I to under-
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stand in what sense the moduli space of Seiberg-Witten monopoles on a 3-manifold with
cylindrical ends yields a Lagrangian correspondence between vortex moduli spaces on the
ends. We are able to show that, after a suitable perturbation of the equations, the boundary
values of our monopole spaces yield immersed Lagrangians. Here, one must be a bit careful
in the choice of perturbations.

One application of our work is that it provides the supporting analysis for Donald-
son's topological quantum field theoretic approach to the Seiberg-Witten invariants in [10]1.
There, Donaldson provides a beautiful, albeit formal proof, of certain topological results,
including the Meng-Taubes formula for the Seiberg-Witten invariants. The proof rests on
assuming the Seiberg-Witten equations on 3-manifolds with cylindrical ends provide La-
grangian correspondences (at least on the linear level) between the vortex moduli spaces of
the Riemann surfaces at the end. Indeed, the TQFT aspect of this setup is that monopole
moduli spaces on cobordisms provide the morphisms in the theory. Our main theorem,
Theorem 8.2, and the discussion afterwards, shows that the analysis here can be used to
supply the missing details in [10]2.

5 The Seiberg-Witten Flow on E

Let Y = [0, oc) x E, where E is a connected Riemann surface. Let t E [0, oo) be the
time-variable. Since, by convention, E is co-oriented by the outward unit normal, it follows
that as an oriented manifold Y = [0, oo)opp x E, where [0, oo)opp denotes [0, oc) with the
opposite orientation, i.e. it is oriented by the vector field -at. We will always assume that
Y is oriented this way from now on, though we write Y = [0, oo) x E for short.

Let (B, T) be a smooth solution to SW 3 (B, ') = 0 on Y. We will always take the spin'
structure on Y to be pulled back from a spinc structure on E, and by abuse of notation, we
denote both of these spinc structures by s. With respect to this product structure, we can
write the equations SW 3 (B, T) = 0 in a rather explicit fashion. Recall that every Kahler
manifold has a canonical spine structure (see [29]). For a Riemann surface E, the spinor

bundle associated to this canonical spinc structure is isomorphic to Ki/2 e KE-1/2 , where
KE is the canonical bundle of E. Moreover, on E, a spinc structure is uniquely determined
by its determinant line bundle L, and the corresponding spinor bundle it determines is
isomorphic to

SE - (KE 9 L) 1/ 2 E (Ks' 1 L) 1 / 2 . (5.1)

Let 7rE : [0, oo) x E -+ E denote the natural projection. From the above, every spine
structure on [0, oo) x E pulled back from a spinc structure on E via 7rE determines a spinor
bundle on [0, oc) x E isomorphic to

r(Kr ® L) 1/2  -r1(K 9' ® L)1/ 2 . (5.2)

Since T*([0, oo) x E) ' T*[0, oo)T* E, we can always choose our Clifford multiplication p on

'In this regard, the author would like to especially thank Tim Perutz for this reference and subsequent
helpful discussions.

2In light of this, our work also completes the proof of other results that rely upon results in [10]. For

example, in [27), our work completes the proof of Theorem 4.1, since while [10] computes a quantity signified
by the left-hand side of (11), [10] does not rigorously prove that it is equal to the mysterious right-hand side.
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[0, oc) x E to be such that p factors through the direct sum decomposition of T*([0, oo) x E).
From this, we can choose p so that

with respect to the decomposition (5.2). Using local holomorphic coordinates z = x + iy
on E, we can decompose a 1-form on Y into its dt, dz, and d. components. Given a spinc
connection B on L, let Fx,ydx A dy + Fx,tdx A dt + Fy,tdy A dt denote the local coordinate
representation of FB, the curvature of B. Then the equation * FB +p- 1 (AP T) = 0 appearing
in SW3 (B, T) = 0 can be written explicitly as (see [30])3:

Fx,y + (|,+2 - |J 2) dt= 0 (5.3)

1
21 (Fy,t - iFx,t)dz+ +- = 0 (5.4)

1
2 1 (Fy,t + iPxt)dz + q+- = 0 (5.5)

Here, T = (qK+, T-) is the decomposition of k with respect to (5.2), so that I++T- and

T+f- are well-defined elements of 7r*CT, respectively. Observe that the last equation
above is just the complex conjugate of the second. Moreover, the Dirac equation DBT = 0
becomes

(// OB IB -iVB,-at) 0,

where VB,-at denotes the spinc covariant derivative of B evaluated in the -Ot direction.
Thus, equations (5.3)-(5.6) yield for us the Seiberg-Witten equations on [0, cc) x E.

In the same way that the Seiberg-Witten equations on a product 4-manifold can be writ-
ten as the downward flow of the Seiberg-Witten vector field on the slice 3-manifold (when
the configuration in question is in temporal gauge), we want to reinterpret the Seiberg-
Witten equations on [0, oo) x E as a downward flow of a vector field on E. To do this,
we can consider the oriented 4-manifold S' x [0, oo),pp x E and regard configurations on
[0, oo)opp x E as S' invariant. If we do this, and we place (B, 'I) in temporal gauge, then
since S1 x [0, oo)opp x E [0, oo) x S' x Y as oriented manifolds, we can regard (B, T) as

a downward flow for the Seiberg-Witten vector field on S1 x E:

d(B, T) =-SW3 x E ((B (t), T (t))|Isi xr) (57

Here, SW3' x denotes the gradient of the Chern-Simons-Dirac functional on S x E. The
Clifford multiplication ; on S x E is such that p(&g) = p(-Ot), where 0 is the coordinate
on S1, and ATE = PITE. Now for any S1 invariant configuration (B, T) on S x E, the

3 Note that our sign conventions are that of [21], namely p(-dtdE) = 1, which is the opposite choice of
sign in [30]). A switch in the two choices of Clifford multiplication is compensated by a bundle automorphism
and complex conjugation of spin' structures.
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Chern-Simons-Dirac functional on on S1 x E is given by

CSD(B, T) = j Re (T, DBIqj). (5.8)

Here, the Chern-Simons term drops out since B has no S' dependence or S' component,
the operator DBI is the induced Dirac operator on E, and the length of S' is normalized
to unity.

Notation. We write C to denote a connection on E and T to denote a spinor on E,
i.e. (C, T) is an element of the configuration space E(E) = A(E) x E(SE) on E. This is
because our general trend is to write (B, T) for a 3-dimensional configuration and (A, 4)
for a 4-dimensional configuration in Part III. Likewise, we use c to denote a 1-form on E.
On the other hand, within equations, we will also use C and c to denote various constants
appearing in inequalities whose precise value is unimportant. To avoid confusion, we will
also use "const" to denote the value of various constants, which may change from line to line.

In light of (5.8), we define the Chern-Simons-Dirac functional CSDY on C(E) by

CSD (C, T) = jRe (T, Dc T) (C, T) E C(E), (5.9)

where Dc F(SE) -+ F(Sz) is the spinc Dirac operator determined from C. The L2-gradient
of this functional is given by

SW2 (C, T) V(cy)CSD (5.10)

= (pl (TT*)o, DcT), (5.11)

where : isu(SE) - TE is the map isu(SE) -> T(S' x E) composed with the
projection onto the TE factor. We can consider the formal downward gradient flow of
CSDE on ECE)

-(C, T) -SW 2(C, T). (5.12)dt

Regarding the S1 invariant configuration (B, ') in (5.7) as a path of configurations
(B, T) = (C(t), IF(t)) in C(E), we see that (5.12) differs from (5.7) from the fact that
the term SWfixE(B, T) contains a dO component, where 6 denotes the coordinate on
S'. However, because B is Sl-invariant and therefore has no dO component, equation
(5.7) implies that the dO component of SWS1xX(B, I) is identically zero, i.e., we have a
constraint.

Since p(Oo) = p(-&t), this constraint is none other than the equation (5.3). In light of
this, given (C, T) E C(E), define the map

p(C, T) = -Fc + (|T_|2 - IT+ 2 ). (5.13)
2

Here is the Hodge star on E and T = (T+, T-) is the decomposition of T E F(SE) induced
by the splitting (5.1).
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Recall that the gauge group 9(E) = Maps(E, S') acts on Q(E) via

(C, T) 4 g*(C, T) = (C - g1dg, g T), g E 9(E).

We have the following proposition concerning the map p:

Proposition 5.1 (i) The map p : C(E) -+ Q0(E; iR) is the moment map for C(E) asso-
ciated to the gauge group action of 9(Z). Here, the symplectic form on C(ZL) is given
by

w((a, #), (b, V)) a A b + Re (#, p(-0t)@), (a, #), (b, 0) E T.

(ii) If T # 0, then d(CT)i : T(c,T)C(F) -* Q0 (E; iR) is surjective.

(iii) Let Y = [0, oo) x E. Then a configuration (B, T) = (C(t), T(t)) in temporal gauge on
Y solves SW3 (B, T) = 0 if and only if (C(t),T (t)) solves

d
~(C(t), T(t)) = -SW42 (C(t), T(t)) (5.14)

p(C(t), T(t)) = 0, t > 0. (5.15)

(iv) For any (C,T) E C(E), we have d(c,T)p(SW 2(C,T)) = 0, that is, SW2(CT) is

tangent to the level set p-'(0).

Proof (i) This is the statement that at every (C, T) C C(E), every (c, v) E T(CT)
and every ( E Q0 (E;iR), we have

J d(c,T)(c, v) - = w((-d(, (T), (c, v)).

Verifying this is a straightforward computation.
(ii) The range of id : Q 1(E; iR) -+ Q0(E; iR) consists of precisely those functions that

integrate to zero on E. Suppose f is orthogonal to the image of d(c,)xi. If T 0 0, then
one can find v C F(SE) such that d(c,T)A(0, v) = f f. It then follows that one can find a
1-form c such that d(c,T) (c, v) = f.

Statement (iii) follows from the preceding discussion. For (iv), we first observe that since
p is the moment map for the gauge group action on t(E), then the kernel of its differential
is the symplectic annihilator of the tangent space to the gauge orbit:

ker d(c,T)p = {(-d<, T) : C Q0 (E;iR)}'w

= J{(-d ,(T) : Q C Q0 (E;iR)}'.

Here,
J := J= (-,p( 9t)) : Q1 (E; iR) e F(sE) o

is the compatible complex structure for w. Thus, to show d(c,T)p(SW2(C, T)) = 0, it
suffices to show that JSW2 (C, T) is perpendicular to the tangent space to the gauge orbit
of (C, T). For this, it suffices to show that JSW2(C, T), like SW 2 (C, T), is the gradient of a
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gauge-invariant functional. A simple computation shows that the gradient of the functional

(C, T) F- 'I(T, p(0,)Da T)

is JSW2 (C, T). Here, we use the fact that, by convention of our choice of Clifford multipli-
cation, p(-Ot)p(dE) = 1 and so p(5t)p(c) = p(dE)p(c) = p( c)). D

The last statement of the above lemma implies that the restriction of the gradient of
CSDF to the level set p- 1 (0) is equal to the gradient of CSD9,o(0) (at points where

1-1(0) is smooth). If c1(s) # 0, then by (iii), p-1(0) is always a smooth submanifold of
f(E) since it contains no flat connections. Thus, we have the following corollary:

Corollary 5.2 Suppose ci(s) # 0. Then p-1(0) is a smooth submanifold of f(E) and
modulo gauge, solutions to SW3 (B, T') = 0 on Y correspond to (formal) downward gradient
flow lines of CSD|, 1-1(o).

Thus, the bulk of our analysis consists in understanding the gradient flow of CSDFW 1(o).

5.1 The Vortex Equations

From now on, we always assume
c1(s) # 0,

so that pt-'(0) is a smooth manifold. Our first task is to understand the set of critical points
of CSDQ'],a(0).

Let d = (c1(s), [E]). By the above assumption, d # 0. In this case, we have the
following facts. First, the critical points of CSDjysl(o) have an explicit description in
terms of the space of vortices on E. Secondly, this critical set is Morse-Bott nondegenerate
for CSD 1 -lJt1o). This is in contrast to the case d = 0, where although the critical set of

CSD 1:m(o) is just the space of flat connections on E, this set is in general Morse-Bott
degenerate 4

For the sake of completeness, we describe in detail the correspondence between the
critical set of CSDFIbL '(0) and the space of vortices, following [31]. Recall that the vortex
equations on E are given by the following. Given a line bundle E -+ E over E of degree
k, a Hermitian connection A on E, a section ' E F(E), and a function T E Qo(E; iR), the
vortex equations are given by

;FA - (5.16)
2

OA@ = 0. (5.17)

Here, 6A : E -+ KE1 9 E is the holomorphic structure on E determined by A. Observe
that if k > ", there are no solutions to (5.16)-(5.17) by a simple application of the Chern-
Weil theorem. When 0 < k < fr g, then by [14], the moduli space of gauge equivalence
classes of solutions Vk,,(E) to (5.16)-(5.17) can be naturally identified with the space of

4A flat connection C will be Morse-Bott degenerate precisely when ker Dc # 0.
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effective divisors of degree k on E, i.e. the k-fold symmetric product Symk(E) of E. This
identification is given by mapping a solution (A, V) to the set of zeros of the (nontrivial)
holomorphic section 4. Because Symk(E) is independent of r, we will often simply denote
the moduli space of degree k vortices by Vk(E). Likewise, we will denote the space of all
solutions to (5.16)-(5.17) by -fk(E).

Observe that if k < 0, one may instead consider the equations

FA + 2 = -r (5.18)

OA@ = 0, (5.19)

which become equivalent to (5.16)-(5.17) via complex conjugation. We will call the equa-
tions (5.18)-(5.19) the anti-vortex equations. Thus, the moduli space Vk,,(E) of solutions
to (5.18)-(5.19) is nonempty for fr -" < k < 0 and can can be identified with Viki,().

The equations that determine the critical points of CSDr that belong to the zero set
of the moment map are given by yt(C, T) = 0 and SW2 (C, T) 0. More explicitly, these
equations are given by

Fc + (_T_ - IT+12) = 0 (5.20)

T+T_ = 0 (5.21)

T+T = 0 (5.22)

OCT+ = 0 (5.23)

acT_ = 0. (5.24)

We can now see the correspondence between equations (5.20)-(5.24) and the vortex
equations (5.16)-(5.17). Equations (5.23)-(5.24) and unique continuation for Dirac opera-
tors implies that (5.21)-(5.22) forces

T+ = 0 or T_ _ 0.

Let g denote the genus of E. Pick a connection C_1 on K1/2 and define r = Fcg_1
We assume Cg_1 is such that Fc,_1 is constant (and hence equal to - V .) Let Cg-1

denote the corresponding dual connection on K- 1/2. Then (5.20) is equivalent to each of
the following equations

Fcocg_1 + (T_ - |T+| 2) = 7 (5.25)

Fcog1 + (T_ - |T+| 2 ) =- (5.26)
2 

(.6

Let

k=g-1 2 '
2

Using the constraints on k for when the vortex and anti-vortex moduli spaces Vk(E) and

ViJkI(E) are nonempty, and the fact that a line bundle can have nontrivial holmorphic
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sections only if it has nonnegative degree, it is easy to see that the following situation holds:

Lemma 5.3 With notation as above, we have the following:

(i) Suppose -2(g - 1) < d < 0. Then the space of critical points of CSD t- 1 (o) cor-

responds precisely to the space of vortices ik(E) under the correspondence (C, T) a
(C 0 C,_1, T+). Here T_ vanishes identically.

(ii) Suppose 0 < d < 2(g-1). Then the space of critical points of CSDI,1 -1(o) corresponds
precisely to the space of anti-vortices 2(-k(E) under the correspondence (C,T) *

(C 0 COg-1, T-). Here, T+ vanishes identically.

(iii) If d = -2(g - 1), then the space of critical points of CSD"y,-1(o) is precisely the
gauge orbit of a single configuration (C.-1, (Tg-1, 0)), where Tg-1 E Qo(E; C) satisfies

|Tg_1| 2 = 2iH'Fc 1 . The analogous statement holds for d = 2(g - 1).

(iv) If |d\ > 2(g - 1), then the set of critical points of CSD |,-1(o) is empty.

(v) For all d # 0, the critical set of CSDIL-1(0) is Morse-Bott nondegenerate.

Proof Statements (i),(ii), and (iv) follow from the preceding analysis. For (iii), observe
that a holomorphic vector bundle of degree zero has a nontrivial holomorphic section if and
only if it is holomorphically trivial. Thus, modulo gauge, the connection C is zero and T+
must be a constant section of a trivial line bundle. The norm constraint on T+ now just
follows from (5.25).

We need only prove (v). This amounts to showing the following. Given any configuration
(Co, To) C f(E), let

R2,(o, % -+ T , (5.27)

denote the Hessian of CSDE at (Co, To), which is the operator obtained by linearizing
the map SW2 : E(E) -> 7% at (Co, To). If (Co, To) is a vortex, we need to show that the
restricted operator

7t 2,(Co,To) : T(coTo)p~1(0) -e T(coTo) 1 (0), (5.28)

has kernel equal to precisely the tangent space to the space of vortices at (Co, To). Without
loss of generality, suppose d < 0. Then if we linearize the equations (5.20)-(5.24) at a vor-
tex, then since T_ = 0 and T+ vanishes only on a finite set of points, unique continuation
shows that an element of the kernel of the linearized equations must have vanishing IF[
component. It follows that the only nontrivial equations we obtain are those obtained from
linearizing (5.20) and (5.23), which yields for us precisely the linearization of the vortex
equations. On the other hand, the space of vortices are cut out transversally by the vortex
equations. (This is because the set {(A, V) : OA@ = 0, V # 0} is a gauge-invariant Kahler
submanifold of C(E), the left-hand side of (5.16) is the moment map for this submanifold,
and the gauge group acts freely on this submanifold.) It follows that the kernel of the map

7N2,(Co,T 0 ) above is precisely the tangent space to the space of vortices. This finishes the
proof of Morse-Bott nondegeneracy. El
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By abuse of notation, given d # 0, we also write 2(kf(E) to denote the set of critical
points of CSD,-1(a), which for 0 < k < g - 1, we may identify with the space of all
degree k vortices on E by the above. We write Vk(E) to denote the quotient of 7f/(E) by
the gauge group, and it can be identified with Synk(E) for all 0 < k < g - 1. For every k,
note that the symplectic form on E(E)//g(E) restricts to a symplectic forms on the vortex
moduli space Vk(E). We will refer to elements of either '1'k(E) or Vk(E), for any k, simply
as vortices. When E and k, fixed, we will often write 11 and V for brevity.

5.2 The Flow on a Slice

We now fix 0 < k < g - 1 throughout our discussion. In order to place ourselves in
an elliptic situation and in a situation where we can apply Morse-Bott estimates to our
configurations, we have to choose the right gauge for our equations. As it turns out, choosing
a suitable gauge requires some careful setup. Our work here is modeled off that of [28],
which studies the flow one obtains for the instanton equations on a cylindrical 4-manifold.
To describe the gauge fixing procedure, we recall the basic gauge theoretic decompositions
of the configuration space on E and its tangent spaces.

Our analysis proceeds mutatis mutandis as in Part I on a closed 3-manifold. Given a
configuration (C, T) E C(E), define

7(cT) = T(c,T)(E(E) = Q 1(E; iR) eD r(SE)

to be the tangent space to (C, T) of C(E). If the basepoint is unimportant, we write TF for
any such tangent space. The infinitesimal action of the gauge group on E(E) leads us to
consider the following operators

d(c,T) : Q0 (E; iR) - T

( C (-dT)

(c, v) - -d*c + iRe (iT, v),

analogous to those considered in Section 3.2. From these operators, we obtain the following
subspaces of Tc,T), which are the tangent space to the the gauge orbit through (C, T) and
its orthogonal complement, respectively:

J(c,T) = imd(B,')

IC(c,T) = ker d*B I).

As usual, we must consider the Banach space completion of the configuration spaces
and the above vector spaces. Unlike Part I, where it was important that we work with low
regularity Sobolev and Besov spaces to suit the needs of Part III, here such fine function
space details are not of importance to us. Thus, we will consider only L 2 Sobolev spaces
and we write H8 (M) to denote the H"'2 (M) topology on the manifold M, where the latter
denotes the space of functions with s derivatives in L2 (M), s C R. Otherwise, our notational
conventions remain the same as in Part I.

Thus, we have E8(E), the H8 (E) completion of the configuration space on E. Its tangent



Part II

spaces are isomorphic to T, the HS(E) completion of T1. For sufficiently regular (C, T),
we obtain the following subspaces of T:

((c,) d(,T) E TcT) : C Hs+1Qo(E; iR)}

KIC,T) = {(c,v) E ( c,T) : -d*c + iRe (iT, v) = 0}.

We have the following gauge-theoretic decompositions of the tangent space and config-
uration space:

Lemma 5.4 Let s > 0. (i) Then for any (C, T) E s(E), we have an L2 orthogonal
decomposition

(TC,T) -(C,T) e (5.29)

(ii) Define the slice
6(coTo) :=(C , T) + Kco,To)

through (Co, T T)i There exists an e > 0 such that if (C, T) C V(E) satisfies

|(C, T) - (Co, To)|IHs(E) < e, then there exists a gauge transformation g c gs+ 1(E) such
that g*(C, T) E 6(co,To) and ||g*(C, T) - (CO, To)|HS(E) s cI(C, f) - (CO, o)HHs(E).

Proof (i) This follows from same analysis as in Lemma 3.4. (ii) This is an immediate
consequence of the inverse function theorem and the fact that 6'CoTo) is a local slice for
the gauge action. D

For s > 0, define the quotient configuration space

Away from the reducible configurations, this quotient space is Hilbert manifold modeled on
the above local slices (see [21]). The decomposition (5.29) allows us to define the comple-
mentary projections HJfsc,) and UkccT) of 7 T) onto J(Cr) and K T) respectively.

Let us return to the smooth setting for the time being. Denote the smooth quotient
configuration space by

I(E) = C(E)/g E).

Our first task is rewrite the Seiberg-Witten equations on Y in a suitable gauge when the
monopole in question is close to a vortex. This is so that we may exploit the Morse-Bott
nature of the critical set, which we perform in the next section.

Notation. To simplify notation a bit, and to make it bear similarity with that of the
standard reference [21], we introduce the following notation. We will write a to denote a
critical point of CSDr|,-1(0), i.e. a vortex. We will always assume a is smooth, unless
otherwise stated, since this can always be achieved via a gauge transformation. Given a
configuration (B, T) on Y = [0, oc) x E, we can write it as

(B, 'I) = (C(t) + # (t)dt, T(t))

where (C(t), T(t)) is a path of configurations in Q(E) and 0(t) is a path in Q0 (E; iR).
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As shorthand, we will often write -y for the configuration (B, T) and '(t) for the path
(C(t), T(t)). Given a vortex a, we write 7a E (Y) to denote the time-translation invariant
path identically equal to a.

Given any vortex a C 7Y, define

CSDI = CSD|la - CSD(a).

to be the restriction of CSDE restricted to the slice through a, normalized by a constant for
convenience. Note that CSDE has a constant value on its critical set, since it is connected.

Since SW2 (C, T) = V(c,T)CSDE is the gradient of the gauge-invariant functional
CSDE, we know that V(cT)CSDE is orthogonal to J(c,T) and hence lies in K(c,T). On
the other hand, if (C, T) E Ga, then the gradient of CSDE satisfies

V(c,T)CSDa E ka,

since a priori, this gradient must be tangent to the slice. For (C, T) close enough to a, then
the space J(c,T), which is automatically complementary to K(C,T), is also complementary
to Ka, and so V(c,T)CSDE and V(c,T)CSD differ by an element of J(c,T). This suggests
we introduce the following inner product structure on the tangent bundle of a neighbor-
hood E5(6) of the slice (instead of the usual L 2 inner product). Namely, mimicking the
construction in [28], consider the inner product

(XY )a,(CT) (K(CT), K(CT) Y) , C, y T(c,T)(a(6 ) (5.30)

where (-, - is the usual L2 inner product on T,. As noted, for (C, T) sufficiently close
to a, the map UTI:(c) Ka /a K(c,T) is an isomorphism. Specifically, by the same analysis

as in Remark 4.3, (C, T) in a small H 1/2 (E) ball U around a is sufficient. Observe that
the inner product(-, -)a,(c,T) naturally arises from pulling back the L 2 inner product on the
irreducible part of the quotient configuration space E(E)/Q(E).

Then if we endow the neighborhood U with the inner product (5.30), we can explicitly
write V(c,T)CSDr as follows. Let UKa,7(c,> denote the projection onto Kca through J(c,T),

which exists for (C, T) C U and U sufficiently small. Then

V(c,T)CSDr = Haic,>(CT)SW2 (C,T), (5.31)

or in other words, there exists a well-defined map

E : U -+ Q0 (E; iR) (5.32)

such that
V(c,T)CSDE = SW2(C, T) - d(c,T)ea(C, T). (5.33)

(The map Oa is well-defined since the operator d(c,T) is injective for (C, T) irreducible,
which holds for U small.) The decomposition (5.33) is important because it relates the
gradient vector field V(c,T)CSDr to the vector field SW 2(C, T) by an infinitesimal action
of the gauge group at the configuration (C, T). (Had we used the usual L 2 inner product,
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the analogous ansatz would have yielded an infinitesimal action of the gauge group at a
instead of the configuration (C, T) in question.)

Borrowing the terminology of [28], we introduce the following definition:

Definition 5.5 Fix s 2 1/2.

(i) For any smooth vortex a, any open subset of 6, n i'(0) of the form

Ua(6) := {(C, T) c 8 n pY1 (0) : (C, T) - }

for some small 6 > 0 is said to be a coordinate patch at a. We will often write U
to denote any such coordinate patch. We always assume that the (sufficiently small)
coordinate patch Ua is endowed with the inner product (5.30) on its tangent bundle.

(ii) Let I be a subinterval of [0, oo). Given a coordinate patch U, about a vortex a, we
say that a configuration y E C([0, oo) x E) is in standard form on I x E with respect
to Ua if '(t) E Ua for all t E I.

Our choice of defining H 1/ 2 open neighborhoods comes from our energy analysis of the next
section. The value of s is immaterial for now and can be assumed as large as desired (s > 2
is sufficient). We will only need to consider Sobolev spaces of configurations in Section 7,
where the usual functional analytic methods require we work with Hilbert space topologies.

The upshot of the above formalism is the following. Given a path of configurations
(C(t), T(t)) that is sufficiently near a vortex a for all time t, we can gauge fix this path so
that the new path lies in some neighborhood of a in the slice 6, for all time. The relevant
situation is when this path of configurations is a monopole on Y = [0, oo) x E in temporal
gauge. When we perform such a gauge-fixing, two things happen. First, the resulting
configuration -y determines a path i(t) in a coordinate patch Ua (i.e., it is in standard
form), since our monopole always determines a path in the zero set of the moment map by
Corollary 5.2. Second, y is no longer in temporal gauge. Nevertheless, the next lemma tells
us that the resulting configuration y is completely determined by the path (t). Moreover,
the path '(t) is simply a gradient flow line of CSDr restricted to Ua.

Lemma 5.6 Let a be a vortex and U, a coordinate patch. Let y = (C(t) + /(t)dt, T(t)) be
a configuration on [0, oc) x E in standard form on [TO, T1] x E with respect to U. Then -y
satisfies SW3 (-y) =0 if and only if

d
(t) = - V(t)CSDa

d*((t) - a) = 0 (5.34)

pt(j(t)) = 0,

0(t) = Oa((t)), TO < t < T1 .

Proof The monopole equations SW3 (7y) = 0, as given by (5.6), are precisely

d (t) = -SW 2 ((t)) + d'()#3(t) (5.35)dt =50.
A W= 0.
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Thus, any solution to (5.34) yields a solution to (5.35). Conversely, suppose we have a
solution -y to (5.35). Since -y is in standard form, it satisfies the second equation of (5.34),
and taking a time-derivative of this equation, we obtain

d j(t) = 0.

The first equation now implies

-d*SW 2 (5'(t)) + d*(d()3(t)) 0.

From the definitions, this implies #(t) =aQi(t)). We now see that -y solves (5.34). E

We now use this lemma to study the asymptotic behavior of monopoles at infinity.

6 Asymptotic Convergence and Exponential Decay

Lemma 5.6 tells us that a solution to the Seiberg-Witten equations on [0, oc) x E in standard
form with respect to a small coordinate patch U, of a vortex a satisfies the system of
equations (5.34). These equations tell us that the solution -y is determined by the evolution
of the path '(t) in Ua, since the normal component 3(t)dt is determined from -(t). The
path '(t) is a downward gradient flow for the functional CSDF on the coordinate chart Ua,
where this latter space has been endowed with the inner product (5.30). It is on a sufficiently
small coordinate patch U, that we can apply standard Morse-Bott type estimates for the
function CSD1. These estimates imply that any trajectory '(t) that stays within Ua for
all time must converge exponentially fast to a critical point. Moreover, we can deduce that
the L2 (E) length of the path '(t) is bounded by the energy of the path, see (6.9). Here, the
energy of a monopole y is the quantity

(-) = || W (it ) dt. (6.1)

Likewise we can define the energy Er(-y) of a configuration on I x E, for any interval I =
[ti, t2]. On any such interval for which the energy is finite, the energy is equal to the drop
in the Chern-Simons-Dirac functional on E:

CSDF-((t1)) - CSDF-(i(t2)) j |SW2(I(t))|12(E)dt.

This is a simple consequence of the fact that a monopole on I x E is simply a downward
gradient flow line of CSDX.

Regarding a monopole (B, Q) on I x E as an S1 invariant configuration on Sl x I x E,
with I a compact interval, then we have the following energy identity (see [21]):

CSD'(Q (ti)) - CSDX(i(t 2)) = (!FB 2 + (s2) -2

where s is the scalar curvature of I x E. Thus, modulo gauge, the energy of a monopole
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controls its H1 norm on finite cylinders.
A key step in understanding the moduli space of finite energy monopoles is to show that

if a monopole -y has small enough energy, then there is a vortex a and a gauge transformation
g on [0, oo) x E such that g*-y determines a path that stays within some coordinate patch of a
for all time. In this way, one can see at an intuitive level what the moduli space of monopoles
on [0, oc) x E with small finite energy is. It is simply a neighborhood of the stable manifold
to the space of vortices in the symplectic reduction E(E)//g(E). There is some analytic
care that must be taken to establish this picture, however, since the coordinate patches we
consider only contain H1/ 2 (E) neighborhoods of a vortex a, whereas the important length
estimate (6.9) is only an L2 (E) bound. Nevertheless, it turns out that one can bootstrap the
L2( (E) convergence of the configuration to show that it converges in H(E) exponentially
fast to a vortex within a fixed coordinate chart, for all s > 0.

We begin with the following fundamental estimates for configurations with small energy.
Given any I, we write ('Y C E(I x E) to denote the space of time translation invariant
elements on I x E that belong to the space of vortices 'Y for all time.

Lemma 6.1 We have the following:

(i) Given a bounded interval I, for every gauge invariant neighborhood V of 71' in & (I x
E), there exists an e > 0 such that if - is any monopole on I x E satisfying the small
energy condition f I|SW2('(t))||12(j:) < e, then there exists a gauge transformation g
such that g*- c V.

(ii) For every gauge invariant neighborhood VE of -Y in C ( ),there exists an e > 0 such
that if (C, T) is a configuration such that p(C, T) = 0 and ||ISW2(C, T)|| < e, then
there exists a gauge transformation g such that g*(C, T) G Vs.

Proof (i) Suppose the statement were not true. Then we could find a sequence of
monopoles -yj such that El(yi) -+ 0 yet no gauge transformation maps any of the yj into
V. In particular, since the energies of the configurations -ya converge, then by [21, Theorem
5.1.1], a subsequence of the -yj converges in H 1(I x E) modulo gauge. The limiting monopole
must have zero energy and therefore belongs to 1r. But this means that for some i, a gauge
transformation maps 7i into the neighborhood V, a contradiction.

(ii) We have a corresponding energy identity for arbitrary configurations (C, T) of C(E):

FCl2 + IVcT 12 + |T|2 +(s/2)- =SW2(C,T)IL 2(E)+ ||p(C, T)|12

The proof is now the same as in (i). D

Corollary 6.2 For every gauge invariant neighborhood VE of y in ( 1/ 2(pE), there exists
an e > 0 such that if y is a monopole on I x E with fI |SW2(/(t))\|12( < e, then modulo

gauge, we have (t) E VE for all t E I.

Proof We apply the previous lemma and use that H1([O, 1] x E) embeds into the space
CO([0, 1], H1/2 p). LI
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Lemma 6.3 For every e > 0, there exists an Eo > 0 with the following significance. Let
T > 1 and let -y be a monopole such that ff_1||SW2('y(t))||L2(E) < Co.

(i) We have ||SW2 (Q(T))||L2 (F,) < E.

(ii) If I(T) belongs to a coordinate patch Ua(6) for J sufficiently small, then ||'5(T) -
a||HsI() Ce for all s > 1/2.

Proof (i) Let I = [T - 1, T + 1]. By the previous lemma, if co is sufficiently small, then
there exists a vortex a E 11 and a gauge transformation such that | g*Y-7||1([r-1,T+1]xE)
e'. Since both g*-y and Ya are solutions to Seiberg-Witten equations on I x E, one can boot-
strap the regularity of (b, @) := g*y - ya on the smaller cylinder [T - 1/2, T + 1/2] x E
once we put (b, 'i) in Coulomb-Neumann gauge. More precisely, we find another gauge-
transformation j such that *(g* 7) - N = (b, @) satisfies d*b = 0 and *bl aix E = 0. Then

S(,)1Hl(IxE) < Cll(b,1)H1(IxE) K Ce

since the (linear) projection onto the Coulomb-Neumann slice is a bounded operator on H 1.
We have

SW3 ((09)*y) -SW 3 (Ya) =+Na(b,4@) + (b,I@)#(b,V@) 0,

where Wy is the Hessian (3.50) and # is a bilinear multiplication map. One can now
bootstrap the regularity of (b, @) in the interior, since the operator Wy. yields interior
elliptic estimates for configurations in Coulomb gauge. (We cannot obtain estimates up the
boundary since we have no boundary conditions on 4.) We obtain

(b, H)||u([T- 1/2,T+ 1/2] x Z) < Cs|I I(b, 0)|H1 (I x E)

for some constant C, depending on s > 1. Here, we can choose C, independent of a since
we can always choose a from a compact subset of 11, since 11 is compact modulo gauge.

The trace theorem then gives

(b(T), @)(T))||Ha/2(gry x ) 5 CII(b, @)||H2([r-1/2,T+1/2]x E)-

Write b(T) = c(T) + #(T)dt. By gauge equivariance of the map SW2 and gauge invariance
of the L 2 norm, we have

||SW2 (j(T))||L2(F) = ||SW2 ((eg)*i(T)) - SW2(a)IIL2(E)
< const . |[(c(T), @(T))|H1({T}xE)

< const - ||(b, @)|H3/2([T-1/2,T+1/2]x E)

< const E'.

In the second line above, we used that |1(c(T), @b(T)) |H1(E) is small and controls | (c(T), ,(T)) 1L4(E).

Choosing E' small enough proves the lemma.
(ii) By (i) and Lemma 6.1(ii), it follows that '(t) is H1 (E) close to a. Let y' =

be the configuration from (i) in Coulomb-Neumann gauge relative to Y,. We have that
7' - YaIIHs([T-1/2,T+1/2]xE) 5 Coe for any s > 1. On the other hand, by Lemma 5.4,

|j (T) - al H- 1
/

2 ({TrxE) |II'(T) - a||HS-1/2({T}x E) (6.2)
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since i'(T) belongs to a small neighborhood in the slice through a. The result now follows. Z

Given a vortex a, below are Morse-Bott type inequalities for CSD in our infinite-
dimensional setting.

Lemma 6.4 Given a smooth vortex a E 2', there exists 6 > 0 such the following holds. If
(C, T) E Ua(6) then

|CSDF(C, T)| < const -|(C, T) - alHl() (6.3)

|CSD'(C, T)|1/ 2 < const - TlV(c,T)SW2(C, T)|L2(E). (6.4)

Proof Let (Co, To) and (C, T) be any two configurations and let (c, v) = (C - Co, T -
To) be their difference. A simple Taylor expansion of the cubic function CSDr shows that
it satisfies

CSD§ (Co + c, To + v) = CSDE (Co, To) + ((c, v), SW2 (Co, To))+
1 1I((c, V), 712,(Co,To) (C, 0)) + I(v, p Mc)) (6.5)

2 2

Letting (Co, To) be a vortex a, then since SW2 (a) = 0, we have from (6.5) that

|CSD- T I((c,v),7i2,a(c,v))||L2(E) + 1 )3N)

< const (|(c, v)||21(E) + | (c, v) IHi/2(r) (c, v 2H(E )

Here, we use that 'h2,a is a first order with smooth coefficients and we use the embedding
Hi/2 (E) "+ L4 (E) C L3 (E). The estimate (6.3) now follows from the hypotheses, which
implies ||(c,v)f|H1/2(E) < 3.

The second inequality (6.4) is a standard inequality for Morse-Bott type functions,
which one can establish using an infinite-dimensional version of the Morse-Bott lemma (see
[9, Chapter 4.5]). Using the same techniques of Section 4, where we analyzed local straight-
ening maps for Banach submanifolds in various topologies, one can verify that a Morse-Bott
lemma can be performed in a Hi/ 2(E) neighborhood of the space of vortices. D

Remark 6.5 The standard Morse-Bott inequality (in finite dimensions) states that

If(x)|1 /2 < clVxfl holds in a neighborhood of the critical set of a Morse-Bott function
f. In the above, we have been a bit cavalier in our notion of the gradient, since an inner
product needs to be specified. However, since the projection rI/aJ(CTr) : K(c,T) --+ Ca is an

isomorphism, uniformly in the L2 norm for ||(C, T) - alH1/2() sufficiently small, whether

we use the usual L2 inner product or the inner product (5.30) is immaterial.

Definition 6.6 We say that the chart Ua is a Morse-Bott chart for a if it its closure is
contained in a chart of the form Ua(6), with 3 sufficiently small as in Lemma 6.4.

We are interested in configurations which are in standard form with respect to a Morse-
Bott coordinate chart. This is because the Morse-Bott estimates we obtain on these charts
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allow us to prove the usual exponential decay estimates for Morse-Bott type flows:

Lemma 6.7 Let -y be a smooth finite energy solution to SW 3 (y) = 0 on Y = [T, oo) x E
which is in standard form with respect to a Morse-Bott chart Ua on Y. Then we have the
following:

(i) The path '(t) converges in L2 (Z) to a vortex a as t -+ oo and the temporal component
of y converges in L2 (Z) to zero.

(ii) The energy of y, or more precisely, the function CSDr(Q(t)), decays exponentially as
t -+ 00.

Proof Let CSDr(t) = CSDr( (t)). It is a nonnegative, nonincreasing function of t.
We obtain the differential inequality

LCSDr (t) = - SW2 (i(t)), I ,(, SW2 ((t)) (6.6)

= -||SW 2(i(t))122(g) (6.7)
-const . CSDr(t). (6.8)

In the first line we used (5.31), in the second line, we used that UK(cTU) a,AJt = HKcWrp
and in the last line, we used (6.4). The above inequality implies that

CSD (t) coe a0 - CSD (T)

for some co and 60 depending on a. Since the space of vortices is compact modulo gauge
however, we can ultimately choose co and 6o independent of a.

Moreover, we have the following length estimate. First, we have

|| SW2(";r(t))||IL2(E) = ||SW2(i(t))1|122(E)1lSW2(it))||y(E

< C||ISW2( (t))||12 2)CSDE (t )~1/2

d
-c CSDE(t)1

Note Remark 6.5 in passing to the last line. The above computation makes sense for any
non-stationary monopole 7, since then SW2 (i5(t)) , 0 for every t (otherwise, by unique
continuation, we would have SW2(i(t)) = 0 for all t). Thus,

|I(To) - (T1 )||L 2 (E) -T i(t) dt
TTo dt L2(E)

T1
_c || SW2 (Mt))||L2(E)dt

<c (CSD ( 0 )1/2 - CSD (T1)1/2 . (6.9)

Since CSDr(t) is decreasing to zero, then the '(t) form a Cauchy sequence in L2 (E). In
particular, the path '5(t) converges to a limit, which must be a vortex. El
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We need two more important facts. First, we want to show that we can satisfy the
hypothesis of the previous lemma, namely that given a monopole with small enough energy,
one can always find a coordinate patch about a vortex and a gauge transformation that
places the monopole into standard form for all future time with respect to the coordinate
patch. Secondly, we want to show that not only does a monopole in standard form yield a
path of configurations convergent in L2 (E) to a vortex but that the monopole itself on Y
converges exponentially in all Hk Sobolev norms on Y. This is guaranteed by the following
lemma, whose proof we mostly relegate to [28] because of its technical nature:

Lemma 6.8 There exists an eo > 0 with the following significance.

(i) If -y is a monopole such that f \\SW2((t))|'2 dt = e < eo, then there exists a

Morse-Bott coordinate patch U, and a gauge transformation g such that ' g*,y is
in standard form with respect to Ua on [T, oc) x E.

(ii) There exists a 6o > 0 such if 0 < 6 < 6o, then

VY'H\Hs([T+1,oo)x E) < C8Ce-6 (6.10)

for every s > 0. Here C, is a constant depending on s and C, is a constant that can

be taken arbitrarily small for e sufficiently small.

Proof (i) By Lemma 6.1, for co sufficiently small, we can find a gauge transformation
g on [T, T +1] x E such that g*y is in standard form with respect to some Morse-Bott patch
Ua. The key step is to show that g can be extended to all of [T, oo) x E in such a way that
the resulting gauge transformation places -y in standard form for all future time. However,
Lemma 6.3 together with the same arguments as in [28, Theorem 4.3.1] shows that this is

the case for Eo sufficiently small.
(ii) By (i) and Lemma 6.3, we know that suptT+1| 1'(t)||Hk(E) < CkC,. Now stan-

dard exponential decay arguments, e.g. [28, Lemma 5.4.1]5 yields the desired conclusion for

s = 0. For s > 0, we use the fact that one bootstrap elliptic estimates in the standard form

gauge so that L 2 exponential decay gives us H" decay on the cylinder. The arguments are

formally similar to those of [28, Lemma 3.3.2]. We omit the details. Note that we can take

do independent of a since the vortex moduli space V is compact. L

7 The Finite Energy Moduli Space on [0, 00) x E

In this section, we use the results developed in the previous section to prove our main results

concerning the space of finite energy monopoles on [0, oo) x E. From Lemma 6.8, we see

that modulo gauge, any finite energy monopole converges exponentially to a vortex. This
result depends crucially on the Morse-Bott framework 6 of the previous section and it yields

for us the following two bits of information. First, it tells us that the right choice of function

5Note this lemma is a more general statement than we need, since in our Morse-Bott situation, the center

manifold is simply the critical manifold.
6 For comparison, in [28], one does not always get exponential decay in the instanton case due to Morse-

Bott degenerate critical points.
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spaces to consider on the cylinder are the exponentially weighted Sobolev spaces. Second,
it suggests that the topology of our monopole spaces is related to the topology of the vortex
moduli spaces at infinity. Our main theorems of this section, Theorems 7.2, 7.6, and 7.7,
confirm this latter expectation.

We begin with the appropriate function space setup. Although we will ultimately only
need to work with smooth monopoles in the case when Y is a manifold with cylindrical
ends (and without boundary), our preliminary analysis here on the ends requires us to work
in the general Hilbert space setting. On the noncompact space Y = [0, oo) x E, we must
a priori work with local Sobolev spaces Hfoc(Y), that is, the topological vector space of
functions on Y that belong to H8 (K) for every compact domain K C Y. We let f(t1CY)
denote the Hfoc(Y) completion of the smooth configuration space on Y. Then the space of
all finite energy monopoles in Vfec(Y) is given by

991 - 9W (Y) {y E Y) (Y) < 00-

We topologize this space in the Hfoc(Y) topology and also by requiring that the energy be
a continuous function. Likewise, for any E > 0, we can define the space

9s'3 = {-y E foc (Y) : E(8) < E}.

of HIo(Y) monopoles that have energy less than E.

These spaces, being merely the spaces which a priori contains all the monopoles of
interest, are much too large to be of use. Of course, as we have mentioned, we can always
find a gauge in which a finite energy configuration decays exponentially in every Sobolev
norm at infinity. So for any 3 E R and nonnegative integer s > 0, define HS;6 (Y) to be the
closure of Co (Y) in the norm

|f||H ;6(Y) =e 6tfIHs(Y)-

Thus, for 3 > 0, the weight ejt forces exponential decay of our functions; for 3 < 0, we allow
exponential growth. Using this topology, we can topologize the space T = Q'(Y; iR) el(S)
(the tangent space to the smooth configuration space on Y when Y was compact) in the
HS;6 (Y) topology to obtain T';6 . For 3 > 0, we can then define the corresponding space

Es;(Y) = y: - -Ya c T;
6 for some a E 11}

of configurations that decay exponentially to some H(E) vortex a E 1"' := H'11. In
particular, if s > 2, all configurations in EY;6(Y) are pointwise bounded. From now on, we
will assume s is an integer and s > 2 unless otherwise stated. We give Es6(Y) the topology
of TS6 x 7'/ in the obvious way. In particular, observe that ES;6(Y) is a Hilbert manifold.
Define the map

0oo : E8
3

(y) -+ 7"

Y - lim (t). (7.1)t -+ o
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Then the tangent space to Ess(Y) at -y is the space

I
Tyf" v;(Y) - T7 6 E) 5. d .

Given -y E 9R', the gauge transformation which sends -y to an element of ES 6 (Y), being only
required to satisfy a condition at infinity, can be taken to be identically one near E = BY.
It follows that to study the space 91 and its boundary values on Cs-1/

2 (E), it suffices to
study the space

-R; 9X5~ n ~;(

for 3 > 0 small.

We now consider the above setup modulo all gauge transformations. When 3 > 0, the
exponential decay of configurations allows multiplication to be possible and we can define
an exponentially weighted gauge group accordingly. Namely, we define 9'+1;6(Y) to be the

Hilbert Lie group of gauge transformations such that g - 1 belongs to H'+1;6(Y). This

group acts smoothly on VS6 (Y) and we can form the quotient space

masa() - T81(Yggs+1; (y).

It is a smooth Hilbert manifold away from the reducible configurations, which we can ignore
when studying the monopole moduli space due to the nontriviality of the spin' structure s

on Y. Let
M8 = MS(Y) - 9" 6(Y)/gS+1;(Y) c ,s; 3 (Y) (7.2)

denote the moduli space of gauge equivalence classes of exponentially decaying monopoles
in 93Z';. By our exponential decay results, M', topologized as a subspace of 9s3;(Y), is also

(topologically) the quotient space of 9R' by the group of H, 1 (Y) gauge transformations

on Y. (Here, it is key that 9R' is topologized with the energy functional.) Observe that the

definition of M' is independent of 6 for 3 > 0 sufficiently small as a consequence of Lemma

6.8.

Remark 7.1 In Part I, we considered only partially gauge-fixed monopole spaces. In our

scenario, the analogous space would be the space

A6 - c M';6 : d*(7y - yref) = 0} (7.3)

for some smooth reference configuration 7ref pulled back from a configuration on C(E). A
global Coulomb gauge requires only using gauge transformations that are the identity on the

boundary, so that the space of boundary values of Coulomb gauge-fixed monopoles live on

the configuration space Es~1/ 2 (E) on the boundary and not the quotient configuration space.

Thus, in Part I we work in Coulomb gauge because of its importance for the analysis of Part

III, where we want gauge-invariant Lagrangian submanifolds of the boundary configuration

space to yield for us boundary conditions for the Seiberg-Witten equations. In our present

setting, the gauge-freedom on the boundary E is of no interest to us, and so we work in

the usual setting of quotienting by all gauge transformations. Of course, there is no loss of

information in deciding whether to work with the configuration space on E or its quotient

by gauge transformations.
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To work modulo gauge, we want to obtain tangent space decompositions arising from
the infinitesimal gauge action, as in Section 3.2, but on weighted spaces. Thus, for (B, T) C

a;"'(Y) with ' > 0, we can define the operators

d(BT) : Hs+1;6(Y; iR) T";6

( (- d , )

d-+

(b, @) - -d* b+ iRe (iT, V)).

for 6 < 6'. We then obtain the subspaces

S-6(B, I) =id(B,T)

$S) = ker d*

of T8-6 Likewise, we can define the spaces

(BNey = { (-d<, (W) :C Hs+1;'(Y; iR), (|jz 0}, (7.4)

k865 S6(75
(B,KI),n = {(b, @) C I' p) : *bJi = 0}, (7.5)

Cs;6 = {(b, V)) E Ts;6 : d*b = 0}, (7.6)

where E {0} x E is the boundary of Y. By standard Fredholm theory on weighted spaces

(see [25]), we can obtain a weighted decomposition

for (B, T) irreducible, proceeding mutatis mutandis as in Lemma 3.4 (with 6 # 0 sufficiently
small). This is summarized in Lemma 7.3.

The operator (7.1) induces the following smooth map on the quotient space,

Boo : "a;6 (y) - V

[7] > lim [j(t)] (7.8)

Given any irreducible 7 E C8 (Y), from (7.7), we have that the tangent space to ['y] of
9a;6 (Y) can be identified with

T q (Y) 2 K6 n Ta ,yjV. (7.9)

The map (7.8) restricts to a map

0oo : M8 (Y) -* V

mapping a monopole to its asymptotic vortex on E. Given a vortex [a] E V, we can define

= {[ ] E M'(Y) : Boo[Y] = [a]} (7.10)
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the moduli space of monopoles that converge to [a].
We are now in the position to state our main result. We have the (tangential) restriction

map

(B, T) (B, T)

Letting

denote the quotient configuration space on E, the restriction map r, descends to the quo-
tient space:

rr : 2Bs6(Y) _a s-1/2(). (7.12)

Let
93'(E) = p-S()/gs+1E C w(E) (7.13)

denote the symplectically reduced space associated to the moment map p. We have
the following theorem, which geometrically, is the statement that M'(Y) is the (infinite-
dimensional) stable manifold to the space of vortices V under the Seiberg-Witten flow.

Theorem 7.2 (Finite Energy Moduli Space) Fix a spine structure s on E and let s > 2 be
an integer. Let d = (c1(z), E) be nonzero. Then the following holds:

(i) The moduli space M 8 (Y) is naturally a smooth Hilbert manifold7 of W3 (Y), for 6 > 0
sufficiently small.

(ii) The map rr : Ms(Y) _ %s-1/2(p) is a diffeomorphism onto its image, which is

a coisotropic submanifold of the symplectically reduced space B s-1/ 2( E). Given any
[C] c M 8 (Y), the annihilator of the coisotropic space rE(T[Y]M 8 (Y)) is the space
rE(T M (Y)).

(iii) Both M8 (Y) and rE (M 8 (Y)) are complete.

In regarding Ms = M 5 (Y) as the stable manifold to the space of vortices at infinity,
we see that it is the union of the M,, each of which is the stable manifold to [a] E V, as

[a] varies over the symplectic set of critical points V. This geometric picture clarifies the
symplectic nature of (ii) in the above.

Because of the infinite-dimensional nature of the objects involved, the proof of the above
theorem requires some care. We first prove a few lemmas. The first lemma below is an
adaptation of the relevant results of Part I on compact 3-manifolds adapted to the cylindrical
case. Here, the adaptation arises from considering weighted spaces, with a small non-zero
weight parameter 6.

Lemma 7.3 Let s > 2 and -y E V;'(Y) where 6' > 0. Then for 6 > 0 sufficiently small,
the following hold:

7 From now on, we will always regard M'(Y) as endowed with this topology. As mentioned, it is homeo-

morphic to the quotient of 9J' by GiJ (Y), but the latter does not come with an a priori smooth manifold

structure.
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(i) We have the following decompositions for 1 < s' < s:

= 1± ;±6 eCSI'± (7.14)

Ts';t , _ Dgs ; 1 6 . (7.15)

If 'y is not reducible, then we also have

T'± - EDs';* s eK'. (7.16)

(ii) Let SW3 (y) = 0. Then the Hessian operator Wk : Ts;k6 - 0e-1;±6 is surjective.

Proof Using the Fredholm theory for elliptic operators on weighted spaces of [25], the
proof of this lemma proceeds mutatis mutandis as in Lemmas 3.4, 3.16, and 4.1, since the
elliptic methods there adapt to weighted spaces for weights on the complement of a discrete
set. Ol

In Part I, we made ample use of the augmented Hessian operator 7k, defined via (3.54),
an elliptic formally self-adjoint operator that extends the Hessian operator WY and which
is naturally tied to (global) Coulomb gauge-fixing. On the other hand, had we chosen to
gauge fix into the subspace K, instead of the Coulomb slice C, we could have defined a
different elliptic extension (which is more natural in some sense, since KAC is orthogonal to
the infinitesimal action of the gauge group identically one on the boundary). Thus, we can
define, using the same terminology of [21], the extended Hessian

y 0) : T D Q0 (Y; iR) - T e Q0 (Y; iR), (7.17)

Thus we use the operators dy and d* in W1 instead of the Coulomb slice operators -d and

-d* in ky. Since 7Y and ky differ by a zeroth order term, then on a compact manifold,
such a lower order term is a compact perturbation. Hence in Part I, it is immaterial whether
we work with the extended or augmented Hessian, and we ultimately chose to work with
the latter, since Coulomb gauge fixing can be done globally on the configuration space
and is therefore convenient. However, in our non-compact cylindrical situation, bounded
operators are no longer compact perturbations of elliptic operators, and so now our choice
of elliptic extension of 7y becomes important. As one might naturally expect, W. is the
proper operator to consider. The significance of this choice is reflected in Lemma 7.5.

Define the weighted augmented spaces

's = Ts;6 (D H-5;6(Y; iR)

for 6 E R. For -y E &'(Y) and 6 < ', we thus get a first order formally self-adjoint elliptic
operator

.1 s; :s-1;6

In Part I, a method known as the "invertible double", which we alluded to in Proposition
15.18, is a fundamental tool in showing that the space of boundary values of kernel of

y (and hence also of 'Hy) on a compact 3-manifold yields a Lagrangian subspace of the
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boundary data space. Here, the same methods can be used, only now we have a slightly
different situation due to the weights. Nevertheless, this invertible double technique is what
allows us to obtain symplectic information for the boundary data of the kernel of augmented
Hessian in the cylindrical case.

Recall that it = TI e Q0 (E; iR) D Q0 (E; iR) is the full boundary value space of T, with
the full restriction map r T - TE given by (3.57). Extending to Sobolev spaces, we have

r : - - for s > 1/2. We also have the complex structure J = : -+ T,
given by (3.79), which extends the complex structure J on TE and which is compatible with
the product symplectic form (3.78) on TE. As in Part I, symplectic data on 7j is obtained
from symplectic data on TE via symplectic reduction with respect to the coisotropic space
T, e Q0 (E; iR) e 0. Hence, we first study symplectic data on TE, where we can use elliptic
methods, in particular, the invertible double method.

Lemma 7.4 (Weighted Invertible Double) Let s > 2 and let 3 # 0 be sufficiently small. Let
-y C M';6. Define

.7-s;± eD 'P (x, y) G ef; t r (x) z- r (y)}

Then we have the following:

(i) The "doubled operator"

H, 7E) W, (Js;- 3
> s1;

is an isomorphism.

(ii) The space r(ker W,, (3; 6 ) is an isotropic subspace of T- 1 /2 . Its symplectic annihilator

is the coisotropic subspace r(kerW+ J?8 _6).

Proof (i) One can easily construct a parametrix for the double using the methods of [3].
This shows that the double is Fredholm. Here J $ 0 small is needed because of our Morse-
Bott situation at infinity. To see that the double is injective, if u = (u+, u-) E s s;-6
belongs to the kernel of the double, then

0 = (u+, -U-)L2(y) - (7-&u+, U-)L2(y) = - (r(u+), Jr(u)).

The second equality is Green's formula for W-, where E =Y. This formula is justified
since u+ decays exponentially while u- is at most bounded since 3 is small (see (7.28)), so
that there is no contribution from infinity. On the other hand, since r(u+) = Jr(u_), we
conclude that

JU+2 U- 2 = 0.

Thus u = 0 and so the double is injective. Integration by parts and the same argument
shows that the orthogonal complement of the range of the double is zero. Thus, the double
is invertible.

(ii) Green's formula above shows that r(ker7-&ls,;,) is isotropic and that it annihi-

lates r(kerNylg8 ,>6 ). It remains to show that the annihilator of r(ker71y.4s;6 ) is precisely
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r(ker)TNj,_6), for which it suffices to show that r(ker1-&4,;,) and Jr(ker-&Njr,8; 6 ) are

(orthogonal) complements. This however follows from (i) and the same method of proof of
[4, Proposition 5.12]. 0

The above lemma remains true with R, replaced with 7Q. We need to use 71y for the
next lemma however:

Lemma 7.5 Let -y, be a translation-invariant vortex.

(i) We can write

-= -d + ,B a) (7 .18 )

as in (3.62), where Ba : - T is a time-independent first self-adjoint operator.

(ii) We have JBa = -aJ.

(iii) We have
kerBa ={(c, ), 0, 0) C 'T : (c, v) c Ta f, d* (c, v) = 0} (7.19)

is isomorphic to the tangent space to the vortex moduli space V at [a].

Proof (i-ii) By the analysis of Section 3.3, we know that letting 7a = (B, T), the
Dirac operator W,,, is the sum of Ddge e DB and some zeroth order terms. With respect
to the Clifford multiplication defining the Dirac operator Ddgc E DB, the operator J is
Clifford multiplication by the inward normal -0t. It follows that J anticommutes with the
tangential boundary operator of the cylindrical Dirac operator Ddge e DB. Thus, to prove
(i) and (ii), we need only check that J anti-commutes with the zeroth order symmetric
operator Ta := 7ty - Ddgc e DB.

Let us temporarily write a general element of TE as (c, /3, a, (v+, v_)), where (v+, v_) E
F(SE), and where (c,#, a) E Q1(E; iR)e 0(0 ;i)GQ0 (E; iR) corresponding to the decom-
position of (Q1 (Y; iR) e Q0 (Y; iR)) r given by Lemma 3.8. (Thus, 3 is the normal com-
ponent of a 1-form on Y and a corresponds to Q0 (Y; iR)Ir). Writing the time-independent
spinor T as T = T = (T+, T_) with respect to (5.2), define

Ty : F(Sy) Q 1 (E; iR) (7.20)

(v+,v) V- (o+T- + T+v_) + (v+T- + T+ix), (7.21)

which is obtained from equations (5.4) and (5.5) by linearizing the spinor terms. Then one
can check that the matrix for Ta is given by

0 0 0 TT(-)

T 0 0 0 iRe(iT,.)
0 0 0 iRe (ip(-dt)T,.)

p(-)T p( - (-dt))T (.)T 0

Here, we have identified t with F([0, oo),7). The term iRe (ip(-dt)T,-) appearing in Ta
is precisely the term arising from linearizing the spinor terms in the moment map equation
(5.3). A simple computation shows that JTa = -TaJ.



Part II

(iii) From (i), elements of ker Ba are precisely those elements of ker 7R, that are time-
independent. By Lemma 5.3(v), the linearization of the equation SW3 (Y) = 0, in temporal
gauge at a vortex / = y, yields the linearization of the vortex equations at a. The gauge-
fixing operator d* on Y for time-independent configurations becomes the gauge-fixing

operator d* on E. It is now clear that any element of kerBa with vanishing # and a
components, i.e. which belongs to T c TE, is precisely the right-hand side of (7.19).

Conversely, suppose (c, 3, a, v) c ker Ba. Linearizing (5.4)-(5.6), dropping time deriva-
tives, and adding in the daa term, we find that

712,a(c, v) - Jda#3 + daa = 0.

Recall that J =(-', p(&t)) is the compatible complex structure for the symplectic form W
on TE. All three terms in the above however are orthogonal to each other, since the tangent
space to the gauge group is isotropic and since Proposition 5.1(iv) holds. It follows that
Jd/# = daa = 0, whence # = a = 0 since T # 0. We now have the equality (7.19). El

Proof of Theorem 7.2: (i) We prove that M;6 is a Hilbert manifold by showing that
it is the zero set of a section of a Hilbert bundle that is transverse to zero. We have the
exponentially decaying space K 6- for every configuration -y on Y. Just as in Proposition

3.5, since KIy 1  varies continuously with 7, we may form the bundle K- 1;(Y) -
whose fiber over every y E Vs;6(Y) is the Hilbert space Ks16(Y).

We can interpret SW3 as a section of the bundle K-1 6 (Y), i.e.,

SW 3 : ESs(Y) - K$~313 (Y) (7.22)

Note that the range of SW3 really is contained in the exponentially decaying space KC;6(Y).
Indeed, for any constant vortex /, induced from a c 1' and any x c T;6, we have

SW 3 (Y + x) = 7y.X + 4X.

Since 6 > 0 and s > 2, multiplication is bounded on TS5 and so in particular, xzx E 7c~1;6.
Lemma 7.3(ii) implies (7.22) is transverse to the zero section, whence 9J16 = SW -'(0) is a
smooth Hilbert submanifold of ss6 (Y). Since there are no reducibles, 9s+1;6(Y) acts freely,
and so M' ~ 9s;/g3+1;(Y) has the structure of a smooth Hilbert submanifold of ws3 (Y).

(iii) The space M' is obviously complete since it is the quotient of M';3 , which is
complete as it is the zero set of a continuous map. To show that rE (M') is complete, we have
to show that any sequence in rE(M) which forms a Cauchy sequence in 93,1/2(E) converges
to an element of rE(M8 ). Since s - 1/2 > 1/2, if a sequence converges in Hs-1/2 (E), its
values under CSDr converge, since CSDE is H 1/ 2 (E) continuous. Thus, it follows that
the limiting configuration has finite energy, and the limiting trajectory it determines on the
cylinder is the limit of the sequence of trajectories. Thus, the limit corresponds to a finite
energy monopole, and hence rz(MS) is complete.

(ii) For the first part of (ii), similar unique continuation arguments as made in the proof
of the main theorem of Part I imply the injectivity of rE and that it is an immersion.
To show then that rE is a global embedding, we use similar arguments as made in the
proof of Theorem 4.13. Namely, it suffices to show that if rT((7i) forms a Cauchy sequence
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in % -1/2(E), then the yi form a Cauchy sequence in Ms. However, this follows from
our preceding analysis. Namely, we have that the energy of the 'yj converge. On compact
cylinders, the -yi converge in HS(I x E) by Lemma 4.11, and at infinity, we have convergence
in a neighborhood of infinity since energy controls exponential decay, i.e., we have equation
(6.10). Because of the way M' is topologized, this gives us convergence of yi in M'.

It remains to prove the more interesting second part of (ii). Let Ws-1< and W' be
the Hessian and extended Hessian operators with domains T;±6 and Ts±i, respectively.
Observe that given [-] E M', then rz(T[] M) can be regarded as the symplectic reduction

of rF(Ty9X1"6) with respect to the coisotropic subspace Typ- 1(0) of T7 1/2. We have the
following claim:

Claim: The space rr (TyM9X; 6 ) is a coisotropic subspace of Tt'-1/ 2 with annihilator rE (TyTJsifn
TS;6).

We will prove this claim, which is equivalent to second assertion of (ii) via symplectic
reduction. To prove the first part of the claim, we proceed as follows. First of all, we have

rE(Ty ZJl) rE(kerW4T, S Lys;(y))

= rz(ker'7t4Ts;o (y)) (7.23)

where the first equality follows from the definitions and the second follows from Lemma

7.3 and the fact that has zero restriction to the boundary. Let 1rSR : 1/2

T- 1 /2 denote the symplectic reduction induced by the coisotropic subspace W := T "1/

Qo(E; iR) eO, that is, 7rsR(x) is coordinate projection onto T s-1/ 2 if x E W and ISR(x) = 0
otherwise. We will show that

rE (ker Nh IT,,s;6(y)) = rSRr(ker X, ' ), (7.24)

which together with Lemma 7.4 and (7.23) will show that rE(TyM9J; 6 ) is coisotropic.

Let a = limtso y(t). Then we can write

y = '71 + R (7.25)

where Wy'a is time-independent and where R is a zeroth order operator whose coefficients
belong to H';(Y). From this, we have

ker_;- 612 = _ -s*6/2 + kr 2: 'yx 0}. (7.26)

Indeed, if x c T89~/ 2 and '7kyx = 0, then R7Naz = -Rx E T; 6/2 . The operator W_ :
is+1,6/2 - s,/2 is surjective (since no boundary conditions are specified), and hence we

see that x differs from an element of is+1,/2 by an element of ker 7,;-1/2. This provesY a
(7.26).

On the other hand, ker '7- 1 2 has a simple description, since it is time-independent (itiod
is a cylindrical Atiyah-Patodi- Singer operator, see [3].) For 6 > 0 sufficiently small so that
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it is smaller than the the absolute value of the first positive and negative eigenvalue of Ba,
we have

kerN = fVcA(Ae- At.<0 (7.27)
SI/2 = c CAA H -1/2(E)

A>O A

where the {(x}A are an orthonormal basis of eigenfunctions for Ba, with (A having eigenvalue

A. In particular, the space ker n O has only at most bounded configurations; none

of them are exponentially growing. The ones that are bounded are the time-translation
configurations spanned by the kernel of Ba. By Lemma 7.5 however, this is precisely the
space (7.19), which is isomorphic to the tangent space to the moduli space of vortices at

[a]. Moreover, the exponentially decaying elements of ker a decay with rate at least

e-6t/2 because of our choice of 6.

Thus, if we let Zg, C ker N/2 denote the time-translation invariant elements given
by the zero eigenspace of Ba, we have

ker 7-6/2 c TS;6/2 + ZE,. (7.28)

But since Z, c T 8 (oy by Lemma 7.5, equations (7.26) and (7.28) imply that

-- 6/2 (.9
ker a=' ker7Ny|Tqs;6/2eH8;o/2(y), (7.29)

that is, the only elements of that do not exponentially decay are those that have
a nonzero contribution from Z-f c Tal". Because of the orthogonal decomposition (7.15),

-s;-6121/
elements of ker N7;-/ whose restriction under r lie inside the coisotropic space

Q0 (L; iR) e 0 have vanishing HS;-6/ 2 (Y) component, and thus belong to Tyfs;6 / 2 . (This is
exactly the same type of analysis carried out in the symplectic aspects of Section 3.3). This
observation together with (7.29) implies

7rSRr(ker 7w,/) 7rSRrker(-yjTrs;6/2).

But we have
lrSRr ker(W- - Ts;6/2) = r ker(-y T_,s;6/2),

and so (7.24) follows from the above two equations. This finishes the first part of the claim.

The second part of the claim is now a simple consequence of Lemma 7.4(ii) and the pre-

ceding analysis. Namely, we have that the annihilator of rE(Ty~Ms) 7rSRr(ker N'6 )

is given by

IrSRT(kerw 2 7SRr(ker 7 Ts;6/2)

= r(TAS j n Ts ;6/2).

The claim now follows from the fact that Ty7M8s6 nTs;1/2 modulo gauge is precisely TY M]. D

The next theorem considers the space of monopoles 9TT' that have small energy less
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than E, which we study in terms of the corresponding moduli space

M := f{[y] E M' : E(y) < E}.

Geometrically, Theorem 7.6 says that for sufficiently small energy e, the space M, is what we
expect it to be in light of the Morse-Bott analysis of the previous section. Namely, Mi is an
open neighborhood of the the critical set of our flow, the space of vortices, within the stable
manifold of the flow. (Since we are working modulo gauge, the stable manifold in question
is with respect to the flow on some coordinate patch near a vortex, as we analyzed in the
previous section.) Thus, while M, is an infinite-dimensional Hilbert manifold, the only
topologically nontrivial portion of it comes from the finite dimensional space of vortices
over which it fibers. Furthermore, the Seiberg-Witten flow provides a weak homotopy
equivalence from the entire space M', whose exact nature we do not know, to the small
energy space M,.

Theorem 7.6 (Small Energy Moduli Space) Let k = g - 1 - d > 0, where g is the genus
of E.

(i) For every E > 0, the inclusion Mk " M' induces a weak homotopy equivalence.

(ii) There exists an eo > 0 such that for all 0 < e < eo, the space A|, is diffeomorphic to
a Hilbert ball bundle over the k-vortex moduli space Vk(ZE).

Proof (i) We want to show that the inclusion induces an isomorphism on all homotopy
groups. For this, we only have to show that M '- MV is surjective on all homotopy groups.
So let f : S, - MS be a representative element of 7r(M 8 ) for some n. Observe that for
every T > 0, we have a continuous map rT : M' -+ M' which translates an element by
time T, i.e. TT(-y) = -y(. + T). Since the image of f(S,) is compact, and because energy is
continuous on M', it follows that we can find a large T such that TT(f(Sn)) C ME. Thus,
r, 0 < t < T, provides a homotopy from rT(f(Sn)) to f(Sn). Since f : Sn -+ M' was
arbitrary, this proves the desired surjectivity of the inclusion map on homotopy groups.

(ii) The Chern-Simons-Dirac functional CSDF, being a Morse-Bott functional on the

quotient space 71/2 (E), is a small lower order perturbation of a positive-definite quadratic
form when restricted to small neighborhood of the stable manifold to a critical point. Hence,
the level sets of energy on such a stable manifold, for energy close to the energy of the crit-
ical set, are just smooth spheres. Thus, the union of those level sets of energy less than
e, which is precisely M,, forms a Hilbert ball bundle over V. Here, in this last statement,
we implicitly used Lemma 6.1, which tells us that for small enough energy, every con-
figuration is gauge equivalent to a path that remains in a small H 1/ 2(E) neighborhood of
V for all time, in which case the above local analysis of CSDF near its critical set applies. El

From the previous theorems, we can deduce the following theorem, which allows us to
obtain Lagrangian submanifolds of Z 1/2 (E) whose topology we can understand. Namely,
we consider the initial data of configurations in Bs71/ 2 (E) that converge under the Seiberg-
Witten flow to a submanifold Y inside the vortex moduli space V at infinity. More precisely,
define the space

M", = {[y] E M, 'o ] E Y1.
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of monopoles in M' that converge to Y. For any E > 0, we can also define

Theorem 7.7 Let 2 c Vk(E) denote any Lagrangian submanifold.

(i) The space M_9 can be given the topology of a smooth Hilbert manifold. The map r:

M - IZs-1/2(E) is a diffeomorphism onto a Lagrangian submanifold of 9-91/2

The space M_ is weakly homotopy equivalent to a Hilbert ball bundle over Y.

(ii) If e > 0 is sufficiently small, then (i) holds with Ms in place of My, and with
"weakly homotopy equivalent" replaced with "diffeomorphic".

Proof Since the map 0oo : M' - V is a smooth submersion, it follows My C MS

has the topology of a smooth Hilbert manifold. From Theorem 7.2(ii), we see that given

[y] c MS , the space rE(T[jM ) yields a Lagrangian subspace inside the symplectically
reduced space

rE(T[,,M')/rE(T[_M]).

This shows that rs(Tp.jM) is a Lagrangian subspace of TrBo 1 /2(E). The remaining
statements are now immediate. l

Of course, having worked initially in the Hilbert space setting (as is necessary), one can

then restrict to just those configurations that are smooth. Thus, all the results above carry
over mutatis mutandis to the smooth setting.

8 The General Case

We conclude Part II with how how one may piece together the results of the previous
section on semi-infinite cylinders with the results of Part I to understand the moduli space

of monopoles on a general 3-manifold with cylindrical ends. Our main result is Theorem 8.2,
which states that after a suitable perturbation, monopole moduli spaces produce immersed
Lagrangians in vortex moduli spaces. Moreover, we make some vague remarks about how

our work supplies the analysis needed to carry out Donaldson's TQFT formulation of the

Seiberg-Witten invariants. The work started here will be completed more fully in the future.

Given a general 3-manifold Y with cylindrical ends, we write it as the union of Yo, a

compact 3-manifold with boundary a disjoint union of Riemann surfaces Ei, and cylindrical

ends [0, oc) x Ei attached to these boundary components. We suppose that the metric is a

product on each of the ends as well as in a tubular neighborhood of DYo. We suppose that

the spin' structure s on Y is a product on the ends such that the determinant line bundle
it associates to each Ei has Chern-class di # 0. Thus, we have a Morse-Bott situation on

each end.
We will define perturbations for our equations which are compactly supported in the

interior of a tubular neighborhood of the interface components {0} x E inside Yo. This is

because we want to preserve the cylindrical structure of the equations on the ends. Such a
perturbation is given by a function q : C(Yo) -+ /C(Yo) which extends to Sobolev completions
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8. THE GENERAL CASE

and which then gives us the modified Seiberg-Witten equations SW3(B, XP) + q(B, XP) = 0
on Y. These equations then extend to Y because of the compact support of q.

Restricting our attention to Y for the moment, we want our perturbations to be com-
patible with the results developed in Part I for Y. One way to ensure this is to only use
local perturbations, that is, perturbations whose pointwise value at y E Y depends only on
the value of (B, T) at y. This is so that the crucial arguments involving unique continuation
in Part I continue to hold8 .

The restriction of locality is a strong requirement, but fortunately, there are still a rich
enough class of perturbations for us to achieve the desirable transversality results. For
notational compactness, we write

nE ui,
i= 1

so that BY is just the single disconnected surface E. Define the open subset N = (-1, -1/4) x
E C Yo lying in the interior of a tubular neighborhood (-3/2,0] x E of E in Yo. We can
consider perturbations of the following form9.

Let q be an imaginary coclosed 1-form supported in N. This yields for us the pertur-
bation q,(B, T) = 7. Next, let U be an open subset of N on which we can trivialize the
spinor bundle S. So with respect to some trivialization of SlU 2- C2 , we can write the spinor
T = (P+, T-) as a pair of complex numbers. To obtain a gauge-invariant perturbation, we
can take our perturbations to be gradients of gauge-invariant polynomials of the compo-
nents of T. If we want to obtain a perturbation that is a linear function of the spinor, this
limits us to the following quadratic polynomials:

qi (T) = |,p+|12, q2(ql) = |T-|2, q3(XP) = Re (IF+, T-) q4(f) = IM (kP+, T-).

One can check that at any point of Y for which T is nonzero, the gradients of these
four functions (with respect to the real inner product Re (.,.) on S) span the orthogonal
complement to the vector iJ spanning the infinitesimal gauge orbit of T. Thus, given a
quadruple of smooth real valued functions f = (fi)_ 1 compactly supported in U, we obtain
a gauge invariant perturbation by defining qf to be the gradient of E fiqi.

We will use the above two types of perturbations as our main building blocks. Namely,
we can now proceed to construct a large Banach space of perturbations, in the sense of
Kronheimer-Mrowka (see [21, Chapter 11.6]). We fix the following data:

* a finite open cover {Ui}i 1 of (-3/4, -1/2) x E, where Ui C N, along with trivializa-
8 The general class of perturbations used in [21] on a 3-manifold, obtained from cylinder functions, do

not satisfy this property for the 3-dimensional Seiberg-Witten equations. However, they do satisfy a locality
property for the corresponding 4-dimensional Seiberg-Witten equations on a cylindrical 4-manifold R x Y
(at every time t E R, the value of the perturbation depends only on the configuration at that particular
time). Thus, the perturbations of [21] are suited for the 4-dimensional Seiberg-Witten equations, but not
for the 3-dimensional equations on a manifold with boundary. See [5] for further reading on the relationship
between unique continuation and locality.

9 One could work with the cylinder function perturbations of [21] by working in an S' invariant setting.
Namely, consider S'-invariant cylinder functions on S' x E, and proceed as in [21] to get perturbations
defined in a "slicewise" fashion compactly supported in the product neighborhood N. They will be local in
with respect to the t E (-3/2, 0] variable, which is sufficient. The perturbations we describe are an alternate
set of perturbations, which are more simple, albeit perhaps a bit crude since it requires some ad hoc choices
of local bundle trivializations.
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tions of SJu;

" a countable collection of smooth coclosed imaginary 1-forms rj compactly supported
on some Uj;

" a countable collection of quadruples fi = (fi,, fi,2, fi,3, fi,4) of smooth real-valued
functions compactly supported in some Uj,

where the countable collection of elements are chosen to be dense in the C0, (UjUj) topology
in the space of all such data. We then obtain a large Banach space P of perturbations which
is spanned by all finite linear combinations E(Ajqq + Aqj of the perturbations generated

as above, Aj, A' E R.

We now state our main theorem below and sketch its proof. First, we introduce some
notation. Given a perturbation q E P, we can consider the q-perturbed Seiberg-Witten
equations

SW3,q (B, I) := SW 3 (B, T) + q(B, qI) = 0

on Yo and on Y. Consider the corresponding moduli space of all smooth monopoles on Yo
and Y, where on Y, we require that the energy be finite on the ends:

Mq(Y) = { E f(Y) : SW 3,q(7)= 0}/g(Y) (8.1)

Mq(Y) = {y E Q(Y) : SW3,q(7) 0, E(Y|O,0 ) ) < oo, 1 < i < n}/g(Y). (8.2)

Here, Mg(Y) is topologized via Cf'(Y) and via the requirement that the energy functional
on the ends be continuous. Note that since Y no longer has a boundary, every Sobolev
monopole on Y is gauge equivalent to a smooth one, which is why we omitted Sobolev
completions in the above quotient.

As in [21], we can describe Mq(Y) as a fiber product of the moduli space of monopoles
on Yo and on the ends. We have restriction maps to the quotient configuration space B(E)
on the interface E = {0} x E of Yo and [0, oo) x E:

r : $(Y) * $(E) (8.3)

r- : B([0, o) x E) > $(E). (8.4)

Via restriction, these maps then give us maps

r+ : Mq(Y) 3 $(E) (8.5)

r : M([0, oo) x E) -- (E). (8.6)

One can show, as in [21, Lemma 24.2.2], the following:

Lemma 8.1 The natural map Mq(Y) -4 Mq(Yo) x M([0, oo) x E) yields a homeomorphism

from Mq (Y) onto the fiber product of (8.5) and (8.6).

Our main result is the following. Pick a spinc structure - on Y as above, and let

k = gi - 1 - , where gi is the genus of Ej. The ends E of Y yield for us the product

of vortex moduli spaces F Vk,(Ei) endowed with the product symplectic structure. We
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can define the smooth map

n
0" : Mq (Y) -+ lVi (Ei) (8.7)

i= 1

which sends a monopole to the gauge-equivalence class of its limit on each end.

Theorem 8.2 For a residual set of perturbations q E 'P, the space Mq (Y) is a smooth,
compact manifold. Moreover, the map (8.7) is a Lagrangian immersion.

Proof From the fiber product description of Lemma 8.1, one can argue similarly as in
Proposition 24.3.2 and Lemma 24.4.8 to achieve transversality for the map (8.5) and (8.6)
for a residual set of perturbations. Though our class of perturbations is different, the same
type of arguments carry through, since away from reducible configurations (which we do
not have to worry about due to our choice of s), our perturbations are sufficiently rich (in
the interior of N, they yield vector fields that are dense in the orthogonal complement to
the action of the gauge group). Thus, by achieving transversality, we have that Mq(Y) is a
smooth manifold.

The fact that Mg(Y) is compact follows from the compactness results for the perturbed
Seiberg-Witten equations, see [21, Chapter 24.5]. In our situation, all finite energy config-
urations in Mg(Y) must have the exactly the same (perturbed) topological energy, since
the space of vortices on each end is connected (and so CSDNi has constant value on the
vortices on each E). Moreover, we cannot have trajectory breaking on the ends for the
same reason: the only finite energy solutions on an infinite cylinder (-oo, oo) x Ei are
translation-invariant zero energy vortices. Thus, our space Mg(Y) is compact as is.

For the second statement, we can see this very easily in geometric terms. From Part I, we
know that the image of (8.5) is a Lagrangian submanifold. (Our perturbations were carefully
chosen so that the results of Part I still apply. Indeed, they are linear, local, and supported
away from the boundary, and so one can check that this does not affect the analysis of
Part I.) Let [7] M([0, oo) x E) and define [a] := O[-y] E H ' 1 Vk, (Ei). Note that the
differential of 9c, at [-y] E M([0, oo) x E) has kernel precisely equal to T[y] M[]([0, oc) x E),
the tangent space to the stable manifold to [a]. On the other hand, by Theorem 7.2(ii),
we have that r- (T[y M[a ([0, oo) x E)) is an isotropic subspace annihilating the coisotropic
subspace r- (Tyl M([0, oc) x E)). So given any u E Mq(Y), it follows that the differential

Du,00 : TuMq (Y) -+ T" (it] Vk(Ei)

has range isomorphic to the symplectic reduction of the Lagrangian subspace TUIE (r+Mq(Y))
coming from Yo with respect to the coisotropic space Tg r.(M([0, oo) x E)) coming from
the ends. In particular, the differential of 9, at any monopole on Y has image a Lagrangian
subspace. Moreover, the map 0 c is an immersion due to the transversality of the maps
(8.5) and (8.6). This proves the theorem. D

We conclude by noting that because Mq(Y) is compact, it has a fundamental class
with which we may execute push-pull maps on the homology of the vortex moduli spaces
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Upfl=i(E) on the ends. In particular, the TQFT invariant that Donaldson studies in [10]
may now be actually realized as a signed count of solutions to the monopole equations
on a closed 3-manifold. Indeed, suppose we have a closed 3-manifold Y. If we remove a
separating hypersurface E and stretch the neck to infinity, we now have a new 3-manifold
Y with two ends modeled on [0, oc) x E. A signed count of the solutions to the (perturbed)
Seiberg-Witten equations on Y should then correspond to a signed intersection number of
the image of (8.7) with the diagonal inside V(E) x V(E). For this, one can show (with very
little extra work) that for a residual set of perturbations q, the image of (8.7) is transverse
to the diagonal. We will discuss this more fully in future work.
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Part III

The Seiberg-Witten Equations
with Lagrangian Boundary
Conditions

9 Introduction

Consider the Seiberg-Witten equations on a 4-manifold X. These equations are a system
of nonlinear partial differential equations for a connection and spinor on X. When X is a
product R x Y, where Y is a closed 3-manifold, the Seiberg-Witten equations on R x Y
become the formal downward gradient flow of the Chern-Simons-Dirac functional on Y. The
associated Floer theory of the Chern-Simons-Dirac functional has been extensively studied,
and after setting up the appropriate structures, we obtain the monopole Floer homology
groups of Y, which are interesting topological invariants of Y (see [21]).

In Part III, we consider the case when Y is a 3-manifold with boundary. To obtain
well-posed equations on R x Y in this case, we must impose boundary conditions for the
Seiberg-Witten equations. Following the approach of [54] and [42], we impose Lagrangian
boundary conditions, which means that at every time t c R, a solution of our equations
must have its boundary value lying in a fixed Lagrangian submanifold 2 of the boundary
configuration space. The resulting equations become a Floer type equation on the space of
configurations whose boundary values lie in Z. Understanding the analytic underpinnings
of the Seiberg-Witten equations on R x Y with Lagrangian boundary conditions is therefore
a first step in defining a monopole Floer theory for the pair (Y, 2) of a 3-manifold Y with
boundary and a Lagrangian 2.

Part III is the analogue of [54] for the Seiberg-Witten setting, since [54] establishes sim-
ilar foundational analytical results for the anti-self-dual (ASD) equations with Lagrangian
boundary conditions. The analysis there was eventually used to construct an instantion
Floer homology with Lagrangian boundary conditions in [42]. This latter work was the first
to construct a gauge-theoretic Floer theory using Lagrangian boundary conditions. The
original motivation for [42] was to prove the Atiyah-Floer conjecture in the ASD setting

(see also [56]). Informally, this conjecture states the following: given a homology 3-sphere
Y with a Heegard splitting Ho UE H1 , where HO and Hi are two handlebodies joined along
the surface E, there should be a natural isomorphism between the instanton Floer ho-
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mology for Y and the symplectic Floer homology for the pair of Lagrangians (LHo, LH1 )

inside the representation variety of E. Here, LHi is the moduli space of flat connections

on E that extend to Hi, i = 0,1. As explained in [56], instanton Floer homology with
Lagrangian boundary conditions is expected to serve as an intermediary Floer homology
theory in proving the Atiyah-Floer conjecture, where the instanton Floer homology of the
pair ([0, 1] x E, EHo x EH1 ) should interpolate between the two previous Floer theories.

For the Seiberg-Witten setting, one could also formulate an analogous Atiyah-Floer
type conjecture, although in this case, one ends up with infinite-dimensional Lagrangians
inside an infinite-dimensional symplectic quotient (we will discuss this more thoroughly
later). One could also expect (as in the instanton case) that a monopole Floer homology
for a 3-manifold Y with boundary E supplied with suitable Lagrangian boundary condi-
tions should recover the usual monopole Floer homology for closed extensions Y = Y UE Y'
of Y, where the bounding 3-manifolds Y' satisfy appropriate hypotheses. These consid-

erations served as our preliminary motivation for laying the foundational analysis for a

monopole Floer homology with Lagrangian boundary conditions. Recently, several other
Floer theories on 3-manifolds with boundary have been constructed, in particular, the bor-

dered Heegaard Floer homology theory of Lipshitz-Ozsv6th-Thurston [26] and the sutured

monopole Floer homology theory of Kronheimer-Mrowka [22]. A complete construction of

a monopole Floer theory with Lagrangian boundary conditions would therefore add to this
growing list of Floer theories, and it would be of interest to understand what relationships,
if any, exist among all these theories.

Basic Setup and Main Results

In order to give precise meaning to the notion of a Lagrangian boundary condition for the

Seiberg-Witten equations, we first explain the infinite-dimensional symplectic aspects of our

problem. We will then explain the geometric significance of our setup and its applicability
to Floer homology after a precise statement of our main results. Recall from Part I that

the boundary configuration space

( (E) = A(E) x r(SE)

of connections and spinors on the boundary comes equipped with the symplectic form

w((a, #), (b, @)) = j a A b + j Re (#, p(v)@0), (a, #), (b, V@) E Q (E; i R) e F(Sr). (9.1)

on each of its tangent spaces. Here, S, is the spinor bundle on R x Y restricted to E and

p(v) is Clifford multiplication by the outward normal v to E. The form W is symplectic

because it has a compatible complex structure

Je = (-i, -p(v)), (9.2)

that is, W(., JE -) is the L2 inner product on := Q'(E; iR) IF(SE) naturally induced from

the Riemannin metric on differential forms and the real part of the Hermitian inner product

on the space of spinors. It follows that the L 2 closure of the configuration space L2 Qs)
is a Hilbert manifold whose tangent spaces L 2Tr, are all strongly symplectic Hilbert spaces
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(see Section 19).
It follows that w induces a nondegenerate skew-symmetric form on any topological vector

space X densely contained in L2 T. As in Section 19, we still call Wix a symplectic form
on X. We need to consider the restriction of w to other topological vector spaces not only
because we work with the smooth configuration space. Since we will be considering Sobolev
spaces on R x Y, we also need to complete the boundary configuration space in Besov spaces,
these latter spaces being boundary value spaces of Sobolev spaces. More precisely, given a
smooth manifold M (possibly with boundary), we can consider the Sobolev spaces H"'P(M)
and Besov spaces BS'P(M) on M, where s E R and 1 < p < oc. When s is a nonnegative
integer, H8'P(M) is just the usual space of functions that have all derivatives up to order s
belonging to LP(M). The Besov spaces are defined as in Part IV, and their most important
feature is that for any s > k/p, if N C M is a codimension k submanifold of M, there is a
continuous restriction map

rN : H"'P(A) - Bs-k/P'P(N)

f f flN. (9-3)

Thus, restriction to a submanifold maps a Sobolev space on M into a Besov space on N
and decreases the order of regularity by k/p. (Note that for p = 2, Besov spaces coincide
with Sobolev spaces and the above result becomes the familiar fact that a codimension k
restriction decreases regularity by k/2 fractional derivatives).

For s > 0 and p > 2, we have an inclusion BS'P(E) C L2(E). Thus, consider B'PC(E),
the closure the smooth configuration space E(E) in the BS'P(E) topology. The symplectic
form (9.1) induces a (weak) symplectic form on the Banach configuration space B'P(E)
and the smooth configuration space C(E). Since w possesses a compatible complex structure
Jr, we can define a Lagrangian subspace of TE to be a closed subspace L such that T =
L e JEL as a direct sum of topological vector spaces (see Section 19 for further reading).
A Lagrangian submanifold of C(E) is then a (Frechet) submanifold of E(E) for which each
tangent space is a Lagrangian subspace of TE. A Lagrangian subspace (submanifold) of the
BS'P(E) completion of T, is defined similarly.

Definition 9.1 Fix p > 2. An H 1'P Lagrangian boundary condition is a choice of a closed
Lagrangian submanifold 2 of C(E) whose closure 21- 2

/p,p in the B1- 2 /p,p(E) topology is a
smoothly embedded Lagrangian submanifold of B 1 2 /P,p.

Here, the modifier H 1'P, which we may omit in the future for brevity, expresses the
fact that we will be considering our Seiberg-Witten equations on R x Y in the H '(R x Y)
topology. Here, H"" (R x Y), denotes the space of functions whose restriction to any compact
subset K c R x Y belongs to H'P(K), s E R.

The significance of a Lagrangian boundary condition is that we can impose the following
boundary conditions for a spinc connection A and spinor b on R x Y of regularity H' (R x
Y). Namely, we require

(A, )){tx r E 12/p,p, Vt E R, (9.4)

i.e., the restriction of (A, 5) to every time-slice {t} x E of the boundary lies in the Lagrangian
submanifold 2 1 -2

/pP. Here, we made use of (9.3) with k = 2. Note that this restriction
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theorem requires p > 2 when s = 1, thereby requiring p > 2 Sobolev spaces for the analysis
on R x Y and the subsequent use of Besov space on the boundary. We require our boundary
condition to be given by a Lagrangian submanifold because it allows us to give a Morse-
Novikov-Floer theoretic interpretation of the Seiberg-Witten equations supplied with the
boundary conditions (9.4), a viewpoint which we discuss more thoroughly after stating our
main results1 .

From the results of Part I, we have a natural class of Lagrangian boundary conditions.
Namely, consider a 3-manifold Y' with 9Y' = -E and such that Y' UE Y is a smooth
Riemannian 3-manifold. Moreover, suppose the spin' structure s on Y extends smoothly to
a spinc structure s' over Y'. In such a case, the boundary configuration spaces arising from
Y and Y' can be identified, and so can their Lagrangian submanifolds, since the symplectic
forms induced on E(E) from Y' and Y differ by a minus sign2 (the induced orientation on
E differ in the two cases).

Consequently, the main theorem of Part I provides us with a Lagrangian boundary
condition. Namely, define

C(Y', z') := {(B', ')|r : (B', ') E T(Y'), SW3(B', 0') =} c Q(E) (9.5)

to be the space of boundary values of connections and spinors (B', V') belonging to the
configuration space E(Y') on Y' that solve the monopole equations SW 3 (B', V') = 0 on Y'.
Then if

ci(s') is non-torsion or H1(Y', E) = 0 (9.6)

the main result of Part I is that L(Y',s') is an H"s Lagrangian boundary condition for
p > 4.

Definition 9.2 Let Y' and z' be as above, with s' satisfying (9.6). Then we call the
Lagrangian submanifold C(Y',s') C E(E) a monopole Lagrangian.

Our main result is that the Seiberg-Witten equations SW4 (A, ,) = 0, defined by (9.14),
supplied with a Lagrangian boundary condition arising from a monopole Lagrangian yields
an elliptic boundary value problem, i.e., one for which elliptic regularity modulo gauge
holds. Here the gauge group is g = Maps(R x Y, Sl) and it acts on the configuration space
E(R x Y) of spinc connections and spinors on R x Y (where the spinc structure on R x Y
has been fixed and pulled back from a spin' structure on Y) via

(A, (D) - g* (A, 4)) = (A - g - 1dg, g 4).

Let gid denote the identity component of the gauge group, let the prefix H" denote closure
with respect to the Hj (R x Y) topology.

Theorem A (Regularity). Let p > 4, and let (A, 4) c H' E(R x Y) solve the boundary

'The Lagrangian property is also crucial for the analytic details of the proofs of our main results, see the
outline at the end of this introduction.

2 Since this is the essential property for Y', in actuality, one merely need that the Riemannian metric on
Y' UE Y be continuous instead of smooth.
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value problem

SW 4 (A,Q) =0

(A, (D)|{ I E P,1-2/p'p, Vt (E R,

where 2l- 2/P denotes the B1- 2 /p,P E) closure of a monopole Lagrangian 2. Then there
exists a gauge transformation g E H10'g0i such that g*(A, Q) is smooth.

Next, we have a compactness result for sequences of solutions provided that the La-
grangian 2 is invariant under the gauge group action of g(Y)|E. If 2 satisfies this, we say
that 2 is fully gauge-invariant. Observe that if we take Y' = -Y and s' the spinc struc-
ture on Y, then C(Y', s') will be a fully gauge-invariant monopole Lagrangian, provided Y'
and s' satisfy (9.6). In general, the condition that C(Y',s') be fully gauge-invariant is pre-
cisely the condition that the natural restriction maps on cohomology H 1 (Y) -+ H1 (E) and
H1 (Y') -+ H 1(E) have equal images in H'(E). In this situation, the following theorem says
that if we have a local bound on the H 1'P "energy" of a sequence of configurations (Ai, Di),
then modulo gauge, a subsequence converges smoothly on every compact subset of R x Y.
Here, the energy of a configuration on a compact set K is given by the gauge-invariant
norms appearing in (9.8), where VA denotes the spinc covariant derivative determined by
the connection A.

Theorem B (Compactness). Let p > 4 and let (Ai, Dj) E HJe' E(R x Y) be a sequence of
solutions to (9.7), where 2 is a fully gauge-invariant monopole Lagrangian. Suppose that
on every compact subset K C R x Y, we have

sup |FAI LP(IK), I VAiHLP (K), IiILP(K) < c. (9.8)

Then there exists a subsequence of configurations, again denoted by (Ai, Di), and a sequence
of gauge transformations gi c H' Q such that g( Ai, Q) converges in C (K) for every
compact subset K C R x Y.

Both Theorems A and B apply verbatim to the periodic setting, where R x Y is replaced
with S1 x Y, in which case, we can work with Hk'P(Sl x Y) spaces instead of H ' (R x Y). In
fact we will prove Theorems A and B in the periodic setting (where R x Y is replaced with
S' x Y), which then implies the result on R x Y by standard patching arguments. In the
periodic setting we will also prove that the linearization of (9.7) is Fredholm in a suitable
gauge (and in suitable topologies), see Theorem 11.8. One can also prove the Fredholm
property on R x Y assuming suitable decay hypotheses at the ends, but we will not pursue
that here.

Note that the requirement p > 4 in the above is sharp with respect to the results in
Part I, in that for no value of p < 4 is it known that 21 ~2/p,p is a smooth Banach manifold.
Thus, our results here cannot be sharpened unless the results in Part I are also sharp-
ened. On the other hand, the value p < 4 is a priori unsatisfactory from the point of view
of Floer theory. This is because the a priori energy bounds we have on solutions to the
Seiberg-Witten equations, namely the analytic and topological energy as defined in [21], are
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essentially an H1 ,2 control. Therefore, Theorem B is not sufficient to guarantee compact-
ness results for the moduli space of solutions to (9.7) that are of the type needed for a Floer
theory. However, this is not the end the story, as can be seen in the ASD situation, where a
Floer theory still exists even though the analogous regularity and compactness results are
proven only for p > 2, which although better than p > 4, still misses p = 2.3 The ASD
Floer theory is possible due to the bubbling analysis carried out in [55] and the presence of
energy-index formulas in [42], which allow one to use the p > 2 analysis to understand the
compactification of the space Floer trajectories between critical points. We will leave the
study of the analog of such issues in the Seiberg-Witten setting for the future, namely, the
study of what can happen to a sequence of solutions to (9.7) if one is only given an H1 ,2

type energy bound (more precisely, a bound on the analytic and topological energy of [21]).
At present then, our main theorems therefore serve the foundational purpose of showing
that the Seiberg-Witten equations with Lagrangian boundary conditions are well-posed and
satisfy a weak type of compactness. These results are key for a future construction of an
associated Floer theory.

Geometric Origins

Having stated our main results, we explain how the Seiberg-Witten equations supplied
with Lagrangian boundary conditions naturally arise in trying to construct a Floer homology
on a 3-manifold with boundary. On a product R x Y, for Y with or without boundary, the
Seiberg-Witten equations take the following form.

We have a decomposition

A(R x Y) = Maps(R, A(Y)) x Maps(R, Q0 (Y; iR)) (9.9)

whereby a connection A C A(R x Y) on R x Y can be decomposed as

A = B(t) + a(t)dt, (9.10)

where B(t) C A(Y) is a path of connections on Y and a(t) E Q0 (Y; iR) is a path of 0-forms
on Y, t E R. Likewise, if we write S+ for the bundle of self-dual spinors on Y and write S
for the spinor bundle on Y obtained by restriction of S+ to {0} x Y, we can write

S+ = Maps(R, S), (9.11)

where we have identified S+ with the pullback of S under the natural projection of R x Y

onto Y. Thus, any spinor @ on X is given by a path @(t) of spinors on Y. Altogether, the

configuration space
C(R x Y) = A(R x Y) x I(S+)

'In the ASD situation, it is possible to prove that LPP, the LP closure of 2, is a smooth submanifold of

the space of LP connections, p > 2. Since we have the embedding B1
-

2
/p,p(E) " LP(E), the ASD equations

are well-behaved for p > 2, and thus the analogue of Theorem A with p > 2 is the optimal result there. Note

however, in both the ASD and Seiberg-Witten setting, p = 2 can never be achieved, since then a Lagrangian

boundary condition cannot be defined. Indeed, a function belonging to H1'2 does not have a well-defined

restriction to a codimension two submanifold.
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on R x Y can be expressed as a configuration space of paths:

E(R x Y) Maps(R,A(Y) x F(S) x Q0 (Y; iR))

(A, <b)) (B(t), 0(t), a (t)). (9.12)

Under this correspondence, the Seiberg-Witten equations can be written as follows (see [21,
Chapter 41):

d 1d
SW4(A, () B+ *y FBt + p- * - da, -i + DB'T + <D (9.13)

- 0, (9.14)

where we have suppressed the time-dependence from the notation. Here, the terms appear-
ing on the right-hand-side of (9.13) are defined as in Part I. In particular, when a -- 0, i.e.
when A is in temporal gauge, then the Seiberg-Witten equations (9.14) are equivalent to
the equations

B - y Ft - p-1 (*)o)

Tt 2 (9.15)
- = -D= B.
dt

For (B, qI) E A(Y) x F(S), we have the three-dimensional Seiberg-Witten map

SW 3 (B, T) := *y FBt + p~l(TI*)o, DB) E Q1(Y; iR) x F(S), (9.16)

which we may think of as a vector field on

E(Y) = A(Y) x F(S),

the configuration space on Y, since T(B,) C(Y) = Q1 (Y; iR) x F(S). Thus, (9.15) is formally
the downward "flow" of SW3 . Moreover, the equations (9.14) and (9.15) are equivalent
modulo gauge transformations.

When Y is closed, the vector field SW3 is the gradient of a functional, the Chern-
Simons-Dirac functional CSD : C(Y) -+ R. This functional is defined by

CSD(B,T)=- f(B--Bo)/A(FB+FBo)+ -'f(DT ,T),

where B0 is any fixed reference connection. Thus, since SW3 (B, I) is the gradient of CSD
at (B, I), (9.15) is formally the downward gradient flow of CSD. In this way, the monopole
Floer theory of Y can be thought of informally as the Morse theory of the Chern-Simons-
Dirac functional. However, we ultimately must work modulo gauge, and in doing so, the
Chern-Simons-Dirac functional does not descend to a well-defined function on the quotient
configuration space, but it instead becomes an S' valued function. This is because the
first term of CSD is a Chern-Simons term which is not fully gauge-invariant but which
changes by an amount depending on the homotopy class of the gauge transformation. In
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this case, when we take the differential of CSD as a circle-valued function on the quotient
configuration space4 , we obtain not an exact form but a closed form. On compact manifolds,
the Morse theory for a closed form is more generally known as Morse-Novikov theory, from
which the case of exact forms reduces to the usual Morse theory. Thus, the monopole Floer
theory of Y is more accurately the Morse-Novikov theory for the differential of CSD on the
quotient configuration space.

It is this point of view which we wish to adopt in trying to generalize monopole Floer
theory to manifolds with boundary. Suppose DY = E is nonempty. We now impose bound-
ary conditions for (9.15) that preserve the above Morse-Novikov viewpoint for monopole
Floer theory. From this, we are naturally led to Lagrangian boundary conditions as we now
explain. Define the following Chern-Simons-Dirac one-form A = pCSD on T*E(Y):

p(b, V) = ((b, V), SW 3 (B, '))L2(y), (b, V)) E T(B,T)E(Y) = Q1 (Y; iR) eF (S). (9.17)

Here, the above L2 inner product on Q1 (Y; iR) e F(S) is the one induced from the Rieman-
nian inner product on Y and the real part of the Hermitian inner product on F(S). If we
take the differential of p, we obtain

d(B,qP)fL((a, 0), (b, V))) = ((a, ), (BT)(b, '))L2(y) - (H(B,TI)(a, 0), (b, 0))L2(y) (9.18)

where H(B,T) - Q1(Y; iR) e F(S) -+ Ql(Y; iR) e F(S) is the "Hessian" operator obtained
by differentiating the map SW3 (of course, W(BT) is only a true Hessian when Y is closed,
because only then is SW3 the gradient of a functional). Recall from Part I that the Hessian
is given by

(yd 2iImp-1(.b*)o (9.19)
N(,W=p(-)<D DB '('9

a first order formally self-adjoint operator. Thus, (9.18) automatically vanishes on a closed
manifold. However, integration by parts shows that when 0Y = E is nonempty, (9.18)
defines a skew-symmetric pairing on the boundary. A simple computation shows that this
pairing is the symplectic form w in (9.1).

Define the (tangential) restriction map

rE : Qf(Y) -+ C(E)
(B, I) H-> (BI, I') (9.20)

The above discussion shows that if we pick a submanifold X C C(Y) such that for every
(B, qI) E X, the space rE(T(B,W)X) is an isotropic subspace of TrE(B,T)Q(Z, then dy jX
vanishes. In particular, pick a Lagiangian submanifold 2 C C(E) and define the space

{(Y, Z) = {(B, T) E C(Y) : rE (B, k) c Z} (9.21)

consisting of those configurations on Y whose restriction to E lies in Z. Then by the above
considerations, y is a closed 1-form when restricted to C(Y, 2).

It is now possible to consider the Morse-Novikov theory for y on E(Y, 2). The result-
ing Floer equations, i.e., the formal downward flow of p viewed as a vector field, are the

4 We ignore the singular points of the quotient configuration space in this informal discussion.
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equations (9.15) supplemented with the boundary condition

7r,(B(t), T(t)) E Z, t E R. (9.22)

Here, we choose a Lagrangian submanifold (rather than an isotropic one) because La-
grangian boundary conditions are precisely the ones that give rise to self-adjoint boundary
conditions5 . In other words, by supplying Lagrangian boundary conditions, the linearization
of the system of equations (9.15) and (9.22) yields a time-dependent family of self-adjoint
operators, from which it is then possible to compute the spectral flow of such a family (pro-
vided the requisite decay properties hold at infinity). This spectral flow makes it possible
to assign a relative grading for the chain complex generated by the critical points in a Floer
theory.

Summary of Analytic Difficulties

Let us shed some insight on the formidable analytic difficulties that the equations (9.7)
pose, and in particular, let us compare these equations with the corresponding ASD equa-
tions studied in [54]. In both these situations, what we essentially have is an elliptic semilin-
ear partial differential equation, with nonlinear, nonlocal boundary conditions. By elliptic,
we mean that in a suitable gauge, the principal symbol of the equations on R x Y are elliptic.
By nonlocal, we that the Lagrangian boundary condition is not given by a set of differential
equations on E. More precisely, a tangent space to our Lagrangian £ is given not by the
kernel of a differential operator but of a pseudodifferential operator (at least approximately,
in the sense described in Part I). However, let us note that what is truly nonstandard about
both these boundary problems is that the nonlocal boundary conditions are imposed "slice-
wise", that is, they are specified pointwise in the time variable t E R. This implies that the
linearization of the boundary condition (9.22) is determined (again, approximately) by the
range of a product-type pseudodifferential operator, or more precisely, a time-dependent
pseudodifferential operator on E, which is therefore, not pseudodifferential as an operator
on R x E. We therefore have neither a local nor a nonlocal (pseudodifferential) boundary
condition in the usual sense.

However, let us point out that in many ways, the ASD situation is "almost local"
whereas in our situation, this is not at all the case. In both the ASD and Seiberg-Witten
case, the action of the gauge group gives the "local part" of the Lagrangian (a gauge orbit
and its tangent space are defined by differential equations) and dividing by the gauge group
gives the remaining "nonlocal part" of the Lagrangian. However, in the ASD case, the
Lagrangians modulo gauge are finite dimensional, whereas in the Seiberg-Witten case, they
are infinite dimensional. Indeed, in the ASD case, the Lagrangians must lie in the space
of flat connections, the zero set of the moment map associated to gauge group action on
the space of SU(2) connections on E. Hence, modulo gauge, these Lagrangians descend to
Lagrangian submanifolds of the (singular) finite dimensional symplectically reduced space,
the representation variety of E. On the other hand, because of the presence of spinors in

5Here in this informal discussion, we are being very loose with the precise functional analytic details,
since self-adjointness requires that we find Lagrangians in the correct Hilbert space of boundary value data.
See Sections 11 and 22 for a more rigorous discussion of the relationship between Lagrangians and self-
adjointness.
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the Seiberg-Witten case, the symplectic reduction of the moment map associated to the
gauge group action on Q(E) is infinite dimensional. Hence, the Lagrangians one must con-
sider descend to an infinite dimensional Lagrangian submanifold of this reduced space. For
monopole Lagrangians in particular, the nonlocal part of Lagrangian is of a pseudodiffer-
ential nature (see Part I). Thus, our work here requires pseudodifferential analysis whereas
the ASD case does not.

Moreover, it turns out that we are led to introduce some nonstandard function spaces
because of the slicewise nature of the Lagrangian boundary condition. Such a boundary
condition places time (t C R) and space (the manifold Y) on a different footing, and
consequently, the estimates we perform on R x Y will, in particular, measure regularity
in time and space differently. Function spaces that distinguish among different directions
are known as anisotropic function spaces (in contrast to the usual isotropic function spaces
that measure the regularity of a function equally in every direction.) Specifically, we are
required to work with both (isotropic) Besov spaces and also anisotropic Besov spaces. See

Section 2 for a definition of these spaces.

Of course, our Lagrangians are not linear objects, and thus we will have to do a fair
amount of nonlinear analysis in conjunction with the pseudodifferential nature of the our
Lagrangians in the setting of anisotropic Besov spaces. This is in contrast to the ASD
situation, where since the Lagrangians are finite dimensional modulo gauge, and all norms
on a finite dimensional space are equivalent, there are no functional analytic difficulties
posed by the nonlinearities of the Lagrangian. That is, in the ASD case, the nonlinearity
of the Lagrangian only becomes a central issue in the bubbling analysis of [55], whose
importance we described after Theorem B, and not the elliptic regularity analysis.

In fact, it is the necessity of such future bubbling analysis for the Seiberg-Witten case

that requires that we work with the H1'P spaces in Theorems A and B. In [55], the bubbling
analysis in the instanton case requires that the instanton analogs of Theorems A and B are

proven for H 1'P for p > 2, and not say, for Hk, 2 with k large. Indeed, to exclude bubbling
in the situations relevant for defining Floer homology, [55] applies mean value inequalities
to deduce that the energy density of instantons remain bounded, and (near the boundary)
bounds on the energy density give H1'P control of an instanton modulo gauge and not Hk,2

bounds for any k > 1. Thus, it is expected that future analysis of the bubbling phenomenon
for the Seiberg-Witten equations will depend on H1'P analysis as well. Moreover, we should
remark that proving our main theorems for Hk,2 regular solutions for large k does not sim-
plify the analysis in any fundamental or conceptual way, since all the main technical steps,
which we outline below, will still need to be performed.

Outline: Part III is organized as follows. In Section 10, we define the anisotropic function
spaces we will be using. We then apply these function spaces to study the space of paths
through a monopole Lagrangian 2. This is necessary in light of the correspondence (9.12),
which relates configurations on R x Y to paths through the configuration space on Y. The
boundary condition (9.22) specifies that on the boundary, such a path is a path through Z.
Here, we make use of the analysis developed in Part I in order to show that the space of paths
through monopole Lagrangians is again a manifold in (anisotropic) Besov space topologies.
The main theorems of this section, Theorems 10.9 and 10.9 are where we do our main
nonlinear analysis on anisotropic Besov spaces. In Section 11, we show that the linearization
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of (9.7) is Fredholm in the periodic setting and in the appropriate function space topologies
(including anisotropic ones). (That the linearization of (9.7) makes sense follows from the
results of Section 2.) Here, a key step is to establish a resolvent estimate on anisotropic
function spaces, which we need for the proof of Theorem 11.7. This resolvent estimate is
established in Corollary 15.34, and its proof is the reason we need the parameter-dependent
pseudodifferential calculus set up in Part IV. This resolvent estimate also relies crucially on
aspects pertaining to self-adjointness, which in the end, amounts to the requirement that
our boundary condition in (9.7) be given by a Lagrangian. In Section 12, we apply the
tools from the previous sections to prove our main theorems, whose proof we summarize
as follows. First, we work locally in time, which means we replace the time interval R in
Theorem A with S' in Theorem 12.1. After this, the first step is to place the equations in a
suitable gauge such that the linear part of the resulting equations is elliptic and falls into the
framework of Section 11. From this, the second step is to gain regularity in the E directions
for the gauge-fixed (A, <b) in a neighborhood of the boundary using the anisotropic estimates
of Sections 10 and 11. The third step is to gain regularity in the time direction and normal
direction to E using the theory of Banach space valued Cauchy-Riemann equations due to
Wehrheim [52]. Once we have gained some regularity in all directions, then in our final step,
we bootstrap to gain regularity to any desired order, which proves Theorem 12.1. We then
deduce Theorems A and B in Section 4 from Theorem 12.1. (Note if one starts with Hk,2

regularity in Theorem A for k large, one never has to work with p $ 2 spaces and so on a
first reading, one may assume that this is the case for simplicity. One still has to bootstrap
in the above anisotropic fashion, however.)

Let us finally remark that the analysis we do is of a very general character and is
likely to be applicable to other elliptic, semilinear boundary value problems whose linear
part is a Dirac type operator and whose slicewise boundary condition (9.22) is given by
a Lagrangian submanifold Z which satisfies formally similar properties to those obeyed by
the monopole Lagrangians. Indeed, after one inspects the proof of Theorem A, one sees
that the essential analysis we do has very little to do with the fact that we are dealing
with the Seiberg-Witten equations per se. In the general situation, for operators of Dirac
type on R x Y, then near the boundary, the part of the operator that differentiates in
the R and normal directions becomes a Cauchy-Riemann operator. For this operator, we
can apply the methods of Section 16 to gain regularity in the R and normal directions
near the boundary so long as we have gained smoothness in the remaining E directions.
Such regularity may be obtained by the anisotropic linear theory of Section 10 (where the
anisotropy is in the E directions), so long as the tangent spaces to the Lagrangian Z fall
within the framework of Section 10 and the nonlinear components of its chart maps for 2
smooth in the E directions (i.e. the space of paths through Z satisfies properties similar
to those in Theorems 10.9 and 10.10). It is not unreasonable to expect that any naturally
occurring Lagrangians should satisfy such properties. Indeed, if they are locally determined
by the zero locus of an analytic function involving multiplication and pseudodifferential-
like operators (as monopole Lagrangians are), then as done in Section 10, an analysis of
the nonlinear compositions of multiplication and pseudodifferential-like operators which
enter into the analysis of their chart maps should allow us to recover suitable smoothing
properties. Nevertheless, the analysis we had to do in Section 10 is quite difficult, and it
would have been unwise to obscure the technical exposition of Section 10 by writing it for
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abstract Lagrangians, even though after the fact, one is led to believe that the results there
should hold more generally.

Of course, constructing a monopole Floer theory with Lagrangian boundary conditions
will have to depend on the precise nature of the Seiberg-Witten equations and the chosen
Lagrangian. In this regard, the Lagrangians we have chosen, namely the monopole La-
grangians, are the most natural ones to consider.

10 Spaces of Paths

A smooth path (B(t), <b(t)) c Maps(R, f(Y)) satisfying the boundary condition (9.22) im-
plies that we get a path

rj:(B (t),<bD(t)) E Maps (R,2Z)

through the smooth Lagrangian 2, which we assume to be a monopole Lagrangian 2 =

E(Y', s'). Our task in this section is to show that the space of paths through 2 in (anisotropic)
Besov space topologies forms a Banach manifold obeying analytic properties suitable for
proving Theorems A and B. The main theorems of this section are Theorems 10.9 and
10.10. From Part I, given a monopole Lagrangian L, then Es1/PP, the Bs-/P'P(E) clsoure

of L, is a smooth Banach submanifold of V-s/P'P(E), the B1- 1/P'P(E) closure of E(E) for

s > max(3/p, 1/2 + 1/p). Furthermore, the local chart maps of s-/'PP are described by
Theorem 4.15. In this theorem, the nonlinear part of a particular chart map at a config-
uration u E L'AP, which we denoted by Eu, is smoothing. In other words, while every
Banach manifold is locally a graph over its tangent space, our monopole Lagrangian pos-
sesses charts that are graphs of maps which increase regularity. However, if we now consider
the space of paths through our Lagrangians, then since the corresponding chart maps on the
space of paths will be defined "slicewise" along the path (see Definition 10.4), the smooth-
ing continues to occur but only in the space variables E and not in the time variable. This
naturally leads us to consider spaces which have extra smoothness in some directions and
hence anisotropic spaces. Because our monopole spaces are modeled on Besov spaces, we
thus end up with anisotropic Besov spaces.

In this section, we consider the Lagrangians 2 = L(Y, 5), which we abbreviate as C,
in generality, where Y is any 3-manifold and s is any spinc structure on Y such that (4.1)
holds. When we return to the Seiberg-Witten equations on R x Y in the next section, we
will make use of monopole Lagrangians L(Y',s'), with Y' and s' satisfying Definition 9.2.

Let us recall the basic notation and setup of the results in Part I so that we can analyze
how L is constructed. With s fixed, we have the configuration spaces

C(Y) = A(Y) x F(S) (10.1)

t(E) = A(E) x F(SE), (10.2)

of connections and spinors on Y and E, where S is the spinor bundle on Y associated to s
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and SE is the restriction of S to E. Both of these spaces are affine spaces modeled on

T = Ty = Q1 (Y; iR) e F(S) (10.3)

TE = Al(E; iR) D F (Sz), (10.4)

respectively, and the tangential restriction map (2.5) on configuration spaces induces one
on the tangent spaces:

r : T T

(b, @) (b I , @ ).(10.5)

The space of monopoles 91 = 91(Y, s) is the zero set of the Seiberg-Witten map SW 3 given
by (9.16). Fixing a smooth reference connection Bref, we have the space

M = {(B, T) c 9N : d*(B - Bref) = 01 (10.6)

of monopoles in Coulomb gauge with respect to Bref. The space L is the space of boundary
values of 9), which is equal to the space of boundary values of M, i.e.,

L = rr(9) = rr(M), (10.7)

where rz is the tangential restriction map (2.5).
All these definitions extend to the appropriate Besov completions, as was done in Part

I. Thus, we have the configuration spaces ES'P(Y) and E'P(E), the B8 'P(Y) and BS'P(E)

closures of C(Y) and t(E), respectively. We also have the following Besov monopole spaces

-X'P = {(B, T) c Es'P(Y) : SW 3 (B, 'I) = 0}, (10.8)

M'' = {(B, T) c E8 'P(Y) : SW 3 (B, D) = 0, d*(B - Bref) = 0}, (10.9)

- r (MS-1/P'P). (10.10)

From Part I, for p > 2 and s > max(3/p, 1/2), the spaces 9)1'P and M',P are Banach
submanifolds of S'P(Y). If in addition, s > max(3/p, 1/2 +1/p), then C'- 1/'P is a Banach
submanifold of Es-/P'P(E) and

ry : M -' C- E~P'P (10.11)

is a covering.
When C- 1/PP is a Banach manifold, the space C0(1, &~1/P'P) of continuous paths

from an interval I into s-1/'PP is naturally a Banach manifold. However, it is far from
obvious that the space of paths through C'-~/P'P in anisotropic Besov topologies is a Banach
manifold. We now define these anisotropic Besov spaces precisely.

10.1 Anisotropic Function Space Setup

On Euclidean space, the usual Besov spaces BS'P(Rn) are well-defined, for any s E R and
1 < p < oo, see Part IV. Recall that for p = 2, the spaces BS,2(R') coincide with the
L 2 Sobolev spaces Hs,2 (Rn). Suppose we have a splitting R' = R1 x Rn2. Then for any
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si E R and 82 2 0, we define the anisotropic Besov space B(sis2)P(R"1 x Rn2) as follows. Let

x = (X(i), x(2 )) be the coordinates on R" x Rn2 and let ( = (((i), ((2)) be the corresponding
Fourier variables. Let T 2 denote Fourier transform on Rn12 and define the operator

J(2)f = T2 (1 + |((2)

for any smooth compactly supported f. Thus, very roughly speaking, for any s > 0, J's2)
takes s derivatives in all the Rn2 directions.

Definition 10.1 For si E R and 82 0, the anisotropic Besov space B(s1 82),P(Rn1 x Rn2)

is defined to be closure of smooth compactly supported functions on R' with respect to the
norm

11flfB(sis2>,(Rni xaR2) (= (2)fBs1P(Rn)- '02)

Equivalently (see [36]), the space B(si s2),P(Rn1 x Rn12) is the space of all functions lying
in the classical (isotropic) Besov space BS1P(Rn) for which Ds2 f E Bs1'P(Rn), where D12 is
any smooth elliptic operator on Rn12 of order 82. That is, we have the equivalence of norms

|f|B('i,32)P(Rni XRn2) ~ 11f1HB 1,P(Rn) + H|Ds2 f||Bs1,(Rn). (10.13)

When s2 = 0, then B(s1s2),P(R"1 x Rn2) is just the usual Besov space Bs1'P(Rn).

The fundamental properties of these spaces are worked out in Part IV. As described
there, in the usual way we may then define anisotropic function spaces on products of
open sets in Euclidean space and hence on products of manifolds (with boundary). Most
of the analysis in this section will occur on the anisotropic spaces B(s1,2),P(I x Y) and

B(s1,s2),P(I X E) where I is an interval. Indeed, as we have mentioned, we will be considering
maps that smooth in the space variables Y and E.

We apply the anisotropic function space setup as follows. Let I be a time interval,
bounded or infinite. We have the smooth configuration space

C(I x Y) = A(I x Y) x F(I x S)

= Maps(I, A(Y) x F(S) x Q(Y;iR))

= Maps(I, C(Y) x Q0 (Y; iR)) (10.14)

via the correspondence (9.10). Here, given any space X, we write Maps(I, X) to denote the
space of smooth maps from I into X. Likewise, we write C 0(I, X) to denote the space of
continuous maps from I into X. We refer to such maps as paths. Next, replacing Y with
E in the above, we have

Q(I x E) = A(I x E) x F(I x Sr)

= Maps(J, C(E) x Q0 (E; iR)). (10.15)

Since we have the anisotropic function spaces B(1,S2),P(I x Y) and B(s 12),P(I x E), we get
induced topologies on the configuration spaces, their subspaces, and their corresponding
tangent spaces.
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Notation 10.2 Let X be a space of configurations over the space X1 x X2 , where X1 and X 2
are as in Definition 13.21. Then B(81,82),PX denotes the closure of X in the B(81,s2),P(X 1 x X 2 )
topology. Likewise, if X is a space of configurations over a manifold X, we let Bs,PX denote
the closure of X in the B,P(X) topology. If E is a vector bundle over X = X 1 x X 2, we write
B(81,s2),P(E) as shorthand for B(i,1s2),P(E). Similar definitions apply for prefixes given by
other topologies, e.g., LP and Co. We also write Eax = Elax for the bundle E restricted
to OX. Finally, we will sometimes refer to just the topology of a configuration, e.g., we will
say an element of B',PX belongs to B',P.

Thus, letting M = Y or E, we can consider the anisotropic configuration spaces

C(s1,82),(J X M):= B('s5'2),PT(I x M) (10.16)

and we can consider their anisotropic tangent spaces

(ss2),P(I x M) = B(81,82),P1(Q( x M; iR) e F(I x SM)), (10.17)

= B(si,82),p (Maps(I, TM) x Maps(I, QO(M; iR))) , (10.18)

where * is any basepoint. Here, we used (10.14), (10.15), (10.3), and (10.4). These
anisotropic spaces induce corresponding topologies on their subspaces, in particular, those
subspaces given by the space of paths through C(M) and TM, respectively. Thus, the
spaces B(si1s2),PMaps(I, C(M)) and B(s182)P(I, TM) are topologized as subspaces of (10.16)

and (10.18), respectively. Moreover, all these spaces are the completions of spaces of smooth
configurations in the B(s1,82),P(I x M) topology, as is consistent with Notation 10.2.

The above definitions work out nicely because the spaces we are topologizing are affine
spaces. Suppose we now wish to topologize spaces that are not linear, namely, the space of
paths through M and L. For this, we can describe more general path spaces in anisotropic
topologies as follows. By the trace theorem, Theorem 13.22, we have a trace map

rt : B(s1 82),P(R x M) -+ BS1+2-
1
/PP({t} x M), t E R (10.19)

for all si > 1/p. Moreover, this trace map is continuous in t, in other words, we have the
inclusion

B(s 12),P(R x M) "+ CO(R; Bs1+2-1/PP(M)). (10.20)

Thus, we have the following well-defined space of paths in anisotropic topologies:

Definition 10.3 Let si > 1/p, s2 > 0, and p > 2. Then we can define the following spaces

Maps(si,82),P(I, E(M)) = B(81 82),PMaps(I, T(M)) (10.21)

Maps(s1s2)'P(I, TM) = B(8182),PMaps(I, TM) (10.22)

Maps(s1~s2),(I,A4) = {y E Maps(s1,82)(,Ty) : y(t) G 4 1+2-1/PP, for all t E I}
(10.23)

Maps(81,2),P(I, L) = {y G Maps("82)'P(I, T(E)) : y(t) E Es1+32-1/P,P, for all t c I},
(10.24)
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If s2 = 0, we write Maps"1,P instead of Maps(O),P. Similar definitions apply if we extend
Q(M) and TM in the above by vector bundles over M, in particular, Q0 (M; iR). Finally, if
X is a subspace of Tj" for some s, define

Maps(s1,82),P(I, X) = B(s1S2)P{z e Maps(I, TM) : z(t) E X, for all t E I}, (10.25)

the B(s1,82),P(I, M) closure of the space of paths in Maps(I, TM) which take values in X.
Note (10.25) generalizes definition (10.22).

The first two definitions above are just a change of notation since we have already
defined the right-hand side. However, for the next two definitions, there is a subtle point
in how we defined these spaces as compared to the previous ones. Observe that for (10.21)
and (10.22), the space Maps(siS2),P(I, TM), say, is defined to be the closure of a space of
smooth paths, namely, the closure of Maps(I, TM) in the B(81,s2),P(I x M) topology. On the
other hand, in (10.24) say, we begin with a path -y in the B(s1,S2),P(I x E) topology, and we
impose a restriction on its trace, namely that it always lie in Es1+s2-1/P,P. The resulting

space is a priori a larger space than the closure of the space of smooth paths through the
space C, i.e., we have

B(s1s2),PMaps(I, L) C Maps(s ,S2)P(I, L). (10.26)

Indeed, to prove the reverse inequality, one would have to approximate an arbitrary path -y
in the space Maps(si82),P(I, ) by a smooth path (both in space and time), which because
of the nonlinearity of L, is not obvious how to do. Indeed, even though we showed in Part I
that the smooth monopole space L is dense in E1S+s2-1/P this says nothing about the tem-
poral regularity of an approximating sequence to the space of paths. However, by Theorems
10.9 and 10.10, it does turn out to be the case that we can approximate the space of paths
by smooth paths in the appropriate range of si, s2, and p, so that we have equality in (10.26).

We now have all the appropriate definitions and notation in place for our anisotropic
path spaces. Our main task in the rest of this section is to prove the analogous results in Part
I for the space of paths through L, i.e., we want to prove that the space Maps(s8s2),P(I, C)

is a Banach manifold for a large range of parameters and it has chart maps with smoothing
properties as described in the discussion at the beginning of this section. These chart maps
are defined from the charts for L in a "slicewise fashion" along a path in Maps(8,2)4(I, ).

We thus need to understand the analytic properties of such slicewise operators.

10.2 Slicewise Operators on Paths

Unless stated otherwise, from now on, we always assume p ;> 2. In the following, we will
be estimating the operators studied in Part I acting slicewise on the space of paths from
an interval I into some target configuration space. More precisely, we have the following
definition.

Definition 10.4 Let 0(t) be a family of operators acting on a configuration space X, t C I.
We write 0(t) to denote the slicewise operator associated to the family 0(t), that is, 0(t)
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applied to a path y : I -+ X yields the path

0(t)- = (t - O(t)-Y(t) )tcI. (10.27)

Notation 10.5 Note that given a path of configurations -y, if we write y = y(t), it is am-
biguous whether we mean the whole path as a function of t or just the single configuration
at time t. The above hat notation mitigates this ambiguity. Moreover, we will mainly
be considering the case when 0(t) = 0 is time-independent. In this case, the^ notation
therefore just serves as a notational reminder, although in certain cases, such as when 0 is
a differential operator, we will sometimes just write 0 to denote 0 acting slicewise, which
is standard notational practice in this case.

We now proceed to estimate the linear operators of interest to us when they act slicewise.
Recall that we defined the notion of a local straightening map in Definition 20.3 in an
abstract framework, and showed how local straightening maps yield natural local charts for
Banach submanifolds of a Banach space. In Lemma 4.14, we defined a local straightening
map FE,(B,o) for E 1/P'P at a configuration rF(Bo, Wo) E ES-PP, where (Bo, Wo) c

MA'P. In this way, we used the local straightening map FE,(B0 ,w0 ) to obtain chart maps for

the Banach submanifold Es-£/P'P c VS-/P'P(E) in Theorem 4.15. We also deduced some

important properties of the resulting chart maps, Er(BOTo), namely that they are defined

on large domains (i.e. B"P(E) open balls) and that the nonlinear portion of the chart
map Er smooths by a derivative. When studying the space of paths Maps8 'P(I, L),

our first goal is to show that the slicewise map FE,(B0 , 0 ) gives a local straightening map
within a neighborhood of a constant path identically equal to rE(Bo, To) E E',P. From this,
the local straightening map yields for us a chart map for Maps'P(I, L) at a constant path.
Later, we will see how to "glue together" these chart maps for constant paths on small time
intervals to obtain a chart map at an arbitrary path in Maps'P(, L).

One of the operators that arises in the definition of FE,(B0 ,To), as seen in (4.48) and
(4.29), is the operator Q(B0,y) defined in (4.21). Let us review this operator. The operator

Q(BoPo) is constructed out of the Hessian operator 7i(B0 ,)) (more precisely, its inverse on
suitable domains), the projection IKsv , and a pointwise quadratic multiplication map

(Bosqo)

q. Let us briefly review these maps. Recall that for any configuration (B, XP) E EsP(Y), the
operator

7i(B,P) - T' - T~ 1 'p (10.28)

is given by
1 (B,T) (*y 2iImD(4.*)) (10.29)

It is a first order formally self-adjoint operator and it has kernel T(B,F)9 A"'P whenever
(B, ') E 9J',P. By Lemma 4.5, given any (Bo, Wo) E 91'P, we can choose a subspace

X(B% c T'P complementary to T(BV)9A'P. For such X( , we have by Proposition
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3.20 that

H(Boo 0 ) :X 8' -+ K(10.30)

'HB, :C XS+1P _ SS+1,P _ X 8'7 n Ts+1 ,P (10.31)(BoTo) (Bo,4To)' (Boo) (Bo,'0)

are isomorphisms. Here, the subspace KP c TIP is a complement to the tangent space

of the gauge orbit at (Bo, To) in T'P, see Lemma 3.4. The map

HP : T''P -+ K (10.32)
(BO, IP ) (Bo,'I'o)(1 .2

is a bounded projection onto this space, see (3.45). Finally, the map q arises from the
quadratic multiplication that occurs in the map SW3 , see 1-(4.16). Thus, both q and 4
are pointwise multiplication operators, and their mapping properties are controlled by the
function space multiplication theorem, Theorem 13.18.

Thus, when we consider the above operators slicewise, the main operators we need to
understand are

(W(Bo,1Vo) IXs1+1,P U K-'P 033)
(Bo,'1o) (Bo, T0 )

However, since the operators in (10.33) are time-independent, estimating them on (anisotropic)
Besov spaces is not difficult. Indeed, we have the following general lemma:

Lemma 10.6 Let s1 > 0, and s2, s' > 0, and let M be a compact manifold. Let T
C (M) -* C (M) be a linear operator such it extends to a bounded operators

T: Hs2 ,P(M) -+ Hs2+s',P(M) (10.34)

T : Bs1+s2,P(M) e Bs1+s2+s'P(M). (10.35)

Then the slicewise operator

T: B(s12)'P(I x M) -+ B(si 2+')P(M) (10.36)

is bounded and the operator norm of (10.36) is bounded in terms of the operator norms of
(10.34) and (10.35).

Proof The crucial property we need is the so-called "Fubini property" of Besov spaces

(see [51]). Namely, for any s > 0, the Besov space B8'P(I x M) can be written as the
intersection

B >'P(I x M) = LP(I, B'P(M)) n LP(M, B8 'P(I)). (10.37)

In other words, we can separate variables so that a function of regularity of order s on I x M
is a function that has regularity of order s in I and M, separately, in the Besov sense. This
Fubini property automatically implies one for anisotropic Besov spaces, and we have from
(10.13) that

B( 152),P(I x M) = LP(I, Bs1+s2,P(M)) n Hs!'P(M, B 1'P(I)). (10.38)
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Recall that Hs2,P(M) is the fractional Sobolev space of functions whose fractional derivatives
up to order 82 belong to LP(M).6 In other words, given an elliptic differential operator D12

on M of order s2, we can define the norm on Hs2,P(M) by

I|f|Hs2,P(M) = Hf||LP(M) +I|Ds2 f|LP(M)-

Thus, the space Hs2,P(M, B8 'P(I)) appearing in (10.38) is the space of functions f such that
both f and D82 f belong to LP(M, B'P(I)).

We want to show that (10.36) is bounded. We proceed by using the decomposition
(10.38). First, the boundedness of T : B1+2,P(M) -+ Bs1+s2+s'2'P(M) implies the bound-
edness of

T : LP(, Bs1+82P(M)) -+ LP(I,B81+s2+s'P(M)). (10.39)

It remains to show that the map

T: Hs2 ,P(M, B"I'P(I)) - Hs2+sP(M, B81 'P(I)) (10.40)

is bounded. To do this, we first show that the space H8 2'P(M, BS'P(I)), as defined above, is
also equal to the space B8 'P(I, Hs2,P(M)) which is defined as follows.

Recall that while we defined Besov spaces B8'P in Part IV in terms of a Littlewood-Paley
decomposition, there is an equivalent description in terms of finite difference operators.
Namely, for s > 0, a norm on Bs'P(R) is given by

|f|Bs,P(R) (j0 ( hs m (Th - id)mf(t)|Pdt dh) 1/p,

where m > s is any integer, and rh is the translation operator (rhf)(t) f(t + h). This
allows us to describe Banach space valued Besov spaces, namely

fl|s((X) (f h-(jhm (r - id)mf (t)|P dt -dh (10.41)

For X = H 8
2,P(M), we have B5 'P(R, H8

2,P(M)) = H 8
2,P(M, B 8 2 ,P(R)) since the operators

h-sm(Th - id)m and D12 commute. We now define B8'P(I,X) to be the restrictions of
elements of Bs'P(R, X) to the domain I.

Thus, showing (10.40) is the same thing as showing

T: B'P(I, Hs2,P(M)) -+ B'P(I,8H2+8'2P(M)). (10.42)

To show (10.40), we proceed by interpolation. Namely, Besov spaces are interpolation spaces
of Bessel potential spaces, i.e.,

B"'P(R) = (HtP(R), Ht1'P(R))o,p, (10.43)

for any to, ti E R and 0 < 0 < 1 such that (1 - O)to + 6ti = s. Here, (-, .)o,, is the real
interpolation functor (see Part IV). Thus, since (10.43) holds, this means that if we have

6The space H1 2 'P(M) is also known as a Bessel potential space. See Part IV for a precise definition in
the general case.
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bounded maps T : HiP --> BtiP for the endpoint spaces, i = 0,1, then T : B"'P -+ BS'P
is bounded and its operator norm can be bounded in terms of the operator norms of the
endpoint operators.

Let to and ti in the above be nonnegative integers. Then (10.43) also holds for Banach
space valued Besov spaces 7 :

BS'P(R, X) = (Hto'P(X), Ht'1P(X))o,,, (10.44)

Here, for k a nonnegative integer, the space Hk'P(R, X) is the Banach space of functions
from R to X equipped the norm

k /

|1f||HkP(R,X) tkx i/. (10.45)
(j=0

Thus, to establish that (10.42) is bounded, from interpolation, it suffices to establish that

T: H'P(I,Hs2P(M)) (, Hk'P(I, Hs2+'2P(M)). (10.46)

is bounded for all integer k > 0. For k = 0, this follows trivially from (10.34), and for
k > 1, this also follows from (10.34) by commuting derivatives with T, since T is linear and
time-independent (observe that if T were time-dependent but also smooth, this argument
would follow too). Thus, this proves that (10.46) is bounded, which finishes the proof that
(10.36) is bounded. D

The above lemma tells us that time-independent slicewise operators on I x M can be
estimated in terms of their mapping properties on M. In particular, we can now easily
estimate the slicewise operators in (10.33) on I x Y because we know how they act on Y
from the analysis carried out in Part I. We have the following corollary:

Corollary 10.7 Let s > max(3/p, 1/2) and (Bo, To) E M8 '8.

(i) We have bounded maps

R(Bo,qjo)|xs+1,p IIjC :Maps"'(I, T) -+ Maps(sl),P(I, T) (10.47)
(Bo~qwo) (BO,To))

(ii) Assume in addition that (Bo,xo) C MS1+2, 2
, where s1 > 3/2 and s2 0. Then we

have

W(iBo~ )| X81+S2+1,2 IKg : Maps(si~82), 2 (I, T) -+ Maps(81,2+1)
2 (I, T)

(Bo,1Po) (Bo, o)

(10.48)

'Here, we assume X is a UMD Banach space (see Part IV), which will always be the case for us.
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Proof By the above lemma, to establish (10.47), it suffices to show that the maps

-1

'H(Bo,L) Ixs+1,P KSp LPT -H1PT
(Bo g) (B0 30)

R(B0,$0) IXs+1,P HIrsp : 7'p Ts+1,p
(B( 0'P0)) (B0, T 0)

are bounded. (By the first line above, we of course mean that the operator in the second
line extends to a bounded operator on the stated domain and ranges. Such notation will
always be understood from now on.) The second line follows from (10.32) and (10.31). The
first line follows from Lemma 4.7(ii). Likewise, for (Bo, To) EE 481+s2+1,2, (10.48) follows
from

71(Bo,,Po)|X8+1,P rs,P :L2T -+H1,27)-1
(B0,I 0 ) (B0 ,'V0 )

-1

(B00) IXs+1,P flIs,P Ts1+82,
2  

T1+S2+1,
2(B(P0) (B030)

which also follows from 4.7(ii) and Proposition 3.20. E

The above estimates for slicewise operators will now allow us to pass from the lo-
cal chart maps for L at a configuration (Bo, To) to a local chart map for path -y(t) =
(B(t), I(t)) through L. More precisely, we construct such charts in the Besov topology
BS'P(I x E) topology, and this shows that the space Maps8 'P(I, L) is a Banach submani-
fold of Maps'P(I, C(E)). Recall from earlier discussion that we construct such charts for
Maps8 'P(I, L) from local straightening maps (see Definition 20.3) for this space. Moreover,
the nonlinear part of the chart maps for Maps'P(I, E), just like the nonlinear part of the
the chart maps for E-1/P'P studied in Part I, will be smoothing in the E directions. This
is because by Corollary 10.7, the slicewise inverse Hessian smooths in the Y directions, and
when we restrict from I x Y to I x E, the anisotropic trace results in Theorem 13.22 tell us
that we preserve a portion of our gain in regularity in the E directions. We begin by proving
the following lemma, which, in particular, gives us local straightening maps for constant
paths in Maps"P(I, E). This is the slicewise analog of Lemma 4.14.

Lemma 10.8 Let s > max(3/p, 1/ 2 +1/p) and let rr(Bo, To) E Ls-/'P, where (Bo, To) c
M8 'P. Define the spaces

Z C = C(I, T " ', Z r : o = CO (I, Tr,(BO),,*0) L- P), Zc,1 = C0(I, Jr Xr~o),

where JE is given by (9.2). Then X = Xz,o e X , and we can define the map

FE,(B0,qy : VE a- Xro e XE, 1

z = (zo, zi) -4 (zo,zi - r'E' (BOI0)zo)), (10.49)

where Vr C X is an open subset containing 0, El is defined as in Theorem 4.8,
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and P(Bo, 0) is the Poisson operator defined as in Theorem 3.13. For any max(1/2,2/p) <

s' < s - 1/p, we can choose VE to contain a C0(I, B"''P(EL)) ball, i.e., there exists a 6 > 0,
depending on r)2(Bo, To), s', and p, such that

VE 2 {Z ZE : X ZCo(I,BsP(E)) < 6.

Moreover, we can choose J such that the following hold:

(i) We have FE,(Bo,Po)(0) = 0 and DoFE,(Bo,1 o) = id. For VE sufficiently small, FE,(Bo,Po)

is a local straightening map for C0(I, ES' P) within VE.

_ -1
(ii) The maps FE,(Bo,qIo) and FE,(Bo, VI0) preserve B8'P(I x E) regularity, i.e. they map

BS'P(I x E) configurations to BS'P(I x E) configurations. Moreover, the term

f (.Bgao,1o)(P(1>)) maps B5 'P(I x E) configurations to B(,1-1/P-e),P(I x E), for any
e > 0.

(iii) We can choose J uniformly for rE (Bo, To) in a sufficiently small Bs''P(E) neighborhood
of any configuration in Es-1/p'P.

Proof By Lemma 4.14, we know that FE,(B(,,IP)) is a local straightening map for

E2S-1/PP. Based on that lemma, it easily follows that FOg )) is a local straightening

map for C0(I, Es-l/P'P), thus establishing (i). It is (ii) that mainly needs verification, and
this requires some highly nontrivial analysis. We begin by estimating the operators occur-
ring in Fz,(Bo,P)) one by one.

First, we show the boundedness of the slicewise Calderon projection P+ in the(B0,'Pfo)
BS'P(I x E) topology, so that the decomposition z = (zo, zi) extends to the B 8'P(I x E)

topology. Here, P+ is the Calderon projection as defined in Theorem 3.13, and it yields(Bo,'I'o)
a bounded map

PB : TI -+ B''P(T r o,ro)EB -1/P'P), 0 < t < s + 1 /p,

since (Bo, TO) MA',P. Here, by a slight abuse of notation with regard to Notation 10.2,
we define BtP(TEr(B,p0) -/P'P) to be the intersection of T,,(Bo,wp)Sl-1/P'P with Bt'P(E)

configurations in case t > s - 1/p; otherwise, we take the B''P(E) closure. The map P(Bo,To)
also extends to a bounded operator on Sobolev spaces

(Bo,o) PT Ht'P(Ts(BoIoE"-/'P), 0 < t < s + 1 1/p, (10.51)+BIo 
__tPE-- H,(r(BP)C

where H''P(T,,,go,wp)ES-1/PP) is defined as above, see Remark 4.17. From this, since

P+ is time-independent, one can apply Lemma 10.6 to conclude, in particular, that(Bo,'Io))

P+ :Maps8 'P(I, Ty:) -+ Maps8 'P(I, Trs(Bopo)E5 1/PP), (10.52)

is bounded. Thus, we have that P( is a bounded projection from ZE onto Z,o with

kernel X), 1.
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Proceeding as above, we also obtain a bounded slicewise Poisson operator

P(qo) : Maps''P(I, T) - Maps(s,1/P),P(I, T(Bo,Vo)M 8'')

= {z G Maps(s,1/P),P(I, T) : z(t) T(Bo,qo)M 8 'P, Vt E I}
(10.53)

and its range is contained in C0(1, LIT), due to the embedding

M aps (8,'1/P)'P (T) " Co (I, B"T) " Co (I, L' T).

(Here, when we apply Lemma 10.6 to P(Bo, o), it makes no difference that we map config-
urations on I x E to configurations on I x Y, i.e., Lemma 10.6 is unchanged if the domain
and range manifolds are different.)

Next, we estimate the mapping properties of E(Bo,o). Namely, we show that

E : Maps(-'1 /P)'P(I, T(BooM 8)') Maps(' 1)'P(I, T), (10.54)

is bounded, i.e. E' smooths by 1 - 1/p derivatives in the Y directions. Here, we

restrict the domain of (10.54) so that it lies inside the set

Maps(s,1/P)'P(I, U) = {z E Maps(''/P)'P(I, T(B,,p)M''P) : z(t) U}, (10.55)

where U c T(B0,,o)M8 'P, as defined in Theorem 4.8, is a domain on which El is
defined. This is where our slicewise estimates made in Lemma 10.6 and Corollary 10.7
come into play. By (4.29), we have

E o(z) = --Q(Bo,q0 )(F(Bo,qo) (z), F(Bo,o) (z)), (10.56)

where F(Bo,Wo) is a local straightening map for (Bo, To) E M8 'P, see Lemma 4.6 and Theorem
4.8.

To estimate E , we first estimate F(B, 0 ). This is the most difficult step of all.
We want to use the ideas from Lemma 10.6 to conclude that the smooth time-independent

- -1

map F(Bo,To) preserves the B(s'l/P)P(I x Y) topology. Namely, using the Fubini property,
we can write

B,1/P)'P(I x Y) - LP(I, Bs+1/P,P(Y)) n B8"P'(I, HI/P'P(Y)). (10.57)

Since (Bo, To) E M8 'P, the proofs of Lemma 4.7, Theorem 4.8, and Corollary 4.9 show
that F(B,P) preserves Bt'P(Y) regularity for 1/p < t < s + 1, hence for t = s + 1/p in

-- -1

particular. Thus, we have trivially that the time-independent operator F(Bo,'Po) preserves
SrT-1

LP(I, BS+1/PP(Y)) regularity. The nontrivial step is to show that F(B,1o) preserves
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BS'P(I, Hi/PP(Y)) regularity. To show this, we want to interpolate between the estimates 8

F(Bo,' 0) : H'P(I, HI/P'P(Y)) -- + Hk'P(I, H/P'P(Y)), k > 0, (10.58)

where we abuse notation by letting Hk'P(I, H1/PP(Y)) denote the closure of Maps(I, T) in
said topology. Here the domain of (10.58) will be specified in a moment.

We want to use interpolation because fractional regularity in time is difficult to grasp;
on the other hand, integer Sobolev spaces, such as those appearing in (10.58) are amenable

to estimates via the Leibnitz rule. The difficulty of course is that F(Bo0 ,fo) is nonlinear
-- -1

so that Lemma 10.6 does not apply. Additionally, F(Bo0 ,o) is a highly nonexplicit map,
being the slicewise inverse of the operator F(Bopo) and hence defined by the inverse function

theorem. In Part I, we were able to estimate F( 1  (see the proof of Theorem 4.8) because
(Bo,'I'o)

it differed from the identity map by a smoothing operator, but in this case, since we only
have smoothing in the space directions, we cannot carry over such a perturbative argument.
What saves us in our situation is that there is a theory of interpolation of Lipschitz operators
due to Peetre [38]. Moreover, such an interpolation theory extends to operators which are

-- 1
only locally defined (as is the case for F(Bo, 0 ) ) under the appropriate conditions. Here,

--- - -1
the relevant theorem is Theorem 14.8. We can apply this theorem to F(Bo0 ,o) by verifying
that the following properties hold:

(I) The map F(B1  is a bounded operator from a subset V of H'/P'"T into H 1/P'PT.

(This implies that the map F(BPoIJ) maps LO(I, V) into L>"(1, H 1/P'PT). We then

have (10.58) on this domain since F(B is smooth.)

(II) On the same subset V above, the map F(- and all its Fr6chet derivatives are
-- -1

Lipschitz. (Hence the corresponding statement is true for F(BogP) on LO(I, V) by
the Leibnitz rule).

(III) The vector valued Gagliardo-Nirenberg inequality holds: for all integers 0 < m < n,
we have

|D&7ifWL(I,X) f HPN(I,X)t 7f LP(I,X)'

where X = H1'P(Y), and r, p, q are any numbers satisfying

1 0 1-0
1<r,p,q<oo, -=-+ , 0<0=m/n<1.

r q p

Let us explain why these properties hold. For (I), the statement for F- holds due

to Corollary 4.9. For (II), we use the fact that F 1 , being the inverse of an analytic (in

fact quadratic) map F(B0 ,To), is itself analytic (i.e. it has a local power series expansion)

and hence so is F(BogIJ) . This uses the fact that the inverse function theorem holds in

8 Here, Hk'P(I, H
1

/P'P(Y)) is the same as Wk'P(I, H'/P' (Y)) in our present vector-valued function space
setting. See Section 13.3.
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the analytic category of functions, see e.g. [8]. Consequently, the fact that F(Bo,,o) is
analytic means we have estimates for all the derivatives of F-1 on some fixed small
neighborhood (just as one would have for a holomorphic function of one complex variable,
using Cauchy's integral formula or its local power series expansion), which allows us to
establish (II). These statements follow from Proposition 21.3.9 For (III), the case when
X = R is the classical scalar Gagliardo-Nirenberg inequality. As it turns out, by the work
of [43], the general vector valued case holds for arbitrary Banach spaces X . Thus (III)
holds in particular for X = H1/PT.

Altogether, from the above, we can apply Theorem 14.8 to our situation, where in that
theorem, Z = H 1'PT and the set Ur is the set Lm (I, V) for sufficiently small V. Here the
Lipschitz hypothesis of Theorem 14.8 is satisfied by the same argument as in [38, p. 330],
because of (III). Thus, interpolation between the estimates (10.58) shows that

F(Bo, To) :B"(I, H1/P'P(Y)) -- + B'"(I, HI/P'P(Y)) (10.59)

is bounded, where the domain of (10.59) is the open subset

{z E Maps(8'l/P)'P(I, T) : z(t) E f, for all t C I} (10.60)

of Maps(''l/P)'P(I, T) with V given by (I) above. Thus, the estimate (10.59) and the trivial
---- -1

estimate that F(Bo,Po) preserves LP(I, BS+1/PP(Y)) regularity on (10.55) implies that
--- -1

F(Bo,Po) preserves B(s'/P)'P(I x Y) regularity when restricted to

Maps(s,1/P)'P(I, U n V). (10.61)

Finally, to estimate (10.56), we estimate Q(Bo,,o) by applying function space multipli-
cation and Corollary 10.7. Since

B(8,1/P),P(I x E) -+ B8 'P(I x E) n L'(I x E)

by Corollary 13.23, and since the latter space is an algebra by Theorem 13.18, we have the
multiplication

B(3,1/P),P(I x E) x BC8'l/P)'P(I x E) -+ B"(I xE) n L'O(I x E)

Since

Q( o)= 7q(Boo)|xs+1 P P (10.62)

9 1n fact, since F (B0,,) is just a quadratic map, one can understand the form of power series expansion
__ _ -1

of F(Bo,qlo) sufficiently well so that one can use avoid the nonlinear interpolation method we have used

to establish the boundedness of F(B0 ,1P0 ) on the B('l/P)'P(I x Y). Using this method, however, has the

unfortunate consequence that the radius of convergence of the power series of F(B0 ,To) (about 0) depends
on s and p, and so the set VE of the lemma would depend on s and p (i.e. it may shrink with s and p).
This would result in a somewhat awkward proof of Theorem 10.9(iv) and Theorem 12.1 later on. Hence,
we adhere to the interpolation method since in some sense it is the "optimal" method, even though for the
purposes of Part III, we can get away with other methods that use less machinery.
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is quadratic multiplication followed by the operator (10.47), we see that

:Maps(1/P),P(I x T) x Maps(s,1/P)'P(I x T) -+ Maps('1')P(I x T).

Finally, by Theorem 13.22, we have a bounded restriction map

rE: Maps(,'),P(I x T) -* Maps(8,1-1/P-E),P(I x 7)

where E > 0 is arbitrary.

Altogether, this shows that

rCE ( Maps(1-1/P-),P(I x T), z E VE (10.63)

if we choose VE small enough so that PB o)(VE) is contained in the space (10.61). In

particular, since B(s,'-1/P-E),P(I x E) c BSP(I x E) for E small, altogether, the above

estimates and the formula (10.49) show that FZ,(Bo,xo) preserves the BS'P(I x E) topology.
-, - 1

Since FE,(Bo,o) is just given by

------- -1 -
FE,(BO,o) (z) ^ (zo, zi - r-E(Bo)(P(Bo)zo)), z E VE,

---- -1
we see that FE,(Bo,po) also preserves B8 'P(I x E) regularity on VE. Since the open set U
in (10.55) contains an L (Y) ball by Theorem 4.8, we see that VE can be chosen to contain
a C0(1, BS'P(E)) ball, since

P(lqo) : CO(I, TE") -+ C (I, Ts'+1/P,P) <a CO(I, LOT) n CO(, H1/P'PT).

This implies that PBo) maps a small CO(I, Bs',P(E)) ball in Mapss'P(I, T) into (10.61).

For (iii), note that the operators

o) 7'+1/PP)(1.4

F 1O) :C0(1, H l'T) - ( C(, H 1/P'PT) (10.65)

vary continuously with rE(Bo, To) E Es-/P in the BS",P(E) topology, i.e. the above maps
vary continuously with (Bo, To) E M''P in the BS'+1/PP(Y) topology. This follows from the

work in Part I, which establishes the continuous dependence of all the operators involved in

the construction of these operators. From this continuous dependence, we can now deduce
that the sets U and V appearing in (10.61) can be constructed locally uniformly in (Bo, To).
Namely, the set U contains a uniform L (Y) ball by Theorem 4.8, and set V contains a
uniform H 1/PP(Y) ball by Corollary 4.9. Hence VE can be chosen to contain a 6-ball in the
00(1, Bs''P(E)) topology, with 6 locally uniform in (Bo, To). E

With the above lemmas, we have made most of the important steps in proving our first

main theorem in this section. Namely, the above lemma constructs for us chart maps for

Maps',P(I, L) at constant paths 'o via the local straightening map FE,(B0, 0o), where -yo is
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Maps"(I,L) ; Maps''(I, C(E))

E (z)

6 TyMaps''P(I, £)

Figure III-1: A local chart for Maps(-,1/P),P(I, L) at y. This is the analog of Figure 1 in Part
I, for the space of paths through L in Besov topologies.

identically rE(Bo, To). Now we want to construct chart maps for Maps"'P(I, E(E)) at an
arbitrary path y E Maps"'P(J, L). In addition, just as we did for the chart maps at constant
paths above, we want to show that the nonlinear portion of the chart map for 7Y smooths in
the E directions, and moreover, we want to show the chart map contains "large" domains,
i.e., is defined on open neighborhoods of our manifolds with respect to a topology weaker
than Bs'P(I x E). These results will be important for our proofs of Theorems A and B in
Section 4. Namely, by having chart maps that smooth, we will be able to gain regularity in
the E directions for a gauge fixed connection in the proof of Theorem A. By being able to
define chart maps on C 0(I, B"P(E)) neighborhoods of a configuration -Y E Maps5 'P(1, L),
for some s' < s, we will be able to place a sequence of configurations that converge weakly
to - in the B5'P(I x E) topology (hence strongly to y in the B''P(I x E) topology) in the
range of a chart map at -y. This will be key when we study sequences of configurations in
the proof of compactness in Theorem B. We have the following theorem:

Theorem 10.9 (Besov Regularity Paths through L) Let I be a bounded interval and let
s > max(3/p, 1/2 + 1/p).

(i) Then Maps8 'P(I, L) is a closed submanifold of MapsP(I, Q

(ii) For any -y e Maps8 'P(I, £), there exists a neighborhood U of 0 E Ty Maps"'P(I, L) and
a smoothing map

E : U -+ Maps(',1-1/P-),P ,

where e > 0 is arbitrary, such that the map

E, : U -+ Maps5 'P(I, L)

z 4 7 + z +E1 (z)

is a diffeomorphism onto a neighborhood of - in Maps" P(I, L).

(iii) For any max(2/p, 1/2) < s' < s - 1/p, we can choose both U and 9,(U) to contain
open C'(1, B''P(E)) neighborhoods of 0 E TyMaps8 'P(I, L) and y c Maps'P(I, L)
respectively, i.e., there exists a J > 0, depending on 7, s', and p, such that

U D {z c Ty Maps'P(1,L) : ||Z1|C0(I,B'P(E)) < J1

E (U) D {' c Maps5 'P (, - ' - -y Co(I,Bs',P(E)) < '
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We can choose 6 uniformly for all -y in a sufficiently small C0(I, B"''P(E)) neighbor-
hood of any configuration in Maps"'P(I, C).

(iv) Smooth paths are dense in Maps"P(I,).

Proof The local straightening map Fy, (Bo, To) in Lemma 10.8 yields for us induced
chart maps in the case when 7 is a constant path (see Definition 20.4). From this, to obtain
a chart map centered at a general configuration -y, we divide up I as union I = UUO1j of
finitely many smaller overlapping subintervals Iy = [aj, bj], aj < aj+1 < bj for 0 < j < n -1,
and take a constant path -yj on Ij near -Jij, for which to use as a chart map for 7|r, in
Maps'P(Ij, £). (We will see why we want overlapping intervals in a bit.) This is possible
because the chart maps at constant paths contain C0(I, B''P(E)) neighborhoods, and on
the small time intervals Ij, an arbitrary path in Maps'P(Ij, L) can be approximated in
C0(Ij, B8 ~1/P'P(E)) 0+ C0(1j, Bs''P(E)) by constant paths. Here, it is important that these
neighborhoods depend locally uniformly on the configuration in C0(Ij, BS''P(E)) by Lemma
10.8, and that we have the embedding Mapss'P(I, £) -* C0(I, E8- 1/PP).

With the above considerations, let -y be a constant smooth path identically equal to
o E L. Then the map E, is the chart map associated to FE,(BoTo) via Lemma 10.8, where

(Bo, To) E M is any configuration satisfying r,(Bo, To) = uo. Namely, define

U := V n T.Maps8'P(I, L),

and then define

E, : u -+ Maps"'P(I, L)

z - y + FE,(B, 1o) W' (10.66)

The proof of Lemma 10.8 shows that U contains a C0(I, B''P(E)) ball for max(2/p, 1/2) <
s' < s - 1/p. Furthermore, the map

--- -1

E (z) := FE,(BoTo) (z) - z, (10.67)

which is therefore the nonlinear part of FE,(Bo,WPo) (z) has the desired mapping properties,
since it is simply the map

S1E (z) = r'E Elw)(oo() Mapss'P(I, T) -- + MapsG9'1 1P-' 'P (I, 7E). (10.68)

Altogether, the map (10.66) yields the desired chart map for Mapss'P(I, L) for the constant

path -y, since the map FE,(Bop)) is a local straightening map for y
We now consider a general nonconstant, nonsmooth path y c Maps"'P(I, L). As we

explained, Lemma 10.8 implies that if we choose ai > ao small enough, then on Io = [ao, al],
the path y10 E Maps8 'P(Io, L) lies within the range of a chart map for C0(I, l~1/P'P) at the
constant path identically equal to y(ao). By the continuous dependence of the size of the
chart map in the C0(1, Bs- 1 /P'P(E)) and since smooth configurations are dense in E'- /P'P
by Theorem 4.15, we can choose a constant smooth path -yo that remains C0(I, Bs-1/P'P())

near -y(ao), and such that the chart map 6Eyo for yo, constructed as above, contains y in its
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image. Thus, we have

7|o=Ee(zO*)

= 7o + zo + Ei(z*), z* E T, Maps8 'P(Io, L)

for some z*. Here, to conclude that z* E TyoMaps8 'P(Io, E) has the same regularity as

7|r, we used that -yo is smooth so that 711o - 7y E Maps'P(Io,T:), and then we used that
-- -1

FE,(Bo,) preserves the BS'P(I x E) topology by Lemma 10.8.

Of course, we can continue the above process, whereby we have constant smooth paths

7 c Maps(Ij, L), and 7|z, is in the image of the chart map E, for 7', i.e.,

7|IW = E-y(z )
= -y + zj + E'(z), z E T,, Maps"'P(Ij, L)

for some zj. In this way, we see that concatenating all the local chart maps E y for the
constant smooth paths yj, we can define a map

E oy : Ey Ty, Maps"' (Ij, L) -- + x 0 Maps'P(Ij, Z)

(zy )3L F-4 (t E (zi* + zy ) ,= t E Ii. (10.69)

Here, the domain of E^ is of course restricted to the direct sum of the domains of the
individual E^, .

To get an actual chart map, we must restrict the domain of 6Y above so that its image
under Ey gives an honest path in Maps8 'P(I, Z) when we concatenate all the local paths on
the 1j. Thus, define U by

U c {(zj) E T=, Mapss'P(Ij,.) &: -- E(zj) i+i(zj+) 1 n 1 , 0 ji < n - 1

(10.70)

where U is any sufficiently small open subset containing 0 on which E- is defined. In this
way, we see that the map (10.69) induces a well-defined map

E, : U -+ Maps"'P(Ij, L)

(zj)n 0 a t " EY'(Zzj z)), tE Ig. (10.71)

which maps 0 to -y and the open set U diffeomorphically onto a neighborhood of Y C
Maps8 'P(I, E). Moreover, we can choose U so that it contains a C0(1, B' P(E) open ball, in
which case, E(U) contains a C0(1, B"'P(E)) neighborhood of y in Maps"'P(I, ).
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Note that in defining 6Y as above, while the tangent space T.,Maps"'P(I, L) naturally
sits inside Ty Maps 5'P(I, L) as the subspace10

TyMaps'P(I, E) = {z C Maps'P(I, T) : z(t) E TYt)Es-iP'P, for all t E I}, (10.72)

we really study this space under the identification

Ty Maps8 'P(I, L) ~{(zj)9j C E = TMaps-'P(Ij, ))

(DzESy)(zy) = (Dz-9 (j+ 1 n , 0 < j < n - 1}.

(10.73)

The space (10.72) is difficult to study because it is described as a family of varying subspaces,
which makes it hard to understand, for example, the mapping properties of projections
onto this space. Indeed, any resulting projection would be time-dependent, but not in a
smooth way, since -y C Maps"'P(I, E) is in general not smooth. Consequently, it would
be hard to prove an analog of Lemma 10.6 for such a nonsmooth time-dependent slicewise
operator. On the other hand, with (10.73), we understand each factor T.,Maps'P(I, L) from
Lemma 10.8. These spaces do have bounded projections onto them, given by a slicewise
Calderon projection as in (10.52), which we understand because it is time independent.
Thus, in (10.73), we have simplified matters by constructing "local trivializations" of the

space TMapss'P(I, L). Indeed, (10.73) tells us that on a small time interval I, we can
identify Ty11 Maps8'P(Ij, E) with TMapsS'P(Ij, L), and the total space TyMaps'P(I, £) is

obtained by gluing together these local spaces. (This is why we chose the intervals Ij in

I =U Ij to overlap.) When performing estimates for chart maps, it is thus convenient to
work with the identification (10.73), whereas when we wish to regard TyMaps'P(I, L) as a

natural subspace of Maps"'P(I, C(E)), then we have the equality (10.72).
Thus, with the identification (10.73), the map S1 is just the concatenation of all the

local El and thus has the requisite smoothing properties. One could also compute E4 in the

case where we regard TyMaps8 'P(I, L) as (10.72), but this will not be necessary. Altogether,
we have proven (i) and (ii). Statement (iii) now follows directly from the corresponding
property for chart maps at constant paths.

For (iv), the last statement follows from the fact that smooth configurations are dense
in Tyj Maps'P(I, L). Indeed, since 7j E Maps(I, L) is constant and smooth, it has a lift to a
constant smooth path in Maps(I,M), which is identically (Bj, '1') c M for some (Bj, WIj).
This follows from Theorem 4.13. Since (Bj, 'jy) is smooth, the time-independent slicewise

Calderon projection P+ gives a projection of the space of smooth paths Maps(I, Tr,)
(Bj,'I'3 )

onto T-,Maps(Ij, L), see Theorem 3.13. If we mollify z C Tyj Maps 8'P(Ij, L) on Ij x E, we
get elements zj E Maps(Ij, T) such that zj- zj in Maps'P(Ij, Th) as c -4 0. Hence, we

now obtain smooth elements P+ (zj) belonging to T Maps(Ij, E) that converge to zj
in TMaps"P(Ij, L) as e -+ 0. We then have that the E (zj) are smooth paths which ap-
proach yIrj as e -* 0 (indeed, since Yyj is smooth, one can see from the proof of Lemma 10.8

1 0Note that the tangent space TMaps*P(I, E) only makes sense since we can prove that Maps'P(I, L) is

a submanifold of Maps'P(I, Q(E)). Otherwise, (10.72) would just be a formal equality instead of an actual

equality.
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that FE,j(aj) preserves C" smoothness, and hence so does S). Gluing together all these
paths on the Ij yields a smooth path in Maps8 'P(I, L) approximating 7Y in the BS'P(I x E)
topology. O

Because of the regularity preservation property in Lemma 10.8(ii) and because we have
the mixed regularity estimates in Corollary 10.7(ii), whereby if the base configuration
(Bo, 'o) C M81+S2,2 is more regular we obtain the additional mapping property (10.48),
we also get the following theorem for mixed regularity paths through L. The reason we
consider these mixed topologies is because they will arise in the bootstrapping procedure
occurring in the proof of Theorem A. We only need the below result for small s2, but we
state it for general s2 > 0.

Theorem 10.10 (Mixed Regularity Paths through L) Assume the hypotheses of Theorem
10.9. In addition, assume s1 > 3/2 and S2 > 0.

(i) Then Maps"'P(I, L) n Maps(1,2),2 (I, L) is a closed submanifold of the space
Maps'P(I, C(E)) n Maps(si s2),2 1

(ii) For any y c Maps8 'P(I, £) n Maps(i 82),2 (I, L), there exists a neighborhood U of

0 c T-, (Maps"'P(I, L) n Maps("82), 2 (I, L)) and a smoothing map

1 : U -+ Maps('l-1/P-6')P(I, T) n Maps(81,s2+1-e'),2(I,7%),

where e, e' > 0 are arbitrary, such that the map

E, : U -+ Maps8'P(I, L) n Maps(81,82),2 (, L)

Z H-4 7 + z +SE (z)

is a diffeomorphism onto a neighborhood of y in Maps' 1P(I, L) n Maps("i S2),2 (1, ). If

s1 > 3/2 or s2 > 0, we can take e' = 0 above.

(iii) For any max(s2, 2/p, 1/2) < s' < s - 1/p, we can choose both U and E,,(U) to contain
open C'(I,B"''P(E)) neighborhoods of 0 c T,.Maps'P(I,L) n Maps(81,82),2 (I,) and
7. c Maps' 1P(I, L)n Maps(s ,82),2 (I, L) respectively, i.e., there exists a 6 > 0, depending

on y, S', S2, and p such that

U 2 {z E T, (Maps'P(I, L) n Maps(81,82), 2 (I, )) : fZco(IBS',P()) < s}
E (U) ;2 {y' c Maps"'P(I, L) n Maps("i12) ,2 -) ' - 7YflCo(I,Bs'P(E)) < 6},

We can choose 6 uniformly for all -y in a sufficiently small C0(1, B"''P(E)) neighbor-

hood of any configuration in Maps''P(I, L) n Maps(s182),2 (I, ).

(iv) Smooth paths are dense in Maps"'P(I, L) n Maps("is2),2 (1, L).

Proof The proof is exactly as the same as in Theorem 10.9 and the steps made in
Lemma 10.8, only we have to check that the relevant operators have the right mapping prop-
erties when we take into account the new topology we have introduced. First, generalizing
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Lemma 10.8, we show that given (Bo, To) c MA' n Ms1+s2,2, we obtain a local straight-

ening map FE,(BoTo) for CO(I, Es-/P'P) that preserves the BS'P(I x E) n B(3,2),2 (1 x E)

topology. The same proof of Lemma 10.8(ii), redone taking into account the B(s1,82),2(I x 1)
topology, shows that this is indeed the case. Here, the dependence of 6 on s2 reflects the
fact that we now have to interpolate the estimate

1 k,2 (I, H82+1/ 2,2 (Y)) -+ H, 2 (I, H82+1/ 2 ,2 (Y)), k > 0, (10.74)

in addition to (10.74), since we want to show that F(BOq'o) preserves Maps(S,82+1/2)2(I><
Y) regularity. (To minimize notation, in the above and in the rest of this proof, we identify
configuration spaces with their function space topologies). The analogous set V we obtain
in the proof of Lemma 10.8 is thus a subset of H 1/P'PT n H82+1/ 2,2T, and hence depends
on s2. Thus, if we define the set

{z e Maps(S' 1I/P)'P(I, T) n Maps(Sis2+1/ 2),2 (I, T) : z(t) c f, for all t E I} (10.75)

---- I-1
analogous to (10.60), then on the domain (10.75), the map F(BO,TO) preserves Maps(si,32+1/ 2 ),2

Y) regularity. The analogous interpolation argument as before and Corollary 10.7 shows
_-- -1

that FE,(BoTj) and FE,(Bo,qo) preserve Maps(si~82), 2(I x E) regularity.

Next, we want s' > s2 , since this implies C0(I, Bs'P(E)) " C 0(I, H82, 2 (E)) and so that

P( :C(I, BS'()) ('P(E)) Hs2+1/2 2 (Y))

is bounded. This implies that P(B,_) maps a C0(I, Bs'P(E)) small ball into C0(I, V), and
--- -1

hence into a domain on which F(Bo,)) is well-defined and preserves regularity. Moreover,
we also get the requisite local uniformity of 6 with respect to y, by doing the analogous
continuous dependence analysis of Lemma 10.8(iii).

To establish the mapping property of E', it remains to show that

F- ( (PBP)( )) : Bs'P(I x E) n B(81s2) 2 (I x E) - B(812+1-') 2 (I x ). (10.76)

for (Bo, To) smooth. (Here, (Bo, TO) is a smooth configuration that is nearby y on a small
interval, which we may take to be I, as in the analysis of the previous theorem.) By the

exact same argument as in Theorem 10.9, we have bounded maps.

Pw o) : Bs'P(I x E) -+ B(81/P),P( x Y)

P~e): B31,2),2(l X E) 8 (3,2+1/2),2(j )

for (Bo, TO) E M. Next, we show that

Q(B0 ,T 0 ) : B(8,1/P)'P(I x Y) n B(si2+l/ 2 ),2 (I x Y) -+ B(81,2+3 / 2 -'), 2 (I x Y). (10.77)

Thus, we need to estimate the operators appearing in equation (10.62). First, using the em-
bedding B(sl,/P),P(I x Y) " LO(Y) by Corollary 13.23, we have a quadratic multiplication
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map
-5 (~ s,2+1/2),2( x Y)nL0Y9 B 3,2+1/2-<'),2(1 X y)

where e' > 0 is arbitrary (we can take e' = 0 if si > 3/2 or S2 > 0). This follows from
Theorem 13.18. From this, Corollary 10.7(ii) implies (10.77). Finally, we apply Theorem
13.22, which gives us a bounded restriction map

r 8:Bs,2+3/2-e'),2 (I x8)aB3,2+1-<'),2(irz:B~lx Y) -+ B(818±')( X Z).

Altogether, this completes the proof of (10.76). The proof of the theorem now follows as in
Theorem 10.9. D

Remark 10.11

(i) From now on, for any y E Maps8 'P(I, £), we will not need precisely which model
of TyMaps'P we need, i.e., the subspace model (10.72) or the locally "straightened"
model (10.73), since both are equivalent. All that matters is that we have chart maps

Sand 1 as in Theorems 10.9 and 10.10 which obey the the analytic properties
stated. This is will be the case for the proofs of Theorems A and B in Section 4.

(ii) Since we have just shown that Maps"'P(I, E) is indeed a manifold, for s > max(3/p, 1/2+
1/p), then the family of spaces Ty(t) £ 1P'P, t E I, does indeed comprise the tangent
space TyMaps8 'P(I, £) via (10.72). By the density of smooth configurations, we have
Maps8 'P(I, E) is the BS'P(I x E) closure of the space of smooth paths Maps(I, E) =
{z E C (I x E) : z(t) E £} through the Lagrangian. Thus, (10.72) is the same space
as

Bs'P(I x E) closure of {z E Maps(I,'T) : z(t) E T(t)I, for all t C I}. (10.78)

In general, if we replace the submanifold C C E(E), with another submanifold 2 C
T(E), which we suppose, like , is a Frechet submanifold of the Frech6t affine space
E(E), then in general, it may not be the case that (10.78) with £ replaced by 2
gives the true tangent space TyMaps'P(L). Indeed, Maps'P(2) may not even be a
manifold. Of course, if 2 satisfies very reasonable properties (i.e. it is defined by
local straightening maps obeying the same formal analytic properties as those of L),
then Maps'P(2) will be a manifold and T.,Maps'P(I, 2) will coincide with the space
in 10.78) with £ replaced with 2. In other words, if we define the space (10.78) to
be the formal tangent space of Maps'P(I, 2) at y, then under reasonable hypotheses
on 2, this space will coincide with the honest tangent space TyMaps'P(I, 2), in the
appropriate range of s and p.

In the next section, we will be considering abstract Lagrangian submanifolds 2 C
f(E). All tangent spaces, therefore, will be constructed formally, in the sense above.
Of course, when we specialize to 42 = a monopole Lagrangian, there is no distinction.
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11 Linear Estimates

Based on the results of the previous section, we know that the linearization of (9.7) is well-
defined. Indeed, by Theorem 10.9, Mapsl'1/P'P(R, £) is a manifold for p > 4. Thus, in this
section, as a preliminary step towards proving our main theorems in the next section, we
will study the linearized Seiberg-Witten equations, which for simplicity, we consider about
a smooth configuration. Since smooth configurations are dense in Maps'- /P'P(R, C), we
will see that there is no harm in doing so.

In short, our goal is to show that the linearization of (9.7) about a smooth configuration
in a suitable gauge makes the problem elliptic. The corresponding elliptic estimates we
obtain for the linearized equations will be important in studying the nonlinear equations
(9.7) in the next section. For now, we work abstractly and take 2 to be an arbitrary
Lagrangian submanifold of E(E). Along the way, we will see what kinds of properties
such a Lagrangian should possess in order for the linearized equations to be well-behaved,
i.e., the associated linearized operator of the equations is Fredholm when acting between
suitable function spaces (including anisotropic spaces) and satisfies an elliptic estimate. At
the end of this section, we show in Theorem 11.7 that our monopole Lagrangians obey all
such properties. This shows that the Seiberg-Witten equations with monopole Lagrangians
are well-behaved at the linear level. Nevertheless, by working with abstract Lagrangians,
not only do we isolate the essential properties of monopole Lagrangians, but we also leave
room for the possibility of generalizing our results to other Lagrangians that obey suitable
properties but which are not monopole Lagrangians. (Note that in working with abstract
Lagrangians, when we consider their tangent spaces, we do so formally, in the sense of
Remark 10.11(ii).)

Altogether, our main results in this section can be roughly described as follows. Here, we
replace the time interval R for our equations with S1 , so that we do not have to worry about
issues dealing with asymptotic behavior at infinity. Since our main results, Theorems A and
B, are of a local in time nature, there is no harm in working in a compact setting as we will
see in their proofs. Moreover, it is clear that all the results of Section 2 carry over verbatim to
the periodic setting. Our first main result is Theorem 11.2, which tells us that if we consider
a path 'y(t) through our abstract Lagrangian 2, then if the family of tangent spaces L(t) =
T-,(t)2 satisfy the hypotheses of Definition 11.1, then the operator (11.26) induced from the
family of spaces L(t) is a Fredholm operator between the appropriate spaces and obeys an
elliptic estimate. Indeed, this is the relevant operator to consider, since if 2 is a monopole
Lagrangian and 'y(t) = rE(B(t), <(t)), the operator considered in Theorem 11.2 is precisely
the linearized operator associated to (9.7). (Note however, that in Theorem 11.2, we only
linearize about a smooth configuration and we only consider p = 2 Besov spaces.) In light of
Theorem 11.7, which tells us in particular that monopole Lagrangians satisfy the hypotheses
of Theorem 11.2, we have Theorem 11.8, which tells us that the operator associated to
linearized Seiberg-Witten equations with monopole Lagrangian boundary conditions is a
Fredholm operator.

Our second result concerns the analog of Theorem 11.2 in the anisotropic setting.
Whereas Theorem 11.2 is global, in the sense that it holds on all of S' x Y, for the
anisotropic setting, we work only in a collar neighborhood of the boundary of S' x Y,
namely S' x [0,1] x E. This is because the anisotropic spaces we consider will be those
that have extra regularity in the E directions, and so we must restrict ourselves near the
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boundary where there is a spltting of the underlying space into the E directions and the
remaining S1 x [0, 1] directions. In fact, when we prove Theorems A and B, we will only need
to worry about what happens near the boundary, since the Seiberg-Witten equations are
automatically elliptic in the interior modulo gauge. The anisotropic estimates we establish
for the linearized Seiberg-Witten equations in the neighborhood S1 x [0, 1] x E will allow us
to gain regularity for the nonlinear Seiberg-Witten equations in the E direction. In short,
this is because the nonlinear part of the Lagrangian boundary condition smooths in the
E directions, thanks to Theorems 10.9 and 10.10, and hence the nonlinearity arising from
the boundary condition appears only as a lower order term. Using the linear anisotropic
estimates of Theorem 11.6 and Corollary 11.9, this extra smoothness in the E directions
at the boundary allows us to gain regularity in the full neighborhood S1 x [0, 1] x E of the
boundary (again, only in the E directions). This step (which is Step Two in Theorem 12.1)
will be key in the next section.

Having described our main results, we give a brief roadmap of this section. In the first
part of this section, we describe the appropriate gauge fixing for our linearized equations.
We end up with an operator of the form A + D(t), where D(t) is a time-dependent self-
adjoint operator. The Fredholm properties of such operators are well-understood, and we
want to adapt these known methods to our situation. In the second part, using the same
ansatz as before, we then generalize our results to the anisotropic setting. Here, some non-
trivial work must be done since the presence of anisotropy is a rather nonstandard situation.
In particular, a key result we need to establish is that the resolvent of a certain self-adjoint
operator satisfies a decay estimate on anisotropic spaces, see (11.60).

There are two natural choices of gauge for the equations (9.7) that will make them
elliptic. Recall that a gauge transformation g E Maps(S x Y, S1) acts on a configuration
via

g* (A, <D) :=(A -- 1 dg, gb). (111

The first choice of gauge is to find a nearby smooth configuration (Ao, -Do) and find a gauge
transformation g such that g*(A, (I) - (Ao, <bo) lies in the subspacel1

C(Ao,<Do),n := {(a, #) E T(Ao,<bo)C(S 1 x Y) : -d*a + iRe (i(1o, #) = 0, *als1 xE = 0} (11.2)

orthogonal to the tangent space of the gauge orbit through (Ao, <bo). While this is the most
geometric choice, it is not the most convenient, since such gauge-fixing can only be done
locally, i.e., for (A, <)) near (Ao, <bo). The second choice of gauge fixing is to pick a smooth
connection Ao and place (A, <b) is the Coulomb-Neumann slice through Ao, i.e., pick a gauge
in which (A, <b) satisfies

d*(A - Ao) = 0, *(A - Ao)lsixr = 0. (11.3)

For any A E A(S' x Y), one can find a unique gauge transformation g E gid(Sl x Y)
up to constants, such that g*A satisfies (11.3). (Indeed, if we write g = e, with 77 E

o (gi x Y; iR), this involves solving an inhomogeneous Neumann problem for (.)
From now on, we assume our smooth solution (A,<b) to SW 4 (A,<b) = 0 is such that

"For more details on gauge fixing, see Section 3 of Part I.
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A satisfies (11.3) with respect to some Ao (to be determined later). Picking any smooth
spinor Go on S' x Y, then we have the equation

SW 4 (A, (D) - SW4 (Ao, 4o) = -SW 4 (Ao, Go), (11.4)

which, via (9.14), is a semilinear partial differential equation in (A - Ao, 1 - (O) with a

quadratic linearity.

So write Ao = Bo(t) + ao(t)dt as given by (9.12), whereby a connection on S1 x Y is
expressed as a path of connections on Y plus its temporal component, and define

b(t) + ((t)dt A - Ao (11.5)

#(t = I(t) - Go t). (11.6)

Hence, we can express the left-hand-side of (11.4) as a quadratic function of (b(t), #(t), ((t)) E
Maps(S', Q1(Y; iR) e 1(S) E Q(Y;'iR)) depending on the reference configuration (Ao, Gbo).
Then (11.4) becomes

-+ (Bo(t),to(t)) (b, 4) + (p-(#*)o - d, p(b)4 + (4 + (@o + ao#) = -SW 4 (Ao, (o).

(11.7)

Observe that the first term arises from linearizing (B, (D) - SW 3(B, (D) and the rest are
just remaining terms, which are -d and a quadratic function of (b,#, ). This is now a

semilinear equation in (b, #, ) but it is not elliptic. We now add in the Coulomb-Neumann
gauge fixing condition to remedy this. The condition (11.3) becomes

- d*b = 0, *bIsixz = 0. (11.8)

If we add this equation to (11.7), then we obtain the system of equations

+5Q(Bo(t),4o(t)) (b,#,() -(p-(44*)o, p(b)4 + &k + (@o + ao#, 0) - SW 4 (Ao, Do)

(11.9)

*b=sixE 0, (11.10)

where for any configuration (Bo, 'I o) E E(Y), the operator 71(Bo,*o is the augmented Hessian

given by

R(Bo,qjo) = d B 0o - . ) o (Y io Qo (Y; ig). (11.11)

Thus, for every t, the operator N(Bo(t),@o(t)) augments the original Hessian 71(Bo(t),to(t)) by

taking into account the Coulomb gauge fixing and the additional -d term that appears in

(11.7). To simplify the form of the equations (11.13) even a bit more, we can fix a smooth
reference connection Bref e A(Y) and consider the time-independent augmented Hessian

So := W(Bref,0)- (11.12)
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Then we can write (11.9)-(11.10) as the system

d
+ ( o (b,#) = N(Ao,o)(b,#,() - SW 4 (Ao, 1o) (11.13)

*blsix = 0, (11.14)

where N(A,e))(b,#, ) is the quadratic multiplication map

N(AD) (b,#,)=- (p~1(##*)o, p(b)#+ + J(o + ao#, 0) - (Bo(t) - Bref, -o(t))#(b,
(11.15)

Here and elsewhere, # denotes a bilinear pointwise multiplication map whose exact form is
immaterial.

Thus, the equations (11.13) and (11.14) are altogether the Seiberg-Witten equations in
Coulomb-Neumann gauge. Observe that (11.13) is a semilinear elliptic equation. Indeed,
the left-hand side is a smooth constant coefficient (chiral) Dirac operator1 2 T + So while
the right-hand side is a quadratic nonlinearity.

The boundary condition we impose on our configuration (A, 1) (aside from the Neumann
boundary condition arising from gauge-fixing) is that

rz (B (t), D(t)) E Z , t E S1, (11.16)

where.£ C (E) is a Lagrangian submanifold. Recall that the symplectic structure on e(E)
is given by the constant symplectic form (3.80) on each tangent spaces to C(E). We will see
shortly why the Lagrangian property is important. Altogether then, it is the linearization
of the full system (11.13), (11.14), and (11.16), that we want to study.

If we linearize the equations (11.13) at a smooth configuration (A, 1), then we obtain
the linear operator

d

dt + 7 1o - D(A,0)N(Ao,-o) (11.17)

acting on the space

Maps(S 1 , Q1 (Y; iR) e l'(S) G Q0 (Y; iR)) = Maps(S1 , T). (11.18)

To linearize the boundary condition13 (11.16), we introduce the following setup. Consider
the full restriction map

r :t -+ Qr = 0(E; iR) eD l'(sz) (D Qo(E; iR) (D Q0(E; iR)

(b, #, () - (blr,, #|E, -b(v), (IE), (11.19)

mapping t to its boundary data T7 on E. Here, v is the unit outward normal to E, and
so b(v) is the normal component of b at the boundary; the rest of the components of r

12Indeed, one can check that - o d + is a Laplace-type operator.
1 Unlike Section 2, here we work with smooth configurations, so if 2 is a smooth manifold, then

Maps(S1 , £) is automatically a smooth manifold and it can be linearized in the expected way. In sub-
sequent steps, we will be taking various closures of the tangent spaces to Maps(S', 2) and in this regard,
see Remark 10.11(ii).
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represent the tangential components of (b, 4, () restricted to the boundary. On the space of
paths, the map r induces a slicewise restriction map, which by abuse of notation we again
denote by r (instead of F):

r : Maps(S 1 ,'T) -+ Maps(S 1 , tz). (11.20)

Thus, specifying boundary conditions on the space Maps(S', t) for the linearized opera-
tor (11.17) is equivalent to specifying a subspace of Maps(Sl, Ty) which determines the
admissible boundary values.

The linearization of Maps(S', 2) along a path -y through 2 along with the Neumann
boundary condition (11.14) will determine for us a subspace of Maps(S 1 , TE). In order to
express this, let L c TE be any subspace and define the augmented space

CL E 0 E Q0 0(E; iR) (11.21)

; E e Q0(E; iR) (D Q0(E; iR)= .

This subspace determines the subspace

TL = {(b,4,() c T: r(b,c/,() E L} (11.22)

of t whose boundary values lie in L c 't. Given a family of subspaces L(t) c TE, t E S,
we thus get a corresponding family of spaces L(t) c ty and TL(t) C 'T. The spaces TL(t)

can be regarded as a family of domains for the operator 7-o, and thus, we can regard the
space

Maps(S 1 , it(t)) := {(b(t), 0(t), ((t)) E Maps(S1 , T) r(b(t), 0(t), ((t)) E L(t), for all t E S1}
(11.23)

c Maps(S',T)

as a domain for (11.17).

Altogether then, using this setup, we see that the linearization of the Seiberg-Witten
equations with boundary conditions (11.16) at a smooth configuration (A, 4), where A is

in Coulomb-Neumann gauge (11.3), yields the operator

+ No - D(A,*)N(A,e) : Maps(S', TL(t)) - Maps(S', t) (11.24)

L(t) =T,gB(t),4,(ty)2, t E S1. (11.25)

Indeed (11.25) is precisely the linearization of (11.16), and this linearized boundary con-
dition along with the Neumann boundary condition (11.14), is precisely what defines the
domain tL(t). We want to obtain estimates for the operator (11.24) on the appropriate
function space completions. For this, it suffices to consider the constant-coefficient operator

d ~
- + 7h : Maps(S', TL(t)) -+ Maps(S',T), (11.26)

dt

since (11.26) differs from (11.24) by a smooth multiplication operator for (A, 4)) and (Ao, 1o)
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smooth.

r

TET

L r TL

(11.27)

Maps(S, t) r Maps(S',) _

Maps(S1 , T)

Maps(S', L(t)) < , Maps(S, + o)

Let us now make use the requirement that the manifold Z is Lagrangian submanifold
of E(E). What this implies is that each tangent space L(t) = Ty(t)2 to P is a Lagrangian

subspace of Tr. Consequently, each augmented space L(t) is product Lagrangian in the
symplectic space t7±, where the symplectic form on t7 is given by the product symplectic
form

cD((a, #, ai, ao), (b, @, #1, Oo)) = w((a, #), (b, 0)) + (-ao/31 + ai/o). (11.28)

Recall from Part I that the symplectic forms w and c' naturally arise from Green's formula
for Hessian and augmented Hessian operators W(B,p) and ';Q(B,p), respectively, for any
(B, T) c Q(Y). In this way, each Lagrangian subspace L(t) C T yields for us a domain
TL(t) on which 7-to is symmetric, since for all x, y E TL(t), we have

c(r(x), r(y)) -(Lox, y)L2(y) + (x, Qoy)L2(y) = 0, (11.29)

since r(x), r(y) c L(t).
Thus, when we impose Lagrangian boundary conditions for the Seiberg-Witten equa-

tions, the associated linear operator (11.26) is of the form !+D(t), where D(t) is a formally
self-adjoint operator with time-varying domain. In this abstract situation, we have the fol-
lowing. When the domain of D(t) is constant and furthermore, D(t) is a self-adjoint,
Fredholm operator (with respect to the appropriate topologies), then there is a vast litera-
ture concerning the corresponding operator ! + D(t), since the Fredholm and spectral flow
properties of such operators, for example, constitute a rich subject. When the domains of
D(t) are varying, the results of the constant domain case can be carried over as long as the
domains of D(t) satisfy appropriate "trivialization" conditions (e.g., see [42, Appendix A]).



Part III

We will study (11.26) from this point of view. There are thus two things we wish to impose
on our Lagrangian Z so that its tangent spaces L(t) = T(t)2 all obey the following loosely
formulated conditions:

(I) for each domain TL(t), the operator o : TL(t) -+ T is self-adjoint (as opposed to
formally self-adjoint) and Fredholm with respect to the appropriate topologies;

(II) the time-varying domains TL(t) satisfy the appropriate trivialization conditions.

We now introduce the function spaces we will be considering. We will be working with
L2 spaces, namely the Besov spaces Bs,2 with exponent p = 2. Recall these spaces are

also denoted by H', though since we have been working primarily with Besov spaces in
Part III, we will stick to the notation BS,2 to be consistent. We want to work with p = 2,
because on L2 spaces, one can employ Hilbert space methods, in particular, one has the
spectral theorem and unitarity of the Fourier transform. The p # 2 analysis developed
in the previous section will come into play for the nonlinear analysis of Seiberg-Witten
equations, which we take up in the next section. We may thus consider the operator

+ Wo : Mapsk,2 (S, TL(t)) -+ Mapsk1, 2 (git) (11.30)

for all integers k 2 1. The spaces Mapsk, 2(Si, t) is defined as in Definition 10.3. To define
the space Mapsk,2 (Si, TL(t)) with varying domain iTL(t), one proceed in a similar way for

k > 2. In this case, one can take a trace twice for functions in Bk,2 (Sl x Y), and so
Mapsk, 2(giL(t)) is the subspace of Mapsk,2 (S, t) whose paths (b(t),#(t),((t)) satisfy

r (b (t), # (t), ((t)) E B-,2 ) c Ik12 t E S1.

Unfortunately, this definition does not work for k = 1. Thus, we have the following definition
which works for all k > 1 and which coincides with the above definition. Namely, we define

Mapsk 2 (Si, L(t)) := Bk,2 (g1 70,2) n L 2 (gi, 7 1(t). (11.31)

In other words, Mapsk 2 (gi, L(t)) consists of those paths that have k time derivatives in

the space L2 (S,T 0 ,'2) and which belong to Ti'(t) in the L 2(gi) sense, where

-k2 = (b,,) E ik,2 : r(b, V, () (E Bk-i/2,2LE- ) c k-1/2,27

makes sense for k > 1. Thus, we have merely separated variables in (11.31) and ask that

all derivatives of order k exist in L 2 and that the appropriate boundary conditions hold.

With the above definitions, we can thus consider the operator (4.15) and the family of

operators
o p e r at rs IS o : - k + 12 - + t k ,2 , t E S . (1 1 .3 2 )L (t)

It is these operators and their domains that have to satisfy the appropriate assumptions, by
the above discussion, in order for us to obtain suitable estimates for (4.15). According to
the first condition (I) above, we want that the family of operators (11.32) to be Fredholm
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for all k > 0, and furthermore, for k = 0, that they are all self-adjoint. To obtain (II), we
make the following definition:

Definition 11.1 Let L(t) be a smoothly varying family of subspaces 14 of T, t e S1 or R.
We say that the L(t) are regular if for every to c R, there exists an open interval I D to
such that for all t E I, there exist isomorphisms S(t) : T - T, satisfying the following
properties for all nonnegative integers k:

(i) The map S(t) extends to an isomorphism S(t) : tk,2 _ tk,2

(ii) The map S(t) straightens the family L(t) in the sense that S(t) : T;' -T is an

isomorphism (k > 1).

(iii) The commutator [D, S(t)], where D : T - T is any first order differential operator,
is an operator bounded on Tk,2 .

The reason for this definition is that then, on the interval I in the above, where say
to = 0, the conjugate operator

d , 2
S(t)~1 ( + No S(t) : Maps, TL(o)) -- Maps(k-1,2I, T) (11.33)

has constant domain, for all k > 1. Conditions (i) and (ii) ensure that (11.33) is well-
defined. Condition (iii) ensures that the conjugate operator (11.33) gives us a lower order
perturbation of the original operator, since

S(t)- 1  d + qo S(t) = d +No + S(t)-1 S(t) + S-1 (t)[50o, S(t)) . (11.34)

Thus, (iii) and the fact that S(t) depends smoothly on t implies that the right-most term
of the above is a bounded operator. One can now understand the time-varying domain case
in terms of the constant domain case via this conjugation (see Theorem 11.2). Thus, the
map S(t) trivializes, or "straightens", the family of subspaces TL(t), and it is the existence
of such an S(t) that expresses precisely what we mean by condition (II) above.

We will show later that when L(t) are the subspaces arising from linearizing a monopole
Lagrangian 2 along a smooth path, then the operators (11.32) are Fredholm for all k, self-
adjoint for k = 0, and the L(t) are regular (see Theorem 11.7). This uses the fundamental
analysis concerning monopole Lagrangians in Part I. Assuming these properties hold for
some general Lagrangian submanifold Z C E(E), we have our first result concerning the lin-
earization of the Seiberg-Witten equations with (general) Lagrangian boundary conditions:

Theorem 11.2 (i) Suppose the operators (11.32) are Fredholm for all k > 0, and that
furthermore, they are self-adjoint for k = 0. Also, suppose the family of spaces L(t)
T, i 2, t E S1, are regular. Then

d ~
+ 1o : Mapsk+1,2 (Si, nL(t)) -+ Mapsk,2 (i, ) (11.35)

"4See Definition 18.9.
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is Fredholm for every k > 0, and we have the elliptic estimate

(b,(SxY) C + o) (b,q, ) 2 + ||(b, , )| k2(S1xY))

(11.36)

(ii) (Elliptic regularity) If (b, #, () E Maps" 2 (gi, TL(t)) satisfies ( d +f-o)(b, E, ) E Mapsk,2 (Sl,

then (b,#,() Mapsk+1,2 (,TL(t)) and it satisfies the elliptic estimate (11.36).

Proof (i) First, let k = 0 and suppose L(t) = L(O) is independent of t. Let us make

the abbreviations x = (b, #, () and at = d. There are two methods to obtain (11.36). The

first proceeds as follows. We prove the identity

|1(at + 70)x|2(SI X y) = 0 iL2(SlXY) + ||Nor fL2(S1Xy). (11.37)

via an integration by parts. Here, we can write the cross term of (11.37) as

(PtX, 7ox)L2(y) + (7OX, OtX)L2(y) = (x,ox)L2(ydt, (11.38)

because of the self-adjointness of

So : 7 -+TO,,. (11.39)

and the time-independence of L(t). The term (11.38) vanishes since we are integrating an

exact form over S1. Next, since (11.39) is Fredholm by hypothesis, we also have

|lx(t)|Plqy) < C(Lox(t) y) +| ( y)) (11.40)

for every t c S1 . Integrating this estimate over S1, using this in (11.37), and using the fact

that 1|xIB1,2(S1xy) is equivalent to ||8tXL2(S1Xy) + lX0L2(S1,B1,2(y), we have the elliptic

estimate

||XI121,2(SiXy) t + o 2(SlXy) + XL2(g xy)). (11.41)
This shows that the map (11.35) has closed range and finite dimensional kernel. To show

that the cokernel is finite dimensional, we use the fact that we have the following weak

regularity estimate (for time-varying domains):

y E Maps 0,2(S, t) and ((at + 0) x, y) = 0 for all x E Maps(S', TLt))

-> y E Maps 1,2 (SiTL(t)). (11.42)

This is proven in [42, Appendix A]). In light of this, an integration by parts shows that

the cokernel of (11.35) is is finite dimensional for k = 0 (in fact, any k), since the adjoint

operator -Ot + No obeys the same estimate (11.41).
There is a second approach to proving (11.40) which generalizes to a more general setting

that we will need later. Together with weak regularity (11.42), this proves the Fredholm

property of (11.35) for k = 0. The method we use is to apply the Fourier transform (in

t C S' = [0, 27r]/ ~) to the time-independent operator Ot + 7-o, which means we analyze the
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operator ir + 7-o, for T C Z, in Fourier space.
Without loss of generality, we can suppose the Fredholm operator (11.39) is an invertible

operator, which we can always do by perturbing 7-o by a bounded operator. Indeed, the
operator No :7L(O) -+ to,2, being a self-adjoint Fredholm operator, has discrete spectrum,

and so we can perturb o by some multiple of the identity to achieve invertibility. By
self-adjointness, ir + No is invertible for all r C R. Thus, if we have (at + &o) x = y and

we want to solve for x, we just solve for the Fourier modes. In other words, we have

-() = (ir + No)-T(r), r E Z,

where, if z E Mapso,2(iS, T), we have

2r
z(r) =o e -rz(t )dt E iO, 2.

Thus, by Plancherel's theorem,

L2tL2(S1 X y) = )2(y)

) . (11.43)
2rZ (i ) ( L2(y)

From the spectral theorem, we have

(ir - No) Op(L 2 (y)) = O(r~ ). (11.44)

From (11.43), this implies

||8tX||L2(S1Xy) < C YbL2(S1xy) = C(0 t + &o)x1L2(S1xy), (11.45)

which implies

||X1B1,2(s1xy) CCI tXrHL2(S1Xy) + ||;oxflL2(SXy) + XH L2(S1Xy))

< C(2||0txlL2(slXy) + (Ot + NO)XL2(S1xy) + HXflL2(S1xY))

C'j(ll + -o)X||L2(sixy) + |x||L2(S1xy)). (11.46)

This establishes the desired elliptic estimate. Thus, this establishes the Fredholm property
of (11.35) by previous remarks for k = 0.

It remains to consider the general case where L(t) is time-dependent and k > 0. To
control the varying domains, we employ the straightening maps S(t) associated to L(t), as
given by Definition 11.1. We reduce to the constant domain case via conjugation by S(t)
as in (11.33). For notational convenience, let us suppose the straightening maps can be
made periodic, i.e., for all t C S', so that we can replace I with S' in (11.33). (In general,
we have to apply a partition of unity in time and apply local straightening maps on local
intervals. We then apply the analysis that is to follow on small time intervals and then sum
up the estimates.) By Definition (11.1)(iii), the terms S(t)(S(t)-1 and [;Q(t), S(t)]S(t)-1 in
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(11.33) are bounded on Mapsi, 2(S'L(o)). Thus, we also have the elliptic estimate (11.41)
for the conjugate operator (11.33) and hence the original operator on varying domains by
isomorphism property, property (ii) of Definition 11.1. This establishes (11.35) for k = 0
and for varying domains.

For k > 1, we proceed inductively in k. Suppose we have established the result for
all nonnegative integers up to some k > 0 and we want to prove it for k + 1. As in the
previous part, we can assume we are in the time-independent case since the time-dependent
case reduces to this case via conjugation by S(t). Moreover, by the weak regularity result
(11.42), we only need to establish the elliptic estimate (11.36).

So suppose x c Mapsk+1, 2 (Si, L(o)). Then Otx E Mapsk,2 (Si tL(o)). By the inductive
hypothesis, we have the estimate (11.36) for &tx. Now, |X|zBk+1,2(S1 xY) is equivalent to

H1tXlBk,2(siXy) - HccfL2(S1,Bk+1(y)). The inductive hypothesis gives us control of the first
of these two terms from (11.36); it remains to control the second term |x|zL2(S1,Bk+1,2(y))
in order to prove (11.36) for k + 1. Since flo :< 2 _ T, 2 is Fredholm, then

||Xf|L2(S1,Bk+1,2(y)) < C(0 o IL2(s,Bk,2(y) + VI L2(SiXy)). (11.47)

Altogether, simple rearrangement yields

X|HBk+1,2(S1 xy) ~" (HotXBk,2(s1Xy) + HXL2(S1,Bk+1(y)))

C(|8tXlBk,2(siXy) + 11f1OX1lL2(S1,Bk,2(y)) + IXHL2(S1Xy))

C(2||&tXlk,2(S1 xY) - I1(t +iO)XHL2(S1,k, 2 (y)) + MlXflBk, 2 (Si xy))

" 2C(fl(Ot +&otXlBk-1,2(S 1xy) + I:9
tX||Bk-

1
,
2 (

S
1

xY)

+ ||(t + fo)xflL2(Si,Bk,2(y)) - JYBk,2(giy))

2C(\|8t(Ot + 'ko)X|B -1,2(Slxy) + (81 + o)X L2 (S1,Bk, 2 (Y))

+ lI l Bk,2(S 1 xy))

~ (Ot + So)X + HX|IBk,2(S1xY)-

In the fourth line, we applied the inductive hypothesis to &ex. The above computation

completes the induction and establishes the elliptic estimate (11.36) for all k.
For (ii), we note that this easily follows from (i), since in proving (i), we implicitly

constructed a (left) parametrix for 2 + No by the above steps. Thus, the a priori elliptic
estimate in (i) implies the elliptic regularity statement (ii). L

Remark 11.3 As is usual for elliptic equations, an a priori elliptic estimate implies elliptic

regularity as in the above, since there is always a smoothing parametrix implicit in problem.

Henceforth, we will always prove a priori elliptic estimates and then state the corresponding
elliptic regularity result without additional proof.

11.1 Anisotropic Estimates

While Theorem 11.2 tells us that the linearized operator associated to the Seiberg-Witten
equations with suitable Lagrangian boundary conditions is Fredholm, as mentioned in the
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introduction to this section, we will also need an anisotropic analog. Indeed, we did a great
deal of analysis in Section 10 on anisotropic Besov spaces and we will need to generalize
the above theorem to such spaces. The reason for this is that in our proof of Theorem
A in the next section, we will be bootstrapping the regularity of a configuration in the E
directions in a neighborhood of the boundary of R x Y. This boostrapping requires that we
gain regularity in certain individual directions from the linearized Seiberg-Witten equations,
which means that we want the operator (11.35) to be Fredholm on anisotropic spaces and
to have a corresponding elliptic estimate (11.36) on anisotropic spaces. 15

In detail, on Y we now work in a collar neighborhood [0,1] x E of the boundary, and
consequently, on S1 x Y, we work in the collar neighborhood S1 x [0, 1] x E. In either case,
we let v E [0, 1] denote the inward normal coordinate. We have the corresponding restricted
configuration space

To,1]x := lloixE = Q([0, 1] x E; iIR) @ PF(S|[o,1]xE) G QU([0, 1] x E; iR). (11.48)

The restriction map r induces two separate restriction maps

r : No,1) x r --+ , (11.49)

corresponding to the two boundary components

Ej := {j} X E,j = 0, 1

of [0, 1] x E. In this case, we write

r = (ro,ri) : To,ixr - T0 e T11 (11.50)

for the total restriction map. If just write E, we will always mean Eo.
The space [0, 1] x E is a product manifold and so we can define anisotropic Besov spaces

on it as in Definition 13.21. We have the space B(81,2),2([0, 1] x E), the space of functions
whose derivatives up to order s2 in the E directions belong to B1,2 ([0, 1] x E). We define
the spaces

7-k,9, (k,s),2
[,1]XE -i '[O ,

of configurations in the B(k,,), 2 ([0, 1] x E) topology, where k > 0 is a nonnegative integer
and s > 0. By the anisotropic trace theorem, Theorem 13.22, the restriction maps extend
to bounded operators

r j : T ' 1/2+s,2, k ;> 1, ,1 (11.51)

In order to get Fredholm operators mapping between the r ' spaces, we need to im-
pose boundary conditions as before, only now we have to impose them on the two boundary

15 The analysis developed in this section is completely absent in the ASD case, as seen in [54]. Indeed,
in the ASD case, there are no spinors, and the structure of the ASD equations alone allows one to easily
gain E regularity in a collar neighborhood of the boundary of R x Y without even using the Lagrangian
boundary condition. As a consequence, the hard work we do in Section 10 and in this section, which is to
gain E regularity near the boundary, is completely unnecessary and absent in the ASD case.
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data spaces ' 1/2+,2. For -+ we impose the same type of boundary condition

as before, namely by specifying a subspace Lo of TEO, considering the augmented space

Lo C TO, and then taking the Bk-1/ 2+, 2 (E) completion. On we also choose a

subspace as a boundary condition, and for this, we choose any suitable subspace

L1 C T,

as follows.

Define the restricted configuration space

- (k, s), 2-(ks),2 .k 12 ,, -k /+ ,
[0,1xZLoL : ro() E B-/ 2 +s, 2  , ri(x) = B

of configurations in T whose boundary data on 71/2+) 2 and '~/ lie in Lo and

L 1, respectively. Ultimately, we want the operator

,o :T(k+1,s),2 T, (k,s),2 (11.52)0,[,1xE,Lo,L1 [0,1]xE

to be Fredholm, for k > 0 and s > 0. The determining of which subspaces Lo and Li

determine a Fredholm operator for No falls within the study of elliptic boundary value

problems which we describe in Part IV. From Theorem 15.23, we have the following result:

If the subspace on the boundary which determines the boundary condition for 7-o, in this

case the subspace

Bk+1/ 2+s,2 (Le Li) C 7t,+1/2+s,2  k+ (11.53)

is such that it is Fredholm with r(ker No) (see Definition 18.4), then the associated operator

(11.52) is Fredholm. Indeed, when Lo E Li is the range of a pseudodifferential operator, this

follows from the standard theory of pseudodifferential elliptic boundary conditions. For us

however, the space Lo, being a tangent space to Z, a monopole Lagrangian, is only "nearly"

pseudodifferential (see Theorem 3.13(ii)), and so we use the more general framework of

Theorem 15.23.

In fact, we can say more. Recall from Part I that r(kerl-o) = r(ker(,Bref,o)) is given

by the range of a zeroth order pseudodifferential operator, the Calderon projection

+ -P(+ -k+1/2+s,2 k+1/2+s,2c. (11.54)
06 (Bref,0) ToTl

Because the symbol of P6+ is determined locally by the symbol of No, we see that on Eo, the
principal symbol of P+ coincides with that of II+ : + +1/2s 2  

- 1/2+,2 the positive

spectral projection of the tangential boundary operator (see Definition 3.62 associated to 'No
on Eo. Identifying TEZ with TE1, since the restriction map ri : 7jo,1]xE -+ TE1 is defined as in

(11.19), with -v now the outward normal to Ei (as opposed to -v being the inward normal

at Eo), the principal symbol of P-+ on E1 coincides with II~ : j+1/2+s,2 + k+1/2+s,2

the negative spectral projection of the tangential boundary operator. Indeed, choosing

the opposite choice of normal at E1 reverses the sign of the tangential boundary operator

and so changes the associated positive spectral projection to a negative spectral projection.
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Altogether then, we see that the range of (11.54) is a compact perturbation of the range of

im U+e im -~+1/2+s,2 T ,k+1/2+s,2

This is convenient because im ~R certainly not a direct sum of a subspace of T (,

with a subspace of k+1/2+s,2, but the above analysis tells us it is a compact perturbation
of this. From this, we easily deduce

Lemma 11.4 Suppose we have

(F0) Bk+1/ 2 +s, 2Lo is Fredholm with im U+ in -k+1/2+s,2

(Fl) Bk+1/2 +s,2 L 1 is Fredholm with imU- in k/ ,

Then Bk Li) Fredholm with r(ker 50) in 2+s k1/2+s where o is
the operator in (11.52). This implies (11.52) is Fredholm.

If 2 is a monopole Lagrangian, Theorem 11.7 tells us that (FO) is satisfied for Lo a
tangent space to 2. Thus, (F1) is the only condition that needs to be satisfied. This latter
condition is a generic open condition, and so we see that there is great freedom in our choice
of L 1. Moreover, if we let X: [0, 1] -+ R+ be a smooth cutoff function, x(v) = 1 on v < 1/2
and x(v) = 0 for v > 3/4, then for any (b, V),) C T(k+1,s),2 , we have

x(b,V,() E

for any choice of L 1 . Furthermore, it is these truncated configurations"6 for which we will
bootstrapping regularity in the proof of Theorem A. Thus, we see that in this sense, the
choice of Li is just a "dummy" boundary condition to make the operator (11.52) Fredholm.

Assuming (FO), we have described a sufficient condition (F1) that makes (11.52) Fred-
holm. We are interested of course in the analog of Theorem 11.2 on anisotropic spaces,
which means we need to now promote everything to time-varying domains and study the
operator ; + No on anisotropic function spaces. We are thus led to consider the space

Maps(k s)2 (S1, 'Tno,1ix), (11.55)

the closure of the space of smooth paths Maps(S, o,11xE) in the topology B(ks),2((Si X

[0, 1]) x E). Thus, the s measures anisotropy in the E directions only. Likewise, we can
define Maps(ks)(Si, 0,1]x ,L(t),Li) as the anisotropic analogue of (11.31), namely,

Maps(ks)2 (Si, 7 o0,1]xE,L(t),L 1 ) := Bk,2(, ' ) n L 2 (gi Ts, ) (11.56)

The notation involved, while systematic, is unfortunately a nightmare. The below diagram
summarizes all the spaces involved with their appropriate topologies:

1 6More properly, the truncations of the time-dependent configurations on S1 x [0, 11 x E.



Part III

k+1/2+s,2 -k+1/2+s,2 r=(ro,ri) 1,s),2

[ ]'[O1]xE

B(k+1/ 2+s), 2 (Z eL1) ' r [1 ,Li

Maps(k+1/2,s),2 (gl Maps(k+,s) 2 (S, 1 ,1]

Maps (k,) 2 (S1 , f[O'l]x E)

Maps(k+1/2,s),2(gl, L(t) (D L1) -Er M aps (k+ 1,s),2(gi1, t0,1 x E,L(t),Li1

(11.57)

We want to study the operator

+ No : Maps(k+1,s),2 (Sl,{o,1]x,L(t),Ll) -+ Maps(k,s),2(S1, ;o ,1]) (11.58)

where L(t) is a family of tangent spaces to 2 along a smooth path, corresponding to the

boundary value problem we are trying to study. A priori, it is not at all obvious why

this operator should be Fredholm and satisfy a corresponding estimate as in Theorem 11.2.

Indeed, we can no longer use simple self-adjointness techniques, since the Hilbert space

T ')2 no longer admits No as an (unbounded) symmetric operator when s > 0. (Indeed,
th1]e ne rdc n (Os)2

the inner product on T{ ' 'is no longer defined in terms of the bundle metrics implicit in

the definition of t but contains operators in the E direction which capture the anisotropy.)

This means we no longer have the integration by parts formula (11.38), nor can we apply

the spectral theorem as in (11.44) to understand the resolvent of No on anisotropic function

spaces. However, all is not lost, since we can still prove an analogous estimate to (11.44) in

the anisotropic setting. This is because the resolvent of No, which is a resolvent associated

to an elliptic boundary value problem, is a pseudodifferential type operator, and such an

operator lends itself to estimates on a variety of function spaces, including anisotropic

spaces. Indeed, this is the reason we proved Theorem 11.2 using resolvents as an alternative

method to the integration by parts method, since the robust methods of pseudodifferential

operator theory will carry over to anisotropic spaces.

On anisotropic spaces, the resolvent we wish to understand is the resolvent of

O (1,i),2 [0,),2 (11.59)
0[0,1]xE,Lo,L1 [0,1]xE'
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and we want the estimate

11(ir - o) 1 |B(,s)2o,1]X) < 0(r 1 ). (11.60)

As in the proof of Theorem 11.2, we assume here that (11.59) is invertible and self-adjoint
for s = 0, which we can always do by perturbing 'H-o by a bounded operator. By doing so,
the resolvent in (11.60) makes sense for all r E R.

There is a well-developed theory for understanding the resolvent of elliptic boundary
value problems, dating back to the work of Seeley in [47]. There the boundary conditions
considered were differential and later extensions were made to pseudodifferential boundary
conditions satisfying certain hypotheses (see e.g. [18] and [17]). For us, the tangent space
to a monopole Lagrangian is only "nearly" pseudodifferential, in the sense that its tangent
spaces are given by the range of projections which differ from a pseudodifferential operator
by a smoothing operator (see Theorem 3.13(ii)). However, after a detailed analysis, one can
adapt the methods of [18] and [17] to carry over to our present situation. In carrying out
this analysis, we should remark here that it is key that the operator (11.59 is self-adjoint for
s = 0. We develop a sufficiently general framework for the construction of the resolvent of
an elliptic boundary value problem in Part IV, and via Theorem 15.32 and Corollary 15.34,
we prove the resolvent estimates we need on anisotropic function spaces.

Having made the above remarks, let us finally state the generalization of Theorem 11.2
to the anisotropic situation. In order to do this, we have to introduce the anisotropic
version of Definition 11.1, so that the maps which straighten the domains are well-behaved
on anisotropic spaces. For this purpose, define the subspace

T[O,1]xE,L = {x E 7 O,1]xr, ro(x) E L} c o,1]xE,

where we only impose boundary conditions on E = Eo.

Definition 11.5 Let L(t) be a smoothly varying family of subspaces 17 of T, t E S1 or
R. We say that the L(t) are anisotropic regular if for every to E R, there exists an open
interval I - to such that for every I E I, there exist isomorphisms S(t) : go,1]xE -+ To,1
satisfying the following properties for all nonnegative integers k and every s E [0, 1]:

(i) The map S(t) extends to an isomorphism S(t) : .' Furthermore,[ 1 [0, s),2

S(t) acts as the identity on [1/2, 1] x E, i.e., for every (b, #, ) E , we have

S(t)((b, , )) [1/2,1]x = (b, , )[1/2,1]x

(ii) The map S(t) straightens the family L(t) in the sense that S(t) : (k)'[0,1]xE,L (to)

(k)' is an isomorphism (k > 1).

(iii) The commutator of [D, S(t)] where D: T - T is any first order differential operator,
is an operator bounded on "kS),2

[e, 1] X .
1 7 See Definition 18.9.
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Observe that if the family L(t) is anisotropic regular then it is also regular, since we can
take s = 0 in the above and extend S(t) by the identity to the rest of Y.

Theorem 11.6 Assume the family of spaces L(t) C TE, t E S1 , and the space L1  TE1
satisfy the following:

(i) The L(t) are anisotropic regular.

(ii) The operators

N o1: , t E S 1, (11.61)

are Fredholm for all k > 0 and s E [0,1], and moreover, for k = s = 0, are self-adjoint.

(iii) The resolvent estimate (11.60) holds for all s E [0,1].

Then

+i 7 to : Maps(k+1,s),2 (ito,1]xE,L(t),L1) -+ Maps(ks),2 (gi, o,1x E) (11.62)

is Fredholm for all k > 0 and s C [0, 1], and we have the elliptic estimate

||XIIBk+1,s),2((s1x[o,1])xE) 5 C d + No z+ lXIB(k,s),2((S1 x E)(dt B(ks), 2((Slx[0,1])x E)
(11.63)

Furthermore, if x E Maps(1,s), 2 (gi, toI]xE,L(t),L1) satisfies (A+fio)x e Maps(ks), 2 (g 1 , 7o,1]x

then x C Maps(k+1,s), 2 (S, 7o,1]xE,L(t),L,) and it satisfies (11.63).

Proof The same proof of (11.45) using the Fourier transform shows that (11.60) implies

IlotXHlB(0,s),2((S1 x[o,1])xE) CIl(at + 7 o)xI|(o,s>,2((slx[o,1])xE), (11.64)

Here, we used that BS,2 ([0, 1] x E) is a Hilbert space, so that we have a Plancherel theorem

on B(os),2 ((Sl x [0,1]) x E) = L2 (Si, BS,2([0, 1] x E)). From (11.64), the same reasoning

we used to derive (11.46) shows that we now the anisotropic estimate

||XIlB1S,2((S1 x[O,1])xE) 5 C(1l(Ot + No)XIIB(0,s),2((Si x[O,1])xE) + XB(1,),2((S1 x E))'
(11.65)

This proves (11.63) for k = 0. From here, commuting time derivatives as in the proof of

(11.36) shows that (11.63) holds for all k > 0. For the last statement, see Remark 11.3. D

Summarizing, we have studied the operator - + S-o on the manifold with boundary

S1 x Y, both on the usual L 2 spaces and on anisotropic spaces. We have listed general

properties that families of subspaces L(t), serving as boundary conditions for A + No,
should satisfy if the spaces

Maps(S1 , tL(t)), Maps(S1 , t'o,1]xE,L(t),L1) (11.66)

in suitable function space completions, are to yield a domain for which the operator +Q0
is Fredholm. We have phrased matters in this generality, because this is the general model
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for the linearized Seiberg-Witten equations with Lagrangian boundary conditions, where the
L(t) come from linearizing a path along the Lagrangian 2. This allows us to understand
the general framework for these equations, in particular, which Lagrangians are suitable for
a well-posed boundary value problem. We make further remarks on this and related issues
in Section 5.

Of course, all of this discussion would be fruitless if we could not produce any examples
of Lagrangians which satisfy the properties we have imposed. Fortunately, for 2 a monopole
Lagrangian, all the properties we have used in Theorem 11.6 hold. We have the following
theorem.

Theorem 11.7 Let 2 be a monopole Lagrangian and let -y G Maps(S 1, 2) a smooth path.
Define L(t) = T,(t)2, t E S1 . Then there exists L1 C T,1 such that all the hypotheses
(i)-(iii) of Theorem 11.6 hold.

Proof (i) Since 2 C C(L') is a submanifold, then the tangent spaces to any smooth
path - E Maps(S', 2) automatically form a smoothly varying family of subpaces of TE. By
Theorem 3.13(ii), we know that each tangent space L(t) = T(t).2 is the range of a "Calderon
projection"

P+(t)T -+ Tr. (11.67)

Here ~7 E Maps(I, M) is a smooth path that lifts -y E Maps(I, L), i.e. rz ((t)) = y(t) for all
t. That such a smooth lift exists follows from the techniques used in the proof of Theorem
10.9(iv2. For each t, the resulting projection P+(t) extends to a bounded map, in particular,
on T' for all s > 0. Furthermore, it differs from a pseudodifferential projection 7r+ by an
operator T(t) := P+(t) - 7r+ that smooths by one derivative, i.e., T(t) : T, 2 -+ T,+ 1 ,2 for
all s > 0. Indeed, because i is smooth, one can check from the arithmetic of Theorem 3.13
that the maps P+(t) and T(t) have the mapping properties on all the function spaces just
stated.

To construct the straightening maps S(t) in Definition 11.5, we construct straightening
maps on the boundary using Lemma 18.10, and then extend these to maps in a collar
neighborhood of the boundary in a slicewise fashion. In detail, given any to E S', say
to = 0, Theorem 18.10 tells us that there exists a time interval I 3 0 such that we have
straightening maps

Sz (t) : z -+ TE, t EGI

with each Sr(t) is an isomorphism and Sz(t)(L(0)) = L(t). Moreover, since the closures
Bs,2 L(t) are also smoothly varying and complemented in ' for all s > 0 (again by the
Theorem 3.13), the straightening maps extend to the Besov closures as well, and we have

SE (t) : Ts,2 -+ Ts,2, t E I s > 0, (11.68)

with S, (t) (Bs,2 L(O)) = Bs,2L(t).
We now use these boundary straightening maps to construct straightening maps on

7o,11]xZ. Let (b,#,) T1oix r. In the collar neighborhood [0,1] x E, let v E [0,1] be the
inward normal coordinate and write b = bi + #dv in terms of its tangential and normal
components, respectively, where b, E F([0, 1], Q1 (E; iR)) and # E 1([0, 1], Qo(E; iR)). We
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will use the SE(t) maps to straighten out the tangential components (bi, #)I and we need
not do anything to the #1 and (. More precisely, let h = h(v) be a smooth cutoff function,
0 < h(v) 1, where h(v) = 1 for v < 1/4 and h = 0 for v > 1/2. We define

S(t) : Wo[,1]x z -+ to,1] x
(b, 4, () - h(v)SE(t)(bi(v), #(v)) + (1 - h(v))(bi(v), #(v)) + #dv +-,, (11.69)

where S(t) is defined to be the identity outside of [0, 1] x E. Thus, at v = 0, S(t) acting
on the tangential components (bi(0), 4(0)) is just the map SE(t), on v > 1/2, the map S(t)
is the identity, and in between, we linearly interpolate. For all v, we do nothing to #dv
and . We now have to check that all the properties of Definition 11.5 hold. For (i), we
first have that (11.69) is an isomorphism in the smooth setting for all t C I, where I is
sufficiently small. Indeed, at t = 0, the map Sr(0) is just the identity and hence so is S(0).
For small enough t, the map SE(t) is sufficiently close to the identity that all its linear
interpolants with the identity map on T, are still isomorphisms. Shrinking I if necessary, it
follows that (11.69) is an isomorphism for all t E I. It remains to show that S(t) is bounded
on anisotropic Besov spaces. However, this follows from a similar analysis as was done in
Lemma 10.6, since although S(t) is not time-independent, it is smoothly so. Indeed, the
mapping properties of S(t) are determined from Sr,(t) acting slicewise in the v direction.
This latter slicewise map clearly acts on integer Sobolev spaces because of the Leibnitz rule,
the smoothness of SE(t), and (11.68). The Fubini property and interpolation property of
Besov spaces, as explained in Lemma 10.6, now show that the v-slicewise SE(t) is bounded
on anisotropic Besov spaces and hence so is S(t). This proves (i) in Definition 11.5. Next,
for (ii), it follows from SE(t)(Bk+s- 1/ 2,2L(0)) = Bk+s-1/ 2,2L(t)) and the boundedness of

S(t) on ( that

S(t) : t1k ,8' k > 1. (11.70)

Finally, for the commutator property (iii) in Definition 11.5, we need only work in the collar
neighborhood [0,1] x E, since S(t) is the identity outside of it. There are two cases. If D is
a differential operator in the E directions, then [D, S(t)] is essentially given by [D, P+(t)]
and [D, T(t)], both of which yield bounded operators; the former because the commutator
of a first and zeroth order pseudodifferential operator is a zeroth order pseudodifferential
operator (hence bounded) and the latter because T(t) is already smoothing by one derivative
in the E directions. If D is a differential operator in the v direction, then [S(t), D] is still
a bounded operator, since we just differentiate the smooth cutoff function h(v) in the
commutator. Altogether, this proves S(t) satisfies all properties of Definition 11.5 and
hence, the family L(t) is anisotropic regular.

(ii) Using Lemma 11.4, if we choose any L1 such that (Fl) is satisfied, then it suffices
to prove that condition (FO) holds for Lo = L(t) for every t. It is here where we use that
the monopole Lagrangian 2 = E(Y') comes from a manifold Y' such that &Y' = -- Y.
Following the discussion in Section 3.3 of Part I, on Y, the operator i-to is a Dirac operator
that decomposes as the sum of two Dirac operators,

Ho = DdgC e DBr, (11.71)
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the div-grad-curl operator

Ddgc = d - 01(Y. R D 0 (Y; iR) 0,

on differential forms, and the Dirac operator

DB : r(S) -+ r(S)

on spinors. Thus, the tangential boundary operator B : -+ T associated to 7o on
E = Eo splits as a sum

B = Bagce Bs (11.72)

of the tangential boundary operators associated to Ddgc and DB,,,f, respectively. We get an
associated spectral decomposition of TZ via

tr = Z+ e Z- E o (11.73)

given by the positive, negative, and zero eigenspace decomposition of B. Furthermore, by
(11.72), we have

Z± = (Z e Zf ) e Z' (11.74)

where
Zf e Z' C Q1 (E; iR) e Q0 (E; iR) D Q0 (E; iR)

and

Z C F (S)

are the positive and negative eigenspaces associated to Bdgc and Bs, respectively, see Lemma
3.8 and (3.77).

Thus, to show (FO) in Lemma 11.4, we have to show that Bk+s+1/ 2,2L(t) is Fredholm
with Bk+s+1/2,2 Z+. By Theorem 3.13(i), we have that Bk+s+1/ 2,2L(t) is a compact per-
turbation of Bk+s+1/2,2(iMd e Z-) in pk+s+1/2,2. Note the important minus sign in the
last factor. This minus sign arises because when we apply Theorem 3.13, we apply it to
the manifold Y', and since we have the opposite orientation OY' = -&Y, the tangential
boundary operators for the operators on Y' differ by a minus sign from the corresponding
ones on Y. Altogether then, Bk+s+1/ 2,2L(t) is a compact perturbation of

Bk+s+1/ 2,2(im d e Z- e 0 e Q0 (E; iR)) c - +8+1/2,2. (11.75)

From the definition of Z, and Ze+ in Lemma 3.8, one can now easily see that (11.75)
is Fredholm with Bk+s+1/2,2 Z+ via (11.74). Thus, (11.75) and hence Bk+s+1/2,2L(t) is
Fredholm with Bk+,+1/2,2Z+. So (FO) is satisfied, and this proves the Fredholm property
of (11.61) by Lemma 11.4.

For k = s = 0, the operator (11.61) is symmetric since B1 / 2,2 L(t) C i is an
isotropic subspace. Here, we suppose the subspace L1 chosen in (ii), which satisfies (Fl),
is such that B 1/ 2,2L1 c ,2 is a Lagrangian subspace. From this, it turns out that

since B 1/ 2 2 L T) is a Lagrangian subspace which furthermore satisfies (FO), then
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(11.61) is self-adjoint1 8 . This follows from the general and abstract framework of finding
self-adjoint extensions of closed-symmetric operators by finding Lagrangian subspaces of a
suitable quotient Hilbert space, dating back to classical work of von-Neumann. Here, the
relevant theorem is Theorem 22.4. This shows (11.61) is self-adjoint for k = 0.

(iii) This follows from Theorem 3.13(ii) and Corollary 15.34. D

Thus, both Theorems 11.2 and 11.6 hold for the linearized operator arising from the
(gauge-fixed) Seiberg-Witten equations with Lagrangian boundary condition determined
by a monopole Lagrangian. In particular, from Theorem 11.2, we see that the linearized
operator of our boundary value problem is a Fredholm operator. This proves

Theorem 11.8 (Fredholm Property) Let Z be a monopole Lagrangian. Consider the equa-
tions (9.7) on S1 x Y, where we impose the gauge fixing condition

d*(A - Ao) = 0, (A - Ao)|sixr = 0, (11.76)

where Ao is a smooth connection. Then the linearization of the system (9.7) and (11.76) at

a smooth configuration (A, 4b) = (B(t) + c(t)dt, 1(t)) determines an operator

+ no - D(AD)N(Ao,4o) : Mapsk+, 2 (SiT(t)) - Mapsk 2 ( L(t)), (11.77)

where 14o and N(Ao,4 0 ) are given by (11.12) and (11.15), respectively, L(t) = T E),t))L,
and where k > 0. The operator (11.77) is a Fredholm operator for all k > 0.

In particular, this means that if we have transversality for our Seiberg-Witten system
(say by perturbing the equations in the interior in a mild way), then the moduli space of

solutions modulo gauge to our boundary value problem is finite dimensional.

We have one more corollary to the above analysis which we will need in the next section,
which yields for us the inhomogeneous version of Theorem 11.6.

Corollary 11.9 Let -y E Maps(S 1 ,2) be a smooth path, let L(t) = Ty(t)Q, and let L1 be as

in Theorem 11.7. Then we have the following:

(i) The space

Maps(k+1/ 2 ,s) 2 (i, L(t) e L 1) {z c Maps(k+1/ 2 s), 2 (gi

z(t) E L(t) e L 1 , for all t E S'}
(11.78)

is Fredholm with r (ker (at + So c Maps(k+1/ 2 s) 2 (giTJo e Ty), for all k > 0

and 0 < s < 1.

'8Not every Lagrangian subspace of r", 2  Z,2 will yield a self-adjoint operator. For instance,

r(ker N-To) c ' / 2 ,2 is a Lagrangian subspace, but this boundary condition is not a self-adjoint

boundary condition for 'Ho.
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(ii) The intersection of (11.78) and r (ker (at + 5o)) is spanned by finitely many smooth
elements, and the span of these two spaces is complemented by a space spanned by
finitely many smooth elements.

(iii) There exists a projection

H : Maps(k+/ 2 )2 ( i) (1179)

such that kerUI is (11.78) and imI is of finite codimension in r (ker (Oa + o) ). The

map U is independent of k > 0 and s G [0,1]. Moreover, we have the inhomogeneous
elliptic estimate

I X1B(k+1,s),2((S1 x[0,1])xE) C ( t + ± ) X B(ks),2((S1 x[0,1)xE) +

|Ir(x)HB(k+1/2,S),2(sI x(Eouri)) + XHB(k,,),2((s1 x[o,1])xE)). (11.80)

Proof (i) The space (11.78) is precisely the space of boundary values of the domain of

(11.62). Since the operator (11.62) is Fredholm, (11.78) is Fredholm with r (ker (i+ 50

the boundary values of the kernel of

d ~k ls, ~1 ~k2( I+i i : Maps(k+1,s) 2 (S1,'To,1xE) -+ Mapsk, 2(goi ,)

where no boundary conditions are imposed. This follows from Theorem 15.23.
(ii) The intersection of the two spaces consists of smooth elements because we have the

elliptic estimate (11.63) for all k, which tells us that all elements in the kernel of (11.62) are
smooth. The same analysis applies to the adjoint problem, and so the cokernel of (11.62)
(that is, the orthogonal complement of its range) is also spanned by smooth configurations.
We now apply Theorem 15.23.

(iii) This follows from Theorem 15.25. By (ii), the projection H differs from the projec-
tion (1 - Uu) in (15.39) by a smooth error (where li is taken to be (11.78)), and so (11.80)
follows from (15.39). The map H is independent of k and s, since the kernel and cokernel of
11.62 are independent of k and s and the Fredholm property in (i) holds for every k and s. El

12 Proofs of the Main Theorems

In the previous section, we studied the linearized Seiberg-Witten equations with abstract
Lagrangian boundary conditions. In the course of doing so, we found that Lagrangians sat-
isfying certain analytic properties yield elliptic estimates for the linearized Seiberg-Witten
equations. Furthermore, we showed that monopole Lagrangians satisfy all such properties.
Thus, with Z a monopole Lagrangian, we can now prove our main theorems, using both the
linear analysis in the previous section, and the nonlinear analysis in Section 2 concerning
the space of paths through Z. It is convenient to prove the results on S1 x Y. We then
explain how a standard patching argument proves the result on R x Y.
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Recall that when p = 2, the Besov spaces BS, 2 are the usual fractional Sobolev spaces

Hs = Hs,2 , for all s c R. When s is a nonnegative integer, the spaces B-2 = H,,2 are also

denoted by W,, 2 . We will use either notation B ,2 or H', 2 wherever convenient.

Theorem 12.1 Let p > 4, and let A = B(t) + a(t)dt E H1'P A(S x Y) and <k C H 1'Pr(S+)

solve the boundary value problem

SW4(A, (D) = 0, (12.1)

rE(B(t), D(t)) E 2 1-2/p,p, Vt E Si, (12.2)

where 2 is a monopole Lagrangian. Then there exists a gauge transformation g C H 2,Pgi(S' x
Y) such that g*(A, 4 ) is smooth. In particular, if A is in Coulomb-Neumann gauge with

respect to any smooth connection, i.e. (11.76) holds, then (A, 4D) is smooth.

Proof From the linear analysis in the previous section, we know we can find a gauge

in which the equations are a semilinear elliptic equation (in the interior), with quadratic

nonlinearity, as in (11.13). Since Hk'P(SI x Y) is an algebra for k > 1 and p > 4, it follows

that we can elliptic bootstrap in the interior to any desired regularity. Thus, we need only

prove regularity near the boundary.

From here, the proof proceeds in four main steps. The first step is to rewrite the equa-

tions in a suitable gauge so that the linear portion of the equations satisfy all the hypotheses

the previous section. In particular, the linearized equations now satisfy elliptic estimates

on anisotropic function spaces, where the anisotropy is in the E direction. From this, the

second step is to gain regularity for (A, -D) in the E directions in a neighborhood of the

boundary. Here, we use the results from Section 2, namely Theorems 10.9 and 10.10, that

the nonlinear part of the chart maps for the space of paths through 2 smooth in the E

directions. Moreover, it is here that the complicated choice of topologies appearing in these

theorems, particularly in Theorem 10.10, will serve their purpose. Using the anisotropic

linear theory of Section 3, specifically Corollary 11.9, we then gain regularity for (A, 4D) in

the E directions, where the linear theory can be applied because the nonlinear contribution

from the boundary condition is smoothing in the E directions. The third step is to gain

regularity in the time direction and normal direction to E using the theory of Banach space

valued Cauchy-Riemann equations due to Wehrheim [52] which we adapt to our needs in

Section 16 of Part IV. Once we have gained some regularity in all the directions, then in

our final step, we bootstrap to gain regularity to any desired order.

Step One: In the previous section, we found a suitable gauge in which the Seiberg-

Witten equations become a semilinear elliptic equation with quadratic nonlinearity, namely,
we obtained the system (11.13) for the equations in the interior. We wish to do the same

here, only now (A, 4D) is not smooth. Furthermore, we must choose the base configuration

(Ao, 4Do) about which we linearize our configuration (A, 4D) carefully.

So choose (Ao, 4o) E Q(S x Y) a smooth configuration close to (A, 4D), where we will

define this more precisely in a moment. In the usual way, write A0 = Bo(t) + ao(t)dt as

a path of connections Bo(t) on Y plus its temporal part ao(t), and write 4)o = (Do(t) as a

path of spinors on Y. Then we can find a gauge transformation g E H2 Pgid(Sl x Y), that
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places A in Coulomb-Neumann gauge with respect to Ao, i.e.,

d*(g*A - Ao) = 0, *(g*A - Ao)|sixr = 0. (12.3)

This g is determined by writing g = ef, where f E 0o(S' x Y; iR), and solving the inho-
mogeneous Neumann problem

Af = d*(A - Ao) (12.4)

*df si xr =*(A - Ao)|sixE (12.5)

This equation has a unique solution f E H 2 PQO(Y; iR), up to constants, by the standard
elliptic theory of the Neumann Laplacian.

Redefine (A, 4) by the gauge transformation so obtained above, so that we have

d*(A - Ao) = 0, *(A - Ao)|sixr = 0. (12.6)

We want to gain regularity for the difference (A, ,) - (Ao, <o), which we can write as the
triple

(b, #, () E H",PMaps(S1 , Q'(Y; iR) e F(S) e Q0 (Y; iR)),

where b = b(t) is B(t) - Bo(t), # =(t) is <}(t) - 1o(t), and 6(t) = a(t) - ao(t). From now
on, we just write

(b, #, () (A, <) - (Ao, (Do). (12.7)

for short.

Our goal is to show that (b, #, is smooth. As shown in Section 3, the configuration
(b,#, ) satisfies (11.13) and (11.14). We now have to add in the nonlinear Lagrangian
boundary condition (12.2) to these equations. To express this in terms of (b, #, () requires
that we chose (Ao, 1o) sufficiently close to (A, 1), as we now explain. Recall from Theorem
10.9 that for any path -y E Maps-1/P'P(S1, Z), there is a local chart map E, which maps
a neighborhood of 0 in the tangent space TMaps'- 1 /P'P(S', 2) diffeomorphically onto a
neighborhood of -y c Maps-1/P'P(S1, 2). Furthermore, by construction, the chart maps
contain a Co(Sl,B''P(E)) neighborhood of Maps- 1 /P'P(S 1 ,2), for any 1/2 < s' < 1 -
2/p, and the size of this neighborhood can be chosen uniformly on small C0(S', Bs'P(E))

neighborhoods of 7. It follows that if the (smooth) (Ao, <o) is sufficiently H-'P(Sl x Y)
close to (A, <b), with s > 1/2 + 2/p, then on the boundary, the associated smooth path

7Yo := r(Bo(t), <ho(t)) c Maps(S 1 , 2)

is sufficiently Co(S, BS''P(E)) close to

s = r'^(B(t), <b(t)) E Maps1 1/P'P(S i f)

so that we can find a unique z E T, o Maps'- /P'P(S1, 2) near 0 satisfying

-Y = E- o (z). (12.8)
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Rewriting this in terms of the map S1, in Theorem 10.9, we thus have

Y = yo -+ z + E- (z), z E T-yMaps- 1/P'P(S 1 , Z). (12.9)

In other words, we have placed -y in the range of the chart map &Ey centered at the smooth
configuration yo. Altogether, the interior equations (11.13), the Neumann boundary con-
dition on b (11.14), and the boundary condition (12.9) yield the following form for the full
system of Seiberg-Witten equations with Lagrangian boundary conditions:

+ fo (b, #, () N(Ao,o)(b, #,() - SW4 (Ao, <bo) (12.10)

(b, )|si x z +E (z), z E TyeMaps1-1/P(S 1 , Z) (12.11)

*blsixr= 0. (12.12)

Recall that N(A.,e 0 ) is a quadratic multiplication map and SW 4 (Ao, <o) is a smooth term
since (Ao, <o) is smooth. Since we are only interested in regularity near the boundary, it
suffices to gain regularity for a smooth truncation of (b, #, () with support near the boundary.
Thus, define

(bo, #o, o) = X (b, #()(12.13)

where x is a smooth cutoff function supported in a collar neighborhood S' x [0,1] x E of
the boundary, with X = 1 on S1 x [0, 1/2] x E and X = 0 on outside of S' x [0, 3/4] x E.
Thus, via the notation of Section 3, we have

(bo, #o, o) E H 1'PMaps(S',joi x E).

Step Two: We will gain regularity for (bo, #o, o) in the E directions from the equations
(12.10)-(12.12). For this, we will use the linear theory on L2 spaces developed in the
previous section. The main idea is simple. The boundary condition (12.11) and (12.12) is
essentially a perturbation of the linear boundary condition studied in Section 3. Indeed,
Theorems 11.2 and 11.6 give us elliptic estimates when the nonlinear term S' (z) in (12.11)
is absent, since then the boundary condition (12.11) satisfies the linear boundary conditions
of Thereoms 11.2 and 11.6, where L(t) = TyO(t)Maps(S', Z). Moreover, since (bo, #o, (o) is
supported on S1 x [0, 3/4] x E, the (bo, 0, (o) satisfy any boundary condition on {1} x E, so
that we may use Theorem 11.6 for any suitable "dummy" boundary condition Li. With the
nonlinear term in (12.11) however, we use the fact that E is smoothing in the E directions,
as given by Theorem 10.9. Thus, we are able to gain regularity in the E directions using
the inhomogeneous elliptic estimate Corollary 11.9.

In detail, we first have to embed the p # 2 Besov spaces into the p = 2 Besov spaces of
Section 3. For this, we use the embedding B8 'P(X) <-+ Bs-, 2 (X) for any s E R, p> 2, and
e > 0, on any compact manifold X (see Part IV). In particular, we have B-1/P'P(Si x E) '

B1-1/p-E,2(gi x E). Consequently, using Theorem 10.9, we have

El (z) E Maps(1- 1/P,1-1/P-),P(S 1 , T) " Maps(1-1/p-e,1- 1/p-e),2 (S 1, T). (12.14)
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With L(t) = Ty0(t)Maps(S1 , 2) and L1 c TE1 as in Corollary 11.9, we have a projection

HY0 : Maps(k+1/ 2,s),2 (S1 , T () e T 1 ) Q (12.15)

defined by (11.79) in Corollary 11.9. By definition of z in (12.11) and construction of H,
we have that (z, 0, six ) c Mapsl~1/P'P(S', tE) satisfies

H11 (z, 0, s i X E) = 0. (12.16)

Let x = (b, #, () and xo = (bo, #o, co). Thus applying the estimate (11.80) to xo = (bo, #o, o)
and using equations (12.10)-(12.12) and (12.16), we have

0XOiB(k+1,s),2((S1 x[O,1])xE) C N(A0,-Dg)(X) B(k,s),2((s1 x[O,1)x) + 11-5 (Z) I B(k+1/2,s,)2(Si x(EuEi))

+ zX|1B(k,s>,2((Sl x[O,1])xE) + |SW4(Ao, <bO)||sts>,2((si Xlo,1])X E)

(12.17)

for all k > 1 and s c [0,1] such that the right-hand side is finite (see also Remark 11.3).
First, let k = 0 and s = 1 in (12.17). Since x E H 1'P((S' x [0, 1]) x E) " B(o, 1 ),2 ((S X

[0, 1]) x E), this means we always have control of the lower order third term of (12.17).
Furthermore, since Hl'P(Sl x Y) is an algebra, we have

N(r) e Hc'P(S' x [0, 1] x E) - B (0 ,1 ),2 (gi x [0, 1] x E). (12.18)

since p > 4. The final term to control is the boundary term, for which we have

rI(E o(z)) E- Maps( 1/2,1),2(gi,;f). (12.19)

Here, we used (12.14) and the embedding

Mas11/p-E,1-1/p-E),2(gi,TE) e as1/2,1),2 (Si, p

which follows since p > 4 and E > 0 can be chosen small.
Thus, we see that |H.El (z)|B|(1/2,1),2(s1 x ) is bounded thanks to the smoothing property

of (z). Furthermore, the boundedness of H and the preceding analysis imply that

||iE ^M (Z)||B(1/2,1>,2 (Si X r) I N O(z)I|B(1-11P,1-11/ ,P,(S1 xE)

4-pYo(llzllB1i11,,P(si x )) (12.20)

_5 p-Yo(llzllH1,P(s xr)) (12.21)

where p = yo : R+ -* R+ is some continuous nonlinear function depending on -Yo with
p(0) = 0. It suffices to prove (12.20), since the second line is just the trace theorem. The
main point is that even though Theorem 10.9 tells us that EO(z) E Maps('- 1/P' 1- 1/P- ')P( ,T)
given that z E Maps 1- 1 /P'P(I, TE), we want an estimate in term of norms, as expressed by
(12.20). However, we shall leave it to the reader to check that one can indeed obtain a norm
estimate if one follows through all the various operators and constructions used in defining
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El . In a few words, we obtain norm estimates because all estimates we perform along the

way are derived from multiplication theorems, elliptic bootstrapping, interpolation, etc.,

all of which provide explicit norm dependent estimates. Hence, this proves (12.20) and

therefore (12.21).

Notation: In what follows, we write pt : R+ R+ to denote any continuous nonlinear func-
tion. Any subscripts on p will be quantities which p depends on which we wish to make

explicit. The precise form of p is immaterial and may change from line to line.

Altogether, we have from (12.17), (12.18), and (12.21) that

||(bo, #0, (O)Il (,1)2((si x[o,1])x r) :; p(ll(b, #,()||H1iP(six Y))+||SW4(Ao, <bO)I|Bo,1>,2 ((SI X [0,11) x t)-
(12.22)

Thus, we have gained a whole derivative in the E direction, albeit only in L 2 and not with

integrability p.

Step Three: To gain regularity in the temporal and normal directions S1 and [0,1],
respectively, we use the methods of [52] which studies Cauchy-Riemann equations with

values in a Banach space. Here, the main results we need are summarized in Theorem 16.2,
which is a refinement of [52, Theorem 1.2] to our situation. Let us set up the notation for

this analysis.
We have by definition

(b, #,)EH1'PMaps(S', to,1]xE)=

H1'PMaps (S', Q1([0, 1] x E; iR) E F(S[o,1]x E) e Q0([0, 1) x E; iR)) .

Let
K = S1 x [0, 1] (12.23)

and let (t, v) be the corresponding temporal and normal coordinates on K. Observe that

we have the identification

Maps(S1 , ]oj]x x) F F (K; Q1(E; iR) e r(S) e Q0 (E; iR) e Q0 (E; iR)) (12.24)

= r(K, tE), (12.25)

via the restriction map

r : -io F _ l x T= Q 1 (E; iR) e r(SE) Q0 (E; iR) e Q0(E; iR) (12.26)

induced by the restriction map r in (11.19) for each v C [0, 1].
Thus, we can regard (b,#0,), a path from S1 into T7oIXxE, as a map from K to T,, in

the appropriate function space topologies. Since we have the embeddings

H1'P(K x E) " C0(S 1 , B- 1/P'( [0, 1] x E)) " C 0 (K, B 1-2 /p'(E)),

and
Bi-2/p'pp )" LP ()
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for p > 2, we can thus regard

(b4,() E H 1'P(K; LP;&). (12.27)

The space Hl'P(K; LP(7j) is the Sobolev space of Hl'P(K) functions with values in the
Banach space LPTE. As it turns out, we want to consider the larger space H1 2 (K; L2 7j)
B 1,2 (K; L 2T%), and we will instead regard

(b, #, () E B1 2 (K; L2TE). (12.28)

We want to use (12.28) instead of (12.27) because the regularity in E we gained in Step
Two were with p = 2 Besov spaces. This gain in regularity becomes essential when we
reformulate the Seiberg-Witten equations as a nonlinear Cauchy-Riemann equation as we
now explain.

Near the boundary, the Cauchy-Riemann operator occuring for us arises from the t and v
derivatives of the operator d+50 occurring in (12.10). Indeed, d+No is a Dirac operator,
and so near the boundary where the metric is of the product form g2 = dt2 + dv2 + g%",
we can write

d d d
-- + 70 - + J- + Dr, (12.29)

dtdi dv

where J : - T is a smooth, bundle automorphism satisfying J2  -1, and Dr is a
v-dependent differential operator acting on Tr. Since we have gained regularity in the E
directions for (b, #,() in the previous step, the E derivatives of A + N0 can be absorbed into
(b,#,() and moved to the right-hand-side of (12.10). Thus, (12.10) yields the semilinear
Cauchy-Riemann equation

+ J (b, , ) = -D(b, #,) + N(Ao,<Do)(b,#,() - SW 4 (Ao, to). (12.30)

In this setting, we reinterpret the boundary conditions (12.11) and (12.12) as follows.
Recall that the configuration (A, -D) = (b, 4, () + (Ao, (o) and the smooth configuration
(Ao, (Do) both satisfy the Lagrangian boundary conditions (12.2). Thus, both rr (b(t), #(t))+
rE(Bo(t), Do(t)) and rr(Bo(t), (o(t)) are elements of L 2 2 D Ll- 2 /p,P for every t E S1 , by
the above analysis. Observe that for any pair of configurations u, uo C t, 2(E), we have
u - Uo E TEO 2 since (

0 ,2 (E) is an affine space modeled on 7,2. In particular, if uo = (0,0)
is the zero connection and zero spinor 19 , we can regard ,2  7 0 ,2. In particular, we
may regard L2 2 C 7,2 and we may regard

L2Z := L2p x 0 x L2 Qo(E; iR) (12.31)

as a subset of .,2. Moreover, we may regard rrz(Bo(t), Oo(t)) as a continuous path in I,2
With these identification, the boundary conditions (12.11) and (12.12) can be expressed

along the boundary of K, i.e., at v = 0, as

ro(b(t),#(t),(t)) + ry(Bo(t), 1o(t)) E L2 2, for all t E S1 . (12.32)

' 9For convenience, we assume the spinor bundle SE on E is trivial. This merely simplifies the notation
since the reference configuration Uo can be chosen to be zero.
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Thus, the boundary condition (12.32) captures the tangential Lagrangian boundary condi-
tion via the L 2 2 factor of L2 2, and it captures the Neumann boundary condition on b via

the remaining 0 x L 2 (QO(E; iR)) factor of L2 2.

Altogether, we have a semilinear Cauchy-Riemann equation (12.30) with values in a
Banach space t,2 and with boundary condition specified by (12.32). We can apply Theorem
16.2 when the boundary condition (12.32) is given by a Banach manifold modeled on a closed
subspace of an LP space. In [34], we studied the LP closure of 2 for p > 2 and showed that,
while we do not know if globally LP2 is a manifold, we know that locally the chart maps
E,, for 2 at a smooth configuration uo E 2 are bounded in the LP topology (see Corollary
4.16). More precisely, for every 2 < p < oc, there exists an LP(E) neighborhood U of 0 in
LPT,,2 containing an LP open ball, such that E,, extends to a bounded map

EnO : U -* LPC(E) (12.33)

which is a diffeomorphism onto its image. Moreover, because of the trace map

H ',P(S' x Y) <- Co (K, BM'P -p))

and because 21-2/p,p = B1-2/p,p2 is globally a smooth embedded submanifold of El- 2
/p,p( E)

(by [34] since p > 4), we know that the path

(t 4 rE(b(t), #(t)) + rE(Bo(t),,1o(t))) c C 0 (S', 2 1 
2/pp) (12.34)

forms a continuous path in 2 1 ~2/p,p, and hence on a small time interval I c S', the path
lies in a single coordinate chart of a fixed configuration uo E 21- 2

/p,p which we may take

to be smooth. In fact, we may as well take uo = rz(Bo (to), To(to)) for some fixed to C I.
Thus, we may replace (12.32), which may not be a manifold boundary condition in general,
with

ro(b(t), #(t), ((t)) + rr (Bo(t), 4o (t)) E EuO (U), U c L2 Tuo 2, for all t E I (12.35)

where U is an L2 (E) open neighborhood of 0 E L2Tuo2 and

Eu0 (U) :E 0 (U) x 0 x L2Q(E; iR).

By the above remarks, (12.35) is a manifold boundary condition, since E" (U) is a sub-
manifold of L 2 (E). In effect, we have simply replaced a neighborhood of uo E 21 2/ p,p C
(l- 2

/p(E) with the larger L 2 neighborhood Eu (U) C L 2(E). Moreover, since 2 C T(E)
is a Lagrangian submanifold, then Eu,(U) is a Lagrangian submanifold of L 2E(E). Thus,

EgO (U) is a product Lagrangian submanifold of

L2(C(X) x go(E; iR) x Q0 (E; iR)), (12.36)

where the symplectic form on (12.36) is given by the product symplectic form (11.28). The
time interval I in (12.35) is chosen small enough so that the configuration ro(b(t), #(t), ((t))+

rE(Bo(t), 'Do(t)) remains inside the product chart Eu0 (U). To simplify the below analysis,
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we can just suppose I = S1 . Otherwise, we can cover S1 with small time intervals and sum
up the estimates on each interval all the same.

(b,,a

E.. (U)

K\

Figure 111-2: The configuration (b, >, is a function on K =S x [0, 1] with values in the
Banach space ,2

Altogether, equations (12.30) and (12.35) form a Cauchy-Riemann equation for a config-
uration with values in a Banach space supplemented with Lagrangian boundary conditions.

Here, the Lagrangian submanifold E,, (U) is modeled on a closed subspace of an L2 space.
Furthermore, it is an analytic Banach submanifold of , This is because the chart
map EnO, by Theorem 4.8, is constructed from the local straightening map F- , where
(Bo, WPo) E M satisfies rz (Bo, To) = uO. As discussed in the proof of Lemma 10.8, the map

F-, is analytic, which implies the analyticity of EnO.
With all our current function spaces being Sobolev spaces, we now apply Theorem 16.2,

where so as to not confuse the value of p in our present situation with that in Theorem
16.2, we let p' denote what is p in Theorem 16.2. So letting X = L2 E, k = 1, p' = 2, and
q q = p > 4, the hypotheses of Theorem 16.2(i) are satisfied, and we obtain

(b, B 2,2(K, L2 '), (12.37)

i.e., we have gained a whole derivative in the K directions. We can take q' = q = p, since

(b, #, ) E H'P(K, LPiE), (12.38)

and LPTE C X, since p > 4. Furthermore, the elliptic estimate (16.6) implies

(bo, #0, (O)||g 2 ,2 (K;L 2%) [p(Ao,@) (|Dr (bo, #o, (o)|B1,2(K;L27k) + ||N(Ao,Do) (b, #, ) IIB1,2(K;L2%)

+ ||(b,01 #)|1|,2(K;L2j ) + ||SW4 (Ao, <DO)||Bi,2(K;L2;))

< pg(Ao,2o) (il(b,#,()||H1,P(s1xy) + ||SW4 (Ao, <bO)|iB1,2(K;L2'-))
(12.39)

for some nonlinear function p(Ao,2o). Here (bo, 0, (o) plays the role of u - uo in (16.6).
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Summarizing, by using Theorem 16.2 we deduced (12.39) and gained regularity in the

K directions, i.e., we now have two derivatives in the S' x [0, 1] directions in L2 . Combined

with the estimates from Step Two, where we gained regularity in just the E directions, we

see that we have gained a whole derivative in all directions, i.e., (bo, Oo, # o) E B2,2[o,1]x E-

Combined with interior regularity, altogether we have the elliptic estimate

fl (b, 4, )| B2,2(S1Xy) < l ((Ao,<Do)(b, , )H1p,(31 x Y)|l+ ISW4(Ao, Go)|H1,P(Sl xY)). (12.40)

on all of S1 x Y.

Step Four: From the previous steps, our configuration (A, )) E H1'P(S1 x Y), which we

redefined by a gauge transformation so that it is in Coulomb-Neumann gauge with respect
to (Ao, (DO), is in B 2,2(gi x Y). Moreover, we have the elliptic estimate (12.40). Proceeding

as in the previous two steps, we want to bootstrap and show that (b, @, () = (A, 4) - (Ao, (o)
is in Bk,2 (Si x Y) for all k > 2, which will prove the theorem. Unfortunately, in our first

step when we want to bootstrap from B2,2 (gi <X Y) to B3,2 (gI x Y), the space B2,2 (gi x Y) is

not strictly stronger than the original space H1'P(S' x Y), i.e., we do not have an embedding

B2,2(gi x Y) <- H"'P(S x Y), since p > 4. Thus, we will need to work with the mixed

topology H 1'P(S1 x Y) n B2, 2 (gi x Y). This is the cause for the rather bizarre looking

Thereom 10.10.

We first start off by increasing the regularity of El(z) in (12.9). Indeed, since we now

have (A, )) E H1'P(S x Y) n B 2,2 (Si x Y), then -y E Maps'- /P'P(S1, 2) n Maps3 /2 ,2 (sl,2).

Thus, we can write

y = 'yo + z + ei(z), z C T e Maps~1/P'P(S, 2) n Maps 3/ 2,2 (Si, 2), (12.41)

and by Theorem 10.10 with s2 = 0, we have

E)(z) E Maps('-1/Pl~1/P-)'P(Sl, TE) n Maps(3 /2 ,i/ 2),2 (gi, E), (12.42)

Here, we have assumed that 'ye is sufficiently close to y in C0 (I, B''P), using the same s'

we used in Step Two when we applied Theorem 10.9 to (12.9), so that we can place -y in

the chart map (12.41) using Theorem 10.10, which is stronger than (12.9). (We could of

course redefine -yo at this step by moving it closer to 'y if necessary.) Here, to perform the

above step, it is crucial that in both these theorems, the size of the chart maps (the radius J
which appears) depends locally uniformly with respect to the BS',P topology, which is very

weak since we can choose any 1/2 < s' < s - 2/p (since s2 = 0).

Now if we focus on the second factor of (12.42), we see that El (z) smooths by 1/2 a
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derivative in the E directions. Plugging this into (12.17) and proceeding as before, we find

||(b, #, ) tB2,1/2),2((s1x[0,1])xr) /(Ao,'Do) (jb,0 #, (B2,2(s1xy) + ||(b, #, )||HP(si xy)

ISW4 (Ao, '1)||1 2,2 (si X y) ,

(A0 p(DOe)| (b, #, 0 )||H 1,P(S1 x Y) +

SW4(A1, (1)|1|22(s x1 y), (12.43)

where we use that (b,#,B)2,22(s1Xy) is controlled by J(b,0,)1H1,P(s1xY) via (12.40).

Estimate (12.43) is insufficient however since we want to gain a full derivative in the
E direction, i.e., we want control of B(2 ,1),2 ((S 1 x [0,1]) x E) instead of B(2,1/2 ),2 ((S1 X
[0,1]) x E). Thus, we repeat the above steps again, where we replace Maps 3/ 2,2(S1, £) with
Maps( 3/ 2,82), 2 (Si, 2), with s2 = 1/2. Using the same reasoning as before (and assuming
(Ao, 1)o) is sufficiently C0(S1, B"'P(E)) close to (A, 4P) on the boundary), by Theorem 10.10,
we obtain

E (z) E Maps( 11 P1- -/P)'P(S', TE) n Maps(3/2,1),2(S 1 , T), (12.44)

thereby improving the gain in E regularity from 1/2 to 1. Doing this, we now gain a whole
derivative in the E directions:

||(b, #, ()||B2,1>,2((si x[o,1])x r) "- #(Ao,-Do)(||(b,#, ()||H," (Sl xY)+

||SW4(Ao, 40o)122(s 1 Xy)) (12.45)

Having gained a whole derivative in the FE directions, we can proceed to Step Three
and gain regularity in the S1 x [0,1] directions. Here, we need to choose our parameters in
Theorem 16.2 appropriately. In the same way that we needed to proceed in two steps to
gain a whole derivative in the E directions, we will also need to proceed in two steps to gain
a whole derivative in the S1 x [0, 1] directions as well. First, we let k = 1. By the above,
we have x = (b, #, () belongs to the space H(2,1),2(K x E) in addition to belonging to the
space HlP(K x E). Thus, DE E H 2,2 (K x E) C H 1'4 (K x E). Using the multiplication
theorem Theorem 13.18, we have that H( 2"),2(K x E) n Loo is an algebra. In particular,
x#x E H( 2,1),2 (K x E) c H1 4 (K x E), where # denote any pointwise multiplication map. It
follows that x satisfies a Cauchy-Riemann equation (16.3), where G has the same regularity
as Drx + x#x C H 1'4 (K x E). Thus, thinking of G as taking values in

X := LPot

for some po = 2 + e, where E > 0 is small, we have

G C H" 4 (K, X). (12.46)

Thus, we may apply Theorem 16.2 with p' = po, q = 4, and q' = p > 4 (recall that p' is
the value of the dummy variable "p" in Theorem 16.2, to distinguish it from our present
value of p). Note that when we change from the Banach space L 2ty to X = LPOT, we
must also consider for the Lagrangian boundary values of x the locally embedded LPO charts
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associated with 2, instead of L2 charts as before. This is possible since x E CO(K, LPtr),

and LtE C LPC t since p > po. In any event, we apply Theorem 16.2 and obtain x E

H 2 ,Po (K, X). On the other hand, since

X E H(2,1),2 (K x E) c H2 ,4 (E, L 4 (K)) c H2,p (E, LP0(K)),

it follows that x E H 2,po (K x E).
This implies we have improved the integrability of (A, 1) from H',P(Si x Y)n H 2 ,2 (si X

Y) to H1 ,P(S1 x Y) n H2 ,po (S 1 x Y), with po > 2. This extra integrability now allows us to

increase the regularity of x by applying Theorem 16.2 with k = 2. Here, we let p' = q = 2,

and q' = po. Observe that q' = 2 does not work, which is why we needed the above step.

Doing this gives us a configuration in H3 ,2 (Si x Y) = B3,2 (S x Y) which is strictly stronger

than H 1'P(S1 x Y) for p close to 4.

We can now continue bootstrapping as above, using Theorem 10.10 and estimate (11.80)
as above to gain E regularity, and then Theorem 16.2 to gain Si x [0, 1] regularity. Each
time, we apply Theorem 10.10 to gain a full derivative in the E directions, and then we

apply Theorem 16.2 once to gain a whole derivative in the S' x [0,1] directions. Indeed,
our function spaces are now sufficiently regular that we can apply Theorem 10.10 to gain a

whole derivative in the E directions (s > 3/2 so c' = 0 in the theorem), and we can apply

Theorem 16.2 to gain one whole derivative in the S' x [0,1] directions in one step without

having to first bootstrap the integrability of our configuration as in the above. Together,
these steps gain for us a whole derivative in all directions.

Altogether, we have shown the following. Pick any smooth reference connection Aref
and redefine (A, @) by a gauge transformation that places A in Coulomb-Neumann gauge

with respect to Aref. Then finding smooth (Ao, -o), satisfying the Lagrangian boundary

conditions, that is sufficiently H'P(Sl x Y) close to (A, D), with s > 1/2 + 2/p, then for

every k > 2, we have the estimate

(A - Ao, I - o)|1Bk,2(siXy) pk,(Ao,<bo) (A - Ao, 4 - 'Do) fH1P (SxY)+

1SW(Ao, 4)0)|11 k12 (Si x y)), (12.47)

where pk = "k,(Ao,'Do) is a continuous nonlinear function depending on k and (Ao, (O). This

estimate proves the theorem. 0

There is no obstacle to extending the above result to the equations on R x Y:

Proof of Theorem A: We can cover R x Y with a sequence of compact manifolds with

boundary Xk, k E Z, with Xi n Xy = 0 unless ji - j| = 1. Here, each Xk is assumed to

contain an open cylinder Ik x Y for some open interval Ik c R. We can pick a nearby smooth

configuration (Ao, 4o), as in the proof of Theorem 12.1, on all of C(R x Y). We then place

A in Coulomb-Neumann gauge with respect to AO. We can do this on all of R x Y since we

can do so on each compact manifold Xk, and then we can patch the gauge transformations

together to get a single-gauge transformation g E H1' (R x Y). There is no issue with

patching, since the gauge group is abelian, and all the local gauge transformations on Xk are

elements of the identity component of the gauge group. We let (b, #, () be (A, 1) - (Ao, 4o)
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as before. On each Xk near the boundary, we can find a compactly supported cutoff function
Xk : Ik x [0,1) x E -+ R, with Xk i 1 on Ik x [0,1/2] x E, where I' C Ik has compact
support. We can then repeat the previous steps for the compactly supported configuration
Xk(b, #,(), since it satisfies the system

d
+ 5Q0 x Vk(b,#,() N(b,#,() - XkSW4(Ao, 4)o) (12.48)

Xk(b, #) s x E = XkZ + XkSo (z), z E Ty() Maps 1-1/p(S, 2) (12.49)

*blsix = 0, (12.50)

obtained from (12.10)-(12.12) for (b,#0, ). Here, the nonlinear term

Nk(b, #,() = XkN(Ao,,)(b, ,) -+ [9 + O0, Xk] (b,, (12.51)

is also just a quadratic nonlinearity, since the commutator [a9 + f-O, Xk] is just multi-

plication by a smooth function. We can regard Ik x Y C S x Y and so we can pro-
ceed as before. Here, we use the important fact that if z E T, 0Maps' -/P(S',2), then

XkZ E TyoMaps - 1/P(S 1 ,2) as well, since T,10 Maps'- 1/P(S1, 2), being a path of tangent
spaces, is invariant under multiplication by a function of time. Thus, the steps involving
the projection H in Step Two of the proof of Theorem 12.1 work as before, since Xkz E ker II.
When we do Step Three, we only work on a domain where XCk 1, so that the Lagrangian
boundary condition is still preserved. In this way, Theorem 12.1 yields for us smoothness for
xk(b,#,() for all k. We can arrange the Xk and Xk such that the union of all the intervals

I4 on which xk 1 covers all of R. This proves (b,#,() is smooth on R x Y, and hence so
is (A, <b). D

Next, we prove the analog of Theorem B in the periodic setting:

Theorem 12.2 Let p > 4 and let (Ai, 4)i) E H"fPl(S' x Y) be a sequence of solutions to
(12.1)-(12.2), where 2 is a fully gauge invariant monopole Lagrangian. Suppose we have
uniform bounds

||FAi11LP(S1xy), VAi'iIhLP(S1xY), 1'hiH1LP(S1xY) C (12.52)

for some constant C. Then there exists a subsequence of configurations, again denoted by
(Ai, 45i), and a sequence of gauge transformations gi E H 2 Pg(SI x Y) such that g (Ai, bi)
converges uniformly in C (S' x Y).

Proof Fix any smooth reference connection Aref and redefine the (Ai, <i) by gauge
transformations gi that place Ai in Coulomb-Neumann gauge with respect to Aref. The
elliptic estimate for d + d* on 1-forms with Neumann boundary condition implies that

||Ai - Arefl|H1,P c([|FA,||LP + i(Ai - Aref)h ILP), (12.53)

where (Ai - Aref)h is the the orthogonal projection of (Ai - Aref) onto the finite dimensional
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subspace

{a E x(S x Y;iR) : da = d*a = 0,*alsix1 =O} 0 H1 (Y;iiR). (12.54)

The above isomorphism is by the usual Hodge theory on manifolds with boundary. From
just the bounds (12.52), we have no a priori control of I(Ai - Aref)h||LP. However, we still
have some gauge freedom left, namely, we can consider the following group of harmonic
gauge transformations

9h,n := {g E 9(S 1 x Y) : d*(g-ldg) = 0, *dg|Si xy = 0} (12.55)

which preserve the Coulomb-Neumann gauge. The map g a g~~dg maps ghn onto the
lattice H 1(Y; 27riZ) inside H 1 (Y; iR). Thus, modulo gauge transformations in 9h,", the
term (Ai - Aref)h is controlled up to a compact torus. Hence, by redefining the Ai by gauge
transformations in gh,,, we can arrange that the (Ai - Aref)" are bounded uniformly, which
together with (12.52) and (12.53) implies that we have a uniform bound

|Ai - Aref 11H1,P < C (12.56)

for some absolute constant C (where C denotes some constant independent of the (Ai, 4),
whose value may change from line to line).

From (12.52) and (12.56), we have the control

|VArf 4 )jflLP IVA,@i LP + p(Ai - Aref)4i JILP

| VAi||LP + 1p(Ai - Aref)I L- IIi||LP

< C, (12.57)

due to the embedding H',P(S' x Y) " LO(S' x Y) for p > 4. The uniform bound (12.57)
and the uniform bound on Il4IlLP shows that we have the uniform bound

|| illH1,P _ C. (12.58)

Thus, the configuration (Ai, 4i) is uniformly bounded in H',P(S' x Y). Moreover, the
(Ai, JDi) are smooth since they solve (12.1)-(12.2) and Ai is in Coulomb-Neumann gauge
with respect to a smooth connection. If we can show that the (Ai, Gi) are also uniformly
bounded in Hk,2 (Si x Y) for each k > 2, then we will be done, due to the compact embedding
Hk+1,2(gi x Y) - Hk,2 (Si x Y) for all k > 1 and a diagonalization argument.

Since the (Ai, di) are uniformly bounded in H1'P(S1 x Y), a subsequence converges
strongly in Hs>P(Sl x Y) for any s = 1 - c with e > 0 arbitrarily small. The limiting config-
uration (AO, G0), being a weak H"'P(S1 x Y) limit of the (Ai, Gi), belongs to H1'P(S1 x Y),

and it solves (9.7), since the equations are preserved under weak limits. In the interior, this
is easy to see; on the boundary, we use the fact that Maps-l/P>P(SI, 2) is a manifold, so

that the Lagrangian boundary condition is preserved under weak limits. Since Coulomb-
Neumann gauge is also preserve under weak limits, then from Theorem 12.1, we know that
(AO, o) is smooth.

We now apply (12.47) with (Ao, Go) replaced with the smooth configuration (AO, 4)
and (A, () replaced by the (Ai, Ji), for large i. We can do this because the following are
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true: first, the (Ai, 4D) converge strongly to (AOO, o) in HS>P(Sl x Y), and s > 1/2 + 2/p;
second, the proof of (12.47) shows that if (Ao, (o) is any smooth configuration, then (12.47)
holds for all (A, D) solving (12.1)-(12.2) sufficiently H',P(S x Y) close to (Ao, 'Do). It now
follows that a subsequence of the (Ai, I) converges to (Ao, Goo) in C'. E

Proof of Theorem B: This follows from exhausting R x Y by a sequence of compact
manifolds with boundary, applying Theorem 12.2 on each of these manifolds, and a stan-
dard patching argument. See, e.g., [53, Proposition 7.6]. El
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Tools From Analysis

13 Function Spaces

In this section, we define the various function spaces needed for our analysis. We establish

enough of their properties so that we may apply them in the context of elliptic boundary
value problems and nonlinear partial differential equations.

13.1 The Classical Function Spaces

We define the classical Sobolev, Bessel potential, and Besov spaces. These spaces along

with their basic properties are well documented, e.g., see [12], [50], and [51]. The proofs of

all the statements here can be found in those references.

3.1.1 Function Spaces on R'

We begin by defining our spaces on R' with coordinates xz, 1 < j < n. Let S(R") be the

space of rapidly decaying Schwartz functions and let S'(R") be its dual space, the space of

tempered distributions. Given f E S(R"), we have the Fourier transform

f() = Jex f (x)dx.

The Fourier transform extends to S'(R") by duality. Given a multi-index a (ai,..., an) E

Z" of nonnegative integers, we let D'f =91 ... Oxg f be the corresponding partial deriva-

tives of f in the sense of distributions.

Next, we consider a dyadic partition of unity as follows. Let 0( ) be a smooth bump

function, 0 < @(() < 1, with @(() equal to 1 on 1(I < 1 and V) identically zero on > > 2.

Let

pa( ) =

py(() = @(2-j() - V5(2- -'), j > 1.

Then we have _'o Yj (=) 1 with supp pj C [2j-1, 2j+1] for j > 1.
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Given a tempered distribution f, we let

fj =.F 'p3Ff

be its jth dyadic component. The decomposition of f into its dyadic components {fj}o?0
is known as the Littlewood-Paley decomposition.

On R', let LP(Rf) and C0 (R") denote the usual Lebesgue and Holder spaces of order
p and a, respectively, where 1 < p < oc and a > 0. In addition to these, we have the
following classical function spaces:

Definition 13.1 (i) For s C Z+ a nonnegative integer and 1 < p < oc, define the Sobolev
spaces

W"'P(R") = {f e S'(Rn) :|f||wsP = (Z f|DaflPp)'/P < oo}, p < oo (13.1)

W8'm ((R") = {f E S'(R") :|f||ws,o = sup |Da! f|L < oo}. (13.2)

(ii) For s E R and 1 < p < oc, define the Bessel potential spaces

H'P(R') {f E S'(R) :|f||HS,P 1( 28jf /2 LP (13.3)
j=0

(iii) For s C R, 1 < p < oc, define the Besov spaces1

BS'~p(R") {f E S'(Rn) : (fSP 2 8jfjP)/P < o . (13.4)
j=0

(iv) Define A8'P to be shorthand for either H3'P or B8'P. The spaces A8'P are also a special
case of what are known as Triebel-Lizorkin spaces.

Of the above Banach spaces, the Sobolev spaces W8'P are the ones most naturally
occurring for many of the basic problems in analysis. The Bessel potential spaces H"'P arise
from (complex) interpolation between the Sobolev spaces, where we may think of f E Hc'P
as having s derivatives in LP. This is most clearly illustrated when p = 2, where then H'P
is usually just denoted as HS. For general p, we have the following result:

Theorem 13.2 [50, Theorem 2.3.3/ For 1 < p < oo, H'P(Rn) = W8 'P(R") for s a non-
negative integer.

Indeed, when s = 0, then Theorem 13.2 tells us that

E1j2) 1/2 J~JLP-

j=0 LP

'The classical Besov spaces are usually denoted with two parameters Bq,. We take p = q. There are
also many other equivalent norms that can be used to define the Besov spaces. Our choice of norm reflects
their similarity with H"P.
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This is the classical Littlewood-Paley Theorem.
The Besov spaces naturally arise because they are the boundary values of Sobolev spaces.

More precisely, let R7'- C R' be the hyperplane x, = 0. Given a fixed m C Z+ and f a
function on R', let

rmf = (f IRn-1, OXr1-fl1, . fn-1) (13.5)

be the trace of f of order m along the hyperplane Rn- 1 . We have the following theorem:

Theorem 13.3 (i) For s > m+1/p and m E Z+, the trace map r, extends to a bounded

operator
rm : HS'P(IR") -+ oilBs~1/P-j(Rn~) (13.6)

(ii) For any s C R and m C Z+, there exists an extension map em : Dm1BS-1/P-j,P(Rn) -+

H'P( R') such that for s > m + l1p, we have rmei - id.

(iii) H8 'P(Rn) may be replaced with Bs'P(R") in the above.

When p = 2, we have
Bs,2(Rn) = Hs(R") (13.7)

for all s, and so the above theorem is a generalization of the fact that the trace of an element
of H(R") lies in Hs-1/2 (Rn) for s > 1/2. Furthermore, because fp C 0 whenever p > q,
we have the trivial inclusions

BS'P(R") C H"'P(R") p < 2

HS'P(Rn) C B"'P(Rn) p > 2.

For s > 0, we can also write the Besov space norm in terms of finite differences in space
rather than in terms of the Littlewood-Paley decomposition in frequency space. For any

h E Rnh, define the operator

of = f(x +h) - f(x).

Using this operator, we have the following proposition:

Proposition 13.4 For s > 0 and 1 < p < oo, let m be any integer such that m > s. Then

an equivalent norm for B8'P(R") is given by

I If IIBS.P (Rn) =H IfHIILP (1Rn) +hK'C a nfP dh)I (38
f = ||L()+ h LP(R-) Ih )8

Remark 13.5 The spaces HS'P(R) and B8 'P(R") satisfy

H31'P(R4) C B S2'P(R") C H93'P (Rn)

for all si > S2 > S3, for 1 < p < oo. This is a simple consequence of the definitions (13.3)
and (13.4). Thus, we see that the most important features of the Bs',P and H"'P spaces
are determined by the exponents s, p, with the distinction between the Besov and Bessel
potential topologies for fixed s and p being a more refined property. In this sense, for most
purposes, the spaces B5'P and H8 'P are "nearly identical", and many results concerning one
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of these spaces implies the same result for the other. This is why we adopt the common
notation of using A8'P to denote either H',P or B8 'P. Whenever, A8'P appears in multiple
instances in a statement or formula, we always mean that all instances of A8'P are either
H"'P or B"'P.

We have the following fundamental properties:

Proposition 13.6 Let s E R and 1 < p < oo. Then the space of compactly supported
functions Co((R") is dense in A''P(R"). Moreover, A-'P'(Rn) is the dual space of AS'P(Rn),
where 1/p + 1/p' = 1.

Proposition 13.7 (Lift Property) Let s (E R and 1 < p < oc. Then

A"'P(R") = {f E A--'P(R ) : e A-"~'P(R7), 1 < i < n}.

3.1.1 Function Spaces on an Open Subset of R'

Let Q be an open subset of R'. Unless otherwise stated, we assume for simplicity that Q is
bounded and has smooth boundary, though many of the results that follow carry over for
more general open sets. Given any tempered distribution f E S'(R"), we can consider its
restriction rQ(f) to (CO (Q))'. Then we have the corresponding function spaces on Q:

Definition 13.8 For s E Z+ and 1 < p < oo, the space W'P(Q) is the space of restrictions
to Q of elements of W8'P(Rn), where the norm on W'P(Q) is given by

||f||ws'P(n) = inf ||g||ws'P(Rn).9:rm(g)=f

For s E R and 1 < p < o, the spaces HS'P(Q) and BS'P(Q) are defined similarly.

If we consider the function space

A"'P(Q) := {f E A8'P(R) : supp f C

then an equivalent definition of A',P(Q) is

A8"'P(Q) = AS'P(Rn)/A'P(R \ Q). (13.9)

Furthermore, we have the following:

Proposition 13.9 Let -oc < s < oc and 1 < p < oc. Then Co (Q) is dense in A8"'(Q A
Moreover, A-'P'(Q) is the dual space of A'P( A), where l/p+ 1/p' = 1.

Define the upper half-space

R = { (fi,...,n) E R : n > }.

We have the following extension property:
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Theorem 13.10 Let 1 < p < oc. For any k E N, there exists an extension operator

Ek : A'P(R') -+ A'P(Rn)

for \sl < k.

3.1.1 Function Spaces on Manifolds

Ultimately, the function spaces which are important for us are those which are defined on

manifolds (with and without boundary). Let X be a compact n-manifold or an open subset

of it. We can assign to X the data of an atlas {(Ui, .pi, Il)}, where: (1) the Ui are a finite

open cover of X; (2) the oj are a partition of unity with supp oi C U; (3) each 4i is a
0

map from U to R', where -1i is a diffeomorphism onto an open subset of R' if Ui C X
or otherwise, J2i is a diffeomorphism onto an open subset of R$ with Ji(Ui n aX) c lRn.
With this data, we can define the function spaces A'P(X) in terms of the function spaces
on R" and R".

Definition 13.11 Let X be a compact manifold or an open subset of it. Let {(U, pi, c1i)}
be an atlas as above. Then for -oc < s < o and 1 < p < oc, we define AS'P(X) to be those

distributions f on X such that

1/p

11f flAsP(X) jj)(3i~j < )+~ pf) 8 P~l 00.

U 0 /nxs
We define W 8 'P(X) for s E Z+ and 1 < p < oc similarly.

If we have two different atlases, the following proposition implies that we obtain equiv-

alent norms:

Proposition 13.12 Let f c A8'P(R"), s E R and 1 < p < oc. (i) If V E Cg (R") then

of G A5'P(R). (ii) If 1 is a diffeomorphism of R' which is equal to the identity outside a

compact set, then T*(f) E A*'P(R").

In particular, if X is a bounded open subset of R', the above furnishes a definition of

AS'P(X). On the other hand, we also defined A"'P(X) to be the restrictions to X of As'P(Rn).

These two definitions of A'P(X) yield equivalent norms. Consequently, if X is a compact

manifold and X is a closed manifold containing X, we have the following:

Proposition 13.13 For -oc < s < oc and 1 < p < oo, A'P(X) is the space of restrictions

to X of As'P(X ).

Corollary 13.14 Let X be a compact manifold (with or without boundary) or Euclidean

space. If D is a differential operator of order m, then D : A'P(X) -+ A'-"nP(X) for all

s E R and 1 < p < oc.
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Because function spaces defined on manifolds are locally the function spaces defined on
Euclidean space, many of the properties of the latter carry over to the manifold case. For
instance, if X is any closed manifold containing the manifold X, we can define

A )=P(X) =(X) : supp f C X}. (13.10)

We have the following theorem:

Theorem 13.15 Let X be a compact manifold. We have that C (X) is dense in A8'P(X)
and multiplication by a smooth function defines a bounded operator. Moreover, for any
s e R, A-"'P'(X) is the dual space of A'P(X), where p' = p/(p - 1). If X is closed or
s < 1/p, then AS'P(X) = A 8'P(X).

The trace theorem, Theorem 13.3, readily generalizes to manifolds with boundary:

Theorem 13.16 Let X be a compact manifold with boundary OX.

(i) For s > m+ 1/p and m C Z+, the trace map (13.5) extends to a bounded operator

rm : -H"'P(X) -- em-lB*-1/P-j(8X). (13.11)

(ii) For any s C R and m c Z+, there exists an extension map em : Dml B8-l/P-j'P(aX) -4
H*'P(X) such that for s > m+ 1/p, we have rmem = id.

(iii) H8'P(X) may be replaced with BS'P(X) in the above.

Further Properties

In the following, X is a compact manifold (with or without boundary).

Theorem 13.17 (Embedding Theorem) Let -oo < t < s < oc and 1 < p, q < oc with

s - n/p ;> t - n/q (13.12)

(i) We have embeddings

BS'P(X) -4 B 1'q(X) n Hi' q(X) (13.13)

H"'P(X) " Hl'' (X) n Bt'4(X). (13.14)

If the inequality (13.12) is strict, these embeddings are compact.

(ii) We have the monotonicity property

H'P(X) C Hs"'(X), p > q. (13.15)

(iii) If t > 0 is not an integer, then

Hn/p+tP(X) " Ct(X)

Bn/p+t,PX ) " CI(X ).
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Next, we have a multiplication theorem. Namely, given two functions f and g, we
wish to know in which space their product fg lies (where it is assumed that f and g are
sufficiently regular so that their product makes sense as a distribution).

Theorem 13.18 (Multiplication Theorem)

(i) For all s > 0, we have AS'P(X)n L (X) is an algebra. Moreover, we have the estimate

||fg||As,P < CO(|f|AsP|gI 1 L- + |flILcw g9 As,P).

In particular, if s > n/p, then A"'P(X) is an algebra.

(ii) Let s1 s2 and suppose S1 + s+ > n nax(0, - 1). Then we have a continuous

multiplication map

Asl'(X) x As2'P(X) -> As'P(X),

where
s1 if s2 > n/p

S1 + S2 - n/p if s 2 < n/p-

Both statements are standard facts, whose proofs involve the paraproduct calculus. For (i),
see e.g. [49]. For (ii), see [41]. O

Theorem 13.19 (Fubini Property) For any s > 0, we have

B"'P(X 1 x X 2 ) = LP(Xi, BS'P(X 2 )) n LP(X 2 , B'P(X1 )).

Proof The case when X1 and X2 are closed manifolds follows from the Euclidean case,
which is proved in [51, Theorem 2.5.13]. Now suppose Xi or X2 has boundary, say both.

Let 11 and 12 be closed manifolds extending X1 and X 2, respectively. Then on the one

hand, by definition, we can find a function f on X1 x X2 such that flxIxx 2 = f and

I (I B01,-2>,P( 1 2) 2) f|,B281 ,S2P(X1 x X 2 )'

The Fubini property for f on X1 x X2 , i.e. f E LP( 1 1, B 8'P(1 2)) n LP(I 2 , Bs'P( 1 )) implies

via restriction that f E LP(X 1 , B8 'P(X 2)) n LP(X 2, B'P(X1 )). Conversely, for any fixed s,
we know that there exists bounded extension maps Ej : C (Xi) -+ C (X) such that

Ej : BS'PXi)-+ B'P(X)

Ei : LP(Xi) -+ LP(Xi), i = 1, 2.

We can compose the extensions E1 and E2 to give us an extension map on the product:

E = Ei o E2 = E2oE 1 : C (X1 x X 2 ) - C' (X1 x X 2).
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Thus, given f c LP(XI, B9 'P(X 2)) n LP(X 2 , B8'P(X 1 )), we have that

E(f) c LP(X1, B'P(X2 )) nmLP(X 2 , B'P(X1 )) = Bs'P(X 1 X> X 2 )

Restricting back to X1 X X2 , we conclude that f E BS'P(X 1 x X 2 ). D

13.2 Anisotropic Function Spaces

In the previous section, we defined the classical function spaces, all of which were isotropic.
That is, the regularity parameter s measures smoothness in all directions equally. On the
other hand, it is natural to consider spaces that measure different amounts of regularity in
different directions. More precisely, suppose we are given a splitting of R" = R"1 x Rn1 2. The
anisotropic function spaces we consider are those that possess an extra degree of regularity
in the second space factor Rn2. To measure this, we introduce the following family of Bessel
potential operators acting on Rn2:

J)2 F' Tf 2 f, s2 (13.16)

where (((2)) := (1 + 1((2)12)1/2 for ((2) E Rn2. These operators are the anisotropic versions
of the usual Bessel potential operators acting on R':

Jsf = F' (()" 8 f. (13.17)

We now define the following anisotropic function spaces:

Definition 13.20 Let si E R, 82 > 0, and 1 < p < co.

(i) Define the anisotropic Bessel potential spaces

H(si s2)'P(Rn1 x Rn2) ={f e S'(Rn) :||f||H(s,2>,P = 1J(' 2 )fHHsiP < 00). (13.18)

(ii) Define the anisotropic Besov spaces

B(s1 82),P(Rni x Rn 2 ) {f E S'(R") :1! Bf|(s1,82),P = 11J(2)fB1iP < 0}. (13.19)

Thus, the si parameter is an isotropic parameter which measures how much regularity a
function has in all directions, while the s2 is the anisotropic parameter which measures
extra smoothness in the R12 directions. As a special case, when si and s2 are nonnegative
integers, we see that H(s82),P(Rni x Rnf2) are anisotropic Sobolev spaces.

We can also define anisotropic spaces on products of open subsets of Euclidean space
in the same way as we did for isotropic function spaces. Thus, if Q, C R"1 and Q2 C Rn12
are bounded open subsets (with smooth boundary), we define |1f||Bs(1,2),P(nXQ 2 ) to be the
closure of all smooth functions on Q, x Q2 in the norm

f||B( i,32),P(ni x 2) 7= EB 12 R X .111 g sis12>,P(Rn1 X9R-2)' (13'20)
9G(1ai)P( xn2
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From this, using local product coordinate charts, we can define anisotropic Besov spaces
on products of manifolds with boundary. More precisely, we can define the spaces B(s1 S2),P(Xi x
X 2), where X1 and X2 are either Euclidean space or compact manifolds. In detail, let X

be any compact n-manifold (with or without boundary). We can assign to X the data of
a finite collection of triples {(Uj, pi, <i)}, which we call a coordinate system, where: (1)
the Ui are a finite open cover of X; (2) the pi are a partition of unity with supp i C Uj;
(3) each Gi is a map from Ui to R", where <bi is a diffeomorphism onto an open subset

0

of Rn if U, C X or otherwise, Qi is a diffeomorphism onto an open subset of R'+ with

4bi(Ui n 9X) C ORT. On Euclidean space, we may also assign a coordinate system, namely

the trivial atlas {(X, 1, id)}.

Definition 13.21 Let X1 and X 2 be either Euclidean space or compact manifolds and let

{U Y, H (j ,(j)} be coordinate systems for Xj, j = 1, 2 as above. Let si E R, s2 ;> 0, and
1 < p < 0.

(i) Define B(s,2),P(Xi x X 2) to be the closure of the space of smooth compactly supported
functions on X1 x X2 under the norm

1/P

||f||1B(,,2>,P(X1xX2) 2) 1) 2) nss,2 j~2x~2

where R stands for R~a or R" , accordingly, j = 1, 2.

(ii) Suppose Xi is a bounded open subset of Rn and X 2 is a compact manifold. Then

an equivalent definition for B(si,2),P(Xl x X2 ) is that it is the space of restrictions of
B(s1,s2),P(Rn x X 2 ), i.e., the norm on B(s1,-2),P(X 1 x X 2 ) is given by

1f 16|enss1s2)(XX,(O xx 2 ) 9B(s,2.PI(RnXX 2). (13.21)

9|x1xx 2=f

We have that multiplication by a smooth compactly supported function is bounded on

B(s1s2),P(Rn1 x Rn2) (see [36]). Likewise, if Dj are diffeomorphisms of Rfl that are the iden-

tity outside a compact set, then pullback by (bi x<DP2 is a bounded operator on B(s1,82),P(Rnl x

Rn2). It follows from this that different choices of atlases define equivalent norms in the

above definition.
Note that if X1 and X2 are manifolds with boundary, then X1 x X 2 is a manifold

with corners. Nevertheless, the above definitions still make sense and the corresponding
anisotropic function spaces are still well-behaved, as we will see below.

Further reading about the anisotropic function spaces we have defined can be found in

[36]. We state the main results we need from [36], which are essentially the generalizations of

the basic properties of isotropic function spaces from the previous section to the anisotropic

case.
The first result we have is the generalization of trace and extension properties in Theorem

13.16. For simplicity, we state this generalization for the case m = 1. Recall that if
X is a compact manifold with boundary, then we have a (zeroth order) trace map r :

185



13. FUNCTION SPACES

BsP(X) -+ B8-1/P'P(aX), s > 1/p, which "costs" us 1/p derivatives and an extension
map Bs-l/PP(OX) -+ Bs'P(X) which gains us 1/p derivatives. Suppose now we have X =
Xi x X2 , where X 1 and X2 are compact manifolds (with or without boundary). When
taking a trace to the boundary, the anisotropy of a function can be either tangential or
normal to the boundary. When the anisotropy of a function is tangential to the boundary,
then the trace and extension operators preserve this anisotropy, since tangential operations
commute with such operators. On the other hand, if there is anisotropy in the normal
direction, then if there is enough anisotropy, taking a trace costs us 1/p derivatives only in
the anisotropic directions, when p > 2. This is summarized in the following:

Theorem 13.22 (Anisotropic Traces and Extensions) Let X = X1 x X 2.

(i) (Tangential anisotropy) Suppose X 1 has boundary 0X 1 and X 2 is closed. Then for
s 1 > 1/p and 82 > 0, the trace map satisfies

r : A(s1~s2)'P(Xi x X 2 ) -+ B(s1-1/82)'P(OX 1 x X 2 ). (13.22)

Furthermore, for all s1 C R, there exists a boundary extension map

e : B(s1~/P82),P(X 1 x X 2 ) -+ A(s1,82),P(X 1 X X2),

and for s1 > 1/p, we have re = id. Moreover, let X 1 be any closed manifold extending
X 1 . Then for every k E N, we have an extension map

Ek : A(s1,S2),P(X1 x X 2 ) -- A(s1,82)'P(X 1 x X2),

for |sil < k.

(ii) (Mixed anisotropy) Suppose X 2 has boundary (X 2 and X1 is closed. Then for s1 > 0,
S2 > 1/p, the trace map satisfies

r : H(s1,82)'P(X 1 x X 2 ) -+ H(81,32-1/P-<2),P(X 1 x OX 2 ), (13.23)

r : B(s1,32),P(X 1 x X 2 ) -+ B(81-E1,82-1/-2),P(X 1 x OX2 ), (13.24)

where e1 and E2 satisfy the following:

(a) if p > 2, then cl = 0 and E2 > 0 is arbitrary;

(b) if p = 2, then E1 = e2 = 0;

(c) if 1 < p < 2, then e1, e2 > 0 are arbitrary.

Next, we recall that for isotropic Besov spaces, we have the embedding

Bs'P(X) '- C0 (X) (13.25)

if s > n/p, where n = dim X. Thus, we have the following corollary:

Corollary 13.23 Let X = X1 x X 2 and ni = dimX 2 . Then if si > ni/p and S2 > n2 /p,
we have B(s1,82),P(X 1 x X 2) '-+ C 0(X 1 x X 2).
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Proof By (13.25) and Theorem 13.22, we can take successive traces to conclude
B(81,S2),P(X1 x X 2) " Co(XI, Bs1+S2-1/'P(X2 )) since si > ni/p. By (13.25), we have
BS1+s2-n1/PP(X2 ) " C0(X 2 ) since si + s2 - ni/p > n2/p, whence the theorem follows. O

Recall that we have a multiplication theorem for Besov spaces. Such a theorem is proved
using the paraproduct calculus. By redoing the carefully paramultiplication for anisotropic
Besov spaces, one can also prove an anisotropic muliplication theorem. We state such result
one for p = 2:

Theorem 13.24 (Anisotropic Multiplication) Let dim Xi = ni, i = 1, 2 and suppose s1 >
ni/2. Let s, s' > 0 and let s2 <; min(s', s2) satisfy s2 < s1 + S'- + s'2 - "ljl2. Then we

have a multiplication map

(B(s1,)( X X 2 )nL] x 1 2  x X2) n LO] -+ B(sm(2)) 2 (X1 x X 2 ). (13.26)

Also of fundamental importance is that pseudodifferential operators and product-type
pseudodifferential operators are bounded on our anisotropic function spaces (and hence also

on the classical isotropic function spaces as a special case). See Theorems 15.2 and 15.4.

13.3 Vector-valued Function Spaces

Up to now, we have considered only scalar valued functions. It is also possible to consider

functions with values in a Banach space X. In the function space literature, such functions

are known more succinctly as vector-valued functions. From Definition 13.1, we can gener-

alize the definition of the scalar-valued classical function spaces to vector-valued case in a

straightforward way:

Definition 13.25 Let X be a Banach space.

(i) For s C Z+ a nonnegative integer and 1 < p < oc, define the vector-valued Sobolev

spaces

W"'P(R",' X) = { f E S'(R', X) : |||w,,(Ran X) = 1 ( |lDcyf||x 1lLP(an)) <0

(13.27)

Define W'(OO(R", X) with the obvious modifications of the above.

(ii) For s E R and 1 < p < oo, define the vector-valued Bessel potential spaces

H"P(R, X) : (E S'(R, J) : |1f11IH1>P(Rn,X) 1/2 2ifjX LP (R-) <0

j=0

(13.28)
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(iii) For s G R, 1 < p < oc, define the vector-valued Besov spaces

BS'P(R",X) = {f E S'(R", X) : ||f||BsP(R,x) (Z |12'sfjK1P) /PLP < o}
j=0 LP(-

(13.29)

Let us clarify some of the objects occurring in the above definitions. The space S'(R", X)
is the space of X-valued tempered distributions, i.e. the space of continuous maps from
S(R') to X. When s = 0, the space W8'P(R", X) = LP(R", X) is also referred to as a
Bochner space. Here, the fj are the dyadic Littlewood-Paley components of f, defined just
as in the scalar case.

When X is a Hilbert space, the Fourier analytic techniques of the scalar-valued function
spaces follow through for vector-valued spaces. For example, one has the following operator-
valued multiplier result, which generalizes the classical (scalar) Mihklin multiplier theorem:

Theorem 13.26 [15] Let m : R" -+ B(X) be a map into the space of bounded operators on
a Hilbert space X. Suppose |x|"o9m(x) c B(X) for all x G R" \ {0} and all multi-indices
a. Then

f -4 F-'m.Ff

is bounded on LP(R", X) for all 1 < p < oo.

On the other hand, if X is a general Banach space, we no longer have a multiplier
theorem as above, even for multipliers with values in scalar operators. However, when X
is a Banach space that satisfies the so called UMD property2 , then the above result holds
if m(x) is a scalar operator for every x, i.e. we have a scalar operator-valued multiplier
theorem for UMD Banach spaces. In particular, we have the following:

Theorem 13.27 Let X be a UMD Banach space. Then WS'P(IR", X) = H'P(R" , X) for
all s E Z+-

If one wants to generalize Theorem 13.26 to UMD Banach spaces, one needs a stronger
condition on the multiplier m, namely that it be R-bounded. This is a technical condition,
which unfortunately, is not easy to verify (see [15]). For comparison, vector-valued Besov
spaces are more well-behaved than vector-valued Lebesgue spaces with respect to the above
considerations, since the scalar operator-valued multiplier theorem holds on BS'P(Rn, X) for
any Banach space X, not just those that are UMD (see [2]).

From the above considerations, one sees that vector-valued function spaces need to be
treated with more care than their scalar-valued counterparts. However, we should note that
all the spaces A5 'P(X), for X a Euclidean space or a compact manifold (with boundary),
are in fact UMD, 1 < p < 00, s E R. Moreover, the results which we need for vector-valued
function spaces hold without restriction on Banach space X. Namely, we have the following
vector-valued results which generalize the corresponding well-known scalar-valued results:

Theorem 13.28 Let X be a Banach space.
2 A Banach space X has the UMD property if and only if the Hilbert transform is bounded on L(R, X)

for some (and hence any) 1 < p < oo.
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(i) (Sobolev embedding) Let 1 < p, q < o and k a nonnegative integer. Then if 1 = - kq p n'

we have the embedding Wk'P(Rn, X) C L(R", X). If k > n/p, then we have the

embedding Wk'P(Rn, X) C C0(R', X).

(ii) (Gagliardo-Nirenberg inequality) Let m be a positive integer, let 1 < p, q < 00, and let
3 be a multi-index such that 0 < |31 < m. For

|0 | 1 1 -0 0
_- , _ + -,
m r q p

there exists a constant c such that

1' 0

lD~f ftr(R,X) cli 11- Z IlD'f LP(IRn,X))-

Proof (i) The usual scalar Sobolev embedding theorem can be proven using integration
by parts and applications of Holder's inequality. A proof of this can be found, e.g. in [11].
The proof there generalizes to the vector-valued case from the results of [39], which establish
that if f C W 1 '1 (R, X), then lf(-)||x E W1'1(R).

(ii) This is the main theorem of [43]. D

14 Interpolation

14.1 Linear Interpolation

The notion of interpolation between two Banach spaces is an old one, going back to work
of Calderon and P. L. Lions. A systematic treatment of interpolation can be found in the
treatise [50]. The basic idea of behind interpolation is simple. Let X0 and X1 be two Banach
spaces continuously embedded within a common topological vector space. Such a pair of
spaces {Xo, X 1} is said to be an interpolation couple. Given such an interpolation couple,
one wishes to find a family of "intermediate" spaces X0 , parametrized by 0 E (0,1), so that
if a linear operator T : Xo + 1 -+ X o -+ X1 restricts to a bounded operator T : Xi -+ X,
i = 0,1, then T induces a bounded operator T : X0 -* X0. There are many ways one may
construct such a family of interpolation spaces, the two most common methods being the
complex interpolation and the real interpolation methods.

While both are important, we will focus on the real interpolation method, as it is the
only method of interpolation we need. There are several ways of defining this method, and
we shall use the so called K-method. Given X0 and A1 two Banach spaces as above and
0 < t < o, define

K(t,x) inf (||xo||xo +t||x1||x1 ), x E AO +A1.
X=X0+X1

Observe that X0 + Xi is a Banach space under the norm K(1, x), and that for every t, the
norm K(t, x) defines an equivalent norm on Xo + X1. Using this functional, then for any
given p E [1, oo], we can define a family of interpolation spaces (Ao, Xi)o,p as follows:
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Definition 14.1 Let {Xo,X} be an interpolation couple. Let 0 < 0 < 1. If 1 < p < oo,
define

(Xo, X1)o,= {x : x E Xo + X1, |a|(x0,x1 )0  ( (t-OK(t, a))" dt) 11P < oo} (14.1)

and if p = oc, then define

(X0, X 1)o,= {x : x C Xo + X 1, al(Xox 1 ) = sup t-0 K(t, x) < oo}. (14.2)
0<t<oo

We collect some basic properties of these spaces.

Proposition 14.2 Given an interpolation couple {X 0 , X1}, 0 < 0 < 1, and 1 < p < oo, we
have the following properties:

(i) If Xo = X1 , then (X0,X1)0,p =X0 = X1 .

(ii) If Xo cXI, then for0 <0 < < 1 andl <p p3 oo, we have

(0,X1)o,p C (X0,X 1).

(iii) There exists a positive number co,p such that for all x E X0 n X1

|[x|(XoXi)eP coPlIx xlj4 .

(iv) Let {X 0 , X1} and {Yo, Y1} be interpolation couples, and let T : X0 + X1 --+ Yo + Y1 be
a linear map such that the T : Xi - Yi are bounded, i = 0,1. Then T: (o, X1)o,p -+
(X0, X)o,, is bounded and its operator norm is bounded by ||T|| | , .

The most classical examples of interpolation spaces are the usual Lebesgue spaces. Given
1 po, pi < oo, 0 < 0 < 1, and p such that = 11 + -, we have that

P~ PO P1

(LP(X), LP1 (X))0,p = LP(X), (14.3)

where X is any o-finite measure space. In (14.3), one can replace the scalar valued Lebesgue
spaces with vector-valued Lebesgue spaces, also known as Bochner spaces.

The literature on interpolation is vast and we will only develop as much of the tools
as needed to study interpolation on the spaces of interest to us, namely, Besov spaces.
To this end, we consider those pairs of interpolation spaces that have operators providing

(essentially) the optimal decomposition of an element with respect to minimizing the K
functional.

Definition 14.3 An interpolation couple {X0, X1} is said to be quasilinearizable if there
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exists operators V(t) E L(Xo + X1, X), j E {0, 1}, t c (0, oo), such that

Vo(t) + Vi(t) = idxo+x1

||Vo(t)x||x. c||x||x0, x E Xo

||Vi(t)x||xi < ct-1Wx||xo, x E X0

|Vo(t)xx ct||x|x71, x E Xi

|Vi(t)cx|xi < c|x|x1 , x E Xi,

where the constant c is independent of x and t.

Lemma 14.4 Let {Xo, X1 } be a quasilinearizable interpolation couple. Then

K(t, x) < |\Vo(t)x||xo + t|V1(t)x|| 5 2cK(t, x). (14.4)

Thus, we see that with the operators Vo(t) and Vi(t), we can write any x E o + X1

as x = V(t)x + V1 (t)x, with such a decomposition yielding an optimal decomposition in
computing the value of K(t, x), up to some constant independent of t.

A convenient fact is that (vector-valued) Sobolev spaces provide quasilinearizable inter-
polation couples. Namely, if X is any Banach space, then {Wko'P(Rn, X), Wkl'P(IR, X)} is
a quasilinearizable interpolation couple for all 1 < p < oc and 0 < ko 5 k1 .

Definition 14.5 Let 1 < p < oc and s > 0. Define the Besov space

B 8 'P(R', X) = (LP(R', X), Wk'P(R', X)),/k,p

where k > s is any positive integer.

This, coincides with Definition 13.25 for Besov spaces. Furthermore, for any integer
m > s, an equivalent norm is defined by

|f|ns,Pc 1fn,x) =flfLP(Rn,x) + ( |h|~5f"o LP(Rx)| 1dh , (14.5)

just as in Proposition 13.4. For further reading on Besov spaces, see [2, 501.
By Proposition 14.2, an immediate consequence of a Besov space being an interpolation

space is the following corollary:

Corollary 14.6 Let X be a Banach space and 1 < p < oc. Let T: LP(lRn, X) -+ LP(Rn, X)
be a bounded linear operator that restricts to a bounded operator T : Wk'P(Rn, X) -+
WkP(R', X). Then T : Bs'P(R", X) -* B8'P(R", X) is bounded for any 0 < s < k.

This corollary is useful because it allows us to obtain estimates on Besov spaces from
estimates on Sobolev spaces, the latter being much easier to obtain. While this corollary
is tremendously useful, unfortunately it only applies to linear operators. Therefore, it is of
interest to see how one might extend the above corollary to nonlinear operators.
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14.2 Nonlinear Interpolation

There is a particular nonlinear interpolation result, due to Peetre [38], which will be useful
for our purposes. Essentially, Peetre's result is that one can interpolate between Lipschitz
operators.

Theorem 14.7 [38, Theorem 2.1] Let {Xo, X1} and {Yo,Y 1} be two interpolation couples
and let T : Xo + X1 -+ Yo + Y1 be any map. Let X = (Xo, X)o,p and Y = (Yo, Y 1)o, for
some 0 < 1 < 0, 1 < p o. Next, let Do and D1 be subsets of X0 + X1 on which we have
the estimates

|Tx - Txo||yo C||x - xo||xo ifx-xo E Xo,o EDo (14.6)

flTx - Txilly , < Cflx - x1 |x, if x - xi E X1, xi E Di, (14.7)

where C is some constant. Then

|Tzo - Txi ly < Cllxo - x1||x if xo E Do, x1 c D 1, xo - x1 E X. (14.8)

In practice however, one rarely has a globally Lipschitz operator, i.e., an operator for
which the estimates (14.6) and (14.7) hold for all x, xo, xi satisfying the hypotheses.
However, in certain instances, one can modify the proof of Theorem 14.7 to obtain a local
interpolation theorem that satisfy the above estimates on a restricted domain. We present
one such result below for Besov spaces, which is the only situation we will need. This result
is needed to prove Lemma 10.8 in Part III.

Theorem 14.8 Let Z be a Banach space. Let Ur be the open ball of radius r centered at
the origin in L' (R', Z). Let Xo = WkoP( R', Z) and X1 = Wk,'P(R', Z), where k1 > ko,
and let T: Ur n Xo -+ X0 be a map, 1 < p < oo. Suppose that T satisfies

Tx - Ty~x, :5 Cj|x - y||x,, x,yEUrfnXo, x-yEXi, i=0,1,

where the Lipschitz constant C depends on ||xLx(Rln,Z), |Y||Lx(R1n,Z). Then there exists
a constant 0 < A < 1, depending on k1 - ko, with the following significance. If x, xO E
U)A, n B'P(R", X), where ko < s < k1 , then

||Tx - TxolBsP(RnZ) CX - xo BSP(Rn,Z), (14.9)

where C is a constant depending on k1 - ko, ||x||L*(Rn,Z), and IXOUIL*(Rn,Z).

Proof We know that B8'P(R", Z) = (Xo, X1 )o,,, where s = (1 - 0)ko + Oki. Let
b = Tx - Txo and a = x - xO. Thus, by the definition of the real interpolation functor, the
theorem follows if we can show that K(b, t) CK(a, t).

To this end, we use the fact that (Xo, X1 ) is a quasilinearizable interpolation couple.
Hence, there exists operators Vo(t) and Vi(t) such that, setting ai(t) = V (t)a, i = 0,1, we
have a (t) E X and

Jjao(t) jxo +||jai(t)||x, < 2cK(a, t)

with c independent of t. In fact, the constant c only depends on ki - ko. This is because,
with our particular choice of Xo and X1, the Vi(t) can be constructed explicitly (see [50,
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1.13.2]). Moreover, this construction has the crucial property that

Loi~~h (R-,Z) -< c Laf (R-,Z)-

So let y(t) E Xo + X1 be such that

ao(t) = x - y(t)

ai(t) = y(t) - xo.

If we take A = 2(c+1), then the hypotheses imply that ||af|L(R-,Z) is sufficiently small

so that a (t), y(t) E Ur for all t. Moreover, we have the estimate Iy(t)ILo(Rn,Z) 5 cIX -
Xo lLo(Rn,Z)+HXHLc(Rn,Z). Then by definition of the K functional and using the hypotheses

on T, we have

K(b,t) < ||Tx - T y(t)llx0 + t||Ty(t) - To||x,

5 C11X - y(t)|x +HtCy(t) - xollxi
= C(lao(t)||xo + t||a1(t)lx 1)
< 2CcK(a,t).

Then C = 2Cc is a constant depending on the appropriate quantities. This proves the

theorem. 1

15 Elliptic Boundary Value Problems

On a closed manifold, elliptic operators are automatically Fredholm when acting between

suitable function spaces, say, Sobolev spaces. The way this is proved is by constructing a

parametrix for the operator, which is an inverse for the operator modulo a compact operator.

On a (compact) manifold with boundary, the construction of a parametrix requires extra

data, namely a suitable choice of boundary conditions. The theory for constructing such

boundary conditions is well understood and can be described naturally in terms of the

pseudodifferential calculus of operators on the manifold and its boundary. A standard

reference for this characterization is [19].
In this section, we first review the definition of a pseudodifferential operator and state

the fundamental properties of the pseudodifferential algebra. Next, we define the notion of

a (pseudodifferential) elliptic boundary condition and several theorems (Theorems 15.13,
15.19, and 15.25) concerning elliptic estimates for elliptic boundary value problems, in

increasing order of strength. We present these theorems incrementally to illustrate the

various degrees of sophistication needed for each of them. This is not just a mental exercise;

in fact, our proof of Theorem 15.13, which involves the symbol calculus of pseudodifferential

operators, lends itself to the analysis of the resolvent of an elliptic boundary value problem,

which we pursue in Section 15.5. Theorem 15.19 is essentially due to [46], and its power

draws from the wide range of parameters and function spaces for which it applies. Here, we

obtain a stronger result than Theorem 15.13 because of the construction of certain special

pseudodifferential operators, the Calderon projection and Poisson operator associated to

an elliptic differential operator on a manifold with boundary. The Calderon projection is a
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projection onto the Cauchy data of the kernel of the associated elliptic operator. We also use
this operator in Part I to study the tangent space to our monopole spaces. Because we will
not need Theorem 15.19 in its full generality, we summarize the most relevant applications
of Theorem 15.19 in the main body of this thesis as Corollary 15.22 for ease of reference.
Finally, we have Theorem 15.25 for its application in obtaining elliptic bootstrapping on
anisotropic function spaces in Part III.

The last part of this section, concerning the construction of a resolvent of an elliptic
boundary value problem, is essentially a parameter-dependent version of the first half. Re-
call that the resolvent of an operator A acting between two Banach spaces is the operator
(A - A)-', where A E C is chosen such that the inverse exists. For an elliptic boundary
problem, such a resolvent, when it exists, can be constructed out of A-dependent pseudod-
ifferential operators. We will thus need to introduce A-dependent symbols and function
spaces, after which we can state a particular resolvent estimate which we need for the
analysis of Part III.

15.1 Pseudodifferential Operators

Let us recall the definition of a pseudodifferential operator (PSDO) on R4. For further
reading, see e.g. [19], [59]. We begin our discussion by defining pseudodifferential operators
in terms of double symbols, also known as amplitudes. That is, for every m E R, define the
double symbol class Snt (R' x R' x R') to be the space of all smooth functions a(x, y,() E
C (R' x R' x Rn) such that

sup |I 0a(x, ) < Cop ( )m-al (15.1)

for some constant C, depending on the multi-indices a and #. In other words, S"(R" x
R" x R4) is a Frechet space topologized by the family of seminorms

||a||sm := (()-"±I sup 1806[a(x,). (15.2)

Given a double symbol a(x, y,() E S'(R' x R' x R'), we obtain the associated mth
order pseudodifferential operator Op(a) given by

Op(a)f = (2,r)--"f e (XY)a(x, y, ()f (y)dyd , (15.3)

defined for f c Co((R"). Let OS"' denote the class of all mth order pseudodifferential
operators obtained by (15.3) for a E S"'.

There is an equivalent characterization of pseudodifferential operators in terms of left
and right symbols. That is, for every m consider the symbol class S"' = Sm((Rn x R')
consisting of the subspace of all functions a(x,() = a(x, y,() in Sm~(RI x Rn x Rn) that
are independent of y E R. From this, we can consider the associated left-quantized and
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right-quantized operators, respectively:

Opi(a)f = (27r)~J ei(x~Y)a(x, ()f(y)dyd , (15.4)

Opr (a)f =(27r)~" ei(-Y)-a(y, ()f (y)dyd(. (15.5)

It turns out that the space of operators we obtain by left and right quantization of symbols
Sm(R x R') is the same as the space of all mth order pseudodifferential operators obtained
by quantizing double symbols in Sm (R x RI x Rn). This follows from the following lemma:

Lemma 15.1 Let a E S"(R" x R" x R") be a double symbol of order m. Then there exist

symbols ae, ar G S'(Rfn x Rn) of order m such that

Op(a) = Opi(ai) = Opr(ar).

The maps sending a to a, and ar define continuous maps from S"(R" x R" x R4) to

Smn(Rn x Rn), respectively.

Proof Our proof, which follows [59], proceeds as follows. First, we show that every
amplitude can be expressed in terms of a left symbol. We have the following computation:

Op(a)u = (27r)- J ei(X~Y)a(x, y, ()u(y)dyd

= (27r)~ J ei(X-Y) ((27)-n f ei(Y-Z)Oa(x, z, ()dzdO) u(y)dyd

= (27r)-n e ~)-( -O) ((2r)-n f ei(X-z)a(x, z, )dzdO) u(y)dyd

= (27r)-J ei(X-Y) ((27)-n ei(-z)Oa(x, z, + O)dzdO) u(y)dyd.

In passing from the second to third line above, we disregarded the order of integration and
permuted exponential factors. This is justified in the sense of oscillatory integrals, i.e., such
a formal manipulation is justified when the operator Op(a) acts on a compactly supported
smooth function u (see [59]). Altogether, the above computation shows us that if we define

ae(x, () = (27r)- J e-i(x-z)-()a(x, z, ()dzdO,

then Opf(af) = Op(a). An analogous computation shows that

ar (y, () = (27r)-~/ e-i(z-).( -O)a(z, y, ()dzd6,

satisfies Opr(ar) = Op(a).

It remains to show that, say, at is a symbol of order m if A is a double symbol of order
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m. For this, we write

ae(x, ) = (27r)~ j eiz.Oa(x, x + z, ( + O)dzdO,

we exploit the oscillatory nature of the exponential e-iz along with the smoothness and
decay properties of the symbol a(x, x + z, ( + 0). More precisely, observe that we have the
following identities:

(z)-2N (D0 ) 2N eiz.0 __-
2M (Dz)2M -iz-0 - -iz-0

for all integers N, M > 0. Here, (z) 2 = 1 + Iz|2 , (Dz) 2  1 + (i&z) 2 , and similarly for z
replaced with 0. From these identities, a formal integration by parts implies that as an
oscillatory integral, we have

at(x, () = (27r)-" e-iz- (Dz) 2 J ()-2M (Do) 2N (z-2N a(x, x + z, + 0)dzd0. (15.6)

Using the fact that a is a symbol, then from the trivial inequalities

(( + 0) ((0)

+ -i0)-1 (o

one easily deduces that the integrand of (15.6) is dominated by C (z)-2N (0)-2M+ml ( )m

which is integrable for sufficiently large M and N. A similar bound applies to 0f0gaa,
where m is replaced with m - cla. It follows that ae(x, () E S m . Moreover, it readily follows
from our computations that the map a h-4 at is continuous as a map from the space of
double symbols to the space of symbols. F

Because of the above lemma, from now on, when we refer to the symbol of a pseudod-
ifferential operator, we always mean its left symbol. We let OSm = OS m (R") denote the
space of pseudodifferential operators of order m on R".

We have the following standard theorem concerning pseudodifferential operators:

Theorem 15.2

(i) For all m1, m2 E R, we have the composition rule OSm" o OS
1 2 _+ OS_ m+m2.

(ii) If P E OS', then P is bounded on AS'P(R") for all 1 < p < oo and s E R. Moreover,
for any fixed s and p, the operator norm of P is bounded in terms of only finitely
many symbol semi-norms S.

a,/3

Proof (i) Given two operators A e OSm
i and B E OSm2, we have that A = Ope(a)

and B = Opr(b) for some a E Smi and b E Sm2 by the previous lemma. Thus, it follows
straight from the definitions that A o B = Op(a -b), where a -b E Sm1+mn2(Rn x Rn x Rn).
It follows that A o B E OSm1+m2.

(ii) This is a standard fact concerning pseudodifferential operators, see e.g. [48], [50]. E
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Product-Type and Anisotropic Symbol Classes

We now define slightly more general symbol classes. These are the product-type and
anisotropic symbol classes. These symbol classes reflect the types of operators that natu-
rally arise in the context of anisotropic function spaces. Our goal is to prove composition
and mapping properties for the operators associated to these symbol classes, analogous to
those associated to the operators determined by standard symbols.

Suppose we have a decomposition R' = R"I x Rfl2. As before, we write x, R'
as (X(1), X(2)) and (((1), ((2)) with respect to this decomposition. Likewise, if a E Z' is a
multi-index of nonnegative integers, write a = (a(1), a(2)) G Z"i x Z>< . For mi, m2 E R, we
define the symbol class Sm1,m12 to be the space of all smooth functions a(x, () such that

sup I&00aa(x, ()| < Cao (,()2) K 2))21  . (15.7)

The space Smlm2 is a Fr6chet space whose topology is generated by the seminorms

Il a||sfm12 := sup K((1)m+l(l)K2) a(x, ()I. (15.8)

We define OSm1,n2 = OSminh2(R"L1 x Rn2) to be the class of all operators obtained via the

formula (15.4) for a (E Snln2. An operator in OSnln2 is called a product-type pseudodif-
ferential operator.

For the purposes of generalizing Theorem 15.2 to our anisotropic spaces, we will need
to introduce yet another type of symbol class. These symbols are "anisotropic symbols",
since they obey an anisotropic type decay. Namely, given mi1 , m2 E R, define the symbol
class S(mM2) to be the space of all smooth functions a(x,() such that

sup 18& 8a(x, <) <; C ( K&2))2 a . (15.9)

We define the seminorms || - |(mM> on S(ml1m2) in the analogous way. Thus, when we

differentiate symbols in S(mnl,2) in the () variables, we get full radial decay in (, but we

only get decay in ((2) when we differentiate in the ((2) derivatives. Hence, we have the
containments, So C S(0,0) C S,0, where the symbol classes obey radial, anisotropic, and

product type decay upon differentiation in the ( variables, respectively. Define the class
of anisotropic type operators OS(mlm2) = os(rnm2)(Rn" x Rn2) in the obvious way. In
fact, all the operators in this paper will be of anisotropic type; we only consider them as
product type, when applicable, in order to make use of the mapping properties of product
type operators as established in [61]. For all m E R, we have the obvious inclusions

OS"a c OS(,ns) c os mm.

The proof of Lemma 15.1 follows through mutatis mutandis for our more general symbol
class to prove the following:
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Lemma 15.3 Let ae G Smlm" . Then there exists a symbol a, e S"1,12 such that

Opt(aj) = Op,(ar).

The map sending a, and a, defines a continuous map on Sm ,n2. The analogous results
also hold for S("1,m2).

In the above lemma, we omitted reference to product type and anisotropic type double
symbols (defined in the obvious way) for simplicity, though the lemma also applies to such
double symbols in the obvious way.

Theorem 15.4 We have the following:

(i) For all mi1 , m', m2,m'2 G R, we have the composition rules

OSm1'"2 o OSm'"m2 -* OSm1+Ti,M2+M's

OS( 1,M2) 0S(n,m') 1 OS(n1+mim2+m')

(ii) If P E OS 0 ,0 then P is a bounded operator on A(s"12),P for all s1, s2 G R and 1 < p <
oo. Moreover, for any fixed s1,s2,P, the operator norm of P is bounded in terms of
only finitely many symbol semi-norms SUO

(iii) If P E OS(M1,M2), then P : A(si,2),P -+ A(s1-mi,82-m2),P is bounded. Moreover, the

norm of P depends on only finitely many semi-norms S(MlM2).

Proof (i) This follows from the previous lemma as in the proof of Theorem 15.2 for
the standard symbols. For (ii) and (iii), see [36], [59], [60]. E

Next, we recall the following standard fact. Given any sequence of symbols am3 E S"m,
with the mj decreasing, j > 0, we can find a symbol a E Sm whose asymptotic expansion
is given by the aj. What this means is that for every J > 0, we have

J

a - C a, E gmJ+1.

j=0

We also write 0o
a ~ Eam 3 .

j=0

Define
Os- = n os-i

j>0

to be the space of pseudodifferential operators with smooth integral kernel. Thus elements
of OS- are infinitely smoothing in that they map tempered distributions to C' functions.
Given two pseudodifferential operators S and T, we will write

S = T

198



Part IV

to denote S - T E OS- .

Convention. Unless stated otherwise, all pseudodifferential operators in this paper will
be classic, where a classic pseudodifferential operator of order m is an operator such that
a ~ _' am-y, with each am-j homogeneous in ( of order m - j on |(I > 1. Differential
operators and their corresponding parametrices are all classic pseudodifferential operators.
We will also allow pseudodifferential operators to be matrix-valued, since we ultimately
want to consider pseudodifferential operators on vector bundles over manifolds. Note how-
ever that in this case, one needs to define the order of a pseudodifferential operator more
carefully (see the next section).

In the next section, we will consider pseudodifferential operators on manifolds. By
the use of a partition of unity, the notion of a pseudodifferential operator on R' allows
us to define pseudodifferential operators on compact manifolds in a natural way (see [59]
for further background). We let OS'(X) denote the class of mth order pseudodifferential
operators on X and similarly for the other operator classes.

15.2 The Basic Setup

Let X be a compact manifold with boundary OX and let E and F two vector bundles over
X. Let A : F(E) -+ 1F(F) be an mth order elliptic differential operator mapping smooth
sections of E to smooth sections of F. For all s E R and 1 < p < oo, the operator A extends
to a map

A :Hsm',P(E) -+ H8 'P(E) (15.10)

where in general, the above map must be interpreted in the sense of distributions.

Remark 15.5 In our entire discussion of elliptic boundary value problems, the Bessel
potential spaces H',P on X can be replaced with the Besov spaces B',P. This is ultimately
because pseudodifferential operators are bounded on both H8 'P and Bs,P, and both these
spaces have the same space of boundary values (again a Besov space) on OX. We write H8 'P
for specificity, and also because the letters A and B in A',P and B',P are already overworked
in our notation.

When X is closed, the operator A : H3+mP(E) -+ H'P(F) is Fredholm. Let us quickly
review why this is the case. The operator A is Fredholm because we can construct a
parametrix for A, i.e. an approximate inverse Q : H'P(F) -+ Hs+mP(E) that satisfies

AQ = id + R,, (15.11)

QA = id + R1, (15.12)

where Rr, Ri c OS~- are smoothing errors. The operator Q is a classic pseudodifferential
operator of order -m constructed in local charts as follows.

Let a := o-(A) = am +... + ao be the total symbol of A (we temporarily work in local
chart modeled on an open subset of R'), with the a9 homogeneous of degree j. Since A
is elliptic, we have am(x, () is invertible for ( 4 0. Hence, we can inductively solve the
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following system of equations on f(| ; 1 for the symbols q-m-j:

amq-m = id (15.13)

amq-m-j + -9'lak(iXq-m-1 = 0, j=1,2,... (15.14)
t<j

k-|al-m-1=-j

Then if we define a symbol q such that q ~ Z~ q-m-j, then Op(q) gives us a desired local
parametrix for A. Using a partition of unity argument, we may then construct an operator
Q out of the local parametrices to obtain a global parametrix for A over the entire manifold
X.

When aX is nonempty, the above construction only works in the interior of the manifold,
and we have to consider boundary conditions for our operator. A boundary condition is a
map B from the Cauchy data of sections of E to sections of another vector bundle, and given
such a B, we may consider two operators: the full mapping pair (A, B) and the restricted
operator AB whose domain consists of those elements with Cauchy data annihilated by B.
We wish to investigate those boundary conditions for which we may obtain the analogous
Fredholm properties in the closed case. Moreover, we want our operators to yield elliptic
estimates. The study of boundary conditions which fulfill this requirement goes back at
least to the work of [1]. The approach we take will be that of [19] and [46].

Fix a collar neighborhood [0, e) x DX of X, where t E [0, c) is the inward normal
coordinate and x denotes the coordinates on OX. In this neighborhood, write the principal
part of A as E' Am'-j where Aj = Aj(x, t) are differential operators of degree j in
the tangential variables. Let (x, ) E T*DX \ {0}. Consider the vector space of solutions
f : R+ -+ C to the ordinary differential equation

A (x, 0,() Om f (t) = 0, t c R, (15.15)
j=0

obtained by "freezing" A at (x, 0,(). Here, Aj(x,0,() is the symbol of Ai at t = 0. Let
Mx (() denote the vector space of solutions to (15.15) which decay exponentially as t -+ ±00.
The assumption that A is elliptic implies that the solution space of (15.15) decomposes as
a direct sum Mx ( ) G M-( ), for all (x, $') E T*9X \ 0. Thus, letting Ex denote the fiber
of E over x E X, we have an isomorphism Mx( ) e M;( ) ~ Ex given by taking the
full Cauchy data of a solution, f(t) - (f(0), ... , tm- 1f(0)). Via this isomorphism, we can
identify Mx(() C E'.

Definition 15.6 For (x,() c T*aX \0, define r+(x,() : Ex' -+ Exm to be the projection
onto Mx( ) through Mp( ).
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From this projection, we can proceed to define what it means for a boundary condition
B to be elliptic. Suppose we have B = (Bi, ... , Be) where

Bk : F(Eax)- F(Vk)

rn-1

BkU :ZbkjU, U = (U)j-, 1 < k < ,
j=0

where bkj is a pseudodifferential operator mapping F(Eax) to F(V) for some vector bundle
Vk over OX. Let #e = maxj {ord bkj +j}. Then the total boundary operator gives us a map

B :(Eax) m -4 e'=iF(V) (15.16)

Given a pseudodifferential operator T, let op(T) denote the principal symbol of T. If T
is a matrix of pseudodifferential operators (where different entries of the matrix correspond
to different vector bundles), then the order of T and hence its principal symbol need to be
carefully defined. In the case of B above, since each Bk represents a boundary condition of

order pA, we define the principal symbol of B to be the following symbol-valued matrix:

op(B) = (ogkjBkj) 1<k<e,
o<3j _m-1

where oi(Bkj) is the usual principal symbol of Bk3 if Bk E OpG (OX) and zero if Bky E

Op i (OX), i' < i.

Definition 15.7 Suppose the boundary operator B in (15.16) is such that op(B)(x,()
(Ex)m - e. Vk restricted to imr+(x,() is an isomorphism onto imo-p(B)(x,() for all

(x,() E T*&X \ 0. Then B is an elliptic boundary condition for the operator A. In this
case, we say that the pair (A, B) is elliptic.

The two most common elliptic boundary conditions that occur in practice are as follows.
The first is when our elliptic boundary condition B is a local boundary condition, i.e., it is

defined by a differential operator. Such a boundary condition B is also said to satisfy the

Lopatinski-Shapiro condition.

Example 1. Let A be the Laplacian acting on scalar functions. We can take B to be

B : F(Eax) E F(Eax) -- F(Eax), j = 0, 1

given by the first and second coordinate projections, respectively. These correspond to

Dirichlet and Neumann boundary conditions, respectively. The boundary ODE (15.15)
becomes the equation

(d + f(t) = 0,

where I . Ix denotes the metric on Tx,*X induced from the Riemannian metric on X (we
work in coordinates where the metric on [0, E) x OX is of the form dt 2 + g2, gt a Riemannian
metric on 0X). The spaces M,( ) are spanned by e+FIxt, respectively, and passing to the
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Cauchy data, we have M±(() span{(1,T -Fl|x)}. Thus, we have

7r+ (X, ()= 2 2|(|x

A 2 X 2

It is now easy to see that the Lopatinsky-Shapiro condition holds for both the Dirichlet or
Neumann boundary conditions. Hence, each of these boundary conditions is elliptic.

The second most common situation is when A is a Dirac operator and B is a zeroth
order pseudodifferential operator.

Example 2. Let A be a Dirac operator and let B be the spectral projection onto
the positive eigenspace of the tangential operator A01 Ailt=o associated to A. This is the
Atiyah-Patodi-Singer (APS) boundary condition. Since the principal symbol of A0-1 A1 is
self-adjoint, it follows that the positive and negative eigenspaces M ( ) c E. are orthog-
onal. Thus, irj(x,() is the orthogonal projection onto Mx( ) and it is a basic fact that
r,(B) = 7r+. It immediately follows that B is an elliptic boundary condition.

Example 3. Let A be the div-grad-curl operator

A = *d d)

acting on 1(E) = Q1 (Y) e Q0 (Y) where Y is a 3-manifold with boundary E. In a collar
neighborhood [0,cE) x E of the boundary, we can write a E Q1(Y) as a = b + aidt, where
b e F([O, 6); Q1 (E)) and a1 c F([0, E);Q 0(E)). Thus, restricting to the boundary, we have

F(Er) = Q1 (E) G Q0(E) e Q0 (E)

(a, ao)|I = (b, ai, ao)| -

The map A is a Dirac operator and its tangential operator AU 1Ailt=o has the form

0 dE idr,
d* 0 0

--idE 0 0

with respect to the above decomposition of I(Eax), where dE is the exterior derivative on
E and is the Hodge star operator with respect to the induced metric on E.

Consider the following boundary operator

B = (Bi, Bo) : F(E,) -+(* e (Q0 (E))

(b, ai, ao) - (db, ai).

A computation shows that B satisfies the Lopatinsky-Shapiro condition.
A similar computation shows that for A = d + d* acting on the total exterior algebra of

differential forms on any manifold X with boundary, the tangential or normal component
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of the differential form at the boundary determines a local elliptic boundary condition.

Let us now see how an elliptic boundary condition allows us to construct a (left)
parametrix for A. Let us assume X is an open subset of R', with a smooth compact

manifold OX as boundary. This case suffices, since by it is possible to transfer the result to

a general compact manifold with boundary by using a partition of unity.
Let u, v c C (X). We have the following Green's formula3

e (u, A*v) = J(Au, v) + (Jru, rv), (15.17)

where A* is the formal adjoint of A, r : F(E) -+ P(Eax) m is the map taking an element to

its full Cauchy data of order m - 1,

r(u) = (u(O), ... , &7- u(0)),

and J : F(E)m -+ 1F(F)m is the boundary endomorphism determined via integration by

parts in (15.17). Thus, if we let uo denote the extension of u to R" by zero, the above

formula is equivalent to
AuO = (Au)0 + r*Jru, (15.18)

in the sense of distributions. If we apply the (interior) parametrix Q to the above equation,
we obtain

UO + Ref 0 = Q(Au)0 + Qr*Jru, (15.19)

where Re is the smooth error in (15.12). The last term in the above is the Green's potential,
and it is the new term we need to control in the presence of a boundary. Taking the full

trace of the Green's potential gives us the following operator:

Definition 15.8 Define P+ : r(Eax) m - F(Eax) m by the formula

P+U = rQr*JU, U = (Uo, . .., Um-1).

The map P+ is called an approximate Calderon projection.

Lemma 15.9 The map P+ is given by a matrix (p )n- of pseudodifferential operators

pt of order i - j. Its principal symbol o-(P+) = (-i-j(p)) is equal to 7r+. Furthermore,

P+ is an approximate projection in the sense that (P+)2 P+.

Remark 15.10 In the next section, we will construct the Calderon projection P+, which

is a true projection with the same principal symbol as P+.

Thus, an elliptic boundary condition B is one for which o-p(B) : im op(P+) - im op (B) is

an isomorphism. Given an elliptic boundary condition B, we have the following fundamental
lemma:

3 In the main body of the text, we will usually drop the term r appearing in Green's formula, since for

zeroth order Cauchy data, it is understood that the sections are being restricted to the boundary when

performing the boundary integral. For now, since we deal with the possibly higher order Cauchy data, we

include r in our notation.
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Lemma 15.11 (Parametrix on the boundary)

(i) Suppose up(B)Ii. + is injective at all points (x, ) C T*OX\0. Then one can find ma-

trices of pseudodifferential operators Q' : 17(E)* -+ 1(E)tm and QB k=1F(Vk) -+

1(E)m such that

Q'B + QBB WEiE (15.20)

QBBP+ P+ (15.21)

Q's 5+ 0. (15.22)

(ii) If op(B)| Ji.+ is bijective, then furthermore, BQB idet F(Vk) and the maps Q'
and QB are uniquely determined modulo OS--.

This lemma follows from (slight modifications of) Proposition 20.1.5 and Theorem 19.5.3
in [19]. Let us unravel what this lemma says. The fact that B is an elliptic boundary con-
dition means that (1 - P+) e B has injective symbol. Thus we can find operators Q' and
QB such that Q' E QB is a left parametrix for (1 - P+) D B. If we let Q'B = Q'1(1 - P+),
then Q' satisfies (15.22), and furthermore (15.20) is satisfied. Then (15.21) follows from
(15.20) and (15.22). It follows that at the principal symbol level, Op(QB) inverts the
map -p(B) : imop(P+) -+ imop(B), so that o-p(QBB) : Em -+ Em is a projection onto
im ap(P+) through ker op(B). Consequently, oy(Q' ) is the complementary projection with
range ker op (B) and kernel im ap(P+).

Let us see how the above analysis plays into the construction of a parametrix for the
full mapping pair (A, B). On a manifold with boundary, the map A : F(E) -+ 1(F) has
an infinite dimensional kernel. In essence, the boundary condition B allows us to control
the kernel, which means we can obtain an elliptic estimate for the full mapping pair (A, B).
Moreover, if we consider the restricted operator AB, then forcing elements to lie in the
kernel of B means we have eliminated nearly all of the kernel of A. Consequently, the
elliptic estimate for the full mapping pair (A, B) then gives us one for AB.

We now work out the above considerations more precisely. As before, we return to the
Euclidean setting X C R' without loss of generality. Our main task is to control the term
Qr*Jru appearing on the right-hand-side of (15.19). Applying r to both sides, it follows
from the definition of P+ that

rQ(Au)0 = (1 - P+)ru.

From Lemma 15.11, we have ru = (Q' (1 - P+) + QBB)ru, and thus, we have

0 Q(Au)0 + Qr*J(Q' (1 - P+) + QBB)ru,

(1 + Qr*JQ' r)Q(Au)o + (Qr*JQB)Bru. (15.23)

Observe that the above formula states that having knowledge of Au and Bru, we can
recover u up to smoothing terms. Thus, the operators appearing in (15.23) provide us a
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left parametrix for the mapping pair (A, B), namely

Q(f, g) = r+[(1 + Qr*JQ' r)QfO + Qr*JQg], (15.24)

where r+ denotes the restriction of sections in R' to X, i.e., it is the adjoint with respect
to the extension by zero from X to R'.

Thus, to establish elliptic estimates for the full mapping pair (A, B), it suffices to es-
tablish suitable mapping properties of the parametrix Q. Let s > m and 1 < p < oo. We
already know that A: HS'P(E) -+ Hs-m,P(F). We have

r H 8 'P(E) -+ 6"IlBS-l/P-j'P(Eax)

and from (15.16), we have

B : ->m-1B8~1/P-j'P(EOX) e B"~1/P-Ok'P(V) (15.25)

For brevity, let

B5-'/P'P - _ 1Bs-1/P-i'P(Eax)

v" -pp =f lB8-1/P-fk'P(V), 3= (#1,. . . ,).

Theorem 15.12 We have the following mapping properties:

(i) (Transmission Property) Let s > 0. If v C HS P(E), then r+Qvo C Hs+r',P(E)

(ii) (Approximate Poisson operator) Let s C R. If U C B"1h/p, then Qr*JU C H'P(E).

(iii) (Boundary parametrix) For every s C R, we have QB : V!- 'p > 88-1/'. Moreover,

Q' is bounded on B8l/P'P.

Part (iii) is automatic since it follows by construction from Lemma 15.11. The proofs of (i)
and (ii) are involved and can be found in H6rmander, though more transparent expositions
can be found in [59, Theorem 14.24] and [45, Lemma 4], respectively.

From this theorem, we now obtain one of our main theorems for elliptic boundary value
problems (EBVP). We will state a slightly stronger version in the next section.

Theorem 15.13 (EBVP - weak version) Let X be a compact manifold with boundary OX
and let A : 1(E) -+ 1(F) be an mth order elliptic differential operator. Suppose B is an
elliptic boundary condition satisfying (15.25). Let 1 < p < 00 and s > 0.

(i) Let u e Ht'P(E), t > 0, and suppose Au C H8 'P(E) and Bru C Vsl/P'P. Then

u E HS+mP(E) and

I1ullHs+m,(E) HAvHHSP(E) + yBrujVs1/pp + 1u]HtP(E))- (15.26)

(ii) The map AB : {u c HS+mP(E) : Bru = 0} -+ H8'P(E) is Fredholm. Its kernel and
cokernel are spanned by finitely many smooth sections.
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(iii) If cp(B) : E' --+ 1V is surjective, then the full mapping pair

(A, B) : HS+m,P(E) -4 H"'P(E) T Vs- P'p

u H-4 (Au, Bru)

is a Fredholm operator.

Proof (i) This follows from the expression (15.24) for the parametrix Q for (A, B)
and Theorem 15.12. (ii) From (i), we have an elliptic estimate for AB since the boundary
term Bru vanishes. This shows that AB has closed range and finite dimensional kernel.
The cokernel is finite dimensional because the adjoint problem is also an elliptic boundary
value problem (see [46, Theorem 7]). (iii) Using Lemma 15.11(ii), one can show that the
left parametrix we have constructed for (A, B) in (15.24) is also a right parametrix. Thus,
(A, B), having a two-sided parametrix, is Fredholm. E

15.3 The Calderon Projection

There is a slightly cleaner approach to elliptic boundary value problems due to [46], in
which we replace the approximate Calderon projection P+ of the previous section with a
true projection P+. Our goal in this section is to explain the relevant properties of the
Calderon projection and some of its applications.

Let A : 1(E) - r(F) be an mth order elliptic operator, which for simplicity, we take to
be first order, though everything we discuss here generalizes straightforwardly for m > 1.
Informally, the general picture is that following. We have two subspaces of interest, ker A
and its restriction to the boundary r(ker A), where r : r(E) -4 F(Er) is the restriction
map. What we have is that there exists a pseudodifferential operator P+ : F(EY) -+ F(EE)
acting on boundary sections and a map P : F(EE) -+ 1(E) mapping boundary sections into
the interior such that P+ is a projection onto r(ker A) and the range of P is contained in
ker A. Furthermore, we have rP = P+.

More precisely, and assigning the appropriate topologies to the spaces involved, let s E R
and 1 < p < oc, and let

Z8 'P(A) c H8 'P(E) (15.27)

be the kernel of the operator A : HS'P(E) -+ Hs~'-P(E). Let Zo(A) be the subset of Z"'P(A)

consisting of those elements z with vanishing boundary values, i.e., r(z) = 0. Theorem
15.19 implies Zo(A) C C (E) and is finite dimensional. The map r extends to a bounded
map Hs'P(E) -+ B-1/P'P(Er) only when s > 1/p. However, if we restrict r to the kernel of
A, it turns out that no such restriction on s is necessary. This is the content of the following
very important theorem:

Theorem 15.14 {45, 46] Let s E R and 1 < p < oo.

(i) We have a bounded map r : ZS'P(A) -+ B8-1/PP(Eox), and furthermore, its range is

closed. In particular, if Zo(A) = 0, then r is an isomorphism onto its image.

(ii) There is a pseudodifferential projection P+ which projects Bs-1/PP(Eax) onto r(Z'P(A)).
Furthermore, the principal symbol c-(P+) of P+ is equal to the symbol 7r+ (see Defi-
nition 15.6).
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(iii) There is a map P: BS- 1/PP(Eax) -* Zs'P(A) whose range has Zo(A) as a complement.

Furthermore, PP+ = P and rP = P+.

Thus, in particular, the above theorem tells us that elements in the kernel of A of any
regularity have well-defined restrictions to the boundary. In fact, the first part of Theorem
15.19(i) relies crucially on this fact.

Definition 15.15 The operators P+ and P in Theorem 15.14 are called a Calderon pro-
jection and Poisson operator of A, respectively.

Remark 15.16 (i) From the definitions, it follows that P+ is an elliptic boundary condition
for A. (ii) A projection is defined not only by its range but also by its kernel. Thus, we
have a Calderon projection and Poisson operator for A, since their kernels are not uniquely
defined. When we speak of these operators then, we usually have a particular choice of
these operators in mind. Seeley, for instance, has a particular construction of P+ and P.
However, it is usually only the range of P and P+ that are of main interest to us, and these
are uniquely specified by the above definitions. Hence, a Calderon projection is often times
referred to as the Calderon projection in the literature.

Altogether, P+ is a projection onto the Cauchy data of the kernel of A, and P is a map
from the Cauchy data of the kernel into the kernel. The latter map is an isomorphism when
Zo(A) = 0. Furthermore, we have

Corollary 15.17 For all s c R, smooth configurations are dense in ZS'P(E). Furthermore,
suppose s > 1/p. Then Z 8'P(E) C H'P(E) is complemented. Moreover, if Zo(A) = 0, then
Pr : H8 'P(E) -+ Z'P(A) is a bounded projection onto Z8'P(A).

Proof We have that Z 8'P(A) is the direct sum of Zo(A) and the image of P: B- 1/PP(Eax) -+
HS'P(E). The first statement now follows since the space Zo(A) is spanned by smooth sec-
tions and smooth sections are dense in Bs--1/PP(Eax). Now consider s > 1/p. Then the
map Pr : H'P(E) -+ Z8 'P(A) is a projection onto the image of P, which is of finite codi-
mension in Z8'P(A). From this, one can construct a projection of H'P(E) onto Z'P(A),
which means Zs'P(A) is a complemented subspace. If Zo(A) = 0, then the range of P is all
of ZS'P(A), whence Pr is a projection onto ZS'P(A). F

The operators P+ and P play a fundamental role in the study of elliptic boundary value
problems. We will use them to prove a stronger version of Theorem 15.13 in this section.
But before doing so, we first present an important application of these operators.

Let A be a first order formally self-adjoint elliptic operator. Then the operator J := Ao
in (15.15) is a skew-symmetric automorphism on the boundary, and Green's formula (3.66)
for A defines for us a symplectic form

w(U,v) = (u, - Jv)

on boundary sections u, v E l'(Eax). This symplectic form extends to a well-defined sym-
plectic form on Bs'P(Eax) for (s,p) = (0, 2) and for s > 0, p > 2, and the map -J is a
compatible complex structure with respect to this symplectic form. Indeed, for this range

207



15. ELLIPTIC BOUNDARY VALUE PROBLEMS

of s and p, we have B5'P(Eax) "+ L 2 (Eax), with the latter a strongly symplectic Hilbert
space.

We say that a closed subspace of B8 'P(Eax) is Lagrangian if it is isotropic with respect
to w and it has an isotropic complement. Observe that if L C L 2(Eax) is Lagrangian, then
JL is a Lagrangian complement of L.

Proposition 15.18 [4] Let A be a Dirac operator. Then im P+ and Jim P+ are comple-
mentary Lagrangian subspaces of B'P(Eax), where (s, p) = (0, 2) or s > 0, p > 2.

Proof In [4], it is shown that im P+ and Jim P+ define complementary Lagrangian
subspaces of L2 (Eax). Here, it is essential that one uses the trick of constructing an "in-
vertible double" for the operator A. However, since P+ is a pseudodifferential projection, it
is bounded on B8 'P(Eax). Without loss of generality, we can suppose P+ is an orthogonal
projection (making a projection into an orthogonal projection preserves the property of
being pseudodifferential). Define P- = JP+ J- 1 . Then im P- = Jim P+ and its principal
symbol agrees with the principal symbol of 1 - P+. It follows that im P+ e Jim P+ is a
closed subspace of B8 'P(Eax) of finite codimension. We now apply Lemma 18.5, which tells
us that im P+ D Jim P+ is in fact all of B8 'P(Eax). F

We now apply our Calderon projection and Poisson operator to the study of general ellip-
tic boundary value problems. Using these operators, Seeley in [46] constructs a parametrix
similar to (15.24) for elliptic operators with elliptic boundary conditions. From this, he
even achieves stronger results than those of Theorem 15.19. This is because Theorem 15.14
holds for all s E R and so we may extend Theorem 15.19 to certain negative parameters.
For K= 0, 1, .. , m - 1, let

r, : HS'P(E) -+ eD_B'-1/P-i'P(Ek)

be the trace map onto the Cauchy data up to order K.

Theorem 15.19 (EBVP - strong version, [46, Theorem 4]) Let X be a compact manifold
with boundary OX and let A : F'(E) -+ F (F) be an mth order elliptic differential operator.
Suppose B is an elliptic boundary condition satisfying (15.25) which depends only on the
Cauchy data up to order s. Let 1 < p < oc and s > -m + K + 1/p.

(i) Let u G Ht P(E), t G R, and suppose Au E H'SP(E) and Bru G V i/P'P. Then

u G H 8s+mP(E) and

|\u||Hs+mP(E) C(AvIHP(E) + |Bru|| -1/p,p + MuIHtP(E)). (15.28)

(ii) The map AB : {u G H+ m',P(E) : Bru = 0} -+ H8 'P(E) is Fredholm. Its kernel and
cokernel are spanned by finitely many smooth sections.

(iii) If up(B) :E m - 0(D Vk is surjective, then the full mapping pair

(A, B) : H+m",P(E) -+ H"P(E) e Vs-'p

u -* (Au, Bru)
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is a Fredholm operator.

Remark 15.20 Seeley only proves this theorem for p = 2, but because all the maps in-
volved are pseudodifferential or involve taking traces or extensions, the generalization to
1 < p < oc is automatic. See also Remark 15.5.

Remark 15.21 By a standard argument, the lower order term nu lHtP(E) in (15.28) can be
replaced with ||7rull, where rr is any projection onto the finite dimensional space of solutions
to Au = Brau = 0, and 1| - 1| is any norm on that space. In other words, we need only
control the kernel of the operator (A, B) to get the estimate (15.28). In particular, if (A, B)
has no kernel, the term 1lHtP(E) can be omitted.

We will not need Theorem 15.19 in its full generality. For convenience, we summarize the
particular applications we have in mind in the below corollary. Furthermore, as mentioned
in Remark 15.5, all instances of the H'P topology occurring in Theorems 15.13, 15.19, 15.14
can be replaced by B'>P. We thus have the following results for Besov spaces, which we will
primarily use in Part I when X = Y is a 3-manifold.

Corollary 15.22 We have the following elliptic boundary value problems:

(i) Let A = A be the Laplacian acting on scalar functions. Then the Dirichlet and
Neumann boundary conditions are elliptic boundary conditions. For the Dirichlet
problem, we have the elliptic estimate

IUIls+2,p(X) < C(|AulIBSP(X) + roulBlS+21/PP(DX)) (15.29)

for s + 2 > I/p. For the Neumann problem, we have the elliptic estimate

lUllBS+2,p(X) C (|AuBlSP(X) + |ro(Ovu)|BS-1-1/pP(x) + JU ) (15.30)

for s + 2 > 1 + lp, where Ou denotes the derivative of u with respect to the outward
unit normal to OX.

(ii) Let A = d + d* be the Hodge operator acting on e 0Q'(X), the exterior algebra of
differential forms on X. Then the tangential component4 aIOx and normal component
*alox are elliptic boundary conditions. In particular, if a E Q'(X), then we have the
elliptic estimate

la||Bs+1,P1(X) CQlda|bs r1-2(x) + d*alBs,PQo(X) + aBh BP1(X)) (15.31)

for s + 1 > 1/p, where a" denotes the orthogonal projection of a onto the space

H 1 (X, OX; R) - {a E Q1(X) : da = d*a = 0, alax = 0}. (15.32)

(iii) Let A : F(E) -* 1(F) be a Dirac operator. If B is any pseudodifferential projection
onto r(ker A), then B is an elliptic boundary condition for A. We have the elliptic

4See footnote 4 in Part I.
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estimate

||UH|B|41,P(E) <; C(|AullBP(F) + |BrullS+1-/1,,P(Ea)). (15.33)

for s + 1 > 1/p.

Proof For (i), a standard computation shows that the kernel of the Dirichlet Laplacian
is zero, and the kernel of the Neumann Laplacian is spanned by constant functions. We
now apply Remark 15.21. For (ii), the kernel of d + d* on Q1 (Y) with vanishing tangential
component is the space (15.32). We now apply the previous theorem and Remark 15.21.
Observe that for the Dirichlet Laplacian we took s = 0 in Theorem 15.19. For (iii), there is
no term to account for the kernel due to unique continuation, Theorem 17.1, which implies
that r maps ker A isomorphically onto its image (hence Br maps ker A isomorphically onto
its image). D

15.4 Generalizations

We wish to generalize Theorem 15.19 even further. We have two specific reasons for this.
First, we wish to obtain elliptic estimates on anisotropic function spaces. Second, we want
to consider boundary conditions that are not necessarily pseudodifferential. It turns out
that these considerations do not pose a significant obstacle to generalizing the previous
results. In short, this is because pseudodifferential operators are bounded on anisotropic
function spaces, and moreover, because the key properties that make a boundary condition
elliptic is essentially a functional analytic property, not a pseudodifferential property.

For simplicity, let us take A to be first order (the only case we will need in this paper),
though what follows easily generalizes to elliptic operators of any order. Observe then that
a boundary condition for A is simply a choice subspace of U c F(EE) of the boundary
data space, where Er = EIx. The desirable boundary conditions are those for which the
operator

Au : {E F(E) : r(x) E U} -+ f1(F) (15.34)

is a Fredholm operator in the appropriate function space topologies. In typical situations,
like the ones considered previously, the subspaces U are given by the range of pseudod-
ifferential projections. However, from the above viewpoint, one need only consider the
functional analytic setup of subspaces and appropriate function space topologies in order
to understand the operator (15.34).

Let X be a manifold with boundary, and suppose it can be written as a product X
X 1 x X2 , where X1 is a compact manifold with boundary and X2 is closed. We have the
anisotropic Besov spaces B(812),P(X1 x X 2 ) on X and B(s1,52),P(aX1 x X 2 ) on OX, for si > 1,
S2 2 0, and 1 < p < oc, as defined in Definition 13.21. These spaces induce topologies on
vector bundles, and so in particular, we have the spaces B(51,s2),P(E), B(8s)2),P(F) and such.
We have a restriction map

r : B(81 ,12),P (E) -4 B (8si-1/AS2) (Eaxxx2),

and given a subspace
U c B"~/~2(a~x)
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we get the space

B(1"s2),P(E) xE) : r(x) c U}.

Thus, (15.34) yields the operator

Au :B(1,2),(E) P B(-1,82),P(F). (15.35)

We can now ask how properties of U correspond with properties of the induced map (15.35).
For this, we must distinguish a special subspace of B(si- 1 /PS2)(Eax1 x X 2 ), namely im P+,

where
P+ : B(si-1/P,82)(Eax1 xX 2 ) -+ B(s1 /P2)(Eax1xX2)

is the Calderon projection of A. This is a projection onto r(ker A), the boundary values
of the kernel of A. As noted, P+ is a pseudodifferental projection. By Theorem 15.2, we
know that pseudodifferential operators are bounded on anisotropic Besov spaces. Thus,
im P+ is a well-defined closed subspace of the boundary data space B(s-1/,82)(EaxXX 2 ).

The relevant properties for the operator (15.35) can now be understood via the relationship
between U and im P+.

Recall that we have the notion of two subspaces of a Banach space being Fredholm (see
Section 18). We have the following theorem:

Theorem 15.23 [36] Let5 s1 ;> 1, s2 > 0, and 1 < p < oc and consider the operator Au
given by (15.35).

(i) The operator Au is Fredholm if and only if U and im P+ are Fredholm.

(ii) The kernel of Au is spanned by finitely many smooth configurations if and only if
U n im P+ is spanned by finitely many smooth configurations.

(iii) The range of Au is complemented by the span of finitely many smooth configurations
if and only if U + im P+ is complemented by the span of finitely many smooth config-
urations.

Given a subspace U C B(s1- 1/Ps2)(Eax1 xx 2 ) Fredholm with im P+, we can thus con-

struct a projection

lu : B(s1~/Ps2)(EOxi x X 2 ) -+ B(8i-1/P,2)(Eax, xx 2 ) (15.36)

with im Hu = U and ker I1u equal to im P+ = r(ker A) up to some finite dimensional space.
We now have the following notion of a general elliptic boundary condition:

Definition 15.24 A boundary condition B for the first order elliptic operator A with
domain B(s1,12),P(X1 x X 2) is a map

B : B(si-1/P,2)'P(Eax1 xx 2 ) -+ X (15.37)

from the boundary data space to some Banach space X. We say that B is elliptic if
B : im P+ -+ X is Fredholm.

5 To keep matters simple, we state the hypotheses for si > 1, which is all we need in this paper. This is
in contrast to [34], where we needed to consider spaces of lower regularity than the order of the operator.



15. ELLIPTIC BOUNDARY VALUE PROBLEMS

Given U and IHu as above, the complementary projection 1 - Hu is then an elliptic
boundary condition in the above sense, since (1 - Inu) : im P+ -- im (1 - I1u) is Fredholm.
Using this, we can obtain an elliptic estimate for the full mapping pair (Au, 1 - Ilu).

Theorem 15.25 /36! Let si > 1, 82 2 0, 1 < p < oo, and suppose LU C B(s11/As2)(EaX1 X X 2 )
is Fredholm with r(ker A). Then consider the full mapping pair

(An, (1 - I7u)r) : B(182),P(E) -+ B(si -1,82)'P(F) e B(si-1/s2),P(Eax 1 xx 2 ). (15.38)

This operator is Fredholm and we have the elliptic estimate

|ttIsB(i,2'2),P(XiXX 2 ) < C (lAullB(i-1,S2)P(XXX 2 ) + |(1 - Ilu)ruIB(-Sl1-/P,,2),(aXixX2 ) + Hirul)
(15.39)

Here ir is any projection onto the finite dimensional kernel of (15.38) and |. is any norm
on that space.

When s2 = 0, (15.39) is the usual elliptic estimates on isotropic spaces. Thus, the
significance of the above theorem is that tangential anisotropy is preserved. We will need the
above theorems in Part III when we consider anisotropic spaces on the cylindrical 4-manifold
R x Y and boundary conditions are supplied by (nearly pseudodifferential) projections onto
certain Banach subspaces of the boundary configuration space.

15.5 The Resolvent of an Elliptic Boundary Value Problem

In the previous section, we proved that boundary conditions satisfying certain properties
allow us to obtain elliptic estimates for elliptic operators on a variety of function spaces.
In this section, we use the tools developed thus far to consider the resolvent of an elliptic
boundary value problem. In short, what this amounts to is that we must consider a param-
eter dependent version of the operators constructed in the previous section, the parameter
being the resolvent parameter under consideration. Our goal is to construct the resolvent
of an elliptic boundary value problem using the parameter dependent pseudodifferential
calculus. Furthermore, we want to estimate the operator norm of this resolvent, on suitable
function spaces, as the resolvent parameter tends to infinity. Thus, the main technical point
is to make sure that the construction of all operators involved depend on A in a controlled
or uniform way.

There is a well developed theory for studying parameter dependent pseudodifferential
operators and their applications to elliptic boundary value problems due to Grubb and
Seeley (see [471, [18], [16], [17]).6 Using the tools contained in their works, our goal is to
obtain a particular resolvent estimate in Theorem 15.32 and Corollary 15.34. This resolvent
estimate will be used in Part III in order to obtain elliptic estimates for operators of the
form j + D on the cylinder R x Y with D a formally self-adjoint operator on Y. Here,
we apply the Fourier transform in the R variable and thus obtain a resolvent, and it is
a resolvent of an elliptic boundary value problem, since the operator D is supplied with
boundary conditions.

6 In fact, Grubb and Seeley define a quite general parameter dependent symbol class in order to study the
asymptotic expansions of traces of parameter dependent operators. In the language of [18], we only need to
consider strongly-polyhomogeneous symbol class rather than more the general symbol class.
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To minimize notation and because it is the only situation that interests us, in what
follows, we restrict to first order operators A, though what we do can certainly be generalized
to higher order operators.

Parameter Dependent PSDOs and Sobolev Spaces

We define parameter-dependent symbol classes, where A is a complex parameter with values
in some open subset F C C. We consider the case when F is an open sector in C \ {0},
i.e., it is an open set closed under positive scaling. The type of A-dependent symbols on
R' we consider are those which are homogeneous in both the cotangent variables and A.
More precisely, we consider the symbol class S'(R' x R' x F) consisting of those functions
a(x, (, A) such that

(i) letting ( ((, A), the estimate

sup|Bjo00a(x, (, A)| <;: Cc'O (( , A))m-jl

holds for all multi-indices a and #;

(ii) we have
a (x, o-6, oA) = o-rma(x, ,A)

for all o >0 and |((,A)| > 1.

Thus, (i) says that a is essentially a symbol in n + 1 Fourier variables, where we regard the
last Fourier variable as a complex parameter instead. 7 Condition (ii) means that we require
homogeneity of a outside the unit sphere in R' x F. We say that a symbol a is strongly
polyhomogeneous of degree m if a - am-j, where am-j E S x IR x F). That
is, for every N 2 0, we have

N

sup 000 (a-[am-) =0( (, A))m-N-1-la, (15.40)
X'( j=0

for all multi-indices a,o. We denote the class of such symbols by Smhg((R" x Rn x F). We
write OS7 hg = pOS,(R") to denote the space of all pseudodifferential operators obtained
from the symbol space Smsph9 (RI x R" x F).

The model example of an element of S' = Sam(R' x RI x F) is the symbol a(x, (, A) =

((s, A))'. Another example, and the one most relevant for us, is constructed as follows. Let
a(x, () be the principal symbol of a self-adjoint first order elliptic differential operator. Let
F = {z E C \ {0} : larg(z) 7r/21 < E} be a small sector centered along the imaginary axis.
Then a(x, , A) (a(x,() - iA)- for A c F and I((,A)| I 1 defines for us an element of
S- 1

hg'
Finally, we say that a symbol is weakly homogeneous of degree k if it is positively

homogeneous of degree k only on the cylinder |(i 2 1 inside R' x F. The notion of weakly
polyhomogeneous follows accordingly.

7In everything that we do, we do not require any differentiability of our symbols in A. For many other
applications however, such as those considered by Grubb and Seeley, one does need differentiability in A for
the A-dependent symbol calculus.
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Remark 15.26 For our purposes, it is actually not necessary to consider those parameter
dependent PSDO's which are strongly polyhomogeneous. One of the goals of [18] is to
obtain asymptotic formulas for the trace of parameter dependent PSDO's, in which case,
polyhomogeneity of the operator becomes relevant. With the purposes we have in mind, all
that is necessary for our PSDO's is that (15.40) holds for N = 0 and all multi-indices a-,3.
Nevertheless, most (but not all) of the parameter dependent PSDO's we construct will be
strongly polyhomogeneous since they will be (symbolically) constructed out of powers of
the operator A - iA.

Naturally, the function spaces on which the A-dependent pseudodifferential are bounded

(uniformly in A) are those which are themselves A-dependent. Thus, define8

Hs(R") {f C S'(R) : |If ||I H I (( , A))8 f(0)fL 2 < 00 , s c R.

Given a map T: HS(Rf) -- H(Rn), possibly depending on A, we write

T: H'(R") -- Hj\(Rn)

to denote that the operator T is bounded uniformly in A, for all A E l.
We have the following theorem, which is proved in exactly the same manner as Theorem

15.2.

Theorem 15.27 (i) We have the composition rule

oSM o O-S2 * OSM+M.
sphg sphg sphg

(ii) IfTCOS (R") then TT: Hc(0") m- Hx-'(R") for all s E R.

We also have a A-dependent generalization of the basic trace and extension theorems.

Lemma 15.28 (i) Let s > m + 1/2. Then we have a trace map rm : H,{R") -

Em-1H" (R-1)

(ii) For any s E R there exists an extension operator Em,A : em1HJ / 2 (Rn1)
H{(lR") such that for s > m + 1/2, we have rmEm,A = id.

For a proof, see [16], [17].

A Resolvent Estimate

We are interested in obtaining a particular resolvent estimate for self-adjoint operators on
anisotropic spaces. Here, the anisotropic space under consideration is defined on a product
manifold X of the form X = [0, 1] X X2 , where X2 is a closed manifold. Consider the Hilbert
space L2 (E), where E is a vector bundle over X. Let B be an elliptic boundary condition,
in the sense of Definition 15.24. We take p = 2, and we supposed B is defined for all si > 1

8In this section, we will work exclusively with the Hilbert spaces HS, 2 and H(si,,2),2 and so we will
abbreviate these spaces as simply H' and H(s1,82), respectively.
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and s2 in as large of a range as needed. For si = 1 and s2 = 0, we assume that the restricted

operator AR: HB(E) -* L2 (E) is, in addition to being Fredholm, also self-adjoint. Thus,
it follows immediately from the spectral theorem that ||(AB - iA)- 1 Iop(L2(E)) O(A-).

Suppose, however, we wish to obtain a resolvent estimate on H(o,'s) (E) instead, where s > 0.
Then AB is no longer an (unbounded) self-adjoint operator on H(0's)(E) and we cannot
apply the spectral theorem. To obtain an analogous resolvent estimate on H(,s)(E), we
will construct the resolvent of AR from the A-dependent calculus and estimate this operator
directly. This resolvent will essentially be a parameter dependent version of the parametrix
for AB induced from the parametrix (15.24) for the full mapping pair (A, B). Thus, the
parameter dependent calculus and Sobolev spaces developed in the previous section will
come into play.

Define
AB,A := A~- A.

Since AB is self-adjoint, we know that A : L2 (E) -+ H 1 (E) exists for A C R \ {0}. In

fact, we also know that A-' : HC'8)(E) -+ H('8)(E) by Theorem 15.25. However, this

theorem gives us no information about how the norm of A-', depends on A. The analysis
which follows will show that in fact, we have

A-' : H, 's)(E) -+ H's)(E), (15.41)

where on R' = R"i x Rn2, we define

H s1,82)(Rni x Rn2 ) = {f e S'(R") :fHs1,2> ((i, A)), 1 K 2  
L2 < 00},

so that we may define H(s1,52)(E) in the usual way. From (15.41), it follows straight from
the definitions that ||A- ||0P(Hos)) 0(- )

It remains to construct the desired resolvent operator A-' and prove that it satisfies
(15.41). To facilitate this, we first define operators given by certain parameter-dependent
Poisson type kernels. Recall that

R= {(x', x,) E R' 1' x R : Xin > 0}

denotes the upper half-space in R".

Definition 15.29 Form E R, consider the space of all functions k(x', xn, (', A) c C (Rn-1 x

R+ x R'-1 x F) such that

sup 80,qx 01k(x', ,' A) < Cap ((', A))m+lI1Jl,
x

for all multi-indices a,3, and integers j, I > 0, where (' = (i', A). We say that k is a Poisson
kernel of order m with parameter A.

Our terminology is a modified from that of [18], and such operators, among others,
occur naturally in the functional calculus of pseudodifferential boundary value problems.
Here we could have defined a suitable notion of polyhomogeneity for our Poisson kernels,
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as done in [18], but as we stated in Remark 15.26, this is not necessary. See also [16] for a
more complete treatment. We have the following fundamental lemma:

Lemma 15.30 [18, Lemma A.3] Let k be a Poisson kernel of order m with parameter A.
Then the operator

Op(k)f = (27r)->( e 'k(x', X, (', A)f((')d('

defines a bounded map

Op(k) : Hj(R- ) -+ H-m-/ 2 (R")

for all s E R.

Next, we have the following important result. Let X be any compact manifold with
boundary and let A be a first order elliptic formally self-adjoint differential operator on a
vector bundle E over X. Let X be any closed manifold extending X, and let E be any
extension of the vector bundle E to X. The below lemma tells us that for sufficiently large
A, the family of operators

A, := A - iA

has invertible extensions to all of E. For any vector bundle V, let OS~mhg(V) denote the
space of space of strongly polyhomogeneous mth order pseudodifferential operators acting
on sections of V.

Lemma 15.31 [17] There exists a Ao > 0 such that for |A| > Ao, we have the following:

(i) There exists an extension of AA to an invertible elliptic operator AA G OSlphg(E).

Consequently, there exists an operator QA E OS-p(Z) such that QA = id on X.

(ii) The operator AA on X has a Calderon projection P+ that is an element of OS,0PO (Fax).
Moreover, the corresponding Poisson operator PA is of the form OP(PA) where pA is a
Poisson kernel of order -1 with parameter A. Consequently, the maps

P : H'\(Eax)- H(Eax)

PA : H 8(Eax) -+ 1/2 E)

are bounded for all s G R.

We return to the relevant case where X = X1 X X 2 is a product manifold, with OX =

OX 1 x X2 . Let us see how Lemma 15.31 allows us to construct a resolvent for AB. A key step
is that because we can construct the "invertible double" AA, that is, an invertible extension
of AA, we can construct a parametrix for ABA without any smoothing error terms, i.e., we
get an honest inverse. Proceeding as before in (15.18), we have the formula

AAu 0 = (A\u)0 + r*Jru.
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For A > A0 , by Lemma 15.31 we can apply QA to both sides, where we regard u0 as an
element of X, and upon restricting back to X C X, we obtain the exact formula

u = QA\(AAu) 0 + Q\r*Jru. (15.42)

The second term in fact is exactly the operator PA, as given by Lemma 15.31 applied to ru.
Starting from this ansatz, we can proceed to construct A-' and attempt to show that it
satisfies (15.41).

Proving (15.41) turns out to be remarkably technical, however, and we will restrict
ourselves to the following situation, which will be general enough for our needs in Part III.
We consider the case when Xi = [0, 1], so that X = [0,1] x X2 , and we let A be a Dirac
operator on E. Letting t denote the coordinate on [0,1], it follows that we can decompose
the operator A as

A = Jt(- + Bt + Ct)dt

in accordance with (3.62).
Thus, this means that Jt, Bt, and Ct are t-dependent operators on F(Ex 2 ), where Jt

is a skew-symmetric bundle automorphism, Bt is a first order elliptic self-adjoint operator,
and Ct is a zeroth order bundle endomorphism. Since OX = ({0} x X 2) JJ({1} x X2 ), let
J = Jo e -J and B = B0 e -B 1 be the associated operators acting on boundary 9 . Since
A is a Dirac operator, we have the crucial property that

JB = -BJ.

This added algebraic structure allows us to prove the desired resolvent estimate (15.41) for
the operator ABA for certain pseudodifferential boundary conditions B. Specifically, we
prove the following theorem and Corollary 15.34, which we need for Theorem 11.7 in Part
III.

Theorem 15.32 Let A be a Dirac operator on a Hermitian vector bundle E over X
X 1 x X 2 , where X 1 = [0,1] and X2 is a closed manifold. Let B be a pseudodifferential
projection on F(Eax) satisfying the following:

(i) the operator AB H(E) -+ L2 (E) is self-adjoint and Fredholm;

(ii) for every (x, ) E T*OX with || 1, the subspace kero-(B)(x, ) of Ex is a Lagrangian
subspace with respect to the symplectic form Re (., J.) on Ex, where (.,.) is the Her-
mitian inner product on Ex. (Here, we choose o-(B)(x, ) so that it is homogeneous
of degree zero in for |{| > 1.)

Then the resolvent R\ = (AB - iA)-, A E R \ {0}, satisfies (15.41) for all 0 < s < 1. In
particular, we have

||RA |0p(H(0s)(E)) < OCIAK). (15.43)

9In (3.62), we regard t as the inward normal coordinate relative to the boundary. Thus, when we consider
the boundary operator B0 on {0} x X 2 , we can take t as the coordinate on [0, 1], but when we consider the
boundary operator B1, we really should replace t with T:= 1 - t and work with respect to the T coordinate
in the neighborhood of {1} x X 2 . To rectify the situation, we instead work with the coordinate t for both
boundary components but compensate by changing the sign of J1 , B1 , and C1.
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Proof Let A0 be as in Lemma 15.31, and let U = ker B C H 1/2 (Eax). Observe that U
and r(ker A,) are transverse for all A # 0. Indeed, because B defines a self-adjoint boundary
condition, if u E Hj3 (E), then

|AAu| L2(E) = |Au|L2(E) + L2 (E),

which is zero if and only if u = 0. Thus, AB - iA has no kernel, which means U and r(ker AA)
have trivial intersection. Similarly, by considering the adjoint of AB - iA, which is AB + iA,
we can conclude that U and r(ker A,) also span H 1/2(Eax).

Thus for A > A0, we have two complementary projections Uim P±,u and Hu,im p+ on

H 1/ 2 (Eax), with the range and kernel of HimPf-u being im P+ and U, respectively, and

vice versa for the projection HuimP+. For u E HB(E), we have ru E U, so that from

(15.42), we have

U = QA (A,\u)a + Q Ar* Ju,m, p+ ru, u E HB'(E). (15.44)

We want the right-hand side to be in terms of A\u only, in which case, we can substitute
the expression (15.44) into the last occurrence of u in (15.44) to obtain the identity

u = Q\(AAu)0 + QAr* JlUim p+ r(Q (A Au)o + QAr* JUim p+u), (15.45)

= QA(AAU) 0 + PAHu1,im PorQ(AAu)0 . (15.46)

Here, we used the fact that rQAr* J rP = PA, whose image is annihilated by H7u,im p+.
Altogether, the expression on the right-hand side of (15.46) defines for us the inverse of the
operator ABA for JAl > A0 , i.e.

RA = (AB - iA)-' = rxQAEo + PA HuiP+rQEo. (15.47)

Here E0 denotes the extension by zero operator from X to X and rx is the restriction
operator from X to X.

We now show that ||RA||Op(Hos(E)) < (- 1) using the above expression for the resol-
vent. Let D, be an invertible (pseudodifferential) elliptic operator of order s on X2 , with
principal symbol a scalar endomorphism everywhere. Since D, : H(0',)(E) -+ L2 (E) is an
isomorphism for all s E R, to prove the desired estimate, it suffices to show that

ID, RA D_ 811op(L2(x 1 x X 2 )) O(A- 1). (15.48)

From (15.47), the first term of DRAD_, is D8 rXQEoD_, = r+DQAD-,Eo. Regard
DSQAD-, as an anisotropic type pseuodifferential operator on the vector bundle E over
X X1 x X2 , where X1  S1 D [0,1]. Lemma 15.3 and the fact that QA E OS-1 implies
that the symbol a = a(x, ) of DsQAD, in local coordinates (x,() on T*(Xi x X 2 ) satisfies

sup T th o ( ) a g ( unirMI Ke2)e t0(2)

Thus, the symbol ((,A)) a belongs to SAO,) uniformly in A. This is equivalent to the
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mapping property
DsQxD-s : L 2 (5) -+ H(5) (15.49)

Since trivially, the maps E0 : L 2 (X1 x X 2 ) -+ L2(* 1 x X 2 ) and rx : H (X1 x X 2) -+

HAJ(Xi x X 2) are bounded, and the inclusion map Hj(Xi x X 2 ) " L2(X1 x X 2 ) has norm
bounded by O(A- 1 ), it follows that

t|DsrxQEoDs|| Op(L
2 (E)) : 0() 1\). (15.50)

It remains to show that we have a similar estimate for the remaining term

DsPA Huim P+rQA\EoD-s

of DsRAD-s. We can factor the above map as

(DPxD-,) o (DH,, m- D-,) o r(D-sr+QAEoD- 8 )

By the above step and Lemma 15.28, we have

r(Dqr+QAEoD 8s) : L2 (E) -+ H/ > Eax).

Likewise, since PA : Hj(Eax) -> Ht±1 (E) for all t > 0, one can show that DSPAD-:

Hj(Eax) -+ Ht+1/ 2(E) as well. The argument is the similar as to that used to establish
(15.49). Namely, one can investigate the operator kernel of DSPAD-, and see that it is

given by a Poisson kernel of order -1 with parameter A. One then applies Lemma 15.30.

In particular, DSPAD_, : H,/ 2 (Eax) -> H(E).

Thus, to prove the theorem, it remains to estimate the second term D8 Uu,im P+D_, and

establish the following:

Claim: The operator DSuI,im P+D_, is bounded on H1/ 2(Eax).

We first start with the case s 0. Let P = 1 - Pj and let BA = BOA be as in Lemma

15.28. Given any v E H (OX), define the following extension operator

5BA: Hi/ 2(Eax) -+ Hj(E)

v - Pv + EA P-v.

We have rEv = (P+ + P-)v = v, and so by Lemma 15.28,

|V 1Hi/2(x) 5 C11kAVlH1(X) (15.51)

for all v. Here, C denotes a constant independent of A. (In what follows the precise value

of C is immaterial and may change from line to line.) On the other hand, for u E HB(E),
the fact that AB is elliptic implies that

IIUHjI(E) L C(Au12 2(E) + Hu L2(E))

219



15. ELLIPTIC BOUNDARY VALUE PROBLEMS

Since ||U|I'i(E) IUAH1(E) + IAI HUL2 (E), then by the self-adjointness of AB,

||H1 <; C(Au)|L2(E). (15.52)

Thus, for v E U, we have

| EAV|H (E) C XAAEv||L2(E)
= C|| AAEAPV|L2(E)

C'||EAP;v||H1(E)

C"flPTvi 1/2(Ea,). (15.53)

From (15.51) and (15.53), we have

v||H12 (Eax) < C"1PWV1/2(E ), v V U. (15.54)

Let us see what the inequality (15.54) tells us. First, observe that we have the decom-
positions

( X) im P e im P- (15.55)

Hi/2(OX) U e JU. (15.56)

Here, J is the boundary endomorphism on Eox defined by the Green's formula for A
(cf. Proposition 15.18). The first isomorphism follows because the P+ are complementary
projections. Moreover, since P± E OSo0 h, the isomorphism (15.55) and its inverse haveA SPhg'
operator norm bounded uniformly in A. Likewise, for (15.56), the space U is by definition
the image of the projection 1 - B. Since AB is self-adjoint, U is a Lagrangian subspace of
H 1/ 2 (X 2 ) and so JU is complementary to U in H 1/ 2(X 2 ) (it is the L 2 orthogonal complement
of U). Since the operator norm of an element of OSO on A-dependent Sobolev spaces is
uniform in A, it follows that the isomorphism (15.56) and its inverse have operator norm
uniform in A. Combining the above decompositions with the inequality (15.54), we have
that

H1/2(X Ui/2 (D im p+,1/2 1.7

with the isomorphism and its inverse uniform in A. This is equivalent to the assertion made
in our claim, for s = 0.

The case s > 0 requires a much more delicate analysis. In this case, we need estimates
on the symbol of the projection lIu,imP+, and it is here that we need the additional hy-
potheses involving the symbol of B (for s = 0, we only used self-adjointness of the boundary
condition). Observe first of all that Duimp+ is indeed pseudodifferential since its range and

kernel are the range of pseudodifferential projections. Explicitly, if we let B- denote the
orthogonal projection onto ker B = U, observe that the pseudodifferential operator

TA = B-P- + P+
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is invertible on H, 2(Eax) for every A > 0 by the preceding analysis. (Since TA is pseu-
dodifferential, note this implies that its inverse is bounded on H8 (Eax) for all s). The
projection flu,iimP+ is then simply given by

pu,imP -T 11B~P7 + P+. (15.58)

Nevertheless, the operator Uim P + is still somewhat mysterious because of the presence
A

of the term TV1 . Indeed, we know from (15.57) that T177 is bounded on H1/2 (EaE), but it
appears that we do not have any further information on its boundedness on other function
spaces uniformly in A. To get around this, we will approximate Hu,im P+ by a pseudodiffer-
ential operator whose dependence on A we have complete control over. To do so, we need
the following lemma:

Lemma 15.33 Let B be a boundary condition given by a pseudodifferential projection as
above. For every (x, ) G T*(&X) with |{| > 1 and for all A E R, we have the following:

(i) The positive eigenspace of o-(B+iAJ)(x, ) is complementary to ker 0-(B)(x, ) in Ex.

(ii) Consider the projection F (x, ,A) on Ex whose image is kerco(B)(x, ) and whose
kernel is the positive eigenspace of c-(B + iAJ) (x, ). Then -R(x, , A) is weakly homo-
geneous and the norm of the symbol -7i(x, , A) is uniformly bounded in |j 1 and
A cR.

Let us see how this lemma allows us to prove the claim. Because of the properties of
symbol ir(x, , A) as above, we can extend *(x, (, A), defined initially only on |(| > 1, to all
of (T*(&X) x R in such a way that the norm of the symbol (with respect to the cotangent
variables) is uniformly bounded in A. Indeed, we can just smoothly extend fi(x, (, A) to zero
inside || < 1/2, and this extension can be done in such a way that the symbol norm of the
resulting i(x, (, A) depends uniformly on A because of (ii) in the above lemma.

So consider our resulting weakly homogeneous symbol Fr(x, (, A) defined on all of T*(OX) x
R. Define U + to be any weakly homogeneous pseudodifferential operator quantized from

the symbol r(x,(, A) by use of a partition of unity. Namely, if we let {ypi} denote a partition
of unity such that supp ,oi U supp Wj lies within a coordinate patch, for any i and j, define

Nu'P+= wiOpMO'Py, (15.59)

where the left quantization is done with respect to some chart containing supp (Pi U supp Oj.
Since the symbol -i lies in OS 0 uniformly in A, it follows that the operator norm of Hup+
on any Sobolev space is bounded uniformly in A.

We now compare the pseudodifferential operator HU + with the projection IU +. In

the below, let Op(-1) denote any A-dependent pseudodifferential operator which belongs
to OS-' uniformly in A. The precise value of Op(-l) is immaterial and may change from
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line to line. Then we have for v E U that

n , v = B-v + (Uu,P+ - B-)v

= V + (Uu,P+B- - B-)v

= v + Op(-1)v.

The last line follows from the fact that UI,,p+B- and B have the same principal symbols

and the uniformity property of ny,. Likewise, we have for v+ E im P\ that

f6 v++ lu,P +P+ OP( _1)v

since im c(P\) 9 ker o(nup). Since U and P, span H/ 2 (Eax), the above computations

show that

u P uP + + OP(-1)I -'+ + Op(- 1 ). (15.60)

Thus, one now has

Dsu,,+D- 8 = DsU p+D~ + D 8 Op(-1)H +D~8 + DsOp(-1)D-5. (15.61)

We want to show that the operators on the right-hand side of the above are bounded on

Hi/ 2(Eax). The first term is bounded on Hi/2 (Eax) because nlu,+ is defined by (15.59)

and R belongs to OS 0 uniformly in A. The same argument applies to show that the term

D'Op(-1)D- is bounded on Hi/2 (Eax). The mysterious term is D 80p(-1)l,p+D-8 ,

since we only know that UJ,,j though pseudodifferential, is bounded on Hi (Eax). Es-

sentially, we do not have any control over the total symbol of flp+ and hence cannot

deduce its boundedness on other Sobolev spaces. However, we do the simplest thing possi-
ble to bound the last term of (15.61). We have that the A-independent operator D- is a

bounded operator on H1 2 (Eax), since s > 0. We also have that D'Op(-1) belongs to OS'
uniformly in A for s < 1 and hence is bounded on H/ 2 (Eax) for s < 1. It now follows that

the composite operator D'Op(-1)lup+D-" is bounded on Hi/ 2(Eax). This completes

'AAthe proof that D'U,,+D-' is bounded on Hi/2(Eax), which proves the claim and hence

the theorem. D

We now prove Lemma 15.33 to complete the proof of Theorem 15.32.

Proof of Lemma 15.33: (i) For any fixed x E 0X, the symbols u(B)(x, () and o(B +
iAJ)(x,() are endomorphisms of Ex. Furthermore, viewing o-(B)(x,() as being a constant
function of A, then o(B)(x,() is weakly homogeneous while o-(B + iAJ)(x,() is strongly
homogeneous. Thus, to compare the spectrum of these two matrices as ( , A) varies, the
above homogeneity properties imply that we need only consider these matrices on the cylin-
der |(I = 1 in ( , A) E T* x R.

Let E ((, A) denote the positive (negative) eigenspace of o-(B+iAJ)(x, (). Observe that
Ex( , A) are complementary subspaces of Ex for all 1(I = 1 and A. Indeed, for A = 0, this
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follows from the fact that E, = E+(x, , A) e E (x, (, A) and J is an isomorphism that
interchanges the positive and negative eigenspaces. This follows from B being elliptic and
the relation BJ = -JB. For all A * 0, then a(B + iAJ)(x, ) remains an invertible self-
adjoint elliptic operator, which means that the dimensions of E±(x, , A) remain constant
as A varies. Thus, the E ((, A) are complementary subspaces of Ex for all A.

We now proceed with the proof of the lemma. For A = 0, we have that kero,(B)(x, )
and E, ( , A) intersect trivially since B is an elliptic boundary condition. Since in addition,
ker o(B)(x,() and Ex( , A) are Lagrangian subspaces of Ex, they must in fact be comple-
mentary. (The space Ex((, A) is Lagrangian since the spaces Ex( , A) are orthogonal and
interchanged by J.)

For A = 0, we consider the following computation for any two elements u, v E E(, A).
Write u(B) = a(B)(x,() for shorthand. Since u, v E Ef( , A), we have a(B + iAJ)u = pu
and o,(B + iAJ)v = p'v for some p, t' > 0. It follows that

1
Re (u, Jv) = -Re (u, J(o(B) + iAJ)v)

1
= Re ((J(o(B) - iA J)u, v)

1
= Re ((J(a(B) + iAJ - 2iAJ)u, v)

= Re (J, v) + 7 Re (2iAu, v)

In the above, we use that Jo(B) is self-adjoint, J= -J, and J2 = -1. Rearranging, this
implies

Re (u, Jv) = -(i + ')-'Re (u, 2iAv). (15.62)

Suppose w c kerou(B) n Ex( ,A) is nonzero. Then since kera(B) is both a Lagrangian
subspace of E and a complex vector space, we must have Re (w, Jaw) = 0 for all a C
C. For nonzero a E iR however, setting v = au contradicts (15.62). It follows that
ker o(B) n Exj ((, A) = 0 and hence these two spaces must be complementary.

(ii) By (i), since kero-(B)(x,() and Exh((,A) are complementary for |(| > 1 and A C R,
the projection -r(x, (, A) is well-defined and uniquely defined. It is clearly weakly homoge-
neous since both ker o(B)(x, () and o(B + iAJ) (x, ) are. It remains to establish the unifor-
mity statement, which by weak homogeneity, we need only establish on the cylinder |(| = 1
in T*(X), A C R. This amounts to showing that that the "distance" between ker u(B)(x, ()
and E,+ ( , A) is uniformly bounded along the cylinder (where to define distance, one can
pick any metric on Gr = Gr(Ex, dim(Ex)/2), the Grassmanian of Ex consisting of subspaces
of half-dimension). Observe that for any A* > 0, we have a uniform estimate on the norm
of fr(x, (, A) on Ex since the set 1( = 1 and |AI < A* is compact. Thus, the essential task
is to get a uniform estimate on the norm of r(x, (, A) on the non-compact set JA| > A*.
Observe however that as A -+ oo, the matrix u(A- 1 B + iJ)(x,() converges to iJ uniformly
on the compact set |(| = 1 in T*(OX). In other words, Ex( , A) converges to Ex(0, 1) (in
the Grassmanian Gr). The same analysis in (i) shows that Ex+(0, 1) is complementary to
kera(B)(x,() for all ( such that |(I = 1. By continuity, it follows that for every ( with
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1 = 1, the set {E+(x,(, A)} >A. is uniformly separated (i.e. has a positive distance) from
the point kero(B)(x, ) in Gr. Throwing in the compact set JAI < A*, we see that in fact
{E+(x, , A)}AER has a positive distance from ker-(B)(x, ) in Gr. Letting (x, () vary over
the compact set |(| = 1 in T*(8X), we deduce that there is a fixed positive distance between
E+(x,(, A) and ker o(B)(x, , A) for all (x,() E T*(OX) E R with | > 1. This proves the
uniformity statement. D

The proof of the Theorem 15.32 shows that the following slight generalization holds:

Corollary 15.34 Let B' be a projection such that there exists a pseudodifferential pro-
jection B satisfying the hypotheses of Theorem 15.32 and B' - B is an operator which is
smoothing of order one, i.e. (B' - B) : Ht(Eax) -+ Ht+l/2( Eax) for all t > 1/2. Then the
resolvent R\ = (AB' - iA)- 1 , A G R \ {0}, satisfies (15.43) for all 0 < s < 1.

16 Vector Valued Cauchy Riemann Equations

In this section, we state a modified version of the results of [52], both to strengthen them
for our needs and also to correct some subtle errors. Specifically, we need to make use of
the elliptic estimates obtained in [52] for Banach space valued (i.e. vector valued) Cauchy
Riemann equations with totally real boundary conditions. Namely, consider the following
situation. We have a Banach space X endowed with a complex structure, i.e., an endo-
morphism J : X -* X such that J2 = -id. A subspace Y C X is said to be totally real
if X ' Y e JY. A submanifold Z C X is said to be totally real if each of its tangent
spaces is a totally real subspace of X. In particular, for the situation that concerns us,
if X is a symplectic Banach space which is densely contained within a Hilbert space H,
and J: H -+ H is a complex structure which preserves X, then Lagrangian subspaces and
Lagrangian submanifolds of X are all totally real. For simplicity, we assume we are in this
symplectic situation, though everything we do generalizes to the general case.

Given a Lagrangian submanifold 2 C X and some 1 < p < oc, we assume the following
hypothesis:

(I), There exists a (finite dimensional) vector bundle E over some closed manifold M, such
that each tangent space to 2 is isomorphic to a closed subspace of the Banach space
LP(E), the space of all LP sections of E.

In the above hypothesis, we assume an inner product on E is chosen so that an LP norm
is defined. In [52], the case where E is a trivial bundle is considered, but one can see from
the methods there that the more general case can be easily deduced from this latter case.

The next hypothesis, which is omitted from [52], is one concerning analyticity of the
submanifold 2. Recall from Definition 21.1 the notion of an analytic map between two
Banach spaces. From this, we can define the notion of an analytic Banach submanifold:

Definition 16.1 Let X be a Banach space. An analytic Banach submanifold M of X is
a subspace of X (as a topological space) that satisfies the following. There exists a closed
Banach subspace Z C X such that at every point u E M, there exists an open set V in X
containing u and an analytic diffeomorphism @ from V onto an open neighborhood of 0 in
X such that <b(V n M) = 4(V) n Z. We say that M is modeled on the Banach space Z.
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We have the following additional hypothesis for our Lagrangian:

(II) The Lagrangian submanifold 2 C X is an analytic Banach submanifold of X.

Without hypothesis (II), Theorem 1.2 of [52] is incorrect as stated. We explain what
modifications need to be made at the end of this section.

Given the above hypotheses, we consider the following situation. Let Q C H be a
bounded open subset of the half-space

H = {(t,v) c R2 v > 0}.

Given any Banach space X and 1 < p K oc, consider the vector-valued Sobolev spaces
Wk'P(Q, X), defined as in Definition 13.25 but with Q replacing R'.

Observe that if we have a bounded multiplication map

Wk'p(Q) X Wk''p'(Q) _* Wk"l?"(l) (16.1)

on the usual scalar valued Sobolev spaces, then this induces a bounded multiplication map

Wk'P(Q, End(X)) x Wk''p'(Q, X) -+ Wk"'P"(Q, X). (16.2)

Suppose we are given a Lagrangian submanifold 2 C X satisfying (I), and (II) for some
1 < p < oo. Let u : Q - X be a map that satisfies the boundary value problem

atu + J&o'a 0Otu +J~u G(16.3)
u(t, 0) E 2, for all (t, 0) E aQ ( OH,

where G : Q -+ X is some inhomogeneous term. Thus, the system (16.3) is a Cauchy-
Riemann equation for the Banach space valued function u, supplemented with a Lagrangian
boundary condition. In [52], the complex structure J = Jt,, is allowed to vary with t, v E Q.
For simplicity, and since we will not need to assume otherwise, we let J be constant.

We have the following elliptic regularity theorem for the equations (16.3), which is a
refined and corrected version of [52, Theorem 1.2]:

Theorem 16.2 Fix 1 < p < oc, let k > 1, and let K c int Q be a compact subset. Let
2 c X be a Lagrangian submanifold satisfying ('), and (II).

(i) Suppose u c W k''(Q, X) solves (16.3) with G G Wk'q(Q, X), for some q and q'
satisfying p q q' < oc. Furthermore, suppose q', q, and p are such that we have
bounded multiplication maps

Wk-l'q'(Q) X Wk-l'q'(Q) -+Wk-l'p(Q) (16.4)

Wk-l'q'(Q) X Wk'q(Q) -+Wk-l'p(Q). (16.5)

Then u E Wk+1,P(K,X).

(ii) Furthermore, let uo E C' (,X) be such that uo(t,0) C 2 for all (t,0) e 8Q n OH.
Then there exists a 6 > 0 depending on uo such that if ||u - uo||L(ty x) < 6 is
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sufficiently small, then

[U - UO[|wk+1,P(K,X) - C(IGIl wkq(QX) + [ IU - UO IWk,q'(nX)). (16.6)

where C is a constant bounded in terms of 6, uo, and ||U - UO|1Wk,q'(nX)

Let us note the main differences between Theorem 16.2 and [52, Theorem 1.2]. First,
we allow for a more general range of q. In [52], only the case q' = q is considered, in which
case the range permissible of q is such that

Wk-l'(Q) X Wk-lq'(Q) -_ Wk-l'P(Q) (16.7)

is bounded, which is more restrictive than (16.4)-(16.5). Second, we now explain why we
assume the analyticity hypothesis (II). If this is omitted, then the theorem above must be
modified as follows: the constant 6 appearing in Theorem 16.2(ii) a priori depends on k.
While this seems innocuous, this implies that if one wishes to use (16.6) to bootstrap the
regularity of u to higher and higher regularity (k increasing to infinity), one also needs u to
get closer and closer to uo. Analyticity, however, ensures that a small enough 6 works for all
k. In a few words, this is because analytic maps, being expressible as a power series locally
near any point, satisfy good estimates for all their derivatives within a fixed neighborhood
of any point. More precisely, for an analytic map, there is a fixed neighborhood about any
point on which the kth Frechet derivative of the map is Lipschitz for every k. This is precisely
Proposition 21.3. Hence, hypothesis (II) ensures that our analytic Banach submanifold has
local chart maps obeying Lipschitz estimates on fixed neighborhoods, which gives us the

uniformity of 6 with respect to k in Theorem 16.2.

We now give a very cursory explanation for how one modifies the proof of Theorem 1.2 of
[52] to prove Theorem 16.2, since only very minor changes are needed. There are two places
where modifications need to be made. The first one, as we have mentioned, is the issue with
analyticity. In detail, in the proof of Theorem 1.2, an estimate of the form |[vllWk,q(QX)
Clju - u0Ilwkq(n,X) is made for a certain configuration v when ||U - uojILoo(u,X) 3. One
can inspect from the assumptions made there that analyticity needs to be assumed, else
3 a priori depends on k, as can be seen from the above discussion and the discussion
preceding Proposition 21.3. The second modification to be made, so that we may sharpen
the results of [52, Theorem 1.2], concerns refinements in Sobolev multiplication. In [52,
Theorem 1.2], after equation10 (9), one bounds [[u - UO[[Wk+1P,(KX) by bounding certain

functions F E Wk-l'P(U, X) and H E Wk'P(U, X), where U C Q is an open set containing
K. However, from the definitions of these functions, one has the schematic bound

IF[[wk- 1 ,p+ - H|wk,p < c (Hf Hwk,p + (I)fHwk--1,p + (VI)(IVv)wk-1,p) (16.8)

for some constant c and certain configurations I, f, and v as defined in the proof. (In the
above, V denotes the 1-jet.) In [52], the assumption that G c Wkq and u c Wkq is used

'(This equation number refers to the version of the paper appearing on January 27, 2004 at http://
arxiv.org/abs/math/0401376.

226



Part IV

to prove that

||V||wk,q, 1IH1 k,q C||u - UO||wk,q

||f||Wk,q C(||G|wk,q + U - UOIwk,q,

for some constant C depending on ||U - UOllwk,q. The same reasoning shows that we also
have the bound

||V||wk,q', HJHwk,q' < C||u - UO||wk,q'

for C depending on ||n - UOllwk,q'. Thus, from this bound on I and the bound on f, the
multiplication hypotheses (16.4) and (16.5) imply the bound

||F||wk-l,p + H |Wk,p C(||G||Wkq + ||U - UO||wk,' (16.9)

Everything now follows through all the same in [52], and the above bound gives us the
bound (16.6) and hence the theorem.

17 Unique Continuation

Let A : F(E) -+ F(F) be a smooth Dirac operator acting between sections of the Hermitian
vector bundles E and F over a compact manifold X (with or without boundary). The
operator A is said to obey the unique continuation property if every u that solves Au = 0
and which vanishes on an open subset of X vanishes identically. It is well-known that Dirac
operators obey the unique continuation property. If X is a manifold with boundary, we can
replace the condition that u vanish on an open set with the condition ru = 0, where r = ro
is the restriction map to the boundary. This is because one can extend the operator A to
a Dirac operator A on an open manifold X that contains X in its interior, and one can
extend u to X by zero outside of X. Since A is a first order operator, then Ai = 0 on X.
Since ft vanishes on an open set, then L = 0 on X and so u = 0 on X.

The following is a well-known general result:

Theorem 17.1 Let X be a compact manifold with boundary, let D be a smooth Dirac
operator on 17(E), and let V be an L' multiplication operator. Then D + V has the unique
continuation property. More precisely, if u E B' 2 (E) satisfies (D + V)u = 0 and ru = 0,
then u = 0."

One application of this theorem is to show that such an operator D + V, acting between
suitable function spaces, is surjective on a manifold with boundary. This is in contrast to
when X is closed, in which case D + V is only Fredholm, in which case it may have a finite
dimensional cokernel. We have the following theorem:

Theorem 17.2 Let X be a compact manifold with boundary. Let 2 < p < oo, s > 1/p and

"One can start with u of lower regularity than B"2 (E), say L 2 (E), since by elliptic bootstrapping, such
a u will necessarily be of regularity B" 2 (E), see the proof of 17.2 in [34].
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let D+V: B 8 'P(E) -+ BS-l'P(F) where V is a sufficiently smooth12 multiplication operator.
Then D + V is surjective.

Proof Since D + V is a smooth elliptic operator, it has a right (pseudodifferential)
parametrix. This shows that D + V has closed range and finite dimensional cokernel. It
remains to show that the cokernel is zero. There are two cases to distinguish, the cases
s > 1 and s < 1. Let us deal with the latter case, with the case s > 1 similar. Suppose
u E (B8-l'P(F))* = B-'P'(F), p' = p/(p - 1), belongs to the dual space of Bs-l'P(F) and

annihilates im (D+V) C BS-l'P(F). We want to show that u = 0, which combined with the
fact that im (D + V) is closed means that im (D+V) is all of BS-l'P(F). The condition that
u annihilate im (D + V) means that we have the (weak) equation (D + V)*u = 0, and thus,
Du = -V*u (here we think of dual operator D* acting on the linear functional u as being
the same as D, since a Dirac operator is formally self-adjoint). We have V*u E Bc-9,P',
since multiplication by a smooth function is bounded on all Besov spaces. By Theorem
15.19(i), we have a well-defined trace r(u) c B1-s-1/P''P'(Fax). Thus, for all v E B'P(E),
we have Green's formula (3.65), which tells us that

0 = (v, (D + V)u) - ((D + V*)v, u)

= (r(v), -Jr(u)). (17.1)

The first line follows since u annihilates im (D + V) and (D + V*)u = 0. The second line is
well-defined since Jr(v) E B~1-/P'P(F) and B~1-/P'P(F) is the dual space of B-+1/P,p' (F) =

B'-s-1/P''P'(F). Since (17.1) holds for all v E Bs'P(E), it follows that r(u) = 0. The system
(D+V*)u = 0 and r(u) = 0 is overdetermined which means that we have an elliptic estimate
for u via Theorem 15.19. That is, since Du = -V*u, we have an estimate of the form

||UlBt+l,q C(II*U||Btq + IuHBt,q). (17.2)

for all t, q such that the right-hand side is finite, t + 1 > 1/q. Since u, V*u E B1-s'P'(E)
we have u e B 2-s,p'(E), where 2 - s > 1/p' since s < 1. Feeding this back into (17.2) and
using that V is smooth, we see that we can boostrap u to any desired regularity. Thus
u is smooth. (In general, for V not smooth, we want V sufficiently regular so that the
above steps allow us to bootstrap to u E B1,2 (E)). Furthermore, r(u) = 0. We now apply
Theorem 17.1 to conclude u = 0. Thus, D + V is surjective. D

In [34], we sketched the proof of some unique continuation results. These are as follows:

Theorem 17.3 Assume (4.1) and s > max(3/p, 1/2). If (B 1 , 'I'1), (B 2 , T 2 ) E 9Rs'P are ir-
reducible and satisfy rr (BI, T1) =rF (B 2 , T2), then (B1 , TI) and (B 2, "'2) are gauge equiv-
alent on Y.

12To keep the function space arithmetic simple, we suppose V is smooth in the proof in the theorem,
though the necessary modifications can be made for V nonsmooth but bounded as a map between suitable

function spaces, depending on s,p. What mainly needs to carry through is the bootstrapping argument in
(17.2). In all applications, we will always have V E BtP(Y) where t is sufficiently large so that the statement

remains true with V of this regularity class. If s > 1, one can check that V E L* (E) suffices. If s < 1, one

wants V to have some regularity so that it can act via multiplication on functions of low regularity.
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Theorem 17.4 Let (B, qI) C 9y'sP(Y), s > 3/p. Suppose (b, 4) E T1,2 satisfies 7((BW)(b, 4)
0 and r,(b, 4) = 0. Then either (i) (b, 4') c J or else (ii) T _ 0, and then =' 0 and
b c ker d.

Corollary 17.5 Let (B, 'I) c 9S1'P(Y), s > 3/p. Suppose (b, 4') (E K 1  satisfies 7(B,)(b,o)
0 and rE(b,@V) = 0. Then either (i) (b,') = 0 or else (ii) I = 0 and b E H 1 (Y, E;iR)
{a E Q'(Y; iR) : da = d*a = 0, alE = 0}.

As explained in [34], to complete the sketch of the proof requires a version of [21,
Proposition 7.2.3] for lower regularity configurations. We now verify that this is the case.

Let H be a Hilbert space and L: H -+ H a (possibly unbounded) symmetric operator.
For any open interval I C R, define the vector-valued Sobolev space

Wj, 2(I, H) = {z E W 1,2 (JH) : Lz E L2 (I, H)}.

Observe that we have the embedding WI'2 (I, H) <-+ 0(1, H).

Lemma 17.6 [21, Lemma 7.1.3] Let z E WL'2 (I, H) be a solution (in the sense of H-valued
distributions) to the equation

dz
Tt+ L(t)z = f (t),

where f C 0(1, H). Suppose in addition that f(t) satisfies

||f(t)||H < 5||z(t)H, Vt E I,

for some constant 6. Then if z(t) is zero for some t E I, it follows that z is identically zero.

Proof To prove the lemma, it suffices to show that if z is nonzero at any to E I, then
z is nonzero at every point in I. In [21, Lemma 7.1.3], this method of proof is carried
out under the stronger regularity assumptions on z. We will therefore establish our lemma
by checking that the steps made in [21, Lemma 7.1.3] still hold under our more general
hypotheses. To begin, picking to E I, one defines the quantity

l(t) = log |1z(t) - ft ( (r)) dT

which is a continuous function since z(t) and f(t) are continuous. If z(t) were sufficiently
smooth, then one can verify as in [21, Lemma 7.1.3], that we have

- (Lz, z) (17.3)

[(t) = | (2|Lz 12 z||2 - 21 (Lz, z) 2 - 2 (Lz, f) f|zI| 2 + 2 (Lz, z) (f, z) - (zL, z) |z,2)

(17.4)

by simply differentiating the expression for 1(t). In our situation, where z E Wj' 2 (I, H),
one can no longer perform strong differentiation in t but only differentiation in the sense
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of distributions. Nevertheless, the expressions appearing on the right-hand side of (17.3)
and (17.4) belong to L'(I), and hence correspond to well-defined distributions. It follows

that the equalities (17.3) and (17.4) hold in the sense of distributions. This reasoning

for this is standard: First, instead of working with 1(t), we mollify it, i.e., we replace

1(t) by le(t) = (pe * l)(t), where p is a smooth compactly supported function such that

OE = e-i(e-t) approaches a delta function as e -4 0. Then since 1E a I as a distribution,
the same is true for all the corresponding distributional derivatives. On the other hand,
since le is smooth, one can take strong derivatives of 1e and then let E -4 0. We leave it

as an exercise to the reader that upon doing this regularization procedure, one obtains the

equalities (17.3) and (17.4), for t E I. The rest of the argument in [21, Lemma 7.1.3] now

goes through as before. Namely, simple algebraic manipulations of the above expressions

yield the differential inequality
i +C3a1l|+C5 0,

where C3 and C5 are absolute constants. Here, the inequality holds in the sense of L'(I).

It follows that if we define u(t) = e-c3tl, then u satisfies

it + C5e-cat > 0

at all points where n < 0. This statement makes sense since u is continuous, as we have a

continuous embedding W 1'(I) " C 0(I). Thus, the function u_ = min(0, u) satisfies

U-_(t) n> _-(to) - CeC3(tto)

for all t E I. It follows that u is bounded from below on I, and hence so is 1(t). The bound

on f implies

log\|1z(t)| 11 ! (t) - 61t - to|I

for t E I. Thus, log |z(t)| is bounded from below and hence |z(t)|| is bounded away from

0 for all t E I. F
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Appendix A

Some Additional Functional
Analysis

18 Subspaces and Projections

Here, we collect some properties about projections and subspaces of Banach spaces. Given
a Banach space X, a projection 7r is a bounded operator such that 7r2 = id. A subspace
U C X is complemented if there exists another closed subspace V C X such that X = UeV.
In this case, X ~ U e V. A closed subspace U is complemented if and only if there exists
a projection 7r whose range is U. In this case, we have the decomposition

X = im 7r e ker 7r.

Recall that any finite dimensional subspace of a Banach space is complemented. Like-
wise, any subspace of finite codimension is also complemented. Thus, if Y C X has finite

(co)dimension, we may always regard X/Y as a subspace of X (though unless X is a Hilbert
space, there is in general no canonical embedding X/Y " X).

The following simple lemma tells us that if a projection 7r restricted to a subspace
U' c X yields a Fredholm map 7r : U' -4 im 7r, then U' is essentially a graph over im 7r.
More precisely, we have the following:

Lemma 18.1 Let X = U E V and let 7r be the projection onto the first factor. Let U' be a
subspace of X and suppose 7r : U' -+ U is Fredholm. Then

U' = {x + Tx : x e 7r(U')}e F, (18.1)

where F = ker(7rlui) is finite dimensional and T : 7r(U') -+ V is a bounded operator.
Consequently, U' is also a complemented subspace of X, in particular, it is the range of a
projection.

Proof Since F is finite dimensional, it is the range of a bounded projection 7rF : X --+
F. Since F c U', then (1 - 7rF) : U' -* U' maps U' into itself and its range is a complement
of F in U'. It follows that 7r : (1 - 7rF)(U') - T(U') is an isomorphism. Let 7 denote this
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isomorphism. Thus,

U' = {(fr) 1 x : x E 7r(U')} D F

= {x + (-1 + (7-r)")x : x E 7r(U')} e F.

Let T = (-1 + (fr)') : r(U') -a X. Since imT C ker7r, we see that imT C V. This

gives us the desired decomposition of U'. One can now explicitly write a projection onto

U'. Since 7r(U') C U has finite codimension, it has a complement C C U along with a
projection 7rc : U -> C such that the complementary projection (1 - rrc) has range equal
to im r. A projection from X onto U' is now easily seen to be given by the map

(1 + T)(1 - 7rc)rr(1 - 7rF) e 7rF- (18.2)

This proves the lemma. F

Given a complemented subspace U C X, to compare other subspaces U' c X with U,
then we should not only study the projection of U' onto U but also onto a complement of
U.

Definition 18.2 Let X be a Banach space. Two projections 7r and 7r' on X are commen-
surate if 7r - 7r' is compact. Given a complemented subspace U c X, then a subspace U'
is commensurate with U if its projection onto U is Fredholm and its projection onto some
(hence any) complement of U is compact. We will also say that U' is a compact perturbation
of U.

Corollary 18.3 Let U and U' be as in Lemma 18.1. Then the subspace U' is commensurate
with U if and only if the map T in (18.1) is compact. In this case, the space U is also
commensurate with U'.

Hence, being commensurate is a symmetric relation, and we may simply speak of two
subspaces U and U' as being commensurate. The notion of commensurability obviously
captures the notion of two subspaces being "close" to one another in a functional analytic
sense. On the opposite spectrum, one may consider pairs of subspaces that form a direct sum
decomposition modulo finite dimensional subspaces. More precisely, we have the following
definition:

Definition 18.4 A pair of complemented subspaces (U, V) of a Banach space X is Fredholm
if UnV is finite dimensional and the algebraic sum U+V is closed and has finite codimension.
In this case, we say that (U, V) form a Fredholm pair, or more simply, that U and V are
Fredholm (in X).

Together, the notion of a pair of subspaces being either commensurate or Fredholm
will be very important in what we do. Next, we record the following technical lemmas
concerning topological decompositions:

Lemma 18.5 Let X and Y be Banach spaces, with Y c X dense. Suppose X = X1 D Xo

and Y n Xi C Xi is dense for i = 0,1. Then if Y n X 1 and Y n Xo are Fredholm in Y, then

in fact Y = (Y n X1) ED (Y n Xo).

232



Appendix

Proof The hypotheses imply Y = (Y n Xi) e (Y n Xo) D F where F is some finite
dimensional subspace of Y. If we take the closure of this decomposition in X, we have
X D X1 G X 0 e F, which means F = 0. D

Lemma 18.6 Let X = X1 e Xo be a topological decomposition of X and let 7ri : X -4 Xi
be the coordinate projections. Let V = V1 D V, where V1 = V n X 1 and ,so : Vo -+ Xo is

Fredholm. If U is commensurate with V, then we can write U = U1 eUo, where U1 = U n X 1,
,ro : Uo -> Xo is Fredholm, and Ui is commensurate with Vi, i = 0, 1.

Proof By the preceding analysis, since U is commensurate with V, there exist finite
dimensional subspaces F1 C X and F2 C V and a compact operator T : V/F 2 -4 X such
that U = {x + Tx : c V/F 2} e F1. For notational simplicity, let us suppose F1 = F2 = 0,
since the conclusion is unaffected by finite dimensional errors. So then

U = {x + Tx : x E V}

= {x + Tx: x c V} + {x + Tx :x Vo}
=: U, + UO.

Since T is compact, then UO is commensurate with V and since 7ro : V - Xo is Fredholm,
so is ro : Uo - Xo. Thus the map

nO 7ro : U6'/ ker nro 7ro (UO)

is an isomorphism. Let Vj C V be the subspace of finite codimension defined by

V := {x c V : 7ro (Tx) c 7ro(UO)},

In other words, V1' is the subspace of Vi such that the space {x + Tx : x C V7} C Uj differs
from an element of Xi by an element of Us. Indeed, we have

{x + Tx - 7r 7roT(x) : x E V/} C X 1

since it is annihilated by ro. We thus have

U1 = U n X1 = {x + Tx - r 7roT(x) : x c V}1' + ker(7rolu ).

From this expression for U1 , it follows that U1 is commensurate with V1. Letting Uo
UO + {x + Tx : x E V/V 1'}, then U = U1 D Uo and all the properties are satisfied. O

Lemma 18.7 Let Uo, U1, V0 , and V1 be subspaces of a Banach space X such that we have
the topological decompositions

X =Uo e U1 = Vo e V (18.3)
=Vo e U1 = Uo e V1. (18.4)

Let 7ruo,u, denote the projection onto Uo through U1 and similarly for other pairs of com-
plementary spaces in the above. Since 7ru,U, : Vo - Uo and wU1 ,Uo : V1 -> U1 are isomor-
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phisms, then Vi is the graph of a map Tv, : U -+ Ui+1, i = 0, 1 mod 2.

(i) We have the following formulas:

7rv0,u1 = (1 + TVo)r pUOU (18.5)

7TU1,v0  1 - 7rVo Ui (18.6)

7rvovi (1 + Tvo)?ruu (1 + Tv1 7rUvo)- 1  (18.7)

and likewise with the 0 and 1 indices switched.

(ii) If Vi is commensurate with Uj, for i = 0,1, then ?rvo,v 1 is commensurate with 7ru ,uo.

This remains true even if we drop the assumption (18.4).

Proof (i) Formula (18.5) is just the definition of Tv0 ; indeed, this is the special case
of the formula (18.1) when the map 7r : U' -+ U is an isomorphism. Formula (18.6)
is tautological since U1 and Vo are complementary. It remains to establish (18.7). Let
A : X -+ X be the isomorphism of X which maps Vo identically to V and U1 to V using
the graph map TVi. In other words, A is given by

A = rvU 1 + (1 + Tvi)7rU,,V0

= 1 + Tv 1 7ru 1,v0 .

The map 7rvo,vi is now easily seen to be given by rv0, 1A- 1, which yields (18.7). By
symmetry, these formulas hold with 0 and 1 indices reversed.

(ii) In this case, the maps Tv are compact, i = 0, 1. It follows from (18.7) that 7rvo,vi -

7ru 0,u 1 is compact. If (18.4) does not hold, we proceed as follows. Let F denote the finite
dimensional space spanned by the kernel and cokernel of the Fredholm maps 7rUOU : V ->

Uo and 7ru 1,u0 : V - U1. Let X = X/F be regarded as a subspace of X and let r : X - X
be the projection through F. It follows that we can choose finite codimensional subspaces
U' C U, and V' C V such that, letting U = 7ri(Uj) and 1i = 7ri(Vj), we have

X = Uo e U1 = Vo e V1.

By construction of X, we also have

X = Vo (D U1 = Uo o9 V1,

since now 1i is a graph over Ui. On X, we can therefore conclude that the projections 7r 1,Vo
and 7rUUo are commensurate. These operators also act on X since we can define them to
be zero on F, in which case, rv,v 1 and 7ruo,ul are finite rank perturbations of 7rVg and

gret,u 1 , respectively. It now follows that 7rvv and iruiu are also commensurate. D

Remark 18.8 In all applications, our Banach space X under consideration will be a func-
tion space of configurations on a manifold, and the compact operators that arise will be
maps that smooth by a certain number of derivatives a > 0 (e.g. the operator maps a
Besov space B8 'P to a more regular Besov space BS+'P). In this way, if additionally we
have that all finite dimensional subspaces which arise in the above analysis are spanned by
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elements that are smoother than those of X by o derivatives, one can ensure that all com-
pact perturbations occurring in the projections constructed in the above lemmas continue
to be operators that are smoothing of order o-. In other words, the amount of smoothing is
preserved in all our constructions.

The notion of commensurability of two spaces is one qualitative way of measuring two
spaces as being close. Alternatively, we may regard two subspaces Vi and V2 of X as being
close if V2 is the graph over V of a map with small norm, i.e. V2 = {x + Tx : x E V1}
where V1 ' is any fixed complement of Vi and T: Vi -> V1 is an operator with small norm.
If the norm of T is small enough, we can replace VL with X. This motivates the following
definition:

Definition 18.9 (i) A continuous family of subspaces {V(O-)},Ex of X, where X is a
topological space, is a collection of complemented subspaces V(o-) of X such that
the following local triviality condition holds: for any o-o C C, there exists an open
neighborhood U E o-o in X such that for all o- E U, there exists a map T," (o-) : V -+ X
such that the induced map

V(O-o) -+ V(o)

x -+ x + T(u)x (18.8)

is an isomorphism. The map To (o) varies continuously in the operator norm topology
with respect to o- E U.

(ii) A smooth family of subspaces V(t) of X, t E R, is a continuous family of subspaces for
which X = R and the maps T(t) in (18.8) vary smoothly in operator norm topology.

This definition is such that one can construct operators associated to a continuously
varying family subspaces in a continuous way, e.g., projections onto such subspaces. Like-
wise for the smooth situation. To illustrate this, we state the following trivial lemma for
small time intervals:

Lemma 18.10 Let V(t) be a continuous (smooth) family of subspaces of X, for t E R.
Then for any to G R, we can find an open interval I containing to, and a continuous

(smooth) family of isomorphisms 1(t) : X -+ X, t E I, such that F(t)(V(to)) = V(t) for all
t c R, with 4(0) = id.

Proof Without loss of generality, let to = 0 and suppose we are in the smooth case,
with the continuous case being the same. Let V(0)L be any complement of V(0) in X.
Then for small enough t, V(t) is also a complement of V(0)', and we can define

((t) : V(0) e V(0)-' - V(t) e V(0)

(x, y) F-+ (x + T(t)x, y),

where x F-> x + T(t)x is the isomorphism from V(0) to V(t) given by the definition of V
being a smooth family of subspaces of X. The maps @(t) are smooth since the V(t) are. E
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In other words, the family of spaces V(t) has local trivializations given by the D(t) which
identify the V(t) with V(to), for t c I. Given a family of spaces complementary to the V(t)
and which vary smoothly, one can construct the <b(t) for all t, but the above local result
will suffice for our purposes.

19 Symplectic Linear Algebra

Let X be a real Banach space endowed with a skew-symmetric bilinear form W. Then X is
a (weakly) symplectic Banach space if w is nondegenerate, i.e., the map W : X -+ X* which
assigns to x E X the linear functional w(x,.) is injective. If X is a Hilbert space and there
exists an automorphism J : X -4 X such that J2 = -id and w(., J.) is the inner product
on X, we say that X is a strongly symplectic Hilbert space and that J is the compatible
complex structure. (As a word of caution, many other authors define a symplectic Banach
space to be one for which w : X -+ X* is an isomorphism, but that will never be the case
for us unless X is a strongly symplectic Hilbert space.)

Given any subspace V of a symplectic Banach space X, let Ann(V) c X denote its
annihilator with respect to the symplectic form. A (co)isotropic subspace V is one for
which V C (2) Ann(V). A Lagrangian subspace L is an isotropic subspace which has an
isotropic complement. This implies L is also coisotropic by the nondegeneracy of W. In case
X is a strongly symplectic Hilbert space, then in fact, an isotropic subspace is Lagrangian
if and only if it is coisotropic, see [57]. In this latter case, any Lagrangian subspace L has
an orthogonal Lagrangian complement JL.

The following procedure, known as symplectic reduction, is well-known in the context
of Hilbert spaces (see e.g. [20, Proposition 6.12]):

Theorem 19.1 (Symplectic Reduction) Let (X,w) be a strongly symplectic Hilbert space
with compatible complex structure J. Let U C X be a closed coisotropic subspace. Let
L C X be a Lagrangian subspace such that L + Ann(U) is closed. Then U n JU is a strongly
symplectic Hilbert space and the orthogonal projection 7/unju onto U n JU, yields a map

7runJu : L n U + U n JU (19.1)

whose image irunju(L n U) is a Lagrangian subspace of U n JU.

We call the map (19.1) the symplectic reduction of L with respect to U. For symplectic
reduction on Banach spaces, we can generalize the above result as follows:

Corollary 19.2 Let Y be a Banach space with Y C X dense. Given any subspace V C X,
define Vy := Y n V. Suppose Wunju and J map Y into itself and that Ly and Uy are
dense in L and U, respectively. Suppose 7runju(Ly) and Jxrunju(Ly) are Fredholm in
Uy n JUy . Then 7runju (Ly) and J7runju(Ly) are complementary Lagrangian subspaces of
the symplectic Banach space Uy n JUy.

Proof This follows from the previous theorem and Lemma 18.5. E
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20 Banach Manifolds and The Inverse Function Theorem

Taking the usual definition of a finite dimensional manifold, one may replace all occurrences
of Euclidean space with some other fixed Banach space, thereby obtaining the notion of a

(smooth) Banach manifold. In other words, a Banach manifold, modeled on a Banach space
X, is a Hausdorff topological space that is locally homeomorphic to X and whose transition
maps are all diffeomorphisms1 .

In a similar way, one also obtains the notion of a (smooth) Banach submanifold of a
Banach space. More precisely, we have the following definition:

Definition 20.1 Let X be a Banach space. A Banach submanifold M of X is a subspace of
X (as a topological space) that satisfies the following. There exists a closed Banach subspace
Z C X such that at every point u E M, there exists an open set V in X containing u and
a diffeomorphism P from V onto an open neighborhood of 0 in X such that 4(V n M)
4(V) n Z. We say that M is modeled on the Banach space Z.

We almost always drop explicit reference to the model Banach space Z, since it will be
clear what this space is in practice. Of course, one can consider abstract Banach manifolds
that do not come with a global embedding into a Banach space, but such a situation will
not occur for us. The above definition coincides with the usual definition of a submanifold
when X is a Euclidean space.

In the general situation above, we have no information about the local chart maps 1.
However, if M is defined in some natural way, say as the zero set of some function, one
can construct a more concrete local model for M. The tools we use for this are the inverse
and implicit function theorems in the general setting of Banach spaces. Below, we record
these theorems, mostly to fix notation in applications. Let X = Xo e X1 be a direct sum
of Banach spaces and f : X -* Y a smooth map of Banach spaces. For any x E X, let
Dxf : X -* Y denote the Frechet derivative of f at x.

Theorem 20.2 Suppose Dof : X -4 Y is surjective, with Dof : X1 -> Y an isomorphism
and X 0 = kerDof.

(i) (Implicit Function Theorem) Choose V to be an open neighborhood of 0 in X such
that Dx f : X 1 -> Y remains an isomorphism for all x E V. Then M :- f1 (0) n V

is a Banach submanifold of X modeled on Xo.

(ii) (Inverse Function Theorem) Define the smooth map F : X0 D X 1 -* X by

F(xo, xi) = (xo, (Dof x 1)f(xo, xi)).

Then F(0) = 0, DoF = id, and shrinking V if necessary, we can arrange that both F
and F 1 are diffeomorphisms onto their images when restricted to V. In this case,
we have M C F- 1(F(V) n Xo).

Definition 20.3 Let M c X be a Banach submanifold and let u E M be any element,
which without loss of generality, we let be 0. Given a function f : X -4 Y as in (i) above, we

A map of Banach spaces is smooth if it is infinitely Fr6chet differentiable. A diffeomorphism is a smooth
map that has a smooth inverse.
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say that f is a local defining function for M near u if there exists a neighborhood V of u E X
such that Mu := Mn V is a Banach submanifold of X and satisfies Mu = f- 1(0)n V. In this
case, the function F associated to f in Theorem 20.2(ii) is said to be a local straightening
map for M at u. If we wish to emphasize our choice of V, we will say that F is a local
straightening map within the neighborhood V.

The names we give for f and F are natural given their role in describing M. Namely,
the manifold Mu, which is an open neighborhood of u in M, is the subset of V that lies
in the preimage under f of the regular value 0 E Y. On the other hand, the map F is a
local diffeomorphism of X which straightens out Mu to an open neighborhood U := F(Mu)
inside the tangent space Xo = TuM. Consequently, F- 1 U - M is a diffeomorphism of
U onto its image Mu, an open neighborhood of 0 E M.

Definition 20.4 With the above notation, we call F- 1 U -+ M the induced chart map
of the local straightening map F.

Thus, while a Banach submanifold has no distinguished choice of local charts near any
given point, a local straightening map gives us a canonical choice for one. We will be con-
sistently using this choice when constructing local chart maps for the Banach submanifolds
we study.

21 Analyticity

Let X and Y be Banach spaces.

Definition 21.1 A function F : X - Y is said to be analytic at xo E X if there exists
a neighborhood U of xo E X and symmetric multilinear maps L, : X' -+ Y, n ;> 0, such
that we have a power series expansion

oo

F(x) = Ln((x - xo)"), (21.1)
n=O

where the series converges absolutely and uniformly for all x E U. A function F is analytic
on an open set U if it is analytic at every point of U.

Theorem 21.2 (Analytic Inverse Function Theorem) Suppose F : X -* Y is a map such
that F(O) = 0, DoF : X -+ Y is an isomorphism, and F is analytic at 0. Then there exists
a neighborhood U of 0 G Y such that F- 1 : U -4 X is analytic. In particular,

F-l(z) = (D F( )(z"), (21.2)
n=O

where DnF- 1 is the nth Frichet derivative of F- 1 at 0.

A proof of the above theorem can be found in [8].
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A nice property about an analytic functions is that there is a fixed neighborhood upon
which each of its Fr6chet derivatives are (uniformly) Lipschitz. Of course, for a finite
dimensional Banach space, this is trivial since then the Banach space is locally compact.
On an infinite dimensional Banach space, however, a smooth function and all its derivatives
are locally Lipschitz, but the balls on which one has a Lipschitz estimate on the k-jet may
depend on the value of k. However, if we have a locally convergent power series, the uniform
convergence properties of the power series allows us to obtain a fixed ball on every k-jet of
the function is Lipschitz.

However, there are some subtleties concerning power series on infinite dimensional real
Banach spaces, since among other issues, there are several distinct radii of convergence
that one must consider (see e.g. [7),[33]). Indeed, given a power series (21.1), its radius of

(uniform) convergence about x0 is easily seen to be

p i := 1 (21.3)
lim SUP,., ||ILn||IF/n

where

L, : X ->Y

x LL,(x")

is the degree n polynomial associated to the multilinear map L,, and ||L,|| := suplxil iL(x")|
is its norm. (Here, we use 1| - |1 to denote the norm both on X and Y, since there is no
confusion as to which space elements belong.) On the other hand, one may consider the
full multilinear map norm of Ln, namely

L,||: sup |L,(xi,...,xn)|.
Izil,..,Ixn=1

A simple application of the polarization identity (see [7]) implies that for any symmetric
n-linear map Ln, we have

||Ln|| < |Ilf||.

A simple consequence of this is that

1
I 1 > p/e. (21.4)limsup.,| II~/n --

For any r > 0, let Br(xo) denote the open ball of radius r centered at r. With the above
considerations, we have the following:

Proposition 21.3 Consider a power series F(x) = ( o Ln(x") centered at 0 and let
p > 0 be its radius of convergence. Let 0 < r < p/e. Then for any xo E Br(0), we have that

DX0 F is Lipschitz on Br(0) for all k > 0.

Proof Differentiating the power series for F(x) term-by-term, we have that

D F = n(n - 1) .- (n - k +1)L,(xb-k)
n>k
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where each of the L,(X,~k) are to be regarded as symmetric k-linear maps in the obvious
way. This term-by-term differentiation is justified by the fact that

|DiOF|| < Z nk Lf|||xo|"-k < x

n>k

via (21.4) and |xol < r < p/e. For all yi,yo C X, then from the usual formula a - b- -k

(a - b)(ak- + ak-2b + - - + bk-1) for numbers a, b E R, we have

L 0(x"-k, y)- (X-k, yk) = L_(xn~k, (Y1 - Yo), yk- 1) + La(xn-k, (Y1 - yo), Yk 2 , Yo)

+-+La(n-k, (y1 - yo), yo 1 )

since the Ln are symmetric. Thus, we have

|DX0F(yi) - DX0F(yo)<; kn llL xol"kmax(lyi yolk 1 -yo l
(n>k

The above sum is uniformly bounded in terms of r for r < p/e, which shows that D 0 F is
uniformly Lipschitz for zo E B,(0) for every k > 0. F

22 Self-Adjointness

Let D denote any (unbounded) closed symmetric operator on a real2 Hilbert space H with
domain Dom(D) C H. We wish to understand the self-adjoint extensions of D. Let D* be
the adjoint of D, and equip Dom(D*) with the inner product

(X, y)D- := (x, y) + (D*x, D*y). (22.1)

Then Dom(D*) becomes a Hilbert space with this inner product and Dom(D) becomes a
closed subspace since D is a closed operator.

There is standard way of describing all self-adjoint extensions of D. Namely, consider
Dom(D*) equipped with the skew-symmetric form

w(x,y) = (D*x,y) - (x,D*y). (22.2)

Then Dom(D) C Dom(D*) is a closed isotropic space and Dom(D*)/Dom(D) is a (strongly)
symplectic Hilbert space. Indeed, if we identify Dom(D*)/Dom(D) with the orthogonal
complement Dom(D)' in Dom(D*), then

Dom(D)' = {x : D*x E Dom(D*), D*D*x = -x},

and we have the relation
w(x, D*y) = (x, y)D-

2What follows can be generalized to complex Hilbert spaces, but for simplicity we will not do so here.
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for all x, y E Dom(D)'. Thus, D* is a compatible complex structure for w, and so in
particular, Dom(D)- is a symplectic Hilbert space. We now have the following fact:

Proposition 22.1 The self-adjoint extensions of D are in one-to-one correspondence with
Lagrangian subspaces of Dom(D*)/Dom(D).

Let us specialize to the case where D is a Dirac operator acting on smooth sections
F(E) of a Clifford bundle E on a manifold X with boundary E (though much of what we
will discuss applies to more general elliptic differential operators acting between sections
of vector bundles). Let Dmin be the Dirac operator D with domain H6'2 (E) C H

L2 (E), the Hi'2 (X) closure of the compactly supported sections. Then Dmax is a closed
symmetric operator and the previous analysis apply. The adjoint operator Da = D*in has
domain Dom(Dmax) 2 H 1(E) and we can understand the space Dom(Dmax)/Dom(Dmin)
as follows. 3

If x E Dom(Dmax), then Dmaxx c L2 (E) and so by the results of Section 15.3, we
have a well-defined trace map r(x) E H- 1/ 2 ,2 (Er). Moreover, the kernel of this map is
precisely Dom(D 1 in,). Indeed, we have the elliptic estimate |1X11H12(E) <; C(|DnaxxflL2(E) +

||XL2(E) +Ir(X)HH1/2,2(E)), and so elements of Dom(Dmax) which lie in the kernel of r belong

to Hi'2 (El) and have zero trace, and hence belong to H6'2 (E). Thus, we have a continuous
injection

r : Dom(Dmax)/Dom(Dax) -+ H~1/2,2(EE).

The space Dom(Dmax)/Dom(Dmax) is naturally a Hilbert space, as it is a quotient of the

Hilbert space Dom(Dnmax) equipped with the graph inner product (22.1). Define the Hilbert
space

HBV(D) := r (Dom(Diax)/Dom(Dnax)),

which we identify isometrically with Dom(Dmax)/Dom(Dmnax) via the map r, i.e.,

X1 2Hv(D) = L
2
(E) + ||Dmaxy L2(E))

YEDom(Dmax):'r(y)=X (1Y1

Thus, we have identified the space Dom(Dmax)/Dom(Dmax) with the space HBV(D), which

is contained in the boundary data space H- 1/ 2 ,2(EE). By the above proposition, it is

the Lagrangian subspaces L of HBV(D) that yield for us self-adjoint extensions of Dmax.
Namely, to L we assign the operator DL with domain

Dom(DL) = {x c Dom(Dmax) : r(x) E L}.

The space HBV(D) is convenient to work with since it lives entirely on the boundary and

we can apply our understanding of boundary value problems for the Dirac operator to
understand HBV(D).

We wish to understand HBV(D) more explicitly. Let P+ : F(EE) -+ F(EE) be the
Calderon projection of D, which we may take to be an orthogonal projection, and let
P- = 1 - P+ be its complementary projection. Recall that P+ is a projection onto the

3 Observe that for both Dmiax and Dmin, these operators can both be interpreted as the operator D acting

in the sense of distributions. Thus when we apply Dmrax or Drriini to an element, there is no harm in just

denoting the operator simply by D.
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Cauchy data of elements of the kernel of D. Being a pseudodifferential operator, it extends
to a bounded map on H8 (E,) for all s E R.

Lemma 22.2 We have the topological decomposition

HBv(D) = H 1/2, 2im P~ e H 1/2 ,2im P+, (22.3)

with each factor a Lagrangian subspace of the Hilbert space HBV(D).

Proof First note that H'/ 2 (Er) c HBv(D), since H1(E) C Dom(Dmax). Given
any x E HBV(D) c H- 1/2 ,2 (E), let x± = P±x. Since we have a Poisson operator P
H-1/2 ,2im P+ --+ L2(E) with range contained in the ker Dax = L 2 (ker D), we have

||x pInv(D) < L2(E) + |DPx+HL 2(E) =PX L2(E)'

Moreover, the map P : H-1/ 2,2imP+ -+ L2 ker D is an isomorphism which inverts the
map r : L 2 (kerD) -+ H~1/2,2imP+.4 Thus, we see that H-1/2 ,2imP+ is contained in
HBV(D), and the HBV(D) topology on H-1/2,2imP+ is equivalent to the H- 1/2,2 (E) topol-
ogy. Finally, since P+ defines an elliptic boundary condition for D and P+P~ = 0, we
have the elliptic estimate IyH 1 2 (E) < C(|Dmaxy||L2(E) + HYL2(E)) for all y such that
r(y) E P-(Hv(D)). This shows that the HBV(D) topology on P~(HBv(D)) is the
H 1/ 2,2 (E) topology. Writing a general element x as x = x++ x~, the decomposition (22.3)
now follows. For the final claim, we need to show that each factor in (22.3) is isotropic.
That H1/2,2im P and H- 1/ 2,2im P+ are complementary Lagrangian subspaces follows from
Proposition 15.18, since the range of P- is precisely JP-. D

Corollary 22.3 Let Ul be the projection onto the nonnegative and negative eigenspaces of
the boundary tangential operator associated to D. Then

HBv(D) = H 1/ 2,2im U- e H-1/2,2im l+. (22.4)

Proof This follows from the previous lemma and the fact that the projections Hi have
the same principal symbol as Pi, respectively, which implies Pi± - P+ is an operator of
order -1. F]

Though the corollary is not essential for our purposes, it has the aesthetic quality that
the decomposition (22.4) is determined entirely by boundary data while the decomposition
(22.3) depends on the nonlocal nature of the projections on Pi. Nevertheless, from these
decompositions, we have a simple criterion for finding Lagrangians in HBV(D). Namely,
we wish to investigate which Lagrangians in the subspace H 1/ 2,2(Er) (which inherits the
symplectic form on HBv(D)) yield Lagrangians in HBV(D).

Theorem 22.4 Let L c H 1/2,2 (EE) be a Lagrangian subspace. If L is Fredholm with
H1/ 2,2imP+ in H 1/ 2 ,2 (Er), then L c HBV(D) is a Lagrangian subspace. Consequently,
DL: Dom(DL) c H1,2(E) -* L2 (E) is self-adjoint and Fredholm.

"This is because Dirac operators satisfy unique continuation.
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Proof From Proposition 15.18, we have that Hi/2,2 im P± are complementary La-

grangians inside H1/ 2,2(EE). If L is Fredholm with Hi/2,2im P+, then by Lemma 18.1,
this means we have

L = graph(T) e V+

where V+ = L n Hl/2,2im P+ is finite dimensional, and T : H 1/ 2,2im p- H1/2 ,2im P+

is a bounded map whose domain has finite codimension in H1/ 2 ,2im P-. Since L is a

Lagrangian, then graph(T) is isotropic. Furthermore, the subspace V+ is precisely the

intersection of H1 / 2,2im P+ with the (symplectic) annihilator of the domain of T. Indeed, if

V+ were smaller than this latter space, then L would be a proper subset of its annihilator,
a contradiction. From this, we can form the topological decomposition

H1/2,2(E) = L e (V- e K) (22.5)

where V~ is any finite dimensional complement of the domain of T in H 1/ 2'2 im P~ (and

thus V- e V+ is symplectic) and K is any complement of V+ in H 1 /2 ,2im P+. In particular,
we can choose K to be the intersection of H1 /2,2 im p+ with the annihilator of V-. With

this choice of K, it follows that V- e K is isotropic and hence a complementary Lagrangian

to L in H1 /2,2 (EE).
We take the closure of (22.5) in the HBv(D) topology. The space L remains the same,

since V+ is finite dimensional and graph(T) remains the same by Lemma 22.2. Since V-

is finite dimensional, the only space that changes is K, which becomes H- 1/ 2,2K when we

take closures. Thus, we have the decomposition

HBv(D) = L e (V e H-1 /2,2 K)

where L is isotropic and V- D H- 1/2 ,2K is isotropic. This shows that in particular, L

is a Lagrangian in HBV(D). The final statement now follows from Proposition 22.1 and

Theorem 15.23. D

In other words, the theorem tells us that we can find Lagrangians in the large space

HBV(D) by finding Lagrangians in the smaller space H 1/ 2 ,2(E). We need this result in the

proof of Theorem 11.7 in Part III.
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A vortex, p. 83.

A typical spinc connection, usually on a 4-manifold, p. 110. Also an elliptic
differential operator in Part IV.

The space of spin' connections on the manifold X, p. 18.

A typical spinc connection, usually on a 3-manifold, p. 19. Also a boundary
condition in Part IV, p. 201.

A Besov space and anisotropic Besov space, respectively. Used as a prefix,
it denotes closure with respect to said topology, p. 178, 184.

The quotient of the configuration space C(X) by the gauge group G(X), p.
83.

A spinc connection on a 2-manifold or an unspecified constant, p. 77.

A Coulomb slice in T, p. 31.

The Chern-Simons-Dirac functional on E, p. 77.

The smooth configuration space of spin' connections and spinors on the
manifold X, p. 19.

The BS'P(X) configuration space on X, p. 21.

The configuration space on a cylindrical end manifold Y with elements
differing from a time-translation vortex by an element of Hs3'(Y), p. 93.

The operator associated to the infinitesimal action of the gauge group at
0 E C(X), p. 26.

The formal adjoint of d., p. 27.

Abbreviation for the restriction of a bundle E on X to OX.

A chart map for e C M), M, or L, p. 60, 70.

The nonlinear part of the chart map E., p. 60, 70.

Chart map for a path -y G Maps(I, M), p. 134.

The energy of a configuration -y in Part II, p. 86.

A local straightening map for 9 at (B, T), p. 57.
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Index of Notation

a

A

A(X)

B

Bs'p, B(81,82)',P

B(X)

C

C

CSD'

T(X)

rSP(X)

CS;5 (Y)

d.

d*

Eax

E.

El

E-

E(y)

F(B,W)



y

9(X)

90(X)

H8,P, H(,82),P

H8 ;6

Hs

l-(B,T)

R2,(Co,To)

J(B, T), (B, T), t

Jr

Jr

/4(B,T), /(B,,P),n

K(Y)

L(Y), CS-1/P,P(Y)

Maps(si82)P(I, X)

TZ(Y), 9)S,P(Y)

M(Y), MSP(Y)

M(Y)

A local straightening map for Z at rx,(B, T), p. 68.

In Part II, shorthand for a configuration (B, T), p. 83. In Part IV, a
path of configurations.

In Part II, the constant path determined by the vortex a, p. 83.

In Part II, the path of configurations determined by y, p. 83.

The gauge group of transformations on X, p. 22.

The gauge group of transformations that is the identity on OX, p. 24.

Given an operator T, then T is the induced slicewise operator, p. 124.

A Bessel potential and anisotropic Bessel potential space, respectively
(otherwise known as fractional Sobolev spaces.) Used as a prefix, it
denotes closure with respect to said topology, p. 178, 184.

A weighted Sobolev space, p. 92.

Abbreviation for H', 2

The Hessian of a configuration (B, T) E E(Y), p. 31.

The augmented Hessian of a configuration (B, I), p. 32.

The extended Hessian of a configuration (B, T), p. 96.

The Hessian of a configuration (Co, To) E t(E), p. 81.

The subspace of T given by the infinitesimal action of 9(Y) and
ga(Y), respectively, p. 26.

The compatible complex structure on TE, p. 37

The compatible complex structure on Tr, p. 37.

The orthogonal complement of J(B,q) and J(B,qI),t in T(B,), respec-
tively, p. 26.

The bundle over E(Y) whose fiber over (B, IF) is K(B,T), p. 29.

The tangential boundary values of the space of monopoles 9N and
9N1,P on Y, respectively, p. 20.

The space of maps from I into a space X in an anisotropic Besov
space topology B(81,2),P, p. 122.

When Y is compact, the space of all monopoles in E(Y) and C',P(Y),
respectively, p. 20. When Y has cylindrical ends, finite energy is
imposed, p. 92.

When Y is compact, the space of all monopoles on Y in E(Y) and
t8'P(Y), respectively, that are in global Coulomb gauge, p. 20.

The moduli space of gauge-equivalence classes of all finite energy
monopoles on Y, p. 93.
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t The moment map on T(E) in Part II, p. 77. The Chern-Simons-Dirac 1-form in

Part IV, p. 115.

v The outward unit normal vector field to Y, p. 32.

W The symplectic form on Tx:, p. 37.

O The symplectic form on T&, 37.

P+ The "Calderon projection" of the Hessian W(B,T), p. 42.
(B,TI)

P+ The Calderon projection of the augmented Hessian H(Bp), p. 41.
P(B,T)

P(B,,Q) The "Poisson operator" of the Hessian l?((BT), p. 42.

(BT) The Poisson operator of the augmented Hessian 71(B,T), p. 41.

8oo The limiting value map, p. 92.

all The limiting value map on gauge-equivalence classes, p. 94.

Ir, / The projection onto 1C. through J.,t, p. 29.

T A spinor, usually on 3-manifold, 18.

<b A spinor, usually on a 4-manifold, 110.

p Clifford multiplication on Y, 18.

q The quadratic map associated to the Seiberg-Witten map SW 3, p. 56.

rE The tangential restriction map, p. 15, 31.

r The full restriction map, p. 32.

# Some pointwise bilinear multiplication operation.

* The Hodge star operator on Y.

The Hodge star operator on E = Y.

.6 A spin' structure, p. 18

S The spinor bundle on Y, p. 18

SWk The Seiberg-Witten vector field in k-dimensions, k = 2, 3,4, p. 77, 19, 114.

T The tangent space T.C(X) for a configuration * E C(X), p. 26.

T, TSP The space Ql(Y; iR) e F(S) and its B'>P(Y) closure, isomorphic to any tangent

space of Q(Y) and (t'P(Y), respectively, p. 30.

T, TE"'" The space Q'(E; iR) D r(SE) and its BS'P(E) closure, isomorphic to any tangent

space of t(E) and ES'P(E), respectively, p. 3.3.

I The augmented space t E Q0 (Y;iR), p. 32.

iT The augmented space T e Q0(E; iR) e Q0 (E; iR), p. 32.

T A spinor on a 2-manifold, p. 77.

1k(E) The space of all k-vortices on E, p. 79.
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Vk(E)

Y

x
x
X8') xS'PXB (,P

The moduli space of k-vortices on E, p. 79.

A 3-manifold.

A manifold or a Banach space.

A Banach space.

Subspaces of T''P and T',P on which 7H(Bq) and 7(LB,q) are invertible,
respectively, p. 49.
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