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Abstract

We study two instanton correction problems of Hitchin's moduli spaces along with
their wall crossing formulas. The hyperkahler metric of a Hitchin's moduli space can

be put into an instanton-corrected form according to physicists Gaiotto, Moore and

Neitzke. The problem boils down to the construction of a set of special coordinates

which can be constructed as Fock-Goncharov coordinates associated with foliations of

quadratic differentials on a Riemann surface. A wall crossing formula of Kontsevich

and Soibelman arises both as a crucial consistency condition and an effective compu-

tational tool. On the other hand Gross and Siebert have succeeded in determining

instanton corrections of complex structures of Calabi-Yau varieties in the context

of mirror symmetry from a singular affine structure with additional data. We will

show that the two instanton correction problems are equivalent in an appropriate

sense via the identification of the wall crossing formulas in the metric problem with

consistency conditions in the complex structure problem. This is a nontrivial state-

ment of mirror symmetry of Hitchin's moduli spaces which till now has been mostly

studied in the framework of geometric Langlands duality. This result provides ex-

amples of Calabi-Yau varieties where the instanton correction (in the sense of mirror

symmetry) of metrics and complex structures can be determined. This equivalence

also relates certain enumerative problems in foliations to some gluing constructions

of affine varieties.
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Chapter 1

Introduction

In this paper we describe some sophisticated constructions on Hitchin's moduli spaces

which eventually match together to form a quite harmonious picture. It provides us

some new insights of differential geometry and algebraic geometry of Hitchin's moduli

spaces in the context of mirror symmetry.

Instanton correction in the title refers to the problem of determining the effect

of instantons. This kind of problems is crucial in many geometric problems with

physical origins. Sometimes certain geometric object (such as a complex structure or a

metric) has a decomposition into possibly infinitely many pieces such that the first one

represents the "classical" contribution ignoring the quantum effects. Quantum effects

usually have a perturbative part and a nonperturbative part. The nonperturbative

part can often be considered as contributions associated to some solitonic solutions

of the underlying physical theory known as instantons. If this is the case, we say that

the object receives instanton corrections.

According to the Glossary of Polchinski's book STRING THEORY[71] an instan-

ton is

"... in a Euclidean path integral, a nonconstant configuration that is a local but

not a global minimum of the action. Such configurations are usually localized in a

spacetime, are usually topologically nontrivial, and are of interest when they give

rise to effects such as tunneling that are not obtained from small fluctuations around

a constant configuration. Spacetime instantons are instantons in the effective field



theory in the spacetime. Worldsheet instantons are instantons in the worldsheet

quantum field theory and correspond to worldsheets wrapping around nontrivial two-

cycles of spacetime."

A famous example of instantons is given by gauge theoretical instantons studied in

the Donaldson theory. Geometrically these are (anti-)self-dual connections. Another

one is worldsheet instantons of the supersymmetric sigma model in mirror symmetry.

These are Gromov-Witten invariants counting holomorphic curves. Different kinds of

instantons and spatially extended solitonic objects such as branes can be related by

taking physical dualities, low energy approximations, dimensional reductions, etc.

Sometimes instanton corrections can be calculated from first principles directly.

This is usually hard and involves handling the moduli space of instantons. It is

also very common that they can be determined indirectly by imposing dualities or

consistency conditions. A famous example is the calculation of worldsheet instanton

corrections of quintic threefolds via periods of the mirror[10].

Another typical phenomenon is wall crossing. It is often the case that our instan-

tons contributions can depend on some moduli parameters so that they are generically

locally constant but can behave discontinuously when the moduli parameters cross

some exceptional locus called stability walls. Then there should be a wall crossing

formula which basically is a continuity condition. Roughly speaking the wall crossing

formula we are going to study in this paper tells us that when one crosses a stability

wall some naturally defined products (ordered compositions) of instanton contribu-

tion terms do not change although the order and the set of instantons must change.

The wall crossing formula is crucial for the consistency of the instanton correction

problem and sometimes can actually determine instanton corrections given some in-

put data.

The problem discussed in this paper concerns instanton corrections and wall cross-

ing on the moduli space of solutions of Hitchin's equations on a Riemann surface. Let



M(R) be the moduli space of pairs (A, p) satisfying Hitchin's equations

FA + R 2 [,] =0

(AP =0

on a fixed Riemann surface C of genus g modulo the gauge equivalence. Here A

is a connection on a bundle E of rank 2 and degree 0 over C whose gauge group is

G = SU(2), and W is a holomorphic ad(E)-valued one form. R is a positive parameter.

We consider this problem in the context of mirror symmetry as a case which is simpler

than general compact Calabi-Yau manifolds but more nontrivial than Fano varieties

or local Calabi-Yau varieties.

Mirror symmetry of moduli spaces of Hitchin's systems has attracted some at-

tentions due to the recent physical interpretation of geometric Langlands program

[49, 53, 57, 47, 79]. On the other hand, progress in the research field of mirror sym-

metry has been blocked by the lack of understandings of instanton corrections beyond

Fano and local Calabi-Yau cases. Therefore the author feels that the instanton cor-

rection problem (including the associated wall crossing problem) of Hitchin's moduli

spaces has not only some potential significance to the Langlands program but also

some chances to deepen our understandings of hard parts of mirror symmetry of

Calabi-Yau manifolds.

The strongest hint that this problem is doable is from some new insights offered by

physicists. Gaiotto, Moore and Neitzke in [35] have argued that due to the hyperkahler

structure of the moduli space, the instanton correction problem can be approached via

the twistor method and should be reduced to solutions of certain infinite-dimensional

Riemann-Hilbert problems. In particular, the famous wall crossing problem of in-

stantons can be described directly in this way and Kontsevich-Soibelman's general

wall crossing formula is recovered. They go on and provide a geometric construction

of these corrections. The instantons corrections in their work are gauge theoretical

but instantons are described indirectly as suggested by some brane constructions.

On the other hand, Kontsevich-Soibelman's formula also governs the purely algebraic



construction of instanton corrections to complex structures in mirror symmetry given

by the ground breaking work of Gross and Siebert [43]'. More precisely, it governs

the consistency of certain data of tropical nature (so-called "scattering diagrams") in

Gross-Siebert's construction from which the mirror Calabi-Yau family can be built.

Therefore it seems that there could be a way of showing that for certain noncom-

pact hyperkahler varieties (our Hitchin's moduli spaces) the two instanton correction

problems (the metric problem and the complex structure problem) are essentially

equivalent via the identification of wall crossing formulas. In this paper we show such

an equivalence in a rather strong sense.

The main result in this paper can be summarized as follows. Precise statements

are contained in section 9.

Main Result. (Imprecise version) The metric instanton correction problem for

a Hitchin moduli space is equivalent to the complex structure instanton correction

problem in the following sense.

Theorem 1.0.1. Consider an SU(2) Hitchin's moduli space with prescribed singu-

larities.

" One can construct on the base of the Hitchin's fibration a singular integral affine

structure together with a polyhedral decomposition, a nontrivial polarization2 and

a log smooth structure3.

" A compatible system of consistent structures in the sense of Gross and Siebert

can be constructed from these data. Instanton corrections associated with log

morphisms4 in this construction correspond to critical trajectories of quadratic

differentials which are instantons in the metric instanton correction problem.

'This work uses some crucial ideas from Kontsevich and Soibelman's paper[61] which deals with
the two dimensional case by a different language.

2This is a multi-valued piecewise integral linear function adapted to the polyhedral decomposition.
3The term is used in the sense of logarithmic geometry. Basically it is some data on the central

fiber of a family which encodes some information of the family.
4These are morphisms between some canonically defined thickenings (deformations) of affine

pieces of the central fiber. We need them to achieve consistency of the gluing of these local defor-
mations.



9 Systems of consistency conditions of the complex structure problem can be iden-

tified with wall crossing formulas of the metric problem.

Theorem 1.0.2. The Hitchin's moduli space (interpreted as the moduli space of

SL(2, C) flat connections) is isomorphic to a generic fiber of the toric degeneration

constructed by Gross and Siebert's algorithm solving the instanton correction problem

of complex structures.

The equivalence of the two instanton problems has the following consequences.

1. This is a nontrivial statement of mirror symmetry. The problem of instanton

correction of Calabi-Yau metrics is very important but often completely ignored

in the literature of mirror symmetry. According to Strominger, Yau and Za-

slow's speculation[77], the instanton correction of the metric and the complex

structure should be contributed by holomorphic disks wrapping some special

Lagrangian fibers of the mirror which is supposed to be the total space of a

singular special Lagrangian fibration. It is strongly believed that such a de-

scription should be understood in an appropriate limit sense associated to a

family instead of a single Calabi-Yau space. It is also speculated that the prob-

lem of enumerating disks could be reformulated as a problem of enumerating

some tropical objects. From this perspective, Gross and Siebert have solved the

problem of instanton corrections of complex structures on the tropical level5 . By

identifying Gross-Siebert's instanton corrections with Gaiotto-Moore-Neitzke's

instanton corrections we solve the metric instanton correction problem (in the

sense of mirror symmetry) of Hitchin's moduli spaces to the same degree. The

equivalence also answers the question about the relation between metrics and

complex structures in mirror symmetry which is largely unknown in general.

2. Usually a statement of mirror symmetry is formulated for a family of Calabi-

Yau's which approach a large complex limit. However it is not a priori clear

how this could be implemented for a Hitchin's moduli space because there seems

5 Actually it still requires some work to relate the instanton data in Gross-Siebert approach to

tropical objects. See [42] for some results in this direction. See section 3 for further discussions.



to be no natural way to obtain algebraic degenerations with moduli interpre-

tations. On the other hand, in Gaiotto, Moore and Neitzke's work there is a

very natural way of introducing an additional parameter (the parameter R in

Hitchin's equations) to the underlying moduli problem which gives us a substi-

tution of a large complex degeneration. The equivalence that we will show then

says that from such a family we can construct an algebraic degeneration with

explicitly given equations which is compatible with the requirement of mirror

symmetry and our original Hitchin's moduli space is a fiber.

3. The equivalence is also an effective tool of actually calculating instanton correc-

tions in mirror symmetry of Hitchin's moduli spaces - a problem which seems

to be very hard to do directly. Calculating instanton corrections in Gaiotto,

Moore and Neitzke's work is in principle a gauge theoretical problem because

in their work Hitchin's moduli spaces arise as target spaces of low energy the-

ories of gauge theories. Form there Gaiotto, Moore and Neitzke have found a

construction of solutions of the Riemann-Hilbert problems for metric instanton

corrections based on the theory of quadratic differentials and Fock-Goncharov's

construction of certain coordinates on moduli spaces of flat connections. In this

approach, instantons are realized geometrically as some critical trajectories of

quadratic differential foliations. Physically we use some brane constructions of

gauge theory to transform the instanton problem in gauge theory to a problem

of counting some critical strings which are boundaries of M2-branes in the M-

theory. Of course it is hard to justify mathematically these physical ideas in

general, but like many previous mathematical works on physics-related geomet-

ric problems (e.g.mirror symmetry) we can formulate and prove some nontrivial

consequences ( e.g. calculating Gromov-Witten invariants (worldsheet instan-

tons) via periods) and the solution of the equivalence problem would give us

another such example. Our equivalence means that the enumerative problem of

critical trajectories of quadratic differential foliations has an unexpected relation

with gluing deformations of some affine varieties.



4. The geometric meaning of wall crossing is not clear' in Gross and Siebert's

solution of the complex structure problem. It is expected to account for the

jumping of holomorphic disks when one changes some moduli parameters but

this picture has not been understood or even studied for Hitchin's moduli spaces.

The equivalence offers a very natural explanation of geometric meaning from

another perspective. Some examples even suggest that the wall crossing in the

complex structure problem can be understood at an elementary level of changes

of defining equations of the mirror degenerations.

5. It can also be considered as a check of the compatibility of SYZ's differential ge-

ometric version of mirror conjecture (in some limiting form) and Gross-Siebert-

Kontsevich-Soibelman's algebraic version.

There are basically two steps relating the metric problem to the complex struc-

ture problem. In the first step we start from the metric problem and try to construct

the input data of the complex structure problem. The input of Gross-Siebert con-

struction consists of "an integral affine structure with singularities with a polyhedral

decomposition, a polarization and a positive log smooth structure" which must be

produced from the metric problem. Consider a Hitchin's moduli space and deform

it by varying a parameter in Hitchin's equations. The hyperkahler metrics on the

moduli spaces can be reduced via an twistor type ansatz of Gaiotto-Moore-Neitzke to

Fock-Goncharov coordinates labeled by one cycles on the spectral curves of Hitchin's

moduli spaces. Fock-Goncharov coordinates exhibit discontinuous jumps and wall

crossing phenomenon when we vary some underlying parameters and the jumps are

Kontsevich-Soibelman transformations. A singular affine structure is induced by the

singular special Kahler structure on the base of the so-called Hitchin's fibration. We

can use periods of one cycles to produce a polyhedral decomposition and use discon-

tinuous jumps to produce a log smooth structure. The construction involves several

layers of structures and different languages. To match them we are guided by two

principles: labeling by charges and equivalence of wall crossing formulas and consis-

6Even the meaning of the word "(stability) wall" is not clear.



tency conditions.

In the second step we run Gross-Siebert's algorithm and verify the equivalence.

This step is complicated because so is the construction of Gross and Siebert. The

equivalence consists of two parts. The first part is a geometric identification of wall

crossing formulas in the metric problem with consistency conditions in the complex

structure problem. This is a consequence of our assignments of log smooth data

and is not surprising at all. But the ways that the instanton data are encoded are

different. Then we gluing some canonically constructed affine pieces following Gross

and Siebert. Eventually we will see that the same Hitchin's moduli space we started

with (considered as the moduli space of fiat connections) is embedded as a generic

fiber into the degeneration obtained in this way. This means that the algebraic

degeneration obtained by incorporating instanton corrections produces an algebraic

degeneration of the moduli space. Moreover the instanton data for the construction

of this degeneration are induced by and equivalent to the metric instanton data.

Although some constructions in this paper are strongly motivated by some physical

ideas that are not rigorously formulated and proved yet the main result is mathemat-

ically rigorous because the two sets of instanton data are well defined. In the metric

problem they are critical trajectories of quadratic differential foliations while in the

complex structure problem they are some log morphisms between some rings.

We review background materials from section 2 to section 8 along with some ob-

servations and discussions. Some gaps in the literature are filled. The reader can start

from section 9.1 where a summary of section 2-8 is given in the beginning. 9.1 also

contains a description of main difficulties and an outline of the proof. Main theorems

are proved in section 9.2 and 9.3. Section 9.4 is important for understanding the

meanings of the main theorems. Some examples are carefully computed and inter-

preted in section 9.5. We only study Hitchin's equations whose gauge group is SU(2)

for reasons to be explained at the end of section 7, but we allow possibly irregular

singularities.



The construction in this work is essentially a synthesis of ideas of several important

works in different areas. They are: Seiberg and Witten's work on exact description of

low energy effective actions and spectra of N = 2 supersymmetric gauge theories7 [73],

Strominger,Yau and Zaslow's conjecture of mirror symmetry as a T-duality [77] and

its extension to families, Gaiotto, Moore and Neitzke's description of instanton cor-

rections of Hitchin's moduli spaces via a clever ansatz of the associated twistor data

[35], Gaiotto, Moore and Neitzke's geometric realization of their ansatz [36], Fock

and Goncharov's work on higher Teichmuller theory [27, 28], Fomin and Zelevinsky's

cluster algebras [29, 30, 31], Kontsevich and Soibelman's general wall crossing formula

with respect to the change of stability conditions [60], and finally Gross and Siebert's

work (partially based on Kontsevich and Soibelman's ideas) which provides an purely

algebraic solution of the instanton correction problem of complex structures in mirror

symmetry [43, 44].

The equivalence considered in this paper must have been anticipated by some ex-

perts. In fact the appearance of [43], [60] and [35] makes a strong equivalence of some

sort very plausible. The main idea of the proof is essentially trivial once the natural

strategy of relating the two instanton correction problems is clear. It is also clear that

once the equivalence is established some very nice consequences deepening our un-

derstanding of the geometry and mirror symmetry of Hitchin's moduli spaces would

immediately follow. However to actually formulate and prove an appropriate form of

the equivalence turns out to be trickier than the author had expected. Due to the

complexity of objects and structures involved and quite different languages used in

foundational theories many not very hard but still nontrivial details become unavoid-

able. Therefore the author believes it could be helpful to write down all the details.

The effort can be further justified by the fact that some interesting consequences and

phenomena reveal themselves after the details have been handled. Finally the author

has tried to put a large amount of background materials that are scattered in the lit-

erature into one place and hopes it would make the paper essentially self-contained.

'In this paper by Seiberg-Witten theory we always mean this work instead of the study of Seiberg-

Witten equations which is more familiar to mathematicians
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Chapter 2

Hitchin's Moduli Spaces And

Special Kahler Geometry

In this paper we will consider solutions of Hitchin's equations

FA-ObAf =0 (2.1)
dAq$=dA*4 =0

on a fixed Riemann surface C of genus g. Here A is a connection on a bundle E of

rank 2 and degree 0 over C whose gauge group is G = SU(2), * is the Hodge star,

dA := d+A, # is an ad(E)-valued one form and A really means that we take the wedge

of the one form part and the Lie bracket [ , ] of the bundle valued part. We will also

use complex notations. In other words, we study a pair (E,p) called a Higgs bundle

or a Higgs pair. Here E is a holomorphic-G bundle and p is a holomorphic one form

valued in ad(E). A Higgs bundle is obtained from a solution (A, #) of equation (1)

in the following way. The (0,1) part of dA denoted as OA defines the holomorphic

structure on E and W is the (1,0) part of i#, id = p+p. W is also known as the Higgs

field. In terms of Higgs bundles, the equivalent form of the equations are

FA+[p, 0] =0 (2.2)
BAP = 0



Following Seiberg-Witten and Gaiotto-Moore-Neitzke, we introduce an additional

parameter R and modify the equations into

FA+R 2 [p, ] = 0
(2.3)

09 AW =0

For the meaning and the significance of this parameter, see section 5.

It is well known after Hitchin [51] that the moduli space.A4 of solutions of Hitchin's

equations modulo the gauge equivalence is a noncompact hyperkahler space. It is

obtained by an infinite dimensional hyperkahler quotient construction of the moduli

space. In fact the tangent space of the pair (A, #) is an infinite dimensional affine

space endowed with a natural flat hyperkahler metric1

ds2 = - J I|d2z|Tr(JAz 0 6Az + 6A 0 6Az + 60z 0 opz + 64, 0 5z) (2.4)

where A = Azdz + Azdz and # = #zdz + 42d2 for the holomorphic coordinate z over

C. 6 denotes the tangent vectors. The group of gauge transformations acts on this

flat hyperkahler space and the set of solutions of Hitchin's equations turns out to be

the zero level set of associated three moment maps. Therefore M is obtained as a

hyperkahler quotient.

As a hyperkahler space, it has a set of compatible complex structures parameter-

ized by E CP and generated by three independent complex structures J1 , J2, J3 (in

[57] these are denoted by -J, -K, I. For their explicit descriptions see [57] or [51]).

The three independent complex structures satisfy the quaternion relations

J2 = J = J= J1J2 3 = -1

The set of all compatible complex structures are given by

i(-( + t)J 1 - (+ ±)J 2 + (1 - |(| 2)Ja
' nm +o [5 2

'Here the notations are the same as thos ,e of [57].



where ( E CP' is called the twistor parameter. Let w be the Kahler form in Ji.

Define

Qi = W2 + iW 3

Q2 = W3 + iW 1

Q3 = W 1 + iW2

then Qi is a holomorphic symplectic form in Ji. It turns out that Q1 does not depend

on the complex structure of the Riemann surface while the other two do.

" There are two opposite special complex structures which are identified with ±J 3

(i.e. ( is 0 or oo). The moduli space M in J3 is identified as the moduli space

of semistable Higgs pairs. This moduli space is quasi-projective.

" M is identified as the moduli space of SL(2, C) flat connections 2 when ( $

0, oo. [18, 20, 51]. In fact, Hitchin's equations tell us that the new connection

+ A + R to is flat. The moduli space of flat connections is Stein.

" The moduli space of SL(2, C) flat connections is analytically isomorphic the

moduli space of representations wri(C) -+ SL(2, C) (i.e. the categorical quotient

of the conjugate action on the space of such representations.). The latter is also

called the character variety. The isomorphism is not algebraic. This is called

the Riemann-Hilbert correspondence. The moduli space of fundamental group

representations is an affine variety.

" There is a Cx action on M given by sp -+ Asp where A E Cx. If we restrict it to

U(1) (i.e. JAI = 1) then the action is isometric with respect to the hyperkahler

metric. In general it preserves ±J 3 and all the other J are in one orbit. More

precisely speaking we have a lifted C' action on the so-called twistor space

M x CP1 (see section 5) which covers the natural Cx action on CP 1 fixing

the north pole and the south pole labeling ±J3. Because of the meaning of

the twistor sphere CP 1 (i.e. it is the set of twistor parameters) this means

2The gauge group is SL(2, C) because it is the complexification of SU(2).



that all the complex structures except ±J3 are holomorphically equivalent [51].

Each one of them has the moduli interpretation as the moduli space of flat

connections. But note that only Ji and -Ji are independent of the complex

structure of the Riemann surface. So we view J1 as the canonical complex

structure of the moduli space of flat connections.

There is a natural fibration from the moduli space to the space of quadratic

differentials (we denote it by B) by taking the determinant of p (this is called Hitchin's

map). It is called Hitchin's fibration [51, 52] and has the following properties

" The Hitchin's map denoted as det is holomorphic, surjective and proper with

respect to the complex structures in which the moduli space M is the moduli

space of semistable Higgs pairs.

" Fibers of this map have nice geometric meanings. Define a curve in the total

space of the canonical bundle of C by the characteristic polynomial of W

det(X - W) = 0 (2.5)

Note that the trace of W is zero. So the equation is X2 + det s = 0. This curve

is called the spectral curve or the Seiberg-Witten curve S and there is one such

curve associated to each element of B. As an abelian variety, the fiber above

u E B is the Prym variety J(S,)3 of the projection Su -+ C. Therefore we have

realized the moduli space as a family of complex abelian varieties.

" Let K be the moduli space of semistable bundles of fixed determinant with

rank 2 and degree 0. Then T*N is a subset of M. In fact M is a fiberwise

compactification of T*K with respect to the function det. Each fiber is com-

pactified by adding a codimensional g subvariety. Moreover the holomorphic

symplectic structure of T*A is the restriction of the holomorphic symplectic

structure induced by the hyperkahler structure of M.
3Denote the Jacobian of S by J(S.). The Prym variety is the kernel of the natural map

J(S) -+ J(C) induced by S, -> C.



* The complex dimension of M is 6g - 6. In particular we have to assume

that g > 1. However later we will allow singularities of solutions of Hitchin's

equations and this restriction will be removed then.

These abelian varieties (fibers of the Hitchin's fibration) are not special Lagrangian

submanifolds with respect to J3 . In fact they are complex Lagrangian in this case.

But once we rotate the complex structure to Ji (this is known as a hyperkahler rota-

tion, see [55]) then these torus fibers are special Lagrangian. So after a hyperkahler

rotation we are in a situation where Strominger, Yau and Zaslow's recipe applies. In

other words, the mirror of this noncompact hyperkahler space should be the total

space of a special Lagrangian torus fibration whose base is topologically the same as

B and whose fibers are dual tori. Since our space is a moduli space, we may won-

der if its mirror is also a moduli space. This is the question investigated by Hausel

and Thaddeus and they found that the mirror is in fact the Hitchin's moduli space

on the same Riemann surface with the gauge group G (in our case it is SL(2, C))

replaced by the Langlands dual group GL (in our case it is PGL(2, C)). In fact due

to the explicitness of Hitchin's fibrations, one can check that the fibers of the Hitchin

fibration of the second moduli space is dual to the fiber of the first moduli space as

abelian varieties. This discovery suggests that this mirror symmetry has something

to do with the Langlands duality and later it partly inspired Kapustin, Witten and

Gukov's ambitious program of reformulating the geometric Langlands duality using

mirror symmetry of Hitchin's moduli spaces [47, 57, 79]. In particular, the mirror

relation is generalized to the cases with (possibly irregular) singularities.

It is well known that the base of a special Lagrangian fibration has some special

geometric structures. When the total space is hyperkahler and fibers are complex

abelian varieties in certain complex structures, the geometric structure is even more

special and is known as a special Kahler structure. Good references include [34, 54,

72].

Definition 2.0.1. A special Kahler structure on a Kahler manifold with Kahler



form w is a real flat torsion-free symplectic connection (symplectic means Vw = 0)

V satisfying

dvI = 0

where I is the complex structure and dv is the extension of the connection to the de

Rham complex valued in TM.

There are two kinds of special coordinates that one can introduce on a special

Kahler manifold. The first kind is a system of flat Darboux coordinates (Xi, yi). They

are flat in the sense that

Vdxi = Vdy, = 0

and they are Darboux in the sense that

w = dx' A dyi

Later we will also refer this set of coordinates as affine coordinates because their

transition functions are affine transformations. The other set of special coordinates

are dual pairs of holomorphic coordinates (ai, aFP) which can be chosen to be adapted

to a given set of affine coordinates. They are redundant, i.e. one needs only half of

them (for example aj) to provide local holomorphic coordinates. They are adapted

to affine coordinates (Xi, yi) if

Re(dai) = dxi, Re(da,) = -dyi (2.6)

Given a set of affine coordinates one can always find a set of adapted special holo-

morphic coordinates and vice versa. The condition of being dual is

- -(- -

9ai 2 (9xi "By<

where
= a3 

(2.7)
T D =a



To make w a type (1, 1) form, we must have rij = Tji. So locally we have a holomorphic

function F called the prepotential such that

D -F

The Kahler form is

= Im(ri)da' A da& (2.8)
2

and the metric is

ds 2 = Im(ri)dadai = - (dajPdai - daddf) (2.9)

Away from singular fibers of the Hitchin's fibration, our moduli space is an alge-

braically integrable system which always induces a special Kahler structure on the

base. In out context, it can be explicitly described as follows [23, 24, 25, 50]. There

is a holomorphic one form known as the Seiberg-Witten differential A. It is the re-

striction to S of the tautological one form. In fact the spectral curve S is a ramified

double cover lying in the total space of the cotangent bundle of C. Locally, one can

choose Darboux coordinates and write the canonical holomorphic symplectic form as

dx A dz where z is holomorphic coordinate on C and x is the vertical coordinate.

Then we define A to be the restriction of xdz to S. Note that because of (5)

A2 = -det <p (2.10)

Remark 2.0.1. The definition of the Seiberg-Witten differential given here is the same

as the one in [36]. However in most literatures a Seiberg-Witten differential is meant

to be a one form over M. The second formulation is in fact induced by the first one.

This follows from two facts. First, the differential of a Seiberg-Witten differential in

both cases is the canonical symplectic form in the context (for the first formulation

it is the canonical one on the cotangent bundle, for the second it is the holomorphic

symplectic form of M which extends the canonical holomorphic symplectic form on



T*Af). Second, the symplectic form in the first formulation induces via the Abel-

Jacobi map the symplectic form in the second formulation. See [25] for details along

with a comparison with Mukai's famous result that the moduli space of simple sheaves

of a symplectic surface has a natural symplectic structure.Since we will discuss the

foliation of quadratic differentials over the Riemann surface C we will be using the

first formulation. Therefore unlike most literatures the special Kahler structure on

the base of the Hitchin's fibration will be constructed from periods of the Seiberg-

Witten differential defined in this way. A thorough treatment from this point of view

for general gauge groups is given in [50].

We introduce some notions which will be used throughout the paper. Recall that a

spectral curve S is a hyperelliptic curve defined by (5). Strictly speaking that equation

defines a curve with punctures before we complete it into a projective curve. These

punctures are lifts of singularities of A2 on C (we shall allow A' to have poles). By its

normalization (when we define the Prym variety we actually use this normalization)

denoted as S we mean this projective completion by filling punctures.

Definition 2.0.2. [36] Let S, be a spectral curve of a Hitchin's moduli space M. We

consider the odd part of H1 (S, Z). Here odd means that the cycle is invariant under

the combined operation of exchanging the two sheets and reversing the orientation.

They fit into a local system over the nonsingular part of B. The local system is

called the charge lattice and degenerates at the singular locus of B where some cycles

become vanishing cycles. A charge is an element of the charge lattice local system. So

locally by choosing an trivialization of the local system a charge is just an element of

the associated integral lattice and it has monodromies. The charge lattice is denoted

as f and is endowed with the skew-symmetric intersection pairing of integral one

cycles. The gauge charge lattice denoted by Fga is defined to be the local system

of odd parts of H1 (S, Z) together with the intersection paring. The flavor charge

lattice Pflavo is the radical of the intersection paring in f. It consists of integral

combinations of loops around the punctures. Note these lattices fit into an exact

sequence

0 -+ rflavor - - Pgau -+ 0



Let (Ai, B), 1 ; i < 3g - 3 be a symplectic basis of the gauge charge lattice. The

genus of C is g while the genus of S is 4g - 3. So the rank of 1Pg, is 6g - 6 which

matches the dimension of B. Special holomorphic coordinates of the special Kahler

structure are given by period maps

a2 (u) J A, af?(u) :-JA (2.11)
r Ai 1 B i

da-P(u) /du
rij (u) : 3 (2.12)

dai (u)/du

Note that ai(u) and aF(u) depend on the holomorphic coordinate on B denoted by

u canonically defined by the value of the Hitchin's map

u = det <p

Definition 2.0.3. The central charge Z, for a charge -y is defined by

Z7 = - A (2.13)
7r It

The central charge depends on u since A does.

Of course due to the existence of singular fibers what we really have on the base B

is a singular special Kahler structure. We will focus on the induced affine structure.

Definition 2.0.4. An affine structure with singularities on a topological manifold

is an (nonsingular) affine structure outside a locally finite union of locally closed

submanifolds of codimension greater or equal to 2. It is integral if transition functions

of the affine structure over the complement of the singular locus are integral affine

transformations. The singular locus is denoted by A.

Going around a component of singular locus gives us a holonomy representation

of the corresponding element of the fundamental group of the regular part to the

group of affine transformations Aff(MR) where M := Z" is an integral lattice and

MR:= M 9 R. For more information on singular affine structures, see [44]. Note



that the lattices defining torus fibers fit together to form a (degenerate) local sys-

tem over B and as such it also has monodromies around the singular locus and theses

monodromies are precisely the linear parts of the corresponding holonomy representa-

tions. For Hitchin's moduli spaces, singular locus arise when some cycles on spectral

curves over generic points of the base degenerate and therefore the monodromies can

be read from the Picard-Lefschetz transformations of vanishing cycles.

The above theory holds for more general types of Hitchin moduli spaces. We allow

possibly singular solutions of Hitchin's equations. See [8, 59, 75, 47, 79] for a fraction

of the huge literature. The exposition below mostly follows [47, 79]. It is a little bit

technical. The reader can safely skip it as long as he or she believes there is a reliable

foundational theory for Hitchin's moduli spaces with prescribed singular behaviors at

finitely many singularities.

Recall that when the twistor parameter ( G Cx, the moduli space of Hitchin's

equation over a Riemann surface C is the moduli space of flat connections. Suppose

(A, <) is a solution of Hitchin's equations (2), then

R
A:= (p + A +R (2.14)

is a flat SL(2, C) connection.

We will assume there are possibly irregular singularities of the Hitchin's equations.

Let p be a singularity and take a trivialization of the holomorphic bundle E in a small

neighborhood of p with local holomorphic coordinate z such that the (0,1) part of

dA in this coordinate is given as OA = 02. A covariantly constant section of the

flat bundle E is denoted as T. Let &a be the (1,0) part of dA and define Az by

OA = Bz + Az. The flatness of A implies that Az is holomorphic away p. The

singularity of A, is of the form

Tn T_ 1Az=-+ +---+-+---n>1
Zn Zn- z

where the second ellipses represent regular terms. If n = 1 then it is a regular



singularity. Otherwise p is an irregular singularity. The bundle E is both holomorphic

and flat away from p. It can be extended over p as a holomorphic bundle, but the

extension is not unique (depending on the choice of a parabolic structure). The

extensions will not be needed for this paper. We will assume that T" is regular and

semi-simple which means that it can be diagonalized and has distinct eigenvalues.

This assumption is unnecessary and we only use it to simplify the exposition. All the

facts concerning the moduli space continue to be true even if we relax this assumption

a little bit. See section 6 in [79] for discussions concerning this point.

Under this assumption we can find a meromorphic gauge transformation to diag-

onalize all T, i.e. in this gauge

Tn Tn-1 T1
Az=--+ ~ +-+-+-,n'>1 (2.15)

Z" Zn-1 z

with T C tc where tc is the Lie algebra of of a maximal torus Tc. Note that T is the

residue of Azdz. The diagonalization is not unique. There are additional meromorphic

gauge transformations that can change the the eigenvalues of T1. Fixing T would fix

this freedom. To formulate the moduli problem, T1 , which is of topological nature, is

fixed. It turns out that picking Ti is equivalent to picking a holomorphic extension

over the singular point of the flat bundle E on the punctured disk. However there are

still additional freedom of permuting eigenvalues of T which is a Weyl group action

and of holomorphic gauge transformations which are diagonal up to order Iz|". The

gauge group action will be taken care of when we formulate the moduli problem.

Usually it is useful to separate A and 4. If we write z = remo, then convenient

form of the singular parts is given as

A = adO

dz un Ui dZ in i
#=-( +--- -+--)+--+--+-+--)(2.16)

2 z . z 2 zn z

where a E t, the Lie algebra of a maximal torus of G and ui E tc. After a gauge

transformation, Az can be put into the standard form with Ti = -i(a -im ui), Tk =



Uk, k > 1. This is called the local model of abelian singularities in [79]. The purpose

of the regular semi-simplicity assumption of T is to get this local model.

The Hitchin's moduli space with possibly irregular singularities (denoted as M)

referred in this paper is defined to be the space of pairs (A, #) satisfying Hitchin's

equations with prescribed local models of abelian singularities modulo the action of

the group of SU(2)-valued gauge transformations that are T-valued modulo terms of

order jzj". Note that the gauge group described here preserves the form of the local

model. It has been shown that Hitchin's hyperkahler quotient construction extends

to this case and the moduli space M is hyperkahler.

M is identified with the moduli space of flat connections with prescribed singular

parts (15) at singularities when the twistor parameter ( , 0, oo. This means in (15)

we fix T1, T2, --- , T,,. The underlying complex structures of the moduli space of flat

connections for different are holomorphically equivalent.

The complex dimension of the moduli space is 6g -6 + 2n if there is one singularity

which is an order n pole. Note that 6g - 6 is the dimension of the moduli space of

nonsingular solutions. So the extra freedom introduced by allowing one order n

singularity is 2n. It is obvious how to generalize to the case of several singularities.

The holomorphic symplectic form of M (which depends on () is given by

Q= Z TrSA A 6A

Since all T are fixed JA would be nonsingular even though A is singular. This makes

the space M a natural place to define this holomorphic symplectic form.

Although it seems that the construction depends on the underlying complex struc-

ture of C as well as the asymptotic data T, i > 2, it turns out the canonical complex

structure is independent of the choice of complex structure of C, positions of sin-

gularities and T, i > 2. In fact, varying the complex structure of C, positions of

singularities and T, i > 2 gives rise to the so-called isomonodromic deformations,

see the discussion below as well as in [79]. It is also worthy pointing out that the



symplectic structure of the moduli space does not depend on Ti, i > 2 either[9]. On

the other hand the complex structure of the moduli space depends holomorphically

on Ti and the symplectic structure also depends on it.

The story of the Seiberg-Witten differential is modified accordingly [25, 36]. The

residue of W at a singularity can be diagonalized as

dz m 0(2.17)

z 0 -m

Then m is the residue of A because

2

/ 2 = -det w ~ dz2

z

These residues are also called masses or mass parameters by physicists, see section 4.

There seems to exist analogous relations between moduli spaces of flat connections

and analytically isomorphic moduli spaces of fundamental group representations when

we allow singularities (the author does not know if there is a precise reference for

general cases. The results in this paper are fine without it as we do our constructions

on the moduli space of flat connections). For example in [79] the author identifies M

(the moduli space of flat connections with prescribed singularities) with the following

moduli space denoted by y*(Ti) and defined below.

By the flatness of A, xF is annihilated by both OA and 9A. Locally near p but

away from p, the first condition means xI is holomorphic (since OA = &2). The second

condition means xJ is a holomorphic solution of a meromorphic equation

(a2 + Az)T = 0

and as such it exhibits the Stokes phenomenon near p if p is an irregular singularity

[78, 79].

This means a small open disk containing p is decomposed into (2n - 2) sectors.



Each sector contains precisely one "Stokes ray". In sector a, up to gauge equiva-

lence there is a unique fundamental solution matrix Y, with appropriately prescribed

asymptotic behavior. In the intersection S,, n Sci there is a matrix (Stokes matrix)

M, such that Y,+1 = YaM,.

The set of (Mi, T1) for a singularity is called the generalized monodromy data of

that singularity. It determines the actual monodromy M around the singularity by

M = exp(-27rT1)M 2n- 2M2n-1 ... M1

where exp(-2rT1) is called the formal monodromy. We always consider generalize

monodromy data up to gauge equivalence. Here by gauge equivalence we mean the

data must be considered modulo the action of the maximal torus Tc.

Without loss of generality suppose there is one singularity. Let Uj and V be

respectively the images of generators Ai and Bi of the fundamental group of the genus

g Riemann surface into GC under the monodromy representation. These monodromies

together with the generalized monodromy data at the singularity and the connecting

matrix defined below are called the generalized monodromy data for the punctured

surface. Then we consider the space of generalized monodromy data modulo gauge

equivalence. It is denoted as Y* in [79].

We have the following monodromy relation

U1V1U1V 1 71 ... UVU-1V1W exp(-27rT1)M 2n- 2 M2 n- 1 . . . M 1W- 1 = 1

where W accounts for a connecting matrix representing the parallel transport from

a base point in the first Stokes sector of the singularity to the base point chosen to

write the relation among U and V. Y* is the space of solutions of the above identity

modulo gauge equivalence. The gauge group here is GC x Tc. g E Go acts as Uj -+

gUig- 1,Vi -+ gVig- 1,W -4 gW while h E Tc acts as w -+ Wh- 1,M, + hMch'.

y* is an affine variety.

There is another space denoted as Y*(T 1 ). It is the space of generalized mon-

odromy data with fixed T 1. It is natural to fix T because of its topological nature



(a residue) and its physical interpretation as the mass parameter. If we use local

coordinates to write the local model as before

Tn T T
Z Z Z

with T E tc, then when defining Y* we fix T2 ,--- , Tn while when defining Y* (T1)

we fix T1, T2 , -- , Tn. If we change T2, - -- , T, generalized monodromy data do not

change. That is why it was called an isomonodromic deformation before.
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Chapter 3

From Affine Structures To

Instanton Corrections of Complex

Structures

Motivations

A good reference is [5]. Let us start by recalling the famous proposal of Strominger,

Yau and Zaslow [77].

Conjecture of Strominger-Yau-Zaslow (very rough version) If X and X is a

mirror pair of Calabi-Yau manifolds then there should be singular special Lagrangian

torus fibrations X -+ B and X -+ B which are dual torus fibrations.

There are some problems with this version of SYZ conjecture.

e We have to consider families of Calabi-Yau's. In mirror symmetry we usually

consider the so-called large complex degeneration. It means that the family

approaches a limit point in the complex moduli space with maximally unipo-

tent monodromy. However in this paper we are not going to use this algebraic

geometric definition. Instead we will work with a differential geometric charac-

terization proposed in section 5.



" Even for families we may have to understand it only in a limit sense.

" The problem of instanton corrections by holomorphic disks. It is expected by

some heuristic arguments that the complex structures and perhaps the Calabi-

Yau metrics should receive some contributions labeled by worldsheet instantons:

holomorphic disks wrapping some special Lagrangian fibers of the mirror.

A refined version which has some chances to be true was proposed by Gross-Wilson

[46] and Kontsevich-Soibelman [62].

Conjecture of Limit Form(Gross-Wilson, Kontsevich-Soibelman)' : Consider a

large complex degeneration of Calabi-Yau manifolds. If we rescale the Ricci-flat met-

rics to fix the diameter then there exists a subsequence converging in the Gromov-

Hausdorff sense to a limit metric space. This limit space is expected to have a singular

affine structure and a singular Monge-Ampere metric.

A singular affine structure is an affine structure outside a codimensional 2 subset.

A (real) Monge-Ampere metric means that the metric can be locally written as the

second order derivative of a convex function K and K satisfies the real Monge-Ampere

equation. We expect that such a structure exists because there is a nonsingular

(real) Monge-Ampere metric on the base of a nonsingular special Lagrangian torus

fibration and it is expected that in the large complex limit the discriminant locus

of the singular fibrations (the Calabi-Yau varieties) on the base will collapse to be

codimension 2. If we have a dual special Lagrangian torus fibration then the potential

of the corresponding (dual) Monge-Ampere metric should be obtained by taking the

Legendre transform of the potential K of the Monge-Ampere metric associated to the

original fibration.

So mirror symmetry should be geometrically realized in three steps.

'This form of SYZ conjecture was proposed by Gross-Wilson and Kontsevich-Soibelman around
2000. But the affine structure and Monge-Ampere structure were already known to Hitchin [54] [55].
The idea that one should work with a large complex family to study the SYZ conjecture also appeared
in Strominger-Yau-Zaslow's original paper [77].



1. Construct the limit structure (singular affine structure plus the potential of the

Monge-Ampere metric) from a given large complex degeneration of Calabi-Yau

varieties.

2. Do the Legendre transform with respect to the potential of the limit structure.

3. Solve the instanton correction problem (also known as the reconstruction prob-

lem): reconstruct a family of Calabi-Yau manifolds (which is meant to be the

mirror family) from the dual limit structure and the construction is supposed

to incorporate the contributions of instantons.

The idea of Gross and Siebert in [43] [44] is that we forget about special La-

grangians and metrics and instead focus on some limit structure which does not refer

to metrics and try to build everything from algebraic geometry.

The limit structure in their program is the following data

" A singular integral affine manifold B,

" A polyhedral decomposition T,

* A polarization <p,

" A log smooth structure.

The new three steps in mirror symmetry are

1. Construct a triple (the first three items given above) from a toric degeneration of

Calabi-Yau varieties. Toric degeneration is a notion adapted to Gross-Siebert's

program (see below).

2. Perform the Legendre transform to get a dual triple.

3. Reconstruction Problem: reconstruct a toric degeneration (the mirror family)

of Calabi-Yau varieties from the dual triple and a log smooth structure which

is supposed to encode the information of instantons.



The hard part is of course the third one which is the algebraic geometric analogue

of the instanton correction problem. The complex structure instanton correction

problems dealt with in this paper is precisely this problem.

Remark 3.0.2. There is a related program proposed by Kontsevich and Soibelman

[61] which is the first one that uses log morphisms (although they did not use the

language of log geometry). They only considered the case of the two dimension (K3

surfaces). It seems this work at least partially inspired the algebraic formalism of wall

crossing formulas in section 6 although the precise relation between the two works is

not clear to the author.

The rest of this section will be a review of of [43]. Most definitions are just copied

from there. It is important to know that the word affine has two different meanings

here. Sometimes it is used for affine structures or charts in the sense of differential

geometry while sometimes it is used for affine varieties in the sense of algebraic ge-

ometry. Anyway its meaning will be clear from the contexts.

Review of the complex structure instanton correction problem

We consider a decomposition of the topological space B into closed cells of various

dimensions which induces the affine structure with singularities on B. Each cell is

identified as a (possibly unbounded) integral convex polyhedron in MR and as such

maximal dimensional cells carry induced affine charts in the interiors and we demand

that cells are glued in integral affine manners. Such a manifold is called an integral

polyhedral complex. The reader can find the more formal definition in [43, 44]. To

get a singular affine structure one still need to specify the affine transformations in

the normal direction of the gluing of maximal dimensional cells. These are called fan

structures. It is easy to see that we only need fan structures for each vertex v (zero

dimensional cell).

Definition 3.0.5. Let T be a cell in the polyhedral decomposition denoted by F and

U, be the union of interiors of all cells containing T. A fan structure along r is a



continuous map S, : U, -± Rk with

1. S-1(0) = Int .

2. If e : r u is a inclusion morphism of cells then S, |rnt is an integral affine

submersion onto its image.

3. The collection of cones Ke := R;>o - Sr(o nU,) defines a fan E, in Rk.

Two fan structures are equivalent if they differ by an integral linear transformation.

If r C o E F the fan structure along o- induced by r is the composition

U, -4 U, - Rk -4 Rk/ L, ~_ R'

where L, is the linear span of S.(Int u).

Definition 3.0.6. An integral polyhedral complex B of dimension n is called an sin-

gular integral affine manifold with a polyhedral decomposition (also called an integral

tropical manifold) if there is a fan structure S, for each vertex v such that:

" The support AE := UcE C is convex with nonempty interiors.

* If v, w are vertex of a cell T, then the fan structures along T induced by S, and

S, are equivalent.

With fan structures around all vertices we are able to move from one maximal

dimensional cell to the adjacent ones by passing through U,. The affine charts in

the interiors of maximal dimensional cells and the charts given by the fan structures

at vertices provide us an integral affine atlas. However there could be nontrivial

monodromies around codimensional two singular locus and this is why we have to

allow singularities of the affine structure. In this way we get a singular integral affine

structure together with the polyhedral decomposition. In our problem the singular

integral affine structure is obtained before we make any polyhedral decomposition.

So the decomposition must be chosen to be compatible with the affine structure in

the sense that we recover the original affine structure.



For a vertex v, let Av be the free abelian group of integral tangent vector fields in

TB,, and for a cell T E F containing v define

A, : A, n T,,, (3.1)

The affine structure outside the singular locus induces a natural flat connection on

the tangent bundle TB. Let AR be the local system of flat sections and A be the

lattice in AR induced by the embedding M -+ MR. Note that A, is the restriction

of A. There is a monodromy representation which is the linear part of the holonomy

representation. Consider two vertices v, v' contained in an (n - 1)- dimensional cell

p. Then the monodromy transformation associated to a loop starting from the fan

structure of v, going through the fan structure of v' and back to the fan structure of

v is shown to have the following form

m -+ m + (im, a,)m$, (3.2)

where m E Av, mnn, E A, and d, E A' C A* is the primitive integral vector evaluating

positively in one of the two maximal dimensional cells containing p (we choose the

one we meet first as we go around a loop).

As for the polarization p, it is a convex multi-valued (integral) piecewise linear

function on B.

Definition 3.0.7. An integral affine function on an open subset U of B is a continuous

function U -+ R which is integral affine on U - A. Integral affine functions define a

sheaf Af f(B, Z). An integral piecewise linear function on U is a continuous function

<p : U -+ R such that if S, is the fan structure along T E F then Wp Iunu,= A + S,.( )

where A is an (integral) affine function on U, and p is piecewise integral linear with

respect to the fan Er. Integral piecewise linear functions define a sheaf PLy(B, Z).

A polarization on B is a section of the sheaf PLy(B, Z)/Af f(B, Z)

A local representative of a polarization induces a strictly convex integral affine

function on each fan Er.



We can define the Legendre transform (dual) of the a triple (B, F, p) which is an

involution. We refer the reader to [44] for details. We just want to point out that

the transform maps a cell T E F to the Newton polyhedron of p where 0 is the local

representative associated to T i.e. W Iunu, = A + S* (). For a strictly convex piecewise

linear function on a fan E E NR denoted by p its Newton polyhedron is

:={ G MRI+X >0 (3.3)

The sum of the dimension of a cell and the dimension of its dual cell is equal to the

dimension of B.

Gross and Siebert showed how to obtain such a triple (B, F, W) from a toric

degeneration of Calabi-Yau varieties. Toric degeneration is a notion adapted to Gross-

Siebert's program. Roughly speaking it means the central fiber is obtained by gluing

some toric varieties along toric strata and outside a codim 2 locus near every point

there is a local model of the degeneration given by a monomial from an affine toric

variety. It is conjectured that a large complex degeneration is birationally equivalent

to a toric degeneration.

For readers' convenience we copy the precise definition of toric degenerations from

[43] in the below. However in this paper we do not use the definition. Nor shall we

need the construction of the triple from a toric degeneration. Interested readers can

find them in section 1 of [43]. What we need instead is an existence theorem (propo-

sition 3.3) and some explicit constructions given in section 9.

Definition of Toric Degenerations

A totally degenerate CY-pair is a pair2 (X, D) where X is a reduced variety3 and

D is a reduced divisor satisfying the following conditions. Let u : X -+ X be the

normalization and C C X its conductor locus. Then X is a disjoint union of al-

2In this work D is empty because our polyhedral complexes do not have boundaries.
3 1t may look strange that we did not say directly that X is Calabi-Yau. But that can be deduced

from the conditions given here, see theorem 2.39 and definition 4.1 in [44].



gebraically convex (this means that there is a proper map to an affine variety) toric

varieties, and C is a divisor such that [C] + v* [D] is the sum of all toric prime divisors,

vic : C -+ v(C) is unramified and generically two-to-one, and the diagram

C X

V

v(C) X

is cartesian and cocartesian.

Let T be the spectrum of a discrete valuation k-algebra (k is the underlying field)

with closed point 0 and uniformizing parameter t. Let T be a k-scheme and D, X

reduced divisors of T. A log smooth morphism 7r : (T, X; D) -+ (T, 0) is a morphism

-F : (T, X) -+ (T, 0) satisfying the following properties. For any x E T there is an

etale neighborhood U of x such that the following commutative diagram holds

U Spec k[P]

,rlu G

T Spec k[N]

where P is a toric monoid, IF and G are defined by sending the generator z1 e k[N]

to t and to a nonconstant monomial zP C k[P] respectively, <b is etale with preimage

of the toric boundary divisor equal to the pullback to U of X U D.

A toric degeneration of CY-pairs over T is a flat morphism 7r : T -+ T together

with a reduced divisor D C T with the following properties.

" T is normal.

" The central fiber X := ir-(0) together with D := D n X is a totally degenerate

CY-pair.

" Away from a closed subset of T of relative codimension two not containing any



toric stratum of X, the map -r : (T, X; D) -+ (T, 0) is log smooth.

There is also a notion of formal toric degeneration of CY-pairs whose definition is

omitted here.

Now the problem of instanton corrections of complex structures concerns the in-

verse problem: suppose we are given a triple, can we construct a toric degeneration

which induces this triple? The name of the problems is perhaps a little bit confusing

as it is not very clear what the instantons are and what the word "correction" means

precisely. We will comment on this issue later in this section.

From the triple, one can first construct the central fiber in the following way.

The upper convex hull of the graph of a local representative of the polarization W,

near a vertex v defines a convex rational polyhedral cone C, C TB,, E R. Let P, :=

C, n (A,, & Z) be the corresponding toric monoid4 (in the sense of toric geometry).

In other words

P,= {m := (i, h) E A, x Z I h > sp, (fn)}

We introduce formal variables z and define the ring C[P,,] to be the ring generated by

z m with the multiplicative relations induced by additive relations in P. According to

the relation of the triple (B, F, W) and the toric degeneration, the vertex v is supposed

to be associated to a zero dimensional toric stratum of the total space and an etale

local model for the degeneration near this stratum is given by the map

C[t] -+ C[P,t -+ z 0

The central fiber for this local model is the union of affine toric varieties

U Spec C[K n (A, D Z)]
K

where the union is over faces K of C, not containing (0, 1) and therefore is indexed

4A monoid is a semigroup with the identity.



by maximal cells o- containing v. We need to know how they are glued. Recall the

definition of a fan structure and E,, we can see that the coordinate ring of this affine

piece of the central fiber is given by Spec C[E,] where C[E,] is the monoid ring

associated to the monoid defined by

,n + n n + fn', ]K c E : mn, m'nE K

oo otherwise

and we formally set z' = 0. For v C T E F, define

--1E, {:=Ke + A-r, | Ke E Ev,e : o -r factors through r}

V(T) := Spec C[r-E,) (3.4)

Clearly V(r) is a union of toric strata labeled by cones in T'E,. We write a toric

strata as Ve for a cone e in 7'E,. Note that v-1 E, = Ev. It is not hard to see that

if W C T, then there is a natural embedding V(r) -+ V(w). In this way we glue affine

pieces according to the relation in the polyhedral decomposition and obtain a scheme5

denoted by Xo which is meant to be the central fiber of the toric degeneration to be

constructed. Moreover Gross and Siebert proved that any central fiber of a toric

degeneration can be obtained in this way. Details can be found in [44].

To (re)construct the degeneration, we need to "remember" how the central fiber

is embedded in the family and this means that we need additional data on X 0 . In

algebraic geometry, a convenient way to encode some information of a family in the

central fiber is to use the notions of logarithmic geometry and this was also the point

of view taken by Gross and Siebert. The following is the operational definition (which

is shown to be equivalent to the ordinary one).

Definition 3.0.8. Define LS y : Oy where the sum is over all e : v -+ p

with dim p = n - 1. Let Z be a closed subset of codimension 2 not containing any
5The construction allows the possibility of composing toric automorphisms of each affine toric

piece and the additional data is called an open gluing data. In this work we always choose them to
be the trivial ones. Do not confuse these toric automorphisms of affine pieces of the central fiber
with log (non-toric) automorphisms of thickenings of affine pieces to be defined later.



toric stratum of Xo. A log smooth structure over an open subset U E V(v) \ Z is

a rational section (fe) of LS'eV(V) whose zeroes and poles do not contain any toric

stratum and which satisfies the following condition:

H~ld,, & fe, lyh= 1 (3.5)

where (pi), 1 < i < 1 is a cyclic ordering of all (n - 1)-cells containing an (n - 2)-cell

r of the polyhedral decomposition which contains v. Vh is the strata corresponding

to the cone h given by h : v - T. dpi A' E A* are generators compatible with

the cyclic ordering. In (22) we treat the first factor additively and the second factor

multiplicatively. The log smooth structure is positive if it is a section of ee O which

extends across Z as a section of (e OV.. The canonical minimal choice of Z is the

union over codimensional one cells p of the vanishing locus of f,,p. This defines a log

smooth structure locally over a chart. To define it globally we also need a compatible

condition (change of vertex formula) associated to the change of charts because of

nontrivial monodromies. Let v, v' be two vertices of an (n - 1)-dimensional cell p and

e,e are e : v -+ p and e' : v' -+ p respectively. The condition is

fe, = Z m V'Vfe (3.6)

To emphasize the dependence on the vertex, later we may write the section fe as f,,.

The geometric meaning of a log smooth structure is that at a generic point of Ve

a local model of the toric degeneration with central fiber Xo is given by the equation

zw - fetP = 0

where p is the integral length of the dual cell (under the Legendre transform) of p

and z, w are two variables in the monoid associated to the two generators of A,/Ap.

Hence a log smooth structure does tell us something about the embedding of the

central fiber.

Now we can state the main theorem of Gross and Siebert.



Theorem 3.0.3. Any locally rigid, positive, pre-polarized toric log Calabi- Yau variety

with proper irreducible components arises from a formal toric degeneration of Calabi-

Yau varieties6 .

A pre-polarized toric log Calabi-Yau variety is a scheme X0 constructed as above

from a triple (B,.F, p) together with the polarization W and a log smooth structure.

Local rigidity is a technical condition which guarantees uniqueness in certain con-

structions. In all our examples, explicit constructions will be obtained and it is not

necessary to check this technical condition. In fact we do not use this theorem at

all because our spaces, namely Hitchin's moduli spaces, are noncompact. Moreover

we need more than just an existence statement. What is important is the proof of

this theorem. We will build the explicit degenerations of a Hitchin's moduli space

by partly following the proof of this theorem. We do not assume the cells of the

polyhedral decomposition are bounded.

The proof of this theorem is very complicated. The basic idea is that we deform

affine pieces 7 of the central fiber before gluing. This will introduce inconsistencies

in general. So we have to modify the manners of the gluing by composing certain

(auto)morphisms. These (auto)morphisms will be associated to some codimension

one subsets and they must satisfy some consistency conditions as well.

To be more precise, let us suppose that we want to find a formal deformation of

the central fiber over SpecC[[t]] where t is the deformation parameter. We first define

canonical k-th order thickenings of affine pieces of Xo in the following way. For a

maximal dimensional cell o- in the polyhedral decomposition, a vertex v E cr and an

element m = (fin, h) E P, we define ord,(m) to be the vanishing order of z' over the

strata V,,,. More precisely, since the Legendre dual iv of a vertex v is a maximal

dimensional cell whose vertices are & : -A, E A* 8 where A, is the linear function

defined by the local representative Vv of the polarization on the maximal dimensional

cell o D v, we may naturally view m as an element of the stalk of the sheave of

6The theorem is actually true more generally for pairs, see [43]. We only state it for varieties
instead of pairs because the central fiber is only viewed as a variety in this paper.

7Here the word 'affine' is used in the sense of algebraic geometry.
8See the definition of Newton polyhedrons.



integral affine function Aff(b, Z)9 over a point x E o- C B and define its order as

ord, (m) = (i, -A,) + h (3.7)

where r- is the image of m under the projection Aff(B, Z)a -± A, which is induced

by the natural exact sequence

0 -+ Z - Aff(B, Z) -+ A -+ 0 (3.8)

m is called an exponent at x. For a maximal dimensional cell o we define its exponent

to be the exponent over any of its interior point away from singularities and this is

a well defined element in Aff(B, Z)& (note that & is just a point). The exponent at

o- is denoted by m, (or just m). The order is invariant under the monodromy action

on m. For a subset A contained in a cell and containing x the order is

ordA(m) := max{ord,(m) I A C o E .}ax (3.9)

Suppose o-, o' are two maximal dimensional cells containing v with nonempty inter-

section and m is an exponent on o- (i.e. on an interior point x E o). Let m' be the

parallel transport of m to o-' induced by a parallel transport of A, we define the order

of m on o' which does not contain x as

ord . (m) := ordg. (m') (3.10)

Note that due to the monodromy to define the parallel transport we must choose a

vertex contained in a n o-' and use its fan structure. The definition does not depend

on the choice of v because the definition of order is invariant under local monodromy.

We will need the following proposition in [43] later.

Proposition 3.0.4. Let m be an exponent at x and r be the minimal cell containing x.

If o- and o-- are maximal dimensional cells containing r such that the corresponding

9B is the Lengdre dual of B and is isomorphic to B topologically. J(Int f), Aff(f, Z)) = (A*)* E
Z = A, E Z 3 m.



maximal cones in E, contain fi- and -in respectively, then

ord, (m) = max{ord,(m) I U C .Fmax, r C o}

ord,+(m) = min{ord,(m) I o E Fmax,T C 0-1

Basically this proposition tells us that if we propagate an exponent m in the

direction -ifn its order increases.

Let us continue and define a generalization of Pv for w C- E C Fmax

P,,, := {m E Aff(f, Z)& I Vo-' E Fmax, W C o-' : ordg (m) > 0} (3.11)

For any choice of local representative <p, at v of the polarization <p and any maximal

dimensional cell o- containing v, we have Pv,, = Pv canonically. We also define

P, :={m c Aff(B, Z), I Vo- Fma, E o- : ord,(m) > 0} (3.12)

If W 3 x, P,, ~ P. As a result if x, x' E Int(w) - A then any maximal dimensional

cell u containing x induces an isomorphism P, ~ Pg.

Let o' be another maximal dimensional cell containing w then parallel transport

via the fan structure of a vertex v e -n o-' induces an isomorphism P,,, ~ Pg.

The canonical k-th order thickenings of affine pieces of Xo are

R9,:= (k[P,,]/IOr)f. (3.13)

where g is an inclusion morphism g : W - T, W, T E F and o- is a maximal dimension

cell containing r. The lower subscript outside the bracket means we take the local-

ization of the quotient ring inside the bracket with respect to elements fg,, and as

the symbol has suggested fg,, are constructed from the log smooth structure. For a

codimensional one cell p containing T denote the composition v -+ w -+ r -+ p by e,

and denote the associated codimensional one cone in the fan Ev by KeP E Ev. By its



definition

fe, = feP,7Z
fe KePnAv

It has a canonical lift to C[Pv,,] which is

E fep,mZ m  (3.14)
mEP,,o.

where fep,m = feP,n if mh- E Kep and ordp(m) = 0 and fep,m = 0 otherwise. f,, is

defined to be

fg,,r := S feP,mz m  (3.15)
PQ-r mEP.,,

If T is maximal dimensional we define fg,, = 1. I> denotes the ideal generated by P

which is the set of those elements in the monoid P, 0, such that ord,(m) > k. SpecR',

is a thickening of the complement of (Up;? V(f,,), v C w) in Spec(C[P,,]/I>O)

V(w) where V(f,,) is the locus defined by the vanishing of the log smooth structure

f,,, V W. If g : T, g' :w' -+T' and w C w', T D T' then there is a canonical

homomorphism R, - R ,

As said before, when one tries to glue these deformations of affine pieces one

encounters inconsistencies (which are not necessarily associated to the existence of

nontrivial monodromy around singularities of the affine manifold) and has to compose

some (auto)morphisms called log (auto)morphisms.

Definition 3.0.9. A log ring is a ring R together with a monoid homomorphism

a: P -+ (R, -) from a monoid P. A log morphism between two log rings a : P -+ R

and a' : P' -+ R' is a triple (0 : R -+ R', # : P -+ P', : P -+ (R') x) satisfying

#o a = 6 - (a' o #)

In our case, the log ring is a : P, -+ R , where a send m to zm. 3 will be fixed

and 0 will factor through P, -+ A,. So we will use 0 to denote the homomorphism



A, -+ R k. We also use 0 instead of 4' to denote the ring homomorphism. So

O(zm ) = 0(ffi) - z(M) (3.16)

The composition of two log morphisms 01,02 is

(01 0 02)(m) = 01(m) - 61(02(m))

Log (auto)morphisms in our problem are associated to codimensional one subsets.

There are two kinds of them. The first kind is called slabs which are codimensional

one polyhedral subsets of codimensional one cells of the polyhedra decomposition

together with higher order corrections ("attached" to slabs) of the gluing.

Definition 3.0.10. A slab is a convex rational (n - 1)-dimensional polyhedral subset

b of a codimensional one (i.e. (n- 1)-dimensional) cell Pb G F together with functions

fb,x E cmz E C[P2] (3.17)
mEP,.inEAP

for each x C b - A satisfying

9 Let x, x' E b - A and let v = v[x] be the unique vertex in the same connected

component of b - A of x. Give the analogous meaning to v' = v'[x']. Let H

be the parallel transport C[Px] -+ C[Pg] along a path inside the closure of Up.

avoiding A from x to x', then

Pb

f,' = z M V-I(fb,x) (3.18)

Consider the two adjacent maximal dimensional cells containing Pb. Let # and

#' be parallel transports of exponents from one maximal dimensional cell to

another via the fan structure of v and v' respectively. Then there is a relation

# m P (m) + 7r(fn) -mVI



where 7r(fti) is defined in (38) and m, c APb This relations defines m Note

that mP/, is mP1, defined in (19).

9 Let fe be the data associated to e : -+ Pb with v = v[x] defining the log

smooth structure. Let 17 be the parallel transport C[P2] -+ C[Pv]. Then

fe = fl( Z CmZ m ) (3.19)
mEPx,ordb(m)=O

fe in (36) is understood as the lift of the log smooth data to C[P,,] defined by

(31). Comparing the definition of a slab and the definition of a log smooth structure,

we see that a log smooth structure induces a slab structure on each codimensional

one cell in the polyhedral decomposition such that the order of each term of the slab

function is zero.

The other kind is called walls and unlike slabs they are codimensional one poly-

hedral subsets of maximal dimensional cells.

Definition 3.0.11. A wall is a convex rational (n - 1)-dimensional polyhedral subset

p of a maximal dimensional cell u (We require that p has nonempty intersection with

the interior of o-,) together with

" An (n - 2)-dimensional face q C p called the base of p.

" An exponent mp on o-, such that ord,,(mp) > 0,

p = (q - R>or-,) n o-

and m,,2 c P2 for all x E p - A.

" A number c, from which we define a function

f,,2 := 1 + c zm,,x (3.20)



The slides and the top of the wall are defined as

Slides(p) := (&q - R;>ohip) n 0p

Top(p) := closure(Op - (q U Slides(p)))

Later in this section we will.produce log morphisms from fb,2 and f,,2.

Definition 3.0.12. A locally finite collection of slabs and walls t together with a

polyhedral decomposition -FR of the union of supports of elements of t gives us a

structure (also denoted by N) if the following conditions are satisfied.

" Every codimensional one cell in the original polyhedral decomposition F (not

FT) is considered as the support of a slab of the structure. Each slab in the

structure defines a codimensional one cell in FR.

* Define a Gross-Siebert chamber to be the closure of a connected component of

the complement of the union of supports of elements of R. Then every Gross-

Siebert chamber is convex and its interior is disjoint from any wall. Sometimes

we also use the name "chamber" instead of Gross-Siebert chamber.

" Any wall is a union of elements of FR.

" Each maximal cell in F contains only finitely many slabs or walls.

To make sure that after adding slabs and walls the gluing is indeed consistent one

must show that going along a loop around a codimensional two cell of the structure

the ordered composition of these log morphisms is trivial. If this is true, then we say

the structure is consistent to order k.

Let us describe the consistency condition more carefully. For a chamber u there

is a unique -u C F. with u C o-u. So for each pair (g, u) such that g is a morphism

g : w- r in the polyhedral decomposition and T C o-u we have the rings Rk. A

joint j of the structure is a codimensional two cell of the structure. In the normal

(two dimensional) space of j codimensional one cells of the structure containing j



are rays cyclicly ordered and numbered. Hence so are the chambers around j. Using

OB to denote the log automorphism from Rk, to Rk to be defined below, the

consistency condition is

Definition 3.0.13. A structure is consistent to order k if it is consistent to order

k for all joints. It is consistent to order k for the joint j if for any g : W -+ T with

j n w / 0 and r E cg the composition

0' 0=Oio...o00,

is the identity. Here 1 is the number of codimensional one cells in the structure

containing j and ug is the minimal cell in F containing j.

Remark 3.0.3. The minimal cell o-j in the polyhedral decomposition (instead of the

structure) containing j has codimensional at most two. We call the joint j a codi-

mensional zero, one or two joint according to the codimension of that minimal cell10 .

Let us specify the definition of the log morphisms. We glue R k together accord-

ing to the inclusion relations of the structure. The gluing process can be decomposed

into the following two types of basic gluing "morphisms"

(g : W -+ r, u) -+ (g': ' -+ T', u')

i.e. we glue R and R k, via:

" Change of strata: W C W', T D T' u = U.

" Change of chambers: w = w',T = r', dim unu' =n- 1,wfnufnu' / 0.

For changes of strata the log morphisms are defined to be the trivial ones induced

by the canonical map # : P,, - Pg ,. For changes of chambers, we distinguish

two cases.

' 0But the joint itself is always codimensional two as a subset.



" o-2 = o = o-. In this case there exists an (n - 1)-dimensional cell b of the

structure contained in the intersection of u and u' and having nonempty inter-

section with w. Let pi, 1 < i < r be walls in the structure containing b and let

fi be the image of fpj,, in R,. The tangent space of the intersection of two

chambers Tunu, is an (n - 1)-dimensional space and let 7r : A, -+ Z be the epi-

morphism contracting Tung n A, and evaluating positively on vectors pointing

from u to u'. Then we define the log morphism by # = Id : P,,, -+ P,,

0 : f- -+ (] fi)-"rfn (3.21)
i=1

It is an log automorphism of R .

* o-u 7 o. If this is the case then the intersection of the two chambers must

be a codimensional one cell of the polyhedral decomposition. Denote by b the

codimensional one cell of the structure contained in the intersection and having

nonempty intersection with w. Let b be the unique slab whose support is b.

Let x E (w n b) - A and e : v -+ w where v = v[x]. We define a log morphism

by defining # as the parallel transport through v and

S: i -+ ( (3.22)

where 7r is the epimorphism A, . -+ Z with kernel A, and is positive on vectors

pointing from u to u'. fb,x is viewed as an element of R k, via the fan structure

at v. The condition (35) guarantees that the log morphism does not depend on

the choice of x (or equivalently the choice of v).

Changes of strata commute with changes of chambers. The consistency condition

in codimension two formulated above guarantees that if a gluing morphism has two

decompositions into basic gluing morphisms then the ordered compositions of log

morphisms associated to the two decompositions are the same.

The idea of using log morphisms to correct gluing construction was due to Kont-

sevich and Soibelman in dimension two in the somewhat different framework of non-



archimedean analytic spaces. Gross and Siebert's construction is adapted to the

theory of logarithmic geometry and works for any dimensions. Furthermore explicit

calculations of the degeneration can be done.

We are not done yet because what we really want is a formal degeneration (which

in nice cases can be algebraized into a genuine deformation over rings of finite type),

i.e. we want to let k go to infinity. So we must show the consistent structure in order

k is compatible to the consistent structure in order k + 1.

Definition 3.0.14. Two structures N and R' are compatible to order k if

" If (p, m, c) is a wall in R with c h 0, ordap(m) ; k, then it is a wall of N' and

vice versa.

" If b and b' are slab in R and R' respectively and x E (Int(b) l Int(b')) - A,

then

fb,x = fr,, mod tk+1

If we have a sequence of structure &k, k > 0 such that for any k Nk is consistent to

order k and t4, Rk+1 are compatible to order k, then we say we have a compatible

system of consistent structures.

By the work described above the solution of the complex structure instanton cor-

rection problem, i.e. the solution of the (re)construction problem of the degeneration

(theorem 3.1) is a corollary of the existence of a compatible system of consistent

structures. In fact the following proposition is proved in [43].

Proposition 3.0.5. For a compatible system of consistent structures which is in-

ductively constructed starting from a positive log smooth structure (see the next propo-

sition for its meaning) one can construct a formal toric degeneration of Calabi- Yau

varieties with central fiber X 0 which induces the triple (B, F, <o) and the log smooth

structure.

The existence of a compatible system of consistent structures is proved by in-

duction on k. When k = 0 the following proposition is easy to verify by checking

definitions.



Proposition 3.0.6. A structure consistent to order zero containing only slabs defines

a log smooth structure and vice versa.

In fact we can use (36) to define fe. Then the consistency in order zero becomes

(22) while the condition (35) becomes (23).

In this sense, a log smooth structure is the initial data which determines all higher

order corrections by consistency such that finally a formal deformation can be con-

structed. In general each order could introduce walls and slabs. The existence of

infinitely many walls/slabs is a generic phenomenon but at each order there are only

finitely many of them.

The construction looks formidable. Let us describe the scenario in the real two di-

mension with only one joint in the polyhedral decomposition [42]. It is also important

for understanding our examples.

Let M:= Z2 , N Hom(M, Z) and define the group ring C[M] D z', m E M

X := z(1'0), y := zf ')

A log derivation is an element of (lim, C[M] 0 C[[t]]/tk) @ N. It is of the form

a 0 n where n E N, we write it as a&8 and it induces an ordinary derivation

(aBn)(z') := a(m, n)z"

Definition 3.0.15. A ray or a line in R2 ~ MR is a pair (1, fl) where 1 is either a

ray with integral slope mo E M or a line with integral slope mo E M such that

fl E lim C[zm o] 0 C[[t]]/tk

and fA = 1 mod zmot. A universal scattering diagram D is a set of lines and rays such

that for each k there are only finitely many pairs (1, fi) with f, $ 1 mod tk.

Remark 3.0.4. D is called a scattering diagram in [42]. We choose to call it a universal

scattering diagram here because it is a "union" of scattering diagrams defined in [43].



For a generic closed loop on the plane we define an ordered product (composition)

as follows. Choose an orientation of the loop and we can order the intersections of the

loop with rays and lines (viewed as two rays) as (l4) with the loop meeting l4 before

l, if i < j. Now define an automorphism

0; := exp(log(fe)o&n) (3.23)

where no E N is the primitive normal vector of l4 positively oriented along the loop.

We can make the composition of these automorphisms in the above defined order.

We have the following simple but basic lemma of Kontsevich and Soibelman.

Theorem 3.0.7. Let O be the log automorphism associated to the ray (li) of a univer-

sal scattering diagram D. There exists a universal scattering diagram S(D) containing

D such that the new one is obtained from the old one by adding only rays and such

that the ordered product of automorphisms

0o0-10 ... 001

is the identity in S(D) for any loop. Moreover there is only one such universal

scattering diagram which is minimal in the sense that it does not contain trivial rays

or lines and does not have two rays or lines with the same support.

The theorem is proved by induction on k. Let Do := D. Suppose we have already

built a universal scattering diagram Dk1 with

0 7,Dk-l = Id mod tk

for any closed loop -/. We want to build Dk such that 0-,Dk = Id mod tk+1.

To this end, we consider D_ 1 which consists of all rays and lines u in Dk_ with

fc $ 1 mod tk+1. Suppose p is a singularity of D_ 1 . By this we means that it is

either an initial point of a ray or an intersection point of rays/lines. Take a closed

simple loop around p small enough to contain no other singularities. By the definition



of D'_ 1,
0 y,Dkl ,D0 _ mod tk+1

The problem is local. By inductive assumption we can assume that 0,,D is expanded

as

O =exp(Z ciz"9.)
, ,Dk-l

This is a finite sum. Set D[p] := {(p + R>omi, 1 ± ciz"i)} and choose the sign such

that its associated automorphism is exp(-cizmi9,) modulo tk+1. Then clearly

OBy,DsklUD[p] = Id mod tk+1

Now Dk is defined to be

Dk := D_1 (UD[p]
P

Finally define S(D) to be the union of all Dk's.

Remark 3.0.5. For each k, there are only finitely many singularities in D'_ 1 because

D_ 1 itself is a finite set. So at each step one only adds finitely many rays.

Remark 3.0.6. The proof makes it clear that the possibly infinite ordered compositions

should be understood in the sense of taking successive truncations and the projective

limit of them.

Definition 3.0.16. If the ordered compositions are all identities modulo k for all

loops we say the universal scattering diagram is consistent to order k. If it is consistent

for all k we say it is a consistent universal scattering diagram.

Here the affine base B is the plane. Slabs and walls are rays and lines in a universal

scattering diagram. In fact, initially the polyhedral decomposition provides some lines

and rays (in the ordinary sense) which are codimensional one cells. We then decode

the definition of the log morphisms and find that they give functions fi as above at-

tached to these lines and rays and this produces a universal scattering diagram. Now

the consistency conditions of the structure consisting of slabs and walls become the

requirement that the ordered product around any loop is the identity. As explained in



the remark 3.5 it is understood in the projective limit sense and therefore is actually a

compatible system of consistency conditions. So a consistent universal sacttering di-

agram is really the union of elements of a compatible system of consistent structures.

The notion of scattering diagrams of rays and lines actually works in any dimen-

sions simply because the consistency condition is a codimensional two condition.

Definition 3.0.17. Let j be a joint and o- be the minimal cell in the polyhedral

decomposition containing j. For a vertex v E o-j we consider the normal space

QiR := Av,R/Aj,R

Let fi be the image of m in QR via projection. If T is a cell containing j then let

T E QvR be the image of the tangent wedge of r along j. By a cut in QYR we mean

a half line starting from the origin which is contained in P for some p which is a

codimensional one cell containing j. Q'? is divided into chambers by cuts. A ray is

a triple (t, mt, ct) (sometimes also denoted simply as t) where t is a one-dimensional

rational cone generated by q for q E (Av - Aj). mt is an exponent on a maximal

dimensional cell o such that ±dt c t n U and mt E P2 for all x E (j - A). ct is a

constant.

A scattering diagram for j at the vertex v is the following data

" A cell w E F whose interior has nonempty intersection with j and v E W C o-.

" A finite set of rays (ti).

" For each cut c and any (j nt w) - A a function f,2 E C[P2] having the same

properties of slab functions fb,2 in definition .

" An orientation of Q .

A scattering diagram is denoted by D = {t, fc}. A cyclic ordering of maximal

dimensional cells o-1, - - - o-, = o containing j induces a cyclic ordering of of cuts

ci g o-_ 1 ln . Note that Fi are "chambers" in QYR divided by o--_1 n =.



For a ray ti C 2, we can define a log automorphism Ot, : As - (Rk )x

Bi := exp(- log(1 + ctiz"nti)Ont) (3.24)

Explicitly 0 is

im - (1 + CtiZti)-(n~nti) (3.25)

where ni, is the generator of normal vectors of ti in Q3,R oriented positively with

respect to the orientation of QvR.

For a cut c one can similarly define a log morphism ,0 : _ (R

c:m (fci,)-( '"lc) (3.26)

Finally we let Ok, be the ordered composition along a loop (around the origin) of log

morphisms associated to all rays and cuts. It is an log automorphism. A scattering

diagram is consistent to order k if modulo tk+1

6*,3= 1

Remark 3.0.7. It is easy to show the consistency does not depend on the choice of

the vertex v and from now on we can drop v when discussing scattering diagrams.

A structure induces a collection of scattering diagrams labeled by joints in the

following way. For every joint j and cell w E F with v E w E F and w n j # 0 the

projection of a slab together with the function attached to it gives us a cut c with

fc,. For a wall p containing j there are two cases.

* jEop. We obtain a ray (=, mc).

Sj n InIt p f 0. In that case is a line containing the origin and we add a pair

of rays with opposite directions.

The consistency condition of a structure now becomes the consistency conditions of

the associated scattering diagrams.



Remark 3.0.8. Our previous discussion of universal scattering diagrams in the two

dimension is special in the sense that the normal spaces of all joints are the same two

dimensional space. A sufficient condition for this to be true is that the underlying

singular affine space is topologically C ~ R2 . Since in our case the affine base is the

space of quadratic differentials this condition is satisfied if the dimension is correct.

Although a general scattering diagram looks like a two dimensional thing, the

problem in higher dimensions is actually much more complicated than its counter-

part in the two dimension due to two reasons. First when we try to make the order k

consistent scattering diagram from the order k -1 by induction we encounter nontriv-

ial contributions from the nonzero dimensionality of j. Second, what we really need

to construct the degeneration are cells of the structure. So although we use scatter-

ing diagrams to discuss the consistency condition we still have to build codimensional

one slabs and walls.

In general a collection of consistent scattering diagrams and the associated com-

patible system of consistent structures are constructed together by induction. Start-

ing from a scattering diagram which is consistent to order k - 1 at j and is obtained

from a structure Rk-1 it is shown by very difficult arguments in [43] that after adding

only rays O6, for the new scattering diagram D' can be put into a canonical form. If

the codimension of the joint is two then we may have to modify functions fc attached

to cuts (slabs). From this new scattering diagram one can build a new structure Rk

by adding wall and changing slab function. The modifications of slabs functions of

different joints do not interact. If a ray t is added to the scattering diagram then a

wall (pt, mt, ct) is added to the structure with

Pt := (i - R>of-t) n o-

where o is the unique cell with t C 5. We do this for all joints. This structure is

already consistent for any codimensional zero joint j if o3 is bounded. For codimen-

sional one joints to achieve consistency one has to modify slab functions again (this is

called homological modifications) because the modifications of slabs functions given



before may not be consistent for different joints. Finally we need a normalization

procedure for slab functions to obtain consistency around codimensional two joints.

The structure obtained is consistent to order k.

Note that when there are are several joints the effects of adding rays (walls) for

different joints will interact. The interaction has two consequences. One is the ne-

cessity of homological modifications of slab functions at a given order. The other is

that the intersections of the added rays (walls) produce new joints. In the discussion

of universal scattering diagrams in two dimensional problems we have taken care of

them because the consistency conditions are formulated for all singularities of the

(universal) scattering diagram instead of just the origin (one joint).

In what sense can we call the above construction a procedure of computing instan-

ton corrections? According to the philosophy of Strominger, Yau, Zaslow and many

others, one should count holomorphic disks in the mirror family wrapping some special

Lagrangian fibers. This kind of instanton corrections has been understood (although

perhaps not completely) in some cases of mirror symmetry such as some so-called

Landau-Ginzburg models and some toric (noncompact) Calabi-Yau varieties. But it

has never been understood for any compact Calabi-Yau manifolds or for noncompact

hyperkahler manifolds such as Hitchin's moduli spaces. On the other hand, it is a

trend in recent years to replace enumerative problems in holomorphic geometry by

enumerative problems in tropical geometry which are more or less combinatorial".

This is not a good place to explain the ideas of tropical geometry. It is enough to

know that Gross and Siebert conjecture that corrections given in their method are

essentially tropical data and should be eventually equivalent to the corrections by

holomorphic disks. There are some works in this direction [41, 42, 39, 68]. Also note

that instead of studying the affine base of the mirror, their construction stays in the

same affine manifold. So the data here should be the dual of the tropical data. Since

we will use their method, we will also stay on one side of the mirror symmetry which

is why we do not really have to consider the Hitchin's moduli space with gauge group

"See [66, 69] for some examples.



PGL(2, C). That is also why we do not need to consider the dualization (Legendre

transform) of the triple at all in this paper. In this sense, the instanton problem for

mirror symmetry has two steps

* Find the corrections of the complex structures. This step has been completely

solved by Gross and Siebert and is a major breakthrough in this area.

" Identify the corrections as given by instantons of the mirror.

In this work, we will take another route

" Find the corrections of the complex structures for the Hitchin's moduli space.

" Show that these corrections are indeed given by "instantons". But these instan-

tons are neither objects on the mirror nor objects on the moduli space itself.

They are objects on the underlying Riemann surface (they are in fact some

critical trajectories on the surface).

* Moreover, the instanton correction problem here is equivalent to another in-

stanton problem : the instanton correction problem of hyperkahler metrics.
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Chapter 4

Seiberg Witten Theory And Wall

Crossing

We have considered the problem of instanton corrections of complex structures, now

let us turn to the problem of instanton corrections of Calabi-Yau metrics. The story

starts in the seemly unrelated context of determining the exact form of the low energy

effective theory of N = 2 four dimensional supersymmetric gauge theory. This is the

famous Seiberg Witten theory [73]. For introductions see [6, 58, 63]. It is relevant

here because the special Kahler base B of the Hitchin's moduli space under Hitchin's

fibration appears in this theory as the "quantum moduli space". This section also

describes the physical background of the phenomenon of wall crossings. Mathemati-

cians who are not interested in physics can ignore this section except for the definition

4.1.

Let us illustrate basic ideas in this theory which are relevant to this work by

considering the so-called N = 2 pure SU(2) theory which is the first model solved by

Seiberg and Witten. It turns out that in low energy, the theory is effectively (partly)

described by a sigma model whose target is the so-called "quantum moduli space"

and therefore it is important to know the metric on this moduli space. This metric

has to be Kahler but is allowed to have singularities. As a complex manifold, this

space is just the complex plane C with holomorphic coordinate u. Seiberg and Witten

showed that the metric is a singular special Kahler metric with two singularities. They



determined the monodromies of these two singularities. The special holomorphic

coordinates a, aD are functions of u

a = a(u), aD = aD(U)

The so-called electric-magnetic duality then requires that (a(u), aD(u)) is a section

of an SL(2, Z) ~ Sp(2, Z) local system over the complement of singularities. So the

problem has been reduced to a Riemann-Hilbert problem of determining a section of

a local system with prescribed monodromies. This problem was also solved geomet-

rically by Seiberg and Witten by uniformization theory. They explicitly wrote down

an elliptic curve whose moduli is parameterized by u. Define

a:= A, aD:=J\ (4.1)

where A is a canonically defined one form (the Seiberg Witten differential) and (A, B)

is a basis of one cycles of the elliptic curve. The SL(2, Z) action is obtained by

transforming one cycles. The two singularities are the locus where the elliptic curves

are singular and the monodromies are Picard-Lefschetz transformations. This will be

a part of our second example and details will be provided in section 9.

Soon after Seiberg and Witten's breakthrough Donagi, Witten and other people

realized that the quantum moduli space is actually the base of a Hitchin's moduli

space and the fibers are Prym abelian varieties (which happen to be elliptic curves

in this example) of spectral curves [23, 25]. In our example this is clear if one thinks

of the curve defined by x 2 = A2 as the spectral curve covering C = CP and identify

A2 with -det <p. Under the action of a monodromy matrix M E SL(2, Z),

-a(u) a(u) (4.2)
aD(u) aD(u) )

So far we have been discussing metrics on B instead of on the Hitchin's moduli

space. One needs only one more step to reach it. In another paper [74], Seiberg and



Witten considered the compactification of a four dimensional gauge theory to three

dimensions. In other words, one replaces the (Euclidean) spacetime R4 by R3 x S'

where S' is a circle of radius R'. It turns out the low energy effective theory can be

formulated as a three dimensional sigma model with spacetime R3 but with the target

space (quantum moduli space) replaced by the total space of the Hitchin's fibration,

i.e. the Hitchin' moduli space itself ([74, 36, 17])! Supersymmetry requires that the

metric on the target space must be hyperkahler.

What do all these facts have to do with instanton correction problem? Well, al-

though it may not be obvious the solution of the four dimensional theory actually

has the form of an exact solution obtained by incorporating all instanton effects. The

prepotential of the special Kahler metric can be calculated order by order from the

Picard-Fuchs equations satisfied by periods and it has a form of a summation over

infinitely many instantons. Later, in a tour de force, Nekrasov and Okounkov [67] cal-

culated the instanton contributions directly according to rules of instanton calculus in

quantum field theory (and hence it could be considered as a first principle verification

of Seiberg Witten theory) and derived the Seiberg Witten solution. One may wonder

if there is a similar story for the three dimensional theory such that the hyperkahler

metric on the Hitchin's moduli space can be exactly determined by calculating all in-

stanton corrections. A direct attack in the spirit of Nekrasov and Okounkov is absent

at present, but as we will show in the next section there is an indirect way to do that2 .

One of the basic ingredients of that approach is the determination of BPS spectra

of the gauge theory. This is also one of the most important consequences of Seiberg

Witten theory and so is described in this section. We consider "particles" with electric

and magnetic charges. Note that the gauge charge lattice in this example form a rank

two integral lattice Z2 with a symplectic pairing which is nothing but the intersection

pairing. Locally we choose a split of a basis (for example: 7y1 := e := (1, 0) = A, 72

'It turns out that this R is the same R in equation (3).
2 There are some partial first principle calculations which are consistent with it. The references

are [15, 16]



m := (0, 1) = B) and call half of the one cycles the electric charges Ye and the other

half magnetic charges 7 m. So a general cycle (charge) has a decomposition

7 = 7e + 7 m = nee + nmm

where nr, nm are integers. Then the central charge defined in section 2 for a charge

7 is given by

ZA(u) = - =nea(u) + nmaD(u) (4-3)
Z-,rU (!) 'm. )

Note that under the the action of the monodromy matrix M,

(ne, nm)' -+ (M-')'(ne, nmn)t

By the representation theory of superalgebras, it is known that the mass of a

particle of charge 7 is not smaller than the norm of its central charge. It is "BPS" if

this lower bound of mass is saturated

m = |Z-Y| (4.4)

and as a consequence this configuration preserves a fraction of the underlying super-

symmetry of the theory.

The fundamental question of BPS spectra is: what are BPS particles in the theory

(more precisely speaking, for which charges do there exist BPS particles and how many

are there)? The answer turns out to be independent of u generically but exhibits

discontinuous jumps when crossing some real codimensional one hypersurfaces of B

defined by the condition that phases of central charges of independent charges align.

This is called wall crossing and u is considered as a moduli parameter. For example,

in the pure SU(2) case, the hypersurface (called (marginal) stability wall, not to be



confused with walls defined in section 3) is the locus

{u I arg Z, = arg Z,,}

Suppose we have a BPS particle on one side of the wall with charge -Y = (ne, n,). The

phases of Z., and Z., do not align. As a result this particle cannot be considered as

two BPS particles with charge (ne, 0) and (0, nm) (and masses mi and m 2 ) respectively

because by the conservation of mass and BPS condition we have

IZ,=I m= mi +m 2  Z1 I+| Z21

where Z1 and Z2 are central charges of the two hypothetical BPS particles. But by

the additivity of central charge we have

Z, = Z1+ Z2

These two equations cannot be simultaneously true because the phases of two central

charges do not align. Changing the moduli u without touching any stability walls

the above argument continues to work and we do not expect any changes of the BPS

spectra. However, the contradiction argument clearly breaks down on the marginal

stability wall and therefore we do expect a change of spectra when we cross a stability

wall.

Of course, this just tells us that the spectra can change instead of how. Later

we will describe a systematic way to determine the wall crossing of the BPS spectra.

Nevertheless, without knowing this general method physicists determined the spectra

correctly in mid 90's using some monodromy and symmetry arguments (see [7, 6, 73]).

Let us describe the result for pure SU(2) theory.

A stability wall in the moduli space parameterized by u is a curve. There are

two independent charges 71, 7y2 forming a basis of the charge lattice. There are two

stability walls. The alignment of -Y1, 72 gives one of them while the alignment of



_fi, --72 gives the other. Let us consider the union of the two stability walls. Since

it is determined by phases of periods, it has a description in term of uniformization

theory [4, 26, 65]. In fact periods of a meromorphic differential a = ZA(u) and

aD = ZB(u) are solutions of a Picard-Fuchs equation and they are hypergeometric

functions. Their ratio satisfies a Schwartzian equation, see [80]. So the union which is

the locus where the ratio is real is the pull back of an interval by the Schwartz map.

It can also be described by the more familiar uniformization theoretical data: the

modular parameter r of elliptic curves and modular functions. In fact, let W = dx/y

be the canonical holomorphic one form of the hyperelliptic curve y2 = P(x) then

9A = w + exact form (4.5)

so that r defined in section 2 is the usual T parameter of elliptic curves.

T = BW (4.6)
fA W

The universal cover of the complement of the singular locus of the u-plane is the upper

half plane. Since the three monodromies around the two singularities and the infinity

of the u-plane generate the modular group 17(2) the associated modular function maps

a fundamental domain of F(2) to the u-plane and the union is the image of two arcs.

The union is simple closed. It passes through the two singularities on the u plane

coordinated as u = ±A2, A C R. Since we have two nontrivial monodromies at finite

places, we take two branch cuts along the real axis from the two singularities to the

minus infinity. The region outside/inside the union is also known as weak/strong

coupling region (these names follow as a consequence of "asymptotic freedom"). The

branch cuts divide the strong coupling region into two halves where the spectra are

related by monodromies and hence it is enough to work with one half, say the one

below the real axis. The result is

o In the lower half strong coupling region, the charges of possible BPS particles



are

±(2, -1), ±(0, 1)

* Across the stability wall from the above strong coupling region to the weak

coupling regions, the spectra change to

±(2,0), t(2n, 1), n E Z

Here plus sign means they are particles while minus sign means they are "antiparti-

cles".

The determination of BPS spectra is a problem of the four dimensional theory,

but we will see that they provide the complete set of instantons that contribute to the

exact form of the hyperkahler metric of the quantum moduli space (Hitchin's moduli

space) of the three dimensional compactified theory.

Seiberg Witten theory has been vastly generalized to allow other gauge groups

and also matters (fermion fields in representations of the gauge groups). Corre-

spondingly, we will consider moduli spaces of possibly singular solutions of Hitchin's

equations with prescribed asymptotic behaviors near singularities. In fact, residues

of Higgs fields are given by masses of the matters. More precisely, we add Nf copies

of a representation of the gauge group (for SU(2) we usually take the spin one-half

representation of SU(2)) and assign masses mi,1 i < Nf to the fields in these

representations. N1 is called the flavor number. The mass formula is modified to

Nf
m = fnea+ nmaD ±+- simi (4.7)

i=1

where si are integral constants called flavor charges. The transformations of charges

now become integral affine symplectic transformations. In other words, under the



action of (H, M) belonging to the semi direct product of (Z2 )Nf and SL(2, Z)

a a a Nf ni
-4M +Hm=M +(mi

aD aD aD i=1 nD

(ne, nm) -+ (M-1)(ne, nm), -+- H(ne,nm)t  (4.8)

where i := (mi, --. mNf)t, g := (sl, ' ' sNf)', H =((n1 n'), ... (nNf )). Here the

formulas are formulated for complex one dimensional B. If the dimension is higher,

we just need to replace nea +n.maD by the sum over all gauge charges and replace

SL(2, Z) by Sp(2g, Z). Geometrically it means that mi are residues of the Seiberg-

Witten differential A at some singularities over the Riemann surface C and (ne, nm)

and s are gauge charges and flavor charges respectively so that m = II where 7 E F

is the sum of the gauge charge and the flavor charge.

It is interesting to see that now we have two a priori different problems of instanton

corrections on a Hitchin's moduli space. One is suggested by the study of mirror

symmetry of Hitchin's moduli spaces, the other is from three dimensional Seiberg

Witten theory which does not involve mirror symmetry in the formulation given

above. Could these two problems have equivalent answers? One of the purposes of

this paper is to show that the answer to this question is positive.

Not every SU(2) Hitchin's moduli space arises in this way. In fact, physically

consistent SU(2) theory requires Nf < 4. Another constraint is that all quantum

moduli spaces B of SU(2) has complex dimension one. Nevertheless the notion of

stability walls continue to make sense in general. Although the notion of low energy

effective theory and hence the Seiberg-Witten theory is not yet mathematically well

defined, stability walls and BPS spectra can be rigorously defined and these are all

we need to develop our results. A mathematical operational definition of BPS spectra

will be given later. Here we write down the definition of a stability wall.

Definition 4.0.18. Let M be a Hitchin's moduli space defined in section 2. Let

y1, 7y2 E f be two charges and B be the base of the Hitchin's fibration. The central



charges Z, (u) are defined in section 2. The stability wall SW-,,, (u) of a pair (7Y1, 7y2)

is the following real codimensional one locus

SW,, 2(u) := {u I arg Z,1 = argZ'2 } (4.9)

where u is a set of holomorphic coordinates over B (usually the value of the Hitchin's

map contains explicitly moduli parameters parameterizing the space of meromorphic

quadratic differentials with prescribed asymptotics at singularities and these param-

eters are taken to be the natural holomorphic coordinates on B). Note that we have

suppressed the subscripts of u. Clearly SW,,, (u) is unchanged if we exchange 71

and 72 or if we change the sign of both -y1 and 7(2.

A stability wall is codimensional one in B. There could be countably many sta-

bility walls.
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Chapter 5

Twistor Spaces And Instanton

Corrections of Hyperkahler Metrics

We want to write down the hyperkahler metric of a Hitchin's moduli space (interpreted

as a quantum moduli space according to section 4) in a form such that it looks like

a sum over BPS instantons (labeled by charges) and since we suspect that there

will be nontrivial wall crossing the formula should also be designed to exhibit the

phenomenon of wall crossing. Gaiotto, Moore and Neitzke realized how to do this by

passing to the associated twistor space.

Any hyperkahler manifold M has a twistor space which is M x CP 1 with a

natural complex structure together with some other data and conversely a hyperkahler

manifold can be constructed from a twistor space. Let us state the theorem for the

converse construction [56].

Theorem 5.0.8. Suppose (Z, Jz) is a 2n + 1 dimensional complex manifold together

with

" a holomorphic projection p: Z -4 CP 1,

" a holomorphic section Q of p* (0(2)) 0 A2(TF)* which is symplectic on the fibers

of TF where TF is the kernel of the map dp: TZ -+ TCP1 ,

" a free antiholomorphic involution T: Z -+ Z which preserves Q and pOT = T' op



where T is the antipodal map of CP'

Let M be the set of holomorphic curves C in Z isomorphic to CP 1 with (same)

normal bundle 2nO(1) and preserved by the involution. Then M is a hyperkahler

4n-manifold.

The other direction of the twistor method is straightforward. Let (A4, Ji, J2, J3, w1, W2, w3, g)

be a hyperkahler 4n-manifold. Let w± wi iW2 , then

2) : ++3 - - W- (5.1)2( 2

is the holomorphic symplectic form in the compatible (to the metric g) complex

structure Je defined by

i(-+ )J1 -(+ )J 2 + (1 -|(| 2 )j3
J 1 +|(|12

where ( C CP 1 parameterizes all compatible complex structures and is called the

twistor parameter. Then the tautological almost complex structure on Z := M x CP1

can be shown to be integrable with a tautological antiholomorphic involution and Q(()

patch together to form the holomorphic section required in the second condition in

the above theorem. The fibers of the projection r : Z -+ M give us holomorphic

curves isomorphic to CP1 and clearly M is the deformation space of such rational

curves.

Hitchin's moduli spaces are not only hyperkahler but also algebraically integrable

systems, i.e. there are Hitchin's fibrations. Gaiotto, Moore and Neitzke took advan-

tage of this fibration structure and postulated the existence of a set of locally defined

CX-valued functions X,(u,0;() where u as before is the holomorphic coordinate on

B 1, "0" are angular coordinates of torus fibers and - is a charge (an element of the

charge lattice). They should satisfy the following conditions

XrXY = X,+ (5.2)

'There is a canonical choice of u. We just take the value of the Hitchin's map u = det <p.



e There is a holomorphic Poisson bracket such that

{X, X" } = (Y, Y')X XX (5.3)

The meaning of this condition will be clear in the next section.

" A reality condition

24(4) = X-,-1/) (5.4)

" They are holomorphic on the Hitchin's moduli space M with respect to the

complex structure Je for any (

" For any fixed x := (u, 0), X, is holomorphic on a dense subset of Cx (in fact

the complement of a union of countably many rays). Although they are not

holomorphic everywhere, the denseness is enough to guarantee the vanishing of

Nijenhuis tensor and hence the almost integrable complex structure on M x CP'

is integrable. X, is only piecewise holomorphic and we consider the discontinu-

ous jumps across those discontinuous rays as part of our input data. There are

constraints for them. This is the most subtle part of the construction and will

be explained in the next section.

" Define
1 dXy. dX .

8( 2 - A (5.5)87r2R Xi X,j

where R is the parameter R in equation (3), eij := (7i, -y) is the integral sym-

plectic (intersection) pairing on the gauge charge lattice l'au -y and d is the

exterior differential on M. Although we define X for all charges we only sum

over a basis of gauge charges when we define Q(6). It is required that Q(4)

is nondegenerate and has simple poles when 4 goes to zero or infinity and the

discontinuous jumps of X, are such that they cancel each other and Q(4) is

holomorphic in C'.



lim Xy(u,60;() exp(---9rRZ.,(u))

exists.

By the twistor construction such data gives rise to a hyperkahler structure on M

with Q(() as the holomorphic symplectic form and the Kahler form and hyperkahler

metric can be read from it. In fact the holomorphic section in the second condition

of theorem 5.1 is given by (57). The holomorphic projection is the canonical one

p M x CP - CP' sending (x, ) to (. For each x G M there is a section

s : CP' -± M x CP defined by s2(_) = (x, (). The normal bundle of it is shown

in [35] to be 2nO(1). Therefore M is the set of rational curves in theorem 5.1. Finally

the involution is T(x,) (X, -1/).

Clearly the key issue here is to describe the discontinuous rays and jumps. This

will be the task of the next section where a unified treatment of wall crossing in

different places are given. In this section, we will work out a simple example of this

kind of ansatz and this example is also the "initial" uncorrected metric to be corrected

by instantons.

Like in the Seiberg Witten theory we choose locally a splitting of the charge lattice

into electric and magnetic parts (7 , ') and hence 0 = (06, 0m,i). Define

X f(() exp(rRM-Z, + i0, + rR(Z ) (5.6)

Here sf represents "semiflat". The metric defined by X f () is called semiflat metric

and is well known to be the one without any instanton corrections from the perspective

of mirror symmetry2 . In this case, Xsf( ) has no discontinuity and by writing down

Q( ) explicitly and comparing it to equation (53), one gets

WS := (R(Im(T)igda A da') + 47 2 R((Im(r))Xldbi A dt) (5.7)

2 Semiflat metrics were first studied by [38]. For their role in mirror symmetry, see [64].



where ai and T are defined as in section 2.

dbi := dOm,i - rijdOi

The first term of w is a constant times the Kahler form of the special Kahler

metric on the affine base B. If we let R -+ o, then after rescaling, the second

term drops away and the semiflat metric of the total space of the Hitchin's fibration

collapses to the special Kahler metric on B. This kind of degenerations of metrics

is exactly what has been conjectured to be the case for degenerations of Calabi-Yau

metrics in the family version of Strominger, Yau and Zaslow's formulation of mirror

symmetry. In general when the torus fibration has singular fibers one expects that

when the large complex limit is approached the hyperkahler 3 metric converges after

appropriate rescaling to a singular special Kahler metric on the base. Moreover the

deviation from the semiflat metric should be small for large R. Therefore if we assume

that the effect of instanton corrections are exponentially suppressed by R compared

to the semiflat one (which is based on general physical principle), then the exact

hyperkahler metric (after adding all instanton corrections) would have the properties

anticipated by mirror symmetry even if the context here has a priori nothing to do

with mirror symmetry.

Let us be more specific. We impose another condition for X (u, 0;)

o We have the large R asymptotic

X, = Xsf (1 + exp(-const - R)) (5.8)

It follows [35] that given a set of coordinates X(u, 0; () satisfying all mentioned

conditions, there is a hyperkahler metric g on M with the following properties:

o It is continuous (in the next section this follows from the wall crossing formula)

and smooth except for locus above singularities on the base.

3 The conjecture is for general Calabi-Yau metrics. But here we are only concerned with hyper-
kahler spaces which means the limit on the base should be a singular special Kahler structure.



" The deviation from the semiflat metric is exponentially suppressed by R. For a

fixed R, it approaches the semiflat metric when IZY -± oo for all f'.

* The volume of the fiber of the Hitchin's fibration is independent of u and is

vol(Xu) = (1/R)r where r is half of the rank of the charge lattice. This is

a direct consequence of the fact that Q( ) is the pull-back of the canonical

holomorphic symplectic form on a complex torus (see the next section).

" In the complex structure J3 the Hitchin's fibration is holomorphic and the holo-

morphic symplectic form is always w+ independent of R.

The discussion above also answers an important conceptual question. If there is

any chance that the instanton correction of metrics of Hitchin's moduli spaces can

be related to Gross and Siebert's work a Hitchin's moduli space must be put into a

degenerating family. This degeneration should be either a large complex degeneration

or a toric degeneration (in fact the two are conjectured to be essentially equivalent).

It is not clear how to adapt the algebraic geometric definition of large complex de-

generations of projective Calabi-Yau varieties to Hitchin's moduli spaces.

On the other hand Gross and Wilson considered in [47] a large complex degenera-

tion of elliptic K3 surfaces (which are compact hyperkahler manifolds) and obtained

the same type of metric degenerations. Roughly speaking since there is a nice theory

of mirror symmetry of K3 surface they use the mirror of the so-called large volume

degeneration (also called the large Kahler degeneration which, according to the phi-

losophy of mirror symmetry exchanging complex geometry and symplectic geometry,

should be mirror to the large complex degeneration) to define the large complex de-

generation of elliptic K3 surfaces. The author has seen the claim in the literature

that this recovers the usual definition as a family approaching a limit point with

maximally unipotent monodromy although he fails to find a reference. Anyway we

take the definition of Gross and Wilson as a natural one as it fits into the conjectural

metric degeneration picture.

4This actually requires a stronger condition X, = XYf(1 + exp(-const - RIZJ)).



In Gross and Wilson's work the large complex degeneration can be described in

the following way. The underlying complex structure in which the elliptic fibration of

the K3 surfaces X, is fixed. Let w, be a Ricci-flat Kahler metric on X, with volume

independent of 1. Let el be the volume of a fiber (which is assumed to be independent

of the choice of the fiber) and suppose e, -± oo when 1 -+ oo. Then they verified the

conjectural metric collapsing picture described in the limit form of the family version

of SYZ conjecture in section 3 for the sequence (Xi, ewi).

If we compare it with the previously described behavior of Gaiotto-Moore-Neitzke's

metrics it is clear that GMN's ansatz gives precisely such a family of Calabi-Yau

spaces. Here E, = (1/R)' and R -4 oo means 1 -± oo (for SU(2) r = 1). The volume

is fixed because the top degree wedge of (fixed) w+ is the holomorphic volume form.

This suggests that we could view the family of Hitchin's moduli spaces parameterized

by R with R - oo as the right substitute of the large complex limit.

Definition 5.0.19. Let M be the Hitchin's moduli space defined in section 2. We

modify the Hitchin's equation by using (3) instead of (1) or (2). This gives us a

family of Hitchin's moduli spaces denoted by M(R). The large complex degeneration

of Hitchin's moduli spaces is the family M(R), R -± o0.

Remark 5.0.9. Note that the complex structure of M(R) viewed as the moduli space

of flat connections changes when R changes and so does the metric. It may seem that

as long as we only care about complex structures the parameter R can be absorbed by

scaling <p which is part of the Cx action described in section 2. However recall that

the C' action simply moves the complex structure in the space of infinitely many

compatible complex structures in which the moduli interpretation is the moduli space

of flat connections. So the scaling perspective is not really natural as it identifies one

complex structure with a particular twistor parameter on a hyperkahler space with

one with a different twistor parameter on a different hyperkahler space. In particular

changing R does not preserve the canonical one which is independent on the complex

structure of the Riemann surface.

Remark 5.0.10. Ultimately, the justification of this definition comes from our ability



to show the equivalence of two instanton correction problems (see section 9). It is

quite satisfying to notice that the deformation we are using is modular in the sense

that it is a deformation of a moduli space to a family of moduli spaces instead of just

a deformation of the underlying space of a moduli space. The deformation we are

studying is natural in this sense.

Remark 5.0.11. Unlike the situation in complex geometry here we have a differentiable

family instead of a complex analytic family of complex manifolds.



Chapter 6

Kontsevich And Soibelman's Wall

Crossing Formula

Now let us answer the fundamental question left unanswered in section 5: what are

discontinuous rays and associated discontinuous jumps of Gaiotto-Moore-Neitzke's

coordinates?

For the gauge charge lattice Tgau -7, we define

T:= F* & C"

This is a local system over B and its fiber over u is a

coordinate associated (by dual pairing) to -yj as X,, (u).

holomorphic symplectic form

complex torus Tu. Write the

There is a canonically defined

1 dX dX.
2 Xi Xy3

(6.1)

X, defined in section 5 labeled by gauge charges can be viewed as pull-backs of

coordinates X, by maps

X : M. -+ Tu

which patch together to a global map X : M* -+ T. Here Mu is the fiber of Hitchin's



fibration over a and M* is the complement of singular fibers in M. In other words,

X7(0) = X,(X(0))

Here we are not suggesting that we can only define X., for a outside the discriminant

locus of the fibration. We simply want to say something about volumes of nonsingular

fibers. The restriction to M* of the holomorphic symplectic form Q( ) defined in

section 5 is the pullback of the canonical one

1
( X*(Q T ) (6.2)

4wx2R

This condition guarantees that the volume of a nonsingular fiber is - (1)' as described

in the previous section. The holomorphic Poisson bracket on T is also pulled back to

a bracket on M.

Locally one can introduce a quadratic refinement, i.e. a: 1- Z2 satisfying

o-(7y1)o(y 2 ) = (-1)( '1Y2)0-(y 1 + '72) (6.3)

For example (this is just an demonstration that a local quadratic refinement exists.

It does not mean this is the one we are going to use) one can locally split the charge

lattice into a sum of the gauge lattice and the flavor lattice and split the gauge

lattice into a sum of electric and magnetic charge lattices such that the electric and

magnetic charges form a symplectic basis of the skew-symmetric intersection paring.

Then define

o-7):= (-1)*"'

for a charge whose associated electric and magnetic parts are y, and 7m respectively.

Remark 6.0.12. If there is no global assignment of a quadratic refinement then we

need to introduce some global twist as explained in [35] to make up for the change of

the quadratic refinement. This will force us to rethink the moduli interpretation of

the total space. Fortunately, as explained in section 8, there is an a prior assignment



which is global.

Definition 6.0.20. Denote the infinitesimal symplectomorphism generated by the

Hamiltonian o-(y)X, by e, and define a set of symplectomorphisms known as Kontsevich-

Soibelman transformations:

n=1

More explicitly, K. is given by

K, : X, -+X,, (1 - o-,) (6.4)

Definition 6.0.21. The discontinuous rays of X in the twistor CP' minus {0, oo}

(also called twistor C' from now on) are called pre-BPS rays and are labeled by

charges. They are defined by

l^ := {{ I Z.(u)/ E R_} (6.5)

The definition depends on u, so we talk about a pre-BPS ray at u.

Now we define the jumps associated with pre-BPS rays. Let

S, := fJ K (";u) (6.6)

where 1 is a pre-BPS ray and

(1'), := {7 | Z,(u)/ E R_,V E l} (6.7)

Q(7-; u) (which must be an integer) is called the BPS number or BPS invariant and

is meant to be a virtual counting of BPS particles with charge -Y when the moduli

parameter is u. Physicists define BPS numbers as indexes obtained by taking weighted

traces of certain operators over Hilbert spaces obtained by geometric quantization, see

[11, 12, 13, 19, 21]. The classical spaces to be quantized should be the moduli spaces



of the corresponding BPS particles (solutions of the corresponding elliptic equations)

and as far as I know Q(-y; u) has not been defined rigorously. This is an important

problem but the investigation of this work does not depend on the solution of this

welldefinedness issue. Rather we take our results as constraints to be satisfied by

any reasonable definition of BPS numbers. In section 8 we will give a mathematical

operational definition of BPS numbers which is enough for this paper's purposes.

Definition 6.0.22. A BPS ray at u is a pre-BPS ray labeled by a charge with

Q(-y; u) = 0. A charge with Q(-y; u) # 0 is called a BPS charge at u. The collection

of all BPS charges at u is called the BPS spectra at u.

Remark 6.0.13. In section 4 we used the term BPS spectra to mean charges of BPS

particles in a four dimensional gauge theory whose quantum moduli space is the base

of the Hitchin's fibration of the Hitchin's moduli space. It is expected that the BPS

spectra in that section coincide exactly with the BPS spectra defined here and this

is true in known examples.

Remark 6.0.14. This definition does not tell us the value of a BPS number except

that it is zero or nonzero. The values of a nonzero spectra will be assigned in section

8. The hard part of the problem is to determine whether a BPS number is nonzero.

Although we define BPS charges using BPS numbers in reality this is not the approach

we use to compute them. We do not obtain BPS numbers before BPS charges. Often

they are determined together by the wall crossing formula.

S1, is the discontinuous jump associated to the pre-BPS ray l.,, i.e.

* Let Xt and X7 be the limits of Xas ( approaches 1, clockwise and counter-

clockwise respectively. Discontinuities only appear across pre-BPS rays and the

discontinuous jumps are

X += SiX (6.8)

In particular X, is continuous across l1, and therefore it is well defined on l4. In

S1, of (68) we use the values of X. on S,.



Since these transformations preserve the canonical symplectic form and therefore

its pullback Q( ) we know Q( ) is holomorphic across pre-BPS rays even though X

is only piecewise analytic. The order of the product of transformations defining S,

is unimportant as long as u is not on a stability wall because then (17), is at most

one dimensional and hence all factors commute. We do not need to define S, for

the exceptional cases when u does lie on a stability wall. We only need the limit of

ordered products as u tends to the stability wall. The wall crossing formula below

guarantees that the limit is well defined.

When there are more than one rays, we can take the ordered product of S,

according to the counterclockwise order of phases of li. Of course this product does

depend on the order of rays. We have to describe the dependence of the above

construction on the moduli parameter u. For any u the collection of pre-BPS rays

of all charge can be ordered either counterclockwise or clockwise on the twistor C'.

Without loss of generality we take the counterclockwise order. The phase of a pre-

BPS ray of a given charge depends continuously on u. By the definition of stability

walls the following is obvious.

Proposition 6.0.9. Let u vary continuously along a path. The order of the collection

of all pre-BPS rays at u changes if and only if some stability wall is crossed.

Now let us vary a without crossing any stability walls. Since physically we do not

expect any change of the BPS numbers 2(-y; u) we demand that the ordered product

is unchanged '. In fact we impose a seemingly stronger2 constraint by insisting that

Q(7-; u) remains constant. However if we vary a by letting it cross a stability wall,

then the order of pre-BPS rays changes. But we do not want the ordered product

to change (see section 8 for the reason). This is a powerful statement as it not only

means that Q(7; u) will change but also determines recursively values of all Q(7; u)

on one side of the stability wall if all Q(7; u) are given on the other side. This is

Kontsevich and Soibelman's wall crossing formula proposed in [60]3. It is the last and

'There are subtleties in this statement, see remarks below the wall crossing formula
2In fact, it is not stronger because the factorization of a given composition into Kontsevich-

Soibelman factors is unique if the order of pre-BPS rays is fixed.
3But note that the context in [60] is somewhat different from ours. The construction in this



the most subtle property that we require our coordinates to satisfy.

e The discontinuous jumps of X, must satisfy the following formula.

Wall Crossing Formula Fix two generic phases (0- < 0+) on the twistor

plane and define

S((_, 0+; u) = 17 K(";u) (6.9)
0_<arg(Z,(u))<6+

where H_<arg(z,(u))<o, means it is a counterclockwise ordered product. We

assume that the difference of the two phases is not greater than 7r because any

half plane already contains the full information of BPS rays by symmetry. For

any two u, u' not on any stability walls, suppose that they can be connected

by a path not crossing branch cuts (but it could cross stability walls) such that

along the path from u to u' no BPS ray crosses 0- or 0+, then

S(0_, 0+; u) = S(0_,0 +; u') (6.10)

Remark 6.0.15. Although the order of BPS rays does not change if no stability wall

is crossed, the set of BPS rays over which the product in (69) runs could change if u

is varying even if it does not cross any stability walls. For example, suppose there are

two BPS charges Y/1, 72 inside a stability wall and the phase of lY2 is smaller than the

phase of ls. Then even if we stay inside the stability wall, it is possible that for u,

there are two BPS rays 1 1,2) l between 0_ and 0+ while for u' the two rays are instead

l, l_1. The wall crossing formula certainly does not claim that K, K, = K_ K7.

That is why we require that no BPS ray crosses 0_ or 0+. So if some BPS rays do

cross 0_ or 0+ we just use another wall crossing formula.

Remark 6.0.16. Remember there are nontrivial monodromies on B. If we connect u

and 'I by a path then the path must avoid the branch cuts. So even if u and u' are

in the same chamber divided by stability walls we may not be able to connect them

inside the chamber. To connect them we travel to other chambers and travel back by

crossing stability walls. Along the path we may have to switch to other wall crossing

paper does not depend on any motivic constructions or stability conditions of Bridgeland type.



formulas because some BPS rays might cross 0- or 0+. Of course in the end the wall

crossing formulas must respect (they do) the monodromy in the sense that the BPS

spectra computed from wall crossing formulas must reproduce those determined by

the monodromy action.

Remark 6.0.17. An ordered product in the wall crossing formula is usually infinite

and even infinite from both directions towards some elements in the middle. To

understand its meaning we truncate the product according to the degree of charges

successively. Any charge y can be written as a nonnegative4 (here we need 0+ - 0- -

7r) linear combination of a basis (7i), 1 < i < r of I' and the degree of -Y is the sum of

coefficients in the linear combination. At each stage of the truncation, the product

is a finite one and the total ordered product is defined in the sense of projective

limit. More precisely, we consider the algebra F := C[X,, - - -X,] generated by X,

viewed as formal variables. We take the filtration of F by ideals IN generated by

monomials whose degrees are higher than N. Kontsevich-Soibelman transformations

with 0_ < arg(Zy(u)) < 0+ generate a group GN(0-, 0+; U) of Poisson automorphisms

of FN := F/IN together with projections GN -+ GN-1. Define G(_, 0+; u) to be the

associated projective limit and the product is in it. So we have a projective system

of groups and on each projection the product is a finite one.

Remark 6.0.18. Although the factorization of an ordered product is understood in

the projective sense this does not mean that the ordered product itself as a sym-

plectomorphism has to be viewed in that way. On the contrary usually it is an

innocent looking simple transformation. It is just that factorizing it modulo higher

and higher degrees with a given order of pre-BPS rays forces us to add more and

more Kontsevich-Soibelman factors.

Remark 6.0.19. It is an algebraic fact that once the order of BPS rays is given the

decomposition into Kontsevich-Soibleman factors of a given element S is unique, see

[35, 36, 43]. In fact one can make the factorization by truncations by the degree of

4 1t is not very obvious that this is always guaranteed. So we might have to make it as an
additional assumption. In the geometric construction of Gaiotto-Moore-Neitzke's coordinates in the
next two sections this condition holds. This positivity condition is a part of an interesting topic, see
[37] and section 8.



charges. In each degree there are finitely many pre-BPS rays with an well defined

order. Expand and compare both sides up to that degree one can determine the

exponents of associated Kontsevich-Soibelman transformations. Moving to the next

degree would introduce new factors. The algebraic procedure is actually identical to

the algorithm of Kontsevich-Soibelman's theorem in section 3 because later we will

identify it as a wall crossing formula.

Remark 6.0.20. Some authors also call equation (68) describing discontinuous jumps

the wall crossing formula which may cause some confusions. In fact equation (68)

does not involve any stability walls and neither does it involve any walls in the sense

of section 3 because walls and BPS rays are in different spaces (although they are

related, see section 9). In this paper we simply call (68) the discontinuous jumps and

the term "wall crossing" is used only when there is a stability wall being crossed.

Definition 6.0.23. A set of coordinates X, satisfying all the required properties

listed in this and the previous section is called Gaiotto-Moore-Neitzke coordinates.

This completes our description of properties of Gaiotto-Moore-Neitzke coordinates

and now the task is to build them. Finding these coordinates can be interpreted as

solving an infinitely dimensional Riemann-Hilbert problem. In other words, we are

to find the map X with prescribed discontinuous jumps and asymptotic behaviors

for ( -+ 0, oo. In [35], Gaiotto, Moore and Neitzke advocated an integral equation

approach inspired by the classical treatment of finite dimensional Riemann-Hilbert

problems. It is straightforward to check that any solution X,( ) of the following

equation has the required discontinuities across BPS rays

()= X() exp( . Lk- , log X )Am J ' - - (S X ),'

where the sum runs over all BPS rays 1. The integral equation formulation enables

them to set up an iterative approximation scheme from which the exponentially small-

ness of instanton corrections follows with some additional assumptions. Moreover, the

integral equation above has an interpretation as the basic ansatz of an integrable field

theory. This is known as the thermodynamic Bethe ansatz and has been investigated



by many people in recent years, see e.g. [1, 2, 48, 81]. Thermodynamic Bethe ansatz

is also directly related to the cluster algebra structure to be formulated later. All

these facts tell us that there is an integrable model hidden in the structure of the

hyperkahler metric (in the instanton corrected form) of a Hitchin's moduli space (do

not confuse it with the algebraically integrable system given by the Hitchin's fibra-

tion). This is clearly a promising direction but it will not be pursued further in this

paper. Instead we will build these coordinates directly in a geometric way following

Gaiotto, Moore and Neizrke and verify the required properties.

In the rest of this section let us take a closer look at the wall crossing formula. As

an example, we point out the following formula

K2,-1Ko,1 = KoiK2,1K4,1 - - -K-2 -K - ,K4,_1K2,-1 (6.11)

The charge lattice here has rank two and is identified with Z2 with the integral pairing

((p, q), (p', q')) = pq - qp'. The proof of it will be discussed in section 9.

A remarkable thing happens [22, 35]. If we go back and check the spectra of the

pure SU(2) theory given in section 4, we would recognize that the charges on the left

hand side of equation (71) are precisely the strong coupling spectra of BPS particles

while the right hand side provides exactly the weak coupling spectra. Reversing signs

gives the spectra of antiparticles. This formula suggests that the BPS numbers of all

particles with nonzero magnetic charges are all one while for the so-called "W-boson"

with charge (2, 0) it is -2. The production of the BPS spectra is not a coincidence as

similar wall crossing formulas give exact BPS spectra of some other gauge theories.

Now we have come to the starting point of the author's whole investigation: an-

other surprise! It turns out the log morphisms of scattering diagrams in section 3 are

Kontsevich-Soibelman transformations after we identify integral slopes of rays with

charges and the consistency condition of scattering diagrams in Kontsevich Soibelman

theorem in that section

OoO,_10 -.- o 01 = Id



is nothing but a wall crossing formula. This fact has been recognized in [42, 41]

and the authors defined the notion of a tropical vertex group as automorphisms of

the torus CX x Cx preserving the holomorphic symplectic form w = ! A 1. Logx y

morphisms in a universal scattering diagram defined in section 3 are elements of a

tropical vertex group. For example the equation (71) arises (after a change of variables

and setting t = 1) as the result of running Kontsevich and Soibelman's algorithm for

the following scattering diagram

D {(R(1, 0), (1 + tX- 1)2 ), (R(0, 1), (1 + tz-1) 2)}

See the second example in section 9.

Remark 6.0.21. If we want to identify the consistency condition as a wall crossing

formula, there should be an explanation of the role of stability walls in this con-

struction. In Gross and Siebert's work it is not clear what a stability wall means.

The identification of the wall crossing formula and the consistency condition is only

verified at the algebraic level. This is an important issue that we will clarify later.

So it seems that we have three problems involving instantons or BPS particles

" Determination of BPS spectra in four dimensional gauge theories.

" Instanton corrections of hyperkahler metrics of Hitchin's moduli spaces in three

dimensional gauge theories.

" Instanton corrections of complex structures (in the form of explicit algebraic

deformations of defining equations) of Calabi-Yau varieties in mirror symmetry.

In each of these problems, the spectra of instantons (or BPS particles) exhibit the

same kind of wall crossing formulas (although for the third problem the meaning of

instantons and stability walls is not yet clear at the moment). The relation between

the first and the second problem is perhaps not surprising (although I believe it is not

completely understood yet). After all the three dimensional theory is obtained by the

four dimensional theory wrapping a circle of radius R (which is also the deformation



parameter of the second problem). And it seems reasonable to expect that instantons

in the three dimension that contribute to the metric can be obtained as dimensional

reductions of monopoles and dyons in the four dimension. The main result in this

paper, however, is the equivalence of the second and the third problem. Note that the

formulations and even the languages used in these two problems are quite different.

One is a differential geometric problem while the other is completely algebraic. So

this relation looks more mysterious. To make it less so we will continue our journey

and introduce some geometric objects which connect both sides.
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Chapter 7

Fock-Goncharov Coordinates And

Quadratic Differential Foliations

In this section a geometric construction of a set of Gaiotto-Moore-Neitzke coordinates

on the Hitchin's moduli space is given. The exposition follows [36] which is based on

[27, 76].

Let M be our Hitchin's moduli space. We view it as a moduli space of flat

connections. First, let assume there are only regular singularities P, 1 < i < 1 with

regular semisimple residues (T1). We assume 1 > 1 in general and 1 > 3 if g = 0.

Definition 7.0.24. Choose a triangulation of the Riemann surface C with all vertices

at singularities. Let Mi be the clockwise monodromy of flat sections around P.

Define a decoration at P to be a choice of one of the two flat eigenlines of Mi.

Denote such a decorated triangulation by T. For an edge E of T, we consider the two

triangles bounding E making up a quadrilateral QE with four vertices Pi, 1 < i < 4

in the counterclockwise order and E connecting 1 and 3. Define the Fock-Goncharov

coordinate X by
XT_ (si A s2)(s3 A s4)

E (S2 A s3)(s4 A s1)

where si is an element of the one dimensional decoration at P (so it is defined up

to a scaling and our definition is invariant under this scaling). Since QE is simply

connected, si can be chosen to be single-valued in it and the four eigensections are



evaluated at a common point P, inside the quadrilateral. The value is independent

of the choice of the evaluation point because it is the SL(2, C) invariant cross ratio.

Remark 7.0.22. X[ is well defined on the Zariski open set which is the complement

of the locus defined by the vanishing of the denominator. It is not hard to show

that it is a holomorphic coordinate on this open subset. The set of all such functions

where E runs over all edges of a fixed decorated triangulation is a complete set of

coordinates. Moreover outside the codimension one locus where either the numerator

or the denominator is zero XE' is nonzero. So we have a set of locally defined C'

valued functions.

If we change the decorated triangulation, then XE' changes. Any two decorated

triangulations can be connected by a composition of two elementary transformations

* Flip at an edge. This means that we replace E = E13 which connects vertices

1 and 3 in the quadrilateral containing E as a diagonal edge by E' = E 24

connecting vertices 2 and 4 and obtain a new triangulation T'.

" Pop at a vertex. This simply means that we use the other possible choice of

decoration at that vertex.

For flips the transformations of Fock-Goncharov coordinates are

and

1= 2 2(1 + 4)

X = X 3 (1 + (X )

X34= XE 4(1 + X )

X'L1 = X4 1 (1 + (X) ))

We define (E, E') to be the number of faces E and E' have in common counted with

signs. The sign is positive (negative) if E comes immediately before E' in counter-



clockwise (clockwise) order going around the common face. Clearly |(E, E') I < 2. The

above four equations are actually for (Ej-, E) ±1. In general the transformations

are

XEE

and

xI = X (1 + (X)sgn((Ei(,E)) (Ei),E)

A pop at a point P can be decomposed as a composition of the following trans-

formations: first flip all incident edges at P except one. This produces a degenerate

triangulation. Then pop at P for this degenerate triangulation and finally flip all the

flipped edges back.

Here a degenerate triangulation means that two edges in a triangle are identified.

So we have a double vertex and the edge connecting the double vertex to itself is

a loop while the double edge is an edge connecting a point on the loop (the double

vertex) to another vertex P. To define Fock-Goncharov coordinates in this situation,

we take a cover ramified at P such that after taking the pull-back the triangulation is

non-degenerate. Such a cover always exist and is non-unique but our definition does

not depend on the choice of the cover. We pull back everything and define the Fock-

Goncharov coordinate for the degenerate edge E to be the ordinary Fock-Goncharov

coordinate XT on the cover where 5 is any choice of the pre-images of E and the

definition does not depend on this choice. We need degenerate triangulations not just

for pops. In fact we will construct decorated triangulations from a foliation later and

that might give us a degenerate decorated triangulation. The dimensional count of

Fock-Goncharov coordinates is still valid for degenerate decorated triangulations.

Back to the problem of pops. We only need to know the transformations associated

to the pop at P for degenerate triangulations and they are

%4 = (4A) 1

Ey~ = (lE(lE (7.2)



where E is the degenerated edge, E' is the other edge in the triangle and T' is the

new decorated degenerate triangulation obtained after the pop.

We may need to consider a process with infinitely many flips and take its limit.

Consider an annular domain on the Riemann surface whose outer circle contains one

singularity P and inner circle contains another one P. We will define a sequence

of triangulations. First choose two paths E0 ± connecting P and P' and pointing

from P to P' such that their difference has counterclockwise winding number one

around the inner circle. The two paths form a part of a possibly degenerate decorated

triangulation To. We define Tn+1 inductively by flipping E,_ and define E(n+1)+ to

be the flip of En_ and E(n+1)- := En+. Let XT be the associated Fock-Goncharov

coordinates, we then define limit Fock-Goncharov coordinates for an ideal "limit"

triangulation by letting n -+ 00

X+ = lim XT XVT_

XT+c : im (Xi, )-n(XT) 1-n (7.3)

One can also define T_ by flipping En+ and define x -o and X - by taking limits

X- = lim X VX"ly ~n-+-oo E+"n

X -:= lim (Xhn")-(X"_) 1 " (74)
nZ-+-00EjO74

These limits exist and have been written down explicitly in [36].

To relate the above construction to the instanton problem of Hitchin's moduli

spaces (now considered as moduli spaces of flat connections), we must go back to the

Hitchin's fibration. The determinant of <p is a quadratic differential -A 2 well defined

on C and therefore we take the holomorphic coordinate u of the base B of the Hitchin'

fibration (recall that B can be identified as the space of quadratic differentials) to

bel u = -A 2 . A2 has order two poles and generically has only simple zeroes. A is a

'In fact, the choice of u in reality can be slightly different from this. Usually A' has a fixed part
and a moving part. The moving part is parameterized by u. Of course this does not change the
discussion given below.



one form on the Riemann surface C defined up to a sign but is a single valued one

form on the spectral curve S which is a double cover of C. It is the Seiberg Witten

differential defined in section 2.

Fix an angular parameter 9 and consider the foliation given by trajectories of A2

with phase V.

Definition 7.0.25. A trajectory of A2 with phase V is a curve whose tangent vector

&9 satisfies

(A,8at) E e'tRx

everywhere on the curve.

Remark 7.0.23. A trajectory is called a WKB curve in [36].

There is an extensive theory of foliations given by meromorphic quadratic differ-

entials and the local behaviors near singularities and zeroes as well as global behaviors

are known. The standard reference is Strebel' book [76]. Let us summarize the results

we need.

Near a point which is neither a zero nor a pole of the quadratic differential, we

can straighten the foliation by choosing local coordinate w := f A. Locally near an

order n zero, we can choose a local parameter ( such that A2 has the representation

A2 = (n+ 2)2(nd(2 (7.5)
2

The full angle 0 < arg ( 27r is divided into n + 2 equal sectors. In particular for

a simple zero (i.e. order one zero) the foliation develops three asymptotic directions

surrounding and going away from the zero.

Since we only have regular singularities for the Hitchin's equations the order of

poles of A2 is two. It is shown that in this case it has a local representation of the

form

A2 = a d( 2

(2

and the trajectories near the pole is either logarithmic spirals approaching the pole

or radii approaching the pole or closed circles around the pole.



Globally a trajectory belongs to one of the following cases 2

" A generic trajectory. It is asymptotic in both directions to singular points.

Generic trajectories arise in one dimensional families.

" A separating trajectory. It is asymptotic in one direction to a simple zero and in

the other direction to a singular point. Separating trajectories separate families

of generic trajectories.

* A finite trajectory. It is asymptotic in both directions to a simple zero (both

directions could go to the same zero) or is closed. A finite trajectory is also

called a critical trajectory.

" A divergent trajectory. It is neither closed nor approaches to a limit in one or

both directions.

For a generic V, finite trajectories are absent and in that case Gaiotto, Moore

and Neitzke showed the absence of divergent ones in out setting. We will assume the

absence of finite trajectories for now to get decorated triangulations and later we will

see they are instantons in the instanton correction problem.

Following Gaiotto, Moore and Neitzke, we define a decorated triangulation called

WKB triangulation in the following way.

Definition 7.0.26. We take a generic u = -A 2 such that it has only simple zeroes

(note that this is the generic case, the nongeneric ones are codimensional two in

B). We choose one element from every family of generic trajectories separated by

separating trajectories. They make an ordinary triangulation of the Riemann surface.

The choices of the representatives are unimportant because a triangulation is only

meant to be defined up to isotopy.

In general we want to consider quadratic differentials with higher order poles.

There might be a generic trajectory approaching the same singularity along both

directions (see theorem 7.1) in which case we get a degenerate triangulation.
2This classification is valid for quadratic differentials with higher order poles.
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Near each singularity, there are two independent eigen flat sections. It is shown

that one of them is exponentially small along trajectories going to the singularity while

the other is exponentially large. We pick the small flat section as the decoration at

the singularity. These decorations together with the triangulation define a decorated

triangulation TWKB(Q, A2) called a WKB triangulation and therefore a set of Fock-

Goncharov coordinates IWK

Remark 7.0.24. The variable u = -A 2 plays two different roles in the theory. As

the holomorphic coordinate of the base of the Hitchin's fibration it is a part of a

set of coordinates of the total space, i.e. the Hitchin's moduli space M itself. But

this is only implicit in the definition of Fock-Goncharov coordinates over M because

when we define these coordinates we view the moduli space as the moduli space of

flat connections in which the Hitchin's fibration is not holomorphic. Since we are

not splitting the coordinates of M into (U, 0)3 according to its fibration structure it

does not seem to be easy to analyze what happens with the metric constructed in

this way near the singular fibers of the Hitchin's fibration. See section 9.4 for some

further discussions about the metric. On the other hand, the "moduli" parameter

u is an additional parameter (instead of a coordinate) of the descriptions of the

moduli space of flat connections because the WKB triangulations depend on it. The

dependence is locally constant unless some wall crossing4 occurs. Therefore for the

moduli parameter u it is enough to pick one representative in each chamber bounded

by BPS walls5 . That is why we need not to consider non-generic quadratic differentials

with nonsimple zeroes which form a codimensional two locus in B.

Remark 7.0.25. The values of XVWKB ' of course depend on parameters 79, but

it is the algebraic relations between some limit values of these coordinates that will

concern us when we formulate the main theorems later because we will write the

defining equations of the moduli space of flat connections in terms of them.

30ur notations in section 5 do have such a splitting but the formulation of Gaiotto-Moore-Neitzke
ansatz does not require that. We used the splitting before because we wanted to discuss the semiflat
metric and the large R asymptotic.

4 The precisely meaning of a wall crossing here should be a BPS wall crossing instead of a stability
wall crossing, see section 9.

5See section 9 for the definition of BPS walls.
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We can vary the phase 0. Although for a generic L9 there are no finite trajectories

they do appear for exceptional values of d. If we label 'O by rays on the complex plane

then when 9 crosses countably many exceptional rays, the decorated triangulation will

change and in this way we can reproduce the transformations (jumps) of triangulation

described before.

* A flip. An edge is flipped when an exceptional ray of V is crossed. As V goes to

the exceptional ray the flipped edge degenerated to a finite trajectory connecting

two simple zeroes. There is only one such finite trajectory for that exceptional

value of V.

* A pop for a degenerate triangle. In this case as V goes to the exceptional ray

trajectories approaching the pole as logarithmic spirals degenerate to closed

trajectories around the pole bounded by a finite trajectory with both directions

going to the same simple zero. The two ways of going to the pole through

logarithmic spirals account for the two possible choices of decorations.

* Infinitely many flips leading to a limit configuration. In this case, the phase first

passes infinitely many rays (corresponding to flips) to reach a special configura-

tion 6with closed trajectories around the pole inside an annular region bounded

by two finite boundary trajectories. Each boundary trajectory's both direc-

tions go to a same simple zero (but the simple zeroes are different for the two

trajectories). We can take the limit Fock-Goncharov coordinates X +0, +M.

On the other hand, if we start from the other side of the special ray and ap-

proach it from the other direction we would also pass infinitely many rays and

get limit Fock-Goncharov coordinates X , X -. The transformations from

XT+-, X + to XT, X'- which can be easily written down are then the

"discontinuous" jumps between two ways of approaching the special ray and

this operation is called a juggle. Juggles will be discussed further later.

For a generic quadratic differential, the above list has exhausted all possible jumps

of WKB triangulations.
6The procedure of labeling by charges described below still works in this case. See [36] for details.
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A quadratic differential with only simple zeroes is also generic. But the subset

of such generic quadratic differentials do not coincide with the subset of generic

quadratic differentials with only three types of jumps for exceptional P listed above.

In fact there are quadratic differentials with only simple zeroes but having other types

of jumps.

To understand jumps of WKB triangulations for such quadratic differentials it is

instructive to see how the above three types are obtained. For a jumps to occur,

finite trajectories have to appear. If we have a finite trajectory connecting two simple

zeroes then we get a flip. If we have a closed trajectory the it comes with a family

of closed trajectories. According to the local classification any member of this family

cannot encounter a pole. But the family can surround and contract to a pole. Clearly

globally the family is bounded from the other direction by other types of trajectories.

They cannot be bound by a divergent one. Otherwise the closure of the divergent

trajectory (which must be recurrent) is bounded by the outmost closed trajectory in

the family. But this possibility is excluded in [76]. The family cannot be bounded

by generic or separating trajectories according to the local classification. So the only

possibility is that it is a closed loop connecting several simple zeroes. Generically

the boundary only meets one leading to the second type of jumps. There is also

another possibility. The family of closed trajectories can be bounded from both

directions. Generically both boundaries contain only one simple zeroes leading to

the third type of jumps. Non-generically, the boundary or boundaries of the family

could meet several simple zeroes which means we also have several flips. Later we

will associate Kontsevich-Soibelman transformations to jumps of WKB triangulations

and this scenario corresponds to a product of Kontsevich-Soibelman transformations

associated to flips, pops and juggles since it can be decomposed into a composition

of flips, pops and juggles. So even for non-generic cases as far as the wall crossing

formula is concerned it is enough to consider the above three types.

Remark 7.0.26. We do not have to worry about that when finite trajectories appear

the global behavior of the foliation could be wild due to the possible existence of

divergent trajectories. Because we do not define Fock-Goncharov coordinates for
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these exceptional values of ?0. We only care about the discontinuity of limits of Fock-

Goncharov coordinates defined for non-exceptional V.

We will explain that the Fock-Goncharov coordinates constructed from WKB

triangulations give us a geometric realization of Gaiotto-Moore-Neitzke coordinates

defined in the previous sections.

Gaiotto-Moore-Neitzke's coordinates are labeled by charges, so we need to label

Fock-Goncharov coordinates by charges instead of edges. It is easy to see that every

triangle in a WKB triangulation contains exactly one simple zero. Let E be the

edge labeling the Fock-Goncharov coordinate XE. We choose an oriented simple loop

inside QE surrounding the two zeroes in the two adjacent triangles and define the

associated charge -yE to be the lift of the loop to the spectral curve S which is a

double cover of the underlying Riemann surface. Ambiguity of the sign of the cycle

induced by ambiguities of choosing orientations and one of the two sheets can be

canonically fixed in the following way. Note that A is a single-valued one form over S.

We require that the positively oriented tangent vector &t of the lift of E to S denoted

as F satisfies

e-"(A, at) > 0

The sign of the cycle 7E is fixed by (yE, E) = 1. So we can replace the labeling by

E by labeling by 7E (also denoted simply as y later in this paper). This operation

respects the integral skewsymmetric pairings, i.e. (7E, 7E') = (E, E').

It is easy to generalize to degenerate edges. Recall that a degenerate triangle

appears when we have a generic trajectory connecting a pole to itself. In this case

that pole is the double vertex and the generic trajectory is the loop edge. The double

edge connects the double vertex to another pole denoted by P. There is a simple zero

inside the degenerate triangle and two of the three separating trajectories starting

from the simple zero end at the double vertex while the third one ends at the other

pole P (see figure 26 of [36]). Just like what we did when we defined Fock-Goncharov

coordinates for degenerated triangulation we use covers to separate degenerate edges

and define labeling charges. In the end the charge associated to the double edge E
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is a loop around P (so it is a flavor charge) while the charge associated to the loop

edge E' is induced by a loop circling the simple zero inside the degenerate triangle

and a simple zero outside.

It is shown that one can generate the charge lattice 1- of S by cycles associated to

edges. We extend the definition of Fock-Goncharov coordinates to the whole lattice

by the multiplicative relation

XYE XYE - YE+7/

It is easy to show that our Fock-Goncharov coordinates satisfy the reality condition

and with respect to the holomorphic Poisson bracket on the moduli space M

{24, X" ('y <)Xy,

By WKB analysis, Gaiotto, Moore and Neitzke showed the required asymptotics for

X c, ex Zy) (7.6)ly c x(ZY)

where cY is a constant. The proof of this asymptotic is by finding the WKB ap-

proximation of small flat sections along each edge and plugging into the definition

of Fock-Goncharov coordinates. The proof also guarantees that for large R (large

enough such that the deviation to the WKB approximation is small enough) small

flat sections on both end of an edge do not coincide (because this is the case of the

WKB approximation) and hence the Fock-Goncharov coordinates are pole free in a

neighborhood of any given ray in the twistor CX. So we get

9 For large enough R Fock-Goncharov coordinates are piecewise holomorphic over

twistor Cx.

Since we are only interested in large complex (large R) limit, this is good enough

for us. Gaiotto, Moore and Neitzke also showed that V has the required large R

asymptotic.

One also wants to know how to interpret d in the twistor language. In the twistor
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C we define

H, := {(| -- gr/2 < arg(< V +7r/2} (7.7)

The asymptotic of X is actually for -+ oo within the half plane H,. Instead of

discussing the discontinuous jumps by varying (, one can equivalently discuss the

discontinuous jumps by varying ?9. Suppose we have a set of Gaiotto-Moore-Neitzke

coordinates, we just define X to be the analytic continuation of the Gaiotto-Moore-

Neitzke coordinate Xy starting from the central ray of the half plane H'. X'9 then is

holomorphic with respect to and jumps are associated with 79 . Conversely from

we can divide the twistor C'X into sectors by pre-BPS rays and define the correspond-

ing Gaiotto-Moore-Neitzke coordinates to agree with X in the sector containing the

ray with phase V.

The pre-BPS ray for a charge -y is now the ray defined to be the one with the

direction

Idl := arg(-Z_,(u)) (7.8)

and conversely for a pre-BPS ray we can associate a charge. It turns out that an

exceptional ray of V is a pre-BPS ray and a charge is associated to an exceptional ray

of V. In fact, note that when t9 is on an exceptional ray on the complex plane finite

trajectories appear. There are three cases.

" The case of a flip. A finite trajectory connecting two zeroes appears. It is lifted

to the spectral curve to be a cycle homotopic to the charge associated to the

loop surrounding these two zeroes. Then by the definition of the central charge

as a period it is clear that the phase (or anti-phase) of the central charge of

that charge is the phase of the exceptional ray. So the exceptional value of '

picks a charge. In this way an exceptional ray is identified with a pre-BPS ray.

* The case of a pop for a degenerate triangle. By the local behavior of critical

trajectories described above for this case, it is clear the associated charge is a

pure flavor charge surrounding the pole.

" The case of a limit configuration. Let Vc be the exceptional value for the ap-

106



pearance of the limit configuration. Without loss of generality let us consider

Tm, m -+ o and its limit T+. Motivated by (74)(75), we define

-/A 7~Em, + 7YEm,,

7 (1 - m)7Em_- m'7Em+ (7.9)

Let y be a charge associated to an edge away from the annular region the infinite

flip process does not affect them and we have

lim X* = X+

where X+ is defined in the usual way. The charge canonically associated to the

exceptional value of V (or equivalently the pre-BPS ray) in this case is defined

to be -- /A. Geometrically it is induced by a loop surrounding the inner pole

(the one on the inner circle of the annular region) and inner simple zero (the

one that is the starting and ending of the inner finite trajectory boundary of

the family of closed trajectories) and can be interpreted as the charge for the

family of closed trajectories, see [36]. One can similarly deal with T- .

Definition 7.0.27. A geometric BPS charge at u is either a charge associated to

an exceptional ray of V in the first and the third cases or an anti-charge of such a

charge. The set of geometric BPS charges is called the geometric BPS spectra at u.

A geometric BPS ray is a pre-BPS ray associated to a geometric BPS charge. We

may just use the names BPS charge, BPS spectra and BPS ray because later we will

show the equivalence with the definition 6.3.

Remark 7.0.27. (Geometric) BPS numbers will be defined later.

Remark 7.0.28. Since geometric BPS charges are associated to finite trajectories these

trajectories can be considered as BPS "instantons" for our instanton correction prob-

lem. In fact they should be considered as boundaries of "M2-branes".

Remark 7.0.29. We do not define the charge associated to a pop in a degenerate
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triangle to be a geometric BPS charge for a reason explained in the next section.

More discussions of these BPS charges are given in the next section and section 9.

Clearly, the most important properties are about discontinuous transformations

and the wall crossing formula. We will discuss them along with the relation to cluster

algebras in the next section.

Till now, we have only described the construction of Fock-Goncharov coordinates

for regular singularities. There is a natural extension to irregular cases. When there

is an irregular singularity, we have the Stokes phenomenon. So we delete a small

open disk containing this singularity and triangulate the complement. The boundary

circle of the disk is decomposed into pieces by Stokes sectors and the local behaviors

of foliations of quadratic differentials near a singularity with higher than order two

poles are also known. Let us quote the following proposition in Strebel's book.

Theorem 7.0.10. Let p be a pole of order n > 2. Then there are n - 2 directions at

p forming equal angles and trajectories enter these distinguished directions to go into

p. There is a neighborhood U of p such that every trajectory ray which enters U goes

to p. The two rays (i.e. the two directions ) of any trajectory which stays in U go to

p in two consecutive distinguished directions.

We pick a point in each of boundary pieces and consider them as vertices associ-

ated to the irregular singularity. We make an ordinary triangulation like before (the

only essential difference is that we take boundary pieces as edges but the associated

Fock-Goncharov coordinates will be defined to be zero). We then take the small flat

section in each Stokes sector containing exactly one vertex in each of them and this

defines decorations. Finally we define the Fock-Goncharov coordinates for this deco-

rated triangulation as usual. We can label them by charges as before. When defining

the labels we only use cycles associated to edges with nonzero Fock-Goncharov coor-

dinates.

Remark 7.0.30. It seems that due to its definition, the orders of poles of A' should

always be even. But in fact the classification of trajectories applies equally well to
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odd order poles. Constructions of this section work regardless of the parities of orders

of singularities. Allowing odd order quadratic differentials introduces two problems.

First of all, from the perspective of solutions of Hitchin's equations this means that

we allow fractional exponents in the asymptotic part of the Higgs field. It is possible

to handle this kind of singularities, see [79]. But it is not clear to the author in what

generality can one find a good foundational theory of the Hitchin's moduli spaces with

such singularities. The reference [8] does not seem to cover all odd order cases. The

second problem is that to define Fock-Goncharov coordinates one needs flat sections

and it is not clear in what generality the theory of Stokes matrices applies (it is possible

that a general enough theory exists but is unknown to the author). So in section 9

we shall assume that the order is even and the leading term is regular semisimple. It

is very likely that these assumption are not necessary as some examples indicate that

the theory works fine in odd order cases. In fact we will meet such examples in 9.5.

This is also a good place to explain why the author deals with only gauge group

Gc = SL(2, C). Fock and Goncharov only defined explicit coordinates as above for

SL(n, C) and PGL(n, C) and the latter is the Langlands dual of the former which

means the associated moduli spaces are mirror to each other. By the philosophy

explained in section 3, we only work with one side. We restrict attentions to SL(2, C)

because in this case we have a thorough understanding of the foliations of differentials

in the base of the Hitchin's fibration due to the extensive study of the theory of

quadratic differentials in the literature.
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Chapter 8

Cluster Algebras And Wall

Crossing Revisited

The transformations of charges and Fock-Goncharov coordinates can be formulated

in terms of cluster algebras and cluster algebras are also closely related to Kontsevich-

Soibleman's wall crossing formula. Cluster algebras were introduced by Fomin and

Zelevinsky [29, 30, 31]. Later Fock and Goncharov defined the notion of cluster

ensembles which contains cluster algebra structures [28]. We will give a part of the

full definition which is enough for our purposes.

Definition 8.0.28. A seed is a datum (A, (*, *), {ej}, {di}), where

e A is an integral lattice,

e (*, *) is a skewsymmetric Q-valued bilinear form on A,

e {ej is a basis of A,

{di} are positive integers asigned to {ej} and

eij := (ei, ej)dj E Z

unless i, j E 1o x 1o where 1 is a subset of the index set of i and the basis

vectors indexed by Io are called frozen vectors.
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Define a torus called seed X-torus by

XA := Hom(A, CX)

An element v C A is a character of the torus and is denoted as X,. For ej we use the

notation Xi. The set of Xi is called the seed X-coordinates and there is a natural

holomorphic Poisson bracket

{X XI XW} := (V)w )XX.

We can also define another torus known as the cluster A-torus

AA := Hom(A', CX)

where A* is the sublattice in A* 0 Q spanned by fi := d;-e*. The basis {fi} is called

cluster A-coordinates and renamed as {Aj}. There is a symplectic form on A defined

by

Q := (ei, ej)d log A' A d log A-

Set [a]+ := max(O, a). The seed obtained by mutation in the direction of a non-frozen

vector ek (denoted by the symbol pk) is defined to be a seed obtained by (only)

replacing ej by e'

e := e + [eik+ek, i / k

e := -eki = k (8.1)

A mutation pk induces the following transformations (also denoted by pk)

p(X) = X(1 i = k

Ak (A') = Tj,,kj>0 AJ + Uj,,,,<o A,"kJ (8.3)
p* (A') = Aj, i / k
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These transformations are called cluster transformations. Variables {Ai} together

with their all mutations generate the so-called cluster algebra (with cluster transfor-

mations as relations). Later we will also call the algebra generated by dual variable

Xi together with their all mutations the cluster algebra.

Now let us return to the setting of the last section. For fixed 9 and u, we have a

WKB triangulation and a set of charges associated to edges.

Definition 8.0.29. Fix V and u. Following Gaiotto, Moore and Neitzke [37] we call

those geometric BPS charges whose phases of central charges are between 0 and 19 + 7r

positive roots. A positive root which is not a sum of other positive roots is called a

simple root.

Remark 8.0.31. It seems that this definition depends on 9 and u but the dependence

is actually weaker. We will discuss this issue in section 9.

Remark 8.0.32. It is easy to see that for a fixed u and any 0 the set of positive roots

and their anti-charges is precisely the geometric BPS spectra at u.

Theorem 8.0.11. [36] Fix t and u. A complete set of simple roots is contained

in the set of 7' where E runs over the set of all edges of the WKB triangulation

TWKB(O,u). A positive root is a sum of simple roots with nonnegative coefficients.

Since a finite trajectory corresponding to a positive root has phase between V and

9 + 7r the intersection of this trajectory and a trajectory with phase 0 (in particular

an edge in TWKB(d, U)) is positive. This theorem follows from this fact, the counting

of number of edges and the definition of labeling by charges.

Definition 8.0.30. Define a matrix by taking intersections among only simple roots

Eg := (7;, V5)D(7h;) (8.4)

where Q(-yj; u) is the BPS number and (.) is the intersection pairing. Since 7E generate

the charge lattice we can extend this pairing to all charges.
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Gaiotto, Moore and Neitzke gave an a priori assignment of (geometric) BPS num-

bers to geometric BPS charges.

Definition 8.0.31. The geometric BPS charge -y associated to a flip is called a

hypermultiplet and also denoted by -y'p. We define the corresponding geometric

BPS number by

Q(Ny,;u) = 1 (8.5)

The BPS charge associated to a juggle, i.e. -7A is called a vectormultiplet and also

denoted as ree. We define the geometric BPS number by

Q(yvet; u) = -2 (8.6)

Geometric BPS numbers of other charges are defined to be zero. We identify geometric

BPS numbers as BPS numbers used in the definition 6.3. From now on we can drop

the word "geometric".

Remark 8.0.33. One may ask what happens to charges associated to pops in degen-

erate triangles. We do not need to define them or we can define them to be zero'

because they are irrelevant for wall crossing formulas. That is because the geometric

BPS charges in this case are pure flavor charges in the radical of the intersection

paring which means the associated Kontsevich-Soibelman transformations are trivial.

Remark 8.0.34. The philosophy here is that the notion of geometric BPS charges is

the primary one and geometric BPS number are actually assigned instead of defined

geometrically. Because of our definition a geometric BPS charge is identified with a

BPS charge defined in section 6.

There is also an a priori assignment of quadratic refinements.

U-Yhyp) = -1, 0-(7vec) = 1 (8.7)

Remark 8.0.35. An important point here is that unlike the definition in section 5 this

'This may not coincide with the ultimate definition of BPS numbers as indices. The point here
is that this possible discrepancy is not detectable by the wall crossing formula.
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assignment is global over the whole space of u. See [36] for the geometric justification

of this definition.

It is important to know the transformation formulas of charges and Fock-Goncharov

coordinates labeled by charges when we vary ( (or equivalently d) across a geometric

BPS ray.

" For a flip from the side where Im(Z,,/() > 0 to the side where Im(Z,,/) <

0,the transformations of charges are

Ilk : 7k - 'Yk 71k

Pk : 1i -4 7z :=N7 + 7k 1-ci] +, i f k (8.8)

Transformations of Fock-Goncharov coordinates labeled by charges are obtained

by taking the composition of the transformations of Fock-Goncharov coordinates

labeled by edges and the transformations of charges

X,- + X-1(1 + Xyk )<i''Ik> (8.9)

here Yhyp is 7(k

" For a juggle from T- to T+'o the transformations of charges are

-YA = 7

Bj = - 7- +27- (8.10)

Transformations of Fock-Goncharov coordinates labeled by charges are

X- -+ X-(1 - X,-)-(7'v-t (8.11)

where 7eec := -7A. Note that (7By,y) = -2.

2 Strictly speaking according to (68) we should use the limits Xl instead of X,, but we shall use

the notations Xy in the rest of the paper to make some formulas more readable. We hope it will not

introduce confusions.
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Come back to cluster algebras. Compare equation (88) (72) with equation (81)

(82), we see that if we identify ei and 7i as well as X and X (labeled by edges), then

the transformations of Fock-Goncharov coordinates labeled by edges under a flip are

precisely cluster transformations.

Theorem 8.0.12. Transformations of Fock-Goncharov coordinates labeled by edges

obtained by crossing BPS rays corresponding to flips are cluster transformations. The

Fock-Goncharov coordinates labeled by edges generate a (dual) cluster algebra.

There is another crucial observation. The equations (89) is a Kontsevich-Soibelman

transformation! In fact it is

KW-(7 U) : X + X(1 - k)yk)<Yi7Yk>(Yk;U) (8.12)
U 'Yk X

Similarly (91) is also a Kontsevich-Soibelman transformation

K("Yvecu) X- -+ X,~( - -(Vec)X,y) QYY"et)"e" ) (8.13)

We also know that the Kontsevich-Soibelman transformation associated to a pop in

a degenerate triangle is trivial. Therefore we get

Theorem 8.0.13. Suppose u represents a quadratic differential with only simple

zeroes (which is the generic case), then all transformations of Fock-Goncharov co-

ordinates labeled by charges obtained by varying 9 across BPS rays (fixing u) are

Kontsevich-Soibelman transformations or products of Kontsevich-Soibelman transfor-

mations.

Remark 8.0.36. The convention in section 7 of not calling the associated charge

to a pop of a degenerate triangle a BPS charge is justified because the associated

Kontsevich-Soibelman transformation is trivial.

Now it is clear what the wall crossing formula means in our context. We vary

the moduli u and the order of pre-BPS rays changes when u crosses a stability wall.
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However, it is clear that the two ordered products of Kontsevich-Soibelman transfor-

mations over all rays between two fixed phases3 defined by

S(7_,d+; = 171 Kf(Y;u) (8.14)
t _<arg(-Zy(u))<,d+

is unchanged. In other words we have the following

Theorem 8.0.14.

S(d_, V+; u) = S(V-), +; ') (8.15)

where u and u' are two different moduli parameters in B not on stability walls and both

of them are not in the codimensional two locus corresponding to quadratic differentials

with nonsimple zeroes. Suppose that they can be connected by a path not crossing

branch cuts such that along the path from u to u' no BPS ray crosses 0_ or +'-

The proof is simple. We fix _ (t9 +) and let u change along the path. Clearly

this path can be assumed to avoid the locus of quadratic differentials with nonsimple

zeroes. Since no phases of BPS rays could pass d_(,d+), there is no changes of the

decorated triangulation up to isotopy. So

X-(u) = X-(u')

XY+(u) =X+(U)

Since S(V_, '+; u)( S(V-, t+; u')) is the transformation mapping Xt (u) (X4 (u')) to

X~?+ (u) (X2o (u')), the wall crossing formula follows.

Remark 8.0.37. By the discussion in section 7 we do not have to assume that u, u' are

generic in the sense that varying 79 only produces the three types of jumps of WKB

triangulations listed in the previous section.

Remark 8.0.38. The BPS numbers are assigned to BPS charges. The assignment is

global on B. On the other hand if we are given an initial assignment at a point

3We always assume that neither of them is an exceptional one i.e. the phase of a pre-BPS ray.
4 This assumption is not restrictive at all. See remarks after the statement of wall crossing formula

in section 6.
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then we can use the wall crossing formula to propagate the BPS spectra and BPS

numbers across stability walls and in this way we can also calculate BPS charges

and BPS numbers at other points. The two approaches are consistent because the

wall crossing formula is derived by using the Kontsevich-Soibelman transformations

associated to jumps and values of BPS numbers are so defined to identify jumps as

Kontsevich-Soibelman transformations. The second approach is the practical one for

computations.

Remark 8.0.39. Now we can describe the full dependence of Fock-Goncharov coordi-

nates. A Fock-Goncharov coordinate can be written as X(uO,') (u, 0; ). In the bracket

(u, 0; ) u and 0 are coordinates of M on the base and the fiber of the Hitchin's

fibration respectively. is the coordinate in the twistor C'. Usually we suppress the

dependence on (u, 0). Later in section 9 we will fix (. In the bracket (uo, V) uo is a

moduli parameter. So we do not view it as a part of coordinate system of M. We

discussed this issue before in remark 7.3. We have been denoting it by u and we will

continue to do so. Hopefully this would not cause any confusions. Similarly d is a

moduli parameter although it is also the phase of a ray in the twistor C'. It is not

the phase of (. So in particular fixing ( does not fix 9. The word moduli here is used

in the sense that the solution of the instanton correction problem of complex struc-

tures to be discussed in section 9 depends on the choice of (u, d) (i.e. (uo, V)). From

the perspective of foliations of quadratic differentials the choice of (u, V) determines

a WKB triangulation. But the dependence is actually on chambers instead of points.

By chambers we mean BPS chambers to be defined in section 9.

The wall crossing formula has the following important consequence. Recall that

the system of positive roots for (',u) and their anti-charges is the BPS spectra at

u. The system of positive roots depends on d while the BPS spectra do not. The

system of positive roots is obtained by varying'0 to 70+7r with a fixed u and collecting

charges associated to those finite trajectories that appear during this evolution. Now

we change u along a path without letting any BPS rays pass d, 9 + 7r and without

crossing any stability walls. Since the order of pre-BPS rays does not change by the

unique factorization of S(t_, t9+; u) the system of positive roots does not change and
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neither do the BPS spectra. If when u hits some point on the path a BPS ray hits (say)

,d then we just rotate 9 a little bit to avoid that hitting and reduce to the no-passing

situation. This is fine for determining the BPS spectra simply because the BPS

spectra do not depend on 79 . Therefore as long as no stability wall is crossed the BPS

spectra do not change (of course the system of positive roots could change). There

are countably many codimensional one stability walls in B. By a stability chamber

we mean a domain (a simply connected open subset with nonempty interior) bounded

by stability walls and branch cuts and having empty intersections with any stability

walls or cuts. What we have just showed means that the BPS spectra are constant

inside a stability chamber and therefore can be considered as data associated to the

chamber. This was the point of view we used in section 4 and will be important

later. However there is a tricky problem. It is possible that the stability walls are

dense in (or in at least some region of) B making the notion of chambers useless.

Nevertheless usually we are given an initial assignment of a system of positive roots

at a point and as we vary u continuously most stability walls are irrelevant as the

corresponding charges do not appear in the factorizations. In this case it could make

sense to discuss stability chambers.

It is also very interesting to know that the wall crossing formula can be used even

when both of the factorizations on the two sides are not given. This seems unlikely

but is in fact based on a simple fact. Gaiotto, Moore and Neitzke defined the following

product called the spectrum generator

S(9; U) = ]~TK ") (8.16)
t9<arg(-Zy(u)) <t+?r

Note that for every BPS particle either its BPS ray lies in this half plane or its antipar-

ticle's BPS ray does so. This means the spectrum generator captures exactly half of

the BPS spectra with the other half just antiparticles. It is easy to see that the WKB

triangulation T+ is obtained from T~JK by popping at all vertices (this operation

is called an ominipop) and we know how to write down the transformations 5. This

5We have shown before that the transformations of Fock-Goncharov coordinates labeled by

119



transformation can be obtained without following any continuous evolution of Z9 but

by its definition it is nothing but the spectrum generator. In other words, we have ob-

tained the product without calculating any of its factors. Once we know the product

we can factorize it by successive truncations according to the degree of charges. The

factorization is unique provided the order of the product, i.e. the order of BPS rays is

given but that is determined by the location of the moduli parameter u. So on each

side of the stability wall, we have a factorization and in this way both sides of the

wall crossing formula are constructed. Although the inductive procedure here uses

essentially the same truncation as the one used in the inductive proof of Theorem 3.5,

there is a difference. In the latter case, one needs to know some Kontsevich-Soibelman

factors (the initial data of a scattering diagram) from the beginning.

The wall crossing formula can also be considered as a solution of some enumerative

problems. In fact, the uniqueness of the factorization of an ordered product (given the

order of (pre-)BPS rays) means that we can calculate the exponents of all Kontsevich-

Soibelman factors on one side of a stability wall if all exponents are known on the

other side. But an exponent is just a product of an intersection number of charges

and the corresponding BPS numbers. So the wall crossing formula is a computational

tool for BPS numbers. Note that BPS numbers associated to the BPS spectra are

assigned which is consistent with the wall crossing formula. The point is that once we

know that there is a BPS charge then its BPS number is determined immediately but

it is not easy in general to know whether a charge is BPS by following a continuous

evolution. The wall crossing formula can tell us about the BPS spectra inductively.

The assignment of BPS numbers is natural. Q(7-;u) = 1 for charges labeling flipping

edges. The instantons in this case are interpreted as those finite trajectories con-

necting two zeroes of the quadratic differential when V is on the BPS ray l. These

finite trajectories are labeled by charges just by using the charges of flipping edges

and there is indeed only one finite trajectory with charge -/. So Q(7hyp; u) = 1 gives

charges are trivial for pops in degenerate triangles. But here we are considering pops in not neces-
sarily degenerate triangles. So they are nontrivial in general.
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an honest counting of critical trajectories of the quadratic differential. For juggles

Q(Yvec; U) = -2 which tells us that the result of virtual counting in this case should

be -2.

Let us summarize. We have explained the proof in [35, 36] of the following

Theorem 8.0.15. Let M(R) be a Hitchin's moduli space defined in section 2 with a

large enough R. Then the Fock-Goncharov coordinates defined above for WKB trian-

gulations TWKB(V, A2) are a set of Gaiotto-Moore-Neitzke coordinates and therefore

a hyperkahler structure M(R) is obtained by the twistor construction.

The description of the hyperkahler structure in this way is quite complicated but

the effect of instanton (the BPS spectra) corrections is manifest. However it is not

very explicit in the sense that although the leading order behavior can be obtained

by the WKB analysis it is not easy to extract more refined information6 . The point

here is not that we want to investigate the differential geometry of this hyperkahler

metric. What we want to do is to compare it to the instanton correction problem of

complex structures in the framework of mirror symmetry.

An important question to ask is whether the instanton-corrected hyperkahler met-

ric constructed by Fock-Goncharov coordinates and Gaiotto-Moore-Neitzke ansatz is

actually the hyperkahler metric given by the infinitely dimensional hyperkahler quo-

tient construction of Hitchin [51]. The author would guess that the answer is yes.

Conjecture 8.0.1. For M(R) the Gaiotto-Moore-Neitzke metric coincides with Hitchin's

hyperkahler quotient metric.

In fact, we already know that the instanton-corrected metric has some crucial

properties of the hyperkahler quotient metric such as the Hitchin's fibration is a

6For example, it is not obvious to the author that the metrics defined in this way are complete.
As another example it is not clear that the solution of the infinitely dimensional Riemann-Hilbert
problem formulated in [36] is unique. Nevertheless if the answer was yes then it seems the iteration
scheme outlined in [36] would provide an expansion of the metric beyond the leading order.
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holomorphic one for J3. There are at least three places where the hyperkahler metric

is important in the study of mirror symmetry. First, recall that the identification of

the Strominger-Yau-Zaslow mirror duality as the Langlands duality depends on the

relation between Hitchin's fibration and the hyperkahler quotient metric. Second,

the Fock-Goncharov coordinates are constructed for twistor parameter E CX of the

hyperkahler quotient metric (because we view the moduli space as the moduli space

of flat connections). Third, we have the hyperkahler metric constructed from Fock-

Goncharov coordinates which is of an instanton-corrected form required by mirror

symmetry because of the equivalence of two instanton correction problems to be

explained in section 9. A positive answer would make all these metric aspects of

mirror symmetry of Hitchin's moduli spaces compatible with each other. A possible

way to show that the two hyperkahler metrics are the same is to use an appropriate

noncompact version of Yau' theorem as suggested by Seiberg and Witten (see [74])

if one understands the asymptotic behavior of the hyperkahler quotient metric near

the infinity. This direction will not be pursued in this work.
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Chapter 9

Two Instanton Correction

Problems And Mirror Symmetry

Through Wall Crossing

9.1 Outline

Let us summarize what we have learned.

For an SU(2) Hitchin's moduli space M on a Riemann surface C, one can con-

struct an instanton-corrected hyperkahler metric from a set of coordinates using the

twistor method provided that they satisfy the properties formulated by Gaiotto,

Moore and Neitzke. A set of such coordinates can be constructed as Fock-Goncharov

coordinates X, obtained from WKB triangulations. A WKB triangulation is con-

structed from a foliation of a quadratic differential A2 on the underlying Riemann

surface and depends on two parameters d and u = -A 2 . Changing 0 (or equivalently

changing () means that we are rotating over the twistor CP and there are countably

many discontinuous jumps along BPS rays which are Kontsevich-Soibelman trans-

formations. If we vary u, then there are real codimensional one hypersurfaces called

(marginal) stability walls such that crossing such a wall changes the order of BPS rays.

However the ordered product of discontinuous transformations does not change. This
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statement is called the wall crossing formula and it enables us to determine BPS

spectra and associated BPS numbers. The BPS spectra are our instantons in this

instanton correction problem and they happen to coincide with the BPS spectra of

the four dimensional gauge theory which is a closely related but different problem. In

this construction we view M as the moduli space of SL(2, C)-flat connections which

is analytically isomorphic to the space of fundamental group representations (also

denoted by M).

On the other hand, a Hitchin's moduli space is also an example of Calabi-Yau

spaces and as such it makes sense to discuss mirror symmetry. The mirror in the

sense of Strominger, Yau and Zaslow is the Hitchin's moduli space over the same

Riemann surface but with the gauge group changed to its Langlands dual. There

are singular special Kahler structures and in particular singular affine structures on

the bases of Hitchin's fibrations of the two moduli spaces which are dual to each

other in the sense of Legendre transform. The instanton correction problem asks to

construct a family of Calabi-Yau spaces whose complex structures are supposedly

determined by holomorphic disks in the mirror family. In Gross and Siebert's purely

algebraic approach, this is reformulated as constructing a formal toric degeneration

of Calabi-Yau's from an integral singular affine structure together with a polyhe-

dra decomposition, a polarization and a log smooth structure. The central fiber is

constructed first and to get the family one deforms affine (in the sense of algebraic

geometry) pieces of the central fiber before gluing them together. One works induc-

tively by the powers of the deformation parameter and at each order there could

be inconsistencies during the gluing and we have to compose log morphisms associ-

ated to codimensional one polyhedral subsets which "correct" the gluing and hence

the complex structures. These structures are constructed on the same singular affine

manifolds and are supposed to encode the dual of tropical avatars of holomorphic disk

instantons in the mirror. Regardless of the enumerative meaning of these structures,

Gross and Siebert constructed them inductively and hence solved the instanton cor-

rection problem of complex structures in an algebraic sense.
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Now we will connect the two chains of thoughts over the same space. Let us call

the two instanton correction problems the metric problem and the complex structure

problem respectively.

As mentioned in section 2, according to Kapustin and Witten the mirror symmetry

of Hitchin's moduli spaces is induced by the electric-magnetic duality of 4d N = 4

gauge theories. So we have two instanton correction problems over a Hitchin's moduli

space. One is suggested by gauge theory (GMN's work). The other is in the context

of mirror symmetry which according to above is also related to gauge theory. It would

be surprising if these two problems are unrelated. We want to show that these two

instanton correction problems are equivalent in an appropriate sense.

It may be possible to study holomorphic disk instantons directly over Hitchin's

moduli spaces in the context of mirror symmetry. Here we will try to use Gross-

Siebert's strategy instead.

However there are some difficulties.

1. Objects of the two problems are quite different.

2. It is not clear how the critical trajectories (instantons in gauge theory) can be

related to instantons in mirror symmetry.

3. It seems that the consistency conditions of log morphisms should be identified

with the wall crossing formula but the meanings of "stability walls" and instan-

tons are not obvious in that framework. In fact since there is no central charges

or even charges involved in the construction, it is not clear how to make sense

of stability walls and BPS instantons labeled by charges.

4. To do mirror symmetry we need a family of Calabi-Yau's. For Hitchin's moduli

space we need a family which is a degeneration of moduli spaces and is a large

complex degeneration at the same time.

5. To run Gross and Siebert's algorithm we need a log smooth structure as the

input.

To formulate and prove the equivalence we rely on the following ideas
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1. Large R limit As suggested in section 5 we view R -4 oo as a differential

geometric characterization of a large complex limit of Hitchin's moduli spaces.

This provides a natural family of Hitchin's moduli spaces which could be com-

patible with mirror symmetry. This is conceptually important and solves the

difficulty 4.

2. SYZ meets GS In the limit form of SYZ conjecture the metric degeneration

is more fundamental than the notion of large complex limits. In fact the mirror

duality should exchange the large complex limit with its mirror called large

volume limit (which is a Kahler degeneration) and vice versa. The metric

degeneration is supposed to take care of both.

However in GS picture we lose the information of Ricci flat metrics and deal

with only complex structure degenerations. Therefore the family version of

mirror duality cannot be recovered directly. This is reflected by the fact that

the dualization of the limit structure is defined only for a triple consisting of

the singular affine structure, the polyhedral decomposition and the polarization.

We need to specify a log smooth structure for the triple to be able to use GS's

solution of the reconstruction problem.

This log smooth structure cannot be obtained by taking some kind of dualization

of the log smooth data of the original family as the dual of this log smooth

structure is supposed to recover tropical avatars of holomorphic disks wrapping

special Lagrangian fibers which require more than the information of complex

structures of the original family. This is consistent with the large complex limit

vs large volume limit philosophy.

Since we view large R limit as the large complex limit it makes sense to use the

metrics to build an a priori assignment of log smooth structure. This procedure

solves the difficulty 5.

So we are using a hybrid version of SYZ and GS procedures. This is inevitable

since we want to compare the differential geometric aspect and the algebraic

geometric aspect.
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Note that this is somewhat unusual because we will try to use "instantons" on

the same side instead of "instantons" on the mirror side to do the correction

(reconstruction) problem. But the comparison is still quite meaningful even if

one's sole purpose is to establish a mirror duality relation. We will comment

more on this point later.

3. Labeling by charges and BPS walls A BPS wall associated to a charge

is defined to be the locus where the values of central charges over twistor pa-

rameters are real. We use the projections of BPS walls to build a polyhedral

decomposition such that codimensional one cells are labeled by BPS charges

just like BPS rays. This eventually solves the difficulty 3.

4. Wall Crossing Formula as System of Consistency Conditions We assign

the log smooth structure such that in the end one can identify consistency

conditions as wall crossing formulas after setting the deformation parameter to

1. The assignment is obvious and is dictated by labeling by charges. We can

then construct a compatible system of consistent structures.

5. Explicit Degenerations To justify the naturality of previous constructions

from the perspective of Hitchin's moduli spaces we want to check whether

the toric degeneration obtained by Gross-Siebert's construction can recover the

Hitchin's moduli space as a generic fiber. This can be verified by the explic-

itly construction of the toric degeneration and the comparison to the natural

way of writing down the underlying complex manifold of M (viewed as the

moduli space of flat connections) in terms of gauge invariant Fock-Goncharov

coordinates with relations the discontinuous jumps.

This step puts the whole strategy into a conceptually firm and natural frame-

work. However it does not answer the question posed in difficulty 2 in a com-

pletely geometric way. In this sense the author views the results in this section

as half conceptual and half computational.
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9.2 Construction Of Gross-Siebert Data

We introduce an additional parameter R to the Hitchin's equation using (3) and all

constructions for the metric problem now have R dependence. There is a singular

special Kahler structure on the base B of the Hitchin's fibration for any member

of the family. We want to use Gross and Siebert's construction over B with the

singular affine structure induced by the singular special Kahler structure. We need

to find the additional data making the input of Gross-Siebert's algorithm. Let us

call a singular integral affine manifold together with a polyhedral decomposition, a

polarization and a positive log smooth structure (i.e. the input of Gross-Siebert's

algorithm) a Gross - Siebert data (GS data)1 .

The singular special Kahler structure on B induces an integral affine structure

with singularities by using its affine coordinates. More precisely, since the periods

(central charges) Z,(u) are special holomorphic coordinates we can take

ai := Im(Z/()

for a fixed ( f 0, oo as natural flat affine coordinates2 outside the singular locus.

The affine structure is integral because the cycles y are integral. The singular locus

A is the discriminant locus where some periods vanish and has codimension at least

two. The monodromies are Picard-Lefschetz transformations associated to vanishing

cycles.

Remark 9.2.1. When we define the affine structure (-yi) are always chosen to be a basis

of gauge charges. This gives the right dimension of B. So the underlying integral

lattice for affine charts is the gauge charge lattice.

Next we need to construct a polyhedral decomposition.

Definition 9.2.1. Let B be the universal cover of the complement of singular locus

'In Gross and Siebert's work there is also an additional freedom of choosing the so-called open
gluing data. We always take the trivial open gluing data and hence do not need to define them and
do not consider them as a part of Gross-Siebert data.

2 0f course in section 2 we used real parts of central charges, but taking the special holomorphic
coordinates as -i/i times central charges will do the job.
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in B denoted by B*. Suppose 7 is a charge such that Q(-y;u) # 0 for some u. We

define the BPS wall

W := {(u,) 1 u c 5,i C e Cx, Z E(U) G R}

We only consider charges in the BPS spectra when discussing BPS walls. Clearly

W-Y = W-Y.

Remark 9.2.2. So now there are three different kinds of "walls" in this paper: walls

defined in section 3, stability walls defined in section 4 and BPS walls defined here.

To avoid confusions from now on we call a wall defined in section 3 a Gross-Siebert

wall (GS wall).

Remark 9.2.3. We use B because the charges and the BPS spectra have monodromies

over B. We can choose branch cuts and view u as u E B*. We will use this point of

view.

Remark 9.2.4. Similar ideas appeared in [37] for different purposes.

Remark 9.2.5. Also in Kontsevich-Soibelman's wall crossing paper[60] some structures

similar to the projections of BPS walls for Hitchin's moduli spaces were considered

and Kontsevich-Soibelman had the vision that one should consider the wall crossing

formula over the base B. Metrics and instanton corrections were not discussed there

though the wall crossing formula seemed to be motivated by their previous work on

the instanton correction problem of complex structures in the two dimension [61].

B x C' is divided by BPS walls into chambers. In other words a chamber is a

connected component of

S:= x CX - U w, (9.1)
-yu,A(y;u)$AO

Since there are several types of chambers in this paper we have to use different

names. Recall that in section 3 there are chambers in a structure. We call them

Gross-Siebert chambers (GS chambers). There are chambers in a scattering diagram

divided by rays and cuts. They are called scattering chambers. There are chambers
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in the twistor C' divided by BPS rays and they are called twistor chambers. Note

that twister chambers depend on u. There are chambers (defined in section 6) in

B divided by stability walls and branch cuts. They are called stability chambers.

Finally the chambers defined here are called BPS chambers. A chamber is always

assumed to have nonempty interior. So it is possible that a point (u, (o) which is not

on any BPS wall is not contained in a BPS chamber if BPS walls can be dense. Later

whenever we discuss a BPS chamber containing (u, o) we always assume that such a

BPS chamber exists.

The projection of W. to the twistor C' for fixed u (not on a stability wall) gives

us BPS lines L, (which is the union of two BPS rays of opposite directions). Consider

the projection of (u, o) to the i-plane, the twistor C' which is divided into twistor

chambers. Recall that the angular parameter V is the phase of the central ray of the

half plane He. Let d = arg (o so that the positive roots for (u, 19) all lie in the half

plane on the counterclockwise side of the line through the origin containing (o. The

twistor chamber containing the ray with phase ?9 is bounded by two BPS rays. The

first ray is the first BPS ray (which has to be associated to a (minus) simple root)

that one meets if we continuously varies d to V+ 7r while the other ray is the opposite

of the last BPS ray one meets which is also associated to a simple root. Now we vary

u. We can move from the BPS chamber containing (u, o) into another BPS chamber

if and only if some BPS rays pass the ray with phase 1 but the first such ray can

only be one of the two BPS rays associated to simple roots described above. The

same argument holds for varying 19. So we have shown the following theorem due to

Gaiotto, Moore and Neitzke.

Theorem 9.2.1. BPS chambers are labeled by systems of simple roots. For a BPS

chamber the associated system is given by the system of simple roots associated to a

point in that BPS chamber and it does not depend on the choice of the point.

Similarly one can attach to a point in a BPS chamber the system of positive roots

at that point.

Definition 9.2.2. Let e be a BPS chamber. The set of positive roots associated
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to a point in E is called the refined BPS spectra for that BPS chamber. The set of

simple roots associated to a point in E is called the refined simple BPS spectra for

that BPS chamber. The definitions do not depend on the choice of the point. More

generally if a point (u, (o) is not necessarily contained in a BPS chamber then we just

define the refined (simple) BPS spectra at that point. The definition depends only

on u and 9 := arg (o. Clearly we can use (u, d) instead of (u, o). We denote the

refine BPS spectra at (U,tO) by E(u, V).

Remark 9.2.6. Note that the refined BPS spectra exhausts all BPS charges at u that

one encounters by varying d to 0 + 7r.

Let u be a point in a stability chamber. Fixing d and changing u inside that

stability chamber may change the set of simple roots and hence the BPS chamber

but the BPS spectra does not change by section 8. So if we consider BPS walls of the

refined BPS spectra for some (u, 9) then the result does not depend on the choice of u

inside a stability chamber and'O. In fact the refined BPS spectra of the BPS chamber

containing (u, V) contains exactly half of the BPS spectra at u and W, = W_,. This

means that we have BPS walls for the whole BPS spectra at u which only depends

on the stability chamber. So we can make the following definition.

Definition 9.2.3. Fix a generic . Let T be a stability chamber. Pick a point u E T

and define the system of BPS faces of T to be the collection of the projections of BPS

walls of the refined BPS spectra at (u,'0) to B* (( is fixed). Each projection is called

a BPS face of T of charge -y and is denoted by FT. If u is not necessarily contained

in a stability chamber then we simply define the BPS face for a BPS charge -Y at u

as the projection of the corresponding BPS wall. It is denoted by Fu,. We may omit

u if the dependence is clear.

A BPS face is a codimensional one locus. The intersection of two BPS faces

F), F, 2 is a locus (codimensional two in B*) contained in the stability wall SW,1,1.2 (U)

since at the intersection the two central charges have the same phase (the phase of

(). According to remark 7.3 and 8.9 we should distinguish the space B of moduli

parameters u in the wall crossing formula and the space B which is the base of
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the Hitchin's fibration even if these two spaces are identical (they are both space

of quadratic differentials). Since the singular affine structure is on the base of the

Hitchin's moduli space it seems that we should not view a stability wall as a subset

of the singular affine manifold B we are dealing with here. However we can use the

canonical isomorphism between the two B spaces to map stability walls to the base

of the Hitchin's fibrations and from now on we can consider stability walls in the

singular affine space B. If we vary ( we can recover the whole stability wall. F., is

disconnected in B* because the singular locus in B corresponding to the vanishing

of charge 7 has been removed. So the real number Z,(u)/( cannot be zero which

disconnects R. We can fill in the singular locus back and consider F, as a subset of

B by adding the zero to the image of Z,(u)/(. From now on F., is always understood

in this sense.

Remark 9.2.7. We can fix ( because we want to consider M as the moduli space of flat

connections whose complex structure does not depend on (. is assumed to be generic

because we want to avoid the following two exceptional situations: an intersection of

two BPS faces could be in the singular locus accidently; an intersection of two BPS

faces can be contained in more than one stability walls. In the first situation both the

intersection and the singular locus are at least codimensional two. Since we know the

position of singular locus is independent of ( we can avoid them by choosing a generic

(. In the second situation intersections of stability walls are codimensional two and

are independent of (. So again we can choose a generic to avoid this situation. But

it is important to know that we cannot and do not want to avoid the situation where

two or more intersections of BPS faces coincide. Finally we point out that fixing (

does not mean fixing 19 (see remark 8.9).

We make the following assumption to simplify our problem.

Assumption of Finite Type We assume that there is at least one point u such

that the BPS spectra at u is a finite set. A Hitchin's moduli space satisfying this

condition is called a Hitchin's moduli space of finite type. Otherwise it is called a

Hitchin's moduli space of infinite type.

There are many examples of finite type Hitchin's moduli spaces. The examples in
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this paper are all of finite type. We make this assumption because a Hitchin's moduli

space of infinite type would mean that we glue infinitely many pieces of deformations

of affine strata in Gross-Siebert's construction. It seems the only reasonable way to

make sense of that is to take truncations used before to make sense of the consistency

conditions (or the wall crossing formula). That way one can get a projective system

of finite gluing. The main theorems in this section should have generalizations to that

case.

Suppose the assumption of finite type is satisfied. Take a point u with finite BPS

spectra and build the system of BPS faces at u.

Because of the choice of affine coordinates these BPS faces are hyperplanes in the

affine coordinate system. If a BPS charge is a gauge charges this is clear because the

BPS face is the zero level set of one of the linear combinations of affine coordinates.

For a general charge since we have chosen a branch we can split the charge lattice into

the sum of the gauge charge lattice and the flavor charge lattice. Let 7Ygau and pYf Ia be

the projection of a charge y to the gauge charge lattice and the flavor charge lattice

respectively. Note that Z = fw a A is a sum of constants times the residues (mass

parameters) of A at some singularities which have been fixed when one formulates the

moduli problem. So the central charge of a BPS charge is the central charge of the

gauge charge part plus a constant and the claim follows.

Therefore we have a system of hyperplanes giving us a polyhedral complex. How-

ever it may not be an integral one because of the nontrivial residues. To get an

integral polyhedral complex we can move hyperplanes labeled by charges 7i with a

same gauge charge (so that they are parallel) -ygau without changing the order of their

positions. It can be arranged such that the intersections with the line Im(Zta (u)/)

are all rational points (i.e. all components in the coordinate system are rational).

This can be done because the line is generated by an integral vector 7Yauge. Clearly

this can be achieved by scaling the residues of flavor charges. Since BPS charges for

this particular line may not exhaust a basis of the flavor charge lattice we may need to

do this for the rest of the flavor charges. After scalings of residues (each residue could
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have a different scaling) we can guarantee that all polyhedra are rational polyhedra

and all vertices are rational points. We can scale residues further to clear all denomi-

nators of these rational points since there are only finitely many of them. In the end

we get an integral polyhedral complex. We call the operation of scaling residues to

achieve integrality an integral scaling operation.

It is easy to see that after this operation any intersection of two BPS faces is still

contained in a stability wall for the moduli space with scaled residues. It is possible

that there are finitely many coincide BPS faces. This happens when two charges have

the same gauge charge and the residues of the flavor parts are also the same. We

therefore allow the possibility of coincide codimensional one cells. Since the whole

thing is in B which is isomorphic to Ck ~ R2 k where k is half the complex dimension

of M for each vertex in the complex we just use the trivial fan structure induced

by the embedding of a neighborhood of the vertex in R2k. Thus we have obtained a

polyhedral decomposition of the singular integral affine manifold B.

We have proved the following theorem.

Theorem 9.2.2. After an integral scaling operation (defined in the previous para-

graph) the system of BPS faces at u induces a polyhedral decomposition of the integral

affine structure with singularities on B. It is called a BPS polyhedral decomposition.

The collection of residues is a part of defining data of the moduli problem. These

scalings therefore are perturbations of the original hyperkahler space. Since in the

metric degeneration of Hitchin's moduli spaces we change R which scales the residues

we want to achieve an integral scaling operation by picking a point (the choice of

such points is a discrete set) from the large complex degeneration. To make sure that

such a common scaling for all singularities produces an integral scaling operation we

need to assume that mass parameters (or equivalently residues, see (17)) m; where i

runs over the set of all singularities can all become rational if we multiply them by

a common real number. This condition is called the pseudo - rationality condition.

Clearly the set of pseudo-rational residues is dense in the space of regular semi-simple

residues.
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The above construction depends on the choices of u. But if u is contained in a

stability chamber then clearly it really depends on the stability chamber.

BPS faces are labeled by some charges only up to a sign. By picking the half of

the BPS spectra in the refined BPS spectra E(u, V) we can think of BPS faces as

hyperplanes labeled by some charges. Moreover we can label all codimensional one

cells of the polyhedral decomposition by the charges labeling BPS faces containing

them. This labeling clearly depends only on the BPS chamber containing (u, t).

Definition 9.2.4. A BPS polyhedral decomposition together with a labeling of codi-

mensional one cells by charges defined above is called a marked BPS polyhedral

decomposition. It depends on (u, 0) or more precisely the BPS chamber containing

(u,'0).

Remark 9.2.8. It is important to know that the labeling of codimensional one cells

is not one to one. In fact all codimensional one cells contained in a single BPS faces

are labeled by the same charge.

Remark 9.2.9. Later when we say "choose (pick) a pair (u, d)" we mean choose a pair

(u,,d) such that (u,'d) is not on a BPS wall and the BPS spectra at u is finite. If

(u,'d) is contained in a BPS chamber then we mean choose that BPS chamber.

We need to specify a polarization <p. We want a nontrivial polarization.

Definition 9.2.5. Given a BPS polyhedral decomposition. A polarization <p is non-

trivial if for any vertex v of the BPS polyhedral decomposition there is a local rep-

resentative <p, with <p, = 0 such that the following condition is satisfied. Let p, be a

codimensional one cell containing v labeled by a BPS charge -Y. Then the maximum

of ord,(mygau) is not equal to the minimum ord,(mY,_u) for o- runs over all maximal

dimensional cells containing py. 7, is the gauge part of the charge 7 and mY.,a. is

defined in (99).

A nontrivial polarization always exists for a given BPS polyhedral decomposition.

In fact the definition just means that there is a non-trivial change passing from a

maximal dimensional cell to another across a codimensional one cell which can clearly
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be arranged as <p, is only piecewise linear. There are of course many of them and we

can use any of them. The choice of < cannot be canonical because of the obvious fact

that a deformation of the underlying variety of the Hitchin's moduli space simply as

a deformation of varieties cannot be canonically determined by the Hitchin's moduli

space itself. Two non-isomorphic total spaces could have two isomorphic generic

fibers.

Remark 9.2.10. Recall that the deformation by changing R is modular. However we

will not expect the same for the toric degeneration we are going to construct. We

will be able to at least recover the Hitchin's moduli space (as the moduli space of flat

connections) as a fiber of the toric degeneration. On the other hand we do not expect

to be able to embed the real family parameterized by R into the complex family (the

toric degeneration) due to the freedom of choosing the polarization.

We need to specify a log smooth structure. A log smooth structure is actually

the initial data for constructing consistent scattering diagrams and the rest are con-

structed inductively by imposing consistency conditions which should be identified as

essentially wall crossing formulas. This initial data are associated to codimensional

one cells and polyhedral subsets of the polyhedra decomposition. On the other hand,

in the formulation of wall crossing formulas in the metric problem, the initial data

(part of all Kontsevich-Soibelman factors) is associated to BPS rays. A BPS wall

projects in two directions to a BPS line and a BPS face containing codimensional one

cells respectively and therefore it builds a natural correspondence between these two

objects to which the initial instanton data of the metric problem and the complex

structure problem are associated respectively. So we can define a log smooth structure

by just using the correspondence and taking the log morphisms as the discontinuous

jumps of Fock-Goncharov coordinates, i.e.

6,, = exp(log(-f,,)9,) := Ky (9.2)

Let us be precise. First we build a correspondence between monoid variables and

charges. Suppose the complex dimension of the moduli space is 2n then the gauge
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charge lattice denoted by Ugau has dimension 2n and an integral skew-symmetric

paring which is the intersection pairing. We would like to identify it with Z2, with

the standard integral skew-symmetric paring and with a symplectic basis. But note

that while the lattice of integral one cycles of the spectral curve has a symplectic

basis 'gau may not. So in general we only identify Fgau with a sublattice of rank 2n

in the lattice of all integral one cycles of the spectral curve with a symplectic basis

such that the intersection paring in Ugau is the restriction of the standard one.

Definition 9.2.6. Choose a pair (u, 79). Since the BPS spectra is finite there are

finitely many stability walls given by pairs of BPS charges at u. They are called

primary stability walls. Chambers obtained by dividing B by these primary stability

walls are called primary stability chambers.

Let j be a joint in the marked BPS polyhedral decomposition at (U,'0). It is a

codimensional two cell. We distinguish two cases.

e Non-degenerate case. In this case the joint is the intersection of exactly two

BPS faces. The joint is contained in a unique primary stability wall denoted

by SWj. By the genericity of the choice of ( we can exclude the exceptional

case where one of the two BPS face defining SWj is tangent to the stability

wall. At least locally in a small neighborhood containing j the stability wall

SWj divides the neighborhood into two sides. The side containing u is denoted

by Sideu while the other side is denoted by Side'. Since we allow different

BPS faces with the same support (coincide BPS faces) we also allow different

joints with the same support. This is harmless as the Kontsevich-Soibelman

transformations of charges labeling coincide BPS faces commute.

e Degenerate case. The joint is the intersection of more than two BPS faces. By

the genericity of ( the joint is still contained in just one primary stability wall.

"Degenerate" does not suggest that this is non-generic in some sense. We have

this situation simply because we can have BPS charges generated by other BPS

charges. Since there is a stability wall we still have Sideu and Sidea.
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Let v be a reference vertex in j, v E w C u E Fmax. Since SpecC[Pg,,] C

SpecC[P,] to build the correspondence we only need to consider the monoid C[P].

Recall that Pv is generated by certain exponents m and each m has a projection fni

in A, ~ I'gau. So we get an correspondence between gauge charges y and exponents

with bars denoted by fn-'. We put a ' over f because the notation fh- is reserved

for a modification offin.

Recall that the labeling of codimensional one cells by charges labeling the BPS

faces containing them is many to one. In U = UajInt r there are exactly two

codimensional one cells containing j and contained in a BPS face. In Sideu there is

only one codimensional one cell for each BPS face and these codimensional one cells

are ordered according to the ordering of their BPS charges in E(u, d). Therefore in

Sideu each codimensional one cell can be labeled by its corresponding BPS charge and

different cells are labeled differently. A codimensional one cell labeled by 7 is denoted

by py. It is parallel to the zero level set of the affine coordinate labeled by the gauge

charge gau and we associate to it the charge 7ggu and hence m . This association

is defined up to sign because W, = W_,. We fix the sign in the following way. It

makes sense to talk about the positive normal vectors of a codimensional one cell in

Sideu as a positive direction can be defined to be the direction moving along which

these cells are encountered by their order in E(u, V) (the choice of this direction is

the same as a choice of orientation in the normal space of the joint). The sign of Ygau

and hence f is chosen such that i is a positive normal vector. In Side' we define

the positive direction to be compatible with the positive direction defined in Side,.

Each codimensional one cell in Side& is also labeled by the BPS charge labeling the

corresponding BPS face and we can define the positive normal vectors to it. -' is

a positive normal vector to p. in Side#.

In Sideu we rotate ' around j along the negative direction (more precisely

speaking we rotate its projection to the two dimensional normal space of j along the

induced negative direction while keeping other components invariant) until it lies in p,
and call the vector obtained after this rotation -y. It is uniquely defined and pointing

away from j. In Side# we do the same thing to -f and define -m.,I Clearly -i- =
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m_-.. Note that although the same symbol p, represents two codimensional one cells

lying in Sides and SideI respectively the exponents with bars (or the corresponding

gauge charges) attached to them are different for them.

Since by section 8 the refined BPS spectra contains a complete set of generators of

the charge lattice we can extend the correspondence between -y and fn,. to the whole

gauge charge lattice. This induces a multiplicative correspondence between gauge

charges and monoid variables

z,^ := z"

where z is the formal variable converting additive relations to multiplicative relations

in the monoid. For a gauge charge y there is a unique monoid in P, as a generator.

The monoid is denoted by x, and is associated to the exponent which lies on the

boundary of the cone C, and with its projected exponent (the exponent with bar) fn.

Explicitly we can choose a local representation <p, of the polarization with <p,(v) = 0.

Then

m, : (mn--, h), 7X, := z( ,h) (9.3)

where h is given by

(r-y, -A) + h = 0 (9.4)

for some maximal dimensional cell o- such that h determined by (100) is maximal

among all o D v. P, is generated by finitely many monoid variables of this form

and the deformation parameter t := z(D). We also introduce formal multiplicative

notations xYf la for pure flavor charges. Then we define

z, := Xl xfa (9.5)

for a general charge -y and we have a correspondence between x., and -Y (and therefore

X,) for all charges. We think of XYf a as trivial monoid variables. For computations

we can think of them as zy l := z(D'0). So the only effect they have is that they

change names of monoid variables Xga. i.e. the same monoid variable xogu can be

represented by several symbols x, in a formula. Using labeling by general charges we
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can distinguish coincide codimensional one cells.

Definition 9.2.7. The labeling of a codimensional one cell by the BPS charge of

the BPS face containing it is called the face labeling. Let j be a joint of the marked

BPS polyhedral decomposition for (u, d). The labeling of a codimensional one cell

containing j by the exponent with bar (or the corresponding gauge charge) is called

the slab labeling.

Each cell p,, is considered to be the support of a slab with a slab function to be

determined below. In section 3 we have explained that the log morphism attached to

a slab p, is
(fn Ifa, ,h) -7r(in , )(,-n ' ,h)6

z 9sn (fO,,) gau Z gsau 96

where -r : A, -+ Z is the epimorphism with kernel A, which is positive on vectors

pointing from one of the two maximal dimensional cells containing p. to the other

with the positive direction according to the order of elements of the refined BPS

spectra. In fact ir(fiy ) is the pairing (standard inner product of the lattice after

picking a basis) between the positive primitive normal vector n of p, and fn-Py ^79au,

Note that the pairing of g,,, and fn is a positive integral multiple of 7r(f ).

Let 1 be that integer. 1 does not depend on 4a.

By elementary geometry we get that in terms of the skew-symmetric integral

paring (intersection pairing) (-) on the lattice Av ~Fgau

-lwrmau) = ( I U, ygau) = ('},i, f ) (9.7)

In fact the problem is local and two dimensional as the joint is codimensional two.

So we can write 7yga as (p, q) and ',u as (p', q'). The intersection pairing is the

standard one ((pi, q1), (p2, q2 )) = p1 q2 - p2qi and the inner product is given by

((Pi, q1), (P2, q2 )) = PiP2 + q1q2. , then is (q', -p') and (103) follows immedi-

ately.

So (102) is

X + x;(f,,,,)'au,) (9.8)
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This can be extended in the trivial way to

xY, -+ x4 , (f,) '' (9.9)

for any charges -y and -y'.

On the other hand 7y also labels Fock-Goncharov coordinates and Kontsevich-

Soibleman transformations are

K (-u) : - X,(1 - oX) ) (9.10)

Here we assume that we have chosen (u, d) and we vary d to +7r. So 7y runs over

all refined BPS charges labeling p., in Side,. If we make the identification X2 -+ zy

then (106) becomes (105) if we identify f,,,, by the following equation.

f,,, = (1 - U(by)x )2(';u) (9.11)

We still need to define fp,,v attached to p,, in Sideuf. Note that with respect to the

positive direction in Side' the cells are encountered in the order from + 7r to V.

Since we want to get (K(';))l in this case f,,, attached to p-,, in Side' must be

still

f = (1 -

It is important to know that even though the two cells labeled by 'y in U, have

different attached monoid variables xr, and x-_, (note that x., / -x-., although

n hau=--n_,,a) the slab functions attached to them are identical. Slab functions

are labeled in the face labeling. That is why we sometimes use the ambiguous face

labeling py.

If there are several coincide codimensional one cells then we have several slab

functions attached to the same support of several slabs. It is easy to see that the

product of Kontsevich-Soibelman transformations associated to them does not depend

on the order of the product and is induced by the product of these slab function.
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These facts follow from the following obvious properties of Kontsevich-Soibelman

transformations.

Proposition 9.2.3. If the intersection pairing between two charges is zero then the

two associated Kontsevich-Soibelman transformations commute. The Kontsevich-

Soibelman transformation associated to a pure flavor charge is the identity. Any

Kontsevich-Soibelman transformation acts on a Fock-Goncharov coordinate labeled by

a pure flavor charge trivially.

We have defined slab functions for a joint with a reference vertex. If we change

the reference vertex v we get parallel transports of exponents in slab functions and

slab functions have to satisfy the formula (35). So for each support of slabs we simply

pick an initial reference vertex and use (107) to define the slab function with respect

to that vertex and then use (35) to define the slab function on the same support with

respect to other reference vertices. By the definition of mp, if we swap two vertices

the formula still holds and the definition is also consistent along a loop avoiding A.

As explained in section 3 this definition guarantees that the log morphism attached

to a slab does not depend on the choice of reference vertices.

After that we use (36) to define fe. This is in fact unnecessary because we might

take slab functions inducing the log smooth structure instead of the log smooth struc-

ture itself as the input of our construction (which is actually more convenient as we

shall see). Nevertheless for completeness let us verify that this produces a log smooth

structure. (23) in the definition of log smooth structures is just (35). Now consider

all codimensional one cells containing a joint j. For each codimensional one cell with

positive primitive normal vectors n, = d, there is another one with the opposite

positive primitive normal vectors. They are labeled by x, and x-, respectively in

the slab labeling. fe associated to these two cells may be different even if f, are

the same. But the difference arises only from the change of linear functions of the

polarization across codimensional one cells and are contributed by exponents with

nonzero components in the normal directions to j. When we restrict them to V(j)

those components are killed. So the restrictions of fe associated to the two cells
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containing j are the same. This means (22) holds. Therefore the collection of fe

defines a log smooth structure. The only way that a negative exponent can appear

in (107) is that the corresponding BPS charge is a vectormultiplet. Because of the

assumption of finite type and the fact that one needs to cross infinitely many flips to

reach a vectormultiplet the exponent in (107) is always positive. Then the log smooth

structure is clearly positive as all slab functions are pole free.

Definition 9.2.8. The positive log smooth structure defined above is called the BPS

log smooth structure at (U, 9). It really depends on the BPS chamber containing

(u, td). The collection of a BPS polyhedral decomposition (denoted by FBPS), a non-

trivial polarization for this decomposition and a BPS log smooth structure (denoted

by LogBPS) is called a BPS Gross-Siebert data and is denoted by GSBPSQL, V).

Let us summarize. Let M be our moduli space. More precisely it is the moduli

space of SL(2, C) flat connections over a Riemann surface C with 1 singularities

with prescribed singular parts (15) at singularities modulo the gauge equivalence.

We assume that for every singularity T, is regular semi-simple. 1 > 0 and if the

underlying Riemann surface is CP then the number 1 should make the dimension

of M positive (e.g. if all singularities are regular then 1 > 3). M is also the moduli

space of solutions of Hitchin's equations (1) or (2) with singularities with prescribed

singular parts (local models of abelian singularities and no fractional exponents, see

section 2 and remark 7.10) modulo gauge equivalence and as such it is endowed

with a hyperkahler structure. M as the moduli space of flat connections is realized

in complex structures parameterized by ( E C'. We also assume that the set of

residues is pseudo-rational which can be achieved by an arbitrarily small perturbation

of residues of the original moduli problem. Let R be a positive real number large

enough such that Fock-Goncharov coordinates are piecewise holomorphic (pole free)

in the twistor C' and let M(R) be the corresponding moduli space using the modified

equations (3). The moduli interpretation as a moduli space of flat connections does

not depend on R. BPS spectra are also independent of R. We assume that M (and

hence M(R)) is of finite type. We pick (u, D) such that at u the BPS spectra is finite.
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We have proved the following theorem (it is actually a definition-theorem).

Theorem 9.2.4. Fix a generic t. After choosing an M (R) which provides an integral

scaling operation of M, over the singular integral affine manifold B which is the

base of the Hitchin's fibration there is a BPS Gross-Siebert data. The choice of the

nontrivial polarization is not unique. The marked BPS polyhedral decomposition and

the BPS log smooth structure depend on (u, 9). If (u, V) is contained in a BPS chamber

then FBPS and LogBps depend only on the choice of the BPS chamber.

Example 1 In this example we consider a moduli space of Hitchin's equation with

one irregular singularity at oo over the Riemann sphere CP. Strictly speaking this

is not an example for theorem 9.4 because the order of quadratic differentials is odd.

Nevertheless this example is the simplest case with a nontrivial wall crossing formula.

As explained in section 7 the construction of Fock-Goncharov coordinates is still valid

and so is the construction of BPS Gross-Siebert data. Moreover we expect that the

results in section 9 generalize to odd order cases once the corresponding Hitchin's

moduli spaces have expected properties.

We need to specify the asymptotic behaviors of solutions of Hitchin's equations

near z = oo. Let AO and Wo be singular parts of the connection A and the Higgs field

(p near oo respectively. So as z -+ oo

A ~ Ao,cp ~ Wo

We prescribe the asymptotic behaviors by first choosing a quadratic differential

A2 = PN(z)dz2 where PN(z) is a monic polynomial of degree N. Define A(z) to be

the singular part of the expansion of VT/N (up to a sign) near oO

PN(z) = A(z) - O(z 1)

So A2 - A(z)2 . When N is even A(z) does not contain non-integral powers and we
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can diagonalize the Higgs field po (note the the trace must be zero since it is in sl(2))

A(z) 0
Wo0=

0 -A(z)

so that -A 2 ~ det Wo, z -+ o as required by the definition of Hitchin's fibration. This

prescribes the asymptotic behavior of the Higgs field. In our case, however, N = 3.

Since it is odd we cannot diagonalize po. Instead for odd N one can find a complex

gauge transformation to put it into the form (see [36])

(PO (Z) 0 ( /z) 1/4

( ( (z/2)1/4  0

We prescribe A0 compatibly

1o 1 0 dz df

8 (0 -1 z z

The example we now begin to study is called Argyres-Douglas theory. We choose

a quadratic differential by choosing

P3(z) = z3 - 3A 2z

Here A is a positive real constant. As just explained we use it to prescribe asymptotic

behaviors of solutions'of the Hitchin's equations and this define the Hitchin's moduli

space. Now considered the base B of Hitchin's fibrations which contains z3 - 3A 2z

and its deformations. Deformations can only be of the following form

A2 = (z' - 3A2 z + u)dz2

where u is a complex number. Otherwise the corresponding behaviors determined by

A2 would not be the prescribed ones. This means B is complex one dimensional and

u is the moduli parameter.
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The spectral curve is clearly an elliptic curve whose Jacobian is itself. Since the

Jacobian of CP is trivial, the Prym is the trivial quotient of the Jacobian of the

elliptic curve. Therefore the fiber are spectral curves themselves. Each of them has

two cycles '71, 72 and they generate the gauge charge lattice with ('71, 72) = 1. The

flavor charge lattice is trivial in this example. The singularities of the affine base

B are the zero locus of the discriminant of P3(z). There are two of them given by

u1 = -2A 3 and u2 = 2A 3. According to the Picard-Lefschetz transformation, we can

choose the two nontrivial counterclockwise monodromies around '1, '2 to be

1 1 ) 1 0
and

0 1 ) (-1 1)

The union of stability walls is given by

W := {u I arg Z.,(u) = arg Z.(u)}

It is a simple closed curve passing though u1 , U2. It is symmetric with respect to the

reflection by the real axis (the line connecting ui and u 2). We take two branch cuts

along the real axis from ui to -oo and from U2 to +oo respectively.

For solutions of Hitchin's equations there is a single singularity at z = 00 with

order seven and hence it is an irregular one. It has five Stokes sectors. By the

prescription given in section 7, we obtain a WKB triangulation for a generic V. This

triangulation (of the complement of a small disk containing oo) is a triangulation

of a pentagon. There are three triangles with each containing a simple zero of A2 .

According to the identification of charges (cycles) and edges, there are two charges

associated to the two inner edges. Fock-Goncharov coordinates for outer edges are

defined to be zero according to section 7, so we only need to study inner edges.

The stability chamber inside the union of stability walls is also called the strong

coupling region. Let us start from the point u = 0 where it is clear that the three

zeroes of the quadratic differential is colinear. The two associated charges (up to a
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sign) are i7i and ±2. Since a refined BPS spectra which covers exactly half of the

BPS spectra is generated by simple roots which are associated to these two charge

we know the BPS spectra at u = 0 is (t71y, -y2). Let us assume the phase of l is

smaller than the phase of 1 .. The BPS spectra remain to be the same as along as we

stay inside this stability chamber. So we can assume u is any value inside W in the

following discussion. Now we vary t from d to V + iv. Varying '0 generically means

we change the triangulation by isotopy and it is clear that we meet two flips of edges

labeled by (±)71 (only one of them) and (±)-2 (only one of them). Without loss of

generality we assume that the two flips are associated to -y1 and 72 respectively. So

the (ordered) refined BPS spectra at (', 0) is (-y, y2). This is also the refined simple

BPS spectra.

We take the projections of the BPS walls to the a plane for a fixed generic ( and

obtain two BPS faces

{u | Im(Z 1 (M)/) = 0)},{n I Im(Z 2(u)/) = 0)}

In the corresponding affine coordinates, these are two lines intersecting at a point on

the stability wall. The two lines pass through two singularities respectively. Without

loss of generality we assume that intersection point is on the upper half of the stability

wall. We identify f-,, fn 2 with (-1, 0), (0, -1) in Z 2 (so 'Y1 and y2 are (0, -1) and

(1,0) respectively). The two rays generated by f-i, and f, are positioned as the

negative "x-axis" and negative "y-axis" and the singularity with counterclockwise

monodromy ( 0 is on the negative part of the "y-axis" and singularity with

the counterclockwise monodromy ( ) is on the negative part of the "x-axis" 3.
(0 1)

Now we have a polyhedral decomposition where the intersection is the only vertex

v. The two lines give us four rays which are considered as codimensional one cells.

They are denoted as pi, 1 < i < 4 in the counterclockwise order such that pi is the

3 This choice is made such that our picture matches the one in [45] where the consistency condition
of this example is discussed.
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positive part of the x-axis. They decompose the plane into four quadrants which

are maximal dimensional cells. These cells are denoted by o-*, 1 < i < 4 in the

counterclockwise order such that o is the first quadrant. The fan structure at the

vertex is the obvious one induced by the standard one of the plane.

Following Gross and Siebert we pick the polarization W to be the piecewise linear

function

'P -= x + y,) ( l= Y, ( l0= 0,P I 4= x

So in particular p(1, 0) = 1, o(0, 1) = 1, W(-1, 0) = 0, W(0, -1) = 0.

We specify the log smooth structure (the initial data for a structure) by using

Kontsevich-Soibelman transformations to slabs. In this case, these are the four rays

starting from the vertex and they are labeled by charges -y1, Y2. The orientation of B is

the one under which the composition order of Kontsevich-Soibelman transformations

for u inside the union is the counterclockwise order over B while for u outside the

union it is the clockwise order.

First we introduce monoid variables. We define the deformation parameter t =

z(0,1 where 0 = (0,0) is the zero in the underlying rank two charge lattice Z2 of the

problem. We also define4

x := z((1,0),1) y := Z(-10)'0), z := Z('0, w := Z('00 (9.12)

Here (1, 0), (-1, 0), (0, 1), (0, -1) are the primitive generator of the positive (negative)

x-axis and the primitive generator of the positive (negative) y-axis respectively and as

such are the (projections of) exponents or gauge charges. Since we identify ifn-, 2-Y

with (-1, 0), (0, -1), {x, y, z, w} are {x- 1 , x,, z, X .,2} respectively. {x, y, z, w, t}

generate P,.

Clearly xy = t, zw = t and these are relations in the ring P Here

the last components of the exponents (1, 0,1,0 for x, y, z, w respectively) are chosen

according to the four values of p given above. p is picked so that the power of t in

4There might be a clash of notations here. Note the difference between x, y and x, y. Also in the
third identity, z has different meanings.
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the relation xy = t, zw = t is one. If we replace it by some powers of t by changing

<, the defining equations obtained in the end will also be changed by replacing t by

its powers.

With these notations, we can write down the slab functions (which induce the

log smooth structure) induced by Kontsevich-Soibelman transformations associated

to BPS charges 'Y1, '72. They are5

fP1V = fP3,V = 1 + zIt = 1 + y, fpV = fP4,s = 1 + z-1t = 1 + W (9.13)

9.3 Equivalence Of Two Instanton Correction Prob-

lems

Suppose we are given a BPS Gross Siebert data GSBs(u, V). As explained in sec-

tion 3 the log smooth structure already gives us a structure consistent to order zero.

We want to show that it is the order zero part of a compatible system of consistent

structures. There are two equivalent ways to do that. We can forget about the wall

crossing formula and just follow the procedure described in section 3. Or we can take

advantages of the wall crossing formula by building a system of structures from it and

then verify that the system is a compatible system of consistent structures. Since

such a system is determined by the initial data i.e. the log smooth structure the two

approaches yield the same result. Here we will follow the second route which is easier.

Step I: Universal Structures

Consider the initial structure which consists of only slabs. In other words every

codimensional cell p, in the face labeling in the marked BPS polyhedral decomposition

is the support of a slab and the slab function is f,,. It is clear that a joint j can

only be a codimensional two joint. Pick a reference vertex v E j. The consistency

discussed here does not depend on this choice. The elements of the refined BPS

spectra E(u, d) are ordered according to their BPS rays' counterclockwise order in

5We have used the fact that the quadratic refinements are one because we have flips.
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the twistor CP'. We denote this ordered finite set by (y1,7y2, -..- ,Yr). We also have

a finite set of primary stability walls

(SW,, i < , i, 1 < r (9.14)

dividing B into finitely many primary stability chambers. Since the set E(u.t9) has

exhausted all charges appearing in the refined BPS spectra other stability walls are

not relevant for wall crossings involving only these charges. Of course after we apply

the wall crossing at these primary stability walls more BPS charges will appear which

introduces more stability walls. But as long as we truncate the wall crossing formulas

involved then at any given order (or degree) there are only finitely many BPS charges

and we continue having stability chambers obtained by dividing B. Note that a

stability chamber at certain order could be destroyed in the next order. Recall that

in a small neighborhood of j there are two sides Sideu and Side-'. The intersections of

these two sides with the normal space of j are denoted by the same notations. In the

normal space they can not be connected by a continuous path without intersecting

some curve which is the intersection of the normal space and a primary stability wall.

Otherwise following the path the order of pre-BPS rays can not change contradicting

the definition of Sideu and Sided. We orient the two dimensional normal space such

that in Sideu the order of the codimensional one cells labeled by refined BPS charges

is the counterclockwise order. Note that in Side' the order is clockwise with respect

to this orientation.

Let us consider the non-degenerate case first. j is contained in a unique primary

stability wall. Assume it is SW,,. Clearly in the normal space denoted by Qj we

have obtained a scattering diagram at v for j by taking the projections of codimen-

sional one cells containing j (they are labeled by yj, -y7) together with slab functions

as cuts. 7i and -, each in the face labeling labels precisely two codimensional one

cells (slabs). The two slabs with the same charge must lie in different sides. Recall

that the associated log morphisms (or Kontsevich-Soibelman transformations) on the

two slabs with the same charge are inverse to each other. Now we can apply the wall
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crossing formula at this stability wall and obtain an identity

KK,- = S(dj, ; u') = KiS'(, oi; u')K, (9.15)

where S(t9 , t9; u') is the ordered product of all Kontsevich-Soibelman transforma-

tions over refined BPS charges at (u', d) between W9 and 193 on the other side of the

stability wall. S'(di, ,i; u') is defined by the second equality. Here we have assumed

that between dj_ and Vj and at u one only encounters -yj, -y, which can always be

arranged due to the finiteness of the BPS spectra. u' is on the other side of the

stability wall and is close enough to a such that no BPS ray passes o0L or W* when

we fix them and move from a to u'.

Remark 9.3.1. The positions and exponents of K,, K., reflect the inverse relation of

Kontsevich-Soibelman transformations of slabs with same charges. It is consistent

with the uniqueness of factorization. In fact since 7, -y, are clearly simple roots by

truncating to the lowest nontrivial degree we see that we must include these two

factors.

For each charge y that appears in S'(?9j, ,di; u') we add a ray t starting from v

(which is identified as the origin of Qj) and with underlying line / . We require that

the direction of the ray must be pointing to the side of the stability wall containing

U .

We can do the same thing in a degenerate case. The only difference is that we use

the wall crossing formula which reverses completely the order of elements of E(u, d)

that appear in Sideu at the joint and add rays labeled by BPS charges appearing in

the wall crossing formula.

If a BPS charge appears on the side containing u but disappears on the other side

then we modify the slab function by setting it to 1. This is a possible scenario. For

example in the pentagon relation (134) if we start from the side with K,K+.yK 2,

then we need to modify the the slab function attached to the ray contained in the

BPS face p.-+.1±, and lying on the other side of the stability wall to be 1. If the slabs

function of a cut (corresponding to a slab) is modified to 1 in Sided we delete that cut
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(slab) in Sidey. It is possible that there are rays whose supports coincide with the

support of a cut. Clearly when we compose the ordered product in Side' the order

of log morphisms attached to this cut (slab) and these rays is ambiguous. This is

fine because the product is invariant with different orders of them by proposition 9.3.

This unordered product of Kontsevich-Soibelmann transformations can be replaced

by a single one. Instead of adding these rays we modify the slab function to be the

product of the original slab function and the ray functions. The Kontsevich-Soibelman

transformation associated to the modification is precisely the unordered product of

Kontsevich-Soibelmann transformations. We always do such a modification whenever

there are rays coincide with a cut. This is consistent with the requirement that a wall

and a slab are not allowed to share the same support.

The following propositions is trivial by our construction.

Proposition 9.3.1. The rays added to the scattering diagram according to BPS

charges appearing in the wall crossing formula are projections of BPS faces at u'

We let p., be the wall (j - R>ofhm,) n o- where o- is the maximal dimensional cell

whose projection to Q, is the scattering chamber containing the ray ty. Note that p,

is a half plane of the BPS face of -y. Here we assume that the choice of fiiy is such

that the projection of the wall is the ray t, (other wise we use _fii). We attach the

function fp to p.. In this way p, becomes a Gross-Siebert wall.

Definition 9.3.1. We add Gross-Siebert walls labeled by BPS charges in the wall

crossing formula to the initial structure for all joints of the marked BPS polyhedral

decomposition and modify slab function if necessary to obtain a new structure. After

doing that these Gross-Siebert walls and slabs may have new intersections which are

contained in other stability walls. We then do the above algorithm again. In other

words we build a scattering diagram for each joint of the new structure. Then we do

wall crossing calculations again for each joint. After that we build Gross-Siebert walls

labeled by BPS charges in the wall crossing calculations and modify slab functions

accordingly if necessary. We repeat this algorithm and go on like this. The collection

of all Gross-Siebert walls and slabs whose attached log morphisms (or equivalently
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functions inducing these log morphisms) are determined by corresponding Kontsevich-

Soibelman transformations of BPS charges is called the universal structure of GSBPS

at (u, 79). We use 9i(u, d) to denote it.

Step II: Truncations

Refined simple BPS spectra and refine BPS spectra are determined by finite tra-

jectories one encounters between 9 and9 + 7r. We define refined (simple) BPS spectra

for (dl, il) using the same definition except that we replace d and d + 7r by 193- and

Proposition 9.3.2. In the non-degenerate case (-yi, yi) is the refined simple BPS

spectra for (,di, id) on both sides of the stability wall SW,.

Proof The statement is trivial on the side with only two charges ('7i, '-). For the

other side we consider the rank two sublattice generated by (7i, 7yj) with the induced

intersection paring. Everything in the formalism of wall crossing formula explained

in section 6 works for this sublattice and we do the wall crossing computation al-

gebraically within this sublattice. In other words on the other side we truncate the

product given by K.,,K.,, according to the degree of positive linear combinations of

'yi, -yi. The factorization obtained in this way must coincide with the factorization of

K..,,K.., in the full lattice because of the uniqueness of factorization. Since this fac-

torization is obtained in the sublattice by the above truncation procedure it is clear

that charges it contains are all positive linear combinations of 7Yj, -Y. So (-Y7, 7Ye) is also

the refined simple BPS spectra for (t, i) on the other side.

For degenerate case we can use the (finite) refined simple BPS spectra at (u, V)

which positively generate the whole refined BPS spectra which includes the refined

BPS spectra for (t, t9?). So a subset of the refined simple BPS spectra at (u, d)

is the refined simple BPS spectra for (dL, t9i). Moreover the refined simple BPS

spectra at (u', 9) (which is the set of charges associated to all edges in the WKB

triangulation TrKB) is actually the refined simple BPS spectra at (u, ') because no

BPS ray passes d or d + 7r. The point is that like the non-degenerate case the refine
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simple BPS spectra for (9_, V+) is determined on the side containing u. As explained

in section 6 we use the degree induced by the refined simple BPS spectra to truncate

the wall crossing formula.

Recall that the log morphism induced by the Kontsevich-Soibelman transforma-

tion K, is given by

xz -+ x U(1 - o-()

where x = z('-gauh) The deformation parameter t is t = z0,). xz, does not contain

powers of t explicitly (the order of t is zero). However using x, to write down the

slab function is not a canonical choice. We can change it to an expression in terms of

other monoid variables using relations in the canonical thickening. So a slab function

or a wall function can contain t explicitly and in term of different sets of monoid

variables we may have different t-orders for each term. We define the t-order of a slab

function or a wall function to be the t-order of its lowest order nonconstant terms in

the formal Taylor expansion in the expression of monoid variables which makes this

lowest t-order largest. Then it makes sense to compute products of log morphisms

modulo powers of t. A single log morphism is viewed as a trivial product of log

morphisms. The truncation of a product (composition) of log morphisms to the order

k is defined to be the truncation modulo tk+1 in the expression defining the t-order.

We can truncate each log morphism to order k before we compose them (and we may

need to truncate again after that).

The t-orders depend on the polarization and therefore the truncation by degrees

and the truncation by powers of t are not correspondent naturally. However the

following proposition is enough for us.

Proposition 9.3.3. Given a joint j. For any k there exists a large enough N such

that the degree N truncation contains all such BPS charges that the log morphisms

associated to the rays and cuts labeled by them are nontrivial modulo tk+1. Moreover

there are only finitely many of rays and cuts whose associated log morphisms are

nontrivial modulo tk+1.
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Proof First we show that the t-order of a nontrivial fp, is strictly positive.

Without loss of generality suppose that in the slab labeling the cell p, is labeled by

a bar exponent whose exponent is mga = (eygau, h) then the order of t of f, =

(1 - o-(y)x_)"(7;u) in terms of x, is clearly zero. Since the polarization is nontrivial

by proposition 3.2 the order of mygau strictly increases if we change the maximal

dimensional cells form one that contains 7 to one that contains -Tn'Yg.u . That

means the h-component used to define mg.a and x, makes the left hand side of (100)

positive for the maximal dimensional cell containing -fh,.. Therefore the t-order

of X1, is positive in terms of x-_.

On the other hand note that the refined simple BPS spectra at either side of

the joint (equivalently either side of the wall crossing formula) is finite. A charge

appeared in the wall crossing formula is a positive linear combination of elements of

the refined simple BPS spectra on the relevant side. Since a slab function or a wall

function associated to each such element has a positive t-order, if the degree (i.e. the

sum of coefficients of the positive linear combination) is large enough then any ray

labeled by a charge with degree larger than that has associated wall function whose

t-order is higher than k. So the truncation by a large degree includes all such BPS

charges that the log morphisms associated to the rays and cuts labeled by them are

nontrivial modulo tk+1.

Finally the finiteness statement in the proposition follows for the finiteness of the

refined simple BPS spectra at either side of the joint (equivalently either side of the

wall crossing formula).

Proposition 9.3.4. The scattering diagram obtained by adding rays and modifying

slab functions according to the wall crossing formula is a consistent scattering diagram

to any order.

Proof Because all log morphisms are Kontsevich-Soibelman transformations un-

der the correspondence x, -+ X, the wall crossing formula formulated as the fact the

the ordered product along a loop is the identity in the truncated (by the degree) and

projective sense becomes that condition that the ordered product of log morphisms
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along a loop containing the origin in the normal space of a joint is the identity in the

truncated (by the degree) and projective sense. Since for any order k rays and cuts

whose attached log morphisms are nontrivial modulo tk+1 are all included in a large

enough degree truncation clearly the ordered product is the identity modulo tk+1 to

any order k.

Remark 9.3.2. The definition of a scattering diagram in section 3 the set of cuts and

rays is required to be a finite set. We can generalize the definition by allowing a

possibly infinite set of rays and cuts. We simply need to interpret a possibly infinite

product of log morphisms in the projective sense. Then it is clear that the wall

crossing formula is a system of consistency conditions at j.

Proposition 9.3.5. Suppose p, is a Gross-Siebert wall obtained in the wall cross-

ing calculation at certain joint of the universal structure. Assume the log morphism

attached to it is trivial modulo tk+1. Let j be a joint obtained by intersecting p,
and another Gross-Siebert wall or slab. If the joint j is non-degenerate then all log

morphisms associated to added rays associated to BPS charges in the wall crossing

formula at j are trivial modulo tk+1. If the joint j is degenerate we can consider added

rays in the wall crossing without p, and denote that set by l(j - p,). Denote the

set of added rays at j with p., by U(j). Then log morphisms attached to elements in

fl(j) - fl(j - p,,) are trivial modulo tk+1.

Proof For the non-degenerate j we use the fact that -y and the other charge

labeling the other codimensional one cell of the structure containing j form the

system of simple roots at both sides of the stability wall containing j. Since that

means the BPS charge 7' of an added ray has -y degree greater than or equal to that

of Y, Xy has greater or same t-order and the proposition follows. The proof for the

degenerate cases is analogous.

Definition 9.3.2. Fix k. In the universal structure 9(u, d), at each joint we

truncate the wall crossing formula there by a large enough degree such that the order

k truncation is included. We then check all rays and cuts in the associated scattering

diagram in the degree truncation and delete those whose associated log morphisms
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are trivial modulo tk+1. For each joint we construct the Gross-Siebert walls from the

rays that remain. We construct slabs from cuts that remain. The collection of all

such Gross-Siebert walls and slabs is a structure. We call it the order k truncated

structure and denote it by k(U, tv).

Proposition 9.9 guarantees that the definition is a consistent one. If a ray is

deleted then all rays from wall crossing calculations induced by the Gross-Siebert

wall associated to this ray should not exist any more. However in the definition this

is the case if and only if all such rays' associated log morphisms are trivial modulo

tk+1. This is true by proposition 9.9.

Theorem 9.3.6. The collection of order k truncated structures is a compatible sys-

tem of consistent structures. The wall crossing formula at a joint is equivalent to a

collection of compatible consistency conditions of scattering diagrams.

Proof First we show that the order k truncated structure &k(u, 19) is consistent

for each k. We have the wall crossing formula at each joint j of Rk(U, V). We mod out

both sides of the formula by tk+1 and get an identity. Clearly by definition each side of

the identity is also the product (modulo tk+1) of log morphisms which are nontrivial

modulo tk+1 and therefore is the product of log morphisms attached to Gross-Siebert

walls and slabs of Nk(u, t9 ). This means that Rk(u, 19 ) is consistent to order k. Now

we consider the compatibility of Rk(u, 79) and k+1(u, 9). The first condition follows

directly from the definition of Nk(u, d). As for the second condition note that in wall

crossings we only add Gross-Siebert walls but not slabs. So the only case to check

is that we modify the slab functions. If a slab function is modified to 1 for a slab

after a wall crossing then the slab is deleted so that there is no intersection between

the old slab in Nk(u, 9) and the (nonexistent) new one in Nk+1(u, 9) with different

slab functions. If the slab function is modified by multiplying it by some ray (wall)

functions then t-orders of these functions are k + 1 because they are in Nk+1 (u, ) but

not in k(u, td). Any attached function has a constant term which is always 1. So the

new slab function which is defined to be the product of the old slab function and ray

(wall) functions will be the same modulo tk+1. The second condition follows. Hence
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we have a compatible system of consistent structures. The statement about the wall

crossing formula is self-evident.

Remark 9.3.3. In section 3 we mentioned that to achieve the consistency of a structure

at a codimensional two joints we may have to normalize the log smooth structures

which means the constant term of fp is 1. Here our log smooth structure is auto-

matically normalized.

As a corollary of theorem 9.10, theorem 9.4 and proposition 3.3 we immediately

get

Theorem 9.3.7. Let M(R) be a Hitchin's moduli space described in section 9.1. We

assume the settings in the statement of theorem 9.4. Then there is a compatible system

of consistent structures associated to the BPS Gross-Siebert data GSBPs at (u, 79) and

a formal toric degeneration of Calabi-Yau varieties inducing the BPS Gross-Siebert

data can be constructed.

We have shown the equivalence of instanton data of the two instanton correction

problems in a good sense (see section 9.4 for further discussions). We also want to

see what this tells us about the relation of the two instanton problems themselves.

For that purpose we need to find the explicit degeneration.

Since we use unbounded cells each fiber in the toric degeneration is an affine

variety. We expect that the Hitchin's moduli space as an affine variety is contained

in this family.

First of all let us find a realization the Hitchin's moduli space viewed as the

moduli space of flat connections. Recall that the set of Fock-Goncharov coordinates

labeled by charges associated to edges for a WKB triangulation provides a set of

gauge invariant functions which is also a complete set of coordinates of M. We want

to use them as variables in the ideal defining M as an affine variety (but see remark

9.14). We need to enlarge the set of variables and then find relations between them.

Pick a pair (u, t9 ) and consider the associated marked BPS polyhedral decomposi-

tion. Elements of the refined BPS spectra E(u, d) are ordered. The order determines

a positive direction around each joint.

158



Let j be a joint of the marked BPS polyhedral decomposition for (u, 19). We use

the slab labeling for slabs containing j. Suppose a BPS charge Yi+1 labels a slab p-,isi .

If in Sideu pse is reached by which we mean that its BPS ray is reached by ?) then

we have the Kontsevich-Soibelman transformations

KQ(Yi+;u) : X - X(1 -o
^Yi+1

In particular let -y be the BPS charge of the last BPS ray encountered in the positive

direction before 'Yi±l and Yi+2 be the first after l ,i±1 in Side,. According to our

convention there is no joint with multiple slabs. The slab function is

f, = (1 - 0-(+1)2=)+41Q(,4+.) (9.16)

Define

ai= (0i, <i+1) = -li+17r(fia)

bi+2= -(7±+2,7+1) = l4+17r(fiyag) (9.17)

Note that ai, bi+ 2 > 0 and li+1 is the integer defined by the above equation and is not

l . It is easy to see that bi+2 Y+ aii+2 is a charge such that its component in the

direction orthogonal (in the inner product) to the BPS face labeled by -y+ is zero.

It is possible that 7y+1 is the first one in Sideu in which case we replace 7/j by the

charge which labels (in the slab labeling) the last one before -+1 in U. Similarly if

yi+1 is the last one in Sideu then we replace 7i+2 by the first one after yi+1 in U3.

We have
-rQfi gau)

X7- Xau ' Yi±2

We define a two components form of Xy by

X :( ,fn i X) (9.18)

where the first component is the restriction of the Fock-Goncharov coordinate Xy to

the sector in the twistor Cx bounded by BPS rays L, and 1l. Then the second
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component is the restriction to the sector bounded by 1 ,i+1 and 1.i±2. This is a local

expression in the sector bounded 1, and l)Y'i+2 of a global one. In fact for a discontinuity

labeled by 7, we just define more generally

7rs(rn gau)

(Xr, fps N X,) (9.19)

in the sector bound by l 1 and l, where -y,-1 and 7,+1 are the last slab charge

before -, and the first slab charge after 7, respectively. Here we add a superscript s to

restore the dependence of -r(fygau) on y, suppressed in (113). Clearly the definitions

in different sectors patch together consistently and we get a global definition of X,

over sectors bounded by BPS rays labeled by charges we meet in Sides labeling slabs

containing j. In other words we consider the restriction of X('*) with fixed u to the

range of 'i such that only the refine BPS charges containing j in Sideu are contained

in this range. Then each component of (115) extends to this globally defined X(uO).
7Ii

Now in the sector bounded by l and IY+2

X':i+2 (fi XYi2, Xti+2) (9.20)

We use this representation to set X^, 2 be in the same twistor chamber of fp,, Xi.

By (114) and (116) we have

- X +2 ((1 _ .(7ib+ 1 )x2 )ai+2Q(i+1;U), (1 - ui7+1)Xyi 1 aibi+ 2 a(Yi+ 1 ;u))X
-ij Ni+2 / r7~)X+)S ~

XS,, is defined by

=S Xbi±2 24+
'Yi+1 %/ 'yi+2

The symbol s. 1 indicates that the charge is contained in the BPS face pyi. Since

the discontinuous jump of Xi,1 across the ray 1, is trivial the two component form

of X-, for the sector bounded by L,, and li±2 is

XYi+1 = X+)xil
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The same formula holds for X,. Therefore we can write the above equation in the

following form

- (1uXi~)~+ )i2aibi+2Q(-Yi+1;u)X
YIti xY2 b+)'iJ

where 1 and o(yi+i) are understood in the two component sense. Note that X, is

a power of Xt 1 .

Here we are really considering some limit values (in the twistor CX) of Fock-

Goncharov coordinates (see the footnote after (89)) which is natural because we only

care about the moduli space M instead of its twistor space and therefore must elim-

inate the twistor parameter part of Fock-Goncharov coordinates. Like many other

constructions the limits are determined by (u, d) or the BPS chamber containing it.

Now we want to show that ai, bi+ 2 in the above equation are equal.

Theorem 9.3.8. Let Xi, X 1 , ;2 and X, be symbols defined above, then

ai = bi+ 2 and (note that now X,, := X24 X-+2)

X-ii+2 = (1 - o-(7+)m Is (9.21)

Proof We simply want to show that the contractions to the normal direction of p+,

of 7y and 7i+2 are opposite. If the joint is non-degenerate then this is true because -Y

and 7/i+2 are opposite charges.

Now let us assume the joint is degenerate. Let us denote the first charge in Sideu

by 'y1 and last one by y2. Clearly (y1, y2) $ 0. Consider the set of BPS charges in

Sideu of the degenerate joint and denote this set by L. Clearly any charge in L is a

nonnegative rational combination of 71 and 72 (because we are in codimensional two).

The combination is in fact integral because the BPS charges y1, 72 are geometrically

represented by loops around simple zeroes and so are all the other BPS charges.

When one varies V there is no way to produce fractional loops. On the Riemann

surface 71 is represented by a loop circling two simple zeros which we denote by 01
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and 02. They are contained in two triangles denoted by Ti and T2. Y2 is represented

by a loop circling two simple zeros which we denote by 02 and 03 (there must be a

common simple zero otherwise the intersection would be zero). They are contained

in two triangles denoted by T2 and T3. We will exhaust all possible scenarios of the

geometric relation between 71 and Y2.

0 01 $ 03. The loop circling the two simple zeroes 03 and 01 (with the proper

orientation) represents the charge y1 + 72 in Sides. Therefore we know that L

contains 71, 72 and possibly also 71 + 72. Geometric BPS charges correspond

to finite trajectories connecting simple zeroes. There is no finite trajectory

connecting more than two points in (01,02,03) at any given critical value of V.

In fact such a hypothetical finite trajectory would have different phases (which

violates the constant phase condition) in different segments separated by the

simple zeroes other than the starting and the ending point. Therefore there is

no way to geometrically realize m71 + nY 2 , m > lor n > 16. This tells us that

for a degenerate joint L only contains'/ , 172 and ) + 72.

* 01 = 03 and one of Ti and T2 is non-degenerate. In this case the two triangles

must have two commons edges corresponding to y1, -72. Since one triangle is

non-degenerate these two common edges have three vertices which means they

can not degenerate to finite trajectories at the same time. So we do not have

nontrivial linear combinations of , y2.

* 01 = 03, both Ti and T2 are degenerate. If we want the two edges corresponding

to the two charges to be able to degenerate to finite trajectories at the same time

they must have two common vertices. The two edges then are the two double

edges in the two degenerate triangles. This brings us to the scenario of infinite

flips described in section 7 with the two loop edges as the two circles bounding

the annular region. There are two possibilities. If the winding of the sum of

the two edges around the inner circle is zero we get two flips corresponding to
6 One may wonder the possibility of the realization of some multiples of just one finite trajectory

such as my1. But this is still impossible as a finite trajectory connecting two simple zeroes only
crosses the corresponding edge once.
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Y1, 72 which gives us a non-degenerate joint. Otherwise we have the process of

infinite flips. By the assumption of finite type this scenario has been excluded.

By the above classification the possibilities of three consecutive charges in Side, of

a joint can only be (7,7'N+1,7i+2 = -7), (N7,Yi+1 = Y + 7i+2 7<i+2), (i 7<i+17<i+2 =

7yi+1 + (-7i)) and (yi = -7i+2 + '7i+1,7 7i+1,7 7i+2). The theorem follows immediately.

We can do the same thing in Sided with the positive direction around the joint

replaced by the negative direction around the joint. We use the wall crossing for-

mula to add Gross-Siebert walls (equivalently BPS rays) and modify slab functions

(equivalently associated Kontsevich-Soibelman transformations). Of course in Side#

we could have infinitely many Gross-Siebert walls corresponding to infinitely many

sectors in the twistor CX. But we only consider X, labeled by the refined BPS spec-

tra at (U, V). So there are only finitely many relations. We need to define them by

incorporating the effects of all Kontsevich-Soibelman transformations associated to

added BPS rays (or equivalently Gross-Siebert walls). If the slab function of a slab

is modified to 1 in Sided we delete that slab and the corresponding BPS ray. There

are Gross-Siebert walls between two slabs in Side' labeled (in the face labeling) by

two adjacent charges in the refined BPS spectra at (u, d).

* If in Sided p is a slab such that the associated Kontsevich-Soibelman trans-

formation of the corresponding BPS rays lyi± is a transformation induced by a

flip, then in (114) the second component is meant to be the restriction of the

global X, to the sector bounded by l± and the first BPS ray one encounters

when rotating li in the positive direction of the twistor C' induced by the or-

der of the BPS spectra in this new stability chamber (note that this corresponds

to the negative direction around j). This means that the first component is the

restriction to the sector bounded by lN+1 and the first BPS ray one encounters

when rotating lYi+1 to lYiN2 in the negative direction of the twistor C'. Similarly

in (116) we match the two components with the two in (114).

* Suppose in Sided p is a slab such that the associated Kontsevich-Soibelman
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transformation of the corresponding BPS rays l, is a transformation induced

by a juggle then it is surrounded by infinitely many Gross-Siebert walls. Equiv-

alently the corresponding BPS ray l is surrounded by infinitely many BPS

rays. The second component of (114) is the limit Fock-Goncharov coordinate

labeled by 7i from the negative direction of the twistor C'. Then the first com-

ponent is the limit Fock-Goncharov coordinate labeled by 7i from the positive

direction of the twistor Cx.

Suppose in Sideu pi is a slab coincide with several Gross-Siebert walls such

that the associated Kontsevich-Soibelman transformation of the corresponding

BPS rays lN+1 is a transformation induced by a composition of a juggle and

several flips7, we change f,, 1 in (112) to the product of f,, with the wall

functions attached to the coincide Gross-Siebert walls. After that we follow the

same procedure in the previous cases.

Then by the definition and the wall crossing formula the same equation (117) holds

for slabs in Side'. In this way we have a relation (117) for each slab containing j.
Note that although two slabs with opposite normal vectors are labeled by the same

charge in the face labeling they are labeled in the notation of (117) differently. Of

course the labeling used in (117) can be identified with the slab labeling by charges

if we indicate which slab in Side' is the opposite one to a given one in Side,.

We call the relation defined by (117) a Fock-Goncharov relation. We have defined

them for a joint with a reference vertex. If we change the reference vertex charges

are related by parallel transport of charges and fp transforms by (35). The log

morphism attached to a slab and hence the corresponding Kontsevich-Soibelman

transformation associated to the labeling charge in the face labeling do not depend

on the choice of the reference vertex.

We have defined Fock-Goncharov relations according to the structure of the marked

BPS polyhedral decomposition but in fact we can equivalently define them accord-

ing to data in the metric problem. To realize the Hitchin's moduli space via Fock-
7This composition does not depend on the order of composing the transformations.
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Goncharov relations, it is natural from the perspective of the metric problem to collect

relations associated to all discontinuous jumps across all BPS rays that appear. Since

we want to compare it with a generic fiber of the degeneration constructed by Gross

and Siebert's method it would be convenient to equivalently formulate this collection

in terms of data in the complex structure problem. From the perspective of complex

structure problem this means we use the following definition.

Definition 9.3.3. Let i +1 runs over all slabs in the marked BPS polyhedral decom-

position at (u, d). We call the ideal generated by all such Fock-Goncharov relations

the Fock-Goncharov ideal IFG(u, d) and the defining equations are called the Fock-

Goncharov realization at (u, i) of the Hitchin's moduli space.

This construction gives us the correction dimension. It follows form the fact that

the number of independent Fock-Goncharov coordinates for a fixed (u, t) is equal to

the complex dimension of M.

Remark 9.3.4. In GMN's ansatz Fock-Goncharov coordinates are valued in C'. So a

Fock-Goncharov realization really gives a variety in a product of copies of C'. How-

ever one can also extend Fock-Goncharov coordinates to be valued in C (see remark

7.1) and therefore it is also natural to view the Fock-Goncharov realization as an affine

variety in a product of copies of C. What is the geometric meaning of this affine va-

riety? Since the Hitchin's moduli space as the moduli space of flat connections is

analytically isomorphic to the moduli space of fundamental group representations

which is an affine variety and Fock-Goncharov coordinates are gauge invariant holo-

morphic coordinates on the moduli space of flat connections the following conjecture

is likely to be true.

Conjecture 9.3.1. The Hitchin's moduli space as an affine variety in a Fock-Goncharov

realization is algebraically isomorphic to the underlying affine variety of the moduli

space of fundamental group representations.

But remember that the moduli space of flat connections is not algebraically iso-

morphic to the moduli space of fundamental group representations. In particular we
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should not consider the moduli space of flat connections as an affine variety. It is

shown that traces of monodromy matrices are generated by Fock-Goncharov coordi-

nates (see the appendix A of [36]). Since we can use traces and their relations to

write down the underlying variety of the moduli space of fundamental group repre-

sentations it would be interesting to see what the relation between this realization

and a Fock-Goncharov realization is.

Now let us consider the degeneration given by Gross and Siebert's construction

from a compatible system of consistent structures. We will use the following propo-

sition proved in [43] by Gross and Siebert.

Suppose p = o-+ n o-- is a codimensional one cell with two adjacent maximal

dimensional cells a+ and o_. v E w C p. Denote P, by P for x E Int(w) - A. Let

R,_ := R_ R, := R$_,,, R:,, : denote the coordinate rings of

k-th order canonical thickenings associated to a-, o+ and p respectively and f, is

the slab function attached to p. Here we have assumed that the reference maximal

dimensional cell for w -+ p is o+ so that the gluing of R_ and R, along R, is

given by the fiber product with respect to the canonical quotient homomorphism

R, -* R, and the homomorphism R, -+ R, which is the composition of the

canonical homomorphism and the log morphism induced by the change of chamber

from o- to o-+. Let F be the set of monoid variable whose projections are contained in

A,. By choosing appropriate coordinates and local representative of the polarization

the elements of the set of monoid variable P + F can be put into a standard form

A, + Se, e > 1 where Se is rank two (because A, is rank n - 1) and is generated by

(-a, e), (a, 0) and (0, 1). Here the second components are the h-components in (fr-, h).

The first components are primitive generators in AJ identified with Z (one can set

a = 1 if one likes) and we have suppressed the components in A,. e is the increase

of the piecewise integral linear function of the local representative of the polarization

along A' by a units. Let x := z(-'e),y = z(aO),t = z(01. Let R_,R+,Ro be the

localizations of R,_, R,, R, at {zm mEF, respectively. Then explicitly

R_ = C[A,][, y, t]/(zy - teY tt O e + y > k + 1)
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R+= C[A][,y,t]/(y-t',xot? I ae±-y > k +1)

Ro = C[Ap] [x, y, t]/(xy - t', x'yott I max{a, #}e + > > k + 1)fp (9.22)

The log morphism associated to p is

x - fax, y - f7ay (9.23)

Let R+ -+ Rn be the canonical quotient homomorphism followed by the local-

ization at f, and R_ -+ Ro be the quotient morphism (followed by the localization)

composed with the log morphism. The gluing is the fiber product of these two ho-

momorphisms.

Theorem 9.3.9. (Lemma 2.34 of [43]) The fiber product R_ XR R+ denoted by Ru

is

Ru:= C[A,][X, Y t]/(XY - fte, tk+1) (9.24)

The map Ru -+ R_ x R R+ which is an isomorphism is given by

X -+ (x, fpX), Y _+ (f y, y) (9.25)

Proof As C[A,][t]/(tk+l) modules Ra and Ro are generated by 1, x, y'. Elements

g± E R± can be written as g_ = Eio aix' + h_ (y, t) and g+ = EI>o bryl + h+ (x, t)

with h±(0, t) = 0. (g-, g+) E R_ xR, R+ if and only if

ao = bo, h_(y,t) = E bif y, h+(x,t)= aifa'x'
1>0 i>o

in Ro. Then (g-, g+) is clearly the image of Ei>o aiX + E1>0 b1Y1 E Ru. This shows

the surjectivity. The injectivity follows from the fact that Ru is a free C[A,] [t]/(tk+1)

module generated by 1, X', Y, i, l > 0.

Let us come back to the marked BPS polyhedral decomposition. Let j be a

joint. Denote the slab labeled by 7i in the slab labeling by slab,,. Let Ci and Ci+ 1
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denote the Gross-Siebert chambers whose boundaries containing (slab,i,slab, i 1 ) and

(slab.,i1 ,slab ̂i 2 ) respectively. Ci and Ci+ 1 are maximal dimensional cells in the BPS

polyhedral decomposition playing the role of o- and o-+ with Ci n Ci+ = p := pa -

We calculate r(frg),7(in 2) for the epimorphism 7r from the gauge lattice to Z

with kernel A,,. Let the h-components according to the polarization be (hi, hi+2).

Finally set x xi- = z(r(Tiy'),hi), y := z = z( 7(+Yi+2 ) hi±2). In this notation we haveN i+2

suppressed the components along A . Then according to theorem 9.12

X. IxI = tei+l

X N2= XSPY~ tei+1

where x, E A, and ei+1 is a positive integer determined by hi, hi+2. In theorem

9.13 x, y are supposed to be associated to primitive normal generators of p (which

generate lattice points in A') so that they are generators of the coordinated rings.

Here our generators are also primitive because Yj, Y+2 are primitive charges meaning

that 7y (7i+2) is not a multiple of another charge. This follows from their geometric

construction as geometric BPS charges because we do not allow multiple loops around

a given finite trajectory connecting two simple zeroes.

Since the slab function attached to p, is given by f, = (

using theorem 9.13 and then putting back the components along Ai (which are not

affected by the log morphisms) we know that the gluing of canonical thickenings of

the affine strata labeled by maximal dimensional cells C and Ci+ 1 along the canonical

thickening of the strata labeled by p, gives us the equation

X Xi = (1 - U(7i+1)zaiQ(3+"")z, te*+1 (9.26)

where

X f = ( (9.27)

X, is the lift of x in the fiber product obtained by the gluing of Ci and C2+1.

Since we know that the gluing of all Gross-Siebert chambers in a consistent structure
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is consistent, there is a well defined lift not only on this glued piece but also on the

whole space and we still denote it by X.,. In fact a gluing is either a change of strata

where no log morphism is introduced or a change of chambers where a log morphism

is composed between canonical thickenings. A log morphism in our case is attached

to a slab p,,, and is given by
-7r(ng"u)

z(i X z fa1

Gluing of chambers produces (122) in the relevant strata. So (123) is really the local

expression of X,.

Also note that (1 - o-(7i+1)xy±i )ai ("Yi+1u)tei+1 in (122) is really

((1 -i(Yi+"), (1 - o )iQ(7e+i"))tei

On the other hand

((1 - o-(7e+1)zw)"jQ(y+0"),(1 - o(7i+1)z,)a(aiissa))

is the lift of (1 -o-7+1)Xy )aiQ(Y+]"). Hence (1 - in (122)

is really

(1 - o(e_+1)X_,i+)aiQ(yi+";u)tei+1 (9.28)

This is analogous to the meaning of (117).

We have the following proposition.

Proposition 9.3.10. The gluing of all k-th order canonical thickenings associated

to all strata labeled by cells in the marked BPS polyhedral decomposition for (u,19) is

given by the ideal generated by

(XfXYi 2 - (1 - o-(7+ 1 )X,,i+1 )a2(Yi+;U)x, te+1 , tik+1) (9.29)

where X, is the lift of monoid variable x, to the total space whose existence is

guaranteed by theorem 9.11. i + 1 runs over all slabs (suppose the cardinality of the

set of slabs is s) in the marked BPS polyhedral decomposition.
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Proof According to section 3 the gluing consists of two types: changes of strata

and changes of chambers. Changes of strata do not produce new relations or change

relations of monoid variables in canonical thickenings because they are just the em-

bedding relations between canonical thickenings of affine strata i.e. all morphisms

are canonical quotient homomorphisms. Changes of (Gross-Siebert) chambers pro-

duce fiber products with log morphisms composed. Then the proposition follows from

(122) and (123).

Remark 9.3.5. We use x, instead of XP in (125). Unlike the situation in

(117) x,, cannot be immediately considered as the lift (two component form) of a

monoid variable in the gluing. That is simply because the h-component of it is zero.

Therefore one only need to absorb some powers of t to get h defined in (100). In

other words we can replace xi by X, if we are willing to lose some power of

t. Just like the situation of (117) X.,9  is a power of X, since the charge yi+1 is

primitive. So it is not a new generator.

Remark 9.3.6. Not all relations in the ideal I are necessary. We will see the redun-

dancy of some of them demanded by the wall crossing formula.

Theorem 9.3.11. Let M(M(R)) be a Hitchin's moduli space described in section

9.1. Choose a pair (u, 79). Let GSBPs be a BPS Gross-Siebert data at (u, V). Let k be

large enough. Then the Hitchin's moduli space in the Fock-Goncharov realization at

(u, 9 ) is a generic fiber of the degeneration over SpecC [t]/(tk+l) from Gross-Siebert's

construction.

Proof Let k be large enough one can assume that k + 1 is larger than all expo-

nents ei+1 in (125). Set t = 1 we get the defining equation of a generic fiber of the

degeneration. On the other hand by the monoid-charge correspondence we make the

following change of variable

XY -+ X,, 24 -+ XY (9.30)

Then the Fock-Goncharov ideal of the Hitchin's moduli space is mapped to the ideal

of that generic fiber and vice versa.
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In the above theorem we glue canonical thickenings of all Gross-Siebert chambers.

The consistency around a joint is implicit. Now we will make it explicit for non-

degenerate joints.

Let j be a non-degenerate joint contained in the unique stability wall SWj. Sup-

pose SWj = SW,,,. So there are three Gross-Siebert chambers having nonempty

intersections with Side,. They are bounded by (-7}2, y), (7, 72) and (7Y2, -Y1) respec-

tively. Let us denote them by C1, C2 ,C3 respectively. There is one more Gross-Siebert

chamber denoted by C4 . It is contained in Sidea. In Side' we glue C1 and C4 as well

as C4 and C3. In Sideu we glue C1 and C2 as well as C2 and C3. The gluing of C1 and

C2 gives us the ideal

(X_,XI2 - (1 - o-(7)XY),ME) XSP t'n,7 t k+1) (9.31)

We will show that gluing C4 and C3 produces the same relations. The relevant

monoids are still x_, and x.Y2* But they are in different Gross-Siebert chambers now

and therefore must be obtained from x, 2 and x,2 in the first gluing by using log

morphisms.

We have changes of strata which are surjective quotient homomorphisms

A) _ P C -43,CR 3 -4ci,ci 1 R->psfci R 3 >*j,ci

Rk _Rk? - (9.32)
R -+c4,c4 --- +p--1,c4  -+j,c4

R> ,c1J +).Py 71  Pi-PJ

- R - c (9.33)3--- P-YiAp--f]1 -+p--yl

We also have

R -k R -+Ic1

R - -+ R _ (9.34)

PT1fib-+C4eC4 pdco , -R

The gluing of C1 and C2 is the fiber product of R k -4 R +-JC and
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R c2,c2 - R c with the log morphism

Op, : Rk ->P'Yci -+ R - c2 (9.35)

6Y is actually induced from the log morphism

04 R -> -41 R ->+~c (9.36)jy - Py1,Ci 'Y1

We move x 2 and x 2 clockwise from the slab, to slab_, crossing all Gross-Siebert

walls and slabs between them and we obtain the monoid variables for the gluing of

C4 and C3 along slab_, with fp attached to it. We still use x,2 and x-,2 to denote

these monoid variables as they are still components of the local expressions of the

global elements X,,2 and X_ 2 . Similarly we move x, 2 and x, 2 counterclockwise

from the slab,1 to slab_, crossing all Gross-Siebert walls and slabs between them

and we obtain the monoid variables for the gluing of C4 and C3 along slab- 1 . The

log morphism between them across slab., counterclockwise is

z_ 2 - f," z , x f- b (9.37)

We have suppressed the indices of a, b. Because the ordered composition along a loop

is an identity and all Gross Siebert walls and slabs except slab., and slab_, have

been crossed it is clear that the log morphisms between x, 2 and x 2 across clockwise

slab- 1 must be also given by (133). Also note that

,, = xp, , e = e_

The second relation is obvious while the first one really means that we take the

composition of actions by log morphisms on x,, (so here for x, we use the same

convention of notations for x, 2 and x_,). Note that the composition of actions by

log morphisms on x, along a loop is the identity and the log morphisms across

slab,, are trivial for z, .
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Therefore the gluing of C4 and C3 yields the same relation. Similarly the gluing of

C2 and C3 yields the same relation obtained by gluing C1 and C4 . This shows the global

consistency as well as the redundancy of the relations in proposition 9.14 explicitly.

We have proved the following proposition.

Proposition 9.3.12. For a non-degenerate joint all relations can be obtained by

gluing Gross-Siebert chambers from only one side of the primary stability wall.

9.4 Consequences And Discussions

1. Equivalence of Instanton Data

We view theorem 9.10, 9.11 and 9.15 as an equivalence between the metric instan-

ton data and the complex structure instanton data associated to the metric problem

and the complex structure problem respectively. The labeling by charges and con-

struction of BPS log smooth structures and truncated structures build correspon-

dence between the metric and the complex structure instanton data in such a way

that discontinuities of the metric instanton data are identified with log morphisms

of the gluing of deformations in the complex structure problem while the wall cross-

ing formula is identified with consistency conditions of gluing. Labeling by charges

gives instanton meanings to Gross and Siebert's "corrections". In fact since slabs and

Gross-Siebert walls are labeled by BPS charges one can think of the corrections (log

morphisms) attached to them as being associated to BPS instantons which are finite

trajectories with BPS charges.

Geometrically this identification is nontrivial. On the metric side the wall crossing

formula is a computational tool for the enumerative problem of critical (i.e. finite)

trajectories of quadratic differential foliations while on the complex structure side the

consistency condition is an obstruction of the deformation problem. It is not easy

to see a priori how these two problem can be related. Of course one may object by

saying that the instanton correction problem of complex structures seems to be arti-

ficially set up to get the identification. However we have shown that it is a natural
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thing to do because eventually the toric degeneration obtained is a degeneration of

the Hitchin's moduli space (in its Fock-Goncharov realization) viewed as the moduli

space of flat connections.

Here is another interesting observation. The ordered factorizations in the wall

crossing formula and the system of consistency conditions can be inductively calcu-

lated by taking truncations. This is the algebraic way of deriving or proving them.

On the other hand a wall crossing as proved in section 8 can be derived by following

a continuous variation of 0 and collecting the BPS charges and their Kontsevich-

Soibelman transformations along the way. These two ways yield the same answer in

the end but they are actually different in the process. The first method works by

truncation and at each stage it is possible that not all of the rays which appear in the

end have appeared. At the next stage new rays can appear and can appear on both

sides of existing rays which means that these rays do not pop out in their natural

order given by the order of the refined BPS spectra. The algorithm is inductive and

a closed formula of the factorization is not guaranteed. The second method can give

the closed formula if one can follow the changes of decorated triangulations. This is

certainly challenging in general but in some examples we can do that. Also in the

second method rays appear in their natural order in the refined BPS spectra follow-

ing the continuous variation of V. In this sense the identification of the wall crossing

formulas in the metric problem with a system of consistent conditions is a nontrivial

result relating two different mechanisms of incorporating instanton corrections.

2. Metric Instanton Corrections in Mirror Symmetry

The solution of the metric instanton problem by Gaiotto, Moore and Neitzke is in

the context of gauge theory and instantons are critical trajectories which are physi-

cally expected to be boundaries of some branes. Therefore it is not mathematically a

priori clear that it also gives instanton corrected form of the Calabi-Yau (hyperkahler)

metric required in mirror symmetry.
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Although the equivalence proved above by itself does not tell anything new about

the description of the hyperkahler metric based on Gaiotto-Moore-Neitzke ansatz it

answers the question whether the GMN's hyperkahler metric is given by the instanton

corrections required by mirror symmetry positively because the solution of the com-

plex structure instanton correction problem given by Gross and Siebert is for mirror

symmetry.

It would be nice if one can actually count holomorphic disks in the mirror Hitchin's

moduli spaces and check the match from that point of view.

It seems that the metric instanton correction problem in mirror symmetry has

rarely been considered in the literature. On interesting paper that might be relevant

to Hitchin's moduli spaces if [14]. It studies the Ooguri-Vafa metric [70] which can

be considered as a simple local model around a single affine singularity without wall

crossing8 .

Since the complex structure and the compatible symplectic structure determine

the metric we can say that there is no instanton corrections to the symplectic struc-

ture now that intanton corrections to complex structures and instanton corrections to

metrics are equivalent. This fact is a general belief in the field but the author could

not find a completely convincing argument. Here we have an example for which this

matter is settled.

This equivalence also provides us a set of examples of fiberwise compact Calabi-

Yau's (i.e. Hitchin's moduli spaces) for which instanton corrections to complex struc-

tures and metrics can in principle be calculated. We just pick one point u (a quadratic

differential) and follow the evolution of the decorated triangulations when 79 changes

to 0 + 7r. Collect all critical trajectories together with their BPS charges one encoun-

ters and the wall crossing formula will determine the rest.

The author feels that one of the most important parts in the whole picture is us-

8The title of [141 contains "wall crossing", but it really means discontinuous jumps in our sense.
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ing the twistor method to transform the metric problem to a problem of holomorphic

functions. To appreciate this point suppose we want to handle the Calabi-Yau metric

using the coordinates on the Calabi-Yau manifold itself which seems to be the only

choice in general cases. We would imagine that we first identify the semiflat part

and after that manage to add the instanton corrections. Now suppose we want to

compare this to the complex structure instanton correction problem. Naturally we

would want to work with complex coordinates (e.g. Kodaira-Spencer theory). There

does exist a very interesting heuristic proposal due to Fukaya [33] which uses classi-

cal deformation theory and other tools to deal with the complex structure problem

(but not the metric problem) along this line. However that is not the approach of

Gross-Siebert which does not construct a semiflat complex structure first and then

deform it (see the introduction of [43] for a brief history of their ideas). The point

is that if we want to compare the metric problem to the complex structure problem

in Gross-Siebert's approach we had better have a way which does not use the coordi-

nates of Calabi-Yau itself. For Hitchin's moduli spaces which are hyperkahler we use

the twistor description which has a holomorphic nature making the comparison to the

complex structure problem much more straightforward. But this also tells us that for

general Calabi-Yau's or even Calabi-Yau threefolds where a twistor-like description

is absent the strategy in this paper will not work and we really need some new ideas.

3. Toward a Mirror Theorem

The equivalence has an unexpected implication: no matter what the instantons

in mirror symmetry of Hitchin's moduli spaces are their enumerative geometry must

be equivalent to the enumerative geometry of critical trajectories of foliations and

there should be a geometric way to see that. This would imply something nontrivial

in mirror symmetry.

In fact the equivalence has set up a link between an enumerative problem and a

deformation problem. This is very similar in spirit to the well known mirror formula

connecting the enumerative problem of Gromov-Witten invariants and the deforma-
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tion problem of calculating periods. The theorem should also be interpreted as a

mirror theorem. Again one could object by saying that while Gromov-Witten in-

variants and periods are obtained on Calabi-Yau varieties mirror to each other the

equivalence here identifies things on the same Hitchin's moduli space. However as ex-

plained in section 3 the instanton data of the complex structure problem is expected

to be the dual data of some enumerative data in the mirror Hitchin's moduli space.

So the theorem here is really half of the following conjectural full mirror statement

connecting two enumerative problems of instantons on two (families of) Hitchin's

moduli spaces mirror to each other.

Conjecture 9.4.1. Let M be an SU(2) Hitchin's moduli space with prescribed sin-

gularities and M its SYZ mirror which is an PGL(2) Hitchin's moduli space with

prescribed singularities9 . Then the enumerative problem of holomorphic disks wrap-

ping special Lagrangian fibers in .$1M is equivalent to the enumerative problem of

critical trajectories of quadratic differential foliations on the Riemann surface.

The mystery of this mirror conjecture is that it identifies an enumerative problem

on a Hitchin's moduli space with an enumerative problem on the Riemann surface.

It is not clear geometrically how this could be true.

4. Wall Crossings

The meanings of charges, central charges and wall crossing with respect to stability

walls are clarified in Gross-Siebert's construction. This is evident from the theorem

9.10 and the construction of BPS Gross-Siebert data.

9Strictly speaking the SYZ mirror symmetry of Hitchin's moduli spaces with Langlands dual
gauge groups has not be extended in complete mathematical rigors to include prescribed singularities.
But it is very likely to be true and is probably known to some experts. See [47] and [79] for physicists'
treatments.

0 0f course this problem has to be properly formulated first. Perhaps we should only count those
wrapping singular fibers?
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However there is a more subtle kind of wall crossing phenomenon. We call it wall

crossing of degenerations.

The construction of the Gross-Siebert data depends on the choice of (u, t9) or more

generally the BPS chamber containing the pair. The affine realization of Hitchin's

moduli space in terms of Fock-Goncharov relations also has the same dependency

and is not intrinsic. Different realizations could yield an isomorphic variety. It seems

that we should expect that they always yield isomorphic variety. So it is important

to understand what happens if we change (u, d).

Holding u fixed while changing 9 is easy to understand. This operation changes the

refined BPS spectra but does not change the BPS spectra. So the BPS polyhedral

decomposition is fixed and we just change the labeling of codimensional one cells.

The BPS log smooth structure is changed accordingly. All joints are preserved and at

each joint we use a new wall crossing formula according to the prescription in remark

6.4. Then we still get a universal structure and a compatible system of consistent

structures. Finally the defining ideals of the degeneration and the Hitchin's moduli

space are changed by relabeling variables.

Holding a fixed while changing u is more complicated. This should be considered

as the wall crossing of mirror degenerations. If a primary stability wall for the initial

u is crossed the BPS spectra would change which changes the BPS polyhedral de-

composition. So the new Fock-Goncharov realization of M will be different and can

not be obtained by simply renaming variables. In fact we now have different numbers

of variables and relations. Nevertheless because of the wall crossing formula at least

in some examples one can show that the new degeneration is obtained by the old one

by adding new relations for new variables without changing old relations between old

variables so that the generic fibers for different u are naturally isomorphic. So in this

sense the wall crossing is realized manifestly as the change of numbers of variables

and relations without changing the underlying variety. Note that in general the BPS

spectra is infinite which means we have infinitely many cells to glue. As in the wall

crossing formula we have to take truncations to a given order to get finiteness. So

in general after a wall crossing we really have a projective system of degenerations
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and the wall crossing of degenerations is understood in the truncated and projective

sense. It seems we need to use the machinery of formal schemes. The author believes

that fully clarifying the meaning of wall crossing of degenerations in general is an

important problem. In this paper we will just describe it in examples.

Yet another interesting direction is that the Kontsevich-Soibelman wall cross-

ing formula is actually designed to describe the wall crossings of some enumerative

problems of stable objects of certain Bridgeland type stability conditions in certain

triangulated categories [60]. The possibility has also been speculated by Gaiotto-

Moore-Neitzke in [35]. More spectacularly, the whole picture appears to have deep

relations with the study of entropy and microstates of some black holes from which

the Kontsevich-Soibelman wall crossing formula can be derived [3].

5. SYZ vs GS

The compatibility of the metric side and algebraic side of the equivalence and the

production of toric degeneration from large R degeneration should be considered as

a check of the compatibility of the differential geometric limit form of SYZ mirror

conjecture and its algebraic geometric version (Gross-Siebert's version).

6. Degenerations of Hitchin's Moduli Spaces

The instanton correction problem of complex structures in this paper is under-

stood in an algebraic sense. That is, it is in the form of explicit deformations of

algebraic defining equations. Usually in a problem of mirror symmetry a degenera-

tion is given a priori and the task is to construct its mirror. However for Hitchin's

moduli space it is not clear how to do that and even if we had one it may not be ap-

propriate for mirror symmetry. Introducing R-deformation in section 5 is a promising

step for metric aspects of mirror symmetry but that does not give us an algebraic

degeneration. The results proved in this section provides a way to construct such
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a degeneration. It is built from some input data (Fock-Goncharov coordinates and

BPS spectra) which have natural geometric meanings in the moduli interpretation of

the hyperkahler space. And because this degeneration is obtained by running Gross-

Siebert algorithm it is automatically a degeneration needed by mirror symmetry. It

would be interesting to see if these degenerations have any significance in other con-

texts.

What is the relation between the deformation parameter for Hitchin's equations

(namely R) and the deformation parameter t for the same moduli space in Gross

and Siebert's construction? The following conjecture is quite plausible given our con-

struction.

Conjecture 9.4.2. The central fiber of Gross-Siebert's toric degeneration of Hitchin's

moduli spaces coincides with the large complex limit point for the large complex de-

generation of Hitchin's moduli space.

Note that in the definition 5.1 we defined the large complex degeneration as the

large R family but we did not define the limit point. So to make sense of the conjec-

ture we should first define it. This is also a nontrivial check of the compatibility of

the SYZ picture and GS picture mentioned above. Finally it is natural to ask whether

the central fiber t = 0 (or R = oo) can be given also as a moduli space of some kind

of degenerate objects.

So an intuitive geometric picture of two degenerations in the moduli space of

Hitchin's moduli spaces is the following:

There is a moduli space R of hyperkahler structures on the underlying manifold of

an SU(2) Hitchin's moduli space M". The global structure of R is not clear. But we

have a real family of Hitchin's moduli spaces with changing hyperkahler structures

containing M and approaching a large complex point in R. Each element of this

"We may want to perturb the moduli problem slightly if necessary. This corresponds to achieve
the pseudo-rationality condition in section 9.2.
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family that is close enough to the large complex point is endowed with a hyperkahler

metric which is given exactly and has incorporated all instanton corrections required

by mirror symmetry. There is a discrete set of elements in this family with the fol-

lowing property. Fix one of them (this corresponds to choosing an integral scaling

operation in section 9.2) which is close enough to the large complex point (to get

large enough R, see section 7) and we can construct a complex family of Calabi-Yau

varieties (the toric degeneration). This complex family solves the algebraic geometric

version of the instanton correction problem in mirror symmetry. The complex fam-

ily is not uniquely determined by the original large complex family and the choice

of a fixed hyperkahler structure (fixed R). It depends on an additional choice (the

choice of a polarization). When we say the complex family we mean we have chosen

a polarization. However the instanton data associated to it is always equivalent to

the instanton data for the metrics. Moreover it always contains an element which is

canonically isomorphic to the original Hitchin's moduli space (in its Fock-Goncharov

realization) whose complex structure corresponds to the complex structure of the

moduli space of SL(2, C) flat connections. The complex family also goes to the large

complex point (assume the previous conjecture is true). The (real) large complex

family is not expected to be embedded in the complex family.

Unlike the (real) large complex family it is not clear under which conditions each

element of the complex family is isomorphic to a Hitchin's moduli space. Since the

toric degeneration is simply a complex family of complex manifolds it is not so easy to

exclude the somewhat perverse possibility that an element as a complex manifold is

isomorphic to a Hitchin's moduli space with one of its compatible complex structures

without fixing the twistor parameter". The question is also complicated by the fact

that the complex family is given as explicit deformations of ideals while the complex

structures of Hitchin's moduli spaces that we are talking about can not be easily

extracted from the defining ideal. There are two issues here. First of all this is clearly

1
2 However this point of view is not natural form the perspective of the full hyperkahler geometry

of Hitchin's moduli spaces, see remark 5.1.
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related to the issue of the analytic but nonalgebraic isomorphism between the moduli

space of flat connections and the moduli space of fundamental group representations,

see remark 9.14. Unfortunately the author's knowledge on this issue is not enough for

him to determine what this would imply. Second we are facing the highly nontrivial

issue of converting the moduli information in terms of deformations of ideals to the

moduli information in terms of other means and vice versa.

This second point deserves further remarks. To appreciate the non-triviality of

the issue let us take a look at the Legendre family of elliptic curves.

y2 = X(X - 1)(x - A)

This is what we meant by deformations of the defining ideal. On the other hand we

can view an elliptic curve as a complex torus and as such the moduli can be labeled

by a point T (ratio of periods) in the upper-half plane. This is what we meant by

other means. The relation between A and r is given by the elliptic modular lambda

function A(r) = 16qi/ 2 - 128q + 704q3 /2 + - where q = exp(27rir).

Back to our situation. The Gross-Siebert approach gives us deformations of ide-

als while the hyperkahler structure (Ricci-flat metric) and complex structures of the

Hitchin's moduli space are given by more intrinsic means. For the example of elliptic

curves in the previous paragraph the more intrinsic means is the periods approach as

one can write dz = dx + Tdy and the Kahler form is dz A dZ-. Of course for a com-

pact Calabi-Yau manifold or a Hitchin's moduli space we do not know how to write

down the Ricci-flat metric in this way but the example of elliptic curves suggests that

perhaps we need to convert the deformation of ideals to the deformation of periods.

In the situation of Hitchin's moduli spaces, however, we do not know any analogues

of modular functions. So once again (after the discussion in 9.5.2) we see that we

are having a clash of two perspectives associated to the two types of degenerations.

This is really one of the deep problems in mirror symmetry. This paper offers some

insights using the twistor space as a bridge but the situation is still largely unclear.
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Finally we notice that t is complex and R is real. Is there a complexification of a

large R degeneration? It seems the C' action in section 2 provides such a complexi-

fication. But what is its role in the family version of SYZ mirror symmetry?

9.5 Examples

Example 1 (Continued) Let us consider the stability chamber inside the union

of stability walls first. Let u be a point in this stability chamber (strong coupling

region). The BPS spectra at u is (ty 1 , ±72). So the ordered product of Kontsevich-

Soibelman transformations associated to the refined BPS spectra at (u, -9) is either

K.,2K^, or K_,K,2 or K, 2K_, or K.,,Ka 2 . Without loss of generality let us take

K- 2K-.

Now we let u cross a stability wall from the strong coupling region to the weak

coupling region. If we follow a continuous evolution of V by drawing pictures carefully

(for these pictures and many more, see [36]) or using computer we would see that

while in the strong coupling region there are only two flips in the nearby weak coupling

region there are three flips of edges labeled successively by 7Y2, Y1 + Y2 and 71. This

order is actually mandatary to us without following the evolution because we know

that the phases of BPS rays of /1 and 72 have switched. So the ordered product

should be

K-Y K-1 +-2 K-2

The wall crossing formula in this case says

Kf 2K- = KKY1 +±.2 K-2  (9.38)

Note that we have used the fact that Q(y; u) is always one for flips. Once we know

the closed formula, it is straightforward to verify it if one finds the proof given above

is not rigorous enough (it is rigorous). Since the wall crossing formula is local we
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can locally identify the charge lattice with Z2 such that mi = (-1,0), m, 2 = (0, -1)

(so f1 = (0, -1), 7T2 = (1, 0)) and also identify X, and X,2 as a complete set of

independent variables satisfying the multiplicative relation and the Poisson bracket

relation. Then we compose automorphisms on both sides applied to both X, and

X,2 and see that they coincide which is sufficient to deduce the formula.

The derivation is symmetric with respect to the change of the role of 71, and Y2.

In fact, varying from 'd + 7r to iO gives us

K-fK-Y = K72K-f +fK- (9.39)

Similarly we have more identities such as

K 2 K = KyK-_-I K- 2  (9.40)

We have obtained the formula by following the continuous evolution of '9 or at least

knowing the BPS spectra of charges. But in fact we can derive it without doing so.

We just use Kontsevich-Soibelman's theorem in section 3. We produce a scattering

diagram on the plane in the following way. We use the set up of example 1 in section

9.1. Define

D {(R(1, 0), (1 + tx)), (R(0, 1), (1 + ty))}

Then by the definition given in section 3, the associated log automorphisms are

K1 : x -x,y - y(1+tx), for ray R<o(1,0)

K 2 : x -x/(1 + ty), y -+ y, for ray Ro(0, 1)

K-1 :x -+x,y -y/(1 +tx), for ray R>0(1,0)

K21 : x - x(1+ ty), y -+ y, for ray R>o(0, 1) (9.41)

where the automorphisms are taken when one crosses the ray counterclockwise. After

setting t = 1 the above transformations are identified as the Kontsevich-Soibelmann
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transformations. In fact,

t -+ 1,7 Ki -+ K, (9.42)

Now if we follow a loop starting from the first quadrant counterclockwise then the

counterclockwise ordered product of automorphisms is

Kj1 K 2K1 K2 1

So we have to follow the procedure in the proof of the theorem to add rays such that

the new diagram is consistent. In this simple case, the consistency in the first order

persists to higher orders and the result is that we need to add only one ray. It is

(R(1, 1), (1 + t 2xy)) whose associated counterclockwise automorphism is

Kj 2 :x -+x/(1 + t 2xy), y -+ y(1 + t 2Xy)

so that following the loop counterclockwise we have

K1 2K1'K 2K 1K2' = 1

which is nothing but (134) by using (138).

Although we have got the same answer in the end, the second approach is based

on a different mechanism. In the first approach we follow the order of BPS rays as

we meet them along a continuous evolution to derive the wall crossing formula which

selects the BPS spectra. In the second approach one does not need to use stabil-

ity walls and even if one puts the stability wall into the picture one does not meet

all BPS rays because some of them (ray (1,1)) are not known until the wall cross-

ing formula is obtained and they can appear without respecting the order of BPS rays.

As promised in section 8 there is a third way to derive the formula. Recall the

definition of a spectrum generator given there. The cumulative result of the variation
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from V to V + r is an omnipop whose associated transformation S in our example is

(see [36] for the derivation)

X- X-1(1 + Xt)

Y- __*Y1 ( Yl+X ~ 2

We assume the phase of l is large than the phase of 1 2 following the convention

used there. The author wants to emphasize that S is obtained without knowing any

of the Kontsevich-Soibleman factors or even any charges appearing in either side of

the wall crossing formula! However due to the strong constraint that the wall crossing

formula imposes this is already enough. We are seeking a decomposition of the form

S = l Kmy+n-y;umlkfl +nY2

m,n>O

Inside the stability walls, since the phase of l is large than the phase of l -t, the

product order must be the increasing order of m/n from 0 to o0. We then truncate

the product successively by the degree and then take the projective limit. As ex-

pected, truncation up to order two (hence involving only K,, and K,,) gives us the

expected decomposition K, 1 KY2 which by induction can be shown to persist to all

higher orders. Therefore we have derived the left hand side of (135). Working outside

the stability wall by decomposing in the reverse order we get the right hand side.

Identity (134) (or its variations like (135) (136)) is called the pentagon identity

and is the simplest nontrivial wall crossing formula. It has been encountered by many

authors. The example presented here was described in [36] (for the Fock-Goncharov

coordinates part). The scattering diagram part follows [42].

Next we are going to consider the corresponding complex structure problem. This

example has been studied in [45].

We have an initial structure with only one joint v which is the origin. A structure

in the two dimension with only one joint reduces to a scattering diagrams. It is the
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scattering diagram we just described in this section and the wall crossing gives the

additional Gross-Siebert walls that have to be inserted. It is nothing but the ray

(1, 1) together with its log automorphism.

We have canonical thickenings13 such as

R k , R k , R$ , Rk

R _ , R , R , Rk

They are glued in two ways. The first type is change of strata. In other words,

for T' C T, we have R k -+ R _ . There is no need to compose automor-

phisms. The second type is change of chambers. For example we glue R k

and R 1 by identifying R and RP.k . To identify R _ and

R k we need a parallel transport from oi-1 to o-i. Suppose we only have the one

axis and only one singularity which is the one on that axis, then the naive gluing is

already inconsistent because of the nontrivial monodromy which means that the two

different ways of parallel transports bypassing the singularity from different sides give

different identifications. The gluing is therefore not well defined. The automorphism

attached to the cell pi induced by fp, makes this gluing consistent (in the absence

of the other singularity), see [45]. Similar things happen for the other singularity as-

suming the absence of this one. However, when both of the two singularities appear,

due to their interaction (" scattering"), the slab functions given here that once guar-

antee consistency separately do not make the gluing consistent any more. The new

consistency condition of the gluing (which is not induced by monodromies) is the one

given in the definition 3.19. So moving along a loop around the only codimensional

two cell v, the composition of morphisms induced by the slab functions between these

affine pieces

R_ R + Rk -+ R_ + R_

13We define i modulo 4.
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must be the identity. The composition of the log automorphisms in terms of genera-

tors are 14

x - (1+ wy)- 1 x, y - (1+ wy)y

z - (1+ wy)z, w - (1+ wy)" w

which is not the identity. To compensate that, one only need to add a ray (a Gross-

Siebert wall) p:= R>0(1, 1) with f, := (1 + wy) = (1 + t 2 X-1z- 1). This is precisely

the result presented before by a change of variables.

Note that the union of stability walls separates the five rays (one Gross-Siebert

wall and four slabs). Inside it we have two rays associated to two charges 71,72 and

outside it we have three rays with the order of rays labeled by 71 and 72 reversed

and a new one added according to the wall crossing formula. By its slope the new

ray is clearly the projection of the BPS wall associated to the charge 71 + 72. This

is the wall crossing interpretation of the consistency condition in Gross and Siebert's

construction.

Let us continue and try to find the defining equations of the degeneration. p

divides o-1 into two chambers denoted by u1, u2 clockwise. Note that in section 3's

notations o-u = ou2 = oa. The degeneration is obtained by gluing R _ and

R _k Rk and R _ R _k and R _k R _ and R k
P2- 2,r P34UC2,Cr2 P3-+O3,aO31 P44UO3,0r3 p4-+4,a4l P1 U4,4 Pl-+Orau 2~

and finally R _ and R . The treatments of the second and the third
P1 -+O' OrU2 P2-+al,uu1

gluing are almost the same. The only difference is just a renaming of variables. So

let us consider the second gluing R k ,2 and R _,,. Using the definitions in

section 3, one gets

R _ = C[t]/(tk+1) [A, 3][z, w]/(zw - t, wk+1)

Similarly we have

= C[t]/(tk+l)[A [z,w]/(zw - t, zk+1)

14 The direction of the loop is counterclockwise starting from the first quadrant.
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There are canonical quotient homomorphisms from R and R , to R

and R k respectively (followed by localizations) and the gluing is obtained by

identifying R _ and Rj3 ,, by the log automorphism. R and R

are the same ring C[AP3] [t]/(tk+1) [z, W] [zW - t, zk+1 Wk+1] and the log automorphism

is

z - fP3,oz = (1+ y)z, w -+ f,-w = (1 y)~-W

The fiber product is isomorphic to

C[t]/(tk+l)[A, 3][Z, W][ZW - (1 + y)t]

by the homomorphism

Z -+ (z, (1 + y)z), W -+ ((1 + y)w, w)

By the same argument the third gluing gives

C[t]/(tk+l)[A,4][X,Y][XY - (1 + w)t]

X - ((1 + w)x, X), Y -+ (y, (1 + w)y)

The first gluing and the fourth gluing reproduce these two gluing results by proposi-

tion 9.16 because the joint is non-degenerate. As for the fifth gluing, it is not really

a gluing of different affine pieces along a substrata. All such gluing has been done.

In fact it is induced by two changes of of strata from p -+ o- to v -+ o- and a change

of chambers in the middle. The nontrivial part is the change of chambers induced by

the division of o-1 into two chambers by the wall p.

R k - R k
V+U1,'ul V+U1,UuCr 2

Since o-1 = o-2, = ou2, the prescription in section 3 says that the transformation

is just the log automorphism induced by f,, which clearly preserves the relations
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xy = t, zw = t.

The above calculation tells us that the toric degeneration produced by our con-

struction is

Spec C[t]/(tk+1)[X, Y, Z, W, t] [XY - (1 + W)t, ZW - (1 + Y)t]

From the explicit presentation of the ring it is clear that the k + 1-th order ring

is naturally compatible to the k-th order ring simply by taking the quotient homo-

morphisms C[t]/(tk+2) -+ C[t]/(tk+l). In particular we do not need to change any

other relations and log morphisms. This is the compatibility of consistent k-th and

k + 1-th structures in the sense of Gross and Siebert. So we can send k to infinity

and know that the defining equations of the total degeneration over Spec C[[t]] are

XY = (1 + W)t, ZW = (1 + Y)t and the fiber over t = 1 is

XY = (1 + W), ZW = (1 + Y) (9.43)

This is an intersection of two degree two hypersurfaces in C4 and therefore is an

affine Calabi-Yau variety.

On the other hand, the same equations are also the equations of the Hitchin's

moduli space in terms of Fock-Goncharov coordinates associated to two indepen-

dent charges/edges. Although this has been proved before for general cases the proof

ignores the role of cluster transformations as we only use Kontsevich-Soibelman trans-

formations before. It is interesting to derive it in a way making cluster transformations

transparent. Denote the two Fock-Goncharov coordinates associated to two edges for

the initial WKB triangulation at (u, t9) as xi, yi. First let us consider the case when

the moduli parameter u is inside the stability walls (the strong coupling region) and

vary 79 to 9+7r. Then we encounter two flips. According to the cluster transformations

of two successive flips, we define

y2 = X1 X2 = y1(1 + ), y3 = X2 1 X3 = y 2(1 + x 2)
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We immediately get
1

X1 3 = 1 + x 2 = 1 + -
Y3

1 1 1
1+ - + 1 (9.44)

Y1 Y3 Y2

It is important to track the charge/edge labels. X 1 , X3 are labeled by the same charge

(up to a sign) with different signs (or equivalently labeled by edges) and the same goes

for y1, y3 for the other charge". These two equations (with redundant but natural

variables) define the Hitchin's moduli space as an affine variety in a way which is

democratic to all BPS charges in the strong coupling region.

The equations are identical to the equation (139) by the identification

1 1
X - x3 , Y -+ X1, Z - )W -+ -

y 1  Y3

and therefore the Hitchin's moduli space is indeed embedded into the toric degenera-

tion constructed by Gross and Siebert's algorithm. The identification keeps track of

labeling by charges.

We can do the same thing for the moduli region outside the union of stability

walls (the weak coupling region). There are three flips corresponding to three charge

71, y1 + 72, -y2 of the BPS spectra in this region. The corresponding defining equations

are given by

Yn+1 = Xn,1 Xn+1 = Yn(1 + n), n = 1, 2, 3.

Although we now have two more equations the underlying varieties (as varieties in a

product of copies of C', see remark 9.14) are isomorphic via the canonical map

(Xi,X 2,X 3,X 4,y1,y 2,Y 3,y 4) -+ (Xi,X 2,X3 ,i,y 2,Y 3)

1
5 Note that y-1 is the Fock-Goncharov coordinate with the negative charge of yj and therefore

it is the coordinate labeled by charge with the effect of the mutation of charges incorporated (see
section 8). Since the Kontsevich-Soibelman transformations differ from cluster transformation by
the mutations of charges, using y~1 instead of yj is consistent.
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with inverse map

(X, X2 , X3 , i1, Y 2,y 3) - (X1, X2, X3, Y3 (1 + x 3), Y1, Y2, Y 3, X 1 )

Eliminating some variables, we get that the ideal of the variety is generated by

X1X3 - (1 + X2 ), X2X 4 - (1 + X3 ), X4x 1 - (1 + X5 ) (9.45)

where X5 := y4(1 + X4 ). These variables are labeled by BPS charges in that stability

chamber.

From the perspective of Gross and Siebert's approach to the complex structure

problem, this just means that we can start from other BPS polyhedral decomposi-

tions and everything works consistently. We define a polyhedral decomposition using

projections of BPS walls labeled by -,y71+72, 72 together with log morphisms ac-

cording to Kontsevich-Soibelman transformations associated to the three independent

flips labeled by these three charges in this region. Then we would get an inconsis-

tent scattering diagram with six cuts (there is a cut with slope (-1, -1)). After the

wall crossing calculation the slab function attached to the cut with slope (-1, -1) is

modified to 1 and is therefore deleted. The obtained consistent structure is the one

determined above with five slabs.

Now let us construct the degeneration from this new BPS polyhedral decomposi-

tion arising from the weak coupling region. It is instructive to see how the construction

is consistent to the construction arising from the strong coupling region. Note that

unlike the situation inside the stability wall this time we have five maximal dimen-

sional cells instead of four. Let same symbols x, y, z, w, t to denote the same monoid

variable as before. We define Po := zG'I'0). The monoid variable associated to the

fifth ray p = R;>(1, 1) (with slab function f, = (1 + wy) = (1 + t 2zX-z- 1)) is

p = z1,1,2) = pot 2 (9.46)
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Let xs, := z('"'0'). Clearly

p = zXp 1 t (9.47)

By the exactly same calculations for the strong coupling region the gluing of the

second quadrant and the third quadrant gives us the equation ZW = (1 + Y)t. The

gluing of the part of the first quadrant below p and the fourth quadrant gives us

PW = (1 + Y)zXt 2 (9.48)

Using (143) the equation (144) becomes ZW = (1 + Y)t.

Similarly we get XY = (1 + W)t by gluing either the third quadrant and the

fourth quadrant or the part of the first quadrant above p and the second quadrant.

We are left with the gluing of the part of the first quadrant above p and the part

below it. This gluing is given by the ideal generated by

XZ - (1 + t2X-Iz- 1 )pot2 (9.49)

Because of the relations x-'z- 1pot 2 = 1 and p = pot 2 , (145) is

XZ - (t2 + P)

So the gluing of all maximal cells gives us

XY= (1+W)t,ZW= (1+Y)tXZ = (t2 +P) (9.50)

and setting t = 1 one gets

XY = (1+W), ZW = (1 +Y), XZ = (1 + P)

which recovers (141) obtained from Fock-Goncharov coordinates in the weak coupling

region. This variety is an intersection of three degree two hypersurfaces in C' and
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therefore is an affine Calabi-Yau variety 6 .

One can unify the above two complementary descriptions by comparing the WKB

triangulation TWKB(0, u) and TWKB(O + 7, u') where u and u' are close enough' 7 and

are inside and outside of the union of stability walls respectively. The corresponding

wall crossing formula is K,2KylKK.+,K, = 1 which tells us that we can also

follow a loop (, u') -+ (V + r, u') -* (d + 7r, u) -± (, u) where 5 = 3 + 2 flips are

encountered in the order of the factors in the wall crossing formula. Therefore we

define recursively

Yn+1 = Xn 1 Xn+1 = yn(l + x)

Take a look at the picture of flips or the wall crossing formula, you would agree that

these seemingly infinitely many variables are actually periodic with period five which

can be easily verified by algebra. So the democratic (to all BPS charges for the whole

moduli region) way of writing the ideal is

I := (Xn n+1- (1 + X))

with Xz = xn+5. This is of course consistent to the above two descriptions in the

weak and strong coupling region.

Now we can give a more explicit interpretation of "wall crossing" in the complex

structure problem. The natural defining ideals obtained via the Fock-Goncharov

relations are in terms of variables labeled by BPS charges and as such they exhibit

wall crossing phenomenon. The wall crossing formula guarantees the consistency of

different descriptions.

The relations yn+1 = x 1, 7 n+1 = Yn(1 + Xz) are known as Zamolodchikov's Y-

system. It is related to the thermodynamic Bethe Ansatz mentioned in section 6.

Periodicity in Y-systems is a beautiful story and has been studied by many people,

16It is in C' instead of C5 . We want our variables to be labeled by all BPS charges at u in the
slab labeling and therefore we must keep the variable labeled by -71 - 72 even if its corresponding
slab has been deleted in the construction of the universal structure.

17 They are close enough to avoid the crossing of 0, V +7r by BPS rays' phases.

194



see for example [32]. However, most wall crossing formulas give rise to non-periodic

relations.

Example 2 Here we describe a true example of the cases (quadratic differentials with

even order poles) studied in the main results of this section. Since it is very similar

to the previous example and everything is a simple analogue to its counterpart the

presentation will be very brief. We only describe the wall crossing formula. This

example is also from [36].

The Riemann surface C is still CP'. The space B is complex one dimensional

and consists of the following quadratic differentials

A2 = (Z4 + 4A 2 z 2 + 2mz + u)dz 2

where u parameterizes B and both A and m are constants. There is an order eight

pole at the infinity and clearly m is the mass parameter. For simplicity let us set

m = 0.

There are four simple zeroes on C. There are two singular points on B given by

u = 0 (multiplicity one) and u = 4A4 (multiplicity two).

Su is an elliptic curve with two punctures lying over the infinity. The charge lattice

I ~ Z3 after choosing branch cuts and it contains a one dimensional flavor charge

lattice. F is generated by three charges -y1, 72,73 such that 72 + 73 is a pure flavor

charge and

(72,73) =0, (73 , 71) = (71,72) = 1

Since the residue m is zero, for the pure flavor charge y2 + y3

Z-2 + ZIM = 0

This tells us that there are only two stability walls. One is given by the alignment of

Za, Z, while the other is given by the alignment of ZY, ZY3 . The union is a closed
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curve passing through the two singularities.

It is easy to check that one possible wall crossing formula is

K-,1 K, 2 K_ = K-Y2K_,3K+ , + Kt2 _, K-1

where the left hand side is for the stability chamber inside the union. Note that here

we have multiple joints with the same support.

It is interesting to see how the stability walls and wall crossing formulas split when

we allow a nonzero m. Details can be found in [36].

Example 3 We want to consider an example with infinitely many jumps in the wall

crossing formula.

The metric problem part of this example is considered in [36] and the BPS spectra

is identified with the BPS spectra of the pure SU(2) gauge theory. The corresponding

scattering diagram is determined in [42].

The underlying Riemann surface is still CP'. The quadratic differentials are

A2  A2 2 A2A2=(-3+ - -)dz 2
z3  z2  z

As before A is a real positive constant and u is the moduli parameter on the complex

one dimensional affine base of the Hitchin's fibration. There are two order three

irregular poles of A2 at z = 0 and z = oo. This form of A2 is chosen to maintain

the asymptotic behaviors of solutions of Hitchin's equation prescribed by an element

of this one parameter family of quadratic differentials. There are two simple zeroes

which collide at ui = -A 2 and U2 = A2. ui and u2 are the singularities of the affine

structure. The charge lattice has rank two with basis denoted by Y and 72 such that

71 (7y2 ) is the vanishing cycle at ul(U2). There are two stability walls and their union

is a simple closed curve passing through ul and U2.

Let us consider the WKB triangulations for u staying inside the union. Like in

the first example, the BPS spectra (charges) here are 71,72 (up to a sign). According
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to the description of local behaviors of trajectories near singularities in section 7,

since the order of (say) the singularity at zero is three there is a single Stokes ray

and hence a trajectory connecting the singularity18 to itself. This means that we

have degenerate triangles. There are also generic trajectories connecting the two

singularities and these trajectories arise in two one parameter families separated by

the two simple zeroes. Pictures can be found on the page 123 in [36]. From the

picture it is easy to see that

('y1,72) = 2

Varying d to d + r inside that stability chamber we encounter two flips. The

relevant critical finite trajectories are two trajectories connecting the two zeroes and

they are on different sides of the singularity at zero". So the ordered product of

Kontsevich-Soibelman transformations is 20

K71 KY2

with

K_ i : Y -+ X71, X Y2 2 7(1 + Vyl)-2

Ky2 :XY2 -+X72 , X-* X-Y1(1 + XI2 )2

Now let us move to the other stability chamber. We meet the flip labeled by /1

first. Then we meet infinitely many flips in the scenario of reaching a limit config-

uration as described in section 7. In fact, the relevant BPS rays are rays associated

to ((n + 1)y1 + n7 2) where n is a nonnegative integer 21. To see this fact just no-

tice that the region between the two trajectories connecting the two singularities to

themselves is an annular region and together with the other two trajectories this is

the initial configuration of the infinite flip scenario in section 7. The loop formed by

18More precisely the endpoint is on the boundary of a small open disk containing zero. But since
there is only one, we can identify it with the singularity itself.

190f course, one can also use the other singularity.
20Assuming without loss of generality that the BPS ray of q1 has larger phase.
21Now that the phase of the BPS ray of 71 is smaller than the phase of the BPS ray of 72 outside

the union of stability walls, this is an counterclockwise order when n -+ oo
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joining the two generic trajectories has winding number one around the inner circle.

Flipping once increases the winding number by one and therefore we have the above

BPS spectra. The similar thing does not happen inside the union of stability walls

because in that case initially the winding number of the loop formed by joining the

two generic trajectories is zero.

This infinite sequence of BPS rays converges to the "limit" ray with charge 71 +72.

If we vary the angular phase V starting from a phase larger than the phase of the BPS

ray of 72 clockwise instead of counterclockwise as we have been doing, then we have

another infinite sequence of flips with BPS charges (n + 1)72 + r7i also converging

to 71 + 72. Therefore we are in the situation of having to take a juggle. In other

words we compose infinitely many flips labeled by ((n + 1)-7i + n-72) (which is in

a finite range of the variation of V) succeeded with a jump from the limit Fock-

Goncharov coordinates X+ to the limit Fock-Goncharov coordinates X,. Then we

continue increasing 1 and pass through infinitely many flips labeled by (n+ 1)72 +-n'7 1

and compose the associated Kontsevich-Soibelman tranformations counterclockwise.

While maybe one can make sense of the composition of the first infinite sequence in

the ordinary limit sense one certainly cannot do that for the second infinite sequence

as they are to be composed backwards from the limit. The total infinite composition

therefore has to be understood in the truncated and projective limit sense. To write

down the wall crossing formula, we need to know the transformations associated to

juggles. According to section 8 in our example it is K-Y+. So the wall crossing

formula is

-, 2 .. 2 ... (9.51)
K-yK-y2= K-tK-t+2-YK2-yi+3t3 - -- K-+, --- K +2,K2Yl+Y2K, (9.51)

Remark 9.5.1. If we identify the charge lattice with Z2 with the integral pairing

((p, q), (p', q')) = pq - qp' and pick the basis as 71 = (2, -1) and 72 = (0, 1), then we

recover the equation

K2,-1Ko,1 = Ko,1 K 2 ,1 K 4 ,1 ... -2 ... K,1K4,_1K2,-1
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in section 6 which determines the BPS spectrum of the pure SU(2) gauge theory.

For the corresponding complex structure problem, the steps of determining the

singular integral affine structure with a BPS polyhedral decomposition, a log smooth

structure and the slab functions inducing it are almost identical to the first example

since we also have only two charges in this case. We use the same polarization. We

use the same notations used in example 1. The slab functions are given by

fe,, = f, 3,V = (1 + y) 2 = (1 + tx 1 )2 , f2e = fp4,v = (1 + W)2 = (1 + tz- 1)2

where every symbol has the same meaning as in the first example. In particular

xy = t, zw = t

Here we have used a trick to avoid setting up new notations. Instead of picking two

charges with intersection number 2 we stick to the old notations 'Y1 and Y2 (with

intersection number 1) but we make the compensation by raising the power of the

slab function from 1 to 2 so that the log morphisms stay the same.

By the wall crossing formula the new rays (Gross-Siebert walls) one has to add to

make a compatible system of consistent structures are

{(Rio (n+ 1, n) , (1+yn+1,n)2), (Rio (n, n +1), (1+ynWn+1)2), (Ryo (1,1 1), (1 - y)-)

It is instructive to run the algorithm of truncating by powers of t and see how one

can obtain the above result. We start from k = 1. So we work over Spec C[[t]]/(t2).

The composition of four log automorphisms associated to the four initial rays is the

identity modulo t2 . In fact starting from the cell o1 it is given by22

x -+ x(1 + z-§t)2 = x(1 + 2z-1 t) mod t2 _+

-+ x(1 + 2z- 1 (1 + a-t)-2 t) = x(1 + 2z-1 t) mod t 2 -+

22Note that we mod out by t2 after each log automorphism is composed instead of doing that
after composing all automorphisms. This reduces considerably the amount of calculations.

199



-4 x(1 + z-t)- 2 (1 + 2zt) = x mod t2 -± x mod t2

and similar results for y, z, w. So it is consistent over Spec C[t]/(t2). Now let k = 2,

we get

x -+ x(1 + 2zlt + z~ 2 t2 ) mod t3 -+ x(1 + 2z-lt - 4z-Iz~1t2 + z- 2t 2 ) mod t 3

-4 x(1 - 4z-x-1 t 2 ) mod t3 -+ x(1 - 4z- 1 XIt 2 ) mod t3

and similar results for y, z, w. The nontrivial automorphisms are canceled modulo t 3

by adding a ray p with slope (1,1) with attached function 23 f = ( -2xz-1 =

(1- wy)-4.

We can continue and according to the power of t we get (R(n+1, n), (1+yn+lwn)2 )

and (R(n, n +1), (1+ ynwn+1) 2 ) at the 2n + 1-th order. Let k -4 oc and we are done.

Note that the power of t is the same of the sum of negative degrees of x, z indicating

that the truncation here is the same as the degree truncation. Also note that for

each k, only finitely many rays are added while in the derivation by listing critical

trajectories it is obtained by one strike by moving ' to 9 + 7r without taking any

truncations.

One can repeat the gluing algorithm to get the defining equations of the Hitchin's

moduli space. Now we have four maximal dimensional cells in the polyhedral de-

composition and infinitely many chambers and we know the gluing in the first quad-

rant (the "infinite" region) are just changes of chambers such that the log automor-

phisms attached to Gross-Siebert walls guarantee the gluing consistency. The gluing

of thickennings R k and Rk etc proceed analogously as calculating fiber
P2-+0'70'ulP2 -+C2,U2

products with log automorphisms composed.

By proposition 9.14 we know that the ideal of the toric degeneration is generated

23 0ne can check that after crossing this ray we get

x(1 - 4z-lx-1 t 2)(1 - 4zx- 1 t2 ) mod t3 = x mod t 3
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by

XY - (1 + W) 2t, ZW - (1 + Y) 2t (9.52)

because f, are (1 + W)2 and (1 + y) 2.

Set t = 1 and we get

XY = (1 + W) 2 , ZW = (1 + Y) 2  (9.53)

As the intersection of two degree two hypersurfaces in C4 it is an affine Calabi-Yau

variety.

Choose a WKB triangulation corresponding a moduli parameter inside the union

of stability walls and choose x1 , y1 as Fock-Goncharov coordinates labeled by the two

nondegenerate edges. Then according to the cluster transformations under the two

flips encountered by changing 79 to V + r we define

Y2 = XI-1 2 = Y(1 + X)2

y3 = X2 , )3 = Y2(1 + X2)2

and we get the defining equations

ziz3 = (1 + x 2 )2 = (1+ )2
y3

1 1 12
=(1+-)2 =(1+X) 2

Y1 Y3 Y2

which are equivalent to (149) via the identification of the variables labeled by the

same charges.

On the other hand, if we are in the other stability chamber then we have a pro-

jective system of coordinate rings. For each k the consistent scattering diagram at

the order 2k + 1 has finitely many rays

{ (R(n +1, n), (1 + yn+ 1 n)2), (R (n, n +1), (1 + yWn+ 1)2), (R(1, 1),7 (1-_ y) -4), n < k}
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We choose BPS faces associated to these charges and we have finitely many maximal

dimensional cells in the corresponding polyhedral decomposition. So in this case we

have a system of degenerations over SpecC[t]/(tk+1) for varying k.

What if we want to do the continuous evolution along a loop in the space of pairs

of (d, u) crossing the stability wall? Infinitely many rays/charges will be encountered

between the ray (1, 1) and the ray (k + 1, k) as well as the (1, 1) and (k, k + 1). If

we move only along one direction we cannot crossing the ray (1,1) without doing

truncations which spoils the order of rays. So we move in both directions. In other

words, we can start from a phase between the phase of BPS rays of 7y1 and - 2 at a

point inside the stability walls and then follow the loop in both directions to cross

the stability walls and enter the "upper" and "lower" infinite regions of rays. So in

either direction we can take the limit of ordered product without taking truncations

and in the end we figure out the "juggle" transformation between the two limits. For

example, the wall crossing formula (147) can be understood in the following way. We

let

K,--|K KK 1 +2 , K2 1+3 3 -. - -(9.54)
yI2'K,'-2-,2-22,+. .Y.

act on X71 , X 2 by putting X, to the left of K2 and try to find the limit.2 4 The we

try to find the limit

- -- K3 24+2,K2f+YKf Xi

Finally we verify that the transformation K,, 2 brings the second limit to the first

one. In this way we can derive the wall crossing formula without doing any trunca-

tions. See the appendix of [35] for detailed calculations of this example25.

So we have three ways of deriving an explicit wall crossing formula. By following

21This is just an awkward way to say that we are really calculating

' -- K +2, 2K, 1 K, K- 2 X

in the usual sense. The arrangement of (150) has the virtue of making the derivation of the wall
crossing formula easier to visualize.

25But be aware that the signs are different there due to the different assignments of quadratic
refinements.
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a continuous evolution together with this algebraic trick, by inductive truncations

given an initial factorization in a primary stability chamber and by using the spec-

trum generator. They yield the same result.
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