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Abstract

The intent of this thesis is to provide a detailed study of the arithmetic and analytic
properties of Gaussian (finite field) hypergeometric series. We present expressions
for the number of F,-points on certain families of varieties as special values of these
functions. We also present "hypergeometric trace formulas" for the traces of Hecke
operators on spaces of cusp forms of levels 3 and 9. These formulas lead to a simple
expression for the Fourier coefficients of r(3z)', the unique normalized cusp form of
weight 4 and level 9. We then use this to show that a certain threefold is "modular" in
the sense that the number of its F,-points is expressible in terms of these coefficients.
In this way, we use Gaussian hypergeometric series as a tool for connecting arithmetic
and analytic objects.

We also discuss congruence relations between Gaussian and truncated classical
hypergeometric series. In particular, we use hypergeometric transformation identities
to express the pth Fourier coefficient of the unique newform of level 16 and weight 4
as a special value of a Gaussian hypergeometric series, when p =1 (mod 4). We then
use this to prove a special case of Rodriguez-Villegas' supercongruence conjectures.
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Chapter 1

Introduction

Gaussian hypergeometric series were first defined by Greene in [14] as finite field

analogues of classical hypergeometric series. Greene then proved a number of trans-

formation identities for Gaussian hypergeometric series that are analogous to those in

the classical case. More recently, they have been shown to possess interesting arith-

metic properties; in particular, special values of these functions can be used to express

the number of F,-points on certain varieties. One can also express Hecke operator

trace formulas, and consequently the Fourier coefficients of certain modular forms, in

terms of hypergeometric series. We will explore these topics and others in this thesis.

Chapter 2 consists of background material that will be used throughout this thesis.

We recall the definitions of various types of hypergeometric series and present some

useful transformation identities. We also provide as reference some basic facts about

elliptic curves, such as equations for their j-invariant and discriminant, and discuss

the family of curves that will appear in the trace formulas later on. Finally, we

present some motivation for deriving character sum expressions for point counting on

varieties as a method for studying their analytic properties.

In Chapter 3, we demonstrate how Gaussian hypergeometric series can be used to

express the number of points on a variety. This topic has been studied previously in

[12, 23, 34] among others, and results in these papers have provided formulas for the

traces of Frobenius for a number of families of elliptic curves, including the Legendre

family. In Section 3.1, we build on the work of Fuselier to present a formula for the

trace of Frobenius of an arbitrary elliptic curve E over Fq, with the restrictions that

q =1 (mod 12) and j(E) 74 0, 1728. In particular, we show the following, where 2 F

denotes the Gaussian hypergeometric series defined in Chapter 2.

Theorem 3.1.1. Let q be a prime power such that q - 1 (mod 12). In addition, let

E be an elliptic curve over Fq with j(E) # 0,1728 and let T G Fx be a generator of



the character group. The trace of the Frobenius map on E can be expressed as

q-1 1728 TqT2 T12 j(E)
tE(E)=-q-T12 2F1  

2 ,q-1 ,
A(E) T 3 1728

where A(E) is the discriminant of E.

Note in particular that the identity is expressed in terms of invariants of the curve

E, so does not depend on the model of the curve.

In Theorem 3.2.2 we provide an expression for the trace of Frobenius on the family

of curves equipped with a 3-torsion point discussed in Section 2.2.1. This formula,
which requires q =1 (mod 3) and j(E) / 0,1728, is simpler than Theorem 3.1.1

and contains only characters of order 3. We will use this formula in Chapter 4 in the

expressions for the traces of Hecke operators on spaces of cusp forms. This will lead

to an expression of the Fourier coefficients of a certain modular form as special values

of Gaussian hypergeometric series.

Chapter 4 is primarily devoted to computation of traces of Hecke operators via a

refined version of the Eichler-Selberg trace formula due to Hijikata. Recent work (see

for example [1, 3, 10, 12]) has shown that trace formulas for Hecke operators can often

be naturally expressed in terms of Gaussian hypergeometric series. We further explore

the connections between trace formulas and hypergeometric series and provide simple

recursive formulas for Hecke operators on spaces of cusp forms of levels 3 and 9. In

both of these results we will make use of Theorem 3.2.2 to provide "hypergeometric"

trace formulas.

The following is an example of the theorems obtained in Chapter 4. Let trk(JPo(3), p)

denote the trace of the pth Hecke operator on the space of cusp forms of level 3 and

weight k.

Theorem 4.2.4. Let p be a multiplicative character of order 3 on _ -2 and let E be

the trivial character on F-2. The trace formula for p z 3 and k > 6 even may be

written as

p-1

tr(-o(3),p) pk-2 21 2t +p -trk-2(Fo( 3 ),p) + 2p - 2 - #(p),
t=2 )Pk-



where

0 p 1 (mod 3) and k 0, 1 (mod 3)

pA(P) -pk- 2 . 2 F1  2 9.8-) p I1 (mod 3) and k 2 (mod 3)I2(p)k/2-1 p=-2 (mod 3).
As an application, we use the results obtained to provide a simple expression for

the Fourier coefficients of q(3z)8 , the unique normalized cusp form of weight 4 and

level 9, in terms of Jacobi sums. Using purely elementary techniques, we are able

then to construct a threefold whose number of points over F, can be expressed in

terms of the Fourier coefficients of a modular form.

In Chapter 5 we explore the relationship between Gaussian, classical, and trun-

cated hypergeometric functions. In Proposition 5.1.2, we give a congruence mod p

between Gaussian and truncated hypergeometric series evaluated at arbitrary points

that follows from a classical character sum congruence relation. We then give an

example illustrating that the result does not hold modulo higher powers of p in gen-

eral. We go on to discuss when such "supercongruences" might hold, mentioning in

particular the results of Mortenson in the case of hypergeometric functions evaluated

at 1.

In Section 5.2.2, we discuss the supercongruence conjectures of Rodriguez-Villegas

from [36] and what progress has been made towards proving them. These conjectures

state that special values of certain truncated hypergeometric series are congruent

modulo a prime power to the Fourier coefficients of modular forms. Using this as a

guide, we conjecture that the Fourier coefficients of the modular forms in Rodriguez-

Villegas' conjectures are equal to special values of specific Gaussian hypergeometric

series. In particular, we use results of Ahlgren and Ono [2] and transformation for-

mulas for hypergeometric series to give an expression for the pth Fourier coefficients of

a level 16 cusp form when p =1 (mod 4). We combine this with a supercongruence

result of McCarthy [28] to prove the level 16 conjecture of Rodriguez-Villegas when

p 1 (mod 4).

Finally, we provide two appendices intended to aid any readers who wish to further

explore the problems discussed in this thesis. In Appendix A, we derive simple explicit

formulas for the function c(s, f, N) that appears in Hijikata's version of the trace

formula in the special case where the level N is either prime or the square of a prime.

Though straightforward, these require a bit of tedious computation and case analysis.

We also show in Lemma A.2.2 how to use these expressions to eliminate the function



c(s, f, 2) from the trace formula whenever the level is the square of a prime. This

is a generalization of Lemma 4.5.2 which applied only to the level 9 case. In this

way, we make some progress towards a trace formula for Hecke operators on spaces

of cusp form of level N = e2 in the general case. Appendix B contains some of the

Magma code that was used during the preparation of this thesis for computing finite

field hypergeometric functions and truncated hypergeometric functions. Some of our

results in this thesis have appeared previously in [25] and [26].



Chapter 2

Background

2.1 Hypergeometric functions

Throughout this thesis, we will be working with Gaussian (or finite field) hypergeo-

metric functions, first defined by Greene [14] to act as finite field analogs of classical

hypergeometric functions. As we will often want to compare these series to classical

ones, we begin by recalling the definition of classical hypergeometric series and list a

few transformations.

Define the Pochhammer symbol (a)k as the rising factorial

(a)k =a(a + 1)...(a + k - 1)

(a)o =1.

Let ao, .. , an, bi, .., bn be real or complex parameters such that no bi is a nonpositive

integer. The classical hypergeometric series n+1Fn is the formal power series

n+ , ao a1 . .. a. (ao j a..(ank k
b. b ) (b1)k ... (b k

These functions satisfy the inductive integral formula (see Theorem 3.1 in [4])

n+1F( ao ai ... a' X (2.1.2)
b1 .(.1. bn

IF(bn) [ Fn 1 ao a1  ... an 1 tx t-(1 t)b-a dt
F(an)r(bn - an) J  b1 ... bn_ 1  t(1 - t)

On the other hand, Gaussian hypergeometric series are finite character sums.



Specifically, let q= pe be a power of an odd prime and let Fq be the finite field of q

elements. Extend each character X c Fx to all of Fq by setting X(O) 0. For any

two characters A, B c Fx one can define the normalized Jacobi sum by

(A):A(x)B(1 x) = ( )J(A ), (2.1.3)
B q A 7(-x) q A

xcIFq

where J(A, B) denotes the usual Jacobi sum.

For any positive integer n and characters A0, A1, ... , An, B1, B 2 , ... , Bn E Fx the

Gaussian hypergeometric series n+1Fn over Fq is defined to be

n+1F Ao A An 1q Ax ... " x(x). (2.1.4)

xETFq

See also Katz [21] (in particular Section 8.2) for more information on how these

sums naturally arise as the traces of Frobenius at closed points of certain E-adic

hypergeometric sheaves.

Remarkably, Gaussian hypergeometric series satisfy an inductive formula similar

to (2.1.2). Specifically,

Theorem 2.1.5 ([14], Theorem 3.13).

nl Ao A1 ... An (216
n+1F B, x2..6B1 ... BA (2.1.6)

A q,( 1 nFn1 A B A . .. A_.1 xy An(y)i Bn(1 - y).
q \ B1 ... B,_1

In fact, these functions satisfy many transformation laws similar to their classical

counterparts. We present two such laws here that we will use in Sections 3.1 and 3.2.

Theorem 2.1.7 ([14], Theorem 4.4(i)). For characters A, B, C of F' and x E F,
x 7 0, 1,

2 F1 X = A(-1) - 2F1 ._ 1 - X .
C )qABC )

Theorem 2.1.8 ([14], Theorem 4.2(ii)). For characters A, B, C of F' and x E Fx

2 F1 x = ABC(-1)A(x) -2F1 -
C )qAB x



Compare these for example with the classical hypergeometric series identity in

[13] (ignoring convergence issues)

a b F(c)F(c - a - b) a b
J F(c - a)F(c - b)2F1 a+b-c+ 1 1

bF(c)F(a +b -c) (c -a c- b+±(1 -z)ca-4-)6b 2F1  c-a-b+1.
F(a)]F(b) c - a - b + 1

2.1.1 Character sum identities

We will also need the Davenport-Hasse relation when expressing the trace of Frobenius

on elliptic curves as a special value of a hypergeometric function. We state here the

general theorem and then also the precise formulas for the specific cases that we will

need.

Let tr : Fq -+ F, be the trace map, i.e. tr(a) - a + a9 + a,2 +... + ae" 1, and let

=e . Recall that if X C Fx, then the Gauss sum G(x) is defined to be

G(x) : X(x)(x).
xE]Fq

Then the Davenport-Hasse relation can be stated as follows.

Theorem 2.1.9 (Davenport-Hasse Relation [24], Theorem 10.1). Let m be a positive

integer and let q = pe be a prime power such that q =1 (mod m). For multiplicative

characters x, F"x we have

1J G(xp) = -G(x')x(m-"') fJ G($b).

The cases for m = 3, m = 2 may be restated as follows.

Corollary 2.1.10 (Davenport-Hasse for q = 1 (mod 3)). If q satisfies q 1 (mod 3)

and p G Fx is a character of order 3, then

G(x)G(xp)G(xp 2) = qG(x 3 )x(27)

for any character x G Fx.

Corollary 2.1.11 (Davenport-Hasse for q = 1 (mod 2)). If q satisfies q = 1 (mod 2)



and # is the character of order 2 then

G(x)G(X#) = G(X2)x(4)G(#)

for any character x G Fx.

2.2 Elliptic curves

An elliptic curve is a smooth, projective algebraic curve of genus 1, with a speci-

fied rational point. We will only discuss some of the facts related to elliptic curves

which we will use throughout this thesis. For more information, one should consult

Silverman [39]. Assume throughout that p $ 2,3.

In characteristic not equal to 2 or 3, any elliptic curve can be written in Weierstrass

form as

E: y 2 = x 3 + ax + b.

The j-invariant of this curve is given by

1728 -4a 3

j(E) - 4a 3 + 27b2 '

and its discriminant is

A(E) = -16(4a 3 + 27b2 ) / 0.

For an elliptic curve defined over a finite field Fq, the Frobenius endomorphism F

E -± E is given by

7r(X, Y) = (zq, yq).

If we let tq(E) denote the trace of the Frobenius map, then it satisfies the relation

tq(E) = q + 1 - JE(F)|. (2.2.1)

This will be used throughout this work. In addition, the trace can be written as a

sum of algebraic integers

tq(E) = a +.i, (2.2.2)

where cs = q. See Chapter V Section 2 in Silverman [39] for further details regarding

equations (2.2.1) and (2.2.2).



2.2.1 Curves with a 3-torsion point

We now present a parametrization for all elliptic curves with nonzero j-invariant and

equipped with a nontrivial 3-torsion point, up to isomorphism. In Section 3.2, we will

express the traces of Frobenius on curves in this class as special values of a Gaussian

hypergeometric function. Parameterizing curves with a 3-torsion point will become

essential in Chapter 4, where we will see that Hijikata's trace formula can be stated

in terms of counting isomorphism classes of elliptic curves with specified torsion.

By changing coordinates so that (0,0) is a point of order 3, any elliptic curve E

with a 3-torsion point can be written in the form

E : y2 + aixy + a 3 y=X 3, (2.2.3)

with a3 :/ 0 (see, for example, Chapter 4 Section 2 in [16]). The j-invariant of such

a curve is
1 (as - 24a 3)3

j(E) =a(a3 - 27a3)' (2.2.4)

and its discriminant is

A(E) = a3(a3 - 27a3). (2.2.5)

By considering the division polynomial is, it was shown ([30], Corollary 5.2) that E

has E(F,)[3] - Z/3Z x Z/3Z if and only if p - 1 (mod 3) and A(E) is a cube in F,.

We next show how to write any elliptic curve with j 74 0 in terms of one parameter.

Assume that j(E) # 0, then (2.2.4) implies that a1 # 0. Setting u as/al,
t ai/a 3, and making the change of variables y -+ u3y, x -+ u2x gives the isomorphic

curve

Et : y2 + tXy + t2 y x3 . (2.2.6)

This curve has j-invariant j(Et) = t(t -24) 3 /(t -27) and discriminant At := A(Et) =

t (t 3 - 27t 2). This parameterizes all elliptic curves E with j(E) #/ 0 and equipped

with a 3-torsion point.

Now, assume that p - 1 (mod 3). If j(E) = 0, then from equation (2.2.4) we

know that ai = 0 or a3 = 24a 3. If in addition E(F,)[3] = Z/3Z x Z/3Z then Lemma

5.6 in [38] tells us that there is only one such isomorphism class over F,. In particular,
E24 is an elliptic curve over F, with j(E24) = 0 and A 24 = 246.242-(-3) = -246-26.33,

a cube. This shows that any such E will be isomorphic to E24. In particular, the

curve given by y2 + y = x3 is isomorphic to E24- Setting u = 24- 1al, and mapping

y -+ u3y, x -+ u2 x shows that, when a3 = 24a 3 , E ~ £24. The curves with j(E) =0



and E(F,)[3] 2 Z/3Z must have ai = 0 and are not of the form Et for any t.

2.3 Motivation: Jacobi sums as Hecke characters

One motivation for expressing the number of points on a curve as a special value of

a hypergeometric series comes from the work of Weil in [43, 42]. In [43], Weil shows

how to express the number of Fq-points on curves in the form

aoxo + a 1 +... + arx"r = b, ai, b c Fq, ni G N

in terms of Jacobi sums, and then explicitly computes the local zeta function of such

curves. He then shows in [42] that Jacobi sums can be expressed in terms of Hecke

characters. Combining these two results, he is able to prove a conjecture of Hasse,

that the zeta function of curves of the form Ye = X6+J defined over number fields

are meromorphic and have functional equation. One hopes that similar techniques

might be effective in using hypergeometric series expressions to obtain results about

the zeta functions of other curves. For this reason, we discuss some of Weil's results

now, though for simplicity only in the specific case of elliptic curves. For relevant

background information, see Chapter 1 of Lang's Cyclotomic Fields [24] and Chapter

18 of Ireland and Rosen's A Classical Introduction to Modern Number Theory [19].

Let E be the smooth projective model of the curve

Y 2 = YX 3 + j,

where 7,6 are nonzero elements of a field k of characteristic not equal to 2 or 3.

Consider first the case where k Fq. If q =1 (mod 3), let 4 be the character of Fq
of order 2, and let p be a character of order 3. Then the number of projective points

of E over Fq is given by

IE(F,)I 1 + q + p(7-1 O)4(J)J(p, q$) + p2 (_-6)4(j)J(p2 , 0).

If on the other hand q = 2 (mod 3), then |E(F,)|= 1 + q.

Using a theorem of Hasse and Davenport relating values of Gauss sums in Fq to

those over field extensions, Weil shows that the local zeta function of the curve E is

a rational function. He then goes on to state the famous "Weil Conjectures," a list of

properties satisfied by the zeta functions of varieties over finite fields. See Silverman

[39], Chapter V, Section 2 for details.



On the other hand, let m E Z, and let (m be a primitive mth root of unity. We

will be working in the field extension Q((m)/Q. Let p be a prime ideal in Z[(m], and

let q = Np. Define the character X, by setting each xp(x) for any x E Z[Cm) prime to

p to be the unique mth root of unity satisfying

xp(x) xn (mod p).

Let a-= (ai, a2) c Z/mZ x Z/mZ such that a1 , a 2, ai + a2 # 0 (mod m). Define the

function J(p) on prime ideals prime to m by

Ja(P) = - E Xp(x)"1Xp(-l - X)"

x (mod p)

and extend multiplicatively to all ideals prime to m in Z[(m]. Note that if we fix a

prime p, then (up to a unit) this is just the Jacobi sum from before. The main result

in [42] then is the following theorem.

Theorem 2.3.1 (Weil, [42]). For each a 4 (0,0), the function Ja(a) is a character

on Q(Cm ) in the sense of Hecke, and m 2 is a defining ideal for it.

Because Q((m) is a CM field, a Hecke character on Q((m) is straightforward to

define. In particular, the main property to check is that there is some element w(a) C
Z[G], where G is the Galois group of Q((m)/Q, such that Ja((a)) = aw(a) whenever

a E Z[Km) satisfies a =1 (mod m 2 ). Weil proves this in two steps: he first uses the

prime ideal decomposition of Gauss sums given by Stickelberger to show that

(Ja(a)) = aw(a)

for some element w(a) c Z[G]. In particular, this shows that (Ja(a)) = (aw(*)) for

elements as above. That is, it shows that the two quantities differ by a unit. To show

equality, Weil uses Fourier analysis to show that this unit is 1.

Since L-functions corresponding to algebraic Hecke characters can be analytically

continued and have a functional equation, Weil is able to combine Theorem 2.3.1

with the local zeta functions calculated in [43] to prove Hasse's conjecture. Because

Gaussian hypergeometric series are defined as sums of products of Jacobi sums, it

seems promising that similar techniques might provide straightforward methods of

proving properties of zeta functions attached to other curves. However, we have not

been able to generalize these results to other curves.





Chapter 3

Gaussian Hypergeometric

Functions and Point Counting

The results of this chapter will follow mostly from basic Fourier analysis over finite

fields. We will also use some of the transformation identities discussed in Chapter 2.

3.1 A coordinate-free expression for the trace of

Frobenius

In all of the prior work on this topic (see for example [12, 23, 34]) the character

parameters in hypergeometric series expressing the number of points on families of

elliptic curves depended on the family. In addition, the values at which the hyperge-

ometric series were evaluated were functions of the coefficients, and so depended on

the model used. Here, we give a general formula expressing the number of Fq-points

of an elliptic curve in terms of more intrinsic properties of the curve. Consequently,
this characterization is coordinate-free and can be used to describe the number of

points on any elliptic curve E(Fq), with j(E) / 0, 1728 and q = p' = 1 (mod 12)

without having to put the curve in a specific form. In particular, the formula holds

over Fp2 for all p > 3 whenever j # 0, 1728.

Letting tq(E) denote the trace of the Frobenius endomorphism on E as discussed

in Section 2.2.1, we have the following expression.

Theorem 3.1.1. Let q be a prime power such that q _ 1 (mod 12). In addition, let

be an elliptic curve over Fq with j(E) # 0,1728 and let T E Fx be a generator of



the character group. The trace of the Frobenius map on E can be expressed as

q-1 ( 1728 T 2 1 j(E)
tq(E) = -q -T 12 . 21 2,_,-3..2

A(E) T 3 1728

where A(E) is the discriminant of E.

Remark. It should be noted that the discriminant A(E) of the curve appears in the

formula for the trace of Frobenius above. Although the discriminant itself depends on

the Weierstrass model, isomorphic curves will differ by a twelfth power of an element

of Fq. Since the discriminant only appears as the argument of a character of order

12, the discriminants of isomorphic curves will output the same value, so the formula

is indeed independent of Weierstrass model.

Remark. When p # 1 (mod 12), information about t,(E) can still be gained from

Theorem 3.1.1. Because p2 = 1 (mod 12) for all p > 3, Theorem 3.1.1 applies with

q= p2. Using the relationship

tp(E) 2 = tp2(E) + 2p

one can then determine t,(E) up to a sign. Computations suggest that the sign is not

determined simply by a character. It would be interesting to find a characterization

of this sign and thus determine a hypergeometric expression for t,(E) for all primes.

Applying the transformation in Theorem 2.1.8 to the hypergeometric function in

Theorem 3.1.1 above yields an expression for the trace of Frobenius that is remarkably

similar to the classical hypergeometric series in Theorem 1.5 of [40]. This series

is a solution of the differential equation satisfied by a period of the same elliptic

curve. Theorem 3.1.1 also resembles Theorem 7 in [20], which gives a Gaussian

hypergeometric expression for the Hasse invariant of elliptic curves in Weierstrass

form. Since the theorem in [20] covers all possible congruence classes modulo 12,
there is hope that Theorem 3.1.1 can also be extended to all congruence classes.

Before beginning the proof of this result, we demonstrate it with the following

example.

Example 1. Consider the rational curve

E : y 2 =x 3 - 11x + 6,

which has j-invariant 35937/17, discriminant 69632 = 212 17, and conductor equal to

17. The space of cusp forms of weight 2 and level 17, S2(Fo(17)), is one dimensional



and spanned by the element

00

f q - q2 _ q4 - 2q5 +4q 7 + 3q8 -q q9  2q 1 0 - 2q 13 - 4q14 - q16 +.- E a(f)qn.
n=1

The modularity result for elliptic curves [5] tells us in this case that a,(f) = t,(E).

When p = 13, we may apply Theorem 3.1.1 to find that

tis(E) = -13.T 1728 (T T 35937 T2 -2.
(69632 T8 17-1728)13

Comparing this with the coefficients of f, we see that indeed a1 3(f) = -2= t 13(E).

When p = 7, however, we cannot apply Theorem 3.1.1 for t,(E), but instead must

consider tp2(E). We find that

t4 9(E) = 2 = t7 (E) 2 - 2 -7 =- t 7(E) 2 = 16,

which determines t7 (E) up to sign. Comparing this with the Fourier coefficients of f
again, we find that a7 (f) = t7(E) = 4.

3.1.1 Elliptic curves in Weierstrass form

Theorem 3.1.1 will follow as a consequence of the next theorem after applying trans-

formation laws for Gaussian hypergeometric series. Recall that in characteristic not

2 or 3 an elliptic curve can be written in Weierstrass form as

E:y 2 = X 3 + ax + b.

We prove the following theorem:

Theorem 3.1.3. Let q be a prime power and assume that q = 1 (mod 12). Let E be

an elliptic curve over Fq in Weierstrass form with j (E) #/ 0,1728. Then the trace of

the Frobenius map on E can be expressed as

q- )1 (g1 2b'
a F T' T" 27b2

(E) = -q - T 4 . 2 1 T-1 4a3

This theorem extends Proposition 111.2.4 of [11] to elliptic curves in the form given

above and the method of proof follows similarly to that given in [12].



Proof. Let |E(Fq) denote the number of projective points of E in Fq. If we let

P(x, y) = x 3 + ax + b - y2 ,

then |E(Fq)| satisfies the relation

|E(F)| - 1 = #{(x,y) Fq x Fq : P(x, y) = 0}.

Define the additive character 0 : Fq -+ Cx by

0(a) - (tr(a) (3.1.4)

where ( = e2
7'/P and tr : Fq - F, is the trace map, i.e. tr(a) = aa+aP 2 +...+a e.

For any integer m, we may form the Gauss sum associated to the characters Tm and

0

Gm := G(T') = S T"(x)0(x).
XEFq

As in [12], we begin by repeatedly using the elementary identity from [19]

1:O(z -c) q if c 0
zEc>Fq 0 if C  0

for any c E Fq to express the number of points as

(3.1.5)

(3.1.6)

-1(zP(x, y))
zEFq x,yEIFq

=q2 + 0(zb)+

zEIFx

X 0(zb)0(-zy2)+ E 0(zx3 )0(zax)0(zb)
z,zEFqx

A B

+ 5 (zP(x,y)).
x,y,zEIFq

Here we have broken up the sum according to which of x, y, z are zero.

evaluate each of these labeled terms using the following lemma from [12].

We will

q - (#E(Fq) - 1)



Lemma 3.1.7 ([12], Lemma 3.3). For all a E F',

q-2

0(a) q 1= G-mT"n(a),
q-=O

where T is a fixed generator of the character group and Gm is the Gauss sum defined

in (3.1.5).

Since Lemma 3.1.7 holds only when the parameter a is nonzero, we require that

a / 0 and b /4 0 in the Weierstrass equation for E, or equivalently j(E) j 0, 1728.

For A we have

A= Z o(zb) = -1
zE]Fq

by equation (3.1.6). For B, we use Lemma 3.1.7 to write

B = (q _1 Z G-iG-jT'(b)T (-1) T+(z) T2i(y)

and the inner sums here are nonzero only when 2j - 0 (mod q - 1) and j = -i

(mod q - 1). Plugging in these values and using the fact that Gi = jq when q 1
2

(mod 4) (see Chapter 6 of [19]) gives

B = 1+ qT2 (b).

We simply expand C (because it will cancel soon) to get

C = (q _ 1) GiG GkTi(a)Tk(b) E Ti'i+k(z)E T 5 i+X
i,j,k z x

Finally, we expand D

D = 1 4 G-iG-jGkG-.Ti(a)Tk(b)T'(-1)
(q - 1) ,jkl

5 T+ij+k+I (z)E T i+ (x) T21 (y).
z xy

Again, the only nonzero terms occur when 1 = 0 or 1- -1. The 1 = 0 term is

1 - GiGj G-kGoT(a)Tk(b) E Ti++k(z) E T 3i+ (X),
1 ,,k z x



and since Go = -1 this term cancels with the C term in the expression for q(IE(Fq) I -
1). Assuming now that 1 = 2-1, both inner sums will be nonzero only when j = -3i

(mod q - 1) and k - + 2i (mod q - 1). We may write this term as

Dq :=1 G_jG3jG-i -2iGql T-3i (a)T q +2i (b)T 2 (-1) (3.1.8)

and we may reduce this equation further by noting that q -1 (mod 4) implies

G-= \/7 and Tq 2(-1) = 1. Combining the above results yields the expression
2

2 -(b) + 5( G-iG3 G3i(a)T +2i(b).
q(E(Fq) - 1) q ±q-T 2 (b)±jG ql -j 2

Now we expand G3i and G_ _2i= G_2( +) using the Davenport-Hasse rela-

tion, which we stated in Theorem 2.1.9. We may then write

G3& = GjGj G, 2( 3 1 T'(27)

q

G q1 =G_j_ 4 1G_i _(s 41

GC -2i= G Ti+ q4 )
2

Plugging this in to (3.1.8) gives

T (b) 27b2 \
Dq1- TY (b) G~jGjGj+L-iG, 2(q-, G-q1Gi3(q-1)T 27b(2
2 = q(q- 1)TY (4) i G 3 \4a3 /

In order to write t(E) as a finite field hypergeometric function, we use the fact that

if T-" is not the trivial character, then

T"m GmG-nT"n(-1)(319
Tn) Gmnq

This is another way of stating the classical identity G(X1)G(X2) = J(XI, X2)G(x1X2)

which holds whenever X1X2 is a primitive character.



Now use (3.1.9) to write

. -1
G1qT+ 4 (-1)

12

G-q-iqT+ 3(q (-1))
12

G i+2(q-1) G_i 3(q-1)
3 4

( 2(q-1)
T+3

Ti+ 3(q-1)
T' 4

and plugging in (3.1.10) and (3.1.11) gives

T 2 (b)q GqGAq-ZGjG-
D = (q - 1)TY(4) 12G -2

Since GjG_ 1 = qTq12 (-1) we may write

D q-1 = T 2 (b)T12 (-1) q2

(q - 1)T4 (4) GiG

I I 2(q-1)
T +q T'+ 3

T Z+ 
Ti 3(q 1)

Ti+Y
Ti+Y

Next, we eliminate the GjG-i term. If i #/ 0 then GiG-i = qT (-1), and if i = 0

then GjGj = 1 = qT'(-1) - (q - 1). Plugging in the appropriate identities for each

i we may write (3.1.8) as

T 2 (b)T12 (-1)q
2 (q - 1)T 4'(4)

T (b)T (-1)q2

T 4(4)

T + q3 T + .( 3 ) ( 27b2)
TI+Y } T'+ 4 4a3

T 2(-1)

(T34 (T4

By (3.1.9) we have

GqiG_ G2(q-1)G-L 3(-)
3 4 3 4

Gq-G-q-q 2
T 3 (-1)T4 (-1)

q -1

and so the second term reduces to - (T (b)T 4 (-1)q)/(T 4 (4)). Equation (3.1.8)

becomes

I / 2(q-1)
(Ti+ T+ 3

Ti+q Ti+ 3q41

T1 (b)T -139 
2 (q -1)T 4(4)

T 2 (b)T4 (-1)q

T4(4)

. 27b2
T* Aa3)

(3.1.10)

(3.1.11)

T (T 3
T 4)(T 4

. 2b

T* 4a3

Ti+ 
.( 31 (27b2)

Ti+ 3( )4a3 '



Make the substitution i -+ i - " to get

T-1)2 a
Dq- 1 T (b-)qTY -1222 27)

T4(4)

=T -1)2T 2 F1

T 2 (b)T (-1)q

T 4 (4)

Putting this all together then gives

=T~~~ ~ (- '(2

q(|E(]Fq)| - 1) =q2 + qTV(b) --

+T (-1)T

TP

T -1 7 5(q-1)

T 2

27b 2\

4a 3
)

q-

V (b)T 4 (-1)q

T4 (4)S) q2-2F1

Equivalently,

JE(F)| =q + 1+T (b)

Noting that T12 (- 1)TV 27

pend only on the congruence of q

|E(Fq)| Iq+ 1+T 4

TV 1) and T' (-1) = T2(2) (both de-

(mod 8)) reduces the expression to

(a 3
~7}q -2F (T12 T 12

T
27b2
4a3

Since tq(E) = q+ 1 - |E(Fq), we have proven that

tq(E) = -q -2F1(q-1! 5(q-1)
T1 T 12

T 2

27b2
4a 3 J

(+% 5(q-1)T 12 T (-
27b3
4a)

q1 5(q-1)

T'12 T' 12

T 2

27b 2

4a 3

T (-1)

T4 (4)

27b2

4a3
T1 T 1q-1 

a 3
+ T12 (-I)T'4 -) q - 2F

( 27

T -q1( as 3-2T



3.1.2 Proof of Theorem 3.1.1

We now prove Theorem 3.1.1 as a consequence of Theorem 3.1.3 and the transforma-

tion laws 2.1.7, 2.1.8 from Chapter 2.

Proof of Theorem 3.1.1. We begin by noting that we may apply Theorem 2.1.7 to

the expression in Theorem 3.1.3 because the parameter -27b 2/4a 3 will equal 1 if and

only if the discriminant of E is 0, which we exclude. Similarly, it will equal 0 if and

only if b = 0, in which case j = 1728, and we exclude this case as well. So we begin

by applying Theorem 2.1.7 to obtain the expression

q-1
tq(E)=--q -T 4 -_

T 1

Tq-1

4a 3 + 27b2

4a 3

Applying Theorem 2.1.8 to this then gives

-1( 4as
T12 4a 3 + 27b2 2

-4a 12

4a 3 + 27b2)

(TN
2F1 (

T12 T12

F71 TT (

T12 4a3
T T 4as4+3

T 2 ( 3 1) 4a3 +

T12 T1

T 3

4333 
2 F 1-16(4a 3 + 27b2) 1

q(f 1728
S- qT 12 (-16(4a 3 + 27b2),

T12
2F1 (

4
4a3 +d

4a3

a3 + 27b2

7b2)

4a3

4a3 + 27b2

a 3

27b2

1 1728
-q.T12 kA(E) 2 F

T12 T12

2(q-1)
T 3

j(E)

1728

where A(E) = -16(4a 3 +27b 2 ) is the discriminant of E and j(E) = (1728-4a 3)/(4a 3 +

27b2 ) is the j-invariant of E. D

3.2 Trace of Frobenius for elliptic curves

3-torsion point

Now let q = pe =1 (mod 3), p > 3 a prime. Let Eaia2 be the curve

Ea,a 3 : y2 + a1xy + a 3 y =X,

with a

(3.2.1)

tq(E) =

-~ q.TIWq -T12 (39(

q-1 fa12
= - q -T 12 (

T12as ) F
S2F1

)4

2

( -as 3-q-T 27



where ai E F'", A(Eai,a3 ) # 0. Recall from Section 2.2.1 that this curve has a

nontrivial 3-torsion point, and up to isomorphism all curves with a nontrivial 3-

torsion point may be written in this form, except for certain curves with j-invariant

0. We have the following expression for the number of points on Ea,3 in terms of

Gaussian hypergeometric functions.

Theorem 3.2.2. Let E,, 3, be an elliptic curve over Fq in the form given in (3.2.1).

Let p E Fx be a character of order 3, and let E be the trivial character. Then the trace

of the Frobenius map on Ea,a., is given by

tq(Eai,a3 ) =-q * 2F1 P 27a73a 3  -

Proof. If we let

P(x, y) = y2 + aixy + a3 y - x 3

then

|Ea1 ,a3(F,)| - 1 - #{(x, y) E F, x Fq : P(x, y) - 0}.

Recall from (3.1.4) that the additive character 0 : Fq + CX is defined to be

9(a) - (tr(a) (3.2.3)

Using equation (3.1.6), we write

q(|Eaj,a3 (Fq)I - 1) - 1: 9(zP(x, y))
zEIFq X,YEFq

=q2 + (q - 1)+ E Z (-zX3 )Z+ ZO(zy2)(zasy)
zE]Fq xEIFq zEIFqx yEFq

B C

+ E O(zP(x, y)).

D

As before, we compute each individual sum using Lemma 3.1.7.

Computing B: Use Lemma 3.1.7 to replace (-zxa), and then apply the orthog-



onality relation (3.1.6)

B = ( 1 E G-mT m (-X3 )Tm (z) - 1 ( G-m ( Tm(-x 3 ) ( T m (z)
z,xEFqx m m xCFq zEFq

=E Go = -(q - 1).
zEIFq

Computing C:

C = 1 2 G-kG-mT k+(z)T k+m(y)Tm(a 3)
%,E (q - 1)

= (q 1)2 EGkGmT m (a3 ) Tk+m(Z) T 2 k+m(Y)

k,m zIFq' yE]Fq

Weseeherethat k+m 0 (mod q-1) ==> m = -k (mod q-1) and 2k+m 0

(mod q - 1) ==> k = m 0 (mod q - 1). So this becomes G = 1.

Computing D:

D = (q - I)' ( GjGkGLGmT+k+l+m(z)T 2+k+(y)T k+3m(x)T k(a1)

xyzE]Fqx j,k,l,m

- Tl(a3)Tm(-1)

=(q 1 )4 GjGkG-lGmTm(-1)Tk(a1)T'(a3) I Tk+3m(X)
j,k,l,m xIFq

- 5 T 2 +k+1 (y) 5 T)+k+l+m(Z)
yE]Fq zEFq

Solving each of these equations j+k+l+m - 0 (mod q-1), k+3m = 0 (mod q-1),

2j + k +1 = 0 (mod q - 1) gives k - -3m and 1 - m = j. Plugging this in we have

1 - G 3 mGamT 3 (ai)T(-a3 ).

Putting this all together then gives

q(IEaj,a (Fq)| - 1) = q2 + 1 + G3mG3mT-3"m(a1)T(-a 3 ),
q1m



and so

|Eaa 3 (Iq) = 1 + + + GnG3-m 3 mm(ai)T"'(-a3).

We have therefore shown that

tq(Ea1,a3 ) = q + 1 - |Ea1,a3 (Fq) | - - 1 S G3 mG3 mT 3 m(a1)T(-a 3 ).I q ~q -1) m

First we use Corollary 2.1.10 to write G 3 m = GmGm+ 1 Gm± 2 (q- )T"(27)/q, giving

tq(Ei,a3 ) = - 1-
q

1 : G-mGmG3 n Grn 2(q-,) Tm(27)T-3m (ai)T"'(-a 3).q2 (q -1) m 3 3

Next, make the substitution GmG-m = qTm(-1), which holds whenever m $ 0. For

m = 0, we write GmG-m = T m (-1) = qT"'(-1) - (q - 1)T m (-1):

1 1 G2 -G C2(q1)
tq(Eal,a3 ) = - G-mG_ G "2 (q)T (a)T'(27a3)+ q 2 -

For the last term above, note that G12(q-1) = q and cancel with the first term,
3 3

giving

tq(Eaia 3 ) - -1 G2mGmi-G 2 (--iT-3mlai)(27a 3 ).
q(q - 1) m33

Now apply (3.1.9) to write G.g! G-m (m
G 2(q-)G-m = T

m

tq(Ea,a3 ) =
q (G-1G2(-

q - 1I

Gc iqT"'(-1) and

G 2 (g i)qT"'(-). Plugging this in yields

T-3m(a)T"'(27a3).
T">+q Tm+3

Tm ) T"n



Again use the fact that Gjc.G2(q-) q to get

q2 T"+ 1 Tm+2(1)
tq(Eai,a3 ) - q -T Tm T"(27a-sa 3 )

-q1 ~ 2 (q-1)= -q -2F1 T T 3 27as3 a3 ) -

Later in this thesis, we will look at the family of curves Et := Et,t2. That is, we

will consider the family of curves indexed by some parameter t E Fq and in the form

of (3.2.1) with ai = t and a3 = t2. In this case, the above result reduces to

tq(Et)=--q -2F1 - .2
e t )

We illustrate Theorem 3.2.2 with the following example.

Example 2. Consider the curve

E:y 2- xy + y 2 =3

which is in the form of (3.2.1) with ai = -1, a3 =1. This curve has conductor 14,
and the space of cusp forms of weight 2 and level 14 again is one dimensional. It is

spanned by the modular form

00

f = q- q2 - 2q3 + q4 + 2q 6 + g - q8+ q -2- 12 _ 4q13 - q14 + 1+6 -- Ea "(f)q".
n=1

When p = 7, for example, Theorem 3.2.2 tells us that

t7 (E) = -7- 2F1 (PP -27 =1,
/ )7

which agrees with a7(f) above.

3.2.1 Curves with j = 0

In the previous section, we provided a formula for the trace of Frobenius for all elliptic

curves Eal,a3 such that a1 # 0. It is left to consider now the case of curves such that

ai = 0, all of which will have j-invariant 0. Let a G FPx be an element that is not a



cube. There are three isomorphism classes over Fy containing curves of the form Eo,a,
and the curves Eo,,, Eo,a2, Eo,a3 are representatives of these classes. In fact, the curve

Eo,a~ Eo,1 = E 24 ,24 2, so the results of the previous section provide a formula for

expressing the trace of Frobenius of this curve in terms of hypergeometric functions.

On the other hand, the curves Eo,0 , EO,a2 cannot be written in the form Ei,a with

ai / 0.

We will now provide formulas for the traces of Frobenius of curves of the form

Eo,ai, and then use these to prove a relation between traces that will be used in

Chapter 4 in formulas for the traces of Hecke operators.

Lemma 3.2.4. The trace of Frobenius of curves of the form Eo,ai is given by

tq( EO,cs ) =- -q P)T 2( a ) + T 2) (a q .

In particular, we have the formula

tq(Eo,1) = -q ((; +

Proof. As in the proof of Theorem 3.2.2, set P(x, y) = y2 + ay - x 3 and compute

q(I|Eo,ai (F)|- 1) = ( 0(zP(x, y))
zEFq X,yEFq

= q2 + (q - )-(q - 1) + 1 + ( (zP(x, y))

x,y,zEFx

= q2 +1 + ()> G-jGkGIT k (ai)T'(-1)
3,k,l

-( Tj+k+I(z) E T 31 (X) E T 2j+k ()

zEIF*q xEIFq yE]Fx

The terms above will be nonzero when 31 = 0 (mod q-1) and j = k = 1 (mod q-1).

Plugging this in above gives

q(|Eo,ai(Fq)| - 1) q2 + 1 + ( G3 T'(a).

j=0, q , 2(q-1)



tq(Eo,oi) = - - G3,Tj(ae)
q12(q-1)

1-1 1(-1
-- G3 T ( ) - -GaT (a)

q 3 q 3

+ p T (ai)),

where the final equality follows from applying equation (3.1.9) and the relation

GG-j = qT'(-1). L

Finally, we prove the following lemma, which will allow us to represent the sums

of the trace of Frobenius of elliptic curves with j-invariant 0 in terms of Gaussian

hypergeometric functions.

Lemma 3.2.5. When p =1 (mod 3) and a is not a cube in IFx,

0

(tk-2 (Eo,a) +tpk-2 (EO,,2 )+tpk-2 (EO,a 3 )) = _k-2 - (
3 -P 2 \F

p p2

C

Proof. Using Lemma 3.2.4 and summing over all three traces gives

tq (Eo,a) +tq(E,0,2 ) + tq(Eo,,3) = -q (('p) + (1)) (I +T (

k 0, 1(mod 3)

9- 8-1 k 2 (mod 3).

p-

T (a) .

Now let q = p-2 and let g E F_ 2 generate the group. Since a E F'x, we know
k-2_

that aP~1 = 1, and so a = g p g a(Pk- 3 pk-4 ++l) for some integer a.

p - 1 (mod 3), it follows that pk-3 + pk-4 + ... + 1 - k - 2 (mod 3).

Since

By the above argument, when k - 0, 1 (mod 3), a is not a cube in Fx-2 (recall

that a was initially chosen as a noncube in Fx). Therefore

1+T 3(a)+T (a)=0.

If however k - 2 (mod 3), then a is a cube in Fpk-2, and

tq(Eo,a) = tq(Eo,a2) = tq(EO,a3).

And so

q q

P)T 2 (q1)



It follows that

(tq(Eo,x) + tq(Eo,a2) + tq(EO,a3)) = -q 2

In particular, all curves with j invariant equal to 0 will have the same trace of Frobe-

nius. We have already shown that E 24 is a curve with j invariant equal to 0 with

trace of Frobenius equal to

tq(E24) = -q - 2F1
p p 2

E
27 - 24-1) .

Using this equality then gives

I(tk- 2 (Eo,o) + tpk- 2( EO,a2 ) + tp-2(Eo,a3)) = pk-2 2 F1
p 2

E
9 -8-1

+ .2)



Chapter 4

Hypergeometric Trace Formulas

4.1 Background and prior work

Let N be a positive integer and let T be a Dirichlet character mod N. Recall that

the congruence subgroup Jo(N) is defined to be

Fo(N) = a b SL(2,Z):c=0 (modN)}.

For each integer k > 2 we denote the corresponding space of cusp forms of weight k

and character I on Fo(N) by Sk(Fo(N), IQ). Then any f E Sk(Fo(N), T) satisfies the
a b

relation f(7 - r) = (cr + d)kT (d)f(T) for all -y = ) G Fo(N). For each integer

n such that gcd(n, N) = 1, one can define a "Hecke operator" on this space, which is

denoted by Tk(n). Recall briefly the action of these operators: let f c Sk(Fo(N), IQ)

have Fourier expansion at infinity equal to f(r) = E' a(j)e2 riij. For each n, the

action of Tk(n) on f is defined by

(Tk(n) f )(T) = ( ( 1 4(c)ckl-a(nj/c2) e2,riT
j=1 c>On

In [15], Hijikata gives a formula for the traces of Hecke operators acting on

Sk(Fo(N), I), as well as Sk(F, Q), where F C Fo(N) is a normal subgroup of "Fricke

type". His formula holds very generally and consequently is quite complicated. Sub-

sequent works such as [1, 3, 10, 12] have simplified the formula in specific cases by

exploring the link between traces of Hecke operators and class numbers of imaginary



quadratic orders, and have related such expressions to counting isomorphism classes

of elliptic curves. We next present some of these results. Consider the following

families of elliptic curves:

2E1 (A) : y2 = x(x - 1)(x - A), A / 0, 1

3E2(A) : y2 = (x - 1)(x 2 + A), A / 0, -1

and let 2A1(p, A), 3A2(p, A) denote the corresponding traces of Frobenius on these

curves. Also, if p, 1 (mod 4), then let a, b be integers such that p = a2 + b2 . For

each integer k > 2 we denote the space of cusp forms of weight k and trivial character

on 70 (N) by Sk(Fo(N)), and write trk(Fo(N),n) for the trace of Tk(n) on this space.

See also equation (4.3.3) for a definition of Gk(s,p). Then the following was shown:

Proposition 4.1.1 ([1], Theorems 1-2 and [3], Theorems 1-2). If p is an odd prime

and k > 4 is even, then

1. trk(]Fo(4), p) = -3 - Ep_2G(21pA)p,

2. trk(Fo(8),p) = -4 - I~ Gk( 2A1 (p, A2),p)

Proposition 4.1.2 ([10], Theorem 2.3). For a prime p > 3 and k > 4 even

p- 2

trk(IFo(2), p) -2 - Jk(p) - [ Gk( 3A2(p, A), p)
A=1

where
p {Gk(2a,p) + {Gk(2b,p) if p 1 (mod 4);

(-p)k/2-1 if p 3  (mod 4).

4.2 Statement of results

For any t E Z such that t / 0, 27, define the rational elliptic curve Et by the equation

Et : y2 + tXy + t2y = X3,

and write the Hasse-Weil L-function of Et as

00

L(s,Et) = [Zan(Et)n-.
n=1



If p is a prime for which Et has good reduction, then a,(Et) = tp(Et)1 . We will prove

that trk(Io(3),p) can be expressed as follows:

Theorem 4.2.1. Let p 7/ 3 be a prime. For any even k > 4, the trace of Tk(p) on

Sk(Fo(3)) can be written as

p-1

trk(7o (3), p) - - a,k-2(Et) - 7k(p) - 2,
t=1

t2t27 (mod p)

where

Yk(p (apk-2(Eo,a) + ak-2(Eo,a2) + apk-2(Eo,a3)) p =1 (mod 3),
N 2P (mo (4.2.2)

(-p)k/ 2 -1 p=2 (mod 3).

In the expression for -yk(p), a is not a cube modulo p, and Eo,,i are the elliptic curves

discussed in Section 3.2.1.

Combining Theorems 3.2.2 and 4.2.1 and using the relation tpk(E) = ak (E) -p-

a,9 -2(E) (see Section 4.4.3) then yields the corollary:

Corollary 4.2.3. Let p / 3 be prime and let k > 4 be an even integer. One can

alternately express the trace formula as

k/2-2 p-1 P 2

trk(' O(3), p) = pk-2-i > 2 F1 t pk/2-1 (p - 2) - -yk(p) - 2.
i=o t=2 , k-2-2i

Remark. Because the weight k is even, each q = pk-2-2i automatically satisfies q - 1

(mod 3), and so Theorem 3.2.2 can be used in the expression for trk(l'o(3),p) for all

p / 3 .

Remark. The function Yk(P) can also be expressed in terms of Gaussian hypergeo-

metric functions as

S k/2-2 Pk2-i - 2F1  9 -8-1 -pk/2-1 (mod 3)

(p)k/2-1 p -= 2 (mod 3)

and so the trace formula in Corollary 4.2.3 can be expressed entirely in terms of such

functions.

'Throughout this chapter, when we write tp(Et), we are considering the trace of the Frobenius
map on the reduction of the curve Et modulo p.



One can also use these results to prove "inductive trace formulas" as in [12, 10].

Theorem 4.2.1 is particularly well suited for this kind of expression. A straightforward

consequence of Theorem 4.2.1 is the following theorem.

Theorem 4.2.4. The trace formula for p 7 3 and k > 6 even may be written as

p-1

trk( o( 3), p) - p k-2

t=2

2F1 ( P t)
C)p k-2

+p - trk-2(Fo(3),p) + 2p - 2

0j

pA(P) -= pk-2 - 2F1 P 9 -8-1
\ / p k-2

2 (-p)k/2-1

p=l 1 (mod 3) andk=0l,1

p - 1 (mod 3) and k - 2

p=-2 (mod 3).

Many of the same methods used in the Fo(3) case may be adapted to prove trace

formulas for Fo(9) as well. We discuss this in Section 4.5 and present a number of

formulas for the trace in forms like those above. As an example, we have the following

inductive formula.

Theorem 4.2.6. Let k > 4 and let p = 1 (mod 3). Then the trace is given by

p- 1  /,P2 3

trk(Eo(9),p) = pk- 2 ( 2F1 (Pt to)
t=2 \ ~/k-2
t~o 1

+ pk-2 2 1 9 8) 98-1

-4 + 4p - J(k - 2)p(p + 1) + p - trk-27o(9),p),

where 5(k) = 1 if k 2 and 0 otherwise. When p = 2 (mod 3), we have trk (Fo(9), p) =

trk(1Fo(3), p).

In fact, when p 2 (mod 3), we will see that trk(IFo(3m),p) - trk(Fo(3),p) for

every m.

Let q= e27iz and recall that the Dedekind eta function is defined to be

00

,q(z)= q1 I(1 -q")
n=1

Then Q(3z) 8 is the unique normalized Hecke eigenform in S4 (Fo(9)) and we write its

where

-k p(p),

(mod 3)

(mod 3)

(4.2.5)



Fourier expansion as

77(3z)' = b(n)q"

We will show using trace formula results such as Theorem 4.2.6 that the Fourier

coefficients of q(3z)8 are given by the following simple expression.

Corollary 4.2.7. Let p =1 (mod 3), and let p G Fx be a character of order 3. The

pt' Fourier coefficient of q(3z)8 is given by

b(p) = -P3 P) + ) -P3 2F1 P 9 -8- ).

When p = 2 (mod 3), b(p) = 0.

In addition, let V be the threefold defined by the following equation:

= 3 1Y2Y3(Y1 + 1)(Y2 + 1)(y3 + 1) (4.2.8)

and let N(Vp) denote the number of projective F,-points on V. Then one can use

the results above to show that V is "modular" in the sense that N(Vp) relates to

the Fourier coefficients of n(3z)8 by the following expression:

b(p) = pl + 3p2 + 1 - N(Vp).

We begin in Section 4.3 by stating Hijikata's version of the Eichler-Selberg trace

formula for Hecke operators on Sk(Fo(e)) where i is prime, and then work to simplify

this formula into an expression in terms of the number of isomorphism classes of

elliptic curves in different isogeny classes. This expression will hold whenever p 1

(mod f) or (E) = -1. We then specialize this formula further to the case where = 3

in Section 4.4 and prove Theorem 4.2.1. At the end of this section we will derive other

expressions for the trace on this space, such as Corollary 4.2.3 and the inductive trace

formula in Theorem 4.2.4. In Section 4.5 we show how methods similar to those in

Section 4.4 can be used to prove results when e = 9, such as Theorems 4.5.3 and 4.2.6.

We then use these trace formulas to prove Corollary 4.2.7, an explicit expression for

the Fourier coefficients of a weight four modular form. Using this, we show in Section

4.6.2 that the number of points on the threefold given by equation (4.2.8) can be

expressed in terms of the Fourier coefficients of the same modular form.

While simplifying the expression for trk(Fo(3),p), we use theorems of Schoof to

rewrite sums of class numbers which comes up in the expression in terms of the



number of isomorphism classes of elliptic curves. These theorems only hold when p, f

satisfy certain congruence properties. Although it is possible when f = 3,9 to reduce

the trace formula expression for all values of p, this seems to pose a real difficulty for

proving trace formulas for general p, f.

4.3 Trace formulas

4.3.1 Hijikata's trace formula

Let p, f be distinct odd primes, and let k > 2 be even. We will specialize the trace

formula given by Hijikata in [15] to the case where Tk(p) acts on Sk(Fo(f)). Some

preliminary notation is necessary to state the theorem.

For each s in the range 0 < s < 2.,j, let t > 0 and D be the unique integers

satisfying

s2 - 4p = t2D (4.3.1)

and such that D is a fundamental discriminant of an imaginary quadratic field. Ad-

ditionally, for any d < 0, d = 0, 1 (mod 4), write h(d) := h(O) for the class number

of the order 0 C Q(v'd) of discriminant d, and write w(d) :=10 1 for one half of

the number of units in that order. Set h*(d) := h(d)/w(d).

Define the polynomial <>(X) := X - sX + p and let x, y be the complex roots of

4(X). Define

Gk(s,p) := 1 (4.3.2)X - y

One can verify that when k is even Gk(s,p) can be alternately expressed as

-k/2-1 k-2-j Sk2- 433
Gk (S,p = Y (-) k - ~ 1,-4-.%

j=0 
)P

Finally, for any integer f dividing t, define a function c(s, f, f):

( 1 + (2) if orde(f) = orde(t),

c2 if orde(f) < orde(t).

Then Hijikata's version of the trace formula yields the following:

Theorem 4.3.5 ([15], Theorem 2.2). Let p,f be distinct odd primes, and let k > 2



be even. Then

trk(IFo(),p) = - E Gk(s,p) f2 h 2 _4 c(s, f,L) - K(p, e) + 6(k) (1+ p)
o<s<24-fit

(4.3.6)

where

K(p, f) 2 + I(-p)k/2-1 I + H*(-4p)

6(k) { 1 if k = 2,
0 otherwise.

In the following we will often write H*(s 2 - 4p) := It h* S2 1-) and H(s 2 
-

4p) := 52h (4p) for simplicity.

4.3.2 Simplifying the formula

The aim of this section is to rewrite Hijikata's trace formula given in Theorem 4.3.5

in a more convenient form for our purposes by expressing trk(Fo(t), p) in terms of the

number of isomorphism classes of elliptic curves with specified torsion. This formula

will hold for all p satisfying p 1= (mod f) or (2) = -1. In particular, we see that it

will hold for all p # 3 when f = 3. In the following section we will specialize further

to f = 3 to obtain an explicit trace formula.

We begin by eliminating the c(s, f, f) term from (4.3.6). Specifically, we show the

following:

Lemma 4.3.7.

(s2 -4p (1+ (j)) H*(s 2 - 4p) when f { t,
S h* f2 c(s, f, f) = (2 4p/2

f\t f2 H*(s 2 _ 4p) + eH*((s2 _ 4p)/Lg2 ) when tit.

Proof. Consider first the case where f { t. Then orde(f) orde(t) is automatically

satisfied, so c(s, f, f) = (I + (i)), and the result follows.

When fit, we use the following theorem from [8]:

Theorem 4.3.8 ([8], Corollary 7.28). Let 0 be an order of discriminant d in an

imaginary quadratic field, and let 0' C 0 be an order with [0 : ('] = t. Then

h*(0') = h*(0) -t H 1 -(d)1)
t, t prime



Substituting the explicit description of c(s, f, f) given in (4.3.4) and manipulating

the terms algebraically gives

h* (2 4 c(s, f, e) h* ( 2 _4) +2+ (D)
fit

ft(t/e)

=(h* ( 2 _4)
fit

- 1 (1

+ fy
f it

ff(t/e

E
f it

ff(t/e)

h* 2 _4P +

h* ( 2 _4P)

(E
fI (t/e)

h* ( 2 _4

(4.3.9)

Applying Theorem 4.3.8, we find that

h* ( 2 _4 + (
fI(t/e)

h* S2 _ 4 p

fit

(s 2 -4j) 2
h* fs2 _4

= h* (e2 s 2 4)
fit

by Theorem 4.3.8

= S h* Q 2
)

I (t/e)

and so the final term in (4.3.9) can therefore be written as

(D)>1) S h* f 2
4 )=(l -

fIt, ft/el

(s2 4)

and finally (4.3.9) becomes

h* (s -4) =H*(s2-4p) - H*((s 2 _4 2

(z
fit

(
fI(t/e)

h* ( 2 _

(D) 1)\ E
f it

MO(tE)

-f (1 1) h*
f |t/e

h* 2S
fit f t/E

(D) 1)f f



Using this, the trace formula may be written as

trk (Fo(), p) - - E Gk(S, p)H*(s2 - 4p) 1 + (4.3.10)
O<s<2/f

-e Z Gk(s,p)H* 2 -K(pf) +6(k)(p+ 1).
0< s<2/j

elt

We now rewrite the above equation in terms of the function H instead of H*, so

that we may apply Schoof's results counting isomorphism classes of elliptic curves in

the next section. Recall that h*(d) = h(d)/w(d), where w(d) = .iO(d)X . Therefore,
whenever d / -3, -4, we have that h*(d) = h(d). If s 2 - 4p = t 2D and D # -3, -4

this implies that H(s 2 - 4p) = H*(s 2  4p). If S2 - 4p = -3t 2, then

/3t2\ /-3t2 + h(3H(-3t2) = >Zh 2  h* ( 3*(3)
fit f\ t,fAt

= h* 3t 2  + 2 h*(-3) = H*(-3t2 ) +2/3
fit =1/3

and similarly, H(-4t2) = H*(-4t2) + 1/2.

It is left to determine which s satisfy either s2 - 4p = -4t2 or S2 - 4p = -3t 2. By

considering the splitting of p in Z[i] and Z 1+ ,we see that the former equality

will occur for some s < 2v/p if and only if p -1 (mod 4) and the latter if and only if

p =1 (mod 3). Additionally, by looking at the units in these rings, we see that when

p =1 (mod 4) (respectively p = 1 (mod 3)), there are exactly 2 (resp. 3) values of

s > 0 and t > 0 for which s2 - 4p = -4 2 (resp. S2 -4p = -3t 2 ).

When p - 1 (mod 4) let a, b be positive integers satisfying p - a2 + b2 , and

similarly when p - 1 (mod 3), let c, d be positive integers satisfying p 2+3d2

Then the set of all (s, t) E N x N such that s2 - 4p -4t 2 is

S4 = {(2a, b), (2b, a)} (4.3.11)

and the set of all (s, t) such that s2 - 4p = -3t 2 is

( (c+3d c-d '\c- 3d c+d(..2
S3 = (c, d) , (c+3, , (c-3 , .d (4.3.12)

2 2 2 2

By a simple congruence argument mod f, we see that there can be at most one pair



(s, t) G S4 such that Elt, and similarly for S3. Label the elements of these sets so that

in the first case, if Elt, then (s, t) = (2a, b) and in the second if flt then (s, t) = (c, d).

Define the following corrective factors

}(Gk(2a,p) + Gk(2b,p)) (1+ (+ ))
E4(p f)= Gk(2b, p) (1 + (f)) + 1(1 + e)Gk(2a, p)

0

if p

if p

if p

and

(Gk(c,p) + Gk(c 3d, p) + Gk('3,p)) (1 + (-))
63(p,) = (Gk( ,p) + Gk(% ,P)) (1+ (-)) + j(1+ )Gk(C,P)

0

(mod 4), f { b,

(mod 4), Elb,

(mod 4)
(4.3.13)

p 1 (mod 3), e t d,
p 1 (mod 3), fld,
p 2 (mod 3).

(4.3.14)

Using this, the trace formula can be written as

trk(ro y), p) -Z Gk(S,P) (I 2  4 H(s2 - 4p) - j E Gk(s,p)H (2 _ 4

O<s<2vfp3 o<s<2,/p

- K(p, f) + E4(P, ) + E3(p, ) + J(k)(p + 1). (4.3.15)

4.3.3 Trace in terms of elliptic curves

For an elliptic curve E defined over F,, let E(F,) denote the

points on E, and let E(F,)[n] denote its n-torsion subgroup.

denote the set of F,-isomorphism classes of elliptic curves over

the isomorphism class containing E. Define the sets

group of F,-rational

Furthermore, let ,
F, and write [E] for

I(s) := {C E 1, : VE E C, IE(F,)I - p + 1 - s}

I,(s) {C E I(s) : VE E C, Z/nZ c E(F,)[n]}

Iwx(s) {C E I(s) : VE E C, E(F,)[n] ~ Z/nZ x Z/nZ}

and from these define the quantities N(s) I(s)|, Nv(s) IIn(s)|, N~xn(s)

IInxn(s)|.
We use the following two theorems of Schoof to rewrite (4.3.15) in terms of the

above quantities. Although the theorems given in [38] hold for curves defined over

fields Fpe, we specialize to the prime order case.



Theorem 4.3.16 ([38], Theorems 4.6, 4.9). Let s E Z satisfy s2 < 4p. Then

N(s) = H(s 2 - 4p).

Suppose in addition that n E Z>1 is odd. Then

Nnx.(s) {H(s ) if=p 1 (modn) ands-p+1 (modn 2 )

0 otherwise.

If E is an elliptic curve such that |E(F,)| = p+l -s then Z/nZ C E(F,)[n] ->=

n I |E(F,)I <-> s - p + 1 (mod n). It follows from this that N,(s) = N(s) if

s - p + 1 (mod n) and Nn(s) - 0 otherwise.

We may apply Theorem 4.3.16 to replace H(s2 -4p) by N(s) for each s in (4.3.15).

However, since s is not necessarily congruent to p + 1 (mod P), we cannot simply

replace H ) by Nexe(s) in (4.3.15). Instead, we can use the following lemma

when p = 1 (mod f).

Lemma 4.3.17. Assume that p =1 (mod f). Then f 21s2 _ 4p <== f2Ip + 1 - s or

fIp + 1 + s.

Proof. We see that flp - 1 <==> f2j(p - 1)2 4__> p2 - 2p + 1 = 0 (mod P). Adding

4p to both sides then gives

fIp-1 <- (p + 1)2 -=4p (mod 2 ).

Assuming first that 2Is2 - 4p, this implies that (p + 1)2 = S2 (mod f2) ==> (p +

1 - s)(p + 1 ± s) =0 (mod f2). There are now three possibilities. If f2p + 1 - s or

PI I+ 1 + s then we are done. Otherwise, it must be that flp + 1 - s and flp + 1 + s.

Then, since we assume throughout that f # 2, this implies that s - 0 (mod f). This

is a contradiction, since then 0 - s2 = 4p (mod V) and we assumed that i # p.

Conversely, if 2p+1- s orePlp+1+s, then (p+1)2 = 32 (mod 2) -- 4p s2

(mod f 2 ). l

This lemma shows that if f 2 divides S2 - 4p (or equivalently, f t) and p 1

(mod f), then either s or -s satisfies the hypotheses of Theorem 4.3.16. Therefore,
either H = Nexe(s) or H (s ) = Next(-s). Since s and -s cannot both

be congruent p + 1 (mod V), it follows that H (2-) = Nexe(s) + Next(-s) and so

summing over all s in the range 0 < |8| < 2,/p-- gives



S:
o<s<21P-'ts

Gk(s,p)H((s 2 _ 4p)/j 2 ) = E G(sp)Next(s).
O<l<2vlp

Similarly, if p 0 1 (mod f) but (2) = -1, then f { t for any t satisfying S2 - 4p

t2D. The second sum in (4.3.15 ) is empty and also Next(s) = 0 for all s and so

we may replace H S24P ) by Next(s) in this sum without affecting the value. This

shows that when p 1 (mod f) or (i) = -1 the trace formula can be written as

trk (Fo(), p) = - + ( 2 ) N(s) + eNex(s))Gk (s, p) 1
O< s|< 2V'(

- K(p,f) + E4(p,) + 63 (p,) + (k)(p + 1). (4.3.18)

4.4 Level 3

We are now in a position to prove Theorem 4.2.1, a trace formula for f = 3 and

arbitrary prime p : 3.

4.4.1 The case where p = 1 (mod 3)

We first prove the theorem in the case where p - 1 (mod 3). We begin by considering

the main term in (4.3.18). This term is

Gk (s, p)
o<l|<2vp

+ 2 _ 4 ) )N(s) + 3N3x3(S)) -

For each congruence class of s (mod 3), consider the term j (1+

When s = 0 (mod 3), we have S2=4P 1, so j ( S24p)) N(s)

2)) N(s).
0, and also

N 3 (s) = 0. When s = 1, 2 (mod 3), (I + (S 4p) 1, and the terms in the sum

corresponding to s and -s are IN(s) + !N(-s) = N(s). Since exactly one of s, -s

will be congruent to p+ 1 (mod 3), exactly one of N3(s) and N 3(-s) will be nonzero

and equal to N(s). We may therefore write

1 1
N~)+N(-s) = N(s) = N3 (s) + N3 (-s).



The main term is then

E Gk(s, p)(N 3(s) + 3N 3x3 (s)).
O< IsI<2vf

We next determine the values of K(p, 3), E4(p, 3) and e(p, 3). It is clear from the

definition of K(p, 3) and the fact that () = (3) = -1 that

K(p, 3) = 2.

Now, if p = 1 (mod 4), then p - a2 + b2 = 1 (mod 3), and 3 must divide exactly one

of a or b. By our previous convention we assume 3|b. This gives

E4(p, 3) = 2Gk(2a, p) if p 1

10 if p 3
(mod 4),

(mod 4).
(4.4.1)

Again, writing p = (c2 + 3d 2)/4, a congruence argument shows that 31d, and

2 c +3d
e(p,3)= Gk(cP)+Gk 2

and the trace formula becomes

±Gk (c-3d
+G 2 ,P)) +2Gk(c,p)

trk(Fo(3),p) = - SGk (s, p)(N 3 (s) + 3N 3 x 3 (s)) - 2+ 2Gk(c,p) + E4(p, 3)
O<Is|< 2V/p

2 ( + c+3d
+ G(c,p)+Gk ,p +Gk (c 2 3d ,p)) +(k)(p+ 1).

The problem then reduces to parameterizing elliptic curves with a nontrivial 3-

torsion point and counting isomorphism classes. To do this, we use the parametriza-

tion of curves with a 3-torsion point discussed in Section 2.2.1. Recall that I, is the

(4.4.2)



set of isomorphism classes of curves over F,. Define the following sets

L(s) {t E F, : A(Et) / 0, lEtJ = p + 1 - s}

I(s) { C E L, VE E C,I E p + 1 - s}

I3(s) {[E] E I(s) : Z/3Z C E(F,)[3]}

J3(s) {[E] E I(s) : E(F,)[3] Z/3Z,j(E) z 0, 1728}

J3x3(s) {[E] E I(s) : E(F,)[3] Z/3Z x Z/3Z, j(E) # 0, 1728}

Ji(s) {[E] C I(s) E(F,)[3] Z/3Z, j(E) = 0}

J0x3(s) {[E] C I(s) : E(F,)[3] 2 Z/3Z x Z/3Z, j(E) = 0}

J " 2 8 (s) := {[E] E I(s) : E(Fp)[3] a Z/3Z,j(E) 1728}

J 2
3x(s) {[E] E I(s) E(F,)[3] 2 Z/3Z x Z/3Zj(E) = 1728}.

Then 3(s) = 28(S) U j328(s) and by construction

this is a union of disjoint sets. Note next that 1728 = 123 is a cube and that this

implies that a curve E with j-invariant 1728 has a discriminant that is a cube and

therefore E(F,)[3] 2 Z/3Z x Z/3Z. This shows that J3728 (s) = 0 for all s.

The goal now is to express the value |L(s)J in terms of the sets above. This is

accomplished with the following proposition.

Proposition 4.4.3. For every s, L(s) satisfies the relationship

IL(s)| = |J3(s)| + 4|J 3x3(s)| + J 3xs(s)| + 2|J x3(s)|.

To see this result, define the map

L(s) -+ 13(s) by t i-+ [Et]. (4.4.4)

By the previous discussion, 0,b(t) V Jr(s) for any t, and so #, maps L(s) onto J3 (s) U

J3x3(s) U J3x 3 (s) U Ji 27(s), and the following lemma describes the structure of this

map.

Lemma 4.4.5. Let [E] c 13(s). Then [E] has exactly 1 preimage under 0, when

[E] C J3(s)UJAx3 (s), exactly 2 preimages when [E] c Jj 2
3

8(s) and exactly 4 preimages
when [E] C J3 x3(s)-

Proof. Case 1: Let [E] C Jx 3 (s). Then [E] = [E2 4]. Since 0 = j(E) = t$-24 the

only possible preimages of [E] are t = 24,0. But A(Eo) = 0, so t cannot be zero and



there is exactly one preimage.

Case 2: Assume now that p - 1 (mod 4), because otherwise J728 (s) = 0, by [38],

Lemma 5.6. Let [E] E J 8 (s). Again, [E] [ [Et] for some t, and 1728 = t-27

Solving for t, we find that the only possible solutions are ti = 18+6v/5, t 2 = 18-6v/5.

Since v/5 E F, when p -1 (mod 4), both solutions are in F,. By [38] Lemma 5.6,
there is only one isomorphism class of curve with j(E) = 1728 so #,b(t1)= 4s(t2) =

[E].

Case 3: We next consider the case where [E] E J3 (s) U J3x 3 (s), and j(E) = jo.

Define the polynomial

f(t) - t(t - 24)3 - jo(t - 27).

This has roots at all t such that j(Et) = jo. Since E 2 Et0 for some to, we know that

there is at least one solution to f(t) in F,. Recalling that p satisfies p2 + p + 1 = 0

and defining w so that w 3 = (t3 - 27t2), we may factor f over F,[x] as

f(t) (t - to) - (w -to + 36)(2w +to) (pw - to + 36)(2pw+to)
3w 3pm

t- (p2w - to + 36)(2p2 w + to)
3p 2W

Since w E F, if and only of A is a cube in F, or equivalently E has full 3-torsion, we see

that [E] has exactly one preimage when E(F)[3] a Z/3Z. If w is a cube, then there

are four values of t that map to curves isomorphic over F, to E. These four curves

are either isomorphic over F, to E or a quadratic twist of E. The second case cannot

occur because by construction each of the four curves have nontrivial 3-torsion, and

so all have their trace of Frobenius congruent to 1 modulo 3 and a quadratic twist of

E would have trace of Frobenius congruent to 2 modulo 3. Therefore, [E] has four

preimages only when E(F,) [3] 2 Z/3Z x Z/3Z. O

The proposition now follows easily from the above lemma. Returning then to the



main term of the trace formula, we may write

E Gk(s, p)(N(s) + 3N3x3(s))

=kGk(s, p)(I J3(s)| +4|J 3x3(s)+ Ij3x 3(s)I+ 2|J 3 2 8(s)|,+3|Jx 3(s)|
o<\s|<2V4-JW

+2 J 28(s)|+| Ij3(S)|)
= Gk(s,p)|L(s)I + Gk(s,p)(3|J3x 3(s)I+2IJ x8 (s)3 +|J(

o<\s\<2Vp O<l <2.Vp

p- 1

= Gk(ap(Et),p) + Gk (s,p)(3|J3x 3 (S)|1+21J xs)+|33
t=1 > <IsI<2p

ttV7 (mod p) II<V

)|)

It remains to identify for which s are Jax3 (S), J328 (s), J3(s) nonempty. From Schoof

[37], [38], we know that when p = 1 (mod 3), there are six curves E with j(E) = 0

and each has End(E) ~ Z . For each such curve E, its trace of Frobenius s

therefore satisfies s2 - 4p = -3t 2 for some t. As discussed previously, the six traces s

satisfying this equation are s = ±c, ±-s, ±- 3 and for each such s, exactly one of

s or -s will be congruent to p + 1 (mod 3), the proper congruence in order to have

nontrivial 3-torsion. Of these three, a congruence argument shows that exactly one

will further satisfy s = p+ 1 (mod 9), and by construction IsI c. Similarly, If p =1

(mod 4), the E such that j(E) = 1728 have End(E) =~ Z[i] and as before the trace

of Frobenius of such an E will satisfy s2 - 4p = -4t 2. We use the following lemma

from [38].

Lemma 4.4.6 ([38], Lemma 5.6). Let F, be a finite field,

1. There is at most one elliptic curve E with j = 0 and |E(Fp)[3] = 9. There

is exactly one if and only if p =1 (mod 3) and this curve has the trace of its

Frobenius endomorphism equal to c as above.

2. There is at most one elliptic curve E with j = 1728 and |E(F,)[3] = 9. There

is exactly one if and only if p = 1 (mod 12) and this curve has the trace of its

Frobenius endomorphism equal to 2a.

Then if p 3 (mod 4), J32 8 (s) = 0 for all s, and if p = 1 (mod 4), 1J 2
3

8 (2a) = 1

and J32
3

8 (s) = 0 for all other s. Recalling that e4(p, 3) = 2Gk(2a, p), this gives:

S)|)



Gk (s, p)(N(s) + 3N 3 x 3 (s)) =

O<IsI < 2 v5
Gk(a,(Et),p) + 3Gk(c, p)

t=1
to-27 (mod p)

+Gk c+3d

Finally, we relate this back to the trace.

trk(ro(3), p)

= - 2 Gk(S, p)(N3(s) + 3N 3 x3 (s)) - 2 + E4(p, 3)
o<IsI<2Vf

+ G(CP) + Gk
c+3d

2 )
+Gk c-3d)p

=- Gk(ap(Et),p) - 3Gk(c,p) - Gk c 3dp

t 27 (mod p)

+ E4(p, 3) + 2 (Gk(Cp) +Gk (c + 3d
2 7P

-Gk (
c-3d -e4(p,3)--2

+ 2G (C7P) + 6(k) (p +1)+Gkc - 3d(2
P-1

=-2 - Gk(ap(Et)
t=1

t*27 (mod p)

,p) 3 (Gk(c, p) +Gk c+3d) +Gk c -3d)p) + 6(k)(p + 1).

This can be simplified with the following lemma.

Lemma 4.4.7. Let E be an elliptic curve over Q and let p be a prime for which E

has good reduction. Recall that

L(E, s) = [ an(E)n-"

is the Hasse- Weil L-function of E. Then the p power coefficients of L(E, s) can be

written explicitly as a function of ap(E) by

apk-2(E) = Gk(ap(E),p) when k > 2.

Proof. Recall that we can define Gk(s, p) by

Gk(s,p) :=
xk-1 k-1

x -y

where x + y = s and xy = p.

+Gk c-3d +E4(p, 3 ).

+ 2Gk(c,p) + 6(k)(p + 1)



We will show that the function Gk(a,(E),p) satisfies the same recurrence as the

p power coefficients of L(E, s). This recurrence for the coefficients ape(f) of the

L-function where E has good reduction at p, is

ape (E) = ap(E)ae-i (E) - p -ape-2(E)

and apo (E) 1.

Explicitly evaluating G2 (a,(E), p) shows

G2 (a,(E), p) = 1 = apo(E).

Now assume that the relation holds for all weights less than k. Then in particular

apk-3(E) Gk-l(a,(E), p) (4.4.8)

apk-4(E) = Gk- 2 (a (E), p). (4.4.9)

Computing apk--2(E) using the known recurrence relation and equations (4.4.8) and

(4.4.9) we have

apk-2(E) = a, (E)apk-3(E) - p -apk-4(E)

= ap(E)Gk-l(a, (E), p) - pGk- 2(a, (E), p)

( k-2 _ Yk-2
=~~ a, E )

(Xk-3 yk-3
- p .

Since a,(E) = x + y and xy = p, we may replace these in the equation above

(Xk-2 __ k-2
- (x +y) (x 2 Y 2

X -
- k-1 __ k-1

=Gk(a,( E),p)

-k-3 _ Yk-3
-~ (xy)

which proves the lemma.

Let a E Z be chosen so that a is not a cube modulo p. That is, if we consider a

as an element of FP, it is not a cube. Then one can check that

{c c3d c-3d{|ap(Eo,a)|,1ap(Eo,a2)|,1ap(Eo,3)|} = c 2 ' 2



so that the final form of the trace formula is

trk (Po(3), p) = - - ak-2(Et) - (apk-2(Eo,,) + apk-2(Eo,a2) + ak-2(Eo,3))
t=1

t/27 (mod p)

+(k)(p + 1) - 2.

4.4.2 The case where p = 2 (mod 3)

Next, we prove the version of the trace formula for p = 2 (mod 3). The argument

follows similarly to the case where p = 1 (mod 3). Also, we assume that p > 3 since

the p - 2 case is straightforward. We begin by noting that (5) = -1, so that the

trace formula in this case is given by (4.3.18). Also, e3(p, 3) = 0 and 64(p, 3) = 0 so

that the trace formula can be written as

trk(FO(3),p) =- -
2 Gk(s,p) + N(s) - K(p, 3) + J(k)(1 +p).

O< Is I<2v/-(I ()

Recall that N3(s) is the number of isomorphism classes of elliptic curves with trace

of Frobenius s and a point of order 3. Since |E(Fp) I p + 1 - s we see that in our

case, Ns(s) = N(s) when s = 0 (mod 3) and Na(s) = 0 otherwise. Still using the

relation s2 - 4p - t2 D, we also find that

s = 0 (mod 3) +=> D 1 (mod 3) +=> (I

s = 1, 2 (mod 3) +=> D 2 (mod 3) +=> (I

so we can write the trace formula as

trk (Fo(3), p) =-E
O< Is <2vp

=-z
O< Is <2vf

-
o<_IsI< 2V1

+ (D =2
+ 3=J

Gk(s,p)N3(s) - 2- (-p)k/ 2-H(-4p) + 6(k)(1 + p)

Gk(s,p)N3(s) - 2 - Gk(0,p)N(0) + 6(k)(1+ p)

Gk(s, p)Ns(s) - 2 + J(k)(1 +p). (4.4.10)



Again define Et : y2 + tXy + t2 y X3, which has (0,0) as a point of order 3 and

the sets

L(s) {t E F, : A(Et) $ 0, |Et(Fp)| = p + 1 - s}

I(s) :={C I: VE E C, |E(F)| p + 1-s}

13(s) {[E] E I(s) : Z/3Z C E(F,)[3]}

and consider the map

4, : L(s) -+ 13(s) to t -+ [Et].

We will prove the following lemma.

Lemma 4.4.11. Assuming that s = 0 (mod 3), the map 4 L(s) -+ I,(s) is injec-

tive, and when s / 0 it is a bijection.

Proof. When s # 0, surjectivity is clear, since any elliptic curve with 3-torsion and

nonzero j-invariant can be written in the form given above, and curves with j invariant

equal to 0 will be supersingular. When s = 0, the isomorphism classes of curves Et

with j(Et) = 0 given by Et : y2 +ty = X3 are not in the image of #0 . Any two curves

EtO and Et0 in this form will have the Weierstrass forms EtO : y2 =3 - (108to) 2 and

Et : y2 23- (108ti) 2 . These curves isomorphic over F,, since all elements of F,
are cubes. This shows that when s = 0, there is exactly one isomorphism class over

F, that is not in the image of 40.
For injectivity, consider first the case where the j-invariant is nonzero. Let [Eto] E

I3(s) be an isomorphism class of curve over F, with j-invariant jo, and consider its

preimage in L(s). As in the case for p = 1 (mod 3), define the polynomial

f(t) = t(t - 24) 3 - jo(t - 27).

Any element of L(s) mapping to [Eto] will be a root of f(t). Now, define w E F, to

be the unique element of F, satisfying

w= - 27t2).



Then as before, f(t) factors over F, as

f t) ~-(t - to) (t (w - to + 36)(2w + to) t (pw -to + 36)(2pw+to)
3w 3pm

(t - (p2w - to + 36)(2p2w + to)
3p2w

where p is a third root of unity. Since p 2 (mod 3), it follows that p g F , .

Therefore, f(t) factors over F, into two linear terms and a quadratic term. Let

ti := (w - to + 36)(2w + to)/3w be the second root of f(t) in F, .

We have now shown that there are exactly two roots of f(t) in F , , and so the

corresponding curves Eto and Et, are isomorphic over F, . We can easily see that they

are not isomorphic over F , since Eto will have a quadratic twist defined over F, with

the same j-invariant. Since the trace of Frobenius of this twist is -s = 0 (mod 3), it

will also have a 3-torsion point, and so can be written as Et for some t. Such a curve

will be isomorphic to Eto over F, but not F , , so it must be isomorphic to Et1 over F, .

This shows that [Eto] has exactly one preimage in L(s).

Now, if j(Et) = 0, and [Et] is in the image of <o, by a previous discussion in fact

t 24 and so the map is also injective.

0

This lemma shows that IL(s)l |13(s)| = N3 (s) when s # 0 and IL(O)| = 113(0)1-

1 N(0) - 1. Using this in the trace formula gives

trk(ro(3), p) - Gk(s, p)IL(s) - Gk(0, p) - 2 + 6(k)(1+ p)

O Is<2Vr

p-1

- - Gk(a ,(Et), p) - (-p)k/2-1 - 2 + 6(k)(1 + p)
t=1

t$27 (mod p)

p-1

- - ak-2(Et) - (p)k/2-1 - 2 + 5(k)(1 +p), (4.4.12)
t=1

ff27 (mod p)

which proves Theorem 4.2.1 in all cases.

4.4.3 Proof of Corollary 4.2.3

Corollary 4.2.3 now follows quickly from Theorems 3.2.2 and 4.2.1.



Proof of Corollary 4.2.3. Begin with the formula

trk(lo(3 ),p) --
p-1

apk-2(Et) - Nk(P) - 2
t=1

t027 (mod p)

and use the relation

aPk-2(Et) = tPk- 2 (Et) + p - apk-4 (Et)

to replace each apk-2(Et) to give

trk(Fo(3),p) = -
tpk-2(Et) - p -

t=1
tdt27 (mod p)

apk-4(Et) - Yk (P) - 2.
p-1

t=1
tt27 (mod p)

One can see (4.4.13) by recalling that

a,(E) = t,(E) = ae + Z

where aa = p, and that for each k, tpk(E) = ak + k. Then

(a - &)tpk(E) = (a - -)(ak + Ik) -ak+l _ ak+1 _ CeU(akg-1 _k-1)

_ 0k+1 - k+1 Ak-I _ k-1)

and so

tpk(E) -ak+1 _ k+1

t~~~C ( E T=
a k-1 _ k-1

-p -Gk+2(ap (E), p) - p - Gk(a, (E), p)

= apk(E) - p - apk-2(E),

where the final equality follows from Lemma 4.4.7.

Apply again (4.4.13) to each apk-4(Et) and so on, until reaching ap,(Et) = 1.
The result is the following formula:

k/2-2 p-1

trk(Fo(3), p) = -- p E
i=0 t=1

tgt27 (mod p)

tPk-2-2i(Et) - pk/2-1(p - 2) - yk(p) - 2.

Applying Theorem 3.2.2 to each tpk- 2 - 2i(Et) then yields the corollary.

(4.4.13)



4.4.4 Inductive trace

Now that we have proven Theorem 4.2.1, we can prove Theorem 4.2.4, a version of

the trace formula which expresses trk(FO(3),p) in terms of traces on spaces of smaller

weight, as well as an additional inductive formula.

Proof of Theorem 4.2.4. We show the theorem when p - 1 (mod 3), but the p 2

(mod 3) case follows similarly. We use the relation 4.4.13 in order to phrase Theorem

4.2.1 in terms of traces of Frobenius, and then Theorem 3.2.2 to express this in terms

of Gaussian hypergeometric functions.

Replacing each ak-2(Et) by tk-2 (Et) + p - ak-4(Et) in the sum then gives that

trk(FO(3),p) is equal to

p - 1 
-( o 3)

- j t~k-2(Et) - p ( apk-4(Et) - 3(tpk-2(EOa ) + tpk-2(Eo,,2 ) + tpk-2(EO,a3))

A(Et)0 tf27 (mod p)

13 (p -ak-4(Eo,e) + p -ak-4(Eo,C2) + p - a-4 (Eo,a3)) - 2
3

- tp k-2 (Et) - (tpk2 (EO,) ± tpk. 2 (Eo,,,2) ± tpk-2 (Eo,a3 ))

t6Fp
A(Et)/O

+p - trk-2(Fo(3), p) + 2p - 2
p-1i

= pk-2 Z2F1 ( 2 +
t=2 ) , k-2

p - trk-2( o(3),p)

3(tpk-2(EO,a) + tpk-2(Eo,2) + tpk-2(Eo,C3)) + 2p - 2 by Theorem 3.2.2.

Finally, we showed in Lemma 3.2.5 that

0 k k 0, 1(mod 3)
3 (tpk-2(EO,a)+t 9 -2(E,a2)+tk-2(E,'3)) = k-2 - 2F1 9- 8-1 kp2  2 (mod 3)

\ ) pk-2

which completes the proof when p = 1 (mod 3).

4.5 Level 9

4.5.1 Proof of Theorems 4.5.3, 4.2.6

Now we sketch a proof of Theorem 4.2.6, a trace formula for Hecke operators on

Sk(lPo(9)). Notation and methods are similar to the level 3 case, so we only outline



the important differences. Its not hard to see (from the definition of c(s, f, 9) given

below) that when p - 2 (mod 3), trk(Fo(9),p) - trk(Fo(3 ),p). Therefore the level 3

formulas hold in this case. Because of this, we may assume throughout that p =1

(mod 3). Applying Hijikata's trace formula results in the following expression:

trk(Fo(9),p) = - G,(s, p) Z h* ( ) c(s, f, 9) - 2 + (k)(1 + p).
O<Is|< 2Vp fit

The following lemma characterizes the function c(s, f, 9).

Proposition 4.5.1. Let s2 -4p =t 2D where D is a fundamental discriminant of an

imaginary quadratic field and let fIt. Let

r := ord3t,

p := ord 3f.

Then the value of c(s, f, 9) is given by:

If -r p:
2, if D 1 (mod 3);

c(s, f, 9) 0, if D 2 (mod 3);

0, if D 0 (mod 3).

If r=p+ 1:

5, if D 1 (mod 3);
c(s, f, 9)= 3, ifD=2 (mod 3);

4, if D 0 (mod 3).

If T > pO+ 1:

c(s, f, 9) =4.

Because p 2 (mod 3) ==> r = p, we have c(s, f, 9) 1 + (D) when p 2

(mod 3). This agrees with the e = 3 case, and the same calculations as in Section 4.4.2

show that trk(1Fo(3),p) = trk(Fo(9),p). In fact, one can show, using the definition of

c(s, f, N) from [15] that c(s, f, 3') =1 + (2) for each m, and so all of these traces

are equal.

Now, as in Lemma 4.3.7, we remove the c(s, f, 9) term from the trace formula by

applying Theorem 4.3.8. See Appendix A for a statement and proof of this lemma

for a general prime f.



Lemma 4.5.2. Assume that p -1 (mod 3). We can write

( h* ( 2 _4)
fg f

c(s, f, 9) =
12H* (s2 4P) if 3|t;
0 otherwise.

Proof. Consider first the case where 3 I t. Then ord 3 f =ord3 t = 0. Also, s2 -4p = 0 2

(mod 3), so if 3 t t this implies that t 2D = D = 0, 2 (mod 3). In either case,
c(s, f, 9) = 0 for all fIt.
lemma.

Now we assume that 31t.

This shows that the whole term is 0, agreeing with the

When D = 1 (mod 3), applying 4.3.8 in the second

equality below yields the following:

h* ( 3f)2 =
fI(t/3),ff(t/9)

E
fI(t/3),fjt(t/9)

h* ( 2 4 )

This shows that

E h* ( 2 _4)
f It

c(s, f, 9) =E h*
fI (t/3)
M{t /9)

2 6 if D =1 (mod 3)
3ifD=-2(mod3) +414 h*

4 if D = 0 (mod 3) fl(t/9)

Now apply Theorem 4.3.8 to both terms above. The first one becomes:

E
f I (t/3)
f{(/9)

The second becomes

h* ( _42) = 12 E
fI (t/9)

h* (3f)2 
-

Replacing these two quantities into the expression above and combining the sums

gives

5 h* 2 )2 c(s, f, 9)
f It

12 5 h* (3f)2)
fI|(t/3)

= 12H* 2 4

2 ( h* 2 2
fIt,ft(t/3)

( 2 4 2

h* 2 _ 4)
6)

3

4
(3f)2)

6)

3

4

2

4

3
=: h*

f I (t/3)

=12
fI(t/3)
MOO/9

h* (3f)2 )-

45
I \(t/9)



Now we have (using the definitions of E4 , es, a, c in equations (4.3.14) and (4.3.13)

to rewrite the expressions in H* in terms of H)

trk(PO(9),p) = -6

O<Is I<2v,/,
31t

Gk(s, p)H* ( 2 4) -4+6(k)(1+ p)

=-6
O< 1<2 ,

3|t

Gk(s, p)H ( 2 _ 4 ) + 12 - Gk(2a, p)64(p)2
+ 12 - Gk(c, p)3

-4 + 6(k) (1 + p)

= -12 S Gk(s,p)N3X3(s)+6G(2a,p)4(p) +8G(c,p) - 4+6(k)(1 +p)
O<Isl<2v/p

where 64(p) = 1 if p -1 (mod 4) and 0 otherwise. Keeping notation as in Section

4.4, this is equal to:

J3x3(S)1+21 j1728())-3 ( Gk(s, p) (4|J 3x3(s)| + Ijx 3(s)|+ 2|J 3x(s)+
o<Is)<2lp(

+6Gk(2a, p) + 8Gk(c,p) - 4 + J(k)(1 +p)

Gk(a,(Et), p) - Gk(c,p) - 4 + 6(k)(1 +p)
p-1

=--3 (E
t=1, t027

t3 -27t
2 

a cube

p-1

-3 ( Gk (a,(E27/ ), p) - Gk(c, p) - 4 +6(k)(1+ p)
t=2

1-t a cube

t ,p) -Gk(c,p)-4+ J(k)(1 +p).

Now apply the transformation law in Theorem 2.1.7, to write this as

Gk (P -2F1
p-1

=-3 (E
1-t a cube

Gk p - 2F 1

p p
2

t) p -Gk(c,p) -4 + J(k)(1+ p).
p-1

=-3 (
t a cube

This gives the following expression for the trace formula.

Theorem 4.5.3. Let p - 1 (mod 3) and k > 4. Then the trace of the pth Hecke

Gk (P 2F1(p p2p-1

-3 (
1-t a cube

- Gk(c, p) - 4 + 6(k)(1 + p)



operator on Sk(Fo(9)) is given by the expression

trk (Io(9),p) =- - Gk(P - 2F1

p-1

t3;t1 (mod p)

From here we may derive a number of expressions as in the level 3 case.

example, using Lemma 4.4.7, it follows that when k > 4,

p-1

trk(OP0(9),P) - ak-2 (Et3) - apk-2(E 2 4 ) - 4.
t=1

t
3

;27

Also, using (4.4.13) we can write when k > 4

k/2-2 p-1

E Ipk-2-2F1
i=0 t=2

t
3

*1

k/2-2

+ E pk-2-i2F1 
i=0

p p
2

E
3) 

pk-2-2i

9 .8-1
,Pk-2-2i

-4 - pk/2-1(p 1).

Finally, arguing as in Section 4.4.4 we derive an inductive formula for all k > 6:

trk(FO(9),P) = 2 F1 ( P t )

E Pk-2

+Pk- 2
2F1

p-1

p k-2 E

t=2

+p - trk- 2(Fo(9), p).

4.6 Applications

4.6.1 Fourier coefficients of r(3z)8

Let

q(3z)' = b(n)q", q = e27iz

be the Fourier expansion of the unique Hecke eigenform in S4 (Fo(9)). We now prove

Corollary 4.2.7, which states that the Fourier coefficients of q(3z)8 when p = 1

(mod 3) are given by the expression

b(p) = -p 3 + ( ) _ _ 32F 1 (

p p
2

C

For

trk(Fo(9),p) =

p p
2

E
9 8-1 ) - 4+ 4p

p p 2

E
9 -8-

to) ,p) - Gk (C,P) - 4+6(k) (1 +p).



Proof. We begin with the alternate trace formula expression from Theorem 4.5.3 and

derive the corollary from this. Applying Theorem 4.5.3 with k = 4 and noting that

the dimension for S4 (1-o(9)) is one, we can write

p-1

b(p)=(G4 P - 2F1

t=1

p p
2

E
(p2 (t) + p(t) + 1) - G4 (c,p) -4

-3G4 (p- 2F1

p-1-z p22F1
t=1

p p2

C

S2
0

2
t) (p(t) + p2(t) + 1) - C2 +P2 - 3p -1.

Now compute the term EIt p22F1

rem 3.6 of Greene [14], which in our case

that

2F1 (
Then

p-1

S P22 F1
t=1

p p2

E

p p2

C
1

2 _1
t p(t)=Ep

t=1

2F1 (

2 \2
t p(t). Use Definition 3.5 and Theo-

(switching A and B in the definition) states

p(y)p2(1 - y)p(1 - ty).

p p
2

6
t 5p(y)p2(1 - y)p(l - ty)p(t)

)y
p-1

=p2 P2(1 - y)
y= 1

p-1

=p2  p2 (1
y=1

2F1(p-1

t=1

p-1

- Y) Y, 2F1
(t=1

p p2

p p2

6

Now apply Theorem 3.13 of [14], stated in this thesis as equation (2.1.6). This gives

that the above is equal to

p p
2

E

p-1

p 2 E 2(1 - Y)3F2
y=1

P-1

p2 5
y=1

p-1

y=1

=p3 4F3

2(1 -1)3F

Y)P2(1 - Y)3F2

p p 2

E

p p2

C

p p
2

6

1) .

=

t) pXtyp( -ty))

ty- I p(tOp( - 0)



By the same method we can show that

p p 2

P-1
E p22 F1

2

t)

PP2t

p2 (t) P3
4F3

- p 4F3 (

( p2 2

pp P

P2
Ep p

1) ,

1) .

We reduce (4.6.2) further using identity 2.15 from [14]

CBY)
- B(-1)J(A) = AB(-1)J(BC),

where J(A) = 1 if A = E and 0 otherwise. When X / e, p, p2 , applying equation

(4.6.3) and using Jacobi sum identities gives the equality

(pX) ( X) (p2X) () X
PX PX XP 2 P2

There are p - 4 such terms. We must consider the exceptional three cases separately.

We have shown so far that:

+p1() (p2) p) (p2) p2(p-14)

p2(p - 4) 1 2p2 (2
p- 1  p - 1 p - 1 p 2

- _ 4p2 + 2p + 1 V2 - 3p - 1.
p - 1

(4.6.4)

Combining these results, we have

b(p) = -p 3
4 F3

PP2P2 2

pp p p -p
3
4 F3 (

P22F1

and

(4.6.1)

(4.6.2)

(A A(C) _(C)BJ AJ B
(4.6.3)

p34F3 (p 2

E

p 4

P x

- 2

X ( p X 
p 2



Reducing this further, we use Theorem 2.15 again to write

p34F3 P1P P ) 3F2( 2 2

and similarly

p34 F ( PPP 1 P 3 ()3F2 ( - p2

Now, we can evaluate these hypergeometric series using Theorem 4.35 from [14}.

Using this, we have

3F2 1 2

3F2( 1

b(p) -p 3

p3 2

+ 2 (p2) (p) + P2 2 2

=- p3( ) + ( +p2)+P2(( P) + C2

Finally, recall that c is the trace of Frobenius of the curve E : y2 + y = X3 over

F,, which we computed in Lemma 3.2.4 and is given by

(4.6.5)

Using this in the equation above, we have that

b(p) -p P + .

For the second equality in Corollary 4.2.7, let a = -p . Then by equation

=3 p 2)
- P 2 P2

+P p2 ( p)+ 2()(p 2 - C2

c p) - p .



(4.6.5), tp(E) = a + T and aT = p. It follows then that t,3(E) = a3 + 3 = b(p).

Theorem 3.2.2 now implies that

b(p) = tp3(E) = -p32F 1  P 9 - 8-).

4.6.2 A modular threefold

Now let V be the threefold defined by the equation

X3 = Y1Y2Y3(Y1 + 1)(Y2 + 1)(y3 1),

and let N(Vp) denote the number of projective F,-points on V. Then we will show

that V is "modular" in the sense that the number of points on V can be expressed

in terms of the Fourier coefficients of a modular form. In particular, the function

'r(3z)8 = b(n)q" discussed in Section 4.6.1 has Fourier coefficients given by the

expression

b(p) = p3 + 3p2 + 1 - N(Vp). (4.6.6)

We consider first the case where p = 1 (mod 3). Define the set W to be

W = {(y 1 ,y 2 ,y 3,x) E FV: y1y2Y3(I + y1)(1 + y2)(1 + y3) = X3 1.

Then,

#W = 2 (1 + P(Y1Y2Y3(l - Y1)(1 - Y2)(1 - Y3)) + p2 (y1y2y3(y1 - 1)(Y2 - 1)(Y3 - 1)))

EIFp

= p3 + E p(y1)p(1 -y1) p(y2)P(1 - Y2) P(y3)P(1 - Y3)
Y1 Y2 Y3

+ p2 1 )o2  Y1) E P2(y2)P 2 (1 - Y2) 1: P(y3)P(l - Y3)
Y1 Y2 Y3

= p 3 + P3 3 3 P (4.6.7)

Now we compute the value N(Vp), the number of projective points on V, in terms

of #W. Begin by homogenizing the equation:

Y1Y2Y3(Y1 + z)(y 2 + z)(y 3 + z) - x za.



The points corresponding to z = 0 are on the curve

yyy=0.

First we count the points where x # 0, (so fix x = 1). At least one yi must be

zero and the other two can be anything. There are exactly 3 (p - 1)2 + 3(p - 1) + 1

possible choices for Y1, Y2, Y3-

Now, we count the points corresponding to x = 0. We choose one of the yi to be

zero (three choices) and there are (p - 1)2 /(p - 1) values for the other yi's. There are

another 3 points corresponding to when exactly two of the y are 0. So the number

of projective points is

N(Vp) #W +3(p - 1)2 +3(p - 1)+1+3(p - 1)+3= #W +1+3p2 .

Finally, combining the above with equation (4.6.7) it follows that, when p = 1

(mod 3),
b(p) =p 3 - #W =p+3p 2 +1 - N(Vp).

If however, p = 2 (mod 3), then every element of F, is a cube, and so for any

choice of Y1, Y2, Y3 there is a unique x satisfying equation (4.2.8). There are p3 such

choices for the y s, so #W = p3. Since b(p) = 0 for all p = 2 (mod 3), it follows that

b(p) = 0 = p - = p3 + 3p2 + 1 - N(V,p).

It would be interesting to learn more about this variety V, or to use Corollary

4.2.7 to describe the point counts on other more well understood varieties, such as

those in [29].



Chapter 5

Relation to Classical

Hypergeometric Functions

5.1 Preliminaries

We have seen in the previous chapters how Gaussian hypergeometric series naturally

arise when counting the number of points on varieties and computing the Fourier co-

efficients of cusp forms. In this chapter, we will discuss explicit relationships between

Gaussian hypergeometric series, classical hypergeometric series, and truncated hyper-

geometric series. We will present some known supercongruence results of Mortenson

[32, 33] relating special values of these objects to each other, and discuss further

conjectural relationships given by Rodriguez-Villegas [36]. Finally, we discuss some

promising methods for potentially solving these conjectures.

Define the hypergeometric series truncated at m to be

(ao a ... an rn-1(ao..(an)k k
x+F := x . (5.1.1)

b1 ... bn tr(m) k=0 (b1)k... (b)k!

We begin by proving a congruence relation between Gaussian hypergeometric series

and truncated hypergeometric series modulo a prime p. This proposition follows as

an easy consequence of a classical result relating Jacobi sums to binomial coefficients

modulo p. Despite this, we write out the details, since such a congruence provides

an explicit link between Gaussian hypergeometric functions and truncated hyperge-

ometric functions evaluated at arbitrary points. The relationship is given by the

following:

Proposition 5.1.2. Let w = up be the generator of Fx defined below. Let m and d



be integers such that 1 < m < d and djq - 1. Then for any x E Z,

m(q-1) (d-m)(q-1) m d-m
-q - 2F1 dWx 2 2F1 d d x (mod p).

E q1 tr(q)

This congruence is a result of the following two lemmas. To state the first one,

we need a bit of notation.

Let p be a prime, and let q = pf be some power of p. Let (p denote a primitive

pth root of unity, and similarly for (q-. Let L = Q((q_1,(p), and let 0 L denote its

ring of integers. Let 13 C OL be a prime above p. Finally, define the character W of

OL/3= lF. so that w(x + P) is the power of (q_1 satisfying the congruence

w(x + ) =- x (mod 3).

Then the following congruence holds.

Proposition 5.1.3. If a and b are integers such that 1 < a, b < q - 2 we have

a + b (a +b)!
J(-a, o-b) a b a b! (mod q3).

a alb!

See, for example, Proposition 3.6.4 in [7] for a proof of this result. We will also

use the following straightforward lemma about the Pochhammer symbol.

Lemma 5.1.4. Let djq - 1, 0 < m < d. Then

) m(q-1) + (kI

d )k ~q-1) (mod q).



(ddm)d 
d m

((d-m)(q-1)

(d-m

d
+k-1)

( (d-m)(q-1)+(q
d

1
(q -1)k

-(m-d)(q - 1)) (m - d)(q - 1)
d

(m - d)(q - 1) (q 1)(k 1)

m(q )

d

- (q - 1))

m(q -
d

+(m( d
+2)

(q1)k
(q - 1)k

2(q -1))

m(d +k)

In particular, it follows then from the above lemma that

(dm)

k!

and

(mod p)

(mod p).

Proof of Proposition 5.1.2. By definition, we have

-q . 2F1 (

(d-m)(g-l)
W d

x 

q

q
x

Now, use the relation (A) (B) B(-1) (equation. 2.7 in [14]) to write this as

x
X (

d

2
q-2 Z (-m(q-1) -k) (d-m)(q-1) kWkXW ~w(x)

k=O

Proof.

d-m
d )k

(d - m)(q - 1) + (q 1)(k 1)
d

(q _1)k

(q-1)k

(-1)k

(q - 1))-...

(q -1)k

(mod q)

q- 1 ) X(x)

(mod p).

+ 1)

- ~ ..- (q -1)k

Mq-) + k)!
(q1 (mod q)

m(q-1) + k
k

(d-m)(q-1j + k(Md )k d

k! k

X x X ( X .



We will prove the congruence by showing that the kth term in the sum above is

congruent to the kth term in the expression for the truncated series. In particular,

when k = 0, we have

m(q-1) (d-m)(q-1)

J(w d , )J() , ) 1 (mod p)

and

For the other

(o d-md )U (d)O = 1 (mod p).
O!0!

values of k, we may apply Proposition 5.1.3, to give the congruence

q-2 m(q-1) (d-m)(q-1)
d 1+ X~ kdg~ (mod 13)

k=1 ( d d

and then by

0 (mod p))

Lemma 5.1.4 (using the fact that the q - 1 term in the truncated sum is

q-2 m (- M d-m
- d k I/v k 2F

( k!k! F1-drn X
k=0 tr(q)

(mod 1P).

Thus we have shown that

(mod 1P),

where, as we recall, T C 0L is a prime above p. When x E Z, the right hand side is

necessarily rational. A priori, the left hand side lives in Q((q_1), but in fact is rational

because the sum can be separated into conjugate pairs. Therefore, the congruence

holds modulo 13 n Q = pZ. 0

Although this congruence holds modulo p, it does not necessarily hold modulo

larger powers of p, as the following example shows.

Example 3. Consider for instance the case where m = 1, d = 3, p = 7, and p is a

character of order 3. Then if we evaluate at the point x = 2, we find that

= -1.

m-q-1) (d-m)(q-1)

-q-2F1 x

m(q-1) (d-m)(q-1) (m d-m

-q - 2F1 W Wx 2F1 d d X

E q I )tr(q)

-P - 2F1 P 2



On the other hand,
1 2 352362349

2F1 332 =.
r(p) 43046721

We have that -1 -43046721 352362349 (mod 7) but -1 -43046721 0 352362349

(mod 72).

5.2 Conjectures of Rodriguez-Villegas

As we saw in Example 3, congruences between special values of Gaussian and trun-

cated hypergeometric series do not necessarily hold modulo powers of p greater than

1. However, Mortenson proved in [32, 33, 31] that under certain hypotheses, con-

gruences modulo p2 hold. This line of research was inspired by the conjectures of

Rodriguez-Villegas in [36], which proposed supercongruence relationships between

special values of certain truncated hypergeometric series and the number of F,-points

of Calabi- Yau manifolds. We will discuss these conjectures briefly in Section 5.2.1,
and present some of the related results of Mortenson.

A consequence of research toward proving these supercongruences has been prov-

ing actual equalities between the Fourier coefficients of certain modular forms and

special values of Gaussian hypergeometric series. In fact, the supercongruence conjec-

tures of Rodriguez-Villegas provide a guide for determining exact expressions for the

Fourier coefficients of modular forms in terms of Gaussian hypergeometric series. In

Section 5.2.2, we will list a series of conjectures for the coefficients of modular forms

of weight 4 based on translating the conjectures of Rodriguez-Villegas into the finite

field setting. We will discuss how these might be used to prove the supercongruence

conjectures of Rodriguez-Villegas.

5.2.1 Dimension d < 3

In [36], Rodriguez-Villegas conjectured 22 supercongruences between truncated hy-

pergeometric series corresponding to fundamental periods of the Picard-Fuchs differ-

ential equation for Calabi-Yau manifolds of dimension d < 3 and expressions related

to their F,-points. The supercongruences corresponding to d =1 were proven by

Mortenson in [32, 31]. For d = 2, one of the supercongruences was proven by Van

Hamme [41] and the rest were proven (at least up to sign) by Mortenson [33]. For

d = 3, one of the 14 supercongruences was proven by Kilbourne [22], and another by

McCarthy[28]. The rest remain open, and will be discussed further in Section 5.2.2.



We begin by stating the results of Mortenson in [32, 33]. His results are of par-

ticular interest to us, because his proofs for the d = 1, 2 cases of Rodriguez-Villegas'

conjectures follow as corollaries of more general supercongruences between truncated

hypergeometric series and Gaussian hypergeometric series. They therefore illustrate

a general principle that has been used to prove these as well as other supercongru-

ence conjectures: use Gaussian hypergeometric series as an intermediate step, by

describing the objects on both sides of the congruence in terms of them.

The following theorems were proven by Mortenson in [32]. His proofs use proper-

ties of the p-adic P-function, and so he considers characters mapping into C,.

Theorem 5.2.1 ([32], Theorem 1). Let m and r be integers with 1 < m < r. If p = 1

(mod r) is prime and p is a character of order r on F, then

2F1  r-m 1
( 1 )tr(P)

(mod p2).

Theorem 5.2.2 ([32], Theorem 2). Let m and r be integers with 1 <

p -1 (mod r) is prime and p is a character of order r on F 2 , then

m < r. If

2 F1 ('' 1 ~1 2 -2 - 2 F1 1

The supercongruence conjectures of Rodriguez-Villegas for d = 1 then follow from

Theorems 5.2.1, 5.2.2 and explicit evaluations of the Gaussian hypergeometric series

above.

In [33], Mortenson proved a generalization of this for n+ 1 F hypergeometric func-

tions. A corollary of his work is the following theorem.

Theorem 5.2.3 ([331, Corollary 1). If p is a prime, p - 1 (mod ri), 1 < m <; ri,

and pi is a character of order ri on F,, then

-"( - 1 1" 1-
F ri r1 r2 r2 11

Str(P)

a pi"1 1 p'22 pMns3 ~ mi m1 -m 2

EE-p - 4F3  1

-(-1 ~P_1)+g "I,-P p (modr p22.

We illustrate these results with a particular example.

Example 4. Let p = 5, m =1, and r = 3. Also, let p be a character over Fp2 of order

(mod p2).

p7n pm

-P - 2F1

P



3. Then

-P2 - 2F1 )= 1.

Computing the corresponding truncated series, we have

1 2 883512)
2 F1  3 3 1 =8 24 (mod 52)

1 59049

and so
1 2 2

2 F1  = 1 1 (mod 52),

as is consistent with Mortenson.

If we compute modulo 53 instead, we find that

1 2 2

2F1 i 1 351 (mod 53).
)tr(p)

So the congruence does not hold for higher powers of p.

5.2.2 Dimension d = 3

Now we discuss the conjectures of Rodriguez-Villegas corresponding to manifolds of

dimension d = 3. The supercongruences are between truncated 4 F3 hypergeometric

functions evaluated at 1 and the Fourier coefficients of modular forms of weight 4 and

varying level, and are conjectured to hold modulo p3 . Of these conjectures, Kilbourne

[22] proved the level 8 case and McCarthy [28] proved the level 25 case. We will prove

in Section 5.2.3 the level 16 case, but only for primes p = 1 (mod 4).

The remarkable fact about these results is that one can prove actual equality be-

tween special values of Gaussian hypergeometric series (assuming the specified char-

acters exist) and the Fourier coefficients of the corresponding modular form. For ex-

ample, Ahlgren and Ono proved in [2] that the pth Fourier coefficient of q (2z)47(4z)4 E

S4(1'o(8)) is equal to -p 3 - 4 F3  1 - p. The corresponding level 25 result

follows as a corollary of McCarthy's.

It seems empirically that this phenomenon holds more generally- for each of the su-

percongruences of Rodriguez-Villegas we have noticed equalities between expressions

in terms of the Gaussian hypergeometric functions analogous to Rodriguez-Villegas'



truncated series and the Fourier coefficients of the same modular forms in his con-

jectures. Such equalities would be interesting in their own right, as they give exact

formulas for the Fourier coefficients of modular forms. Additionally, they can be used

as tools for proving additional supercongruences, as we will show in Section 5.2.3.

We summarize the known results (indicated with a t and 1) together with our con-

jectures in the third column of Table 5.1. For convenience, we also list the functions

from the conjectures of Rodriguez- Villegas in the second column of this table.

Level Truncated 4F3  Gaussian 4F3 Magma newform

8t 4F3 2p F300

1 1F3( 1~ 1) tr(p) E 1)

9 4F3  4 1 _P34F3(04 4 1) (-1)P fi
1Fs(517 1)tr(p) EE

2 3 4 tr 3p)

25 4F342 ) 34F 3 ( 4 1) (-i)Ei1 f

32 1F3(4~M 1)tr(p) 6 E )E1 1 ) V( 2 3) ( 34
72 4F3 (67M _) 434F3(05 5 1) P

1 2F 1 1 tr(p) E )

2 4F 3  3 1)r3 P34F3(P 8 P 1)
\ ( 1 tr(p) E ) f

72 4F3 4444P430 ) P3V4

111 tr(p) E I Ef

2001 ( C C p2 1
16 4F3332_ 4) P

1 3 51 tr(p)EE E

128 4F3 6 6 2346

\ 1 tr(p)EEE1)f

1 3 7 9b trp)7

1200 4F3 888 P3430 8_Pf

1 5 1 5 tr(p)E E

216 4F3 3 ; b '4'4

864 4F36644343 1) -pFP

20 F3T 101- - p 3 4F3 p 0fi

1 1-rp 34F - (-1 E fl

column ws3prove-inp[2]

-p4F 6 1 -6

21 43 6 11 ) r ) -p34F3 1 -E - p f4

_p3 F3 7 -11f

864 4F3T2 21-2'121 -p 3 4F3 61 '0' 017 __12 -P _h p

1 1 11 ) r~p)E E E

Table 5.1: Conjectures for cusp form coefficients: 4 is a character of order 2, p is a
character of order 3, and Oa is a character of order d.

t The supercongruence in the second column was proven in [22] and the equality of the third
column was proven in [2].

IThe supercongruence of the second column and the equality in the third column were both
proven in [28].



Conjecture 5.2.4. For each level in Table 5.1 below, let p be a prime number such

that the characters in the corresponding Gaussian hypergeometric series exist. Then

the values of the Gaussian hypergeometric function given in the third column of Table

5.1 match the Fourier coefficients of the newform listed.

5.2.3 Partial progress

We will now prove the level 16 case of Conjecture 5.2.4, and show how this implies

the level 16 case of Rodriguez-Villegas' conjectures for p =1 (mod 4). We discuss

other partial progress towards proving the Gaussian hypergeometric series expressions

given in Table 5.1 as well as the conjectures of Rodriguez-Villegas.

Level 16 Case

We will now prove the following.

Theorem 5.2.5. Let f G S4 (L'o(16)) be the unique newform of level 16 and weight 4,
and write the Fourier expansion of f as

f = n cq"

When p = 1 (mod 4), c, can be written as

c, = -p34F3 7P ' 1 ) 4(-1)P-

By applying Corollary 4.9 in McCarthy [28], we have the conjectured supercon-

gruence as a corollary, assuming still that p - 1 (mod 4).

Corollary 5.2.6. With notation as above, and p - 1 (mod 4)

1 3 1 1

4 4 2 2 (modp 3 ).
C, 4F3 ( 1 1 1 )t()(o

Proof of Theorem 5.2.5. Note that f is a twist of the unique newform of level 8 and

weight 4. Specifically, if we write q(2z)4'q(4z) 4 E S4 (Fo(8)) as

(2z)47(4z)4= aqn,



then c, = #,(-1)a, whenever p - 1 (mod 2), where Op is the character of order two

in FX.

Ahlgren and Ono have shown in [2] that

(
When p -1 (mod 4), 4,(-1) = 1, and proving Theorem 5.2.5 therefore reduces to

proving the hypergeometric transformation

4F3
+ TP(- 1)
~p2 = 4F3( + .

6

Begin by expanding 4F3

4F3(q$q$
6

q5~b

6

4F3

p 
Z

p1

p-

1

p

1

1) according to its definition.

95 1 by Theorem 4.2 in [14]

Ox Ox $Ox Ox

Ox Ox $3x x2 (4+

(x _t2
4(i - )

q$~b
Z3F2(

Z3F2(

Z3F2(

4(1 -t)

-(1 _-t) 2

4t

(- t)2) 0(t) + .2

The second equality here follows from the expression

~~(cX 2 ~)) (X)1 (4) {(x2) )--(4),
(;;2) (4)

which can be derived from applying Davenport-Hasse.

78

(5.2.7)

(5.2.8)

a -34 F3 1 -p.

Ox Ox ) ( x
X ) (OX) O X)

t



Using Theorem 3.13 in [14] (stated in Chapter 2, Theorem 2.1.6) we can write

4F3 I inductively as

4F3 1) -- 3F2 t )(t(1 - t)).

Now, the quadratic transformation formula in Corollary 4.30 in [14] implies that

3 F2 t =J(1 - t) () ( )+(,3(,)

1 p(' & ~# 0 -4t N
+J-(1 + t) + #1 (2)#(1- t)3F2 3 -4
p # # (1) -3 t)2

where we recall that J(0) =1 and 0 otherwise. This shows that

4 F3  1 - I E 3 F2  7 3 (1 4t 0(t) + -#7(-1), (5.2.9)
e e e pE e( - t )2 )

where we use the fact that 0(-1) = #(2) when p - 1 (mod 4). Comparing (5.2.9)

and (5.2.7) we see that the identity is proven. L

Level 9

In Chapter 4, we gave numerous expressions for the traces of Hecke operators on

spaces of cusp forms of level 9. When the weight k = 4, we even gave a simple Jacobi

sum expression for the Fourier coefficients of the unique newform in S4 (Fo(9)). We

would like to use these expressions as well as Gaussian hypergeometric transformation

laws to prove the conjectured equality of Fourier coefficients given in Table 5.1. Once

this equality has been established, we hope to use supercongruence results to prove

Rodriguez-Villegas' conjecture in the level 9 case, at least for primes p - 1 (mod 12).

The work below represents an attempt to rewrite the Gaussian hypergeometric

series in the trace formula in Theorem 4.5.3 into one more similar to that in the

conjectured expression. Recall again that -(3z) 8 = E b(n)q" E S4 (Fo(9)) is the

unique newform in this space and that Theorem 4.5.3 implies that when p -1



p-1 I

b(p) =- p2 2 F 1t=1
p-1

= - 222F1
t=1

p p
2

p p2

E

(1 + p(t) + p 2(t)) - c 2 + p 2 -3p- 1

where the second equality follows from (4.6.2) and (4.6.4). The following lemma will

convert these functions into 3F2 series.

Lemma 5.2.11. Let t E Fp satisfy t / 0,1/2,1.

Gaussian hypergeometric functions holds:

2F1(p p 2

E
)2t)

Then the following equality of

p p 2

E

Proof. This will follow as a result of the identity in Theorem 1.7 in Evans and Greene

[9] stated below.

Theorem 5.2.12 ([9], Theorem 1.7). Let C $ <p, A ( {e, C, C2}, and u2 0 {0, 1}.

Then

AC2 C4O
C2 C

1

1-u 2

#(-1)C$(1 - U2) + 0(_j-7C2(1 - u)A(1 + u)J(A, AC 2 )
J(C$, C$) 2 U)22F1

We will apply the theorem above to the function

2F1 (p 2

C
t) 2.

Setting (1 - u)/2 = t, we have that u =1 - 2t and 1/(1 - U2 ) = 1/(4t(1 - t)). Also,
2 V {0, 1} <==- t V {1/2, 0, 1}, but for all other t we may apply the theorem.

Finally, set A = p2 and C = T =: X6.

(mod 3),

(5.2.10)(p(t) + p2(t)) - C2,

= 3F2 (
4t(1 -t) + I.



Then

2F1 t t) 2 ( 3F2 2
p2 2  1 ) 0(_l)p2(4t(li )) 0(_1)

p X6 4t(1-t) p p2(2t)p2(2(1-t))

Applying the transformation in Theorem 4.2 of Greene [14] (see Chapter 2, The-

orem 2.1.8 for a statement of the theorem), we have that this is equal to

4t(1 - t) +

E E'p

3F2 4t(l -t) + 1.

By Theorem 4.9 in Greene,

Greene,

2F1 PP =)-l/p, and by equation 4.15 in

) r2p(2) (<) + ( =2)) =p(2) (p) + p 2 (2) 2

The second equality above follows from applying Greene equation 2.16 (an application

of Davenport-Hasse) and a Jacobi sum identity ([19] p. 305) to give

(, ) p(4) = ( P ) p(2). (5.2.13)

Therefore we find that

p22F1(

E2p2 22 +2 p(2) 2 + (2)
= p 22+ (2 2) 2 +2 2p

(-1 2 2 2

p 2(4t(1 -0t) P X6 4t(1 - t) p

6 (4( - 2 3 4 (-t F2 (



On the other hand, applying Theorem 4.38 of [14] yields the evaluation

p2
3 F2

-2 ( ) 2 + (p2) 2)

p(2) +

=p22F1 (p p 2

E

P2(2))

- 2p.

This gives

p-1
b(p) = - : ps 3F2

t=2 (

p p2

E
4t(1 - t)) (p(t) + p2 (t))

- p(p(2) + p 2 (2)) - c2-- 2
p-1

= - p1 3F21
t=1

p p2

C
4t(1 - t)) (p(t) + p2 (t))

- c2 - p(p(2) + p 2 (2)) - 2 + 2p.

On the other hand, we can consider the expression in Table 5.1. We will use the

following simple lemma to rewrite it in a manner similar to that above.

Lemma 5.2.14. Let p = 1 (mod 4) and let $ be a character in Fpx of order 4. Then

( x 0') 4 X) (,X) (,2) X(4) + P ; J (OX),

where 6(e) = 1 and 0 otherwise.

Proof. We begin by writing ( X) (X) in terms of Gauss sums and applying Davenport-

= p2 2



Hasse.

(x $y _ 1 G($X)G($)3x)G(X) 2

x J x} p2  G($)G($ 3)
=3 31 G()<-)2 G (#x2) 3(4)G(#)

1 G($x 2)G(<) G($x)G(() -
p2  G(#x) G(O)

(,X) (,X 2) -(4) + 2 QOx).

Using this we have

P34FP P? 0 )
p x

p 1 x

by Davenport-Hasse

using G(0) 2 =P

( P2X) QbX) (,iP3X)x x x

P 2X (,X (,X) V4)
x x x

p-1 ($) ( ) p2
X4)+ p.

p - 1 x / 1x x x

Now, use the fact that

O(X2 ) (5.2.15)((t) (4t(1 - t))

to write the hypergeometric function as

p34F3 (PP
p 3

=P2 E 3F2 4(21- 0$(t) + P.

( 2X) (Ox E (4t(l - t))#(t) + p



And so proving the level 9 conjecture would be equivalent to proving the identity

p-1

- p2 3F2
t=1

P-p

I: p 3F2
t=2

P2

6 p2
4t(1-t))

1
64t(1 -I

(p(t) + p2 (t)) - - p(p(2) + p2 (2)) - 2 + 2p

) )(t) - (#(-1) + )p.



Appendix A

Further Trace Formula

Calculations

In this appendix we use the definition of the function c(s, f, N) from [15] to provide

simple formulas for c(s, f, f) and c(s, f, 2), where f is prime. We use these formulas

within the text for f = 3, but as we will see, it is possible to write similar expressions

for any value of f / 2. All of the following calculations are straightforward but

extremely tedious.

We begin by presenting the definition for c(s, f, P") given in [15]. Let p = orde(f),

and let 4(X) X2 - sX + p. Construct the following sets

A {x { Z: <b(x) 0 (mod e+ 2P), 2x - s (mod eP)}

B := {e A: <b(x) 0 (mod ef+1+ 2 p)}

and define A and B to be systems of representative of elements mod Ev+P of A, B,
respectively. Then c(s, f, ") is defined to be

S fJAl if (s2 _ 4p) f 2 # 0 (mod f)
|Al+ BI if (S2 - 4p) /f 2  0 (mod f).

A.1 Computation of c(s, f, f)
Lemma A.1.1. Write s2 - 4p - t 2D with D a fundamental discriminant of a

quadratic imaginary field. Then c(s, f, f) ± (1+ (2) if orde(f) = orde(t);
2 if orde(f) < ord(t).

Proof. Break this up into different cases.



Case 1: orde(f) = orde(t)

First assume that (2) = 1. We know that disc(4))=s 2-4p and orde(s 2-4p) = 2-p,

so s2 - 4p - 0 (mod 2P) but S2 - 4p 0 (mod fl+2P). Since D is a square mod f by

assumption, we can write D = (S2 _ 4p) / 2 = y 2 + k for some y, k. Then this implies

that S2 -4p = (ty) 2 + t2 fk - (ty)2 (mod f1+ 2P) so the discriminant is a square mod

el+ 2P. So we can factor 4 as

<b(X) X s+ y s2_4)( _s-4)
(mod gl+2p)

We also check that 2 - S (mod eP), so this shows that x

are two elements of A. If xo E A is another such element then 2xo = s

we can write xo = 1 + x1iP

<D(Xo) = 0 (mod gl+2P) <=4 (XiE i P + "2

X1 - U (1 + 2eP

<--> 1= t V + X2

2

(mod fP) so

0 (mod g1+ 2P)

0 (mod f)

for some x2-

Thenzo=~+ t 2 +x ,)e = -- xo VP 2 (mod V+P) so it is in the

same equivalence class as one of the other values of x which shows that JAl = 2. Also,
since orde(f) = orde(t) and D # 0 (mod e) we see that (S2 - 4p)/f 2 # 0 (mod e) so

c(s, f) = |Al. So c(s, f) = 2. Since 1 + (2) = 2 the formulas agree in this case.

Next assume that D is not a square mod f. Then s2 - 4p is not a square mod e1+2,

and so 4)(X) cannot have any solutions mod V+P. So JAI = IBI = 0 and c(s, f) = 0.

Since 1+ (2) = 0, the formulas agree.

Finally, if D = 0 mod f then orde(s 2 - 4p) = 1+2p and s2 - 4p (mod fl+ 2 P) and

so

4(X) (X - (mod 1+2p)

We require that 2x = s (mod fP) and so we get that Al = 1.

Now, we compute |BI. The only possible element of B is s/2 but plugging this in



shows that 2

}(s/2) - +p
4

which is zero (mod f 2+ 2P) if and only if

s2 - 4p - 0 (mod e+2p).

This is not the case, since we already saw that orde(s 2 - 4p) = 2p + 1.

Now since we assumed that D - 0 (mod f), we fall under case 2 for the known

formula for c(s, f) and using this we find that that c(s, f) = 1 in this case. Since

1 + (2) = 1 now also, the formulas agree.

Case 2: orde(f) < orde(t)

Then automatically (s2 - 4p) /f 2  0 mod f so c(s, f) = |AI + BI. Also, orde(f) <

orde(t) ==> orde(s 2 - 4p) > 2 -orde(f) + 2 so <b still factors as

<D(X) = (x - s/2)2  mod f
2 + 2p

so IAI = |I = 1, c(s, f) = 2, which again agrees. 0

A.2 Computation of c(s, f, f2)

The following lemma characterizes the function c(s, f, f).

Lemma A.2.1. Let s2 - 4p = t2 D where D is a fundamental discriminant of an

imaginary quadratic field and let fIt. Let

-r : ordet,

p := ordef.

Then the value of c(s, f, 2 ) is given by:

If T = p:
2, if (D) = 1;

c(s, f, j 2) 0, if (D) = -1;
0, if (D) = 0.



If T = p+ 1:

f+ 2, if (7) =1
c(s, f, 2 ) j e, if (D) = -1;

+1, if (N) = .
If T > p+1:

c(s, f, f2 ) = i+1.

Proof. Consider each of the above cases separately:

Case 1: T = p

Within each case we split further depending on the value of the Legendre symbol

(D)t
(a) (D) 1
Then in particular f f D, and so orde(s 2 - 4p) = 2p. Also, by considering the squares

mod f, we see that in fact D = a2 (mod 0). So 2_4= D=a2 + 2k for some k.

s t2 D = (ta)2 + ([t)2 k, where orde(ft) 2  2(ordef + ordet) = 2p + 2.

This shows that s2 - 4p is a square mod J2+ 2P so <(X) factors as

4(X)= x - (x - (mod C+2p).
2 2

. S = L V- 4 p -2-(mod X/P).
Also, 2-* 2 S 4p (mod fP).

This shows that 2 (taking the square root mod f 2+ 2P) are in A. Also, they

are distinct coset representative in A because otherwise then 2 2

(mod P) = s2 - 4p 0 (mod f2+P) which contradicts the fact that orde(s 2 _

Ap) = 2p.

Finally, we show that there are no other possible elements of A. If there were an

additional element xo, then by definition 2xo = s (mod EP), so we write xo = '+ x1P.



Then

<b(xo) 0 (mod f 2 +2P)

<=-> (j+ xeP- 2 4 2 ~xi 2 4P ~0 (mod C2+2p)
s2 -2 4p42p4

+ x2 ) (2S-4 ± s fP) =0 (m od f22P)

( 2s24p (s2 4 2

o x1 2 - 2 - -4 0 (mod 2).

So 1 2eP (mod P), and xo = + ep+ 2 k, so its one of the repre-
sentatives already listed. This shows that c(s, f, P) = 2 as claimed.

(b) (2) = -1 or (D) = 0
In either case, D will not be a square mod 2 and so there will be no solutions.

Case 2: 'r =p+l

We first compute the elements of A in all three cases. If r = p + 1, then s 2 -4p 0

(mod f 2p+ 2 ), and <b(X) factors as <b(X) = (X - E)2 (mod f 2 p+ 2 ). Therefore A is one

element of A.

Let x0 be another element of A. Then as before, xo = A + x1 P, and

4 (Xo) = 0 - (Efx )2 (mod P+ 2 ) ==> eI 1.

This shows that x0 is of the form x0 = ' + x2 P+1. Checking we see that any

residue mod f will work as a value of X2, and that these are the only unique such

values. This gives f solutions in total, so |AI = f. It is left to compute the elements

of B, since in this case c(s, f, P) =|Al + Bl.
(a) (D) = 1
Since D is a square mod f, we know that s2 - 4p = a2 (mod f 2p+3 ), so <b(X) factors

and has two distinct solutions.

These two are distinct from each other as before. Also, there are no other solutions,
since any possible solution would be of the form (from above) I + x 2 ep+1, where x 2

was taken mod E. Also, write 2" - P+1k. Then if this element was a root, we



would have

s 2 4p

- 0 = (x 2 - k)(x 2 + k)

s
2 2

s- s2-_4p
2) (mod f 2p+ 2 )

(mod f)

and this can only hold for two of the elements.

So jB| = 2 and c(s, f, P) = E + 2.

(b) (D) = -I

Then D is not a square, and <} does not factor mod f 2p+ 3 , so BI = 0 and c(s, f, f2) = f.

(c) ()=0

Then s2 -4p 0 (mod fP+3), and <b(X)= (x - E)2 (mod p+3).

There is only one solution, because 0 ( + x 2 p+1 - )2 X 2 p+ 2 (mod 2p+ 3 )

this implies that £1x 2 which holds for only one value. So |B I 1 and c(s, f, P) =+1.

Case 3: r>p+l

Arguing as in the previous section shows that JAl = f and IBI = 1 in all cases so

c(s, f, f2 ) = f+ 1.

With this characterization of c(s, f, £2), we may prove the following generalization

of Lemma 4.5.2, which describes the case where f = 3.

Lemma A.2.2. Let f #/ 2 be a prime number, let s, p, t be integers satisfying s-2 _4p
t2 D, where D is the fundamental discriminant of an imaginary quadratic field. Then,
when i|s 2 _4p,

E h* ( 2 _4 c(s,f, 2 )
f it

Proof. The proof follows as that for Lemma 4.5.2.

= (2 +)H* (s 2 4)



( 2 74 p)

h* (S2 4p)

if ( I

if 0

if (T)=-1

2 -1

=(f2 + f) S
fI(t/2)ft(t/e2)

h* ( 8 2 - 4)-
fIt

ff(t/Ie)

h* (S2 4p) c(s,f,l).

Also, again applying 4.3.8

(+1) (
fI(t/e 2)

h* (2 4p) 2+) ( h* ( 2 -
f |(t/,e) 

f )

Combining this, we have

h* (S2 4p) c(s, f, 2) S
fit

ff(t/e)

-SE
fit

f*1t/t

h* (S2 4p)

h* (S2 4p

c(s, f, f2 ) + (E2 + e)

c(s,f,) + (f2 +j)
/

h

| I(t/,e2)

*S2 -4p)I(ef)2)

h* ( 2- 4p)(eff) 2

h * ( S 2e -4 .=(2 + t) E
f |(ti)

E h*

= (E

fI'(t"e)ft(t/e,2)

E
fIt





Appendix B

Magma code

The following Magma code was used to compute the Gaussian and truncated hy-
pergeometric functions used throughout this thesis. To the best of my knowledge,
Magma and Sage do not currently have built-in functions to compute finite field hy-
pergeometric functions or truncated hypergeometric functions, and Magma does not
have functions to compute Jacobi sums or Pochhammer symbols. I include this here
in order to hopefully make future computations of these functions easier for others.
The code to compute the p-adic gamma function is based on the results in Cohen
[7].

Z:=Integerso;
C:=ComplexFieldO;

//Jacobi sum of A,B over F-p p prime
function jacobi(A,B,p)
sum:=0;
for x in [0. .p-1] do

sum:=sum+A(x)*B(1-x);
end for;
return sum;

end function;

//return character "binomial coefficient", B(-i)/p* J(A,\bar(b})
function bin(A,B,p)
j:=jacobi(A,B^(-i),p);
return (B(-I)/p)*j;

end function;

//returns GaussianHyper2Fi(A,B;Cx)_p where A=T^((p-i)*pa)=1, etc
//note this requires p prime, for prime powers use gausshyperchar below
function gausshyper(pa,pb,pc,x ,p)

G:=FullDirichletGroup(p);
T:=Generators(G) [];
A:=T^(Z!((p-1)*pa));

B:=T^(Z!((p-1)*pb));
C:=T^(Z!((p-i)*pc));
sum:=0;
for i in [1..p-1] do

chi:=T-i;
sum:=sum+bin(A*chi,chi,p) *bin(B*chi,C*chi,p)*chi(x);

end for;
return (p/(p-1))*sum;

end function;

//returns GaussianHyper3F2(A,B C;D, Elx)_p where A=T^((p-i)pa)=1, etc



function gausshyper32(pa,pb,pc,pd,pe,xp)

G:=FullDirichletGroup(p);

T:=Generators(G)[1];

A:=T^(Z!((p-1)*pa));

B:=T^(Z!((p-1)*pb));

C:=T^(Z!((p-l)*pc));

D:=T^(Z!((p-l)*pd));

E:=T^(Z!((p-1)*pe));

sum:=0;

for i in [1..p-1] do

chi:=T-i;

sum:=sum+bin(A*chi,chi,p)*bin(B*chi,D*chi,p)*bin(C*chi, E*chi,p)*chi(x);

end for;

return (p/(p-1))*sum;

end function;

// same as gausshyper (p prime) but implementing via the character definition

// called by gausshyperchar when p is prime

function gausshypercharprime(pa, pb, pc, x, p)

G:=FullDirichletGroup(p);

T:=Generators(G)[1];

A:=T^(Z!((p-1)*pa));

B:=T^(Z!((p-1)*pb));

C:=T^(Z!((p-1)*pc));

if x eq 0 then

return 0;

else

sum:=0;

for y in [1..p-1] do

sum:=sum+ B(y)*(B^(-1)*C)(1-y)*(A'(-1))(1-x*y);

end for;

sum:=sum*(B*C) (-i)/p;

return sum;

end if;

end function;

//compute (p-exp)*2F1(A, B, Clx) over F-p-exp using character def

function gausshyperchar(pa,pb,pc,xpexp)

if x eq 0 then

return 0;

else

if exp eq 1 then
return p*gausshypercharprime(pa,pb,pc,Z!x,p);

else
F:=FiniteField(p-exp);

zetaA:=RootOfUnity(Denominator(pa))^(Numerator(pa));

zetaB:=Root0fUnity(Denominator(pb))^(Numerator(pb));

zetaC:=Root0fUnity(Denominator(pc))^(Numerator(pc));

g:=F.1;

sum: =0;
for y in F do

if y ne 0 and (1-y) ne 0 and (i-x*y) ne 0 then

ti:=Log(g,y);

t2:=Log(g,l-y);

t3:=Log(g,1-x*y);

sum:=sum+zetaB-t1*zetaB'(-t2)*zetaC^(t2)*zetaA^(-t3);
end if;

end for;
t:=Log(g,F!-1);

return ((zetaB-t*zetaC-t))*sum;

end if;

end if;
end function;

//return the order of p mod m, just exhaustively checking

//used to compute the Gauss sum below

function order(p,m)
for i in [1..m] do



if (p-i -1) mod m eq 0 then
return i;

end if;

end for;

return false;

end function;

//Gauss sum over F-q, q=p-f and character T^a
//use gaussfaster for large f to avoid constructing roots of unity
function gauss(a,p,f)

q:=ptf;
zetaq:=RootOfUnity(q-1);
zetap:=Root~fUnity(p);
F:=FiniteField(q);

if f gt 1 then

g:=F.1;

else

for t in [2..p-1] do

if order(t,p) eq (p-i) then

g:=F!t;

end if;

end for;

end if;

sum:=0;
for y in F do

if y ne O then
log:=Log(g,y);

sun: =sum+zetaq^ (a*log) *zetap^ (Z! Trace(y));
end if;

end for;

return sum;

end function;

//compute the gauss sum G(w-a), where w is generator and sum is over q=pf

//use if numbers are large, just computes e-(2pi i) etc
function gaussfaster(a,p,f)

q:=p-f;

pi:=Pi(C);

zetaq:=Exp(2*pi*i/(q-1));

zetap:=Exp(2*pi*i/p);

F:=FiniteField(q);

if f gt 1 then

g:=F.1;

else

for t in [2..p-1] do

if order(t,p) eq (p-1) then

g:=F!t;

end if;

end for;

and if;

sum: =0;

for y in F do

if y ne 0 then

log:=Log(g,y);

sum:=sum+zetaq^(a*log)*zetap^(Z!Trace(y));

end if;

end for;

return sum;

end function;

//return the Pochhammer symbol (a)_n
//used to computer the truncated series below

function poch(a,n)

ps:=1;

for i in [0..n-1] do

ps:=ps*(a+i);

end for;

return ps;



end function;

//returns 2Fi(a,b;clz) truncated at trunc

function trunchyper(a,b,c,z,trunc)

if c eq 0 then

print "error div by 0";

return 0;

else
sum:-0;
for i in [0..trunc-1] do

sum:=sum+((poch(a,i)*poch(b,i))/(Factorial(i)*poch(c,i)))*z-i;

end for;

end if;

return sum;

end function;

function computeUK(p,k)
sum:=0;
for j in [0..Floor(k/p)] do

sum:=sum+(I/(p-j*Factorial(j)*Factorial(k-p*j)));

end for;
return sum;

end function;

function computeTK(p,k)

m:=Maximu(0,k-p+1);
sum:=0;
for j in (m..k] do

sum:=sum+computeUK(p,j);
end for;
return sum;

end function;

//estimate the p-adic gamma function

function estimateGanmmaPX(p,x,MAX)

sum:=0;

for k in [0..MAX] do

xprod:=1;
for i in [1..k] do
xprod:=xprod*(x-i);

end for;
sum:=sum+(-1)^(k-1)*computeTK(p,k)*xprod;

end for;

return sum;

end function;
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