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Abstract
Recently, exploration has been conducted into the applicability of binary mechatronics to
active figure correction in large optical systems such as space telescopes and ground-based
solar-thermal concentrators. This Thesis will continue this exploration. The information-
theoretic requirements of the corrective commands required in active optics will be explored
to understand the dimensionality of the continuous workspace sampled by binary actuation.
In both the minimal expected error and the minimal computation time sense, the optimal
discrete workspace is the uniform discrete distribution. A rigorous analogy between bi-
nary mechatronics and discrete random variables will be used to show that this optimal
workspace is achievable by a linear superposition of actuators with exponentially decreas-
ing influences on the optical surface. It will be proven that elasticity can be exploited to
construct mechanisms where constant magnitude actuators exhibit exponentially decaying
influences on certain parts of the mechanism, allowing for designs where individual binary
actuators correspond to binary bits of the required deformation. A planar truss mechanism
designed with this philosophy will be presented and shown to have independent kinematic
control of multiple adjacent displacements on its top side. Finally, this design will be shown
extend to three dimensions in a manner applicable to optical figure correction. Due to the
complexity of mechanisms that meet the optimality criteria, only theoretical analysis will
be presented.
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Chapter 1

Introduction

The Digital Revolution in electronics stemmed from a single core idea: that the

random errors and noise in linear analog electronics could be traded for discretization

error and higher component count in more accurate and precise digital circuits. A

similar idea, termed Digital or Binary Mechatronics, is applicable to some mechanical

systems, where the expense and manufacturing precision required to construct a

single continuous actuator can be traded for a larger number of inexpensive discrete

actuators [3].

Over the last two decades, this idea has been explored by Chirikjian [3], Ebert-

Uphoff [10] [11], Lees [16] [17], and Sujan [27] primarily in the context of constructing

robot manipulators actuated by many binary piston-like actuators rather than a few

continuous rotation or piston joints. Two such mechanisms are shown in Figure 1-

1. Additionally, DeVita and Plante investigated parallelized arrangements of binary

actuators in a compliant mechanism for precise positioning in medical imaging [7], [8].

Recently, Lee, Bilton, and Dubowsky introduced the idea of employing binary

mechatronics in active figure correction for optical systems such as solar-thermal



Figure 1-1: Serial Chain Binary Actuated Mechanisms. Left: Chirikjian's VGT
Manipulator [3]. All truss members are binary pistons. Right: Sujan, Lichter, and
Dubowsky's BRAID Manipulator [27]. All joints are binary rotation actuators.

Figure 1-2: Dubowsky's Binary Large Imaging Space Structure Concept [14]. Seg-
mented mirror supported by binary mechatronic truss.



concentrators [15] and extremely large orbiting telescopes [14] by embedding large

numbers of binary actuators inside the support structure of the primary reflecting

surface, as shown in Figure 1-2. Unlike Chirikjian's serial manipulators, the actuator

arrangements in these structures are naturally more parallel, and require a different

mathematical framework to design, analyze, and control them.

The purpose of this Thesis is to continue the theoretical exploration of the ap-

plicability of binary mechatronics for use in large optical systems. Specifically, this

Thesis will mathematically prove a tight lower bound on the number of binary actu-

ators required to achieve a specified accuracy in a general binary-actuated system,

develop a design paradigm that exploits mechanism elasticity to both achieve that

lower bound and allow for constant-time inverse kinematics, and will present an ex-

ample design that uses this framework in a way that that is directly applicable, with

a some caveats, to the control of a multi-d.o.f. deformable optical surface for use in

active optics, large microwave antennas, and potentially large orbiting collectors.

The remainder of this chapter will build the context from the two fields inter-

secting in this line of research. First, a review of figure correction requirements

in state-of-the-art parabolic concentrator systems, that operate in both the coher-

ent and incoherent regime, will build the case that in almost all applications, the

shape error in a parabolic reflecting surface requires a correction by an actuator ar-

rangement capable of controlling a relatively large number of independent degrees

of freedom distributed over the extent of the reflecting surface. Second, a detailed

review of the state of the art in binary mechatronics will lay out the particular sub-

tleties involved in designing and controlling binary actuated mechanisms. Specific

attention will be paid to methods of inverse kinematics and system accuracy. The

purpose of the guided exposition will be to build up the necessary context for op-

timality considerations in the use of binary mechatronics for control of deformable



optical surfaces, the theoretical exploration of which is the original contribution of

this Thesis.



angular extent of sun (approx 10 mrad)

ideal reflection

image of sun at receiver from
different parts of mirror

actual reflection
due to surface
shape error parabolic reflecting

surface

Figure 1-3: Geometry of Incoherent Concentrating Optics. Because the nonzero
angular diameter of the sun will focus to some finite extent on the receiver, the
geometric tolerances on the surface are dominated by the desired overlap between
images from different parts of the mirror. If, for example, 99% overlap (< 1% loss) is
specified, then the angle of the mirror must be accurate to 0.1 mrad (0.01 x 10 mrad)
over the whole mirror, necessitating support structure accuracy equivalent to 100 pm
per meter.

support structure



1.1 The Need for Control of Deformable Optical

Surfaces

The surface shape tolerances for parabolic concentrating collectors depend on the

application and operating wavelength of the incident radiation. Incoherent regime

solar-thermal concentrators tend to have the loosest requirements. The surface qual-

ity is determined purely by gross geometric co-alignment of distinct regions of the

surface. As shown schematically in Figure 1-3, the tolerance on the mirror support

geometry generally requires support structure accuracy on the order of tenths of mil-

limeters. In coherent systems such as astronomical telescopes and microwave radar

antennas, on the other hand, the surface tolerances required are on the order of a

small fraction of the operating wavelength (tens of nanometers for micron-wavelength

visible band systems) over the entire aperture in order for the incoming signal wave-

front to combine from reflections over the entire aperture at the instrument focus

with minimal destructive interference.

Wavefront disturbances in coherent systems can be broadly divided into me-

chanical imperfections in the instrument itself and (in optical telescopes) external

disturbances from the atmosphere. Atmospheric disturbances are generally high in

their temporal frequency (upwards of 30 Hz [28]) and in their spatial frequency when

compared with the length scale of a large primary mirror. As indicated in Figure

1-4, they are usually measured and canceled out with a dedicated deformable mirror

several elements down the optical path from the primary in an arrangement termed

adaptive optics.

The mechanical disturbances, common to coherent and incoherent systems, re-

sult from gravitational and thermal loading of the primary mirror and its support



beam splitter

wavefront
sensor

fast deformable mirror
with many actuators

thin flexible primary reflector stiff support structure

Figure 1-4: Actuator Functions and Locations in Ground-Based Astronomical Tele-
scopes

structure. While a great deal of mechanical design effort and precision fabrication

goes into minimizing these disturbances, at large mirror sizes and small wavelengths,

it becomes necessary to remove them with closed-loop control of the optical sur-

face rather than careful passive engineering [1], in a method termed active optics.

Given the slow rate of motion and temperature changes typically encountered during

operations of large astronomical observatories and sun-tracking solar concentrators,

these disturbances are slow in temporal frequency, and in instances where they are

actively controlled against, require closed loop cycles times between 500 msec [31]

and 60 seconds [12].

slow continuous linear actuators payload sensor



The research for this Thesis was originally motivated by the need to correct me-

chanical disturbances in the primary reflectors of large orbiting telescopes, and the

bulk of this document will focus on correcting slow timescale, large scale, mechanical

disturbances in the primary reflector support structure. To that end, this section

will provide some historical background and mechanical intuition for the challenges

in constructing large, precise paraboloids, the characteristics of the errors active op-

tics is meant to correct, and some general properties of continuously-actuated active

optics systems currently deployed in large telescopes. The purpose of the exposition

will be both to characterize the design requirements for binary mechatronic active

optics system, and to make the case that the current state-of-the art, multi-d.o.f. ac-

tuator layout presents the most natural jumping-off point to move from a continuous

actuator to a binary actuator design.

1.1.1 The Problem of Primary Mirror Rigidity

As ground-based and space-based telescopes have increased in diameter, the geomet-

ric tolerance requirements on the primary reflecting surface have become harder to

meet with purely passive design methods of material selection and support structure

geometry. The challenge comes from the requirement that the primary reflecting

surface be both locally smooth and globally accurate to sub-wavelength tolerances.

While the millimeter-wave radar regime, and associated tolerances of 100-pm sur-

face accuracy is sufficiently loose to allow 40-meter class antennas to be constructed

as purely passive rigid structures [19], the sub-micron optical regime presents sig-

nificant challenges for even much smaller aperture diameters. To cite a prominent

example from astronomy, in the final integration of the 200-inch (5m) monolithic

primary mirror of the Hale Telescope, considerable effort had to be expended to



eliminate mirror surface deflections of several tens of pinches (~ 0.5[tm, approxi-

mately the optical wavelength) that resulted from gravity-induced deformation of

the 20-inch outer band of the mirror over the range of motion of the mirror cell [2].

While small amateur-scale optical telescopes with mirror diameters on the order

of approximately 1/10 of a meter almost exclusively employ monolithic glass mirrors

that are aligned to the secondary optics with three-point kinematic mounts, larger

reflectors require distributed support structures under the surface of the mirror to

maintain their figure. The Hale Telescope, for instance, employs a 36-point mirror

support that "floats" the mirror [1]. Each support point is a passive mechanical

balance that is carefully tuned to exactly counter in magnitude and direction the

pull of gravity on the mirror in its vicinity.

In the newer over 5-meter telescopes constructed from the 1980's onward, how-

ever, the size of the primary reflectors exceeded the point where careful engineering

and calibration could ensure that the surface tolerances could be achieved with purely

passive mechanisms [1].

The construction of the Keck Telescopes in Hawaii and the Very Large Telescopes

in Chile demonstrate two flavors of the solution to the surface figure problem past the

5 meter aperture size. The Keck primary mirror, shown in Figure 1-5, is composed

of 36 1.8-meter hexagonal segments, each figured as an off-axis paraboloid. While

the individual segments are designed to be rigid enough to hold their shape over the

range of motion and temperature experienced during science operations [1], the sup-

porting truss deforms over the range of motion of the elevation axis of the telescope,

necessitating active closed loop position control of the segments themselves relative

to each other and relative to the absolute desired figure of the reflector.

The alternate philosophy, employed in the 8.2 meter Very Large Telescopes in

Chile has been to construct thin monolithic flexible primary mirrors, and to distribute



Figure 1-5: Segmented Primary Mirror on the Keck Telescope. The interface between
each segment edge requires sub-wavelength position alignment over the entire range
of motion of the mirror. Courtesy W. M. Keck Observatory [31].

many actuators under their surface. The VLT mirrors each use 150 active supports

(about three per square meter) [121. The supports are shown in Figure 1-6.

In both of these designs, a closed loop controller, measuring the absolute align-

ment and figure of the entire mirror surface, independently controls the force applied

to many support points distributed over the extent of the primary.

1.1.2 Spatial Frequencies of the Disturbance and Locality of

Actuator Influences on the Surface Figure

At this point, an important and subtle question must be addressed. Given the

smoothly varying deformations associated with gravitational and thermal loading of

the primary mirror, what sort of actuation is required to correct it to the required tol-

erance of several tens of nanometers in the optical case and several hundred microns



Figure 1-6: Mirror Support Structure for ESO 8.2-meter Telescope. Active supports
are visible sticking up from the backplane. Observe the large number of degrees of
freedom in the active support structure. Image Credit: ESO [12]
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Figure 1-7: Normalized Deformation Shape of a Circular Mirror In Response to
Uniform Thermal Loading on One Surface [20].

in the solar-thermal case? This section will show that even though the disturbances

are smoothly varying and have low "information content," any practical active cor-

rection system will require many independent degrees of freedom to null them out.

Consider, for example, the deformation of a monolithic circular mirror due to

thermal loading. Figure 1-7, reproduced from [20], shows the normalized shape of

the vertical deformation of the reflecting surface resulting from uniform thermal

loading on one side. In order to cancel out this deformation, the truss structure

supporting the mirror must apply a set of forces (or impose a set of displacements)

onto the mirror such that the effect of that actuation is the negative of the shape in

Figure 1-7.

The question of how many independent degrees of freedom are required to null

out this deformation must begin with the question of what the effect of actuation

actually looks like on the mirror surface. In large telescopes such as the Hale or

the VLT, a plate-like reflector is supported at many points under its surface by



either active or passive devices that have some built-in compliance. The response of

the mirror surface to an applied force (or an equivalent imposed displacement) can,

therefore, be modeled by the response of a rigid plate on an elastic foundation. For

small displacements, the analytical form of the deformation is well-known [29], and

will be reproduced as follows: In two dimensions, the deformation w(x, y) of a plate

perpendicular to its surface in response to an applied force load is governed by the

bi-harmonic equation:

94w + 4w 94w kw q
x4  &x2c9y 2 + y4  D D

where k is the effective reaction force density of the support truss to vertical dis-

placement, D is the flexural rigidity of the plate material, and q is the distribution of

force applied perpendicular to the mirror surface. Note that if the actuation occurs

as a displacement imposed between the compliant support and the mirror, Equation

1.1 requires renormalization by an appropriate spring rate, but the functional form

of the solution remains.

If we assume that "infinite plate" plate boundary conditions approximately hold

(an assumption to be justified momentarily), and q is a point load, then the solution

to 1.1 is given by
(D/h) 1/2 keir(k)/

w(r) = - kei r(- q (1.2)
27rD D

where kei (-) is the so-called Kelvin function, which is plotted in Figure 1-8. There are

two immediate facts that should be apparent from both the plot and the analytical

form. First, if the infinite boundary assumption holds, then there is no appreciable

deformation at a distance

k

25
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Figure 1-8: Kelvin Function kei(-) Plotted in Two Dimensions and In Cross-Section

away from the actuation point. Note that if the actuation point is sufficiently interior

to the boundary (that is, much more than 4 (2)" distance units inside), then the

infinite boundary condition holds, and Equation 1.2 indeed models the deformation

of the mirror in response to a actuation at a point. The actual physical width of the

response depends (as in a one-dimensional beam on an elastic foundation [29), [18)),

on the ratio of the stiffness of the support k and the mirror plate flexural rigidity D.

Specifically, the extent of the region of influence of a single actuator on the mirror

surface shrinks with increased support stiffness relative to the mirror and expands

with increased mirror rigidity relative to the supports. Given the necessarily low

rigidity of thermally stable glass mirrors, this is one of the reasons that even all-

passive mirror supports require many support points under the mirror surface.

The second fact, which answers the primary question of this section, is that the

shape of the mirror response in Figure 1-8 does not match the shape of the thermal

deformation in Figure 1-7. This point bears repeating: when the mirror support is

stiff relative to the mirror surface itself, which will be the case with large mirrors,

the thermal deformation associated with even a uniform temperature load cannot be



canceled out with a single actuator directly manipulating the surface of the mirror.

Thus, in order to cancel out such a deformation, either many independent contin-

uous actuators must be placed under the surface of the mirror in sufficient proximity

to allow for a smooth response from their collective action, or the interior of the

support truss must be actuated in a specific way such that the top surface of the

truss deforms into the negative of the thermal disturbance.

This latter approach may seem attractive from a control point of view because

it requires fewer degrees of freedom. However, it will be the position of this Thesis

that it is difficult to design, even if it is possible, and that it may not be robust

to different disturbance conditions. This necessarily introduces the complication of

requiring more independent degrees of freedom. The remainder of this document

will be focused on finding truss and actuator geometries that allow for independent

control of the displacements of many points on the top surface of the mirror support

truss, where the actual number of degrees of freedom required will be determined by

the relative stiffnesses of the mirror and support structure.



1.2 State of the Art in Theoretical Binary Mecha-

tronics

This section will describe the mathematical peculiarities of binary-actuated mech-

anisms as they relate to various performance metrics one may use to characterize

manipulator robots or optical systems. Implementation details of physical actuators

are outside of the scope of this Thesis, and for the purposes of this discussion, ide-

alized on/off force elements or bistable kinematic elements will be assumed to exist,

and will be assumed to be within their operating envelope.

1.2.1 Workspace and Forward Kinematics

The first question to ask is, "what does the workspace look like?" The answer

is simple. For a system with N binary actuators, there are exactly 2 N possible

kinematic states the system can take. In certain instances, however, symmetries

within the mechanism cause many of those 2 N possible kinematic states to overlap

in end-effector position.

This idea is best illustrated graphically. Consider the serial chain binary manip-

ulator in Figure 1-9, which consists of identical-length links with joints that can take

on exactly two possible angles of identical magnitude but opposite sign.

Suppose that the mechanism is exactly 10 links in length. Figure 1-10 shows a

point cloud of all 1024 (= 210) possible end effector locations achievable under the

1024 possible kinematic states of all 10 joints. Observe, however, that because all

the links are of equal length and the joints are all identical, there exists a symmetry

in many of the kinematic configurations. Figure 1-11 illustrates this symmetry in

the outermost points of the end-effector workspace. There are exactly 56 distinct



all joint t300

Figure 1-9: Simplified Serial Chain Binary Mechatronic Mechanism
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Figure 1-10: Complete Workspace of Simplified Serial Chain Mechanism
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Figure 1-11: Degeneracy in the Workspace of the Simplified Serial Chain Mechanism

Figure 1-12: Detail of Degeneracy in the Workspace of the Simplified Serial Chain
Mechanism. Ten Distinct Kinematic Configurations Are Degenerate to a Single
Point.



points on the periphery of the the end-effector workspace, but they are visited by 198

distinct kinematic configurations of all the joints. While some of these end-effector

points are visited by exactly one unique kinematic configuration, several have as high

as a 10-fold degeneracy, as illustrated in Figure 1-12. Indeed, because the self-similar

hexagonal tree structure for this example does not need to start at the zeroth node,

but can be rooted at any link in such a mechanism, there are more degeneracies in

the interior of the workspace. Overall, when all such symmetries are accounted for,

the 1024 distinct kinematic configurations of this 10-link mechanism are degenerate

to only 320 unique end-effector positions.

It is possible to take this overlapping phenomenon to its extreme, and design

a 1-d.o.f. linear positioning mechanism by stacking N identical piston actuators in

series. The overall length of the mechanism is the sum of the lengths of the individual

pistons, but because all of the pistons are identical, the total length can only take

N values, even though there are 2 N possible combinations of individual actuator

lengths.

Depending on the philosophy of the design, this can be a desirable property. One

of the original motivations of the research into binary mechatronics is the possibil-

ity of constructing "hyper-redundant" systems which can tolerate the loss of several

binary actuators without a catastrophic performance penalty. In this case, the ex-

treme symmetry of the previous example and the overlap illustrated in the serial

manipulator are design goals rather than complications.

The alternate philosophy, which this Thesis will adopt and which will be for-

malized later, is that rather than being redundant, a design should not waste con-

figurations. The justification for this philosophy is that redundancy and overlap

are directly opposed to the goal of increased position resolution at the end effector.

If there are only 2 N possible kinematic states for a fixed N, then redundancy in



any end-effector configuration comes directly at the expense of reachability of other

possible positions. Indeed, in certain applications [7], the specification for a robot

manipulator is given in terms of workspace resolution and workspace size, rather

than redundancy on any given point in the workspace, and the design challenge is

to produce a mechanism with a specified resolution or precision at the end-effector.

In order to achieve "greater reach" with a given number of binary actuators,

designs do what is termed breaking symmetry, whereby the self-similar structures

such as those of the example in Figure 1-11 are perturbed so that the overlap at

the end-effector for different kinematic configurations is not total. In the case of

the serial mechanism, variable geometry trusses which introduce complex nonlinear

rotations are known to break the symmetry of hyper-redundant binary mechatronic

manipulators to allow for a more uniform workspace density [3], [10], [11].

A particularly illustrative example of breaking symmetry was the design of a

2-d.o.f. medical imaging positioning stage by DeVita and Plante [8], [7], where

a deliberate mechanical asymmetry was introduced into elastic elements of the 12-

actuator mechanism shown in Figure 1-13 in order to spread the possible end-effector

(X, y) coordinates more uniformly in the workspace.

In general, as the number of actuators increases, and their symmetry is appropri-

ately broken, the discrete workspace of the binary mechatronic system approaches

that of the continuously-actuated mechanism [27].

1.2.2 Complications in Inverse Kinematics

This section will describe issues of inverse kinematics that are particular to binary

mechatronic systems with many actuators. The standard method of doing inverse

kinematics for a redundant multi-link robot (or an overdetermined elastic system)



Bistable-
Assembly

Figure 1-13: Two-D.O.F. Medical Imaging Positioning Stage with Asymmetric Elas-
tic Elements Constructed by DeVita [8]

with continuous actuators consists of computing a (well-defined) kinematic Jacobian

transformation to map from differential actuator perturbations and the correspond-

ing differential end-effector positions. To first order, and neglecting dynamic terms,

this can be written as

A'7= JAUZ (1.4)

where J is the geometry-dependent kinematic transformation, which always exists

and is well-defined, A' is the scalar or vector perturbation in the end-effector posi-

tion, and As' is the continuous perturbation in the actuator effort.

Provided some desired end-effector trajectory g(t) is reachable by the robot, the

corresponding control time-history required to achieve it can be computed by break-

ing the trajectory into distinct steps A, and manipulating Equation 1.4 to yield

AU = J+Ag (1.5)



where J+ is the left pseudo-inverse of the Jacobian. It exists if the trajectory is

reachable. Starting from a known initial end-effector state and corresponding known

actuator configuration, Equation 1.5 can be used to compute the entire actuator

time-history for the trajectory.

While the kinematic Jacobian exists for any well-defined mechanism, and Equa-

tion 1.5 can be computed for any nonsingular geometry, the differential actuator

input Ai7 that is computed is assumed to be achievable for all values of J+A. In

binary mechatronics, all actuators are assumed to have only two discrete states,

and the standard IK method results in an unimplementable actuator perturbation,

making the method generally inapplicable to binary mechatronics.

Rather than being able to rely on the properties of mappings between continuous

vector spaces, an explicit mapping from the continuous space of end-effector coordi-

nates to the discrete set of 2N possible actuator configurations must be computed,

where the computation can either be through computer simulation of a calibrated

system [21], or through exhaustive enumeration of all actuator configurations on the

actual system [15]. Except in a few special cases, the computation time and data

storage complexity of such an exact computation can be as high as O( 2 N), which

quickly becomes intractable.

The next section will describe the state-of-the-art methods of both exact and

approximate techniques for computing this map.

1.2.3 Brute Force Methods of Inverse Kinematics

For systems with a relatively small number of actuators, where the word "small"

is an increasing function of available computing speed and memory (and therefore

of cost and time), the exact computation of the map is tractable, as it is feasible



to compute (in simulation) the forward kinematics to all 2 N actuator configurations

and to use that mapping and an appropriate rounding heuristic as a lookup table

from continuous end-effector coordinates to the 2 N possible actuator configurations.

This approach was successfully used on the 12-actuator MRI positioning system

constructed by DeVita and Plante [8], [7], where after experimental calibration with

a small sample of measured end-effector positions and corresponding actuator config-

urations, the end-effector positions for the remaining set of actuator configurations

were computed with a finite element simulation, yielding sufficient accuracy to be

used as a lookup table [21].

This method was also by Lee in his exploratory work on applying binary mecha-

tronics to optical systems to show that binary actuators embedded in a primary

mirror support structure can be used to improve optical quality in large telescope

systems subject to kinematic disturbances [14], and was demonstrated in the 13-

actuator steering mirror constructed by Bilton to demonstrate feasibility [15].

At this point, it is instructive to ask why one may design a mechanism with more

actuators? If a 12-actuator system with broken symmetry yields 4096 states that are

sufficiently uniform to achieve required precision for medical imaging work, and the

calibrated precomputed forward kinematics is both tractable and sufficiently precise,

why would one want to design a system with more actuators?

The answer comes from the actuation requirements on large optical mirrors. As

shown in Section 1.1.2, large mirrors require many support points. If a active control

of these support points is required, then the number of independent degrees of actua-

tion necessarily increases, and the dimensionality of the required workspace increases

with the number of actuators. Instead of being confined to a plane, or a cube, as in

the case of the coordinates of the end-effector of the serial link arms, the workspace

is now spread over R", where n is a very large number like 150, in the case of the



VLT mirror support control system.

The number of states we have at our disposal to distribute across our workspace

must scale with the dimensionality of our workspace in order to maintain the same

resolution of end-effector coordinates along any one dimension of our higher-dimensional

space. If we are in a 1-dimensional workspace, our precision, or resolution, require-

ment can be stated in terms of "states per unit length", but in two dimensions, it is

"states per unit area", in three, it is "states per unit volume", and in general it is

"states per n-dimensional hypercube of specified n-dimensional volume. In general,

the number of such volumes in the total workspace scales exponentially with the di-

mension n, and the number of discrete actuator configurations at our disposal must

also scale exponentially, and correspondingly, the number of discrete actuators must

scale linearly with the number of degrees of freedom.

1.2.4 Heuristic Search Methods of Inverse Kinematics

Given the pressure to increase the number of actuators in a binary mechatronic sys-

tem, considerable research effort has gone into developing efficient heuristic searches

that exploit structure in mechanism topology to compute tight approximate solutions

to the inverse kinematics problem without requiring O( 2 N) computational time com-

plexity. In the case of serial manipulators, the hierarchical structure of the actuators

can be exploited to expedite the search.

Lees and Chirikjian presented a framework for synthesizing continuous curves

from the base of the serial manipulator to the desired endpoint, and sequentially

computing the configuration for each level of the manipulator that most closely

causes the manipulator to hug the curve at that level. Because this optimization is

performed only once at each step along the length of the curve, the total computa-



tional complexity is O(N). Issues of kinematic reachability, constraints on the curve,

and the proper relative weighting of "hugging error" between the manipulator and

the curve at different distances from the base were addressed in the formulation for

synthesizing the optimal curve and the optimal error weighting as a function of the

curve [16].

Another method proposed reducing the search space by fixing the maximal num-

ber of bits allowed to change state during a motion. Recognizing that large motions

require transitions of actuators closer to the base of the manipulator while smaller

motions can be accomplished with transitions of bits closer to the tip, Lees and

Chirikjian showed that it is possible to exploit a lexicographic sorting of actuators to

reduce the search space down to several bit transitions and achieve good trajectory

tracking in a serial manipulator [17]. This method was used for the basis of a genetic-

algorithm search for the BRAID design by Sujan, Lichter, and Dubowsky [27].

The final "classical" approach to the inverse kinematics problem is defined in

terms of a gradient-descent on spatial densities of end-effector states rather than

combinatorial searches of bit strings.

For discrete serial mechanisms, one can define a quantity called the workspace

density for a given volume of space from an initial set of coordinates for some link

of the serial mechanism as the number of kinematic configurations of the entire

mechanism starting from that link which place the end-effector in that volume. This

can be thought of as the probability that there exists a manipulator configuration

which places the end-effector in that volume of space [11]. It can be shown that

the computation of this density for a serial mechanism can be done recursively via

a convolution in the spatial domain, and that the computational complexity of this

recursion and convolution is linear in the length of the mechanism (multiplied by the

spatial resolution being considered) [10].



The algorithm proposed by Ebert-Uphoff and Chirikjian exploits this computa-

tional efficiency by formulating the heuristic search in terms of a maximizing at every

link the probability of reaching the desired endpoint with the end-effector, where the

probability is calculated as described above.

The drawback of these methods of inverse kinematics is that while they are com-

putationally efficient, because they are approximate computations, they cannot guar-

antee both precision at the end-effector and a bound on computation time. More

importantly, because they are optimized to exploit the hierarchical nature of serial

link mechanisms, there is no clear path for extending them to parallel geometries

inherent in the optical surface control problem.

1.2.5 Exact Constant-Time Methods

The last method to be discussed, and the central focus of the remainder of this

Thesis, exploits the basic properties of the positional binary number system to design

an actuator geometry where individual actuators correspond to binary bits in the

numerical expansion of a target coordinate in one degree of freedom. This allows

the computation of the binary input word to all the actuators by simply scaling the

desired position by an appropriate constant, expressing the result in binary notation,

and directly inputting those bits into the actuators.

In the binary positional number system, a binary word BNBN-...B 2B1 has the

numerical value EN 2 x Bi where Bi E {0, 1}. Observe that each bit B represents a

magnitude exactly twice that of its less significant neighbor Bi_1 , and this geometric

decay holds for the length of the entire binary word. By the basic properties of

binary notation, the entire word is capable of exactly representing all the integers

ranging from 0 to 2 N - 1 with a resolution equal to the least-significant-bit (LSB),
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Figure 1-14: Single-Axis Binary Length Actuator Built by Cho and Asada to Exploit
Constant-Time Exact Inverse Kinematics [4].

corresponding to the magnitude represented by B1.

Because computing the binary expansion of a scaled value is trivially easy and

extremely fast (all computers natively represent all quantities as binary numbers and

have dedicated hardware for fast multiplication and rounding of binary quantities),

it is compelling to search for an actuator design where the difference between the ON

and OFF positions of individual actuators also follows geometric decay, resulting in

a set of actuators whose state corresponds to the bits of the binary expansion of a

scaled and rounded coordinate of the degree of freedom being actuated.

One of the first designs with this property was an 8-bit hydraulic actuator con-

structed by Delmege and Tremblay in 1965 for use in aircraft control surfaces [6].

This actuator consisted of a series of eight hydraulic pistons, each of which had

exactly twice the travel of the previous one.

Cho and Asada constructed a similar mechanism using expansion and contraction

of precise lengths shape-memory-alloy (SMA) wires for control of a robotic hand [4].

The design exploits the fact that the total strain of an SMA segment under thermal

load is proportional to the length of the segment. Using an actuator consisting of

several segments of normalized length 1,2,4, and 8, as shown in Figure 1-14, 16

equally-spaced end-effector states, with a resolution equal to the LSB were achieved.

While this approach is appealing because of the simplicity of the inverse kinemat-

ics, it suffers a drawback in that the dynamic range of the assembly and manufactur-



ing process for this design is required to be as large as the dynamic range between

the resolution and maximum extent of the mechanism. Indeed, in the case of the

digital hydraulic actuator, the machining tolerance on the cylinder stops is required

to be as tight as the LSB piston. The remainder of this Thesis introduce a design

methodology which exploits mechanism elasticity to give the same geometric decay

of actuator influence magnitudes (allowing constant-time exact inverse kinematics),

but that requires a low dynamic range of actuator magnitudes themselves.

1.3 Outline of the Original Contribution

Having established the context for surface figure correction in large optical systems

such as solar concentrators, large radar dishes, and especially large optical telescopes,

as well as the challenges in binary mechatronic design, the remainder of this The-

sis will take a more theoretical approach to defining the specific requirements for

applying binary mechatronics to a general elastic, multi-d.o.f mechanism.

Chapter 2 will establish some mathematical preliminaries related to the influence

of small-stroke binary actuators on large compliant mechanisms. An analogy will be

constructed between the kinematics of massively parallel binary actuated systems

and the theory of probability distributions of many independent random variables.

A tight lower bound will be determined on the minimum number of binary actua-

tors required to control a given number of independent degrees of freedom within a

specified dynamic range. Additionally, it will be shown that if an actuator design

exists that meets this lower bound, then the inverse kinematics for that design will

necessarily be trivially easy, and deterministically computable in constant time.

Chapter 3 will then demonstrate that there exist compliant mechanisms con-

structible from basic elements such as springs, cables, and piston actuators, that



exploit elastic averaging [24] to achieve the optimality condition derived in Chapter

2 for a single degree of freedom. Finally, Chapter 4 will extend that design philoso-

phy to develop a mechanism to control multiple independent degrees of freedom on

the top surface of a truss structure in a way amenable to active surface figure control

in optical systems.

As will be shown in Chapter 4, any practical implementation of binary mecha-

tronic control of a deformable mirror surface will require a large support structure

with many thousands of distinct elements, and (depending on the size of the mirror)

possibly hundreds of actuators. For this reason, this Thesis will be confined purely

to analytical proofs and numerical simulations rather than experimental validation

of the mechanisms proposed herein.
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Chapter 2

Mathematical Preliminaries

Previous work on binary mechatronic mechanism falls into two categories: mecha-

nisms where rotation-induced nonlinearities limit the utility of analysis in terms of

individual actuator influences on the entire system, and mechanisms specifically de-

signed to exploit superposition to greatly simplify the inverse kinematics by allowing

very powerful global statements about all 2 N discrete mechanism configurations to

be made in terms of the geometries of only the N individual actuators. Chirikjian,

Ebert-Uphoff, and Lees's serial manipulator mechanisms and Sujan, Lichter and

Dubowsky's BRAID concept fall in the former category. Indeed, a cursory inspec-

tion of the workspace of the representative mechanism shown in Figure 1-11 reveals

that the binary joint closest to the end-effector of such a device can have an influence

on the x-coordinate of the end-effector that varies anywhere from a maximum when

the end-effector is directly above the base of the mechanism to zero when the arm

is bent left or right. Cho and Asada's SMA actuator, and Delmage and Tremblay's

binary hydraulic actuator, on the other hand, fall into the latter category, where

the displacement contributions of individual segments sum arithmetically to the dis-



placement of the end-effector, greatly simplifying the analysis and control of the

mechanism. Indeed, the control algorithm for these latter mechanisms is optimally

fast, as it requires only a scale and truncate operation on the numerical value of the

desired end-effector coordinate.

The purpose of this Thesis is to explore the applicability of binary mechatronics

to actual, deployable, optical systems. For this purpose, optimality in terms of mech-

anism accuracy, resolution, as well as control algorithm execution time is required.

This chapter will lay down the mathematical framework that is necessary to reason

about these requirements and the designs that meet them.

First, Section 2.1 will establish that there exist real compliant mechanisms with

binary actuation for which it is appropriate to conduct the analysis of mechanism

kinematics in terms of influence functions of individual binary actuators. Section 2.2

will derive the optimal distribution of discrete end-effector positions that a binary

mechatronic mechanism should achieve to maximize accuracy with a finite number

of actuators. Section 2.3 will then build a rigorous analogy between the mathemat-

ics of sums of independent discrete random variables and the kinematics of binary

mechatronic systems where superposition holds. Lastly, Section 2.4 will use that anal-

ogy to develop a recipe for constructing binary mechatronic systems that meet the

accuracy-optimal end-effector distribution requirement derived in Section 2.2 and as

a consequence of that optimality constraint, will also be controllable by the trivially

simple inverse kinematics seen in Cho and Asada's and Delmage and Tremblay's

designs.
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Figure 2-1: Left: photograph of 13-actuator experimental system constructed by
Bilton [15]. Right: Actuator Layout. Labeled filled circles denote actuator loca-
tions, open circles denote compliant support locations, hexagonal outline denotes
boundaries of center mirror measured in experiment.

2.1 Linearity and Superposition in Elastic Binary

Mechatronic Systems

While no-real physical system is ever truly linear, even highly coupled, over-constrained

binary actuated mechanisms are known to have linear operating regimes. This sec-

tion will quote, and elaborate on, results obtained by Bilton and Lee [15], with the

purpose of specifying exactly the extent of the linearity required for the analysis in

the remainder of this chapter to hold, and demonstrating that mechanisms can be

constructed to meet these requirements.

Figure 2-1 shows the compliant binary mechatronic steering mirror mechanism

constructed by Bilton to validate the numerical intuition developed by Lee in [14].

The kinematics of this mechanism are over-constrained, and elastic averaging holds



[24]. It is therefore appropriate to consider Taylor approximation to the functional

form of the displacement or rotation of any point on the deformable surface of the

mechanism (for instance, the tilt in the x-direction of the center mirror) as a function

of actuator inputs. The question is, is a first-order approximation of the form

13

AO2 = wxAzi + h.o.t. (2.1)
i=1

sufficient to capture the dominant behavior of the center mirror in this mechanism?

To answer this question, Bilton and Lee measured the deflection of the center

mirror along the x direction for all 8192 (= 213) configurations of binary actuators in

the mechanism. This list was sorted, and for each of the 13 actuators, the difference

was computed between the 4096 instances when that actuator was ON and the 4096

instances when that actuator was OFF. If superposition were exactly true, then these

differences would be exactly identical in magnitude, but because the mechanism was

not perfectly linear, there was an approximately Gaussian spread in these influences,

which is plotted for selected actuators in Figure 2-2.

The question of whether the assumption of linearity holds rests on the ratio of

the size of this spread in tilts to the magnitude of the mean tilt induced by a given

actuator. If, for example, the combined nonlinearity error from all the actuators

is smaller than the finest mean tilt associated with some finest actuator, then the

linearity assumption would not be violated to within the tolerance of the overall

actuator configuration. In the case of Bilton and Lee's mechanism, the size of the

nonlinearity error for actuators 2-7 is smaller than their mean influence magnitudes,

and in this mechanism, linearity can be safely assumed to hold for the inner ring of

actuators.

In his exploratory work on applying binary mechatronics to multi-d.o.f. highly-
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Figure 2-2: Variance of Actuator Influence in Bilton's Experiment. Gaussian fits
of distribution of influences of selected actuators on mirror deflection in mechanism
x-direction.

coupled compliant mechanisms, Lee showed [14] that the nonlinearity error decreases

rapidly with smaller inputs, suggesting that the "signal-to-noise" in the linear region

can be increased, and the size of the linear region itself can expand with careful

design. This demonstrates that in real mechanisms, superposition can potentially be

exploited.

2.2 The Optimal End-Effector Position Density

Suppose we wish to design a binary mechatronic actuator that moves along a given

degree of freedom (say, along the x-axis) within a specified range (say, the interval

[0, 1]). If the number of actuators we have at our disposal is some fixed number N

(meaning we have 2 N possible actuator configurations, corresponding to at most 2 N

possible positions along the x-axis), what is optimal distribution of those 2 N possible



positions along the x-axis on the interval [0, 1]?

2.2.1 The Optimality Metric

We begin to answer this question by stating exactly which optimality metric is im-

portant. For a position actuator moving along a single degree of freedom, it is natural

to define performance in terms of minimizing the error between some specified target

position and the best possible actual position achievable by the actuator in response

to that command.

There is an uncountable infinity of possible continuous target positions, but only

a finite number of possible discrete actuator positions in the interval of interest. It is

therefore natural to define the error metric probabilistically as the total expectation

of the error over the entire range of motion of the actuator, in the manner of [8].

Symbolically, if S denotes the set of 2N available discrete positions, the error metric

(along the x-axis) can be written as

E=Ex min|X-S] (2.2)
1SES

where X is a continuous random variable which represents the unknown possible

target position and takes values in the interval [0,1] along the x-axis. Because the

time-history of the required target position is not known a priori in the design phase,

the probability density of X must be selected to have the least a priori information,

or, equivalently, the maximal entropy. The distribution that has this property is the

uniform continuous random variable [5].

The optimality requirement is then to select a set S of 2 N end-effector positions

such that S C [0,1] which minimizes the expectation E defined in 2.2 when X

lU(0, 1).
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Figure 2-3: Probabilistic Error Metric. Dark shaded area represents Ei

To minimize E, consider Figure 2-3, which plots the distribution of X and the

possible discrete actuator positions So through S2Ni along the unit interval. Suppose

we sort the end-effector positions left-to-right, and let Si_1, Si, and Si+1 be in the

interior of the interval. Observe that for x c s-+si 9+3 +23) (shaded dark in the

figure), the expectation in 2.2 takes the form Ex(IX - Sil), where i refers to the

same end-effector position in the entirety of that subinterval. This implies that we

can partition the expectation in Equation 2.2 as follows.

Define the symbol J = Si - Si 1, then write the portion of the expectation in the

subinterval x E (-+Si si+si+i as

/O t+6.1/2

i =1 (0 - x) - dx + / (x - 0) -1dx (2.3)

where the first term comes from the error when X is to the left of Si and closer to Si

than to Si_ 1, the second term comes from the error when X is to the right of Si and

closer to Si than to Si+1, and the explicitly written factor of unity comes from fact

that the random variable X is uniformly distributed on the unit interval and thus

has constant unit density. Observe that by the disjointness of the intervals (Si, Si+1),

the total expectation S over the whole interval will be identical to the sum of the



individual expectations Ei as defined by 2.3.

Evaluating the integral in 2.3, we find that the contribution of the ith discrete

actuator state to the total error metric is given by Si = 1/8 (of + og±g). Summing

over contributions of all the discrete states, we then find that the error metric can

be written as

S = I = c of (2.4)

for some geometry constant c, which remains fixed over the all i's in the case of a

uniformly distributed X.

2.2.2 The Optimality of the Uniform Density

Given this formulation of the error metric in terms of the separation distances 62 be-

tween the 2 N possible end-effector positions, we would like to find a set of separations

that minimize the error metric. We do so by a variational argument as follows.

Observe first that if our end-effector positions S span the unit interval, and we

make the assumption that the first position occurs at x = 0 and the last at x = 1,

we can write that
2N__1

S os - 1 = 0 (2.5)
i=1

Recalling the objective function to minimize in Equation 2.4, we form the La-

grangian:

L(J, A) = c o c+ A ( i - 1) (2.6)

where 6 = (Ji, ... 6
2 N-i) is the vector of separation distances between the possible

end-effector positions.

To find the optimal 6, consider the ith term in the derivative of the Lagrangian



with respect to 6:
dL

- = 2o; +A - = 0(2.7)
dor

This holds for all i, and implies that Vi, og = -A/2c, which is to say that at an

extremum of S, all the end-effector positions are spaced equally over the unit interval.

Note that this agrees with the intuition from lower dimensions that the way to

minimize the sum-squared of a number of terms whose sum is fixed is by setting all

the terms equal.

Thus the optimal distribution in terms of expected squared-error for a discrete set

of end-effector positions, given a uniform distribution of possible target positions, is

a uniform distribution of discrete end-effector positions, that is to say a distribution

of positions spaced apart by equal intervals. This result is intuitively satisfying,

both because of its simplicity, and because it lends itself quite readily to the exact

constant-time inverse kinematics, as will be demonstrated in the remainder of this

chapter.

2.3 The Equivalence of Probability Theory and

Linearized Discrete Actuation

This section will develop a strong analogy between the theory of sums of independent

discrete random variables and the kinematics of binary mechatronic systems where

the position displacement of some point on the mechanism is given by a (weighted)

linear sum of states of all the binary actuators in the mechanism. The purpose of

building this analogy is to harness well-known results from the theory of probabil-

ity distributions in order to construct the optimal (uniform) end-effector position

distributions from sums of influences of individual binary actuators.



We begin by considering an abstract binary actuated mechanism composed of

N actuators and one end-effector measurement point, whose discrete displacement s

along the the x-axis in response to changes in actuator states can be written as

N

= wibi (2.8)

where wi are the weighting factors, or influence magnitudes of the individual actua-

tors and bi are the binary states of the actuators, taking the values 0 or 1. Note that

Cho and Asada's SMA-based muscle actuator, where w = (1, 2,4,8) by design, is an

example of such a system.

Consider now the exhaustive enumeration of the possible configurations of the

set of N binary actuators and their respective end-effector displacements. This ex-

haustive enumeration contains exactly 2N elements, and can define a probability

distribution for a set of Bernoulli random variables Bi where each Bi takes on the

values of either 0 or wi, corresponding to the influence of the ith binary actuator on

the displacement of the end-effector measurement point.

Furthermore, this exhaustive enumeration also defines a set S of 2 N end-effector

coordinates {s}, which can be used to define a discrete random variable S that

takes on up to 2 N possible values given by the unique values of s in S, and whose

probability mass function (pmf) is defined by the number of times each of those

values of s appears in the exhaustive enumeration.

For example, if we have a mechanism with two actuators with equal weighting

factors of 1, such that s = b2 + b1 . Then the exhaustive enumeration of the possible

states of b2 and b1 has four elements and generates three unique values of s, shown

in Table 2.1.

We then define the random variable S by the pmf shown in Figure 2-4, which



Table 2.1: Exhaustive Enumeration of End-Effector Position With Two Actuators

b2 + b1  = s

0 0 0
0 1 1
1 0 1
1 1 2

consists of the unique values of s generated in the exhaustive enumeration, each with

a probability proportional to the frequency that those unique values are seen in the

enumeration.

PS(S)
0.5 --

0.25 --

0 1 2 s

Figure 2-4: PMF for S Defined by Exhaustive Enumeration of s With Two Actuators

Observe that in our definition of B and S, we have made no new statements

about the kinematics of the mechanism. All we have done in Table 2.1 is created

an exhaustive enumeration of both sides of Equation 2.8 and defined new random

variables from the columns of the enumeration while preserving the kinematic relation

2.8 in all the rows. This implies that we can rewrite the deterministic equation

probabilistically as
N

S= [Bi (2.9)

What is left to show is that the random variable S (whose pmf corresponds to



the distribution of end-effector positions) is, in fact, a sum of independent Bernoulli

random variables.

Claim 2.1. In the joint distribution of actuator bits defined by the exhaustive enu-

meration of their possible configurations, each Bi is independent.

Proof. The proof is by induction. Consider the base case of two actuators, denoted

B2 and B 1. Table 2.2 enumerates the possible states of B 2 and B 1.

Table 2.2: Exhaustive Enumeration of Two Actuator Case

B2 B1 Joint Probability

0 0 1/4
0 1 1/4
1 0 1/4
1 1 1/4

Recall from the theory of probability that P(B 2| B) = P(Bnfi) where the nu-

merator is the joint probability. Recall also that the definition of independence is

given by P(B 21B1 ) = P(B 2 ).

By inspection of the table, we can observe that the four conditional probabilities

for B 2 are all P(B 2 = O|B 1 = 0) = P(B 2 = OB1 = 1) = P(B 2 = 1 |B = 0) =

P(B 2 = 1|B1 = 1) = 1/2. We can also observe that cumulatively, P(B 2 = 0) =

2/4 = 1/2 and P(B 2 = 1) = 2/4 = 1/2. Thus, for this base case the conditional

and unconditional probabilities are identically equal, and the two actuator random

variables are independent.

We now proceed to prove the inductive step. Suppose that the joint distribution

defined by the exhaustive enumeration of N binary actuator states has the property

that all the N individual actuator state distributions are independent. We would



like to demonstrate that the joint distribution of N + 1 actuator states defined by

the exhaustive enumeration obtained after appending the N + 1 th actuator also has

the property that all N +1 actuator distributions are independent. Symbolically, we

would like to show that

P(BN+1IBN ...B1) = P(BN+l) (2.10)

Consider the expansion that occurs to the

random variables BNB.. B1 with the addition

exhaustive enumeration of the binary

of the binary random variable BN+1:

(2.11)

Observe that any unique string BN...B appears exactly once in the enumeration of

actuator bits 1 to N, and exactly twice in the enumeration of 1 to N + 1, shown

by the boxed rows the right-hand side of Equation 2.11. We can then write that for

any such string, P(BN+1 = OIBN..B1) = 1/2, and P(BN+1 = 1|BN-.B1) = 1/2, since

the string BNB.. B1 is appears exactly twice in the right-hand enumeration, once with

BN+1 = 0 and once with BN+1 = 1. We then observe that in the enumeration, the

0 0 ... 0

BN BN-1 --- B1

1 1 ... 1

0 0 0 0

0

0 BN BN-1 ... B1

0

0 1 1 ... 1

1 0 0 ... 0

1 BN BN-1 ... B1

1 1 1 ... 1



unconditioned probabilities of BN+1 are also exactly 1/2, because by construction,

when we append BN+1 to the enumeration, we transcribe the full enumeration of

BN-..B 1 once with BN+l = 0 and again with BN+1 = 1, resulting in exactly as many

zeros as ones. Thus, equation 2.10 is shown to hold and the proof is complete. L

Having established that the joint distribution of the random variables B1...BN,

defined by the exhaustive enumeration of the possible states of all N binary actuators,

is independent, we re-interpret Equation 2.9 as saying that the spatial density of all

2 N end-effector positions in an linear N-actuator binary mechatronic system is given

by the pmf of the sum of N independent Bernoulli random variables, each with

parameter p = 0.5 and taking on the values of either 0 or the influence of that

actuator on the displacement of the end-effector position. In the next section, we

will use this fact to show how to construct a binary mechatronic system with the

optimal uniform end-effector position distribution.



2.4 Constructing a Uniform Density

The theory of independent random variables is well developed, and has many power-

ful tools for analyzing the distribution of the sums of independent random variables.

In particular, it is known that if two random variables B1 and B 2 are independent

and have pmf's given by p1(-) and P2(-), then the pmf ps(-) of the random variable

defined by the sum of B1 and B 2 is given by the convolution of pi and P2 [13].

The following graphical proof will review how to construct a discrete uniform

random variable by summing independent Bernoulli random variables. The idea

is that a uniformly distributed binary integer can be constructed by independently

generating the bits from independent Bernoulli random variables.

Consider a Bernoulli random variable B1 which takes on the values 0 and 1 with

equal probability and an independent B 2 which takes on the values 0 and 2 with

equal probability. Figure 2-5 demonstrates that the convolution of those two pmfs

results in a uniform random variable.

'.5 0.5

® HI -0.25

0 2 0 1 0 1 2 3

Figure 2-5: Convolution of PMFs of Two Bernoulli Random Variables Yields Discrete
Uniform PMF

This suggests that if convolve together a series of uniform (p = 0.5) Bernoulli

pmfs with widths that keep doubling (or equivalently, halving, that is decaying ge-
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Figure 2-6: PMF Resulting from Appending the N + 1"h Random Variable to Sum
of N Random Variables

ometrically with decay factor 2), we will get a discrete uniform pmf over uniformly

spaced values. Figure 2-6 demonstrates this graphically. The gray block repre-

sents a discrete uniform pmf over M (= 2 N) uniformly spaced values between 0 and

L (1 - 1/M). Specifically, the spacing is exactly L/M. If we convolve that pmf with

a uniform Bernoulli pmf over the values (0, L), this has the effect of stacking two gray

blocks adjacent to each other (and halving their height). Observe that the spacing

between the last value of the left block and the first value of the right block must

be L - L (1 - 1/M) = L/M, implying that all 2M (= 2 N+1) values are uniformly

spaced, as required.

Observe that the geometric decay of actuator influences required to achieve the

optimal discrete end-effector position density is exactly equivalent to equating indi-

vidual actuator states to individual bits in the binary numerical expansion of the

end-effector coordinate. This is exactly the design philosophy adopted by Delmage

and Tremblay and Cho and Asada in their designs.

In summary, this chapter has shown that the optimal distribution of end-effector

positions for a discrete mechatronic system with a required range of motion over some

interval along a single dimension is the discrete uniform distribution. An analogy



was developed between the theory of distributions of sums of independent Bernoulli

random variables and the distribution of the end-effector positions resulting from a

linear superposition of many actuator influences. This analogy was used to describe

a method by which a discrete uniform distribution can be constructed from sums of

Bernoulli random variables whose magnitudes decay geometrically with a factor of

2. This provides a design target for binary mechatronic systems. Specifically, if the

influences of the binary actuators on the displacement of a particular measurement

point can be made to have geometric decay with a decay factor of 2, then a uni-

form density of mechanism positions can be achieved for that measurement point.

Because the construction of this accuracy-optimal density leads naturally to actua-

tor configurations with optimally fast inverse kinematics, searching for mechanisms

where such a design is possible is a strong imperative. The remainder of this Thesis

will explore designs for just such mechanisms.
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Chapter 3

Existence of Elastic Mechanisms

With Optimal Kinematics

Chapter 2 established that the optimal distribution of discrete end-effector positions

in terms of accuracy is the uniform distribution, and that binary actuated mecha-

nisms subject to linear superposition of actuator influences lend themselves naturally

to achieving such distributions, provided that geometric decay of actuator influence

magnitudes holds. Cho and Asada's SMA actuator and Delmage and Tremblay's

binary hydraulic actuator designs achieve these simultaneous superposition and ge-

ometric decay requirements by using a series combination of displacement actuators

whose strokes add, and whose lengths (strokes) decay geometrically. While both of

these designs meet the optimality criteria formalized in Chapter 2, they suffer the

drawback of requiring a high dynamic range in the absolute accuracy of their man-

ufacturing process, stemming naturally from the large dynamic range in the lengths

of the actuators corresponding to different bits. This Chapter will establish the exis-

tence of mechanisms which exploit elasticity to achieve linearity and geometric decay



Cable held at constant tension T by Output y is vertical displacement
restraints "far" from center of cable from neutral at center

ideal
springs

Input u is displacement
imposed at base of spring

Figure 3-1: Center of the Taught Cable Mechanism

of influence magnitude for actuators of constant magnitude.

Consider an idealized cable held at constant tension, supported from below by

ideal springs constrained to only the vertical degree of freedom. Input into this

mechanism is introduced as an imposed vertical displacement at base of the springs,

and the output is measured as the vertical displacement at a single point on the cable

from its neutral position above the central spring.

It will be stated outright that this mechanism is impossible to implement in any

practical sense for some very obvious reasons, but the statics of this mechanism

have the important property that the influence of a kinematic displacement imposed

into the base of a spring on the height of the cable above the central spring decays

geometrically with the distance of the imposed displacement from the central spring.

The remainder of this chapter is organized as follows. First, Section 3.1 will

derive the statics of this idealized mechanism and show that for small input magni-

tudes, the first order approximation Kg' = U' appropriately describes the kinematics

of the mechanism. Then, Section 3.2 will analytically derive the influence matrix

K [18], which will be used to demonstrate geometric decay of actuator influence

on the center with increasing distance away from the center. Finally, Section 3.3 will



extend the analysis to other elastic mechanisms that transform near-constant mag-

nitude actuators into exactly geometrically-decaying influences on the displacement

of certain parts of the mechanism.

3.1 Stiffness Matrix for the Taught Cable Sup-

ported by Springs

In the derivation that follows, the force of gravity will be neglected, and use of the

terms "vertical" and "horizontal" will refer only to directions on the page. This

omission can be justified by the assumption that the stiffnesses of the cables and

springs involved are significantly greater than their weight, or that the system exists

in a horizontal plane perpendicular to gravity. Additionally, the assumption will be

made that the cable is straight between adjacent spring points and admits sharp

corners at the spring points.

We begin by considering a point in the interior of the cable and writing the static

balance conditions for that point. Figure 3-2 shows schematically the forces acting

on the point where the i'h spring meets the cable. There are three forces acting on

the center of the cable. The first force results from the compression (or extension) of

the spring between the equilibrium cable height at the center of the figure and the

imposed vertical displacement at the base of the spring given by ui. Assuming the

relaxed spring length is yo and the spring rate is ki, this force is given by

Fspring = ki (ui + yo - (yi)) (3.1)

The other two forces come from the vertical component of the tension in the cable

on either side of the ith point. Suppose that the tension in the cable is approximately
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Figure 3-2: Taught Cable Force Balance Diagram



constant through the length of the cable and is denoted by T. Then the magnitude

of the force coming from the left and right sides in Figure 3-2 can be written as

Fleft = Tsin(xia,yixj,yj) (3.2)

Fright = Tsin(xj+1,y+ix,i,) (3.3)

where the symbol T sin (x, y, x', y') denotes the vertical component of the tension in

the cable running straight between the two coordinates. If we make the approxima-

tion that the displacement in the vertical direction are small relative to the spacing

of the springs, such that sin 0 ~ tan 0, then the sin (....) term can be written as

-y (3.1_0Y 4)

sin (x, y,',y') ~ (3.4

Combining everything together, the balance of forces at the top of the ith spring is

given by

xi-1 - xi xi+1 - xi

Let us make the additional simplifying assumptions that all the springs are uniformly

spaced (Vi, xi-xi = Ax), are of equal stiffness k, and that the relaxed spring length

Yo = 0. We can then rewrite Equation 3.5 as

Yi- 2 + k yj - yi+1 = - kui (3.6)
T T

Observe that the left-hand-side of Equation 3.6 is linear in the unknown displace-

ments yi, and the right-hand-side is linear in the input displacements ui. We can

therefore write the entire system of equations resulting from applying the static bal-

ance condition along the entire length of the cable as a matrix equation, as follows.



Define the symbol E = Afk. Then the matrix equation obtained by repeating

Equation 3.6 for every spring point along the cable from Spring 1 to n has the form:

-1

2 + 5

1+

-1

-1 2 +c

-1 1+e j

eun

EU2

sus

En

(3.7)

The matrix M = K is the stiffness matrix of the system, and gives the kinematic

relationship between the cable displacements y and the inputs u.



3.2 Influence Matrix for the Taught Cable Sup-

ported by Springs

Because the kinematics defined Equation 3.7 are linear, the deformed shape of the

entire cable in response to any combined actuator input can be decomposed into a

sum of response shapes resulting from the individual ON actuators in that input.

Thus, in order to fully understand the discrete nature of the actuation in this mech-

anism, it is necessary to determine an expression for the influence of each actuator

on entire cable.

To do this, observe that K-'i' = EM-1 = Y. That is, the ith column of K-1

is the vector ' of vertical displacements of the entire cable that result from the

application of a single unit displacement at the base of the ith spring. This section

will derive the columns of the influence matrix K analytically.

Factoring out the constant e, the task of inverting K reduces to inverting M.

This matrix has a simple structure, and is easy to invert analytically. Following the

methods of [26], we construct the inverse by elimination. Consider the first few steps

of the forward elimination:

P1

1± -1 1±+e -1
P2

-1 2 +e -1 1 (3.8)
0 2±e- -1(38

-1 2+c -1 1+

The first pivot of the matrix M is the first entry. Notice that because the matrix

is tridiagonal, each pivot is only used for the row below it in the forward elimination.

Therefore, when we consider the ith row of the forward elimination, we need only



keep track of the pivot pi-I from the previous step.

0 pi -1 0 p
0-0 2+E- -1 (3.9)

-1 2+,- -1 p.
Pi+1

From this, it is evident that in the interior of the matrix, the following relation holds

between neighboring pivots:
1

pi+i = 2 + c - - (3.10)

This relation defines a discrete pivot dynamics that evolves down the rows of the

matrix during forward elimination. To find the fixed points of this dynamics, we

write the discrete difference of the pivots

1
p-1+1 -pt = 2 +E - pi (3.11)

pi

Rearranging,
-p? + (2 + E) pi - 1

Pi+1 - A= 2 (3.12)

Figure 3-3 plots the value of the numerator of 3.12. The two zeros of the numer-

ator occur at nonzero values of the pivot in the denominator and therefore represent

the two fixed points of 3.11. The fixed points at p = 1 + - 6+ ( is clearly unsta-

ble, as evidenced by the sign of the curve, and the fixed point at p = 1+ + e +

is locally stable.
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num (pi+1 - pi)

40-

Stable value at p* = 1 + e +
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Figure 3-3: Pivot Dynamics During Forward Elimination of Stiffness Matrix. Plot
of Numerator of Ap vs p. Arrows indicate direction of increment of next value of p,
derived from the sign and magnitude of the curve.

Claim 3.1. The region of attraction of the stable pivot at p* = 1 + 1 + e + T

begins at the unstable pivot and goes to infinity.

Proof. We begin by considering the region to the right of p*. We would like to show

that pi > p* ==> p* < pi+1 < pi.

We begin by proving the first inequality. Assume as a contradiction that pi+1 <

p*. That is,
1

pi+1 = 2 + - - p*

pi
Substituting in the value of p*,

1
2+,--1

Ai

eE2
<1±-+ E+-

2 4

Canceling terms and rearranging,

(3.13)
2 4

. 5

2
++ 4



Observe that the term in the square root can be rewritten as e + - = (1 + f)2

Therefore,

e + < 1 + E+ = ( +2

and thus,

_ + < 1 + ++0 < 1 + -e+
2 

6
4 2 2 +L (3.14)

Inequality 3.14 implies that the right-hand-side of Inequality 3.13 is strictly positive,

allowing us to invert both sides,

1
pi<

1 + - e+ F

y o i4

By our initial definition, p* < pi, and thus

24 + - 62+

Rearranging and combining terms,

2 ++ E+ 1

+ 6 + 2)
2~) 46T

<1

<1

E2 2

1+E+ -E- < 1
4 4

1 <

Before we prove the second inequality, consider the quantity pi - (1 + f). By

our original definition, pi >p* = 1+ f + + pi + > E + .

-+ +4



Squaring, we have that

E + < (Pi - + (3.15)

Now, assume by contradiction that pi+1 > pi. That is,

1
2±+ -- > p,

0 > p - pi (2 + E) +

0 > (pi - (1 + + 1

0 > (pi - (1 + - +

4 > (pi - (1 + 2 by 3.15

Thus far, we have shown that the entire region to the right of the stable fixed

point is within the region of attraction. What is more, we have shown that any initial

condition in that region will remain in that region and decay monotonically to p*.

To show that the interval between the unstable and stable fixed points is within the

region of attraction of p*, we need only show that pi < p* -=> pi+1 > pi. We need

not concern ourselves with showing that pi+1 < p* because we have just shown that

if the pivot "escapes" into the region pi+1 > p*, it will remain in that region and

decay down to p*, precluding the possibility of oscillation.

This proof that pi < p* =-> pi1 > pi is trivial: by Figure 3-3, the sign of

pi+1 - pi in the region between the fixed points is strictly positive, and thus, any

initial pivot in that region will increase.

This completes the proof that the region of attraction for the fixed point at

= 1++ + e L+ spans from the unstable fixed point at 1+ - E + to

infinity. L



To show that the pivots converge during forward elimination, we must show that

the initial pivot pi from the first step of the forward elimination falls within the

basin of attraction of the stable fixed point p*. From Equation 3.8, we know that

pi = 1 + E, and we must verify that

? E E2 E ? E2
1+s> + + - -- -> -E +- (3.16)2 4 2 4

Because e = Ax/T is a strictly positive quantity, this is trivially true. This shows

that the pivots of the matrix stability to p* during the forward elimination step.

Having established that the pivots of the matrix stabilize to p* during forward

elimination, we examine the entries of the candidate inverse matrix that have been

populated by the forward elimination process. The initial candidate inverse begins

as the identity, and after the pivots stabilize, each subsequent row of the candidate

inverse is constructed by adding - times the previous row to it, resulting in the

transformation

1 1

0 1 1 1-1* (3.17)
0 0 1 1

0 0 0 1 1 1 1

Candidate inverse before forward elimination Candidate inverse after forward elimination

We now consider the backward elimination process. After the forward elimination



pass, the original matrix M has been transformed into

The backward elimination process, therefore, consists of adding to each row ex-

actly - times the row below it, and dividing out the common p* at the end. This

operation is performed on the candidate inverse matrix in the right-hand-side of

Equation 3.17 as well.

Consider the jth column of the candidate inverse just before the start of backward

elimination. By inspection of the right-hand-side of 3.17, the ijth element is given

by , Specifically, the bottom of the column contains the terms

pn-j-2

(3.18)

1
sen-j-1

After the first step of backward elimination, the second to last row in 3.18 gets



increased by -L times the row below it, yielding

1
p*n-j-2

1

1

±-

1 1
p* p*n-3

(3.19)

After the second step of backward elimination, each term in the second-to-last row

is multiplied by - and added to the row above it:

1 1

17/_
±*

± 1

1 1
71* p*n-3

By inspection of this process, it is apparent that the number of terms added to

a given row after backward elimination is equal to the height of that row above the

bottom of the matrix. Before backward elimination, the term in the ijth entry is

given by _ . If the matrix is n x n, during backward elimination, exactly n - i

terms get added to this entry. By inspection of Equation 3.20, it is evident that the

ij'^ entry of the candidate inverse after the backward elimination is completed and

1

1
p*n-j-

1

(3.20)



the extra factor of p* is divided out from the main diagonal will be

1v ~~ 1 1
(M- 1) =- (3.21)

(M i P p*V p*ij+v(.1

Factoring out the constant terms and applying the well-known geometric sum identity

L a k = 1-aLl we have that
L k0O 1-a

1 1 - (p*-2(n-i+1))
(M -l)..* = .~- . (3.22)

In the central column of the matrix, n - i + 1 is a large number. Because e>
0, by Inequality 3.14 p* = 1 + i - + > 1. Therefore, the numerator 1 -

(p*-2(n-i+1)) ~ 1. Thus, in the center of the matrix, where the pivot has stabilized

to p*, the elements of the influence matrix K- 1 can be approximated as

(K-1)~ p*i (3.23)

Recalling the inverse kinematic relation g = K-1, we can say that that the vertical

displacement y of the cable above the central spring in response to a displacement

u, imposed on the base of a spring located wAx units away from the center is given

by

y =  U- p*~W (3.24)

In words, Equation 3.24 states that the influence of a constant magnitude actu-

ation on the center of the cable decays exponentially with horizontal distance of the

actuation point from the center of the cable. Because p* is an increasing function

of the stiffness ratio e, the mechanical properties of the mechanism (spring rates,



spring spacing, cable tension) can be adjusted such that the decay factor p* is some

integer root of 2, realizing the requirement that the decay factor between different

actuators is exactly 1/2 for constant magnitude actuation.

3.3 Stiff Beam on an Elastic Foundation

The search for elastic mechanisms with purely exponential decay of actuator influence

is motivated by the desire to use identical actuators in the entire mechanism. While

this desire is reasonable, a somewhat looser requirement on the actuators employed

in a practical design is not that they necessarily be identical, but that they not

require a large dynamic range of accuracy in their manufacturing process. This

looser requirement opens a wider class of compliant mechanisms for use in binary

mechatronic design. This section will present one such class of mechanism, based on

the deformation of a stiff beam resting on an elastic foundation.

A stiff beam resting on a continuous elastic foundation will deform in response

to a force directed into its top surface. Assuming that the beam is narrow and the

inputs are small, it is appropriate to analyze the problem in the planar case. Consider

the case of a unit magnitude point load applied to the beam, as shown in Figure 3-4.

From well-developed elasticity theory [29] [18], it is known that the deflection of the

beam surface is governed by

dx2 EId2) + ky = J(x) (3.25)

where EI is the flexural rigidity of the beam, k is the spring rate density of the

elastic support, and 6(x) represents a unit force point load.

Defining the length constant r, = )14, the solution for the vertical deflection
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Figure 3-4: Deformation of Stiff Beam on Elastic Foundation

neutral line



of the beam at a distance x away from the application point is given by

y = 1 e Ix (cos rx + sinI x) (3.26)

and the solution for the angular deflection is

1
0 = - 1 2e I sin ix (3.27)

Observe that the expressions for both the displacement and angular deflection

contain an exponential decay term. Drawing inspiration from the concept of com-

puted torque control in dynamics [25], we place the ith actuator at x = i log 2/K

distance units away from our chosen measurement point, making the exponential

e-.Iilog2/n - 2', and select the ON force magnitude of the ith actuator to be

bi = 1 / (cos ,xi + sin I jzi), canceling out the oscillatory terms and yielding a purely

exponential decay of actuator influence magnitudes on the measurement point at

x = 0. Alternatively, we can select the actuator magnitudes as bi = 1/ sin rxi in

order to control the angular deflection of the center of the beam.

While the actuator magnitudes required to achieve a uniform output coordinate

density in vertical displacement or in deflection angle are no longer identical, the

elastic averaging in the mechanism enables, with judicious selection of mechanism

parameters and force point spacing, the realization of high resolution output with

a looser requirement on the dynamic range of the force actuators themselves than

would be achievable without exploiting elasticity.



Chapter 4

Extension to Optimal Kinematics

For Multiple Independent Degrees

of Freedom

The original motivation of this line of research was to determine if there exists a

truss and binary actuator geometry which can optimally control a two-dimensional

deformable surface that is part of a three-dimensional optical system. The results

of the previous chapter suggest that there exist compliant mechanisms that allow

constant or near-constant magnitude actuators to apply exponentially decaying in-

fluences on the position of a single point on the mechanism, allowing the optimal

uniform density to be achieved at that point. The question then naturally arises: is

this extensible to a design for simultaneous independent control of multiple adjacent

points on a surface as required for active optics?

Before considering this question, an important subtlety must be emphasized: the

design for binary mechatronic control of multiple independent points on a surface
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Figure 4-1: Ideal Actuator Influence Function in Typical Adaptive Optics Deformable
Mirror [30]

must be done in a way that is amenable to optical wavefront correction. Because

the figure of an optical surface must be controlled to a given precision over the

entirety of the surface and not just at a discrete set of measurement points distributed

over the surface, the influence of all binary actuators must be restricted to a local

neighborhood of the point which they actuate.

Consider Figure 4-1, paraphrased from [30], which shows the influence function of

a single (continuous) actuator in a typical deformable mirror with many neighboring

(continuous) actuators. Because this design assumes a continuous linear actuator

positioned below the surface of the mirror, the influence function in Figure 4-1 has

the same (localized) shape for all actuation magnitudes of that actuator.

In designing a binary actuator configuration to replace the continuous actuator,

we must avoid the kind of situation shown in Figure 4-2, where the influence of each

binary actuator is indeed localized to the region of the actuator, but the resulting

shape over the entire surface in the neighborhood of the measurement point contains

spurious displacements, which are not conducive to accurate wavefront correction.
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Figure 4-2: Spurious Displacement Between Measurement Points Under Naive Binary
Actuation

This Chapter will address these issues by presenting a mechanism geometry that

preserves the exponential decay of actuator influences on a set of surface points,

but maintains locality of a set of actuators to the region of their respective surface

point by directing the spurious displacements into the third dimension, away from

the optical surface and into the interior of the surface support structure where they

have no effect on any optical element exposed to the incoming wavefront. Figure 4-3

shows a planar truss composed of active elastic members. This mechanism can be

thought of as a two-dimensional slice of a three-dimensional optical system, and will

serve as the basis for the design philosophy presented in this chapter.

The remainder of this Chapter is organized as follows: First, Section 4.1 will

present a graphical proof that will demonstrate that the influence of binary dis-

placement actuators in the interior of this planar truss on its top surface can be ap-

proximated by the same influence function that models taught cable system, where

the exponential decay occurs in the vertical direction (into the interior of the truss)

rather than the horizontal direction along the top surface.



Support surface for wavefront-facing optical elements

Truss composed of
compliant binary
actuator elements
linked by pin joints

Figure 4-3: Planar Triangular Binary Truss Structure. The top surface of the truss
can either directly support a meniscus-type thin monolithic mirror or individual rigid
mirrors in a segmented primary arrangement.



Second, Section 4.2 will validate that approximation with linear and nonlinear

simulations of the deformation of the top surface of the truss in response to binary

actuation in its interior as a function of the depth of the actuation below the top

surface. Specific attention will be paid to the effect of truss geometry, relative stiffness

of the truss members, and various boundary conditions on the exponential decay rate

of influence.

Finally, Section 4.3 will aggregate the insight gained from this analysis and will

present a design for a multi-d.o.f. binary-actuated deformable optical surface capable

of achieving independent uniform discrete distributions of vertical displacements for

adjacent points on its top surface.



4.1 Approximate Stiffness Matrix for the Planar

Truss

This section will derive an approximate analytical form for the influence of binary

displacement actuators embedded in the members of the triangular truss mechanism

shown in Figure 4-3. Lee showed [14] that if only the top several layers of the

structure are considered, then exhaustive enumeration of all possible states of all

the truss members demonstrates that superposition does not hold for large-stroke

actuators near the top of the structure. Therefore, this analysis will be confined to

determining the effect of small-stroke actuations deep in the interior of the structure.

First, a word about the overall strategy of this section. Constructing a stiffness

matrix for a planar truss is a straight-forward mechanical process. So is numeri-

cally inverting it. If, however, the stiffness matrix can be inverted analytically, as

in Section 3.2, it is possible to prove rigorously the existence of optimal binary ac-

tuation. Unfortunately, unlike the simple tridiagonal stiffness matrix of the taught

cable mechanism which was extremely simple to invert, the stiffness matrix for this

truss is complicated and does not yield a compact and easily-understandable inverse.

Furthermore, attempting to use the tools of continuum mechanics in two dimen-

sions in order to get a favorable analytical result is not promising. Indeed, the

Green's Functions in two dimensions for any equation that can be argued to model

the in-plane deformation of this mechanism (Poisson, Helmholtz, biharmonic, etc)

are not simple analytical functions, but rather series expansions in Bessel functions,

Hankel functions, or complex exponentials, depending on the choice of coordinates

and parameterizations of boundary conditions [9], [18].

While a power series may accurately model the deformation, and may even agree



Figure 4-4: Abstraction of a Slice of the Truss

with the numerically inverted stiffness matrix and real experiment, it does not present

a particularly fertile starting point for a symbolic proof of the existence of optimal

binary actuation in the mechanism. For this reason, exact accuracy will initially be

traded for simplicity in the development of an approximate form for the influence of

the truss members in the interior of the structure on the top surface, and the overall

theme of this section will be to argue that the easily-invertible stiffness matrix of the

taught cable mechanism is applicable to this truss.

Consider a single column of "V" elements of the truss, and neglect (for the time

being) the coupling between that column and its immediate neighbors. Then as

shown in Figure 4-4, the column can be approximated as a column of linear springs.

The stiffness matrix for a column of springs is almost identical to the stiffness ma-

trix for the taught cable system. Indeed, while the stiffness matrix for the taught

cable system has rows of the form [-1, 2 + e, -1], the stiffness matrix for a column

of springs connected in series as shown in Figure 4-4 consists of rows of the form
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Figure 4-5: Sign Conventions for Forces in Column of Springs

[-1, 2, -1], [26].

Before going into further detail, it is worth defining sign conventions used for the

lengths, displacements, and forces used in the analysis of this mechanism. Figure

4-5 illustrates the sign conventions for the forces at the nodes of the mechanism.

Assuming all spring lengths (relaxed, stretched, or compressed) are strictly positive

quantities, then the magnitude of the spring force is given by the difference between

the relaxed and compressed/stretched length, but the sign depends on whether the

measurement is taken at the "top" or "bottom" of the spring with respect to the

canonical "up" direction.

Figure 4-6, shows the static force balance conditions in the interior of the column

in response to an imposed vertical force load ui, using the sign conventions from

Figure 4-5. Symbolically,

LI

LI



Refer

-w

ence frame

L
y Spring force resulting from

difference between relaxed
spring length and
equilibrium spring length
between i* and i-l*
equilibrium positions
contributes

[+yi- - yi]-Ll tenn

yi

Spring force resulting from
difference between relaxed
spring length and

Yi+1  equilibrium spring length
between 1+1& and i

equilibrium positions
contributes

[+y., - y)+L, term

Figure 4-6: Force Balance in Column of Springs with Force Input
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L from Figure 4-5
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-L from Figure 4-5

When terms cancel and are appropriately combined, we re-write Equation 4.1 as

the row of a (larger) stiffness matrix, with the row equation given by

[i -1

yi+1

Applied
load force

Compressed Springs

0 = ui + k (4.1)

(4.2)
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Figure 4-7: Force Balance in Column of Springs Coupled to Ground with Series
Displacement Input

Now consider Figure 4-7, which replaces the parallel force actuation with is equiv-

alent series displacement and adds a leaf spring from the interior nodes to an infinitely

stiff reference frame in the neighboring column. While the infinite stiffness of the

neighboring column is not physical, it serves as a potentially plausible, and conve-

nient, approximation for the purposes of deriving an analytical form for the response

of the truss.

If the leaf spring vertical stiffness is given by k, and the column member stiffness

Applied displacement u,



by k., the force balance equation is

0 = ki (0 - yi) + ks (yi_1 - yj - Lo - uj) + ks (yi+1 - yj + Lo + ui+1)
pull to neighboring column upper spring with input lower spring

(4.3)

which in stiffness matrix form looks like

y i1

12 + , -1 = [1, -1] [z (4.4)
[Yi+1 J

Overall,

,-1 y 1 -1 U1

-1 2+k' -1 yi 1 -1U

-1 1 +i yn 1 Un

M T

(4.5)

The influence of actuators on vertical displacements of the nodes is therefore given

by

y = M-1 TI (4.6)

where by the positivity of the stiffness ratio k/k,, M- 1 has the same form as derived

for the taught cable system, namely exponential decays. While at first glance, the

differentiation matrix T would would appear to make this an entirely different influ-

ence matrix from that derived for taught cable, the key observation is that because

the measurement point is on the top surface of the structure, only the first row of



the influence matrix affects it.

Because T is a discrete difference matrix, the top row of the product M'T

is given by the discrete difference of the top row of M-'. But because the top

row of M is a decaying exponential, the discrete difference of the top row is also

a decaying exponential, and thus the top row of the influence matrix is a decaying

exponential, implying that the influence on the vertical displacement of the top of the

column of actuators in the interior of the column decays exponentially with depth,

as required for optimality, and because the "spurious displacements" associated with

individual bits occur in the interior of the structure, if the approximation developed

thus far holds, this arrangement is a suitable basis for a practical design for binary

mechatronic optical figure correction.

4.2 Numerical Validation Experiments in Two Di-

mensions

The initial validation of the admittedly intuitive argument presented in the previous

section was accomplished by examining the truss structure such as the one shown in

Figure 4-3. Specifically, the first question meant to be answered by initial numerical

experimentation was whether or not the elastic truss in Figure 4-3, when subjected

to constant magnitude binary actuation of some subset of its members, exhibited

exponential decay of influence on the vertical displacement of the top surface of the

truss, where the decay was exponential with increasing depth of the actuator from

the top surface.

Approaching the problem with limited insight about the relative magnitudes of

the effects of different boundary conditions, truss geometry, and rotation-induced
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Figure 4-8: Detail of Model of Truss Member

nonlinearity, but mindful of Lee and Bilton's result that nonlinearity plays a sig-

nificant role whenever actuation magnitude exceeds a non-negligible fraction of the

truss member length, it was felt that a purely linear analysis of the truss (that is,

just simply inversion of its stiffness matrix) was possibly insufficient to capture the

behavior of the mechanism. Therefore, the iterative routine detailed in Algorithm 1,

was used to solve for the truss deformation.

The actuation model implemented in the code is shown in Figure 4-8. For con-

venience of coding, the latter definition of equivalent parallel force was used in the

implementation.



Algorithm 1 Algorithm for Computing Nonlinear Effects in Deformation of Truss

x +- node geometry
E +- link geometry
C +- link spring rates
a <- actuator displacements
tol <- 1 x 10-6

imax + 100

i <- 1

while true do
Xnew +- X + AX
w <- InternalForces (x, xnew, E, C) {JInternal force = cAL}
Wresidual +- w + Ca {Actuation transformed into a force}
[Knew, Ane,] <- Stiffness-Matrix (Xnew, E, C)
Au +- 0.5K A At
if Au < tol then

break
end if

i <-- i + 1
if i > imax then

error
end if

end while



4.2.1 Validation of Exponential Decay of Influence With Depth

The initial parameters of the structure were chosen so that the mechanism was

approximately square, composed of 30 rows, each of 31 equilateral triangles, with each

member of unit length unit length and unit stiffness. For these initial experiments,

the boundary condition was applied to the bottom nodes of the truss only.

The purpose of this initial exploration was to validate exponential decay of ac-

tuator influence with increasing depth from the surface. Unit magnitude actuation

was applied symmetrically to the 30 center "V" elements shown in bold in Figure

4-9, and the resulting vertical displacement of the top center of the truss was taken

as the output.

Figure 4-10 shows the result of this initial experiment. While there are significant

boundary effects near the top of the truss, where the shallower actuator depth gives

a more direct line to influence the top, there does indeed exist a small region of

approximately constant exponential decay in the bottom half of the truss. Although

this region is small, and indeed the magnitude spanned between the actuators in the

1 0 th and 2 9 th rows is only one factor of 2 (only a single bit's worth of difference), this

result was considered encouraging.

4.2.2 Sensitivity of Decay Rate to Relative Stiffness of Truss

Members

Given the small slope of the region of exponential decay in Figure 4-10, a series

of investigations were performed to determine if modifications to the truss stiffness

parameters, boundary conditions, or geometry could increase the size of the region

over which exponential decay exists and to modify the rate of decay within that

region so that a more practical dynamic range of influence could be achieved within



planar deformable optical surface
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Figure 4-9: Two-Dimensional Truss Used in Initial Validation Simulation. All truss
members are unit length and unit stiffness. Unit magnitude actuation force was
applied in parallel with bold-faced truss members in the center.

it.

Looking back to the analytical form of the approximation of the influence matrix
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Figure 4-10: Result of Initial Numerical Experiment with 30 x 31 Truss

from Section 3.2, the magnitude influence as a function of depth w is given by

1
y(w) oc p-- (4.7)

where the ratio p* of successive influence magnitudes is given by

E E2

p* = + - + e+- (4.8)
2 4

where e is the ratio of the spring rate between adjacent nodes and the spring rate

between the nodes and ground. In the analysis of the truss, the approximation was

made that the "ground" in question is actually the adjacent column in the truss.

Continuing this approximation, an attempt to vary the parameter e was made by

changing the stiffness of the diagonal truss members directly adjacent to the central



column.

Figure 4-11 shows the result of linear and nonlinear simulations of a 31-column

wide truss with unit stiffness for the central actuated column and various stiffnesses

of the neighboring columns. Because the region of exponential decay in the 30-row

high truss was so small, these simulations were run on 60- and 120-row high truss

to remove the influence of the bottom boundary on a larger portion of the region

of exponential decay. As seen in the result, the effect of varying the stiffness of

the neighboring column does not quite have the predicted effect. Using Equation

4.8, varying the stiffness ratio from 0.005 to 0.05 should yield (constant) decay rates

ranging from 0.102 bits/row to 0.322 bits/row. While a similar range is seen near

the top of the truss, the range in decay rates disappears quickly with depth. In both

the 60-row and 120-row trusses, the data suggests a "steady-state" decay rate in the

interior of the truss closer to 0.15-0.2 bits/row for all stiffness ratios.

Note also, that in the initial 30-row simulation, all stiffnesses were identical,

implying e = 1 ==> log 2 P* = 1.3. The magnitude of the decay of influence between

the first and second rows in Figure 4-10 is indeed approximately 1.3 bits, validating

the approximation near the top of the truss, but demonstrating its limitation as the

decay rate drops to less than 0.1 bit/row in the constant decay magnitude region.

At this point, three facts become apparent. The first is that the approximation of

the planar truss as a single column of springs breaks down when an attempt is made

to modify the decay factor of actuator influences by varying the relative stiffness

between adjacent columns, as the approximation would suggest. The second fact is

that despite this breakdown in the model, the nonlinear simulation of the e = 0.005,

120-row case shows that a stable region of approximately 0.15 bits/row influence

decay exists. 0.15 bits/row is very close to exactly 7 rows/bit, and while varying

the the decay ratio over a large range by pure stiffness modulation seems to fail, the
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data suggests that a small nudge from 0.15 bits/row to exactly 7 rows/bit should be

possible over a wide range of depths. Furthermore, in that 120-row case, the region

of constant magnitude decay spans over 70 rows, implying that it should be possible

to embed a 10-bit actuator in the truss, which is encouraging. Finally, the third fact

is that the close agreement between the linear and nonlinear simulation result shown

in Figure 4-11 implies that further high-level analysis can be performed to first order

without sacrificing much insight, allowing faster computation for further analysis.

4.2.3 Sensitivity of Decay Rate to Truss Geometry

The results of the previous section imply that control of the actuator decay rate

by varying the relative stiffnesses of adjacent columns in the truss is not entirely

effective, and in order to achieve a large dynamic range with optimal workspace

density and inverse kinematics, a very large passive truss structure is required to

build up enough dynamic range among the active members of the truss. This may not

always be practical if many bits of precision are required but a large truss structure

with a decay rate of 7 rows/bit cannot be accommodated.

The approximation employed to derive the decay rate for the truss was based on

the assumption that the adjacent column was stiff enough to be modeled as ground.

Given the seeming breakdown of this assumption, as series of fast linear simulations

were performed to determine the effect of successively wider distances between the

active column and the stiff reference. A 240-row truss was simulated with both

bottom and side fixed boundary conditions. Figure 4-12 plots the influence vs depth

for various widths of the truss.

The result demonstrates that the distance between a stiff reference and the active

column has a non-negligible effect on the decay rate of actuator influences on the
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Figure 4-12: Sensitivity of Decay Rate on Truss Width with Side Boundary Condition

top surface. At the narrow extreme, the approximation of leaf springs and stacked

springs used to derive the approximate influence function is in close agreement with

the actual mechanics, as demonstrated by the nearly flat decay rate. At the wider

extreme, the assumption breaks down and the decay rate drops.

4.3 Discussion and a Candidate Design

The numerical experiments of the previous section showed that in the planar truss

there exists a region where the influence of active truss members on the vertical

displacement of the top surface decays exponentially with the depth of the actuator

below the top surface. The rate of this exponential decay is slightly sensitive to the

stiffness ratio between the active truss members and their passive neighbors, and is

much more sensitive to the horizontal distance between the active column and a stiff



reference. These two observations suggest a candidate design for a truss structure

that allows optimal independent control over many adjacent degrees of freedom on

the top surface of the truss, as required for optical figure correction.

A two-dimensional version of such a design is presented in Figure 4-13. This

design calls for a regular triangular truss composed of three types of members. The

first, shown in narrow black lines, are passive members of some nominal linear stiff-

ness. The second, shown in thick black lines, are also passive members, but are

required to be significantly stiffer than any other members in the truss. These serve

to extend a "pseudo-ground" boundary condition in the vertical dimension, to allow

the design to exploit the sensitivity of influence decay rate to the width between

boundary conditions. Finally, there are the active elements, shown in gray lines.

The linear stiffness of these active elements serves as the vernier adjustment on the

decay rate coarsely defined by the lateral spacing of the stiffening columns.

Figure 4-14 plots the decay rate of actuator influences for a truss mechanism

similar to the one in 4-13. This mechanism was 64 rows high, had unit stiffness

passive elements, and stiffening columns 1000 times stiffer. The centers of the stiff-

ening columns were 17 columns apart in the horizontal direction. The result shows

actuator influence decay rates for various spring rates of the central actuated ele-

ments, normalized to the stroke length. While the decay rate is no longer constant,

as is predicted assuming ideal infinitely stiff boundary conditions rather than stiff-

ening columns with large but finite spring rates, the deviation from constant decay

rate is low. Additionally, sensitivity of the decay rate to the stiffness ratio between

the active and passive column over the region of constant decay is non-negligible,

suggesting that this design can be optimized and implemented in a practical system.

As shown in Figure 4-15, this design has the property that the deformation of

the top surface in response to actuation in a given "bucket" is confined to the region
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Figure 4-13: Design of Variable Stiffness Planar Thuss. Bold columns represent stiff-
ening members, gray lines are active column, think black lines are passive members.

101



Influence of Actuators in 64-row by 129-column Truss
with 1000x Stiffening Columns Spaced 17 Columns Apart

10 20 30 40 50
Actuator Depth Below Top Surface [rows]

60 70

Figure 4-14: Actuator
the near-constant dec

Influe

0 -

E

-o
0

0 2

E

oE -5-

C -0

Q.

Figure 4-15:
Columns

Influence Decay Rate for Truss With Stiffening Columns.

ay rate of ~ 0.5 bit/row for stiffness ratios of 0.1 and 0.2.

nce of Selected Actuators on Entire Top Surface of 64-row byl 29-column Truss
with 1000x Stiffening Columns Spaced 17 Columns Apart

-20 0 20
Horizontal Coordinate [columns]

Actuator Influence on Entire Top Surface of Truss With Stiffening

102

ratio = 1

Note



Figure 4-16: Extension of Planar Truss to Three Dimensions. The two-dimensional
truss of Figure 4-13 is folded to yield a three-dimensional support for a two-
dimensional optical surface.

of the surface over that bucket. This is extremely desirable, as it assures that there

is little coupling between adjacent degrees of freedom.

Observe finally that this design extends trivially to three dimensions. As shown

in Figure 4-16, the two-dimensional truss in Figure 4-13 can be folded around the

stiffening columns and tessellated without changing the kinematics of the passive and

active elements between those columns. The obvious caveat is that the stiffening

columns must now be sufficiently stiff to have not only two independent degrees

of freedom working against them, but six, if the triangular fold of Figure 4-16 is

extended into a tight triangular packing in the horizontal plane.
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Chapter 5

Conclusion

Binary mechatronics was studied in the 1990's as a design philosophy for construct-

ing cheap, robust, robotic manipulators. Recently, proposals have been made for

the application of binary mechatronics to active figure correction in large optical

systems. While preliminary explorations in this direction showed promise, the kinds

of methods of inverse kinematics applicable to serial robot manipulator arms do

not translate well to the parallel geometries and increased actuator count in mirror

support structures.

5.1 Summary of Results

The research detailed in this Thesis approaches this impasse from the vantage point

of basic information theory. Knowing that practical deployed active figure correc-

tion systems in large optical telescopes correct for shape errors that require many

independent degrees of freedom to parametrize, a lower bound for the information

content of the figure correction system can be derived in terms of bits, which in
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turn gives a lower bound on the minimum number of binary actuators required in

an active optics system. Specifically, if, after accounting for all the natural struc-

ture in the mechanism, a corrective command for the entire surface needs must be

parametrized by a minimum of N independent degrees of freedom, and each of those

degrees of freedom requires a relative precision of 1/M, the minimum number of bits

required to uniquely represent any corrective action to the required precision is given

by log 2 MN = N log2 M, corresponding to MN discrete actuator configurations.

Knowing this lower bound on the number of required bits and corresponding

number of discrete actuator configurations, the question of what the optimal distri-

bution of those discrete configurations over the discrete workspace can be addressed.

Assuming that the time-history of the required corrective action is unknown a priori,

a probabilistic argument can be made that the optimal distribution of those discrete

configurations is the discrete uniform distribution over the entire multi-dimensional

workspace.

Knowing that the optimal distribution is uniform, and that for small inputs and

to a certain tolerance, compliant binary mechatronic systems are linear in the ac-

tuator inputs, an analogy can be made between the compliant mechanism and the

mathematics of independent random variables. This analogy can be used to deter-

mine the set of optimal influences of the binary actuators on the degrees of freedom

of the workspace. Specifically, the optimal distribution of configurations in any de-

gree of freedom would be achieved for a given coordinate to a relative tolerance of

1/M if the mechanism contains exactly log2 M actuators with geometrically decaying

influence with decay factor 2.

With this prescription in hand, mechanism compliance can be exploited to for-

mulate designs where constant or near-constant magnitude binary actuators, corre-

sponding to individual bits of an actuator command, have geometrically decaying
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influences on the commanded measurement point. Specifically, a mathematically

rigorous proof exists showing that the theoretical mechanism composed of a taught

cable supported by springs has exact exponential decay of influence on the vertical

displacement of a single point on the cable for constant magnitude actuators spaced

at uniform intervals.

With this theoretical foundation layed, the original studies by Bilton and Lee of

compliant binary-actuated truss supports for optical systems can be revisited. Con-

fining the investigation to the linear regime, the claim is made that the statics of a

large truss can be approximated roughly by the statics of the theoretical taught cable

mechanism for which optimal actuator design is rigorously known to be theoretically

possible. Numerical simulations confirm that actuators placed in very specific points

deep in the interior of such a planar truss do indeed exhibit exponential decay of

influence on the vertical displacement of the top surface, and that for suitable com-

binations of truss member stiffness, optimal control of multiple degrees of freedom

on the top surface can be achieved with a minimal set of near constant magnitude

binary displacement actuators placed at specific locations in the truss.

5.2 Future Work

This Thesis restricted its analysis to the applicability of binary mechatronics to op-

tical systems to reject slow-moving disturbances. As such, dynamics were neglected

entirely. This is may not be justified, as the design for the large truss presented

in this document would most likely exhibit lightly damped ringing in response to a

binary actuation in its interior.

There are several approaches to damping out vibration in trusses. The most

obvious is to use stiffer or better-damped passive truss members and joints. A second
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approach, studied in the early 1990's, involves placing active dampers on some truss

members to slowly remove energy from vibrations in the structure [32].

Lastly, there exists a method for controlling residual vibrations in lightly-damped

structures by employing a specifically designed control input time history. This

control strategy is referred to in the literature as Posicast Control or Input Shaping

[22]. The method was developed for suppressing residual vibration in flexible space

structures. The nature of the problem this was developed to address has resulted

in a sizable body of literature exploring the suppression of vibration in large flexible

trusses by binary (thrust) actuation and, in particular, there exist published closed-

form solutions for generating binary thrust commands of specified duration [23] that

result in zero residual ringing.

At their very core, these methods are based on the idea of computing an actuator

time-history where the second half of the actuation cancels the vibration induced

by the first half. Given the kinds of mechanism designs dictated by the optimality

criteria developed in this Thesis, a promising avenue for future research will be the

application of input shaping to vibration suppression in binary mechatronic trusses.

5.3 Context

The idea of digital electronics is to trade one very precise analog component, engi-

neered very expensively to have low noise, etc., for many components with looser

tolerances. This represents two trades. One is noise immunity for rounding error.

The second is increased precision for increased component count. That is, one am-

plifier with (say) ten transistors for one ALU with hundreds of transistors. The

same trade holds in binary mechatronics. We trade one very precise (but compact)

actuator for many simpler binary actuators distributed over a larger volume.
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What this Thesis has brought to the discussion was the formalism to reason about

these trade-offs in terms of accuracy and inverse kinematics computation time, some

intuition about the kinds of mechanisms that can be constructed to exploit elastic

averaging to achieve optimality in these respects, and an example of the reasoning

that can be used to synthesize designs with these principles.

109



110



Bibliography

[1] P. Y. Bely, editor. The Design and Construction of Large Optical Telescopes.
Springer, 2003.

[2] I. Bowen. Final adjustments and tests of the hale telescope. Publications of the
Astronomical Society of the Pacific, 62(356):91-97, 1950.

[3] G. S. Chirikjian. A binary paradigm for robotic manipulators. In Proceedings
of the 1994 IEEE International Conference on Robotics and Automation, 1994.

[4] K.-J. Cho and H. Asada. Architecture design of a multiaxis cellular actuator
array using segmented binary control of shape memory alloy. IEEE Transactions
on Robotics, 22(4):831-843, 2006.

[5] T. Cover and J. Thomas. Elements of Information Theory. Wiley-Interscience,
2nd ed. edition, 2006.

[6] A. Delmege and M. Tremblay. Hydraulic digital actuator. Control Engineering,
12:69-70, February 1965.

[7] L. M. DeVita. An mri compatible manipulator for prostate cancer detection
and treatment. Master's thesis, Massachusetts Institute of Technology, 2007.

[8] L. M. DeVita, J. Plante, and S. Dubowsky. The design of high precision parallel
mechanisms using binary actuation and elastic averaging: With application to
wri cancer treatment. In Proceeding of the 2007 IFToMM World Congress on
Machines and Mechanisms, 2007.

[9] D. G. Duffy. Green's Functions with Applications. CRC, 2001.

[10] I. Ebert-Uphoff and G. S. Chirikjian. Efficient workspace generation for binary
manipulators with many actuators. Journal of Robotic Systems, 12(6):383-400,
1995.

111



[11] I. Ebert-Uphoff and G. S. Chirikjian. Inverse kinematics of discretely actuated
hyper-redundant manipulators using workspace densities. In Proceedings of the
1996 International Conference on Robotics and Automation, Minneapolis, 1996.

[12] European Southern Observatory. Active optics, Feb. 2011.
http://www.eso.org/public/teles-instr/technology/active-optics.html.

[13] G. Grimmet and D. Stirzaker. Probability and Random Processes. Oxford Uni-
versity Press, 3rd ed. edition, 2007.

[14] S. J. Lee. Planar feasibility study for primary mirror control of large imaging
space systems using binary actuators. Master's thesis, Massachusetts Institute
of Technology, 2010.

[15] S. J. Lee, A. M. Bilton, and S. Dubowsky. On the kinematics of solar mirrors
using massively parallel binary actuation. In Proceedings of the ASME 2010
International Design Engineering Technical Conferences & Computers and In-
formation in Engineering Conference, August 2010.

[16] D. S. Lees and G. S. Chirikjian. Inverse kinematics of binary manipulators
with applications to service robotics. In IEEE/RSJ International Conference
on Intelligent Robots and Systems 95, 1995.

[17] D. S. Lees and G. S. Chirikjian. A combinatorial approach to trajectory planning
for binary manipulators. In Proceedings of the 1996 International Conference
on Robotics and Automation, Minneapolis, 1996.

[18] Y. A. Melnikov. Influence Functions and Matrices. Marcel Dekker, Inc, 1999.

[19] MIT Lincoln Laboratory. Annual Report. 2010.

[20] E. Pearson and L. Stepp. Response of large optical mirrors to thermal distribu-
tions. Proceedings of the SPIE, 748, 1987.

[21] J. Plante and S. Dubowsky. The calibration of a parallel manipulator with
binary actuation. In 11th Conference on Advances in Robot Kinematics (ARK),
2008.

[22] W. Singhose and W. Seering. Command Generation for Dynamic Systems.
Lulu.com, 2010.

[23] W. Singhose, T. Singh, and W. Seering. On-off control with specified fuel usage.
Journal of Dynamic Systems, Measurement, and Control, 121, June 1999.

112



[24] A. Slocum. Precision Machine Design. Society of Manufacturing Engineers,
1992.

[25] J.-J. E. Slotine and W. Li. Applied Nonlinear Control. Prentice-Hall, 1991.

[26] G. Strang. Computational Science and Engineering. Wellesley Cambridge Press,
2007.

[27] V. A. Sujan, M. D. Lichter, and S. Dubowsky. Lightweight hyper-redundant
binary elements for planetary exploration robots. In 2001 IEEE/ASME Inter-
national Conference on Advanced Intelligent Mechatronics, 2001.

[28] R. Teoste, J. Daley, R. N. Capes, J. J. Alves, and M. D. Zimmerman. Measure-
ments of tilt anisoplanatism at the firepond facility. Technical Report 815, MIT
Lincoln Laboratory, 1988.

[29] S. Timoshenko and S. Woinowsky-Krieger. Theory of Plates and Shells.
McGraw-Hill, 1959.

[30] R. K. Tyson, editor. Adaptive Optics Engineering Handbook. Marcel Dekker,
Inc, 2000.

[31] W. M. Keck Observatory. The mirror, Feb. 2011.
http://keckobservatory.org/about/mirror/.

[32] M. Webster, J. Fanson, B. Lurie, and J. O'Brien. Design and implementation
of active members for precision space structures. In AIAA Aerospace Design
Conference, 1992.

113


