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Abstract

In this thesis, the author gives an explicit formula for the Fourier transform of the
canonical measure on a nilpotent coadjoint orbit for GL(n, R). If G is a real, reductive
algebraic group, and 0 C g* = Lie(G)* is a nilpotent coadjoint orbit, a necessary
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Chapter 1

Introduction

Let G be a reductive Lie group, and let r be an irreducible, admissible representation

of G with character 6,. The wave front cycle of r, denoted WF(r), is an integral

linear combination of nilpotent coadjoint orbits defined in [2], [251. Roughly speaking,

the Fourier transform of the wave front cycle is a first order approximation to the

character e, at the identity. Further, every orbit which occurs in the wave front

cycle of r has the same complexification [2]. In particular, if G = GL(n, R), then the

leading term of an irreducible character of G is a positive integer times the Fourier

transform of the canonical measure on a nilpotent coadjoint orbit.

The first result of this thesis is an explicit formula for the Fourier transform of

the canonical measure on a nilpotent coadjoint orbit for GL(n, R). Given a conjugacy

class of Levi subgroups, L, for GL(n, R), fix a conjugacy class of parabolics P with

Levi factor L. Then we define

O( C [p(T*P)

to be the unique open orbit. Here pt is the moment map (defined in section 3.1). In

the next statement, we also denote the canonical measure on this orbit (defined in

section 2.1) by OL. Moreover, whenever G is a reductive Lie group and H is a Cartan

subgroup, W(G, H) = NG(H)/H denotes the real Weyl group of G with respect to

H. Here is our first result.

Theorem 1.0.1. Fix a Cartan subgroup H C G = GL(n, R), let [) Lie(H), and let



C be a connected component of the regular set ' of 1. Choose positive roots A+ of

gc with respect to 15c satisfying:

(i) If a is a positive real root and X C C, then a(X) > 0.

(ii) If a is a complex root, then a is positive iff a is positive.

Then
W(GH)L WL

LG, L> W(LH) w

Here ,r =l{- ± a, A+ denotes the roots of L that lie in A+, =L a, and

W(G,H)L = {w G W(G, H) I wL = L}.

The above result is proved in sections 5.1 and 5.2.

Now, let G be an arbitrary real, reductive algebraic group with Lie algebra g. We

have a couple of results about the wave front cycles of tempered representations.

Theorem 1.0.2. Suppose 0 is an orbit contained in WF(r) for a tempered represen-

tation r, let v E 0, and let L be a Levi factor of ZG(v). Then L/Z(G) is compact.

This theorem was conjectured by David Vogan. A p-adic analogue was proved by

Moeglin and Waldspurger for cuspidal representations [16] and by Moeglin for tem-

pered representations of classical p-adic groups [15].

In [21], Rossmann associated to each irreducible, tempered representation r a

finite union of regular coadjoint orbits we call 0,. If r has regular infinitesimal char-

acter, then 0, is a single coadjoint orbit. For each nilpotent coadjoint orbit, 0 C g*,

fix X E 0. Identify g a g* via a G-equivariant isomorphism, and let {X, H, Y} be

an . 2-triple containing X. Put Sx = X + ZO(Y).

Theorem 1.0.3. There exists a canonical measure on 0 , n Sx such that

WF(r)= S vol(O, n Sx)Ox.
0

- nSx precompact

The sum is over nilpotent coadjoint orbits 0 x such that 0, n Sx is precompact.

If r has regular infinitesimal character, then 'precompact' may be replaced by 'com-

pact' in the above theorem. In the case where G is compact, the wave front cycle of



-r is dim(r) -0 where 0 denotes the zero orbit. In this case, our formula reduces to the

well-known observation of Kirillov that the symplectic volume of the coadjoint orbit

associated to r is the dimension of r.

These results are proven in sections 4.1 and 4.2.

In the process of proving these results, we will write down a number of limit

formulas for reductive Lie groups. First, we have a limit formula for semisimple or-

bits.

If G is a reductive Lie group, we will write r(G) (or simply r) for one half the

number of roots of G with respect to any Cartan H. If we fix a Cartan H, then

q(G, H) will denote one half the number of non-compact, imaginary roots of G with

respect to H. If H is a fundamental Cartan, then we will write q(G) (or simply q)

instead of q(G, H).

Theorem 1.0.4 (Harish-Chandra). Let G be a reductive Lie group, let E *

Lie(G)* be a semisimple element, let L = ZG( ) C G be the corresponding reductive

subgroup, and let H C L be a fundamental Cartan subgroup. Choose positive roots

AL C AL = A(IC, C) such that a complex root a is positive iff a is positive, and put

C ={A c ( *)'j (iA, av) > 0 for all imaginary roots a E AL}.

Then

lim 0(7rL)|AOA = i'(L)(-1)qL)|IW(L, H1)|10g.
A-+ , AEC

Here 7rL is the product of the positive roots of L, and * = Lie(H)* C g* = Lie(G)*

is embedded in the usual way.

We give Harish-Chandra credit for this result because he proved a group analogue

with a different normalization of Haar measures on pages 33-34 of [12]. The special

case where = 0 was proved by Harish-Chandra even earlier, and the main result of

[4] is a determination of the constant in the case = 0 using modern methods. Since

a proof of the above result doesn't appear in the literature, we write down a proof in



sections 2.1 and 2.2, for arbitrary semisimple (, using well-known, classical methods.

Next, we have limit formulas for nilpotent orbits. Let v E g*, and let O, denote

the canonical measure on the coadjoint orbit G - v. Then the limit of distributions

lim 0t,= nG(0, 00

is a sum of canonical measures on nilpotent coadjoint orbits. Let Oc denote the

Intgc-orbit Intge - ( C gc.

Proposition 1.0.5. The coefficients nG(O,v) are positive integers. Moreover, we

have the inequality nG(0, v) nintoc(OC, V)-

In [1], Dan Barbasch gives formulas for nIntge(Oc, v). Hence, the above theorem

gives an upper bound for nG(O, V)- In section 3.1, we give a lower bound for nG(O, V)

in the case where nG(O, V) : 0. When the lower and upper bounds coincide, we

get a formula for nG(0, V). We will show that this happens for certain GL(n, R)

limit formulas, and we use these formulas together with Theorem 1.0.4 to explicitly

compute the formulas in Theorem 1.0.1. These bounds also coincide when Oc is an

even orbit. Rao proved but never published a limit formula for even nilpotent orbits.

Recently in [5], Bozicevic gave a deep, modern proof of Rao's result. In section 3.2,

we use the above results to give an elementary, classical proof of Rao's limit formula.



Chapter 2

Limit Formulas for Semisimple

Orbits

2.1 Harish-Chandra's Limit Formula for the Zero

Orbit

In this section, we prove Harish-Chandra's limit formula for the zero orbit. It was

proven in [7], [8], [9], and [13], but with a different normalization of the measures on

coadjoint orbits than the one we use here. In [4], using modern methods, Bozicevic

gives a proof of the formula, written in terms of canonical measures on orbits. In

the first section of this piece, we show how to write down such a proof using only

well-known, classical methods. This is not a waste of space because many of the

fundamental results we recall in this section will be needed later in this thesis for

other purposes.

First, we need a couple of definitions. A Lie group G is reductive if there exists a

real, reductive algebraic group G1 and a Lie group homomorphism G -+ G1 with open

image and finite kernel. Let 0 C g* be a coadjoint orbit for G. The Kostant-Kirillov

symplectic form w is defined on 0 by the formula

wx(ad* A, ad* A) = A([X, Y]).



The top dimensional form
Wm

m!(2r)m

on 0 gives rise to the canonical measure on 0. Here m - dim 0. We will often abuse

notation and write 0 for the orbit as well as the canonical measure on the orbit. In

what follows, we will denote the G-orbit through A by 0 (or sometimes just 0\).

Theorem 2.1.1 (Harish-Chandra). Let G be a reductive Lie group, and let H C G

be a fundamental Cartan subgroup. Choose positive roots A+ c A = A(gc, joc) such

that a complex root a is positive iff Za is positive, and put

C = {A E (0*)'| (iA, aV) > 0 for all imaginary roots a c A+}.

Then

lim &(7r)|A0X = i'(-1)y|W(G, H)|60.
A-+O, AEC

Here r is the product of the positive roots of G and 0* = Lie(H)* C g* = Lie(G)* is

embedded in the usual way.

We will actually prove the Fourier transform of the above theorem. Recall the

definition of the Fourier transform. Let V be a finite dimensional, real vector space,

and let t be a smooth, rapidly decreasing measure (that is, a Schwartz function

multiplied by a Lebesgue measure) on V . Then the Fourier transform of p is defined

to be

pA j e(=I 'Ndy(X).

Note p is a Schwartz function on V*. Given a tempered distribution D on V*, its

Fourier transform D is a tempered, generalized function on V defined by

(D, p) := (D, ).

Next, we recall Harish-Chandra's result on Fourier transforms of regular, semisim-



ple orbits. If j C g is a Cartan subalgebra, define

"= {X E | a(X) f 0 Va C Areall-

Here Areal denotes the real roots of g with respect to [.

Lemma 2.1.2 (Harish-Chandra). Let 0 C g be a Cartan, let

connected component of the set of regular elements in *, and

semisimple. Suppose [j C g is a Cartan subalgebra, and C1

component. Fix an element g G Int gc such that c = AdA(i)c,

by A = Ad* A. Then

Ewec 
aweiWAl

C C (W*)' c g* be a

let A C C be regular,

C j is a connected

and define A, (r1)C

for aw c C constants. Here Wc is the Weyl group of the roots of gc with respect to

( 1)c, and ,r is a product of positive roots of gc with respect to ( 1c. Further, the

constants a, are independent of the choice of A G C.

Differentiating the above formula with respect to A yields

lim &(wr)|I0^,c 1 =i'' ((w)a,) -.-- i)7r
AEc, A-+0 7r

Observe that the coefficients aw depend on a component C C ( *)' as well as a

component C1 C (1)". For the remainder of this section, we fix C c ([*)' and we

assume that is a fundamental Cartan subalgebra. To prove Theorem 2.1.1, we need

only show the following lemma.

Lemma 2.1.3. The following identity holds

e(w)aw - (-1)I|W(G, H)J.

Again, these coefficients aw depend on a component C1 C (r1)". In order to prove

Lemma 2.1.3, we first prove it in the case where 01 = 0 using a result of Rossmann

and Harish-Chandra descent. For our applications, it is important to give Berline-



Vergne's formulation [3] of Rossmann's result [18] (we also recommend the proof of

Berline-Vergne).

Theorem 2.1.4 (Rossmann). Let G be a reductive Lie group, and let H be a Cartan

subgroup such that H/Z(G) is compact. Let A G C C (Y*)' (Lie(H)*)' be regular,

semisimple, and choose positive roots A+ C A satisfying (iA, av) > 0 for all av c

(A+)v. Then

iwA
0A|V = (-)qEwEW(G,H) 

We

7r

where ,r is the product of the positive roots.

This theorem implies Lemma 2.1.3 when r1 - [ and G is of equal rank. Now, let G

be an arbitrary reductive Lie group, and let C g = Lie(G) be a fundamental Cartan

subalgebra. Choose a Cartan involution 0 such that is 0 stable with decomposition

=t a. Then M ZG(a) is a reductive Lie group of equal rank. Harish-Chandra

gave continuous maps [7]

4 : S(g*) -+ S(m*), : SM(g) -+ SM(m)

well-defined up to a constant, where S(V) is the space of smooth, rapidly decreasing

functions on a vector space V and SM(V) is the space of smooth, rapidly decreasing

measures on a vector space V. Dualizing, we obtain maps

0* : TD(m*) -+ TD(g*), @p* = HC : TGF(m) -+ TGF(g)

on tempered distributions and tempered generalized functions. We call the map on

the right HC because it is Harish-Chandra's descent map. Thus far, these maps are

only well-defined up to a constant; however, there is a nice way to normalize this

constant. It follows from results of Rossmann [22] that one can fix the constant for 4*
so that 0* (O) = OG takes canonical measures on G-regular, semisimple coadjoint

orbits to canonical measures on regular, semisimple coadjoint orbits. In [7], Harish-

Chandra observes that i is (up to a constant) the Fourier transform of 4. Thus, we



may require

HC(D) = <*(D)

for all D E TD(m*) and this precisely defines the map HC.

We fix this normalization. Arguments similar to the ones in [22] imply the follow-

ing explicit formula for computing HC.

Lemma 2.1.5 (Harish-Chandra, Rossmann). Let F be an M-invariant generalized

function on m that is given by integration against an analytic function on the set of

regular, semisimple elements m' C m, which we also denote by F. Given X G g', let

{Y}k_1 be a set of representatives for the finite number of M-orbits in M3G nm. Then

HC(F) is a G-invariant generalized function on g that is given by integration against

an analytic function on the set of regular, semisimple elements g' C g, which we also

denote by HC(F). Explicitly, we have

k

HC(F)(X) = ( F(Yi) rGM (Y -.
i=1

To define [rG|M (Y), choose a Cartan Y G C m, let AG (resp. AM) be the roots of

g (resp. m) with respect to , let A+ be a choice of positive roots of AG, and let A+

AG n AM. Then hrG|M(Y) I -I (Y) 1. This definition is independent of

the above choices.

Combining Theorem 2.1.4 and Lemma 2.1.5, we get the following corollary.

Corollary 2.1.6 (Rossmann). Let G be a reductive Lie group with Cartan subgroup

H, and let q(G, H) be half the number of non-compact imaginary roots of G with

respect to H. Let A E £* = Lie(H)* be a regular element, and let C1 C ' be a

connected component. Choose positive roots A+ c A satisfying

(i) If av E (A+)Yag., then (iA, av) > 0.

(ii) If a c A+ and X E C1, then a(X) > 0.

(iii) If a a complex root, then a E A+ iff a G A+.

Then

OGIc 1 = (- 1 )q(G,H) ZwEW(G,H) 6I()eiwA
A 7r



where W(G, H) = NG(H)/H, ,r is the product of the positive roots, and er is defined

by

w- 1 - r(w),rr, ,r1 = a.

a mag

Moreover, OQ is zero on Cartan subalgebras ( which are not conjugate to a Cartan

subalgebra of Zg(A).

A version of this result containing a few typos can be found in [23]. Since Er = e on

a fundamental Cartan , this verifies Lemma 2.1.3 when 1 = . To finish the proof

of Lemma 2.1.3, we use Harish-Chandra's matching conditions.

Theorem 2.1.7 (Harish-Chandra). Let j C g be a fundamental Cartan subalgebra,

and let [1 be another Cartan subalgebra. Let A G (j*)', choose g e Int gc such that

Adg(r1)c = bc, and define Ad* A = A,. Suppose )2 is a third Cartan related to 01 by a

Cayley transform c, via a noncompact, imaginary root a of r1, and define A2  (r2)*
such that c*, 2 = A1. Let C1 C f'j be a connected component containing an open

subset of ker(a), and let C2 C ' be a connected component such that c,(C1) contains

a wall of C2. Suppose

I aweWX - ZbweiA2
OIci= i Oxc2= 2O',r7 1,O C r2

Then we have

E(w)aw + e(saw)aw = e(w)bw + e(saw)b,, .

Here we identify the noncompact, imaginary root a of [1 with the corresponding real

root of 02. A product of positive roots of g with respect to 01 is denoted by ,r1, and ,r2

is the product of positive roots of g with respect to 0 2 satisfying c*,r 2 =, 1-

This theorem is Lemma 26 of [11] where Harish-Chandra remarks that it follows

from Lemma 18 of [10]. Summing these relations over the entire Weyl group, we get

Y e(w)aw = Z e(w)bw.



Since any component of any Cartan can be related to a component of a fundamental

Cartan via successive Cayley transforms, we deduce

e(w)a. = (-1)q|W(G, H)|

whenever OAIc, i = " on any component C1 c f'j for any Cartan f1. This is
7r

the statement of Lemma 2.1.3. As we have already remarked, Theorem 2.1.1 follows.

2.2 Harish-Chandra's Limit Formula for Semisim-

ple Orbits

In this section, we prove Harish-Chandra's limit formula for an arbitrary semisimple

orbit. A group analogue of this result was proven with a different normalization of

Haar measure on pages 33-34 of [12].

Theorem 2.2.1 (Harish-Chandra). Let G be a reductive Lie group, let g

Lie(G)* be a semisimple element, let L = ZG( ) c G be the corresponding reductive

subgroup, and fix a fundamental Cartan subgroup H c L. Choose positive roots

C AL = A([C, tC) such that a complex root a is positive iff Z is positive, and put

C = {A e (*)'| (iA, a) > 0 for all imaginary roots a E A+}.

Then

lim 0(7rL) AA= i()(-1)4(L|W(L,)H)|0.
A+,AEC I(,H

Here ,rL is the product of the positive roots of L and = Lie(H)* c g* Lie(G)* is

embedded in the usual way.

We prove the theorem by reducing to the case = 0, which was proved in the

last section. Let dG/H be a Haar measure on G/H, let dc/L be a Haar measure on

G/L, and let dL/H be a Haar measure on L/H. Then it is a well-known fact (see for



instance page 95 of [14]) that there exists a constant c > 0 such that

IG/H f(g - H)dC/Hg I c f(g- lH dL/H L
fG|H JG '\JLH

for f e C *(G/H). Choosing a Haar measure on G/H (resp. G/L, L/H) is equivalent

to choosing a top dimensional, alternating tensor 91G/H, well-defined up to sign, on

(g/ )* (resp. YG/L, iL/H on (g/[*, ([/0)*). The exact sequence

0 -+ (g/[)* -+ (D/)* - ([/)* -+ 0

gives rise to maps on alternating tensors. Abusing notation, we also write rG/L for

the image of 77G/L under the above map, and we also write "iL/H for a preimage of

'L/H under the above map. Then

77G/H =~±C(rG/L A 'IL/H)-

This can be proved by relating the multiplication gl on the group to addition on the

Lie algebra and then applying Fubini's theorem.

To apply these remarks to our proof of the theorem, fix a Haar measure on the

homogeneous space G/L by identifying G/L ~ O and using the canonical measure,

fix a Haar measure on G/H by identifying G/H ~ OA for a fixed A E C, and fix a

Haar measure on L/H by identifying L/H =~-j O. Define 77G/H, riGIL, and 7iL/H as

above with respect to these measures. Then we get

fIH f(g- A)dg= CA,e IL (f/H f(gl- A)dl) dg.

Since ( is fixed, writing cA instead of cAe from now on should not lead to any confusion.

Lemma 2.2.2. Let AG (resp. AL) denote the roots of g (resp. [) with respect to 0.

Let A+ C AG be a choice of positive roots, and let A+ - A+ n AL. Then

c a \A (A, av)

20



for A c C. In particular, lim cA = 1.
AEC', A-*

Proof. Recall that rG/H, 'TGIL, and 77L/H are top dimensional alternating tensors on

(g/0)*, (g/[*, and ((/0)*, well-defined up to a choice of sign. Extend these tensors

complex linearly to (9c/Oc)*, (gc/1c)*, ([c/Oc)* and denote them by qG, G, and qL.

Note that we still have the identity G = c(f /\ ). Consider the root space

decomposition

For each a E A', choose elements X, E (gcla, X-' E (gc)-c, and H, E Oc such

that {X,, Hc,, X-,} is an S2-triple. Then

2

[( "G( ) =( ({Xa}a ) = det (w\(X., X8)) .

Here m := (dimg - dim 0) and wx is the Kostant-Kirillov symplectic form on 0.

Note that we need not order the tangent vectors {X,} before applying the the square

of the top dimensional alternating tensor 7G to them since the value 71G({Xa}a ) 2

is independent of this ordering. The second equality follows from explicitly expanding

out W({Xc,}) into a sum with signs, squaring it, and identifying the result as the

corresponding 2m by 2m determinant. Finally, we have

det (wx(X., XN)) = II A(H.) 2.

aEA+

This follows from the fact that w(Xo,, X8) = A[Xa, X,] / 0 only if # -a in which

case we obtain A(Ha). If k = j(dimg - dim l) and I = j(dimr - dim I), then we

similarly have

(27r)k G 2 = j ((Hc') 2

and

[(2-r)'7G({Xa ac)] 2 = J A(Hct) 2.

aAzaj



Combining the above formulas and the identity 7f = ic\(7'A \') yields

ci 1 f (Ha) 2 fi A(He) 2 = fJ A(Hca) 2.
aEA+\A+ EA aCA+

Solving for c , taking the positive square root, and observing Ha = av is the coroot,

the lemma follows. E

In the last lemma, we observed that cx is a constant multiple of the polynomial

7r/L HaEA\, 1 av in a neighborhood of (. Let D(*) denote the Weyl algebra

of polynomial coefficient differential operators on r*. Given D E D(j*), we may

evaluate D at A E * and get a distribution D(A) (ie. D(A)(f) (Df)(A)). We

write D(A) = 0 if D(A) is the zero distribution.

Lemma 2.2.3. The elements O(I7L), 7r/L G D(*) commute at the point (. More

precisely,

[0(-rL),7rG/L]() = 0.

Proof. Suppose S C A+ is a subset, define r.s= HaCs a, and let w c Aut 0 be a

linear automorphism. Then for purely formal reasons,

(MW7rs), WrG/L) (WO) = (0(7rs), 7rG/L)(0)-

(If D E S(*) is a differential operator on *, p E S( ) is a polynomial on f*, and

( E * is a point, then (D,p)(() := (Dp)(() denotes differentiating the polynomials

p by D and evaluating at (). Now suppose w E WL where WL is the Weyl group of

root system AL. Then w = ( and Wr/L /L. Hence,

((w7rs), ?r/ s ,V /(a~w~), GIjL)Q ) = (0&(WS), 7FGjI)) ( )

for all S C At and all w E WL. Now define

wS:= {a E A+l a = ±wp and # E S}.



This defines an action of WL on the set of subsets of A'. Let Ws be the stabilizer of

S in WL. Then

E
WL -orbits of
subsets SCAL

IWsI
IWLI eL(w)(&(W~rS),?rG/L)0(W Sc).

wEWL

Here EL is the sign representation of WL and Sc is the complement of S in A.

Moreover, the the notation ((w7rs), 7rG/L) simply means that we differentiate the

polynomial 7rG/L by &(wwrs). Evaluating at ( and applying (*), our sum becomes

WL-orbits of
subsets ScA+L

IW 7S),7G|L (oi) E
(wEWL

EL(W)W &se .)

Note that the polynomial E eL(w)w7rSC is skew with respect to WL. Thus, irL must

divide this polynomial. However, if S 74 0, then the degree of E eL(W)W~rSc is less

than the degree of 7L. Thus, our polynomial must be the zero polynomial if S #/ 0.

If 5 = 0, then EL e(w)w7rs = IWL KTL. Plugging this back into the above expression,

we end up with 7ro L(()&(1rL)| as desired.

Now, we prove Theorem 2.2.1. If f E Ce (g), then applying Lemmas 2.2.2 and

2.2.3 yields

lim 0(7rL)|A(O,)
AEC, A-4

= lim 0(rL) IACA f (0,g-f)dg
AEC, A-+( JGIL

= lim a(7rL) A
AEC, A-*t GIL L9g f)d9 J GL(7L) AC9'f)d9-

JGIL AEC, A-+g

Applying Theorem 2.1.1, we have

lim 0(7tL) A 9(L ' f) = gL) _ q(L)|IW(L, H|~ )AcC, A-Af

Since we normalized the measure on G/L OG to be the canonical one, when we



integrate both sides over G/L, we get

rn &(7rL)IA(O, f) = fr(L) (_)q(L) W(L, H)|(OG, f)
AaC, A-*d

as desired.



Chapter 3

Limit Formulas for Nilpotent

Orbits

3.1 Applications of a Lemma of Rao, three Corol-

laries of Barbasch-Vogan, and a Limit Formula

of Barbasch

We begin this section by recalling an unpublished lemma of Rao and three corollaries

of Barbasch and Vogan. All of this material can be found on pages 46, 47, and 48

of [2]. However, unlike the previous treatment, we need to carefully keep track of

certain constants for our applications. Thus, we provide updated statements, and for

the convenience of the reader we provide sketches of updated proofs.

Identify g ~ g* via a G-equivariant isomorphism. Let Ox be a nilpotent orbit

in g* = g, and let {X, H, Y} be an s(-triple with nilpositive element X. Put Sx =

X + Z(Y). The map

#: G x Sx-+g*

given by 4: (g,() -+ g - is a submersion. In particular, every orbit 0, c G - Sx is

transverse to Sx, and G Sx C g* is open.

Fix a Haar measure on G. This choice determines a Lebesgue measure on ~ g*.



If ( E Sx, then we have a direct sum decomposition

g [g,X]DZ,(Y) * Tx~x EDT Sx.

We then obtain a Lebesgue measure on Sx as the 'quotient' of the Lebesgue measure

on g and the canonical measure on Ox C g*. Further, given v E g*, denote by F,

the fiber over v under the map #. If g -(= v, then we have an exact sequence

0 -+ T,*(G - Sx) -+ T*) (G x Sx) -+ T*,YF, -+ 0.

This exact sequence together with the above remarks and our choice of Haar mea-

sure on G determine a smooth measure on F,. Moreover, integration against these

measures on the fibers of # yields a continuous surjective map

# : C"(G x Sx) - Ce (G - Sx ).

Dualizing, we get an injective pullback map on distributions

#* : D(G -Sx) -+ D(G x Sx).

Now, we are ready to state Rao's lemma.

Lemma 3.1.1 (Rao). If v E Sx, then there exists a smooth measure m,,x on O(,nSx

such that

=,mG 0m,X.

Here mG denotes the fixed choice of Haar measure on G. Although #* depends on

this choice of Haar measure, m,,x does not.

One can write down m,,x by giving a top dimensional form on 0, n Sx, well-

defined up to sign. Essentially, we just divide the canonical measure on 0, by the

canonical measure on Ox. More precisely, the composition of the inclusion [g, v] - g



and the projection defined by the decomposition g = [g, X] e Zg(Y) yields a map

T,0, [g,v| -+ [g, X1 TxOx.

This map is a surjection because 0, is transverse to Sx. It pulls back to an exact

sequence

0 -+ T Ox -+ T,* 0, -4 T,*(o, n sx ) -+ 0.

The canonical measures on 0, and Ox determine top dimensional alternating tensors

up to sign on T,*0, and T Ox. Hence, our exact sequence gives a top dimensional,

alternating tensor on T,*(0, n Sx), well-defined up to sign.

We will need three corollaries of Barbasch and Vogan. Let K C g* be the nilpotent

cone. If v E g*, define

N; = K n ut>00,.

Corollary 3.1.2 (Barbasch and Vogan). We have four statements.

(a) If Ox is a nilpotent orbit, then Ox C K, if, and only if 0, n Sx + 0.

(b) An orbit Ox C K,, is open if, and only if 0, n Sx is precompact.

(c) If v is semisimple, then Ox C K,, is open if, and only if 0, n Sx is compact.

(d) Further, Ox n Sx ={X} for any nilpotent orbit Ox.

We sketch a proof. Note G -Sx C g* is an open subset containing Ox; thus, Ox c

K, iff Oh, n Sx / 0 for sufficiently small t > 0. However, if 7t = exp(-}(log(t))H),

then

Ot, n Sx = X + tyt(0, n Sx - X ).

In particular, 0, n Sx / 0 iff Ot, n Sx #4 0 for any t > 0. This verifies part (a).

For the second and third sentences, one shows that 0, n Sx bounded implies that

Sx n K, = {X} and 0, n Sx unbounded implies that Sx n K, is unbounded. This

follows from a straightforward calculation utilizing the adH-decomposition of Z,(Y)

into eigenspaces with non-positive eigenvalues and the above relationship between

0, n Sx, Ot,, n Sx, and 7t. Using that (G -Sx) n N is the union of nilpotent orbits



containing Ox in their closures, parts (b) and (c) follow.

If we let v = X in the last paragraph, we arrive at part (d).

Corollary 3.1.3 (Barbasch and Vogan). Let n = 1(dim 0, - dimN,). Then

lim t"Oh,=
t-+ (:

ox ci/,
dim Ox=dimL,

vol(o, n Sx)Ox.

The volumes are computed with respect to the measures

Moreover, the Fourier transform of the right hand side is

the asymptotic expansion of the generalized function O,.

Again, we sketch a proof. Fix X, a nilpotent element

let m = . (dim0, - dim Ox). We first show

defined in Lemma 3.1.1.

the first non-zero term in

with Ox c N, open, and

lim t-ot, = vol(o, n Sx)Ox

on the open set G - Sx. By Rao's lemma, <f*(0,) mG my,x. Thus, it is enough

to show

lim t T G 0 mt,,x = vol(o, n Sx)mG E 0x
t-40+

if Ox c NM, is an open orbit. Note that the support of the measure mt,,x is the

precompact set Ot, n Sx, and the precompact sets Ot, n Sx converge uniformly to

6x by the above relationship between 0, n Sx, Ot, n Sx, and yt. Thus, it is enough

to show

t-m vol(O, n Sx) = vol(O n Sx).

This follows from a straightforward computation utilizing the above definition of the

measures mn,,x.

By Theorem 3.2 of [2], the distribution 0, has an asymptotic expansion at the

origin

tr ~ thDp +r-

where D, is the leading term and r is the number of positive roots of G. If we show



n = l-r, then our limit will exist everywhere. If n > l-r, then the limit limtio+ t"ot,

must be zero everywhere. However, we have seen that the Fourier transform of this

limit is nonzero on Ox whenever Ox C N, is of maximal dimension.

The limit limto+ t-l+rOt, must exist and be nonzero. However, if n < 1 - r, then

the homogeneity degree of this invariant distribution and Corollary 3.9 of [2] imply

that such a distribution would have to be supported on orbits of dimension greater

than dimNV,. But, this is impossible since the limit limto+ t-l+rOt', if it exists, is

clearly supported in N,. Hence, n = I - r and the limit limtio+ t-"Ot, exists.

Now, let k = dimN,, and let .N5 be the union of nilpotent orbits of dimension

at least k. We have shown that our desired limit formula holds on Ak. However,

in theory the limit could differ from E vol(O, n Sx)Ox by a distribution
OxCAr,

dim Ox =dimA;
u supported on orbits of dimension less than N,. However, we deduce u = 0 from

Corollary 3.9 of [2] after checking the homogeneity degree of the terms in our limit

formula.

Corollary 3.1.4 (Barbasch and Vogan). Suppose C g is a Cartan, and let C C ([*)'

be a connected component of the regular set. If v, A G C, then N, N A.

When n = 1(dimO0,-dimNA4,), we observe limto. t-Ot,= limto. 60(v)nIt,0t..
Then by Lemma 22 of [9],

lim &(v)"|t'0" = lim 0(v)ItAOtA
tOf Ji to+ Vnt

if v, A c C. Clearly the support of limeto+ &(v)"|tXOtA must be contained in NAX.

Thus, the explicit formula for the limit on the left on G -Sx for open orbits Ox c N,

in the proof of Corollary 3.1.3 implies Ox c Nx whenever Ox C N, is open. Thus,

we deduce N c NA. By symmetry we have equality.

We record a special case of Corollary 3.1.3 because it will have useful applica-

tions for us.



Corollary 3.1.5. If v c g*, then

lim OtV= S #(p, n Sx)Ox.
t-+0+ Ox nilpotent

OwnSx finite

Now, we get to the applications. Suppose v E g*, and write

lim Ot = nG(0, v)O-
t 0+

If 0 is an orbit occurring in the sum, then we let Oc = Intgc -0 denote its complex-

ification, and we denote by nIntcg (Oc, v) the coefficient in the corresponding limit

formula of Intgc-orbits.

Corollary 3.1.6. The coefficients n(0, v) are non-negative integers. Moreover,

nG(0, V) < nintgse (Oc, v).

The coefficient nG(O, v) is a non-negative integer because it is the cardinality of

a finite set by Corollary 3.1.5. Note nG(O, v) is the cardinality of the finite set

o0, n (X + Z.(Y))

while nInt 9c (Oc, v) is the cardinality of the set (Intge -0.) n (X + Zqc (Y)). Since the

former set is contained in the later set, we deduce nG(0, v) nInt gc (OC, v).

Corollary 3.1.7. Let v E g* be semisimple, let L = ZG(v), and suppose 0 is a

nilpotent orbit with nG(0, v) :4 0. After conjugating by G, we may assume v E

Sx. There exists a maximal compact subgroup K C G such that ZK{X, H,Y} C

ZG{X, H, Y} and K n L C L are maximal compact subgroups. If K is such a group,

then

IZK(X) /ZKnL(X) | < nG (0, v).

Proof. First, if n(0, v) / 0, then ZG{X, H, Y}/ZL{X, H, Y} acts faithfully on the

finite set 0 f Sx by Corollary 3.1.5. In particular, we have a chain of reductive



groups

G D L D ZG{X, H,Y}O

where ZG{X, H, Y}O is the identity component of ZG{X, H, Y}. Recall that any com-

pact subgroup of a reductive Lie group is contained in a maximal compact subgroup

of a reductive Lie group. It follows from this fact that there exists a maximal compact

subgroup K C G such that

KfnLcL, KnZG{X, H,Y} oC ZG{X, H,Y}O

are maximally compact subgroups. But, it is not difficult to see that whenever K C G

is a maximal compact subgroup, we have K n ZG{X, H, Y} 0 C ZG{X, H, Y} 0 is max-

imally compact iff K n ZG{X, H, Y} C ZG{X, H, Y} is maximally compact. This

proves the first statement of the proposition.

Now, fix such a group K. Note that ZK{X, H, Y} acts on the finite set 0, n Sx

with stabilizer ZKnL{X, H, Y}. Thus, we deduce IZK{X, H, Y}/ZKnL{X, H, Y}I <

nG(O, v). Hence, to prove the corollary, it is enough to show that the injection

ZK{X, H,Y}/ZKnL{X, H,Y} -+ ZK(X)/ZKnL(X)

is in fact a surjection.

To do this, we use two commutative diagrams. First, we have

ZK{X, H,Y}/ZKnL{X, H,Y} > ZG{X, H,Y}/ZL{X, H,Y}

I t
ZK(X)/ZKnL(X) > ZG(X)/ < ZG(X) 0 ,ZL(X) >

where ZG(X) 0 denotes the identity component of ZG(X) and < ZG(X) 0 , ZL(X) >

denotes the group generated by ZG(X) 0 and ZL(X). The top arrow is a surjection

because the maximal compact subgroup ZK{X, H, Y} meets every component of the

reductive Lie group ZG{X, H, Y}. The arrow on the right is a surjection because

every component of ZG(X) meets the Levi factor ZG{X, H, Y}. Hence, to show that



the arrow on the left is a surjection, it is enough to show that the bottom arrow is

an injection.

To verify this last statement, we need some notation and a second commutative

diagram. Find a real, reductive algebraic group GR and a map p : G -+ GR with

open image and finite kernel. Choose a maximal compact subgroup KR C GR such

that p(K) c KR, and choose a Levi subgroup LR C GR such that p : L -+ LR has

open image and finite kernel. Let Le be the complexification of LR, and let U C Gc

be a maximal compact subgroup with KR = U n GR. Choose a parabolic subgroup

Pc c GC with Levi factor Lc. Then we have the following commutative diagram.

ZK(X)/ZKnL(X) ZG(X)/ < ZG(X) 0 , ZL(X) >

t t
Zu(X}|Zunic(X) > ZGc (X) |ZPC(X)

The left and bottom maps are easily seen to be injective; hence the top map also

must be injective. The corollary follows. L

Next, we recall a proposition of Dan Barbasch [1], which provides an explicit

formula for nInt 9c (Oc, v). Let v E g* be a semisimple element, let Le = ZInts c(v),

and let [c C pc be a parabolic containing [c Lie(Lc). Suppose X E (gc/pc)* is a

nilpotent element such that Ontc n (gc/pc)* C (g/90)* is open.

Proposition 3.1.8 (Barbasch). We have the limit formula

lim Olatgc = |Z1tgc(X)/Zec(X)| Ontgc

where Pc = Nint ge(pc)

In particular, if Zjntgc(X) is connected, then limtto Oj"gc - 0 ctg. By a

computation of Springer-Steinberg explained on page 88 of [6], this is true when

go 2 ((n, C). Moreover, every nilpotent coadjoint orbit for GL(n, C) can be written

as such a limit by a result of Ozeki and Wakimoto explained in section 7.2 of [6].

Further, it also follows from results in 7.2 and Barbasch's limit formula that two limit



formulas

GL(n,C) Ir 0 GL(n,C)
t+0+ t-4 t 2

yield the same nilpotent orbit if and only if ZGL(n,C) ($) and ZGL(,C) ('2) are conjugate.

In the next corollary, we observe that these results also hold for GL(n, R).

To state it, we define the moment map. Let G be a reductive Lie group and let P be

a conjugacy class of parabolic subgroups of G. Then

T*P = {(p,()| pE , E (g/p)* C g*}

and the moment map is defined by p(p, () =. (Of course, the moment map can be

defined for any Hamiltonian action of a Lie group; however, we do not need the more

general definition here).

Proposition 3.1.9. There exists a bijection between conjugacy classes of Levi fac-

tors of parabolic subgroups of GL(n, R) and nilpotent coadjoint orbits for GL(n, R).

Suppose L is a conjugacy class of Levi factors, and let P be a conjugacy class of

parabolics containing L. Then the orbit Or is the unique open, dense orbit in the

image of the moment map of the real generalized flag variety

OL C pL(T*-P).

Alternately, we may choose p E g((n, R)* such that ZaL(n,R)() = L. Then OL is also

characterized by the limit formula

lim Ot =9O.
t 0+

The first GL(n, R) statement follows immediately from the corresponding GL(n, C)

statement together with the fact that every nilpotent coadjoint GL(n, C)-orbit has

an unique real form, and the fact that 0 n (g[(n, R))/p)* is dense if and only if

(GL(n,C) - 0) n (g[(n,C))/pC)* is dense. It follows from Corollary 3.1.6 and the

above GL(n, C) remarks that limt,0+ Ote is either zero or 0. In the last two sec-



tions of this thesis, we will use the results of the first two sections to explicitly compute

limto+ Ote. We will observe that the answer is non-zero. This will complete the proof

of the proposition and compute the Fourier transform of the nilpotent orbit OC.

3.2 Limit Formulas for Even Nilpotent Orbits

In [4], Bozicevic proves the following limit formula for an even nilpotent orbit.

Proposition 3.2.1 (Rao, Bozicevic). Suppose Ox is an even nilpotent orbit, let

{X, H,Y} be an s 2 -triple containing X, and let Z = X - Y. Then

lim Otz = Ox
t 40+

This formula was first proved by Rao in an unpublished paper. Bozicevic's formula

has a coefficient in front of the Ox. In fact, this coefficient is one. Bozicevic's proof

involves deep results of Schmid and Vilonen. In this section, we show how this formula

follows easily from the far more elementary results of the last section.

First, let pc be the sum of non-negative eigenspaces for adH on gC. Then O-1I" n

(gc/Pc)* C (9c/pc)* is open and we may apply Barbasch's result, Proposition 3.1.8.

Further, a result of Barbasch-Vogan and Kostant explained on page 50 of [6] implies

ZInt (X) /ZP (X) ~ ZInt e{X, H, Y}/Zpe{X, HY}.

But, Z1nt oe{X, H, Y} C Zint gc (H) C Pc. Hence, our coefficient is one and we have

lim -" -= Ont Uc
t-4O+x

Now, we need to prove a real version of this limit formula. By Corollary 3.1.6, we

know that we must have limto+ Otz = E Ox, where the sum is over some subset of

real forms of % . We know Ox must occur by Corollary 3.1.5 and the observation

Z = X-Y E X+Zg(Y). Now suppose Ox, is some other real form of Oft'c occurring

in our limit formula. Given an . 2-triple {X', H', Y'} containing X', we must have



Oz n (X'+ Z(Y')) # 0. But, Z' = X' -Y' c X'+ Zg(Y') and Oc n (X'+ Zg(Y'))
has one element by Corollary 3.1.5 and the above Int gc-limit formula. Further, it

was proven by Rao (unpublished) that Z' = X' - Y' = X - Y = Z only if X and X'

are conjugate (details of his elementary argument can be found on page 146 of [6]).

Thus, we cannot have Z E X'+ Zg (Y') and no other real forms can occur in our limit

formula. The proposition follows.
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Chapter 4

Wave Front Cycles of Tempered

Representations

4.1 Rossmann's Character Formula

In the next two sections, we use the limit formulas of section 3.1 to deduce two results

concerning wave front cycles of tempered representations.

Let G be a real, reductive algebraic group, and let r be an irreducible, tem-

pered representation of G with character 8,. Let 6, be the Lie algebra analogue

of the character of r. Rossmann associated to -r a finite union of regular, coadjoint

orbits 0, C g*. He proved the following theorem [20], [21].

Theorem 4.1.1 (Rossmann). As generalized functions, we have

0T = 0r.

Here 0, denotes the Fourier transform of the canonical measure on Or.

If 0, = 0, is a single orbit, then the leading term of the asymptotic expansion of

OT = O is

S vol(O, n Sx)Ox
ox cm,

dim Ox=dimgu



by Corollary 3.1.3. More generally, suppose O, = UO,, and define AS(r) = UN>,.

Then the leading term of 0, is a sum over the leading terms of the 0i of minimal

degree. This is just the sum over vol(O n Sx)Ox where Ox c AS(r) varies over

orbits of maximal dimension. Hence, we have shown

WF(T) = vol(O, n Sx)Ox.
Ox CAS(r)

dim Ox=dim AS(r)

We wish to show the following slightly stronger statement.

Theorem 4.1.2. There exists a canonical measure on 0n n Sx such that

WF(T) = E vol(O, n Sx)Ox.
OrfnSx precompact

The sum is over nilpotent coadjoint orbits Ox such that 0, n Sx is precompact.

To deduce this theorem from our previous statement, we need only show that

Ox c AS(r) is of maximal dimension iff O, n Sx is precompact and non-empty.

If Ox C AS(r) is of maximal dimension, then Ox n A,, is open for every i and

non-empty for at least one i. And by Corollary 3.1.2, 0, n Sx is precompact for

every i and non-empty for at least one i. We conclude O, n Sx is precompact and

non-empty.

Conversely, suppose 0, n Sx is precompact and non-empty. Then 0,, n Sx is

precompact for every i and non-empty for some i. Corollary 3.1.2 tells us that Ox C

N,, is open for some i and Ox n N,, is open for every i. Hence, we have that

Ox c AS(T) is open. But, by Theorem D of [24], AS(T) is the closure of the union

of the orbits in AS(r) of maximal dimension. Thus, Ox C AS(T) open implies that

Ox c AS(r) is of maximal dimension.



4.2 Noticed Nilpotents and Tempered Represen-

tations

In this section, we prove the following result. Recall the definition of the wave front

cycle of an admissible representation from [2], [25].

Theorem 4.2.1. Suppose 0 is an orbit contained in WF(r) for a tempered represen-

tation r, let V E 0, and let L be a Levi factor of Za(v). Then L/Z(G) is compact.

Before proving this theorem, we give an alternate way of stating it. We say Ox C g

is a noticed nilpotent orbit if there is no proper Levi subalgebra meeting Ox. This

notion was first introduce in [17]. By Levi subalgebra, we mean the Levi factor of a

real parabolic subalgebra of g. It is not difficult to show that any Levi factor L of

ZG(X) is compact modulo Z(G) iff Ox is a noticed nilpotent orbit.

Corollary 4.2.2. If 0 C g* is a nilpotent coadjoint orbit occurring in the wave front

cycle of a tempered representation, then 0 is a noticed nilpotent orbit.

Now we turn to the proof of Theorem 4.2.1. It is enough to prove the theorem

when r is an irreducible, tempered representation. Let Ox C AS(r) be an open

orbit, and identify g a g* via a G-equivariant isomorphism. Let L C Zg(X) be a

Levi factor. Then there exists an S 2-triple {X, H, Y} such that L = ZG{X, H, Y}.

To prove the theorem, we must show

ZG{X, H, Y}/Z(G) is compact. (*)

Now, if O = UO , then AS(r) = UJV>. Any open orbit in AS(r) must be open

in some AFj. Hence, it is enough to prove (*) whenever Ox is open in X, for a regular

element v c g*.

Next, supplement A and supplement C of [19] imply that every regular orbit 0,

can be written as a limit of regular semisimple orbits in the following sense. Let

E g* - g be a semisimple element in the closure of 0,, and let [ C g be a



fundamental Cartan in Z,(). Then there exists a connected component C C (Y*)'

such that

lim OX = 0.
Aec

Hence, .N, - A/ for some regular semisimple element A, and it is enough to prove

(*) for Ox open in AX with A regular, semisimple.

Fix X and suppose Ox C NA is open for some A regular semisimple. By Corollary

3.1.4, OxnSx is compact. Now, L = ZG{X, H, Y} acts on this space, and L must have

at least one closed orbit (for instance, one can take an orbit of minimal dimension).

Without loss of generality, we make it L - A C 0,\ n Sx . Choose a Cartan j and a

component of the regular set C C (f*)' such that A E C. If ( E U1 = G - C, then

Ox c X, = A is open by Corollary 3.1.4. It then follows from Corollary 3.1.2 that

Og n Sx is compact for all ( in the open set U1. Define U = U1 n Sx, an open subset

of Sx.

Now, L/ZG(A) L - A C 0,\ n Sx is a closed subset of a compact set; hence,

L/ZG(A) is compact. Note that ZG(A) C G is a Cartan since A is regular, semisimple.

Thus, ZL(A) C ZG(A) is abelian and consists of semisimple elements. Hence, the

connected component of the identity ZL(A)O must be contained in a Cartan B of L.

We have seen that L/ZL(A) is compact; hence, L/ZL(A)o is compact because ZL(A)

has finitely many components. This implies L/B is compact and finally

L/Z(L)

is compact since semisimple groups are compact iff they are compact modulo a Cartan.

Because the fibers of the projection

L/Z(G) -+ L/Z(L)

are homeomorphic to Z(L)/Z(G), to show that L/Z(G) is compact, it is enough to

show Z(L)/Z(G) is compact.

The following lemma is the key step in proving that Z(L)/Z(G) is compact.



Lemma 4.2.3. Let Z([) denote the center of [ Lie(L), and let Z(g) denote the

center of g. Then

n (Z(i) n Zg()) = Z(g).
(EU

Proof. Clearly the right hand side is contained in the left hand side. To show the

other direction, suppose W E (Z([) n Zi(()) for all ( E U. We will show W E Z(g).

Since W E [, we know X, H, Y E Zg(W). Further, Z.(W) n Z,(Y) c Z,(Y) is a

vector subspace containing U - X since W E Zt(s) for ( E U and X c Z,(W). Since

U - X C Z,(Y) is an open subset, we must have

Zg(W) D Zg(Y).

Now, view g as a finite dimensional module for Spana{X, H, Y} S2R. Note

Zg(W) c g is a subalgebra and a submodule for SpanR{X, H, Y} since X, H, Y E

Z,(W). But, the lowest weight vectors of each irreducible summand of g are in

Z,(W) since Z,(W) D Z,(Y), and the lowest weight vectors of any finite dimen-

sional s[2 module generate the entire module. Thus, Z,,(W) =,g and W E Z(g) as

desired. 0

Before we get back to showing that Z(L)/Z(G) is compact, we need two general re-

marks. First, suppose A is an abelian, real algebraic group, suppose #$: A -+ Aut(V)

is a representation of A on a real vector space V, and suppose S C V is a compact

A-stable subset of V. Then A acts on S with compact orbits. This can be proved

as follows. After complexifying the representation, we may diagonalize the action of

the image #(A) since it is abelian and consists of semisimple elements. Now, A must

be isomorphic to a product of copies of S', R , and C'. Using that every one di-

mensional character of these groups has either compact or unbounded image in C, we

deduce that every orbit of A on V 0 C is either compact or unbounded. In particular,

A must act on a compact S C V with compact orbits.

Second, if A is an abelian, real algebraic group and A 1, A2 are cocompact, alge-



braic, closed subgroups, then A, n A 2 is cocompact in A. This is because the fibers

of the map

A/(A 1 n A2 ) - A/A 1

are homeomorphic to A1/(A1 n A 2) ~ A1A2/A 2, which is compact because it is a

closed subset of A/A 2. More generally, if A1, ... , A, is a finite collection of cocompact,

algebraic, closed subgroups of a real, abelian algebraic group A, then

A/ n_1 A1

is compact.

Now, back to the proof that Z(L)/Z(G) is compact. By the first remark, Z(L) acts

on Og n Sx with compact orbits for every ( E U. In particular, Z(L)/(Z(L) n ZL(())

is compact for all ( E U. In the above lemma, we showed

n (Z([) n Z)) (g).
(EU

However, one can clearly choose (1 .. , '(k EcU such that the identity still holds when

taking the intersection over this finite set. Then, by the second remark,

k

Z( L)/ (Z( L) n ZL((i))
i=1

is compact. Since fl>(Z(L)n0 ZL($i)) is a real algebraic group, it has a finite number

of connected components and

k

Z(L)/(n(Z (L) n ZL ( i)))o0
i=1

is also compact where (fU(Z(L) n ZL((i)))o denotes the identity component. But,



since f~= 1 (Z(L) n ZL(ci)) and Z(G) share a Lie algebra, Z(L)/Z(G) is a quotient of

k

Z(L)o(m(Z( L) n Z (4i)))o.
i=1

Thus, Z(L)/Z(G) is compact. This completes the proof of Theorem 4.2.1.



44



Chapter 5

Fourier Transforms of Nilpotent

Coadjoint Orbits

5.1 Fourier Transforms of Semisimple Coadjoint

Orbits for GL(n, R)

In the next two sections, we use the limit formulas of sections 2.1, 2.2, and 3.1 to

compute an explicit formula for the Fourier transform of a nilpotent coadjoint orbit

of GL(n, R).

Let G = GL(n, R) = GL(2m + , R) where J = 0 or 1, and let g = Lie(G). Fix

a fundamental Cartan o C g, and enumerate its imaginary roots

{a1, ...,I am, -a1, ...,7 -am}-

Let 4 be the Cartan obtained by applying Cayley transforms through the roots

a1,..., ak. Then 0,... 7 om is a set of representatives of the conjugacy classes of Car-

tan subalgebras of g. In what follows, we will use these fixed Cayley transforms to

identify (4k)c 2 ( ')c (and all roots, coroots of 4J with roots, coroots of i) without

further comment.



Let A(01) (resp. Aimag.(ji), Area1(0i), Acx.(0i)) denote the set of all (resp. imag-

inary, real, complex) roots of g with respect to 01. Choose a component Cm c O'm,

and define A+ to be the set of roots a such that a(X) > 0 for all X e Cm. This fixes

a choice of positive roots for g with respect to 01 for every 1. Denote by A+(01) (resp.

Aimag.(01), Ar+ea(ol), A+.(0i)) the set of all (resp. imaginary, real, complex) positive

roots of g with respect to 01. Now, choose a regular element A E 0* satisfying:

(a) If a E Afmag.(0k) is a positive, imaginary root of Uk, then

(A, iav) < 0.

(b) If #3 E AiaI(k) is a real, positive root of Ok, then

(A, #v) < 0.

Moreover, define

Ci(e) ={X E 0'la(X) > 0 Va E Aea(0k),

and for every u E Wrea1((i), define

Ci(U) = U - Ci(e).

Here Wreai(ji) denotes the Weyl group of the real roots of g with respect to 01. Note

Cm(e) = Cm.

Let We denote the complex Weyl group of ge with respect to (i)c. For k < 1,

define a subset Wk,l C We to be the set of w E We satisfying:

(i) If a C Aimag.(01), then w- a C Aimag.(-k)-

(ii) If a E c then w-1- E Acx.( k).

(iii) If a E Amag.(0 k) and wa V Aimag.(fl), then wa e Ar1)-



For each w c Wk,l, denote by Nk,l(w) the number of a E Aag(rl) satisfying

w-1a ( A ag.(Ok). Define

ek,I(W) - (-)N~l(w)

for every w E Wk,l.

Proposition 5.1.1. If A E 0* is regular, semisimple and 1 > k, then

)I2 -k AWCwk, (w)ew

If 1 < k, then OA vanishes on 0'. Here ,r a as usual.

Let 0 be a Cartan involution fixing Ok, and decompose -= t ® a where t is the +1

eigenspace of 0 and a is the -1 eigenspace of 0. Set M ZG(a), and note

M = GL(2, R)m-k X (Rx)2k+8.

The identity component of M is Mo GL+(2, R)m-k x (Rx) 2 k+b. We will compute

O( by first computing OM and then applying Harish-Chandra descent.

Let AM(0l) be the set of roots of M with respect to [1, and let lrM be the product

of the roots of M with respect to [, that are positive for G. Let WRM(Ok) be the real

Weyl group of M with respect to Ok, and fix w E WRj([k). Note that wI7rM is the

product of the roots a of M satisfying

(iwA, av) < 0.

Then by Theorem 2.1.4, we have

eiA
OMO IW- M



Observe or C m, and put

Ci(e)M {X E [)l a(X) > 0 V real roots a E AM( I)f A+(1j).

If u E W( ,), define

C(u)M - u -Ci(e)M.

Now, decompose w = wwi into its components in the Weyl group of the real roots

of j and the Weyl group of the imaginary roots of r1. Checking Harish-Chandra's

matching conditions (Theorem 2.1.7) and using that OMo is tempered, we observe

eiwA
09 W,' I C (W r) M W

Since w, is in the real Weyl group of (j with respect to Mo and the generalized

function we are computing is Mo-invariant, we get

e(wi)eWiA
0WA | c,(e). - r

IrM

Note that Om is the finite union of the orbits 0Mo where w ranges over the real Weyl

group WRM(.k)- Hence,

OMfICl(e)M -- , ma )

where Wag.( ,) is the Weyl group of the imaginary roots of m with respect to )1.

Now, we can use Harish-Chandra descent (Lemma 2.1.5) to compute OG. Given

X c CI(e)M, we must enumerate the M-orbits in ox n m. First, we choose represen-

tatives of the M-conjugacy classes of Cartans in m. For each ordered (m - l)-tuple

J = (ji, ... , jm-i) with 1 < i < j2 < - - - < jm-i, m - k, define JC = (r1,..., rik)

to be the complementary indices among 1,... , m - k. Define of to be the Cartan

obtained from 4y C m by applying the Cayley transforms associated to the roots

a_- for s = 1, ... , 1 - k. One sees that the collection {f j} is a set of representatives

for all M-conjugacy classes of Cartans in m of imaginary rank m - 1.



Now, every M-orbit in ox n m must meet exactly one of the Cartans oIf. Thus,

we have

(Ox n m)/M U(ox n J)/Wm( J)

J

where WR'( f) is the real Weyl group of M with respect to j. Moreover, for

each Cartan Ij, the WR'( [)-orbits on ox n of are in bijection with the cosets

WR( f)\WR(jf). Thus, we have the formula

O(X) = ( (S(uwjX)17rG/M (uwJX) 1.
J uE%"(bf)\wR I

Here Wj is an element of G taking j to J.

Note that we get isomorphisms (4k)c ( i)c and (W,)c = (r1c by applying

successive Cayley transforms to 4-. Composing these isomorphisms with a complex

Weyl group element that takes positive, non-compact imaginary (resp. real) roots of

j with respect to g to positive, non-compact imaginary (resp. real) roots of J, we

get a candidate for wj. We will fix such a candidate for each J from now on.

Now, we have the formula

2 '-k E WEWijag 1 i')

WM

for every J. Here rj is the product of roots of [j with respect to m that are positive

for G, and Wjg.(f) is the Weyl group of the imaginary roots of j with respect to

m. We define

CL,j(e)M = {X E (jf)'ja(X) > 0 V real roots a e AM((J) nl An ( ) I

and more generally

Cl,j(u)M = u - CLj(e).

This formula is proved in the same way as the special case of j = r, which is proved



above.

Partition Wk,j U Lj W~j where w e Wk,j is in Wij if w - j = of. Every coset in

WR ( ) \ WRG(f) contains a unique representative u such that u-1 takes the positive

real roots of of with respect to m to positive roots of Of with respect to g and u-1

fixes the imaginary roots of Of with respect to m. When we sum over WM\W , we

will really be summing over this set of representatives. Then

OM(uwjX)|7r j(uwX)~

-21-k C(w)e iwA(UWJX)

r (uwJX) |7r/(uwX)|
EWM( j)\wRG( j) wEW,.(I)

G7r(X)

The last equality follows from noticing that {w5 1 u-w} is really W , if w varies over

Wig.()) and u varies over our chosen set of representatives of Wy(If)\W(of).

Further, we used

e(w) = ek,(W,-U-w) and rj (uwjX)1rj/M (uwJX)I = 7rG(X).

Summing over all possible J, we get

'' 2 1-k ek,l (W)e 2 1-k ZwEWk, Ck,l (w) e
Ohe I c(e) = 2r H r

J wEWkjl

The vanishing of O,\ on the other Cartans follows from Harish-Chandra descent.



5.2 Fourier Transforms of Nilpotent Coadjoint Or-

bits for GL(n, R)

Let G = GL(n, R), let 9 = g[(n, R), and let O be as in Proposition 3.1.9. Let j C g

be a Cartan subalgebra, and let H be the corresponding Cartan subgroup. Put

{ = X c I| a(X) $ 0 V real roots c},

suppose C C j" is a connected component, and put C' = C n '. Choose positive

roots of (ge, [c) satisfying:

(i) For all positive real roots a and all X E C, we have a(X) > 0.

(ii) If a is a complex root, then a is positive iff a is positive.

Suppose L e L with L D H. Let W(G, H)L be the stabilizer of L in the real

Weyl group of G with respect to H, and let W(L, H) be the real Weyl group of L

with respect to H. Note that the cardinality of the quotient

W(G, H)L
W(L, H)

is independent of the choice of L c L with L D H.

cardinality of this quotient by
W(G, H)r
W(4, H)

Thus, we will denote the

Theorem 5.2.1.
W (G, Hj;

Or'c'= W (L, H ) L
LDH, LGC

Proof. By Proposition 3.1.9, we know

lim OG = O or 0.
ti+O+

for any C E g* such that ZG( ) E L.



Fix such a E E g* such that

L ZG( ) ~ GL(qi, R) x - x GL(q,,R).

Then we can choose a fundamental Cartan and a labeling of roots in the last section

so that Ok c [ is a fundamental Cartan and Lie(H) = 01 with 1 > k. Note

k =L .j

Choose positive roots of g with respect to 01 which satisfy the conditions of Theorem

5.2.1. This determines positive roots for g with respect to Og for every i. Put

(C*) {A G ([*)'l (iA, aV) < 0 for all a E A+}.

Then by Theorem 2.2.1,

lim (L) A =r(L,H)IW(L, H)|0O.An, AE(C*by Propositiony

And by Proposition 5.1.1,

2 1-k Ew , k,,kl (W)e

(9 II(e)

Plugging this into the previous formula, we get

OfIC;(e)=

Then

OCc(e-)

2 1-k EWWk, Ek,I )(wL)e

IW(L, H)I 7r

2 1-k E EWk,, 6Ek,l(W)(W 7L)

|W(L, H)| r

by Proposition 3.1.9.

Now, using parts (i) and (ii) of the definition of Wk,l, we deduce that if w E Wk,l,

then WirL = ±rL for some Levi L' E L with L' D H. Conversely, it is similarly not



difficult to deduce that whenever L' E L with L' D H, there exists w E Wk,l such

that WgrL = ±rL from the definition of Wk,,. In fact, using part (iii) of the definition

of Wk,j together with condition (ii) for our choice of positive roots in Theorem 5.2.1,

we see that W7rL = ck,l(w)7rL.

Combining these considerations, we get

2 1-k 7rL'
OLC(e) JW(L H) ( L#{w Wk,I wL -- L .

|W L H}|L'GL, L'-DH

Finally, we use part (i) of the condition on our choice of positive roots, given at

the beginning of this section together with the definitions of C' and Cj(e) to realize

C'= Cj(e). And a simple counting argument shows

|W(G, H)LI
#{w W,| wL -- L 21-k

The theorem follows.

U
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