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Abstract

The Colemani integral is a p-adice line integral that can be used to encapsulate several

quantities relevant, to a study of the arithmetic of varieties. In this thesis, I describe

algorithms for computing Coleman integrals on hyperelliptic curves and discuss some

immediate applications. I give algorithms to compute single and iterated integrals on

odd models of hyperelliptic curves, as well as the necessary modifications to iplemieit

these algorithms for even models. Furthermore, I show how these algorithinis can be

used in various situations. The first application is the method of Chabatv to find

rational points on curves of genus greater than 1. The second is Mlihyong Kim's

recent nonabelian analogue of the Chabauty method for elliptic curves. The last two

applications concern p-adic heights on Jacobians of hyperelliptic curves. necessary to

formulate a p-adic analogue of the Birch and Swinnerton-Dyer conjecture. I conclude

by stating the analogue of the Mazur-Tate-Teitelbaum conjecture iii our setting and

presenting supporting data.
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Chapter 1

Introduction

The Coleman integral is an analytic tool that serves as the p-adic analogue of the usual

(real-valued) line integral. These p-adic integrals help us understand the arithmetic

and geometry of curves and abelian varieties. For example, certain integrals allow us

to find rational points or torsion points; certain others give us p-adic height pairings.

Constructing this p-adic analogue is not at all obvious, as the totally disconnected

topology of p-adic spaces makes it difficult to introduce a neaningful forim of olobal

antidifferentiation. Nevertheless, in a series of papers in the 1980s, Robert Coleman

circumvented this problem using Dwork's principle of Frobcnius equiva riance. Using

this idea, Coleman introduced a p-adic integration theory first on the projective line

[Col82], then (partly jointly with de Shalit) on curves and abelian varieties [Col85],

[CdS88]. Since then, alternative treatnents have been given by Besser [Bes02a] using

nethods of p-adic cohomology, and by Berkovich [Ber07] using the nonarchiniedean

Gel'fand transform.
It was not immediately obvious that Coleman's p-adic integration theory was

suitable for wide-scale computation. The first implementation (due to Besser and de

Jeu [BdJ08]) was for curves of genus 0. In 2001, Kedlaya [Ked0l] gave an algorithm

computing the action of Frobenius on appropriate cohomology groups of hyperelliptic

curves and in 2007 demonstrated [BCD+08] that this algorithm could realize the

Frobenius equivariance necessary for computing global Coleman integrals on such

curves.
Motivating these algorithms is the fact that Coleman integration plays an impor-

tant role in a study of the arithmetic of curves and abelian varieties. For example,
appropriate integrals allow us to find torsion points and certain others describe in-

tegral points. Yet others give us a means to compute p-adic heights and regulators.

Explicitly computing these quantities serves as motivation for several of our algo-

rithms.

1.0.1 Why hyperelliptic curves?

The key input for all of our Coleman integration algorithms is the matrix of the

action of Frobenius on an appropriate cohomology group of the variety. In particular,

given a curve C, what is necessary is an algorithm that can compute the action of



a p-power lift of Frobenius on a differential and then "reduce"' it within the first de

Rhan cohoiology group of the curve, HR,(C): that is, express it in terms of an

exact differential plus a linear combination of basis (or pseudo-basis) differentials of

H(, R(C).
Since Kedlaya's algorithm [Ked01], which does precisely this, was originally pur-

posed for hyperelliptic curves (and p > 2), the class of hyperelliptic curves was a

natural starting point for our integration algorithms. Moreover, several applications

of Coleman integration concern Jacobians of curves of genus greater than 1. Jacobians

of hyperelliptic curves provide many interesting examples.

1.0.2 Beyond hyperelliptic curves?

Nevertheless, since Kedlaya's work, several generalizations have been formulated.

Denef and Vercauteren [DVOG] extended Kedlaya's algorithm to hyperelliptic curves

in characteristic 2. Subsequent work by Gaudry and Girel [GG01] treated the case

of superelliptic curves. Castryck, Denef, and Vercauteren [CDV06] generalized Ked-

laya's algorithm to nondegenerate curves. Any of these algorithms could be used

to give Coleman integration algorithms on the relevant classes of curves. Moreover.

the work of Abbott-Kedlaya-Roe [AKR09] (riot to mention. David Harvey's recent

optimriized version [Har10b]), which does the analogous task for snooth hypersurfaces

in projective space. could be used to ext end Coleman integration beyond curves. It

should also be possible to compute Coleman integrals using Frobenius structures on

Picard-Fuchs (Gauss-Manin) connections, extending Lauder's deforma[ion method for

conputing Froberius matrices [Lau04].

1.0.3 Outline

This thesis presents several algorithms for p-adic integration on hyperelliptic curves.

We begin with an introduction to hyperelliptic curves and Kedlaya's algorithm for

computing the action of Frobenius on their cohomology. In Chapter 3, we rise this to

give algorithms to compute single Coleman integrals on odd models of hyperelliptic

curves of good reduction over C, for p > 2, as first appeared in joint work of the author

with Bradshaw and Kedlaya [BBK10]. Chapter 4 builds on the work of Harrison

[Harl0a] to extend our techniques to even models of hyperelliptic curves. Chapter 5
presents algorithms to handle iterated Coleman integrals, with an emphasis on the

particular case of double Coleman integrals.
The subsequent chapters of this thesis deal with applying these methods to study

problems of interest in arithmetic geometry. In Chapter 6, we give an exposition of

the method due to Chabauty and Coleman to find rational points on higher genus
curves and demonstrate our algorithms in the case of hyperelliptic curves. Chapter 7
highlights Kim's recent work on a nonabelian analogue of this method as well as a
few more algorithms and a behind-the-scenes look at numerical examples that first
appeared in joint work of the author with Kedlaya and Kim in the Appendix and

Erratum to [Kiml0a]. In Chapter 8, we discuss the techniques of Coleman and Gross
[CG89] studying p-adic local heights on curves. We present our algorithms appearing



in joint work with Besser [BB] which adapt previous Coleman integration techniques

to allow for differentials having residue divisors with non-Weierstrass support. This

work gives the first algorithm to compute the Coleman-Gross local height pairinlg
for Jacobians of hyperelliptic curves. Finally, we conclude in Chapter 9 with joint

work of the author, Miller and Stein on explicit computations of p-adic regulators

and p-adic L-series associated to Jacobians of hyperelliptic curves. We present some

evidence toward a higher-dimensional analogue of the p-adic Birch and Swinnerton-

Dyer conjecture.
Throughout, our algorithms have been implemented in the Sage computer algebra

system [S+11]. It is our hope that this thesis will serve as an introduction to the vast

landscape of explicit methods involving p-adic integration.
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Chapter 2

Hyperelliptic curves and p-adic
cohomology

Ve begin by recalling some facts about hyperelliptic curves [CF05]. We continue

with an introduction to some tools from p-adic cohonology, following the exposition

in [CF05), as well as previous joint work of the author with Bradshaw and Kedlaya

[BBK1O]. These foundations will allow us to formulate the Coleman integration

algorithms in subsequent chapters of this thesis.

2.1 Hyperelliptic curves

Let K be a field of characteristic not equal to 2.

Definition 2.1.1. A hyperelliptic curve C/K is a smooth projective curve of genus

g > 1 such that, an affine model of C can be written as

y2 = f (X), f (x) E K[x],

with deg(f) < 2g + 2.

Let t denote the hyperelliptic involution t : (x, y) k (x, -y).

Definition 2.1.2. The Weierstrass points P1..., P2, 2 are the K-rational fixed

points of t.

A point that is not a Weierstrass point is a non- Weierstrass point. If deg f (x)

2g + 2, then there are two distinct K-rational non-Weierstrass points P+, P"- lying

over oc. If deg f(x) = 2g + 1, then there is a single Weierstrass point P, at oC.

If f(x) has a K-rational root, we may apply yet another change of coordinates to

obtain a model of the form

y =f(x), deg f (x) = 2g + 1.

We refer to this as an odd model for C. We distinguish between this case and that

of the even model: when the curve is of the form y2 = f(x) with deg f (x) = 2g + 2.



Unless otherwise mentioned, for sirmplicity, we present our algorithms for odd m1od-
els of hyperelliptic curves and shall henceforth assume that deg f(x) = 2g + 1. In
Chapter 4, we suspend this restriction and specifically address the situation of even
models.

Let K(C) denote the field of rational functions of C. Recall that a local parameter
or a local coordinate at a K-rational point P is a function t E K(C) such that
ordp(t) = 1. Having explicit local coordinates at points on C is crucial to our
integration algorithms. Here we record our local coordinate algorithms:

Algorithm 2.1.3 (Local coordinate at a non-Weierstrass point).
Input: A non-Weierstrass point P = (a, b) on C (with b $ 0) and precision n.
Output: A parametrization (x(t), y(t)) at P in terms of a local coordinate.

1. Let x(t) = t + a, where t is a local coordinate.

2. Solve for y(t) - f(x(t)) by Newton's method: take yo = b, then set

yi= (yi1 , z>1
2 y41M

with yj (t) -+ y(t). The nuirner of iterates i to be taken depends oii the iecessary

power series precision; for precision O(t"), one can take 1 to be [log 2 "

Example 2.1.4. Let C be the hyperelliptic curve y2 = x5 - 23x 3 + 18r 2 + 40x and
consider the point P = (1, 6) on C. Then the local coordinates (x(t) , y(t)) at P are

x(t) = 1 + t,

7 13 254
y(t) = 6+t - -t2 _ _t -2 t4 + 0(t 5 ).

2 2 48

Algorithm 2.1.5 (Local coordinate at a finite Weierstrass point).
Input: A finite Weierstrass point P = (a, 0) on C and precision n.
Output: A parametrization (x(t), y(t)) at P in terms of a local coordinate.

1. Let y(t) = t where I is a local coordinate.

2. Iteratively solve for x(t). One way is as follows: since f(a) = 0, note that

g(x) := f(x)/(x - a)

is a polynomial in x. Take
1

xo= a + t2
g(a)

let h(x, t) f(x) - t2 , and compute h'(x, t) =h-c,) Newton's method yieldsax

x +I) -= xiMt) -_(xi (t), t)

h' (xi (t), t)



with xi (t) -+ x(t). The number of iterates i to be taken depends on the necessary

power series precision; for precision O(t"'), one can take i to be [log 2 nl

Example 2.1.6. Let C be the hyperelliptic curve y2 = 5-23x3 + 18X2 + 40x and let

P = (4, 0) on C. Then the local coordinates (x(t), q(t)) at P are

1 1 191 4 7579 +0(t 7 ),
360 23328000 188956800000

y(t) = t.

Finally for the case of infinity, since y 2 = f (x), where deg f (x) = 2g + 1, we have

that x has a pole of order 2 at oo, while y has a pole of order 2g + 1 at o. Let t

be the local parameter at cc. To find the parametrization, we do as follows:

Algorithm 2.1.7 (Local coordinate at infinity).
Input: The point P, above x = o on C and precision n.

Output: A local coordinate (x(t), y(t)) at P, such that t has a zero at c.

1. Take
X0 = t-2

let h,2(x, t) = +f f/x) and compute ['(x, t) = h3x. Newton's metliod

yields
h(x1 (t), t)

with x(t) -+ x(t). The number of iterates i to be takein depends on the necessary

power series precision; for n digits of precision in t, i can be taken to be [log2 o.

2. Take y(t) = (x(t)).

Example 2.1.8. Let C be the iyperelliptic curve y2 =X - 23X3 + 18x 2 + 40x. At oc,

we have

x(t) = t- 2 + 23t 2 - 18t 4 - 569t' + 0(t 7),

y(t) = t- + 46t- - 36t - 609t3 + 16,56t" + 0(t 6 )

2.2 p-adic cohomology

To discuss the differentials we will be integrating, we briefly introduce the necessary

p-adic cohomology and sone core definitions from [KedO 1]. Let p > 2g - 1 be a prime

and K an unramified extension of Q,. Let C/K be a curve with good reduction. We

will assume in addition that, we have been given a model of C of the form y2 = f(X)
with f(x) having coefficients in the valuation ring 0 K of K. We will assume that the

leading coefficient, of f is a unit, that (leg f(x) 29 + 1, and that f has no repeated

roots modulo p. Let C' be the affine curve obtained by deleting the Weierstrass points
from C. Let A = K[x, y, z]/(y 2 - f(x), yz 1) be the coordinate ring of C'.



Definition 2.2.1. The Monsky-Washnitzer (MW) weak completion of A is the ring

At consisting of infinite sums of the form

Bi(x)3 Bi (x) C K[x], deg Bi < 2 ,

further subject to the condition that vp(Bi(x)) grows faster than a linear function of

i as i -s ±oo. We make a ring out of these by using the relation y 2  f(X).

Associated to each element h E At is a differential dh such that the Leibniz rule

holds: d(hg) = h dg+q dh and such that da = 0 for each a C K. Let (2 be the module

of these differentials: then the operator d defines a K-derivation from At to 2. Since

y2 - f(X) = 0, we conclude that

dy f'(x) and thus .2= At d.
2y 2y

Let,

H7R (C) = ker(d) ={h CAt Idh = 0}, HjiR(C) = coker(d) (At = (d t)

Thus elements of HjR(C) are differentials modulo exact, differentials dh for soni

h E At. The next leinia [IKed0l, @3] gives a basis for Hja(C').

Lemma 2.2.2. The first de Rham cohomoloqy H j(C') splits into eigenspaes under
the hyperelliptic involution /:

* a positive eigenspace H jR(C')+ with basis {x' k} for i = 0,... , 2g.

e a negative eigenspace Hj(C')~ with basis {x' } for i = 0, . .. ,29 - 1.

For reasons which will become clear in the next chapter, we focus our attention

on 1-forms that are odd, i.e., which are negated by the hyperelliptic involution. Let

dx
wki = x~i (i =0,) 2g - 1). (2.2.1)

2y

By the lemma above, any odd differential w E 2 can be written uniquely as

o= df + cowo + - + C2g-1W2g-1 (2.2.2)

with f E At and c, E K, since the w-j form a basis of the odd part of the de Rham

cohomology of At. The process of putting w in the form (2.2.2), using the relations

y2

d(x'ya) = (21i- yj+1 + jif(x)yj-,) d ,
2y



can be imade algorithmic; this is Kedlaya's algorithm, which we describe below.

(Briefly, one uses the first relation to reduce high powers of x, and the second to

reduce large positive and negative powers of y.)

2.2.1 Frobenius

Since K is an unramified extension of Qp, it carries a unique automorphism #K lifting
the Frobenius automorphism x x xP on its residue field. Extend #K to a Frobenius

lift # on At by setting

OW XI),

(Y) + O(f)(x) - f(X)P) 1/2

Y (1/2) - f(x)P)1
i=0i

We will also need (y)', which can be cornputed as

1/2 (fx - f(x)P)i

i=0i

RCrmark 2.2.3. Note that one needs y- as an element of At. which explains why we

conpute with C' instead of C.

Note also that for ease of exposition, we describe all of our algorithms as if it were

possible to compute exactly in At. This is not possible for two reasons: the elements

of A t correspond to infinite series, and the coefficients of these series are polynomials
with p-adic coefficients. In practice, each cornputation will be made with suitable

p-adic approximations of the truly desired quantities, so one must keep track of how

much p-adic precision is needed in these estimates in order for the answers to bear a

certain level of p-adic accuracy. We postpone this discussion to 53.3.1.

2.2.2 Kedlaya's algorithm

To compute in H),1(C), we need to express an arbitrary differential form as the sum

of a K-linear combination of the basis in Lemma 2.2.2 and an exact differential. We

refer to this process as reduction in cohomology and carry it out as follows.

First note that any differential form can be written as

O 2g

ajk dx, a& aL. c K.
k=-oc i=O

Indeed, using the equation of the curve, we can replace h(x)f(x) with h(x)y 2 as

many times as needed. Next, a differential ) dx with P(x) E K[x) and s E N



can be reduced as follows. Since J(x) has no repeated roots, we can always write

P(x) = U(x)f(x) + V(x)f'(x). Since d (> ) is exact, we obtain

P(x) dx (V'x + xi ) dx-2PWdx= U x)+ d
y S s -2 )y s-2'

where = means equality rnodulo exact differentials. This congruence can be used to

reduce a differential form involving negative powers of y to the case = 1 and s = 2.

Moreover, a differential ) dx with deg P = n > 2g can be reduced by repeatedly

subtracting appropriate multiples of the exact differential d(xi -29,) for i n, ... , 2g.

Finally, note that the differential P dx is congruent to ( x mod f (x) dx niodulo exact

differentials. A differential of the form P(x)y" dx with P(x) E K [x] and s e N is

exact if s is even and equal to dx if s is odd and thus can be reduced using

the above reduction formula.

Since the q-power Frobenius #4 is #d, it suffices to cornpute the matrix Ml through

which the p-power Frobenius acts on the anti-invariant part HdR(C) of HJ(() te
iatrix of the q-power Frobenius can then be obtained as A =fM(MJ) - . -(M\).

The action of 6 on the basis of H'R(C> (an be computed as

# 1X dx = dx,
2( 26(y)

for i 0. 2g -- 1. Given a sufficiently precise approximation to . we caII use

reduction in cohoiology to express #(wi) on the basis of Hj'(C)~ and coimpute the

matrix Ml. This is Kedlaya's algorithm:

Algorithm 2.2.4 (Kedlaya's algorithm).
Input: The basis differentials (og)2,.
Output: Functions fi e At and a 2g x 2g matrix M over K such that

29-1

) df E + >3Mip
j=0

for all i.

1. Compute #(x), #(y) as infinite series in At.

2. Use a Newton iteration to compute 0. Then for i = 0,...,2g - 1, proceed as

in @'2.2.2 to write

-*(wi) = px""' 9 = df' + gM- 1  (2.2.3)
0(y) 2y .

for somei E At and some 2g x 2g matrix Al over K.



For sone applications, it may be convenient to use a different basis of de Rharm
cohomology. For instance, the basis d(i 0,... ,2g - 1) is crystalline (see

[Harl0a], as well as the erratum to [KedOl), so Frobenius will act via a iatrix with
p-adically integral entries.
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Chapter 3

Coleman integration: the basic

integrals

Most of the material in this chapter originally appeared in joint work of the author

with Bradshaw and Kedlaya [BBK1O].

3.1 Coleman's theory of p-adic integration

In this section, we recall Coleman's p-adic integration theory in the case of curves

with good reduction. This theory involves some concepts from rigid analytic geon-

etry which it would be hopeless to introduce in such limited space: some standard

references are [BGR84) and [FvdP04]. (See also [Col85, 1).)
Let C, be a completed algebraic closure of Qp, and let 0 be the valuation subring

of CP. Choose once and for all a branch of the p-adic logarithm, i.e., a homomorphism

Log : C' -* C, whose restriction to the disk {x E C, : Ix - 11 < 1} is given by

the logarithm series log(x) I- -(1 x)'/i. (The choice of branch will have no

effect on the integrals of differentials of the second kind, i.e., everywhere meromorphic
differentials with all residues zero.)

We first introduce integrals on disks and annuli within IP.

Definition 3.1.1. Let I be an open subinterval of [0,+o0). Let A(I) denote the

annulus (or disk) {t E : It| E I}. For eZcit'dt E I and P, Q E A(I),
define

cit' dt c_1Log(Q/P) + >3 N - .
iEZ i:7 -I

This is easily shown not to depend on the choice of the coordinate t.

Remark 3.1.2. Note that because of the division by i+1 in the formula for the integral,
we are unable to integrate on closed disks or annuli (as this affects convergence on

the "boundary").

We next turn to curves of good reduction.



Definition 3.1.3. By a curve over 0, we will mean a smooth proper connected

scheme X over 0 of relative dimension 1. Equip the function field K(X) with the

p-adic absolute value, so that the elements of K(X) of norm at most 1 constitute the

local ring in X of the generic point of the special fibre X of X.

Let X " denote the generic fibre of X as a rigid analytic space. There is a natural

reduction map from X " to X(Fp); the inverse image of any closed point of X is a

subspace of Xa" isomorphic to an open unit disk. We call such a disk a residue disk

of X.

Figure 3.1.1: Residue disks on an elliptic curve
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Definition 3.1.4. Let X
will mean a rigid analytic
finite collection of disjoint

be a curve over 0. By
subspace of Xa" that is
closed disks of radius AN

a wide open subspace of X", we
the complement of the union of a
< 1.

Figure 3.1.2: A wide open subspace

Coleman made the surprising discovery that there is a well-behaved integration

theory on wide open subspaces of curves over 0, exhibiting no phenomena of path

Xza
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dependence. (One needs to consider wide open subspaces even to integrate differ-

entials which are holomorphic or reromorphic on the entire curve.) In the case of

hyperelliptic curves, Coleman's construction of these integrals using Frobenius lifts

will be reflected in our technique for computing the integrals. For the general case,

see [Col85, @2], [Bes02a, @4], or [Ber07, Theorem 1.6.1].

Let Div(W) denote the free group on the elements of W and Div 0 (W17) denote the

kernel of the degree map deg : Div(W) -- Z taking each element of W to 1

Theorem 3.1.5 (Coleman). We May assign to each curve X over 0 and each wide

open subspace W of X" a map pw Div 0 (W) x §2, - Cp., subject to the following

conditions.

(a) (Linearity) The map pw is linear on Div 0 (I/V) and Cp-linear on '

(b) (Compatibility) For any residue disk D of X and any isomorphisrrm : WnD -+

A(I) for some interval I, the restriction of pw to Div5(W n D) x is
compatible with Definition 3.1.1 via -.

(c) (Change of variables) Let X' be another curve over (9, let Wt' be a wide open

suibspace of X', and let y: W/ 1 W' be any morphism of rigid spaces relative

to a continuous autornorphism of Cp. Then

pw,( (-, .) =pw ( *(.)). (3.1.1)

(d) (Fundamental theorem of calculus) For any Q = ( cilPi e Div")(W 1) and any

f e (W), pt(Q df) =Zcif(Pi).

The map pw is uniquely determined by these conditions.

Examplc 3.1.6. The Frobenius c defined in Chapter 2 may be interpreted a morphism

from a wide open subspace of X to X'n>

Remark 3.1.7. One cannot expect path independence in the case of bad reduction. For

instance, an elliptic curve over C, with bad reduction admits a Tate uniformization, so

its logarithm map has nonzero periods in general. In Berkovich's theory of integration,

this occurs because the nonarchimedean analytic space associated to this curve X has

nontrivial first homology.

3.2 Explicit integrals for hyperelliptic curves

We now specialize to the situation where p > 2g - 1 and X is a genus g hyperelliptic

curve over an unramified extension K of Q, having good reduction. (The assumption

on p is so that the matrix of Frobenius with respect to our choice of basis is p-

integral.) We will assume in addition that we have been given a model of X of the

form y2 = f(x) such that deg f(x) = 2y + 1 and f has no repeated roots modulo p.

(This restriction is inherited from 92.2.2, where it is used to simplify the reduction

procedure. One could reduce to this case after possibly replacing K by a larger



unramified extension of Qp, by performing a linear fractional transformation in x to
put one root at infinity, thus reducing the degree from 2g + 2 to 2q + 1. However, we
will also directly formulate integration algorithms when deg f(x) 2g + 2 in Chapter
4.) We will distinguish between Weierstrass and non- Weie'rstrass residue disks of X.
which respectively correspond to Weierstrass and non-Weierstrass points of X.

Let X' be the affine curve obtained by deleting the Weierstrass points from X, let
A = K[x, y, ]/(y2 - f (x), yz - 1) be the coordinate ring of X', and let At be the MW
weak completion of A (as in Chapter 2). These functions g E At are holomorphic on
wide opens, so we will integrate 1-forms

dx
o = g(x , Y)- g(x, y) E At. (3.2.1)

2 y

Note that we only consider 1-forms which are odd. Even 1-forms can be written in
terms of x alone, and so can be integrated directly as in Definition 3.1.1. (This last
statement would fail if we had taken At to be the full p-adic completion of A, rather
than the weak completion. This observation is the basis for Moisky-Washnitzer's
formal cohomnology, which is used in [KedO1].)

Note that, the class of allowed forms includes those meromorphic differentials on
X whose poles all belong to Weierstrass residue disks. For some applications (e g.
p-adic canonical heights), it is necessary to integrate neronorphic differentials with

poles in non-Weierstrass residue disks. These will be discussed in Chapter 8.

3.2.1 A basis for de Rham cohomology

As observed in @2.2.2, any odd differential w as in (3.2.1) can be written uniquely as

W =df + como + + c 29-iW 29- 1  (3.2.2)

with f E At, ci E K, and

Wi dx (i= 0,...,2g - 1).
2y

That is, the wi form a basis of the odd part of the de Rham cohomology of At.
Using properties from Theorem 3.1.5 (linearity and the fundamental theorem of

calculus), the integration of w reduces effectively to the integration of the W.

3.2.2 Tiny integrals

We refer to any Coleman integral of the form fQ o in which P, Q lie in the same
residue disk (Weierstrass or not) as a tiny integral. As an easy first case, we give an
algorithm to compute tiny integrals of basis differentials.

Algorithm 3.2.1 (Tiny Coleman integrals).
Input: Points P, Q E X(Cp) in the same residue disk and a basis differential we



without poles in the disk.
Output: The integral J, w.

1. Using the relevant algorithm (Algorithm 2.1.3, 2.1.5 or 2.1.7), compute a parametriza-

tion (x(t), y(t)) at P in terrns of a local coordinate t.

2. Formally integrate the power series in t:

Q Q dx t(Q) x(t)' dx(t)

2y 0 2y(t) dt

Figure 3.2.1: A tiny integral between P and Q.

7

Remrrark: 3.2.2. One can similarly integrate any wj holornorphic ini the residue disk
containing P and Q. If co is only mneromiorphic in the disk, but has no pole at P or

Q, we can first make a polar decomposition, i.e., write o as a holomtorphic differential
on the disk plus some term-s of the form c/(t - r)'dt, and integrate the latter terms
directly. (If Lu is everywhere meromorphic, the integration of W is achieved by a partial
fractions decomposition.)

3.2.3 Non-Weierstrass disks

We next compute integrals of the form fQ wi in which P, Q E X (C[,) lie in distinct

0P 1

non-Weierstrass residue disks. The method of tiny integrals is not available;, we
instead employ Dwork's principle of analytic continuation along Frobenius, in the

form of Kedlaya's algorithm (Algorithm 2.2.4) for calculating the action of Frobenius

on de Rham cohomology.
Our recipe is essentially Coleman's construction of the integrals in this case.

Algorithm 3.2.3 (Coleman integration in non-Weierstrass disks).
Input: The basis differentials ( i), Pois in w , Q X(C)n non-Weierstrass
residue disks, and a positive integer m such that the residue fields of P, Q are contained

in Fm.

Output: The integrals (Q wi 2
( " )i=0



1. Calculate the action of the m-th power of Frobenius on each basis element (see
Remark 3.2.4):

2g- I

(# m)*Wi = dfi + >3 Mi W. (3.2.3)
J=0

2. By change of variables (see Remark 3.2.5 below), we obtain

29q-1 .I 
m(P) .Q

E (M - j), og = fi(P) - fi(Q) - w, wi (3.2.4)
j=0 /P 1 p 1, m(Q)

(the fundamental linear system). Since the eigenvalues of the matrix Al are
algebraic integers of C-norm pm/ 2 -4 I (see [Ked0l, Q2]), the matrix M - I is

invertible, and we may solve (3.2.4) to obtain the integrals p Wj.

Rermark 3.2.4. To compute the action of #m, first perform Algorithm 2.2.4 to write

2g- 1

wi = dg1 i + >3 Bigw7 .
j=0

If we view f, g as coluiin vectors and Al, B as matrices, induction on 'M shows that

f ="(g) + BOm- 2 (g) + + B# K(B). #p- 2 (B)g

l -= B(I(B)-... (B).

Remark 3.2.5. We obtain (3.2.4) as follows. By change of variables.J11 .5l(Q)

w'i = # ) i
pm(P) JP

I Q 
29-1

= (di + > M7 pw1)
j=0

2g-1

fi(Q) - fi(P) + Ali wi.
j=0

Adding f w± w+ to both sides of this equation yields

W =j'b +I Q pt Q 
2g-1

wiQ = wi + i+f(Q) - f, (P) + M:Aig wgQ ,
P P Q'j=0

which is equivalent to (3.2.4).

Definition 3.2.6. A Teichmllcr point of X" is a point fixed by some power of $.

Each non-Weierstrass residue disk contains a unique such point: if (7,7) E X is a



non-Weierstrass point, the Teichinfller point in its residue disk has x-coordinatle equal

to the usual Teichmfl1er lift of x. This leaves two choices for the y-coordinate, exactly

one of which has the correct reduction modulo p. Note that Teichinller points are

always defined over finite unramified extensions of Qp.

A variant of Algorithm 3.2.3 is to first find the Teichmnller points P', Q' in the

residue disks of P, Q, then use the fundamental system to calculate integrals between

these points, and employ additivity to correct endpoints. We illustrate this with a

figure below.

Figure 3.2.2: Coleman integration between the points P, Q

More precisely. we have the following:

Algorithm 3.2.7 (Coleman integration via Teichmnlfler points)
Input: The basis differentials () ,Points p, Q G X(Cp) in non-WYeierstrass
residue disks, and a positive integer mn such that the residue fields of P, Q are contained

Output: The integrals f"w

1. Compute Teichmnlller points P', Q' in the disks of P and Q, respectively.

2. Use the fundamental linear systern to obtain

2.9-1.'

(M - I)ij og = f?(P') - fl (Q')

J=0

3. Use additivity to correct the endpoints and recover the integral from P to Q:

Q P' +JQ' Q'

Finally, given an arbitrary odd differential w, we use the previous algorithms,
linearity, and the fundamental theorem of calculus to recover the integral of between

non-Weierstrass points P and Q:



Algorithm 3.2.8 (Coleman integral of an odd ).
Input: Non-Weierstrass points P, Q e X(Cp) and an odd differential U holoniorphic

outside Weierstrass disks.
Output: The integral fQ w.

1. Use Kedlaya's algorithm (Algorithm 2.2.4) to write oc in the form

=df + Como + - + C2 -12 -1

2. For each wci, compute jfr wi.

3. Use the fundamental theorerri of calculus and linearity to obtain the integral

c = f(Q) - f(P) +Co I O + +c2g- p2-1-
P P P

3.2.4 Weierstrass endpoints of integration

Suppose now that P, Q lie in different residue disks, at least one of which is Veier-

strass. Since a differential w of the form (3.2.1) is not imeroniorphic on Weierstrass

residue disks, we cannot always even define f W, let alone compute it. We will thius

assume (to cover most cases arising in applications) that oc is everywhere mneronior-

phic, with no poles in the residue disks of P and Q.

Lemma 3.2.9. Li P, Q G X(Cp). with P a Veierst'rass point. Let c be an odd,

everywhere re'romriorphic differential on X with no poles in the residue disks of P and

Q. Then for t the hyperelliptic involution, J-Q oc = { o. In particular. if s

also a Weie'rst'rass point, then f* = 0.

Proof. Let I := f/Q - fg((-o)) = f-) a). Then by additivity in the endpoints, we

have f w = 21, from which the result follows.

If P belongs to a Weierstrass residue disk while Q does not, we find the Weierstrass

point P' in the disk of P, then apply Lemma 3.2.9 to write

/Q fP' . (3.2.5)

The first integral on the right side of (3.2.5) is tiny, while the second integral in-

volves two points in non-Weierstrass residue disks, and so may be computed as in

the previous section. The situation is even better if P, Q both belong to residue disks

containing respective Weierstrass points P', Q': in this case, by Lemma 3.2.9, fQ c
equals the sum f' W + c w of tiny integrals.

Beware that Lemma 3.2.9 does not generalize to iterated integrals. For instance,
for double integrals, if both integrands are odd, the total integrand is even, so the

argument of Lemma 3.2.9 tells us nothing. It is thus worth considering alternate



approaches for dealing with Weierstrass disks, which may generalize better to the

iterated case. We concentrate on the case where P lies in a Weierstrass residue disk

but Q does not, since we may reduce to this case by splitting j, Q = fj, + f
for some auxiliary point R in a non-Weierstrass residue disk.

In Algorithm 3.2.3, the form fi belongs to At, so it need not converge at P.

However, it does converge at any point R near the boundary of the disk, i.e., in the

complement of a certain smaller disk which can be bounded explicitly. We may thus

write fj w - ff i + fR wi for suitable R in the disk of P, to obtain an analogue

of the fundamental linear system (3.2.4). Similarly, when we write o as in (3.2.2),

we can find R close enough to the boundary of the disk of P so that f converges at

R, use Algorithm 3.2.3 to evaluate fj w, then compute f,'P as a tiny integral. One

defect of this approach is that forcing R to be close to the boundary of the residue

disk of P forces R to be defined over a highly ramified extension of Qp, over which

computations are more expensive.

An alternate approach exploits the fact that for P in the infinite residue disk

but distinct from oo, we may compute fw o directly using Algorithm 3.2.3. This

works because both the Frobenius lift and the reduction process respect the subring

of At consisting of functions which are nieroiorphic at infinity. When P lies in a

finite Weierstrass residue disk, we may reduce to the previous case using a change of

variables on the x-ine to move P to the infinite disk. However, one still must use the

approach of the previous paragraph to reduce evaluation of fQ o to evaluation of i lie

jfP'Wi.

We have the following algorithms:

Algorithm 3.2.10 (Finding a near-boundary point iii a finite Weierstrass disk).

Input: A finite Weierstrass point P, and a positive integer d.

Output: A point R = (x(pl/d),pld) in the dish of P defined over the totally ramified

extension Q,(p l/d).

1. Compute a parametrization (r(t), t) at P in terms of the local coordinate t.

2. Evaluate local coordinates at t = pl/d. This is R.

Algorithm 3.2.11 (Coleman integration in a finite Weierstrass disk).

Input: A finite Weierstrass point P, a positive integer d, a non-Weierstrass point Q.,
and a basis differential wi.
Output: The integral jQ W.

1. Use Algorithm 3.2.10 to find R. Keep the local coordinate (x(t), t) at P.

2. Compute fR as a tiny integral: R L I d x(t)idx(t)dt

3. Use the fundamental linear system to compute - W .

4. Use additivity in endpoints to recover jfJ, - 17 = ± +Q.



3.3 Implementation notes and precision

We have implemented the above algorithms in Sage [S+1 11] for curves defined over Q,.
In doing so, we made the following observations.

3.3.1 Precision estimates

For a tiny integral, the precision of the result depends on the truncation of the power

series computed. Here is the analysis for a non-Weierstrass disk; the analysis for a

Weierstrass disk, using a different local interpolation, is similar. (For points over

ramified extensions, one must also account for the ramification index in the bound,

but it should be clear from the proof how this is done.)

Proposition 3.3.1. Let w = g(x,y)dx be a dierentia/ of the second kind such that

h(t) = g(x(t), y(t)) belongs to 0[[t|]. Let . w be a tiny integral in a non- Weierstrass

residue disk. with P, Q defined over an unramified extension of K and accurate to n1

digits of precision. Let (x(t), y(t)) be the local interpolation between P and Q defined

by

xjt = x(J)(1 - t) + x(Q)t = x(P) + t(x(Q) - x(P))

j() =l f(x(t)).

If we truancate h () modulo t"" and modu/o p". then the computed valce of the integral

QN w will be correct to mnin{ ,r + 1 - [logo(rri + 1)] } digits of (absolute) precisiaon.

Proof. Let t' = t(x(Q) - x(P)). As P, Q are in the same residue disk and are defined

over an unramified extension of K, we have v(x(Q) - x(P)) > 1. If we expand

g(x(t'), y(t')) = > ci(t')', then by hypothesis ci c 0. Thus

w= g(x,V)dx
IP P(J (x(t), Y(O) t)

=(Q)-x(P) g(x(t'), ytt')) dt
0

1X(Q)-X(P)

10 Zci(t')Y dL'
0 i=0

S .'' (x(Q) - X(P))i+'
i=0 +

The effect of omitting ci(t') from the expansion of g(x(t'), y(t')) for some i > m is

to change the final sum by a quantity of valuation at least i + 1 - llog,(i + 1)] >

rn + 1 - [log 1(rm + 1)]. The effect of the ambiguity in P and Q is that the computed



value of (x(Q) - x(P))i+1 differs from the true value by a quantity of valuation at

least i + 1 - [log(i+ 1)] + 1n 1 > n.

For Coleman integrals between different residue disks, which we may assume are

non-Weierstrass thanks to @3.2.4, one must first account for the precision loss in

Algorithm 2.2.4. According to [Ked0l, Lemmas 2,31 and the erratum to [KedOl]
(or [Har07]), working to precision pN in Algorithm 2.2.4 produces the fi and Mj
accurately modulo pN-n for n 1 + [log max{N, 2g + 1}].

We must then take into account the objects involved in the linear system (3.2.4),
as follows.

Proposition 3.3.2. Let f]7 w be a Coleman integral, with w a diferential of the sec-

ond kind and with P.Q in non- Weierstrass residue disks, defined over an unrarified

extension of Q,. Suppose that P, Q, and w are accurate to n digits of precision. Let

Frob be the matrix of the action of Frobenius on the basis differentials, and let Frob'

denote its transpose. Set B = JRob .-I , and let n = v,(det(B)). Then the computed

value of the inteqral] Qw will be accurate to n -mnax{ra, zlog) nj} digits of precision.

Proof. By the linear system (3.2.4), the Coleman integral is expressed in terms of

tiny integrals, integrals of exact forms evaluated at points. and a matrix inversion.

Suppose that the entries of B = FrobT -I are computed to precision n. Then t aking

B-1, we have to di-ide by det(B), which lowers the precision by rm = rv(det(B)).

By Proposition 3.3.1 . computing tiny integrals (with the series expansiois truncated

modulo t"-') gives a result precise up to n - Llog n] (ligits. Thus the value of the

integral fII w will be correct to n - mnax{mr, LlogJ) ,] } digits of precision. L

3.3.2 Complexity analysis

We assurne that asymptotically fast integer and polynomial multiplication algorithms

are used; specifically addition, subtraction, multiplication, and division take 0(log N)

bit operations in Z/NZ and 0(n) basering operations in R[x]/x"R[x). In particular,

this allows arithmetic operations in Qp to n (relative) digits of precision, hereafter

called field operations, in time O(nlog p). Using Newton iteration, both square roots

and the Teichmniiller character can be computed to n digits of precision using O(log n)

arithmetic operations. (We again consider only points in non-Weierstrass disks de-

fined over unrarnified fields.)

Proposition 3.3.3. Let ]17 w be a Colerman integral on an odd degree hyperelliptic

curve of genus g over Q,, with w = dfj + Zi~ cpiw a differential of the second

kind and with P, Q in non- Weierstrass residue disks, defined over Q,. and accurate

to m digits of precision. Let Frob be the matrix of the action of Frobenius on the

basis differentials, and let Tn = v(det(FrobT -I)). Let F(n) be the running time of

evaluating f, at P and Q to n digits of precision. The value of the integral j] w can

be computed to n - max{m, [logp a] } digits of precision in time F(n) + O(pn2 , 2 +

g3nlogp). (Over a degree N unramified extension of Q,, the analysis is the same

with the runtirme multiplied by a factor of N.)



Proof. An essential input to the algorithm is the matrix of the action of Frobenius,

which can be computed by Kedlaya's algorithm to n digits of precision in running

time O(pn2g2). Inverting the resulting matrix can be (naively) done with O(g')

arithmetic operations in Qp. It remains to be shown that no other step exceeds these

running times. For the tiny integral on the first basis differential, the power series

x(t)/y(t) = x(t)f(x(t))-1/ 2 can be computed modulo tn-i using Newton iteration,
requiring O(n log n) field operations. Each other basis differential can be computed

from the first by multiplication by the linear polynomial x(t) and the definite integral

evaluated with O(n) field operations, for a total of O(gn 2) bit operations. Conputing

#(P) and #(Q) to n digits of precision is cheap; directly using the formula in Algo-

rithm 2.2.4 uses O(g + logp) field operations. The last potentially significant step is

computing and evaluating the f, at each P and/or Q. The coefficients of the fi can be

read off in the reduction phase of Kedlaya's algorithm, and have O(png) terms each.

Evaluating (or even recording) all g of these forms takes 0(png2) field operations, or

0(pn2g2) bit operations, which is proportional to the cost of doing the reduction. 0

3.3.3 Numerical examples

Here are some sample computations mnade using our Sage implementation.

Example 3.3.4. Leprevost [Lep95] showed that the divisor (1, -1)-0+ on the genus 2
curve y2 = (2x - 1)(2x5 -- 4x 2+8x--4) over Q is torsion of order 29. Consequently,
the integrals of holomorphic differentials against this divisor must vanish. We may

observe this vanishing numerically, as follows. Indeed, let

334 3 3 32 1 1
C: y2  s X+ _X + -X + _2 _ _± + _

16 4 8 4 16

be an odd degree model of Leprevost's curve, obtained via the linear fractional trans-

formation x -4 (1 - 2x)/(2x) taking oc to 1/2. The original points (1, 1), oo+

correspond to the points P = (-1,1), Q = (0, 1) on C. The curve C has good

reduction at p = 11, and we compute

w o = O (11), W2 = 7. 11+6 - 112 +3-. 113 + 114 + 5.- 11' + O(116),
P P I P

consistent with the fact that Q - P is torsion and wo, wi are holomorphic but w2 is
not.

Example 3.3.5. Let C: y2 X4 -2x2 - 8x+1)(x3 +x+1) (from [Wet97, 1.9]). The

Jacobian of this genus 3 curve has Mordell-Weil rank 1. Let P = oc and Q = (0, -1).



The curve has good reduction at p = 3., and we compute

= 2 3 + 32 + 2-3 3 ±23 4 + 2 35 + 2 36 + 37 + O(38),

2 . 3 + 32 + 34 + O(38)

W2= 2 -33 + 35 + 36 + 37 + 0(38).

Taking

a = bwo - amI

3 = cwo - aW2,

one can use these differentials in the Chabauty method to show that, the points P, Q,
along with the point (0, 1) are the only three rational points on the curve. We will

return to this example in Chapter 6.

J P
'(Q

C fQ

WO
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Chapter 4

Coleman integration: even degree
models

4.1 Introduction

In this chapter, we extend the algorithms in Chapter 3 to even degree models of

hyperelliptic curves over unranified extensions of Q,. Throughout this chapter, we

assume that the genus g hyperelliptic curve C is given by a rnodel of the form y2

f(x), where f is a separable polynomial with deg f = 2! + 2. This allows us to make

explicit constructions requiring Coleman integration for both odd and even models

of hyperelliptic curves.

A few remarks are in order about computing with even degree rnodels of hyperel-

liptic curves. We begin with some notation. Let C' be the affine curve obtained by

taking C and deleting the Weierstrass points (which are now just the support of the

divisor of y). Since d 2g+2, recall that C has a pair of non-Weierstrass points, Pt

and P,-, which are swapped by the hyperelliptic involution. From a computational

perspective, we prefer that f is monic. So we shall henceforth assume that f is monic,
d = 2g + 2, and C has two rational points at infinity. For technical reasons which

shall become clear in §4.2, we further require that the prime p be a prime of good

reduction such that p > g.

4.2 A bit more p-adic cohomology

Let HjR(C') and HjR(C')~ be as in [Harl0a]. We begin with a basis for HdR(C')-

Lemma 4.2.1. The space HjR(C') has basis {x 2} for i =0,...,29.

Proof. See [Harl0a, @3.2]. l

This gives us one extra element than before, and the matrix of the Frobenius action

on this space will now be a (2g+1)x (2g+1) matrix. Nevertheless, Kedlaya's algorithm

works in essentially the same way in this situation. The reductions described in §2.2.2



are just applied to an extra differential. The key is how the eigenvalies of Frobenius

on HjR(C') change when one introduces this extra differential.

More precisely, let Pc(t) be the numerator of the zeta function of C, with PC(t)

t2 + c2t 29- 1 + - - + co, a inonic polynomial over Z. Denote its roots by (ai)2.

Proposition 4.2.2 (Harrison, § 3.1). The eigenvalues of Frobenius on HIR(C'- are

{ 1, . . ., ,

Harrison also proves a lemma on p-integrality of the matrix of Frobenius: namely,

ifp > g, the matrix of the action of Frobenius with respect to the basis in Lemma 4.2. 1

is p-integral as before.
These two results have the following consequence for us: if p > g, the characteristic

polynomial P(t) of the action of Frobenius on the set {,.. . . } is

P(t) = (I - q)Pc.(t),

where Pc(t) is the characteristic polynomial of Frobenius acting on the Tate module

of the Jacobian of C. In particular, as this merely introduces an extra eigenvalue z 1,
one can still compute the linear system of Frobeinus on these differentials as before

and recover Coleran integrals on the pseudo-basis.

4.3 Coleman integration on even models

4.3.1 Local coordinates

The previous algorithms (Algorithms 2.1.3, 2.1.5) for computing local coordinates at

finite non-Weierstrass points and finite Weierstrass points, respectively, apply verba-

tim to even models as well.

Our previous integration algorithms are essentially unchanged. However, we re-

quire a bit of notation. Let B1 be the set of differentials

dx dx dx
B1= - .... ,.X2 x2

2y' 2y' 2y

Let w; = xi d. An odd differential u on C can be represented as a linear combination2y

of elements of B 1 . The computation of fQ L thus can be reduced to the computation

of Coleman integrals on B 1, and we have the following algorithms:

4.3.2 Integrals

Algorithm 4.3.1 (Tiny Coleman integrals).

Input: Points P, Q e C(Cp) in the same residue disk (neither equal to points above

oc) and a basis differential wi.

Output: The integral fJ w'.



1. Compute a parametrization (x(t), y(t)) at P in terms of a local coordinate t.

2. Formally integrate the power series in t:

fQ p 2y 0

(t) dX(t)
2,y(t) dt

Algorithm 4.3.2 (Coleman integration in finite non-Weierstrass disks).

Input: The differentials (og)29, points P, Q E C(C,) in finite nion-Weierstrass residue

disks, and a positive integer in su(ch that the residue fields of P, Q are contained in

FpM.

Output: The integrals

1. Calculate the action of the m-th power of Frobenius on each pseudo-basis ele-

ment (see Remark 4.3.3 below):

2g- 1

Wi df + A1ip.
j=0

(4.3.1)

2. By change of variables (see Remark 4.3.4), we obtain

I)j og f = (P) - fl(Q) -

29g

Y.'(M
j=0

mi, (4.3.2)
.Q

(Q)

(the fundamental linear system). As the eigenvalues of the matrix M are alge-

braic integers of Cp-norm not equal to 1, the matrix A - I is invertible, and

we may solve (4.3.2) to obtain the integrals 4 of.

Remark 4.3.3. To compute the action of #", first perform Algorithm 2.2.4 to write

2y

#*wi - dq +( Bipj .
j=0

If we view f, g as column vectors and M, B as matrices, we then have

f = #m-1(g) + B0m-2(g) + - + B#K(B) ... #m-2(B)

M = B# 1 (B) ... " 1 (B).

P i=0



Remark 4.3.4. We obtain (4.3.2) as follows. By change of variables,

$(Q) Q

IoQ) (P) ZI

IQ 2g
(df, + M Aj wby)

j=0

2g -o

=fi (Q) - f? (P) + M/ij og.
J=0

Adding- f, 'jw + f )wi to both sides of this equation yields

wi = wiLj + nt()wi + fi (Q) - fi ( P) + (: M1ig wU.# ) Q29 .

P jP p"(Q J= P

which is equivalent to (4.3.2).

Algorithm 4.3.5 (Finding a near-boundary point in a Weierstrass disk).
Input: A Weierstrass point P, and a positive integer d.
Output: A point R = (x(p/d), p1/C) in the disk of P defined ovei I he totally raiified
extension QP(pl/d).

1. Compute a pararnetrization (x(t), t) at P in terms of the local coordinate t.

2. Evaluate local coordinates at t pl/c. This is R.

Algorithm 4.3.6 (Coleman integration in a Weierstrass disk).
Input: A Weierstrass point P, a positive integer d, a non-Weierstrass point Q, and
a basis differential w.
Output: The integral J, fwi.

1. Use Algorithm 4.3.5 to find R. Keep the local coordinate (x(t), t) at P.

2. Compute f, wi as a tiny integral: fR wi = t/ x(t)d(t dt.

3. Use the fundamental linear system to compute fw.

4. Use additivity in endpoints to recover f" wi = f + f± wi.

4.3.3 Using the linear system

Here we show how in direct analogue to [BBK10), one can compute the matrix of
Frobenius on a pseudo-basis to recover the global integrals.



Example 4.3.7. Modifying the Leprvost example (Example 3.3.4), let Ceven be the
hyperelliptic curve

14
y2 =x6 -x+--x- 2xa+ 5x 2 - 4x1

4

given by a monic sextic let and Codd the hyperelliptic curve

33 3 3 1 12 .5 3 4 3 33 2 1 1
y x + -x + -x + -x +-

16 4 8 4 16

given by a monic quintic. Note that p = II is a prime of good reduction.

We have inverse isonorphislls

Ceveni - odd

1 2y
(1 -2x' (1 -2x)3)

an(

: Coddl C even

() x-1 y)
(x y)I

2 x Ix-

so

dx dxr

ICeven lo-i of(Ceen) V

f 1_2x3d
dx

CoddI xdx
Co dd Y

and similarly

Sxdx x - l dx
cev en Y fco. 2 y

We illustrate this further with a numerical example. Take the following points on

Ceven:

Po = (1 + 11 + O(115), 5 +3 - 11 + 9. 112 + 7 -11 + 3 . 114 + O(115))

Q = (11 + 0(116), 1 + 9- 11 + .5 112 + 5 - 113 + 5. 114 + O(111)))

whose respective iniages under V) are



P1 = (10 + 11 + 7* 112 +7. 113 +6 - 1I 4 + 0(11 ), 1 + 9 It +2 - 112 + 4. 113 + 3- 11' + 0(115))

Q, = (1 + 2 - 11 + 4 - 112 +8- 113 + 5. 114 + O(11),2 + 8 - 11 + 3 - 11246- 113 + 3 - 11 + O(1 I'))

Then we have

QC dx 0 xdx- --  7-11+9 -112+3.113 4.114+0(115)
fPo 29 y P1I 2 y

and

-11+7 112 + 9 .113 + 114 + 0(11).
Jyo( 2y 2 JpI 2 2y 1 7



Chapter 5

Coleman integration: iterated

integrals

5.1 Introduction

Ve continue our discussion of algorithms for Coleman integrals on hvperelliptic curves
by directly generalizing our work in Chapter 3 to formulate algorithms for iterated

integrals.

Indeed, Colemnali's theory of integration is not limited to single integrals; it gives
rise to an entire class of locally analytic functions, the Colcman functions, on which
antidifferentiation is well-defined. In other words, one can define iterated p-adic
integrals [Col82], [Bes02b]

which behave formally like iterated path integrals

J.. .jtfl f(tn) . f1(t,) dtn .-. dt1.
0 0 0

These appear in several applications of Coleman integration, e.g., p-adic regulators
in K-theory [CdS88), [Col82], and the nonabelian Chabauty method [KinlOal.

As in earlier chapters, we assume that p > 29g 1 and C is a genus g hyperelliptic
curve. For clarity, we consider C just over K = Q,, but the natural generalization to

an unramified extension K of Q, exists, as in Chapter 3.

Let 4 be a p-power lift of Frobenius. When wi is said to be a basis differential, we
mean that it is the differential Ws = x= .

Our methods for computing iterated integrals are similar in spirit to those detailed
in Chapter 3. We begin with algorithms for tiny iterated integrals, use Frobenius

equivariance to write down a linear system yielding the values of integrals between
points in different residue disks, and, if needed, use basic properties of integration to
correct endpoints.



5.2 Iterated path integrals

We follow the convention of Kim [Kiml0a] and define our integrals as follows:

i Ii 2 n-1 n I. Q 1  1 2 n- 1 (R ) jR i
P P P P P

for a collection of dunmy parameters R1 ,... , R,_1.

We begin by recalling some key formal properties satisfied by iterated path inte-

grals [Che71), which we shall use throughout this chapter:

Proposition 5.2.1. Let Li, win be 1-forms. holomorphic at points P,Q On C.
Then the following are true:

-P

EA1' Za -i rmtations oruP WO'(j 1)WOj(i 2) IUlin) =H i I~

As an easy corollary of Proposition 5.2.1(2), we have

Corollary 5.2.2. For a 1-form wi and points P, Q as before,

When possible, we will use this to write an iterated integral in terms of a single

integral.
As in Chapter 3, we will use Kedlaya's algorithm to rewrite an odd differential

dx dx
W = g(x, y) - E At

2y 2y

as
W = df + cowo + + c 2 -w 2 -1 (5.2.1)

with f e At, ci E K, and w =X d (i =0,.. . , 2- 1). This then reduces the problem

of integrating w to the integration of the wi.
Recall that we refer to Coleman integrals between two points in the same residue

disk as a tiny integral. Naturally, then, by a tiny iterated integral we mean an iterated

integral between points in the same residue disk. As we would also like to consider

iterated integrals that are not necessarily tiny, we will need to employ the analogue

of "additivity in endpoints" to link integrals between different residue disks:
First, let us consider the case where we are breaking up the path by one point.

Lemma 5.2.3. Let P, P', Q be points on C such that a path is to be taken from P to

Q via P'. Let w1 ,.. .w, be a collection of l-fo'rms holomorphic at the points P, P', Q.



Then the following statement holds:

Wi+1 1 *W bp
Q 

- Q 
P '

P i=0

Proof. We proceed by induction. The case n = 1 is clear.
statement, holds for n = k. Then we have that

1 ,W Wk+ = (Q

Let us suppose the

R

W1'k) (R) Wk+1

P 

'

Wi+ 1 * Wk (R)
R

Wk+1

(jP
1 . .. Ok (R)

P

W 'R

WA) (R)

JWk (
fP Lk

R
P

Observe that this last iterated integral (5.2.5) can be rewritten as

( PWI ... Wk)
Q1 (R)

,P
Wk+1 + jk+1 )

and that further, the terms from (5.2.2) through (5.2.4) give us

Thus we have

.Q ~k-1 p/ W1''Wk+1 Ef L'jWi Wi+l1''Wk+I
P i=O0

(JP'

+ (j W 1...Wk )

k+7 Q

E P,
i=0

f.
- i

Wk+1 ) +jW*'Wk+1

Wi+l * ' ' Wk+1,

+ (Jp1 U)
- - - + ( fQC

I R

Jk+1

R) J
WA+ 1

(5.2.2)

(5.2.3)

(5.2.4)

(5.2.5)+ 01 .) (R)
P'

1, -j '.. Wi
,i=0

LJI--- Wi Wi+1 ' '' k+1>
P



as desired.

Applying Lemma 5.2.3 twice, we obtain the following, which will be used to link

integrals between different residue disks:

Lemma 5.2.4 (Link lemma). Let points P. P', Q', Q be on C such that a path is to be

taken from P to P' to Q' to Q. Let w1 , ... , be a collection of 1-forms holormiorphic
at the points P, P',Q,Q'. Then we have

.Qn Qn Q' .P'

J P i=0O' ,,j=i w

Below we record some specific cases of the link lemma, which we shall use through-

out this chapter.

Example 5.2.5 (Link lemma for double integrals). Suppose we have two differentials

w0 , w1 . Then we have

j 0Q -0 1 I + WOW1 + j I W1 0 b 1 20-
,JP p1,P , P' , Q' 1P P P' , Q'*

Example 5.2.6 (Liik leinia for triple integrals). Suppose we have three differentials

wO, Thn, 2 -have

+ LU W2 0 J IWJ + fRkI W2 y+ WW + W iWjo+Ii 1WW

.p fQ' 
Q

+ W2j WJ Wo.

For a numerical verification of this identity, see Example 5.3.4.

5.3 Tiny iterated integrals

We begin with an algorithmn to compute tiny iterated integrals.

Algorithm 5.3.1 (Tiny iterated integrals).

Input: Points P, Q G C((Q,) in the same residue disk (neither equal to the point, at

infinity) and diferentials 1, - , , without poles in the disk of P.
Output: The integral Q' Q

P P Q' ..

1. Cornpute a araetrization (x(t), y(t)) at P in terms of a local coordinate t.

2. For each k, write y (x, y) in terms of t: ( (t))kx(t)dt
1. Copute paraetriztion ~t) y (t) at PX in tem of a loalcordntet



3. Let In+1(t) := 1.

4. Compute, for k = . . , 2, in descending order,

Ik() - Wk+1

(Rn)

with Rk in the disc of P.

5. Upon computing I 2(t), we arrive at the desired integral:

IP I t(Q)
0

5.3.1 Examples

Here we provide some nunerical examples. See also @5.5.1 for more detail regardilig

the first example.

Example 5.3.2 (Tiny double integrals). Take C to be the elliptic curve

y 2 = X (,-- - 1) (X + 9),

let p = 7, and consider the points P = (9, 36) and P' = (P). Let wO = , o I

and we compute

.P'

Jw.ow10
Pdfp LJO~Lt

.P'I / w1wo =4

P/ wiwi

=2-72+ 4.73 + 5-74 + 4. 75 + 6 . 76 +

= 4 - 72 + 5. 73 + 2 - 75 + 4 76 + 0(77) -

72 -5.75 + 6-76 -+

9(77) - I O)
wow

P

IP/1wo

O(7 7) = jwooi

= 72 + 2 - 73 + 2 74 + 5 -7' + 2 - 76 + 0(7) - wiwi.

Moreover, given that

wo =-
PPW

lP'

i= 

5. 7+4. 72 + 73 +6 - 74 + 75+ 0(76)

3.7+4. 72 +73 + 74 +6. 75 + 0(76)

(k (l) Ik+1I(U) ,

(U)I2(U).



we can verify that

I;'
Wo 

-o 2

1 -1 I

) 2
1 2

as well as that

.P'I

JP p)IWw1 +± w1bo 72 ± 6 73 + 4 . 76 + 0(77)

Example 5.3.3 (Tiny triple integrals and some identities). Let E be the elliptic curve

y 3 - 1 + and take 5. Consider the following points o :

P =(0, 4 + 0(510))
P' - (5 + 0(5"), 4+ 3 - 5 + 52 + 4 - 54 ± 3 - 5' + 5' + 3 - 57 + 2 -15 + 0(510)).

Let ,( = ,1 =c x W; we compute the following integrals:

P'

I

jpR WOWIWO

PW0W1 OW

'

W1 W 1

J)

l PW

= 3 - 5 + 2 - 5- + 4. 5 + 2 . 56 + 3 . 57 + 0(5')

= 54 + 2 55+ 4 56 2- 57 + 3 .5 8 + 3 - 5' + 0(510)

= 54 +4 5' + 5't+ 4- 5 7 +59+0(510)

54 + 55 + 4 . 56 + 4 .57 + 58 + 59 + 0(510)

= 5- + 5' + 57 + 2 - 5 + 4. 5' + 0(510)

= 3 - 54 + 55 + 4 - 57 + 2- 58 + 3 - 5 + 0(5 10 )

= 54 + 3 - 55 + 4 5 + 2 -. 57 + 3 5" + 3 - 59 + 0(510)

= 56 + 57 + 4 51 + 2 - 511 + O(512)

' /fo
PR

(Jj)'

=



We also have

'P

/P 1

-0 = 2 -5 + 2 - 52 +4 53 + 4 -.54 + 4 - 55 + 4 56 + O(57)

1 = 5 2 + 4 -5' + 2 - 54+ 4 ±5 + 5' +.57 +O(58

So we see that

00000L = 6 (F )0
= 3 -5 3 +2 -54 + 4 -55 + 2 -5' + 3 -57 + O(59),

as well as that

wOW1 WO + W1WWO (flii")'0 2 (jP/

2 -5z + 2 -55 + 2 - 5 + 3 57 + 8 + 4 5' + O(51")

1P0 +I 1,,) *.1 01 + -5 (J4w5) (Ii+3
5F) +4 -5(' + 57 +3 -58 + 3 . 59 + O(5'0)

and finally, that

I - 10101

= 56+5 57+ 4 -5' "+ 2 -5"1 + O(512).

Example 5.3.4 (Triple link lemma). Continuing with the previous exanple, further

set

Q = (2 .5 + O(51), 4+ 5+2.52+3-53 + 56 + 3 - 57 + 3 . 5" +59 + 0(510)),

Q'= (3 .5 + O(5 11), 4 + 4 - + 5 + 2 53 + 4 5 + 3 - 5 + 5 + 2 . 5' + 2. 59 + O(510)),

so that P, P', Q', Q all lie in the same residue disk. Let w0 = d, W1 = X , 2 = 2dx

Directly computing the triple integral between P and Q yields

f1 WOWW2 4 - 5r + 2 -56 + 4 - 59 + O(5'.

We would like to provide a numerical verification of the identity present in the

jP

0 0 b I+

an (

bj 
I )

P, 3



link lemina for triple integrals. So we begin by cornputing

b2= 4 53 +55 +2 -56+2 -58 + 59 + 0(5")
/ 'P

= 4- 5' +3- 54 +3- 55 +4 .5 + 5 + 2-.58 + 3- 5' + 0(510)

= 3 - 5+4 - 53 +54 +3. 55+4. 57 +4 - 58 +3 - 59 +0 (510)

j*Iwo = 4JQP
w 1 = 3

.5+2. 2 + 53 + 54+ 2 - 5 + 3 -.56 2 - 5' + 2 . 58 +2 - 59 + 0(510)

- 52 +4 53 -5 25 4 +4 - 5' + 3 - 5 + 3 -.57 +3 - 58 + 0(510)

as well as that

I 2 WW2  3 -. 54+ 4 -P

j /ow = 4 - 5 + 3.

f 102 = 3 -54 + 4 -

I'' 1 W

59 + 0(510)

55 + 4- 57 + 5' + O(510)

59 + 0(510)

S54 + 3 -5 + 57 + 2 -8 +3 -59 + O(5"j)

= 2 -53 +3- 55 +55 +2 - 57 + 2 5 8 + 4 - 59 + 0(510)

0W1W2 =5 + 5' +57 + 3- 5" + 3 -59 + 0(510)

Q

IPQ' WOWW 2

= 3. -+ 2 - 5' +2 - 57 + 2 - 58 + 3 . 59 + 0(510)

= 55 +2 - 5' + 3 - -57 +5 + 4. 59 + 0(510),

o2

/QP

J
Ji~'



froim which we see that

f 0 WO1W2 ± WO21W2 - jOWI 2

Q' Q P'Q Q' ' Q 'Q

- I;' W2 j 01 + b2 fQ 01 + 1W2 I 0 -+12 W2
lP Q' jP P' P' Q' PP'

+ , 2 JP1 
lP P', , Q'

4- 55 + 2 - 5' + 4 .5 + 0(51).

5.4 Iterated integrals: linear system

As with single integrals, to compute general Coleman integrals, we use Dwork's prin-

ciple of analytic continuation along Frobenius, in the form of IKeldlaya's algorithm
(Algorithm 2.2.4) for calculating the action of Frobenius on de Rharn cohonmology.
This gives us a linear system that allows us to solve for all (2g)" n-fold iterated
integrals on basis differentials.

Theorem 5.4.1. Let P,Q be non-Weierstrass points on a hyperelliptic curve C
and W O, W2g-1 basis differentials. For- constants ciO,..*iy 1c(omp'utable in terms
of (2g - 1)-fold iterated integrals and 2g-fold tiny iterated intcgrals. the 2g-fold it-
erated Coleman integrals on basis differentials between P,Q ean be computed via a
linear system of the form

JPQ Wie .. _ (1(29). 1- B*Dn) ci..i ,

where B = Alt is the transpose of the matrix of Frobenius M.

Proof. By the Link lemma (Lemma 5.2.4), we can reduce to the case where both P

and Q are Teichmi ller. Then we have

I(Q)

- f * (5.4.1)
P



Recall that given Wo,..., -2 9 a basis for HjR(C), we have

29- 1

j=o

Substituting this expression in for each factor of (5.4.1) and expanding yields the

linear system. 11

To illustrate our methods, in the next section. we present a more explicit version

of this theorem, accompanied by algorithms, in the case of double integrals. We shall

use these in our applications to Rim's nonabelian Chabauty method in Chapter 7.

5.5 Explicit double integrals

5.5.1 Tiny double integrals

We revisit Example 5.3.2 and show how we carry out Algorithm 5.3.1 for double

integrals for an elliptic curve:

Example 5.5. 1. Take C to be the elliptic curve y2 = x(x - 1)(x -+ 9), lei p - 7. and

consider the points P = (9, 36), Q = Frob(P), and R = (a + x (P). /I (a + P))) so

that R is in the same disk as P and Q. Furthermore, let bio = j .

We compute the local coordinates at P:

x(t) - 9 + t + O(t 2o)
21 119 2 65 2219 74 O- )

yt=36+--t+ t - t'+ t- t"+: ).
4 1152 55296 95551488 509607936

Then setting I2 := ff xz, and making it a definite integral, we have

Rp fR dx

p 2y
a dx (t)

o 2y (t)
1 a -5 a 2 91 3 - 1121 4

-- a- a_+_a_-_a

8 2304 995328 191102976

+ 22129 360185 a6 +0(a 7,
45864714240 7925422620672

from which we arrive at

I x(Q)x(P) 1 dx(R(a))
I- = I2(a)

o 2y (R(a))
= 4 - 72 + 6 - 73 + 2 - 74 + 4. 75 + 0(76).



5.5.2 The linear system for double
ichm6ller points

integrals between Te-

Let M1 be the matrix of Frobenius, and let P, Q be Teichmnller points.

In this subsection, we make explicit one aspect of Theorem 5.4.1: we give an

algorithm to compute double integrals between Teichmiller points.

Algorithm 5.5.2 (Double Coleman integration between Tei chmiuller points).

Input: The basis differentials (Wi) 1 , Teichmnfiller points P, Q E C(Q,) in non-

Weierstrass residue disks.

Output: The double integrals (, jiW ).

1. Calculate the action of Frobeniiius on each basis element

(#) *W = dfi + (3 Mij.

J=0
(5.1)

2. Use Algorithm 3.2.3 to comiipute single Coleman integrals

tials: f, aWj, j = 0, ... y
on all basis dlifelre'n-

3. Use Algorithm 3.2.8 to compute other single Coleman integrals:

fQ dffA, fp = Z i% M j fk for each i, k.

4. Use the results of the above two steps to write down, for each i, k. the constant

dfi(R)(fk(R)) - fL(P)(.fi(Q) - fj(P)) +

.Q 29-
1  Q 29-1

+fi(Q) Jp MAl- f (R)( E
j=0 j=0

.Q 2_-1

P jz
Sj=0

Alkpw (R)).

5. Recover the double integrals (see Remark 5.5.3 below) via the linear system

Qp W 0 01 0

pQ L29--1W29-1

= (I4g2 - (MI)') 2 )-1

Remark 5.5.3. We obtain the linear system in the following manner. Since P, Q are

Teichmiller, we have

J / Q $O(Q)P 4(P)
WiWk) (5.5.2)

Cik - jPQ MVipJ j R)( fk(R) - fk(P))

Co1

C2 9- 1,2 9- 1



We begin by expanding the right side of (5.5.2).

Recall that given w0 , .w2,-1 a basis for HJR(C), we have

#*wi = dfI +
2 1

(j Mijoj.
j=0

Thus we have

I PQ JQ#/*( )# ( )

2--1
= dfi + ( iw U)(df + 4

J=0

dfdft +( I

29-1

(y Awj)

We expand the first three quantities separately. First, we have

df, dfk =
PQ P

dfi (R) J df 1,

fk(P))

df'(R)(fk(R)) - fk(P)

dfj(R)(fk(R)) - fk(P)(fi (Q) - f1 (P)).

dfkAJI1wJ)dfA. -

P

AiJj(R)(fk(R) - fk(P)).

2g-1

+ dfi , A(Ap&1)
j=0 j= 0

2g-i

Mi '-(

dfi (R) (f (R)

I Qdf1 (R)
P=1:

(QP

Next. we have

2 M- I

>3Ai'iLLJ A(R
2g- I

JPQ ( Ej=0

j 2g- 1I

= E
j=0



The third term (via integration by parts) is

df,(E Mkj )=

P j =0
J Q ( R 29-1

d'i( R ((E k"p )

j=0

R 2g- I

.j=0

MkjW) IR -

29-1
f (Q) >3 E1f2 9 -

J=0
Q 

2g-1

Pfi(R) ( E
j=0

2g-1

( E

j=0

AIk 1 (R)).

Denote the sum of these terms by cik; in other words,

.Q 2g -1
Ak i(N) -- MPi +j E

, j=0
lj j(R)(f (R) - k(P))

Q 2g-1Sf(Q) Mkjo, -

P j=0

.Q 29-1

fi (R)( Mly 1wa(R)).

Then rearranging terms, our linear system reads

.
Pfr

W0 O

WoW 1
= (I4g2 - (ME),2)-1

p QJP W2g lW2g-

5.5.3 Linking double integrals

Let P' and Q' be in the disks of P and Q, respectively. Using the Link lemma

for double integrals (Example 5.2.5), we may link double integrals between different

residue disks:

QP'Q P'Q/ Q' QWjik f WiWk + Wibk+jWiWk +J k j i±J Wk J
p jp P Q' 11P P ' Q

Algorithm 5.5.4 (Double Coleman integration via Teichmiiller points).
Input: The basis differentials (Wj=, points F, Q E C(C,) in non-

Wi. (5.5.3)

Neierstrass
residue disks.

Output: The double integrals (Q, W .

1. Compute Teichmiller points P', Q' in the disks of P, Q, respectively.

2. Use Algorithm 3.2.3 to compute the single integrals fp W' , fp W, fW for all
C1. i w o l

PQ f1(R) Mkj Wj (R))

0o0

-'12-

= (fli(R)

.Q



P Q
3. Use Algorithiri 5.3.1 to compute the tiny double integrals f, W1 Wk, QWA

4. Use Algorithm 5.5.2 to compute the double integrals {fj wwj1} 20.

5. Correct endpoints using

+ J W + p pi W + W W ,
I Q' pQ

! / QIF' I Q k Q'ki

5.5.4 Without Teichm i1ler points

Alternatively, instead of finding Teichmiller points and correcting endpoints, we can

directly compute double integrals using a slightly different linear system. Indeed,

using the Link lemma for double integrals, we take #(P) and 4((Q) to be the points

in the disks of P and Q, respectively, which gives

?(Q)
Wi~k, + Jo(P)

Q

4uj k,+ J (Q)

[#(Q)
i (P)

W 
'

@ 1(p) ( 
Q

(5.5.4)

To write down a linear system without Teichinjiller points. we begin as before,

with

WiWA -/.Q <~(W WA)CiA' + 6 2~

p() P JP j=0

Putting together (5.5.4) and (5.5.5), we get

A J ij ,)
j=0

( 5 5. 5 )

= -19 (Aft)2 2 )-l
C- J1 ()WW.- ( fN W,) (.&p) WAk)

O (Q) W O)(Q) WA).(f() i~

(5.5.6)

This gives us the following alternative to Algorithm 5.5.2:

Algorithm 5.5.5 (Double Coleman integration).

Input: The basis differentials (w)=0, points P, Q E C(Qp) in non-Weierstrass

residue disks or in Weierstrass disks in the region of convergence.

Output: The double integrals ( wi WJ .

1. Use Algorithrn 3.2.3 to compute the single integrals fN Wb, wi");aW. for all i.

2. Use Algorithm 5.3.1 to compute P A, f WiWk for all i, k

iN

-4j, PI "(P).Q-( )

. P JP



3. As in Step 4 of Algoritlun 5.5.2, compute the constants ciA for all i. k.

4. Recover the double integrals using the linear system

(I49 2 - j Mt 2 1 Cik - JP jL

O(P?) bk) +

Example 5.5.6. Let,
let P= (1,-1),Q
differentials:

C be the genus 2
= (-1,-i) and p

curve y2
= 7.

4 3 2 2xi + 1 and

We compute double integrals on basis

J Wo =jjW 2 -72 +73 +4.74 + 0(7')
, Q

WWi= 72 + 5 - 7 -+ 3 . 74 + O(75)
d P

/ o G2= 4 7+ 5 -72 + 73 + O(74)

objj = 7 + 5 - 72 +3.74 +O(75)

/ Q

I 1o = 72 +6 . 3 + 5 - 74 + O( 7 ')

I wi = 4 - 72 +3.73 +O(75)
P

W<io2 =5.7+6-72 +2-73 +4.74 +0(75)

IPi;''ip oslJ = 2 + 3 . 7 + 7 2 +4- 7 3+0 O7 4)

,PQ

IP(12W0 = 7 2 +4. 73 + O (7")
/QP

l i W 2 = 4 7+6 72 +4 -73 +574 + 0(7')
/QP

oP' 2L2 = 2 + 5.- 7 + 3. - 72 +0O(73)
/QP

o)2U3 = 5 + 2.- 7 + 3. - 72 +0O(7 3)
p

(Jo~p) WA.

W3W Iik



PJ 3W = 3

jI' W3W3 2

-1

7+ 2- 72 + 5- 73 + 5 74 + 0(75)

+ 5 -7+ 72 + 6- 73 + 0(74)

+ 7 + 5 . 72 +0(73)

+ 6. 7 + 5 72 + 0(73)

Example 5.5.7. Using the previous example, we verify the Fubini identity

1eQ (fQ )
P~ P

(fQ
\\P

= 5 -7 +27 2 + 5 73 + 74 + 4 - 75 + 0(76)

= 6. 7 + 6- 72+ 2 73 ± 4 74 + 3 . 75 + 0(7')

S5+ 5 73 + 6 -74 + 2- 75 + 0(76)

5 + 3 7+ 4 72 + 3 73 + 6 . 74 - 2- 75 + 0(76)

We see, for example,

oiQ + wo =  2

fp 2W3 + J 3 W2 = 4

72+4 73 +274 + 0(7() = O I i
+4-7+72+ 0(73) = (2 3 )-

5.5.5 Weierstrass points

Suppose one of P or Q is a Weierstrass point. Then directly using the linear system as
above fails, since the fi have essential singularities at Weierstrass points. We remedy
this by following the approach in Algorithm 4.3.6.

Proposition 5.5.8. Let Q be a non- Weierstrass point, P a finite Weierstrass point,
and S be a point in the residue disk of P, near the boundary. Then the integral from
P to Q can be computed as a sum of integrals:

f fs Q s Q

We have

Q

2
P

s 3

11Q LCjj



Proof. Take Q' = Q, P' S in

f i k WiWk 1 + <+ Wik + / Wk J Wi + k wi

This gives

IQ SQ - 'QQ Q

Wik f WiWk + Wik + ± k +i / k Wi
./S Qs Sp -Q'f P Q

= w IQk + wWaJ + Wk wi. (5.5.7)

Now the first integral on the right hand side of (5.5.7) is a tiny double integral from a
Weierstrass point (see Algorithm 5.5.9), the second double can be computed via the
linear systen (see Algorithm 5.5.5), and the product is of two single integrals. E

To compute tiny iterated integrals in a Weierstrass disk, we slightly modify Algo-
rithm 5.3.1:

Algorithm 5.5.9 (Tiny iterated irtegral in a Weierstrass disk).
Input: P a Weierstrass point, d the degree of totally ramified extension, wi, W1 basis
differentials
Output: The integral

.1/;W| (R) J j W1 (R) Ju
I P P P t=0 ut=0

1. Compute local coordinates (x(u), u) at P.

2. Let a = pil". Rescale coordinates so that y := au, x := x(au).

3. Compute 12 (u) = fJxja as a power series in u.

4. Compute the appropriate definite integral using the step above:

S x j adu
x - = x(au) a = 12 (t)

(where R = (x(t), t)). Call this definite integral (now a power series in t) 12.

5. Now since R = (x(t), t), we have f WiW= ft x(t)i1 2 dXt).

Suppose P is a finite Weierstrass point. While one could compute the integral

wjw1 directly using Algorithm 5.5.5 for all of the tiny double integrals (and Algo-
rithm 5.5.9 for the other double integrals), in practice, that approach is expensive,
as it requires the computation of several intermediate integrals with Frobenius of
points that are defined over extensions. This, in turn, makes the requisite degree d
extension for convergence quite large. For instance, in a few numerical experiments



we performed, cornputing double integrals directly for an elliptic curve required d to

be 200. Instead, we use the following two algorithrns to make a few shortcuts using

the Weierstrass point and some properties of double integrals, thereby lowering the

necessary d for convergence (in that same example, these modifications cut down d

to 30).
The key idea is to compute a local parametrization at the finite Weierstrass point

P and to use this to compute the indefinite integral f* we. Then to compute inte-

grals involving "boundary points," one can simply evaluate this indefinite integral

at the appropriate points, instead of directly computing parametrizations, and thus

integrals, over a totally ramified extension of Q,. This idea is also used to evaluate

double integrals involving boundary points.

Algorithm 5.5.10 (Intermediary integral computations for double integrals with a

Weierstrass endpoint).
Input: P finite Weierstrass point, Q non-Weierstrass point, d the degree of totally

ramified extension, 'n the precision of Qp, basis differentials w, o1 .

Output: Necessary things for the eventual coriputation of fJ wi.

1. Compute (x(t), t) local coordinates at P to precision nd.

2. Let S = (x(a), a), where a = pd

3. Compute as a power series in t, I;(t) = f x(t)"(1

4. Compute the definite integral fJji = 12(1).

5. Compute the definite integral f wooi via Algorithi 5.3.1. Keep the interme-

diary indefinite integral.

6. Use the fact that Jf wiwo = - woi + fJ wof w1 (same for rest of lower-

diagonal entries) to compute w wiwo (instead of directly computing it as a

double integral).

7. Compute f(S) W - (S) S - fioi by the indefinite integral in Step 3.

8. Use the indefinite integral in Step 5 to get feb" w

9. Repeat the trick in Step 6 to get W IWo.

10. Compute fj o .

11. Compute QWOo1.

12. Repeat the trick in Step 6 to get f iwo.

13. Use fwi= f wi - f wi to get < wi.



Algorithm 5.5.11 (Double integrals from a Weierstrass endpoint).

Input: P finite Weierstrass point, Q non-Weierstrass point, w, wd basis differentials.

Output: The double integrals fQ wroj.

1. Compute all of the integrals as in Algorithm 5.5.10.

2. Use additivity to recover the double integrals f, wiwi = fs wWj + 4s Woso +

1- Q

As consistency checks for our algorithms, one may use the following corollaries of

Proposition 5.5.8.

Corollary 5.5.12. For P, Q Weierstrass points and S a third point, we have additivity
in endpoints: Jfwi&1 + -S J=wisu.

Corollary 5.5.13. For P, Q Weierstrass points, we hove

o ; W+ -w i = 0.
I P

It is worth noting that in general, unlike in the case of a single Coleman integral,

for P and Q both Weierstrass points, unless i k. the double Coleman integral

f wjoh is not necessarily 0. However, in the case of i k, the integral can be

computed as f = (rN - 2 = 0.

Exarrple 5.5.14. Consider the curve y2 = X(xI
Pi = (1, 0), P2= (0, 0), and Q (

We have

WoWo 2 .
2

1+

1)(X + 9), over Q7, and the points

1, 4).

72 + 53 +474 +3- 75+ 0(76)
7+5- 72± 4. 73 + 6- 7 4+ 0(76)
.72 +3- 7 3 +3 4 + 75+0(76)
5- 7 + 5. 73 + 4. 74 + 4 -75 + 0(76)1

and ( fj,. WOWJ\
Wp';? I

IP) WIWOIi2 o

2 72 + 5 . 7' + 4 - 7 4 + 3. 7' + 0(76)
2-72 + 7' + 6. 74 + 5 - 7' + 0(76)

7+ 5 - 72 + 6 - 73 + 3 - 74 + 3- 75 + 0(76)
1 + 5. 7+5 . 3 + 4 7+ 4 -7 + 0(76)

from which we see that P2 Gooi # 0 and likewise f(' oxo P 0.

5.6 Future work

We present sone yet unresolved questions arising from our work.

6



5.6.1 Tangential basepoint at infinity

We originally began working with double integrals to provide examples of Kim's

nonabelian Chabauty method (see Chapter 7) for elliptic curves. Our algorithms can

produce examples when the curve has a rational finite Weierstrass point. However, we

would also like to produce examples when the curve does not; in this case, one would

have to compute with the tangential basepoint at infinity. How do we modify our

algorithms to do this? It would be of great interest to yield algorithms to compute

double (and further iterated) integrals from infinity, as this would provide a wealth

of further examples.

5.6.2 The fundamental linear system

The linear system we alluded to in Theorem 5.4.1 for computing general iterated

integrals has a dizzying number of terms. Is there a recursion we could write down

that would allow us to go from (n- 1)-fold integrals to n-fold integrals in a manageable

way?

5.6.3 The region of convergence in a Weierstrass disk

While we have performed computationis with double integrals in finite 'Veierstrass

disks, the minimal degree d of the totally ranified extension necessary to ensure

convergence still remains mysterious. Explicitly computing this d as a function of

p, ,q and the precision n of the base ring would be essential to formulating error

bounds and calculating precision of integrals with an endpoint in a Weierstrass disk.



Chapter 6

Explicit computations with the
Chabauty method

In this chapter, we give a quick summary of the method of Chabauty and Coleman,

following the exposition in [MP07] and provide numerical examples showing how our

algorithms can be used to find rational points on hyperelliptic curves.

6.1 Introduction

Let C be a curve over Q. Finding the set of Q-rational points C(Q) is a diffcult

question that has led to many new techniques in arithmetic geometry. For example,

suppose that C is a curve of genus greater than 1. By work of Faltings [Fal83], we

know that C(Q) is finite. However, his proof is not effective: it does not yield an

algorithm to compute C(Q). Nevertheless, by work of Chabauty and Coleman, in

the case when the Jacobian of the curve over Q has rank less than the genus of the

curve, explicit functions can be written down in terms of p-adic integrals and solved

to give information about C(Q).

Let us fix some notation. Let J be the Jacobian of C, and suppose that we know

a point 0 E C(Q). Then we can identify the curve with a subvariety of its Jacobian

via the embedding

C - j
P [P - 0],

where [D] is the class of a divisor D. Suppose that we have already computed J(Q) as

a free abelian group, and that in particular, we know its rank r. In general, obtaining

such information about J(Q) is a difficult global problem (in contrast to the methods

we describe below, which are local), but nevertheless, let us suppose that we have

this information.

Let JQ, denote the base change of J to Qp. Let HO(JU,, Q') denote the g-

dimensional Qp-vector space of holomorphic 1-forms on JQ,. We have a bilinear



pairing

J(Q,) x H0 (JQe Q 1) + Q, (6.1.1)

P , o O b j (6.1.2)

For a holoiorphic differential oj, let r/j be the map r/j: J(Qp) -+ Q, sending P -

0P Wj. Let T be the vector space dual of H0 (JQ,, Q1). Then we may rewrite (6.1.1)

as a hoinoinorphisn
log : J(Qp) -+ T.

The closure J(Q) of J(Q) in J(Qp) with its p-adic topology is a subgroup of J(Qp).

Its dimension as a p-adic manifold is of interest.

Lemma 6.1.1 ([MP07, Lemma 4.2]). Let r' be the dimension of J(Q). Then r' < r.

Proof. We have r' = dim J(Q) = dirn log(,J(Q)), as log is a local diffeornorphism.

Since log is continuous and J(Q) is compact, log(J(Q)) log J(Q). But the closure

of any subgroup in Qf is its Zp-span. So

r' akz,(log J(Q)) < rankz log J(Q) < rankz J(Q) r.

Sitting inside /(Qp) is C(Qp), a subrnanifold of dimension 1. Suppose r' < g.

Then the diiensions suggest that the intersection C(Qp) n J(Q) should be at most

0- dimensional, and in particular, as a, discrete subset of a compact space J(Qp), the

intersection would be finite. This would then imply that C(Q) is finite. This is what

Chabauty proved.

Theorem 6.1.2 ([Cha41]). With hypotheses as before, suppose r' < g. Then C(Qp) n
J(Q) is finite. In particular, C(Q) is finite.

The problem now is to describe the set C(Q)n J(Q). Coleman's approach, which

we describe below, is to find functions on J(Qp) that vanish on J(Q) and restrict

them to a parametrization of C(Qp). These functions are given in terms of Coleman

integrals.
Now suppose that C has good reduction at p. Then J has good reduction at p

as well, and the embedding C -± J induces an embedding of the special fibre of C

into the reduction of J. The restriction map H0 (JQ,, Q1) -+ H(CQ,., Q1) induced

by C -+ J is an isomorphism of Q,-vector spaces. Suppose that oj restricts to the

differential w. Then for P P' PG C(Qp), we define

P t0,

By the properties of integration on J, we see



1. If Pi, Pj' E C(Q,) are such that E(Pi- P ) is the divisor of a rational function,

or more generally, [E(P'- P,)] is a torsion element of J(Qp), then Ef ) 0.

2. If P, P' e C(Q,) have the same reduction in C(Fp), then recall Algorithm 4.3.1:

f, o can be calculated by expanding in power series in a local parameter t on

the curve C.

The restriction ry r/jlc(D,) is the function

r/: C(Q,) -Q

P fop fw.

The proof of the lemma shows that log J(Q) is a Z, -module of rank r' contained

in T ~ Q- . Suppose that r' < g. Then there is a nonzero Qp-linear functional

A : T - Q, that vanishes on log J(Q). By the duality between T and HJ0(Jk , Q).
the functional A corresponds to a particular nonzero oj E H0 (JQ,, Q'), which in turn

gives rise to oj, or as above. By definition of log, the map r/j equals the composition
wve ris as abwe By dIt

,J(Qp) -+ T -+ Q,

where the first map is log an11d the second A. Hence r/j vanishes on J(Q). It follows

that our particular w satisfies the following:

3. If Pi, P! E C(Q,) are such that [E(P - P)) e J(Q), then Z f = = 0.

So r vanishes on C(Q,) n J(Q), and the goal is to bound the zeros of r.
Coleman did precisely this, using p-adic integrals to interpret Chabauty's theorem:

Theorem 6.1.3. Let C, J, p, r' be as before. Suppose that p is a prime of good 'redac-

tion for C.

1. Let w be a nonzero 1-form in H0 (CQ,, Q1) satisfying conditions (1) - (?). Scale

w by an element of Q,^ so that it reduces to a nonzero 1-form cj e H0 (C 1 , Q1).

Suppose P e C(Fp). Let m = ordo '. If m < p - 2, then the number of points

in C(Q) reducing to Q is at most rn + 1.

2. If p > 2g, then #C(Q) < #C(Fp) + 2g - 2.

6.2 Explicit integrals to a parameter

Explicitly computing the map r/, then, has the potential to yield valuable information

about the set of rational points on the curve. Let us now assume that the curve C is

hyperelliptic, given by a model of the form y2 = f(x), where f is monic and nonsin-

gular. We may modify our algorithms in Chapters 3 and 4 to compute integrals to a



parameter z. Having these integrals will allow us to experiment with the Chabauty

method.
Indeed, in the single integral case (we consider the double integral case in the next

chapter), for a Weierstrass basepoint P and a holomorphic basis differential wi, we

write

fQ (z) <w = (M - J)' (Qz) - i
JP #0(Qz)

where x(Q,) = z + x(Q) is a paramrieter in the residue disk of a choice of non-

Weierstrass point Q and Al is the matrix of Frobenius, as before. Each Coleman

integral fQ(z) converges only within a single residue disk (the residue disk of Q).

Algorithm 6.2.1 (Single Coleman integrals on basis elements from a Weierstrass

point to a parameter z).

Input: P Weierstrass basepoint, Q a non-Weierstrass point (within whose disk the

computations will occur), holomorphic basis differential Wo.

Output: A power series fQ(z) = f< wi, where Q, = (z + x(Q), \f(z+ x(Q))) is

taken so that Q, is in the disk of Q.

1. Compute Q, = (x(Q) + Z, Vf (x(Q) + z)), choosing the right square root so

that Q2 is in lie same disk as Q.

2. Compute c(Q), choosing the right square root.

3. Compute the local coordinate at Qz: x(t) = t + z + x(Q), y(t) = f(xt)).

4. This gives us f i =Q7Qg _x dxt)Q7 dt .

5. Using the fundamental linear system, compute fQ (z) = Z w,

12(z) W*.

Remark 6.2.2. If one would like to take as the basepoint a non-Weierstrass point P',

it suffices to perform the above algorithm and then correct endpoints by computing
the integral ff' Wi.

6.3 Example: odd model

Example 6.3.1. We give an exarple arising from the Chabauty method, taken from

[MP07, § 8.11. Let C be the curve

y2 = x(x - 1)(x - 2)(x - 5)(x - 6),

whose Jacobian has Mordell-Weil rank 1. The curve C has good reduction at 7, and

X (IF) = (0, 0) , (1, 0), (2, 0), (5, 0), (6, 0), (3, 6), (3, - 6), oo}



By Theorem 6.1.3(2), we know IC(Q) < 10. However, we can find 10 rational points

on C: the six rational Weierstrass points, and the points (3,±6), (10, ±120). Hence

|C(Q)| = 10.

Since the Chabauty condition holds, there must exist a holomorphic differential w

for which f w - 0 for all Q E C(Q). We can find such a differential by taking Q to
be one of the rational non-Weierstrass points, then computing a :f wo, b :- f wi

and setting w = bwo - awi. For Q = (3, 6), we obtain

a = 6 -7 + 6 - 72+ 3 - 73 + 3 7 4 + 2- 75 + O(7')

b = 4 -7 + 2 . 72+ 6 -73 + 4 7' + O(7).

We then verify that fR a vanishes for each of the other rational points R.

Remark 6.3.2. It is worth pointing out sorne facts not exposed by Example 6.3.1. For

instance, since w is already determined by a single rational nion-torsion point, we could

have used it instead of a brute-force search to find other rational points. However,
in other examples, the integral a may vanish at a point defined over a number field

which has a rational multiple in the Jacobian. Such points may be difficult to find by

brute-force search: it may be easier to reconstruct them from p-adic approximations,

obtained by writing f* w as a function of a linear parameter of a residue disk using

Algorithm 6.2.1, then finding the zeroes of that function. M\ore seriously, as noted

in [MP07, @7], even if # (C(Q,) n J(Q)) is known, the true value of #C(Q) could

be smaller; some of the intersection points could be irrational points in C(Qp). In

this case, while the upper bound on #C(Q) is riot sharp, the m1ethod can contribute

more information by restricting the possible integer combinations of generators of

J(Q) that could lie on C. This would give good lower bounds on the height of any

unknown points in C(Q), which would provide strong evidence that no further points

exist.

6.4 Future work

The following question was originally asked by Michael Stoll:

Question 6.4.1. Let C be a curve of genus g over Q whose Mordell-Weil rank is

at most g - 2. Then for all but finitely many p, do the power series produced by

the method of Chabauty only have rational zeros? If not, is there a meaningful

interpretation of the "extra" zeros?

We sketch how our algorithms can be used to produce data for a concrete example.

We have also learned that this question is being investigated in the Ph.D. thesis of

Tzanko Matev.

Example 6.4.2. Let

C : ( - 2X2 - 8x + 1)(x3 + X + 1)



over Q (from [Wet97, 51.9]). This is a genus 3 curve with Mordell-Weil rank 1. The
curve has bad reduction at the primes 2 and 31, and one can show that C(Q)

{oo, (0, 1), (0, -1)}.
One could carry out the following process:

1. Let p be a prime of good reduction, and fix the points P oC,Q (0, -1).
(The divisor class [Q - P] is not torsion.)

2. Using Algorithm 3.2.3, compute the single p-adic integrals

a = jwo,

/Q

C:= W2

3. Set, c := bwo - awi,# : co - aw2 . These are differentials whose integrals vanish
on the rational point s of C.

4. Let S denote the set C(Fp). For each F,-point R E S, do the following:

" Lift R to a Qp-point R' on C.

* Using Algorithm 6.2.1, compute the following integrals to a parameter :

o(z) =I f o, J1(z) = , 1, 12 - .p4 W2.

" Check if ai(z) blo(z) - ali(z), 3(z) = clo(z) - aI2 (z) have a commonon
zero in the residue disk of R'.

It would indeed be interesting to investigate Stoll's question numerically.



Chapter 7

Kim's nonabelian Chabauty
method

Portions of this chapter appeared in joint work of the author with Kedlaya and Kimn

in the Appendix and Erratum to [Kim10a].

7.1 Introduction: the method

In a recent series of papers [lKimO5, Kim09, Kim10a], Kim hais pioneered methods for

producing finiteness theorems in Diophantine geometry. The key idea, motivated by
Grothendieck's philosophy of anabelian geometry, is to study nonabelian analogues

of Sehner groups as a way to control rational points. Indeed, in [KinO5], using p-adic

analysis (as well as nonabelian Hodge theory and 6tale cohomology) on these so-called

Selmer varieties, Kini furnished a new proof of Siegel's theorem on the finiteness of

integral points on the projective line over Q minus three points.

Kim's idea is to carry out a nonabelian analogue of the method of Chabauty where

the Jacobian of a curve is replaced by a certain group scheme, the unipotent de Rham

fundamental group. As we briefly discussed in the previous chapter, the classical

Chabauty-Coleman approach constructs a certain p-adic function on the Jacobian

of C, which is then pulled back to the curve to yield information about its rational

points. Kim defines an Albanese map from the Qp-points of the curve to Qp-points

of this group scheme. Pulling back the images of integral points under this map back

to C(Q,) gives certain finiteness conditions and explicit local conditions analogous to

those found by Chabauty arid Coleman. It is in this way that certain p-adic functions

are constructed whose zeros yield information about the integral points on the curve.

7.1.1 Elliptic curves

In the case of a rank 1 elliptic curve minus a point (currently subject to some other

technical assumptions), Kim [Kimuloal gives explicit functions (in teris of double

Coleman integrals) that cut out the set of integral points. In this chapter, we give al-

gorithms to carry out this approach for elliptic curves and produce the first numerical



examples of the nonabelian Chabauty method.

7.2 A few more explicit double integrals

We begin by giving algorithms to compute with a few more types of explicit, double

integrals, which will serve as the analogue of those power series present, in the usual

Chabauty method.

7.2.1 Integrals to a parameter z

First, let us reformulate Coleman integrals from a fixed Weierstrass basepoint to a

parameter z. Although we gave one method to do this in Chapter 6, here we provide

an alternate algorithm, which generalizes to double integrals in a more effective way.

Algorithm 7.2.1 (Coleiian integrals from a Weierstrass point to a parameter z using

a near-boundary point S).
Input: Finite Weierstrass point P, non-Weierstrass point Q, basis differential &1.

Output: A power series fQ(z) f> wi, where Q = (z + x(Q), f(z + x(Q))) is

taken so that Qz is in the disk of Q.

1. Compute local coordinates at P.

2. Use Algorithmi 4.3.5 to find a near-boundary point S.

3. Compute J, c.

4. Compute Q = (z + x(Q), Vf(z + x(Q))) and c(Qz), choosing the correct

square roots.

5. Compute local coordinates at Q,.

6. Compute fJi Wi = W .

7. Compute f<"(S)

8. Compute f' wi using the fundamental linear system.

9. Recover fQwi by additivity : js wg + fQz wi.

7.2.2 Double integrals to a parameter z

To compute double integrals from a finite Weierstrass point to a parameter we

generalize Algorithm 5.5. 10 to compute intermediate objects that will give us a speed-

up in the overall double integration algorithm. These algorithms can be used to

produce the power series that cut out integral points on a hyperbolic curve in 1Kim's

nonabelian Chabauty method.



Algorithm 7.2.2 (Double integrals from a finite Weierstrass P to z: intermediate

terms).
Input: Finite Weierstrass point P, non-Weierstrass point Q, two differentials uoo, ai,

base ring precision n, degree of totally ranified extension d.

Output: Necessary things for the eventual computation of j"
(z + x(Q), -f (z + x(Q))) in the disk of Q.

1. Compute (x(t), t) local coordinates at P to precision nd.

2. Let S = (x(a), a), where a = p

3. Compute as a power series in t, 12 (t) f x(t) q dt.

4. Compute the definite integral w

wowi, with Qz =

I2(1).

5. Compute the definite integral f 0ooi via Algorithm 5.5.9.

diary indefinite integral.

6. Use f<oiWo Ww - 1-o + wi (same for rest of lower-diagonal entries)

to compute , lwo.

7. Compute jf 5 w -, - w by the indefinite integral in Step 3.

8. Use the indefinite integral in Step 5 to get <(S) w .

9. Repeat the trick in Step 6 to get fqs) w 1w 0 .

10. Compute Q, = (z + x(Q), f (z + x(Q))) and #(Q2).

11. Compute local coordinates at Q,.

12. Using the local coordinates above, compute 12 (t) = f wi as

with coefficients in Q,[[z]].
a power series in t

13. Compute the definite integral f(QZ) i

14. Now use the indefinite integral in Step 12 to write

.$(QJ )o(R)
x($(Qz))-

W1 = I

-X(Q) x(#(Qz))-x(Q)

wo(R) ] wi.

15. Use f Wiwo = f wwo1 - fwoo 1 W1 to calculate the other double integral.

16. Compute fQw, by Algorithm 6.2.1 or Algorithm 7.2.1.

17. Recover f by taking fP Wg - fo.
18. Compute f j via fW Wi - f(S) a + J0(Z) W.

Keep the interne-

f w)e.(Q



Algorithm 7.2.3 (Double integrals from a finite Weierstrass point to z).

Input: Finite Weierstrass point P, non-Weierstrass point Q, differentials wi, o , pre-

cision of base ring n, degree of totally ramified extension d.

Output: The double integrals Jz Uzo 1, with Q2 = (z -+x(Q), ,f(z + x(Q))) in the

disk of Q.

1. Use Algorithm 5.5.11 but with Q, = (z + x(Q), jf(z + x(Q))) instead of Q.

2. Use Algorithm 7.2.2 to get the major inputs.

3. Use the analogue of additivity in endpoints (Algorithm 5.5.11) to produce the

desired double integrals.

7.3 Carrying out the nonabelian Chabauty method

We are now prepared to carry out the nonabelialn Chabauty method for elliptic curves.

Following the notation in [Kim10a], let C/Z be the minimal regular model of an elliptic

curve CIQ of analytic rank 1 with Tainagawa numbers all 1. Let X = C
so = , -=I.

functions

- {c} and

Taking a tangential base point b at o, we have the analytic

log(z) Jwo, logo 1 (: i D2(z) wooi.

With this setup, we have

Theorem 7.3.1 (lKiml0a]). Suppose y is a point of infinite order in C(Z).
X(Z) c C(Zp) is in the zero set of

f(z) := (log,(y))2 D 2 (-) - (log0 (z)) 2 D 2 (y).

As a consequence, given the same hypotheses, we have the following result:

Corollary 7.3.2. The expression

D2(U)

(log, (y))2

Thecn

(7.3.1)

is independent of the point y of infinite order in C(Z).

We discuss some related Chabauty-style formulas and computations demonstrat-

ing these results.
First recall (5.5.8), adapted to our situation:

oWi W 0 j1 + W oI + j i W WO. (7.3.2)



Since we know

0  1  __ (7.3.3)
(Kwo) (Rwo)"

we use this to rewrite (7.3.2):

wooi = wooi2 + IJ.Osi + w o
b O bJ Io b 'c j'

from which we get

Swow1 ii&osi + <W1 fj ~O (7.3.4)

L o) (,J 2 -o) wo) 2

with the additional assumption that (f wo) 2 ( ) 2

Remark 7.3.3. While this identity is not as simple as the original (7.3.3), it has the

benefit that the right hand side involves no iterated integrals from Weierstrass points.

One can show that the expression is synmetric in x and y.

It remains to discuss evaluation of the single integral J W1 , which requires a

tangential basepoint.

When b is a 2-torsion point, recall that Lemma 3.2.9 allows us to compute inte-

grals from b to a non-Weierstrass point solely in terrns of the non-Weierstrass point.

Indeed, an analogous result holds when b is a tangential basepoint at infinity and

W = # i.e., the regularization of the tangential basepoint results in the sarne expres-

sion of the integral in terms of the non-Weierstrass point.

Proposition 7.3.4. Let b be a tangential basepoint at infinity. Then

Proof. See [Kiml0a, §1, Ex. 3].

7.3.1 An example with 65A

Example 7.3.5. Let E be the elliptic curve p2 = x 3 - 1323x + 3942, with minimal

model
: y 2 + Xy =xr - x

(Cremona [Cre) label "65al"). Let b = (3, 0), P = (39, 108), Q = (-33, -108), R
(147, 1728), S = (103, 980), T = (-6, -108) be points on E, which arise from points



on E in the followingr manner:

(0, 0) -4 (3, 0)

(1, 0) 1-4 (39, 108)

(-1, 0) -+ (

259'
(4

33, -108)

(103,980)

a (-6, -108)

Note that p = 11 is a prime of good reduction for E.

By a direct coimputation of iterated integrals from the two-torsion point b, we

found

D2 (Q)
(.Jo )Q 2

D2(R)= 311-1+6+2.11+10-112+3-113+5-114+0(11).

R 0 2

We wish to try the second forrn of the quotient, which requires a pair of integral

points. Let b1 (lenote the tangential basepoint at infinity. First note that, the pair

P, Q does not work, as

- (17 2

W0) = 5.112+2.113±5-1 4+7-115+11±9-1 17+2-118+9-11J+0(1110).

However, R is compatible with either P or Q, as

1 R

Y Iba)
= 9 - 112 + 9 - 113 + 9 114 + 7 - 115 + 6 - 116 + 3 - 117 + 4-119 + 0(11 10).

Thus taking x = P, y = R as well as x Q, y = R, we compute

.WOW1 + W1 0ojx w 2i = 3.11-1+6+211+10-112+3.113+5.114+9-115+2-11±0(117).

(f WOy WK

7.3.2 An example with 37A

Furthermore, we can derive another formula starting from the identity

lb
j z 

Z 
* z

b bjw y yJ bjI+I

D 2(P)

. 0 2

(J FT) > 02

(4, 6) " (147, 1728)



Suppose x, y are integral on the minimal model. Then we may write the last integral

without a double integral from the tangential basepoint using our previous forrnula:

b yi I / W I z jy W +
-yi 2 . w0f1 0() 1 +i

U.0 bjy 2 W)2
bb b60

giving us that

D 2 (z) W0 1  . b f0 W1  (1og,(QM))2  0 WV -I- j WO l b 1

(log,(z))2  (log 0 (z)) 2  (1 0  
2  (1og-() (z)) 2 (log) (y)) 2 - (log (x)) 2

(7.3.5)
We will use Equation 7.3.5 to compute the iterated quotient when z is not integral

on the minimal iodel. Note that (7.3.5) is independent of the choice of x, y as long

as x, y are integral on the minimal model, so it's our best workaround for computing

directly with the tangential basepoint in this case.

We can now verify the identity on quotients for curves that do not have integral

two-torsion.

Example 7.3.6. We cornpute the quotient using (7.3.4) when the curve does not have

integral 2-torsion. Consider the curve E : y2 3 - 16x + 16, with minimal model
given by

:y 2 + y x - x

(Cremona label "37al"). Let P = (0, 4), Q = 2P = (4,

4P = (8, -20), T = 5P = (1, -1), U = 6P = (24, 116)
from points on S in the following manner:

Rl = 3itP = (-
Points oniE,

-4, -4), S =

wlhich arise

E -+E

(0,0) - (0, 4)

(1,0) - (4, 4)

(-1, -1) - (-4,-

(2, -3) - (8, -20

1 5)

(4 8

(6, 14) (2 4, 11

)

6).

Note that p = 7 is a prime of good reduction. We compute the quotient (7.3.4) via

b, the tangential basepoint at infinity. For each of the ten (unordered) pairs (x, y),

where x # y, x, y E {P, Q, R, S, U}, we see

f"2001+ f"Y W "x + . ~x

(.f, Y L0) - ( WO)2
7 + 1 + 3 - 7 +6 - 72 +5 -74 + 0(75).D 2(Y)

(log- (y))2



However, we have, using (7.3.5):

D2(5P)24 =2-7- +5-+37+6-72+ 37+.5-7+4-75+2-7()+0(7

lOg (5 P)

D2(7P)32 3 4D2  5 -7-3+3 -7-1+1+4 - 7+3. 72 +73 +6 -7 + 0(7F)
logI (7P)

D 2 (P) 6- 7- +4+7+72+5- 73 +4 - 74+ 2- 7'+5 - 7 + 0(7')
logw e(8 P)
D10) 
D 2 (10P) + 6 + 6-7 + 2 - 2 +2- 7 3 +5. 7 4+5 - 75 + 4 .7()+0( 7 ').

logC)) (10 P)

By the theorem, all ratios involving integral points are equal; the second set of
ratios differed because the points were imerely rational. Perhaps iore similar to the
original Chabauty method: given two integral points x, y of iiifinite order, a third
point z occurs in the zero set of the function

b b .600) -- . b 0x.x
((F ~~ 2 (~j ~ 2) Jwo + 2 b wo) 2

- \j&W+/W(
A (F(

Indeed, fixing x (0,4),y (44) onE, we may recover z -(4. -1). (8. -- 20). (21 116).

7.4 Connection to p-adic heights

As originally observed by Kim [Kiml0b], there is a striking connection between the
invariant ratio (7.3.1) and the cyclotomic p-adic height: the double integral present
in the numerator of the invariant ratio is essentially the logarithin of the p-adic sigma
function of Mazur and Tate.

Recall ([MST06, Theorem 1.31) that one interpretation of the p-adic sigma function
is the following: it is the unique odd function

u(t) = t + - tZpN]]

(along with a unique constant c E Zp) satisfying the differential equation

x(t)+c d ( do-

U)( J1WO/

With this definition, one can see that the double integral is essentially the p-adic
height of the point in the rank 1 case. Indeed, recall ([MST06]) that the global p-adic
height of a point P on an elliptic curve, given in terms of the sigma function is as
follows:

hp(P) - loo, )
p OP(d(P)



where d(P) is the denloninator of P. When the point is integral, the height is indeed

(up to constant) the logarithm of the sigma function. However, when the point is

merely rational, this is not the case.

Here are some computations illustrating the constant ratio between the double

integral and the height of the point:

Example 7.4.1. Let E be the elliptic curve "37al" and P the point (0,0). Let Ip be

the value of the double integral f wowi from a finite Weierstrass point to P.

We have

h(P) h(2P)

Ip/7 12P 7
h(3P)
1 3p/ 7

2- 7 + 5. 72 + 6 74 + 6 -76 +78 +0(79).

7.5 Future work

7.5.1 Tangential basepoint

As discussed in Chapter 5, we would ultimately like to formulate techniques for expliC-

itly computirng with tangential basepoints, as this would provide a wealth of examples.

7.5.2 Tamagawa number hypothesis

With some work, one could remove the hypothesis that the Tamagawa nurnbers of

the elliptic curve must all be 1. This would also produce several more examples.
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Chapter 8

p-adic heights on Jacobians of

hyperelliptic curves

This material originally appeared in joint work of the author with Besser [BB].
Our main result in this chapter is the following

Theorem 8.0.1. Let D 1, D 2 be divisors on a hyperelliptic curve C with disjoint sup-
port over Qp. There exists an explicit alqorithm which computes the local height
pairing at p, hp(D 1 , D 2) = .fD2wD1 . for an appTopriately constructed differential 'D 1

associated to the divisor Di.

8.1 Introduction

For an elliptic curve over Q, the classical Birch and Swinnerton-Dyer (BSD) conjec-
ture predicts that a special value of its L-function can be given in terms of certain
arithmetic invariants of the curve, one of which involves the canonical height pairing
matrix of a basis of rational points. The p-adic analogue [MTT86] of the BSD conjec-
ture makes a similar prediction, with the canonical height pairing replaced by a p-adic
one [MT83]. These conjectures have natural generalizations to abelian varieties.

The p-adic height pairing was first defined by Schneider [Sch82] for abelian va-
rieties and was extended to motives by Nekovir [Nek93]. For Jacobians of curves
there is a third definition, due to Coleman and Gross [CG89], relying on Coleman's
theory of p-adic integration [Col82, Col85, CdS88, Bes02a]. This third definition of
the height pairing is known to be equivalent to the previous ones [Bes04].

For the purpose of numerically verifying p-adic BSD type conjectures, it is impor-
tant to have an effective algorithm for the computation of the p-adic height pairing.
By the work of Kedlaya [Ked0l] and Mazur, Stein, and Tate [MST06], we can easily
compute p-adic heights on elliptic curves. Our work deals with the next logical step,
p-adic height pairings on Jacobians of hyperelliptic curves.

The reason for treating Jacobians is that we have available the Coleman-Gross
definition of the height pairing, which is much more concrete than previous definitions.
The restriction to hyperelliptic curves is made primarily so that we may apply the
recent algorithm [BBK10] for the computation of Coleman integrals on such curves.



relying in turn on Kedlaya's work on the computation of the matrix of Frobenius on

hyperelliptic curves [Ked0l). We note that generalizations of Kedlaya's work to other

types of curves can be applied to generalize the results to these curves as well.

Coleman and Gross give a decomposition of the global p-adic height pairing as a

surri of local height pairings at each prime. The local heights away from the prine p

behave in much the same way as local archimedean heights, so the main interest lies

in the primes above p, where Coleman integration is used. It is this last type of local

height pairing which we aim to compute.
To fix ideas, consider a hyperelliptic curve C over Qp with p a prime of good

reduction. Then, for D1 , D2 in the group Div0 (C) of degree 0 divisors on C, with

disjoint support, the Coleman-Gross p-adic height pairing at the prime p is given in

terms of the Coleman integral

hp(D 1 , D2 ) = - 1
J D2

for an appropriately constructed differential WDI associated to the divisor Di. This

last association is not straightforward and relies again on Colemlan integration.

We say next to nothing in this work about the coInputation of local height pair-

ings away from p. As nentioiied above, this is not a p-adic problern and is shared

with the computation of archirnedean height pairings. In [BesO7], Besser suggested a

m1ethod for treating this problem, which needed in particular sonme refined estimates

of Kausz [Kau99]. In the meantime, we have learned that this problem is treated in

the recent Ph.D. thesis of Mnller [MnIl10].

The structure of the chapter is as follows: in Section 8.2, we review the work

of Coleman and Gross [CG89]. After restricting our focus to hyperelliptic curves in

Section 8.3 we describe, in Section 8.4, a new construction that allows us to compute

a broader class of Coleman integrals that the heights necessitate. We describe the

algorithm for computing the local height pairings in Section 8.5. In Section 8.6,

we discuss our implementation of the algorithm in Sage along with error bounds on

our results. We follow this in Section 8.7 with numerical examples illustrating our

methods. We conclude in Section 8.8 by posing some questions arising from our work.

8.2 The p-adic height pairing

In this section we review the definition of the Coleman-Gross height pairing. As

explained in the introduction, there are two required ingredients for making this

definition: the theory of Coleman integration and a certain choice of a canonical

form. These will be discussed in detail in a later section.

Suppose X/K is a curve defined over a number field K, with good reduction at

primes above p. To define the height pairing

h : Div0(X) x DivO(X) -- (Q,

one needs the following data:



A "global log'- a continuous idele class character

C: Ak/K* -+ Q,.

* For each vip a choice of a subspace W, C HdR(XC K/K,) complementary to
the space of holornorphic forms.

For the definition of the Coleman-Gross height we must insist that the local characters
., induced by f, for vjp, are ramified in the sense that they do not vanish on the units
in K,.

From ( one deduces the following data:

" For any place v { p we have (,(0*) 0 for continuity reasons, which in-

plies that (, is completely determined by the number {.(T), where 7, is any
uniformizer in KV.

" For any place vlp we can decompose

QP (8.2.1)

K,

where t, is a Qp-linear map. Since we assume that , is ramified it is then
possible to extend log, to

log : K* - (8.2.2)

in such a way that the diagram remains commutative.

Let us now describe the height pairing h(D 1 , D 2 ) for a pair of degree zero divisors
D1 and D 2 with disjoint support. The height pairing is a sum of local terms

h(D 1 , D 2 )= hv(D1, D2 )

over all finite places v. The local terms depend only on the completion at v of K.
Thus, let k be a local field of characteristic 0, with valuation ring 0, uniformizer r
and let F = 0/i0 be the residue field, with order q. Let C denote the curve X over
the local field k. We shall assume that C has a k-rational point and that C has good
reduction at i.

Let X : k* - Q, be a continuous homomorphism, which is the local component of

Proposition 8.2.1. If char F / p. there exists a unique function (D 1, D 2 ) de-
fined for all D1 , D 2 e Div0 (C) of disjoint support that is continuous, synmetric,
bi-additive,takiing values in Q,. and satisfying

((f), D 2 )= X(f (D2 )) (8.2.3)



for f E k(C)*.

Proof. See [CG89, Prop 1.2]. In fact, one has [CG89, (1.3)]

hv(D 1 , D2 ) = ev (7r) - (DI, D 2 ) . (8.2.4)

Here, (D 1 , D2 ) denotes intersection multiplicity on a regular model of C over 0 of

extensions of Di and D2 to this model. To make this have the required properties one

of these extensions has to have zero intersection with all components of the special

fibre.

We now describe the local contribution at a place vlp. Let us first recall the

following standard terminology.

Definition 8.2.2. A rneronorphic differential on C over k is said to be of the first
kind if it is holonorphic, of the second kind if it has residue 0 at every point, and

of the third kind if it has a simple pole with residue in Z (at every point it is not

holornorphic), respectively.

Recall that the differentials of the second kind, niodulo exact differentials, i.e..

differentials of rational functions, form a finite dimensional k-vector space of diien-

ion . It is canonically isomorphic to the first algebraic de Rhan cohoniology of

C/k, HjR(C/k). which is the hypercohomology group of the de Rhain complex

0 -- k Oc-+_b 0

on C. We have a short exact sequence

0 -+ H0 (C, 96) - H' j(C/k) -+ H1(C, 0c) -+ 0, (8.2.5)

where, relying on the description of de Rham cohomology in terms of forms of the

second kind we have

" H0 (C, Q'/), the space of differentials of the first kind, is identified with its

image. It has dimension g, and we will denote it H20(C/k).

" H 1 (C, Oc) also has dimension g and may be canonically identified with the

tangent space at the origin of the Jacobian of C, J = Pic (C).

* HjR(C/k) has a canonical non-degenerate alternating form given by the alge-

braic cup product pairing

HdR(C/k) x HIR(C/k) -+ k

([1), [/"2]) - [p1] U [ ,

which can be described by the formula

[P1] U [/12] = Resp (/ 2 f 1), (8.2.6)
P



where p., p are differentials of the second kind, with classes [pil and [/121,
respectively, in HdjI(C/k) and the sum is over all points in C. The residue does

not depend on the choice of a particular local integral for pi because 12 is of

the second kind and has no residue at any point.

We will also need the theory of Colerman integration, as in Chapter 3. For forms

that have residues, the Coleman integral depends on the choice of a branch of the

p-adic logarithm function. We fix this choice for the computation of the local height

pairing to be the one determined in (8.2.2).
Let T(k) denote the subgroup of differentials on C of the third kind. We have a

residue divisor homomorptism

Res : T(k) -+ Div0 (C), Res(w) ZResp w
P

where the sum ranges over all closed points of C. That the image is contained in

Div 0 (C) is just, the Residue Theorem. By the residue divisor homornorphisn, T(k)

fits into the following exact sequence:

0 Q P(C/k) T(k) "s Div 0 (C) 0. (8.2.7)

We are interested in a particular subgroup of T(k) whose elements are the logarit --

mic differentials, i.e., those of the form f for f E k(C)*. We denote this subgroupf CD().W eot hssbru

as T,(k). Since TI(k) n H{J (C/k) = {0} and Res( ) = (f). we deduce from tie

sequence (8.2.7) the short exact sequence

o - H (C/k) -+ T(k)/Ti(k) -+ J(k) -+ 0.

This sequence has a natural identification with the k-rational points of an exact

sequence of commutative algebraic groups over k:

0 -s H (C/k) -> E > J -4 0,

where E is the universal extension of J by a vector group and H"(C/k) ~ G(.

Since the Lie algebra of E is canonically isomorphic to Hja(C/k), the exact sequence

(8.2.5) is the resulting exact sequence of Lie algebras over k.
Now as k is p-adic, we will make use of the fact that we have a logarithmic

homomorphism defined on an open subgroup of the points of any commutative p-adic

Lie group, G, to the points of its Lie algebra Lie(G). When G = E or J, the open

subgroup on which the logarithm converges has finite index, so the homomorphism

can be uniquely extended to the entire group. We denote this extension as logE
or logj, respectively. Since the logarithm is functorial and equal to the identity on

H R(C/k), we obtain the following:

Proposition 8.2.3. There is a canonical homomorphism

P : T(k)/Ti(k) -- Hj(C/k)



which is the identity on differentials of the first kind and makes the following diagramn
comm ute:

0 H1- (C/k) - E(k) J(k) - 0

\P=logE IlOgg

0 Hd (C/k) : HR (C/k) H1 (C,C/k) - 0.

Note that the map T takes a differential of the third kind on C to a differential

of the second kind modulo exact differentials, sending log differentials to 0. It can

be extended to a linear map from the k-vector space of all differentials on C/k to

Hda(C/k) by writing an arbitrary differential v as a linear combination v (i/li +
7, where pq is of the third kind, a c k, and 'y is of the second kind on C. We then

define T (v) = E ai T(pi) + [].
The definition of the log map T is not very useful for computations. An equivalent

alternative definition has been given in [BesO0]. It is based on the notions of local

and global symbols or indices, also discussed there. A simplified version, sufficieni

for our purposes is given as follows.

Definition 8.2.4. For o; a meromorphic form and p a form of the second kind. we

define the global symbol (. p) as follows. Fix a point Z. Then, the global symibol is

a surn of local symbols (wbpA4,

Kwi,pf) r (9)A,
A

where

(w, p)A= ResA o) , (8.2.8)

where f p is the function Q Qf p. The sum is taken over all points A where either

p or o has a singularity.

To compute the local symbol (W, p)A one needs to compute a local expansion of

p around A, integrate it term by term, fixing the constant of integration to be the

Coleman integral fj p, and then multiplying by w and computing the residue at A. If

p is singular at A one should instead fix the constant of integration so that the value

of the integral at a nearby point A' matches f4 p. However, if w is not also singular

at A, then the choice of constant of integration does not matter.

The following result [BesOO] reduces the computation of T to the computation of

global symbols.

Proposition 8.2.5. Let w be a meromorphic form and p a form of the sccond kind.

Then (w, p) = T (w) U [p].

Proof. See [BesO0, Prop 4.10]. l



Remark 8.2.6. For the actual cornputation of p-adic height pairings we will need a

more general version of Coleman integrals and local indices, see below subsections

8.4.1 and 8.4.2.

Now recall that we have at our disposal the cornplementary subspace / = W.

It allows us to isolate a canonical form WD with residue divisor D as follows.

Definition 8.2.7. For any divisor D of degree 0 on C we let WD be the unique form

of the third kind satisfying

res(wD) = D, T(b)D) E W

It is easy to see from the properties of qI that this indeed uniquely defines the

form WD-

Definition 8.2.8. The local height pairing is defined by

hov(Di, D2) :-= tu (JL Dj

(recalling that the supports of D1 and D 2 are disjoint), where t,, is the trace map

determined by the decomposition of C (see (8.2.1)).

Remark 8.2.9. In certain cases, there is a canonical complement W to H(j,(C/k) in

HdR(C/k). Namely, when C has good ordinary reduction, we may take / to be the

unit root subspace for the action of Frobenius.

Some properties of the local height pairing are as follows:

Proposition 8.2.10. The local height pairing h0 (D1 , D2 ) is continuous and bi-additive.

It is symmetric if and only if the subspace W of H(C/k) is isotropic with respect
to the cup product pairing. Finally, the forrula (8.2.3) continues to hold.

Proof. See [CG89, Prop 5.21. IZ

8.3 Hyperelliptic curves

Let us now suppose that C is a hyperelliptic curve. The curve C is singular only at

infinity (and non-singular when g = 1). To describe the neighborhood of infinity we

normalize the curve there and obtain the equation at infinity

2 1 t
t2 rev(s) with x=, y = +1, (8.3.1)

where fr**(s) s 2
g+lf(1/s) is the reversed polynomial. As is well-known, the first

de Rharn cohomology of C has a basis consisting of the forms of the second kind

.rdx
wi := for i = 0,...,2g - 1.

2y



We will denote this basis as (&d xdx x 2y-1dx{ -d .d . __._ . (8.3.2)
2y' 2y ' 2y(

If we make the change of coordinates (8.3.1) we see that these are transformed as

follows:
xidx g_1_ ds

--

2y 2t

Since s has a double zero at the point at. infinity one sees that these forms are

holomorphic for i = 0, . . . , g - 1 and mneromorphic otherwise. We finally recall the

hyperelliptic involution w defined by w(x, y) = (x, -y).

8.4 Coleman integrals

Here we review the relevant background on Coleman integrals and describe new tech-

niques to compute Coleman integrals of meromorphic differentials with poles in "non-

Weierstrass" residue discs. This gives us the necessary tools to present our algorithi

to compute local heights.

8.4.1 Generalities on Coleman integrals and symbols

We begin with a result that is needed to formulate our algorithms on annuli:

Theorem 8.4.1. For a fixed P and for Q restricted to a single residue disc co ntaincd

in U. the Coleman integral f] p is analytic and its diferential is the reIsrictlI of ,

to that residue disc. The same is true on an annulus around one of the D 's, contained

in U. provided that the residue around this annulus is 0.

Proof. See [CdS88] for the general theory. l

Here we present a new method to compute Coleman integrals of meromorphic

differentials with poles in non-Weierstrass residue disks. This gives us the necessary

tools to present our algorithm to compute local heights.

Suppose now that k = Qp, and throughout, let # denote a p-power lift of Frobenius.

Definition 8.4.2. The Weierstrass residue discs in C are the residue discs of the

Weierstrass points on the reduction.

We will consider a wide open space U, obtained by throwing away from C, within

each Weierstrass residue disc, a disc of sufficiently large radius smaller than 1.

8.4.2 Integration of forms with poles outside Weierstrass discs

The above approach does not work for a meromorphic differential with poles in non-

Weierstrass residue discs. We provide a new approach for dealing with this case

(again we describe things only over Q, but things work in general). Let w be such



a differential. As before, if R, S are points in the same non-Weierstrass residue disc
(different from those discs containing the poles of w), then w R is just a tiny integral,
which can be computed as in Algorithm 4.3.1. Let us now suppose that R, S are in
distinct non-Weierstrass residue discs.

To explain the algorithm, we need to extend the theory of local and global symbols

in several directions, and in particular to the more general setup of rigid forms on
wide open spaces. For the (essentially) full story we refer to [BesO0]. First of all,
we can extend Definition 8.2.4 to any two meromorphic forms W and p provided that
there are no points where both have non-trivial residues. This is done by setting.
when ResA W = 0,

(W, P)A -ResA (P J . (8.4.1)

This is consistent with the previous definition when also ResA p = 0. The above
reference deals also with the case where both forms can have non-trivial residues at
a point, but this is not required for the present work.

Next, we consider the extension to wide open spaces. Suppose that the wide open

space U is obtained from C by removing discs Di. One can then define the residue
at De to be the residue on a small annulus around Di with respect to a paramneter
that maps De to some disc around 0. We can say that a differential form p on U is
of the second kind if the residues around each Dj is 0 (It is possible, however, that p
will have singularities inside D with residues, but that their sum is 0). This implies,
by property 8.4.1 of Coleman integration, that on an annulus around Di the form p
will have an integral which is a Laurent series in the local pararneter. Then, for an
arbitrary form o on U the notion of a local symbol from Definition 8.2.4 and (8.4. 1)
continues to make sense, provided we replace residues along points by residues around
the Di.

Algorithm 8.4.3 (Coleman integration: differential with poles in non-Weierstrass
discs).
Input:

e The differential w with residue divisor (P) - (Q), with non-Weierstrass points
P, Q E C(Qp).

" Points R, S E C(Qp) in distinct non-Weierstrass residue discs, not equal to P
and Q.

Output: The integral f[ W.
The algorithm:

1. Let a - *(w) - pw. Using the methods of Section 8.5.2, compute 41(w). Using

this, set 'I'(v) as #*(T (w)) - p41(w).

2. Let # be a form with residue divisor (R) - (S). Compute T(B).

3. Compute the cup product I(a) U TI(#) (see Section 8.5.1 for more details).



4. Evaluate the tiny integrals Jf cc and 5(R,) c

5. Let S be the set of points and discs which are either poles of a on U, or the discs

in the complement of U,.. For each A E S compute the residue ResA(a J f3)

and compute the sum

ZResaGIaJ#).
AeS

Here, when A is a pole of a, even though the integral f 3 is required only locally

at A one needs to compute it as a convergent, power series on a residue disc, so
that for all points A in the same residue disc the same integral is used.

6. We obtain the desired integral using the formula (see Remark 8.4.4)

T 1 (a) U T (#) + > ResA a f - cc - o L).

(8.4.2)

Remark 8.4.4. We obtain (8.4.2) as follows:

1 /.R c/)*o pf o (8.41.3)

S S S'&(R) R

(S) :S

R SO(R)

S pO(S) +R

At this point we need to use the full strength of the theory of local symbols [BesOO].
It tells us that 'I extends to rigid forms on wide open spaces, and that with this

extension we have indeed T (a) = 4*(T ()) - pA'(w). It furthermore gives us the

formula

1P (0) U j(B) = (a#).
A

The last sum separates into two sums. The first is over A E S. Here we can take,
according to (8.4.1),

(a,#3) = - ResA (a .

The second surn is over the two singular points R and S of 3. This sum reads as

ResR(# a) + Ress(# a) = a



Thus, we obtain

T(ca) U (B) = - ReSA ( J .

From this and (8.4.3), formula (8.4.2) is easily derived. We just need to note that the

form ai is "essentially" of the second kind, in that its residue around each annulus

surrounding a residue disc is 0 (because #* multiplies residues by p). This means

that for the discs A in the sum over S we can indeed compute the local symbol as

stated, and that instead of using a Coleman integral for 3 we may just pick any

integral, consistently on each residue disc, as it will differ from the Coleman integral

by a constant on that disc and the surm over the disc will be modified by the product
of this constant with the sum of the residues of V on the residue disc, which is 0.
Another remark is that the above fails if L has a singularity at #(R) or #(S) (even

though the integral is actually defined). The simplest solution to this problem is to

move R or S within their residue disc, recompute and complement with tiny integrals.

Remark 8.4.5. In practice, the computation in Step 5 of Algorithm 8.4.3 is the slowest

part of the algorithm as it involves high-precision local calculations over all poles of

a. In particular, Frobenius introduces essential singularities at W'Veierstrass points,

and the computations in Weierstrass discs are done in annuli with Laurent series

with an essential singularity. However, since ETEU ResT(av) = 0 in each residlue disC
U, for the Weierstrass discs, we do not need a constant of integration. For the non-

Weierstrass poles of a, we may choose one constant of integration within each residue
disc. More precisely, if P and Q are in separate residue discs., we compute

Resa ( = trk(x(Pi))/k (Resp, (a 1 # = trk(,(Pi))/k
AeUp

ResA (a # - trk(x(Q))/k (ResQ1 (a jQ = trh;(.(Qi))/k (- - 3)

where Up (resp, UQ) is the residue disc of P (resp, Q) and x(P1) (resp. x(Q 1 )) is a

root of xP - x(P) (resp, xP - x(Q)) such that P1 (resp, Q1) is in the residue disc of

P (resp Q).

8.5 The local height pairing at primes above p

In this section we will explain the algorithm that computes the local height pairing

at a prime above p for degree zero divisors on the hyperelliptic curve C. Recall that

we have as additional data the complementary subspace W and the character y from

which we deduce a branch of the logarithm to be used in Coleman integration and

the trace map t, (we keep the subscript v at some places for clarity, even though it

now serves no purpose).
Let D1 and D 2 be two divisors of degree 0 on C. Our main algorithmn computes



the local height pairing h,(DI, D2 ). It may be described in two steps

" Compute the height pairing in the case where Di and D 2 are anti-syIrnmietric
with respect to the hyperelliptic involution (Algorithm 8.5.8)

" Compute the height pairing in the general case using the first case (Algo-
rithm 8.5.7).

Before discussing either algorithm, we begin with some general notes about the
representation of divisors on hyperelliptic curves (see [Kob98, App 55-6]).

Recall that a divisor of degree 0 on C may be written in the form

D = miPi - (Zmi) (oc).

Definition 8.5.1. A divisor D as above is called semi-reduced if the following con-
ditions are satisfied:

" n1 > 0

" If P is in the support of D, then w(P) is not, unless w(P) = Vi in which case
rn, 1.

A seni-reduced divisor is called reduced if in addition

* Ermi < g.

One may represent a seni-reduced divisor D by a pair of polynomials a(x), b(x)
with deg(b) < deg(a) such that

" The projection of EZmiPi on P' is the zero divisor of a(x).

" b(x) is an interpolation polynomial with the property that for Pi = (xi, y) we
have b(xi) = yi.

The condition that D is reduced is equivalent to having deg(a) < g.

Remark 8.5.2. One can associate b uniquely to the divisor by insisting that a(x) |(b(x) 2_
f (x)). This would be less important for us and there are cases we may not achieve
this.

Definition 8.5.3. Let us denote by (a, b) the semi-reduced divisor determined by the
pair of polynomials a and b and call (a, b) the standard representation of the divisor.

It is known that any degree zero divisor D on C is equivalent to a unique reduced
divisor. Furthermore, the reduction is effective. More precisely, passing from an
arbitrary divisor to a semi-reduced one is just a question of adding or subtracting
divisors of functions pulled back fromt P'. Passing from a semi-reduced divisor to
a reduced divisor has an effective algorithm described in [Kob98, App, Alg 2 and
Thin 7.2 ]. Since we know our height pairing satisfies (8.2.3) by Proposition 8.2.10,



which easily allows to pass from a divisor to an equivalent divisor in the pairing there

is no harm in assuming that our divisors are reduced.

Unfortunately for us, reduced divisors are not sufficient. The reason is that since

they always have a component at infinity, two such divisors cannot have disjoint

support unless one of them is trivial. For this reason we will work with the difference

of two reduced divisors.

Definition 8.5.4. The divisor denoted (a, b) - (c, d), where a, and c are polynomials

of the same degree < g, stands for the difference of the reduced divisors defined by

(a, b) and (c, d).

We always assume that the two divisors defined by (a, b) and (c, d) have no corn-

muon components other than at oc. If there are common components they can be

cancelled out.
We will mostly work with anti-symmetric (livisors. Given any zero divisor D,

the divisor D - w*D is anti-symmetric. Conversely, any anti-synmetric divisor is

obtained in this way. It follows easily that any anti-symmetric divisor is equivalent to

D - w*D for a reduced divisor D. There may be several representations in this form

for a given divisor, however, there is just one containing no points P, with i = w(Pj).

In the representation (a, b) for D this is equivalent to having the polynomial a prime

to f.
Definition 8.5.5. An anti-symmetric divisor in standard representation is a divisor

of the form

[a, b] := 1 - w*D

with D a reduced divisor given in the form (a, b). Such a divisor is in 'mrinimal
standard representation if a is prime to f.

As noted before, any anti-symmetric divisor is linearly equivalent to one in stan-

dard representation. For height pairings of anti-symmetric divisors we do not need to

consider differences of such divisors because they do not generically have components

at infinity. Thus, [a1, b1] and [a2, b2] have disjoint support if and only if a1 and a2 are

relatively prime and of the same degree.
We now describe Algorithm 8.5.7. For any divisor D we have a decomposition,

with rational coefficients

1 1
D = -D+ + -D-, D+ = D + w*(D) , D- = D - w*(D). (8.5.1)

2 2

Lemma 8.5.6. Suppose D is given by the representation (ab) - (c,d). Then., the
divisor D- is just [a .c, e] in terms of Definition 8.5.5, where e is obtained by solving

a Chinese Remainder Theorem problem to be congruent to b modulo a and to -d
modulo c.

Proof. If a is prime to c this is clear. In general, suppose (x - a) has multiplicity

n in a and n in c. We may assume n > n. Since we are assuming (a, b) and (c, d)

have no common components, it follows that D - w*(D) is going to have the two



surilands (M + n) [(a, b(a)) - (a, -b(a)], and mo, + n is indeed the rnultiplicity of ac
in ( (it seems though that we can only solve the Chinese remainder problem modulo

the least common multiple of a and c).

On the other hand, D+ is nothing but the divisor of the rational function '(x
c(X)

considered as a rational function on C. It follows from the fact that (8.2.3) is satisfied

by Proposition 8.2.10 that for any E E Divo(C) we have

h (D+, E) = hv(E, D+) - y (E)) , (8.5.2)

where ' (E) means as usual the product of the values of i on the x-coordinates of

the points making up E with the appropriate multiplicities. An easy consequence of

this formula is that

hu(D+, E) = h(E,BD+) = 0 if E is anti-symnnetric. (8.5.3)

Consider now two divisors D1 and D 2 in Div 0 (C). Decomposing into plus and

minus parts it follows from (8.5.3) that

1 1
h(D, D2) =-h (D+ D ) + -h(D , D). (8.5.4)

2)=4 4t

The first term can be conputed using (8.5.2), while the second teriri is a height pairing

between anti-symmetric divisors. This immediately gives the following algorithm.

Algorithm 8.5.7 (p-adic height pairing for general divisors).

Input:

" The subspace W, branch of logarithm and trace map t.

* Divisors D 1 and D 2 with disjoint support given as

Di = (ai, bi) - (ci, di)

D2 = (a2 , b2) - (c2, d2).

Output: The local height pairing h,(D 1, D 2 ).
The algorithm:

1. Compute expressions for the divisors D- and DI using Lemma 8.5.6.

2. Compute using (8.5.2),

hv(D , D') = X((a1/c1)(Df )).

3. Compute, using Algorithm 8.5.8, the local height pairing for anti-symmetric

divisors h(De , D2).

4. Substitute in (8.5.4) to obtain h,(D1, D2).



We next turn to Algorithm 8.5.8 for the case of anti-symmetric divisors D1 and D2.
First of all, we have to introduce yet another decomposition. The algorithm behaves

differently with respect to parts that reduce to the Weierstrass points (Weierstrass

divisors) and those which do not. We can decompose a divisor D into the sum of its

Weierstrass part Dw (the part consisting of all the points reducing to a Weierstrass

point) and its non-Weierstrass part D". Then, in a similar way to (8.5.4) we have

the decomposition

hj(DI, D2 ) = ho (D1 , D27) + h, (Dw, D""W) + hv(D"w, D"w). (8.5.5)

We may now outline the algorithi:

Algorithm 8.5.8 (p-adic height pairing for anti-symmetric divisors).

Input:

* The subspace W, branch of logarithm and trace map t.

" Anti-symmetric divisors D1 and D 2 given in standard representation (a1 , bi),

(a2, b2 ).

Output: The local height pairing hJ(D1 , D2 ).
The algorithrn:

1. Corpute the cup product matrix for a basis of HjR(C/k).

2. Compute D' and D"".

3. Write down forms v' arid v"" with residue divisors Dw and D", respectively.

4. Compute the form WDr E W and a holomorphic form w1 such that

WDnW = Vnw - 1 E W

5. Compute the tiny Coleman integral ho(D 1 , Dw) t(f (wD + v"1W - q1))

6. Compute the Coleman integral h,(Dw, D"") - t(fDw WDi)-

7. Compute the Coleman integral h, (D"I, D"W) =t(f j4w - fDg" ni)'

8. Compute h, (D1 , D2 ) using (8.5.5).

Remark 8.5.9. Note that it is also possible to directly compute the heights without

these decompositions. In this case, we have the following algorithm:

Algorithm 8.5.10 (Coleman-Gross local height for hyperelliptic curves (alternate al-

gorithm)).
Input:



" Hyperelliptic curve C of geis q over k = Q, of the form y2 = f(x), with

deg f(x) = 2g + 1, such that p is a prime of good ordinary reduction for C and

all finite Weierstrass points of C are Qp-rational,

" Divisors1 D1, D2 E DivU(C) of the form D1 = (P) - (Q) and D 2 = (R) - (S),
where P, Q g UR, Us and none of P, Q, R, S Weierstrass.

Output:

* The p-comiponent of the p-adic height pairing hD(D, D2 ) = W,1'

Algorithm:

1. From D1 to w. Choose o a differential of the third kind with Res(w) = D1 .

2. The map T. Compute log(w) NJ(w) for w a merornorphic differential.

3. From o to wD 1 and rj. Via the decomposition

H]R(C/k) H"(C/k) (W 1,

write

log(w) = 0 log(wD 1),

where rt is holoiorphic, and log(wD1 ) E W. This gives wj),

4. Coleman integration: holomorphic differential. Compute D. r'

5. Coleman integration: meromorphic differential. Let # be a p-power lift

of Frobenius and set a := #*w - pw. Then for # a differential with residue

divisor D 2 = (R) - (S), we compute

1 ( ) U T(#) + ZRes ( (
-R(R) )

(8.5.6)

6. Height pairing. Subtract the integrals to recover the pairing:

JR
sc-h(D 1 , D2 ) RS

We now add some further details on each of the quantities appearing in our algo-

rithms.

'For ease of presentation., D1 and D2 will be chosen in this manner, though the algorithm applies
to any D1 , D2 E Divo(C) with the integrals computed accordingly.

S- r/.

ID 2 S S-S )

bi(P) -(Q) =



8.5.1 Computing cup products

We first compute the cup product, between any two elements of the standard ba-

sis (8.3.2) for Hja(X/k). This is easily done using the formula (8.2.6).

We can be a bit more precise as follows.

Definition 8.5.11. The cup product matrix associated to C with respect to B is the

2g x 2g matrix with entry ai, given by the cup product of differentials [os_] U [wg_1,
normalized so that [w1] U [w_ 11] = Res(wy_1 f 1

By computing in the local coordinates at infinity, we may record the following:

Lemma 8.5.12. The cup product matrixfor C with respect to B satisfies the following
properties:

1. Anti-diagonal elements are given by the sequence

{ l 1Y~ 1 11
2g - I' 2gq - 3'' 3'' ' 3 2gq -- 1

2. Entries abovei the anti-diagonal are 0.

3. Diagonal elements are 0.

Example 8.5.13. The cup product matrix with respect to B for an elliptic cutrve is

-1 ). Note that the subspace spanned by is isotropic. In particular, for

genus 1, we may take H2(C/k) spanned by wo and W spanned by wi, and we need

not require p to be a prime of ordinary reduction for the pairing to be symmetric.

8.5.2 The map A

We compute T of a differential o by writing

T (W) = COwO + -.. + C2g-1W2g-1,

and solving for the coefficients ci. This is done by considering a linear system involving

global symbols and cup products:

2g-1

(wo) - NP(w) U [wj] = j ci([w ] U [wI]).
i=O

Recall that as in Definition 8.2.4, we calculate the global symbol as a sum of

local symbols, each of which involves a Coleman integral and a calculation in local

coordinates. This computation is actually much simpler:



Proposition 8.5.14. Suppose w is a form of the third kind with residue divisor D
which does not contain oo. Then we have

(w,1)= wi + Res., (wi w ,

where the residue at oo is computed by taking any anti-derivative of wi.

Proof. The sum of local symbols is over all points where either o or wi has a singu-

larity. These are the points in the support of D and possibly the point oo. Since w

has a simple pole at each point P in the support of D, the local symbol is simply the

multiplicity of D at P times .fj w, (where Z is a fixed point throughout the global

symbol calculation). Surniming over all points gives f> wi. On the other hand, since

we are assuming that, w is holornorphic at oc, the choice of the constant of integration

for wi at o does not matter. E

Now letting N denote the cup product matrix, we have

(W, WO)

8.5.3 Decomposing a divisor D into D' and D"w

This is very easy to do. When the divisor is given in standard form [a, b] one just

reduces a modulo the prime rr, picks up the part, that reduces to Weierstrass points by

taking the greatest common divisor with the reduction of f, and then applies a Hensel

lift to get the factor a" of a corresponding to the points reducing to Weierstrass. Then

we have a" = a/aw, from which one may deduce the divisor decomposition.

8.5.4 A form with the required residue divisor

This is an easy task with the following.

Proposition 8.5.15. Let D be an anti-symrnetric divisor in standard representation

[a, b]. The differential form
a'(x) b(x) dx

a(x)y

has simple poles and its residue divisor is D.

Proof. Suppose that (a, b) = E m Pi - (E mi) (o). We can write w = (b/y)da/a.

The form da/a has simple poles at ±P, with residue m while b/y has value 1 at Pi,

and value -1 at tP.. On the other hand we can also write W (a'b/a)(x) and since
dx is holomorphic, it follows that w has no poles where a does not vanish. Finally, it2 y
is easy to see that w (does riot, have a pole at infinity.
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8.5.5 Finding WD for a Weierstrass divisor D

Suppose we have already written down a form whose residue divisor is D. Since the

singularities of the form are contained in the Weierstrass residue discs, it is amenable

to the reduction algorithm done in Kedlaya's algorithm [Ked01]. This means that we

may compute a representation of a; as a linear combination of the basis B plus an

exact differential dg. Since it follows that Ij(w) is just the above combination of basis

elements, we need only subtract the appropriate combination of holomorphic basis

elements to make it reside in W.

8.5.6 Finding WD for a non-Weierstrass divisor D

We start with a form L whose residue divisor is D. We compute T(Tw) as in Subsec-

tion 8.5.2. All that is left to do is to let rj be the projection of 11(w) on H' along
R.

8.5.7 Integration when D 2 reduces to Weierstrass points

Suppose that the points of D 2 reduce to the Weierstrass points. Since D 2 is anti-

symmetric, this means that in computing the integral we need to take the suni of

differences over pairs of points ±P which reduce to the same point. This is a sum of

tiny integrals.

8.5.8 Computation when D1 is Weierstrass and D 2 is not

In this case, we are given, by the previous reduction, the form wD1 as a combination

Z oowi + dg. Thus ID2 WD1  i Z C/w; + q(D 2). Since the points of D2 are
in the domain where the integrals of the wi may be computed, this is a standard

computation.

8.5.9 Computation when both divisors are non-Weierstrass

In this case, WD1 is given in the form vi - w1, where v/i is a form with residue divisor

D1 and q1 is holomorphic. The integral of rj1 poses no problems while that of vi is

discussed in Subsection 8.4.2.

8.6 Implementation notes

In this section, we discuss the choices made in our Sage [S+ 11] implementation and

give error estimates on the precision of our results. We work over Q, with a precision

of n digits; note that if one desires an answer with n digits of precision, one has to

start with a larger working precision, as seen below.

We only discuss the computation for anti-symmetric divisors, as the extension to

general divisors is trivial, as discussed in Section 8.5. Furthermore, our implemnenta-

tion assumes that the divisors are of the form (P) - (-P) for a Qp-rational point P,
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as it is then quite easy to consider cases when the divisor is a sum of such expres-

sions. Finally, all computations are done with respect to a particular choice of the

complementary subspace W, which we describe below.

8.6.1 Auxiliary choices

Our algorithm relies on the splitting

HjP(C/k)~ Hji(C/k) W,

which allows us to write

4(1%) =rh + 'I(WD1),

where r-1 is holomnorphic, and J(WD1) E W17.

As noted in Example 8.5.13, wheng = 1, we may simply take Hjj (C/k) spanned

by wo and W spanned by wI. Note that for genus q > I it does not suffice to take W

spanned by og, o+I- - - - , 2_-I, as the resulting subspace is not necessarily isotropic.

While the local height is independent of basis, it is not independent of the choice

of /. For the local height to be symmetric, it is necessary that W be an isotropic

subspace. For g > 1, we thus further require that p be a prime of ordinary reduction,
so that W can be (iosen to be the unit root subspace. Suppose p > Y so that the

standard basis is crystalline. Generalizing [MST06], we compute a basis for IV as

follows:

Proposition 8.6.1. Suppose p > 2g -1 (so that the matrix of Frobenius is p-intgral).
Let rn be the wuorkigrf precision in the underlying base ring Zp, so that all computations
are done mod ulo p". Let Frob denote the matrix of a p-power lift of Frobenius. as act-
ing on the standard basis B of HJa(C/k). Then {Frob"o w, Frob'ow+ 1 , ... ,Frob"W 2qm}
is a basis for W.

Proof. With the integral structure provided by crystalline cohomology, it is well

known that Frob maps the holomorphic forms to p times the integral structure. Thus,
with W the unit root part decomposing a vector v into w + r with w E W and r

holomorphic it is easy to see that Frob" v is in W + p" times the integral structure.

In other words, up to the prescribed precision, Frob' ?' lies in W. On the other hand,
Frob is invertible so starting with g independent vectors modulo the holomorphic

differentials one gets g independent vectors in W. E

8.6.2 Precision

Broadly speaking, the p-adic precision of a local height depends on two types of

calculation:

1. Coleman integrals of basis differentials (or otherwise "nice" differentials - e.g.,
holomorphic in the discs corresponding to the limits of integration) and

2. expansion of local coordinates at a point.
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Each key step of the algorithm in Section 8.4.3 can be categorized as depending on

one or both of these:

" T(vi) needs the cup product matrix (local coordinates) and local symbols (Cole-

man integrals of basis differentials)

* . I1 is a sum of Coleman integrals of basis differentials

e fvi is defined in terms of

- tiny integrals (Coleman integrals of a "nice"' differential),

- sums of residues of Laurent series (local coordinates), and

- (a), '(/3) (as above).

Precision of Coleman integrals

We will now carefully review the precision of each of the objects we conputed, as an

expansion of the overview in @3.3.1. Let vp be a differential with residue (livisor

Dp = (P) - P)

and B a differential with residue divisor

Dg = (Q) - (Q).

The precision of (up) (and PQ()) just depends on the Coleman integral involved,
as the residue can just be read off of the differential.

After computing I(vp) with respect to the standard basis of Hj(C), we fix a

splitting of Hj(C/k) into H"(C/k) D W, which gives qp and wDp = VP - r. SinCe

the height pairing is given by ,f WDr, we need to compute the integrals f vp and f mm.
The integral f jp is just a linear combination of the integrals of holomorphic basis

differentials. On the other hand, the integral of up requires the computation of I(a),

4(#, Z Res~a f #), and the tiny integral f up. As before, the tiny integral is

computed with precision as in Proposition 3.3.1.

Since a = c*vp - pup, we may write T(a) in terms of things we have already

computed, namely T(a) = Frob(4'(vp)) - pI(vp). So we need not do more work

here. However, the precision of E Res(a f )) merits further discussion, as we must

consider its representation in local coordinates.

Precision: local coordinates

Computing with local coordinates is crucial to the algorithm. More precisely, for any

point P, we must construct power series x(t),y(t) for a local parameter t such that

P = (x(0), y(0)). To explicitly compute with power series, we need to know where

(t-adically) it is acceptable to truncate them.
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Precision: Cup product matrix.

The first instance this problem arises is in the computation of the cup product matrix,
as wj must be written in terms of the local coordinates x(t), y(t) at infinity. Let vi

denote the t-adic valuation. Since vt(wy) = 2(g -j) -2, which is minimal for j = 2g -1,
we have min Vt(wj) = -2g. Thus it suffices to compute each basis differential w, to a

precision of t 2 g. Consequently, we compute x(t) to a precision of t 2(29- 1) and y(t) to

a precision of t2 --1.

Precision: E Res(a j U).

Now we consider EA Res 4 (a j ), where the sum is taken over all points A that are

poles of a. We begin by looking at the expansion for a = c*vp - pvp.

As noted earlier, for the non-Weierstrass poles of a, we may choose one constant

of integration within each residue disc. More precisely, if P and Q are in separate

residue discs, we conpute

ResA a J3) = tr1L(xQe))/k (Resp, (JQ =)) trh(x(Q))/I (a jQI

S Res,. a 3) = trakgx(Qj7/k (Reso, a0 BQ = r3ti)/

where Up (resp, UJ-) is the residue disc of P (resp, Q) and x(P1) (resp, x(-Q1)) is a

root of xP - x(P) (resp, xP - x(Q)) such that P1 (resp, Qi) is hi the residue disc of

P (resp Q).
For these computations, we have to compute Coleman integrals and local coordi-

nates, so we must study the precision of both, as given by the followino corollary of

Proposition 3.3.1:

Corollary 8.6.2. Let A be non-Weierstrass, defined over a degree d extension k' of

QP. Let UA denote the residue disc of A, and let B be a non-Weierstrass point in
UA defined over Qp. Suppose a working precision of n p-adic digits (so that A has
precision dn in a uniforrmizer 7 of k'). Let # be written in terms of the local coordinate
(x(t), y(t)) at B, so that U = h(t)dt with h(t) truncated modulo td,. Then the residue

ESCUA Res(a f U) has min{n, dm + 1 - [logp(dm + 1)] } digits of precision.

Proof. Suppose we are working in the residue disc of P and that A is defined over a

degree d extension of Qp. Note that we must compute the local coordinates (x(t), y(t))

at P with a precision of at least tdm. As the interpolation from P to A is linear, we

merely make a linear substitution

x(t) := x((x(A) - x(P))t)

y(t) := y((x(A) - x(P))t).

This new (x(t), y(t)) is used to compute the tiny integral of # from P to A, the result

of which has precision min{n, dm+ 1 - [log,(dn + 1)] }. Taking the trace from K to

104



Q, accounts for the other poles of a in the disc of P.

Finally, in the case where A is a finite Weierstrass point, we have to compute in

the local coordinates of A. (Note that we need not compute the residue at (0, 0) if

on the curve or at infinity.)

Proposition 8.6.3. Let a be above and let A be a finite Weierstrass point not equal
to (0,0). Let (x(t), y(t)) represent the local coordinates at A. Then to compute

Res(a f 3) with n digits of p-adic precision, we compute (x(t), y(t)) to t2 nv--3.

Proof. We have

a #*vp - pup

y(P)pxp- dx

$(y)P(x - x(P))

(-

where

pyj(P)dx
y(x - x(P))'

(f(xP) - f(x)P)
f x)p

For Res(a 1 3) to have n digits of p-adic precision, we must compute a terms of the

binonial expansion of Y
Recall that for a finite WVeierstrass point (a, 0), we have

12
x(t) = a + t2 + 0(t 4 )g(a)

y(t) =-t

where g(x) - . Note that by hypothesis, a f 0. Ve compute the t-adic valuation

of a:

t(a) vt(#*vp) since vp only contributes higher-order terms

( y(P)pxP- dx
#(y)(xp - x(P))

=1+vt Oly)

S1-pvt(y) + (n -

1-p+ (n-i1)

(xP / x(P))

(2 f (xI) - f (x)p

(2 - 2p), if ot(f (xp) -
- 2p, else

Thus we have

vt (a) =
p-2pn+2n- 1, if vt(f(xP) - f(x)P) >0

p - 2pn + 1, else.

105

f(x) ) > 0



As p - 2pn + 2n - 1 p - 2pn+ 1 for n > 1, we have t((a) p - 2pn + 1. Set
in = 2pn - p - 1. Since we want Res~J f B), we need vt( 3f) > -1, so we iust

compute # to at least ti- 2 .
x(t), y(t) to this precision.

To get this precision, we must in turn compute

8.7 Examples

Here we provide some examples of our algorithms.

8.7.1 Local heights: genus 2, general divisors

Let C be the genus 2 hyperelliptic curve

y2 X - 23x3 + 18X2 + 40x = (x - 4)(x - 2)x(x + 1)(x + 5)

over Qu, and let

Di (P) -(Q)

D2 (R) (S),

where P (--4, 24 Q = (1, 6), R (5, 30), S (-2, 12). We describe how to use

Algorithm 8.5.7 to comnpute the local contribution at p = 11.

We see that

D+ = div X-(P
(X - x Q)

D+ = div X-(R

D = [(P) - (-P)] + [(-(Q) -(Q)

D [(R) - (-R)] + [(-S) - (S)).

Furthermore, we have

- log
4

1 g X(R) - X(P)

2 <D( x(R) - x(Q))

X 4 (P) (D+)
X1_7(Q)2

x(S) - x(P)( x(S) - X(Q)
= 2 - 11 + 9 - 112 + 7. 113 +-2. 114 + O(111).

Now we compute, using Algorithm 8.5.8, the contributions from anti-symmetric
heights (details of which are in Subsection 8.7.2):

hl ((P) - (-P), (-S) - (S)) = 9 11

hi ((P) - (- P), (R) - (-R?)) = 6 - 11 I

hl ((-Q) - (Q), (R) - (-R)) = 8 - 11

+ 5 + 6 - 11 + 8. 112 + 9 113 + 3. -1 + O(115)
+ 10 + 7. 11 + 6 . 112 + 3- 113 + 7 114 + O(115)
+ 5 + 7. 11 + 10. 112 + 3. 113 + 7- 11' + O(115)

Q), (-S) - (S)) = 11 -1 + 8 + 7 11 +2 . 112 + 7. 113 + 8 . 114 + O(111),
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which gives

h a (Di T ,D2) (hi ((P) - (- P), (- S) - (S)) +
4 4

hjj((P) - (-P), (R) - (-R))+

hul((-Q) - (Q), (H) - (-R))+
h II((- Q) - (- Q), (- S) - (S)))

6 - 11-1 + 7 + 4 11 + 4. 112 + 3 113 + 114 + 0(115)

Finally, we have

1 1
h, (D1 , D2 ) = -h, (D+, D+) + -hi (D-, D-)

4 11 2 4 2

= 6 - 11-1 + 7+6 -11 + 2. 112 + 4 -114 + 0(111).

8.7.2 Local heights: genus 2, anti-symmetric divisors

Keeping notation as in Subsection 8.7.1, we describe in more detail how to use Algo-
rithm 8.5.8 to compute the local contribution for one of the aniti-symnietric divisors:

kinI((P) - (-P), (H) - (-R)).

For ease of notation, let us call these divisors

Dp = (P) - (- P), DR = (R) -- R).

With respect to the standard basis B, the cup product matrix is

0 0 0 j
N- 0 0 1 0

0= -1 0 - 1

- 0 0

Let up be a differential with residue divisor Dp: we can take Vp - 4 .

We compute I(vp) with respect to the basis {wo, wi, Frob"W2 , Frob" wa3 }:

8 ( 11-' + 9 + 6- 11 + 3- 112 +7. 113 + 114 + 0(111)
7 - 11do + I + 4 - 112 +2 113 +T8 114+0o(115)T Vp) =7+9- 11 +7- 112 + 4 -114 + 8.- 110 + O(116)

2+2-11 +8- 112 +6- _113 +7. 114 +2- 111+0(116)

Let r/p denote the holomorphic component of up. The computation above implies
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that

D rp = (8 11-1 9 + 6 11 +3 - 112 +7. 113 + 114 + 0(115)) Jwo

(7- 11-1i+ 1 + 4 112 + 2 113 + 8 - 4 + O(115)) 'DR W1

5- 11- 1 + 6 + 3. 11 + 113 + 7 114 + O(115).

To integrate up, we compute several quantities. Noting that a = #*vp - pup and

that the T map is Frobenius equivariant, we have

4 (a) = T(#*vp - Pup) = &*(j (up)) - pT (up).

In particular, this makes the computation of #*((up)) rather easy, as we have already

computed ' (vp), and all that is left to (10 is mnultiply by the matrix of Frobenius. We

find that

6 11 +5. 112 + 2 - 114 + 9. 115 + O(11i)
2 - 11 + 10. 112 +8 113 + 6 114 + 2- 115 + 0(11

Wa)4. -It + 6- 112 + 2 - 1 13 + 114 + 9 - 115 + O(11Ii)

3.- 11 + 2- 112 + 8. 113 + 2- 114 + 4 . 11I 5 + O(11,()

We wish #3 to have residue divisor DR, so let p3 # 30= Then

TII(a) U J(3) = 6 + 112 + 9 . 114 + 5 - 115 + 0(11").

To compute E Res(a f #), we must sum over all Weierstrass point and poles of

a. Recall that within a single residue dise, EA ResA(a) = 0. Now computing the

action of T on this differential is slightly more complicated, since instead of just two

non-Weierstrass poles, we have 2p = 2 11 non-Weierstrass poles: those points in the

residue discs of P and -P with x-coordinate (jl(-4)1/11 (where j = 0, ... ,10). This

means we must work over the splitting field L-4 = Qu((, (4)/") of x" + 4 over

Qui to compute the local symbols. Since each set of pth roots is Galois conjugate,
working over L_ 4 yields

Z(vp, w3pj =trL /Q ((up, wi)p1 ),

where PS is the point in the residue disc of P with x-coordinate (1(-4)1/11. We have

the following contribution from the disc of P:

10 - 11 + 9. 112 + 4 113 + 3 - 114 + 4 - 11' + 0(11'),

and the total contribution from non-Weierstrass points is twice this, or

9 . 11 +8 . 112 + 9 113 + 6- 114 +8 . 111 + 0(116).
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Meanwhile, the sum of contributions from all Weierstrass discs is the following:

11 + 4. 113 + 6 - 114 + 11, + O(11t)).

We cornpute the tiny integral

R
vp 8- 11 + 112 + 8 - 113 + 2 - 115 + 0(11').

Putting all of this together, we have

hiI(Dp, DR) = 6 .11-1 + 10 + 7 - 11 + 6 - 112+ 3 . 113 + 7 11' + O(11).

As a consistency check, we also compute hI(DR, Dp). Here we have

vR = 2 + 1l3 + 10_ 114 + 4 l + 0(161)

and

IDe1/R = 5. 11-1 + 2 + 3- 11 + 4. 112 + 8- 11 + 2- 114 + 0(115),

which gives

h I(DR, Dp) 6- 11-1 + 10 + 7 - 11 + 6- 112 + 3. 113'+ 7 114 + 0(11'),

illustrating syimetry of the local height pairing.

8.7.3 Global heights: genus 1

We give an example of our implementation in genus 1, which allows for comparison
of global heights via the algorithm of Mazur-Stein-Tate.

Let C be the elliptic curve

y2 X3  5x,

with Q (-1, 2), R = (5, 10), so that

3

8

We compute the 13-adic height of P:

* Above 13, the local height h13 ((Q) - (-Q), (R) - (-R)) is

2- 13 + 6. 132 + 133 + 5 - 13' + 0(13').

* Away from 13, the only nontrivial contribution is at 3, which is 2 log 3 (by work
of Muller).

* So the global 13-adic height is 12. 13 + 4 - 132 + 10 . 133 + 9 - 134 + 0(13').
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We compare this to Harvey's implementation [Har08] of the Mazur-Stein-Tate algo-

rithm in Sage:

sage: C = EllipticCurve([-5,0])
sage: f = C.padic-height(13)
sage: f(C(9/4,-3/8)) + 0(13^5)
12*13 + 4*13^2 + 10*13^3 + 9*13^4 + 0(13^5)

8.7.4 Global heights: genus 2

We give an example of a pairing of torsion points on the Jacobian of a curve of genus
2.

Let
2 ± 33 - 3 3 3 2 1 1

C : if = x + -x + -x" + -x2 _ _X -
16 4 8 4 16

be the example due to Lepr6vost [Lep95] (as in Example 3.3.4). The divisor (P)- (Q),
where P (-1, 1), Q = (0, i) is torsion of order 29. The curve C has good reduction
at p = 11, and we compute

ha ((P) - (Q), (-Q) - (- P)) - 9.11+7.1 12 +5-11 3 +8-11 4 +5.115+ 7- 116+11+0( 118).

Steffen Mnller has computed that the contribution away from p = 11 is merely at
2, and the height at 2 is given by

h2 ((P) - (Q), (-Q) - (-P)) = log 1 (2)
29

= 2 - 11 + 3 - 112 + 5 113 +2- 114

+ 5. 11' + 3 . 116 + 9. 11' + O(1l').

Indeed, we see that the global 11-adic height is

((P) - (Q), (-Q) - (-P)) = h 2((P) - (Q), (-Q) - (-P))

+ h I((P) - (Q), (-Q) - (- P))

0(118%)

8.8 Future work

Below we discuss some natural questions arising from our work.

8.8.1 Global height pairings

Ultimately, we would like to compute the global height pairing. To do so, we would
again require C to be a curve over a nuriber field K with good reduction at each place
v dividing p. We would also need a continuous idele class character t : A* /K* -
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Q, and a splitting HjI(C/Ko) =H 0(C/K ) ' W for each place v dividing p.
Computing the local heights at those primes o away from p and those above p, the
global height would then be the sum of all local heights. When K Q, the recent
Ph.D. thesis of Mnller [Mill10] addresses these local heights away from p, and putting
together our results, we are able to compute global heights, as shown in Section 8.7.
It would be quite interesting to extend these computations to number fields.

8.8.2 Optimizations

In another direction, it is also of interest to optimize the present algorithm. Currently,
the most expensive step is in computing the Laurent series expansion of a in the
various Weierstrass local coordinates to reasonably high precision. As we are just
interested in the residue of a f B, is there a way to make this faster?

8.8.3 Comparison with the work of Mazur-Stein-Tate

When the curve is elliptic, we are able to compare our computations for the global
height pairing with those of [MST06], as in Section 8.7. But it should be interesting
to cornpare the algorithms themselves. We note that we compute the height pairilng
for divisors with disjoint support. It is obviously possible to compute without this
assumption by replacing one (livisor by a linearly equivalent one with this property.
But it, is also possible to extend the method described in [Gro86. @5]. This extended
method can be compared directly with the method of [MSTO6], as the height is just
the height pairing of a divisor with itself.
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Chapter 9

A p-adic Birch and
Swinnerton-Dyer conjecture

In this chapter, we use the algorithms in the previous chapter, coupled with joint

work with William Stein to compute p-adic L-series and results of iller on local

p-adic heights (away from p) to produce data for a p-adic Birch and Swinnerton-Dyer

conjecture for certain Jacobians of hyperelliptic curves. This conjecture is essentially

a higher-dimensional analogue of the Mazur-Tate-Teitelbaumn conjecture [ITT86].
We begin by fixing notation. For an abelian variety A over Q, let L be the L-

series associated to A, r the analytic rank, III(A) the Shafarevich-Tate group, Q(A)

the real period, Reg(A) the regulator, c, the Tamagrawa number at p, A(Q)tr the

torsion subgroup of the Mordell-Weil group of rational points A(Q), and Av its dual.

Let Jo)(N) denote the Jacobian of Xo(N), the modular curve of level N. Throughout,

we assume that p is a prime of good ordinary reduction for A and that p is not an

anomalous prime.

9.1 Introduction

The Birch and Swinnerton-Dyer (BSD) conjecture gives a precise relationship be-

tween several arithmetic invariants of an abelian variety A/Q. As formulated by Tate

[Tat95], the conjecture states the following:

Conjecture 9.1.1 (BSD conjecture for abelian varieties). Let A be an abelian variety

over Q. Then

s) Q (A) -11\(A)|- BReg(A) - Hp Cp
I A(Q)tors |Av(Q)0 1 s

This conjecture relies on two assumptions: that the Shafarevich-Tate group II

is finite and that the L-series can be analytically continued to s = 1. An analytic

continuation is known to exist for modular abelian varieties over Q, where an abelian

variety is said to be modular if it is a quotient of Jo(N) for some level N. We shall

thus assume that all abelian varieties discussed here are modular. Moreover, it is
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often advantageous to consider optimal qluotients, those quotients of JO(N) for which
the kernel of the quotient map is connected.

In particular, for an elliptic curve E/Q of rank r, the refined BSD conjecture

predicts

Conjecture 9.1.2 (BSD conjecture for elliptic curves). Let E be an elliptic curve
over Q. Then

Lr)(E, 1) Q (E) L (E) Reg(E) -plN '4

rE(Q)tors 2

Furthermore, in the case of elliptic curves, Mazur, Tate, and Teitelbaum [M1ITT86]
give a p-adic analogue of this conjecture:

Conjecture 9.1.3 (p-adic BSD conjecture for elliptic curves). Let E be an elliptic
curve over Q and p a prime of good ordinary reduction. Let Lc(E, T) be the p-adic
L-series associated to E. Then the rank r of E equals ordTQC(,(E, T)) and

iJI(E)| - Reg,(E)
c*(E. 0) = (1 - a- 1) 2  g 1 ( HLIN Q (9.1.1)

E(Q)tors (log(1 + p))r

where Cf*(E, 0) is the leading coefficient of £,(E , T), a is the unit root of h(x) : x 2 _

ax +p (with ap the Hecke eigen value). (log(1 +p))r is a normalization factor present
for the choie of topological generator for 1 + pZ,, and Reg is the p-adic regulator.
the determinant of the matrix of p-adic height pairings for a basis of E(Q)/E(Q)t,.,.

We note in the case of elliptic curves, Conjecture 9.1.2 shares many of the same
arithietic quantities with Conjecture 9.1.3; the nain difference is that the regulator
and L-series are replaced with their p-adic analogues. Similarly, one might expect
that a statement like Conjecture 9.1.1 could be formulated and studied for modular
abelian varieties. To look at this from a computational perspective, one would need to
give algorithms to compute the analogues of the p-adic regulator and p-adic L-series
for modular abelian varieties.

Indeed, it appears that these computations are now feasible in some cases (for
example, Jacobians of hyperelliptic curves), and we describe them in greater detail
below. Using data produced by these algorithms, we conjecture that an analogue of
the p-adic BSD conjecture for modular abelian varieties attached to newforms would
be of the following form:

Conjecture 9.1.4. Let Af be a modular abelian variety of dimension 2 attached to
a newform f and p a prime of good ordinary 'reduction for Af. Let K1 be the real
quadratic field containing the Hecke eigenvalue ap. The Mordell-Weil 'rank of A5
equals ordT(L(Af,T)).

If p is inert in OK , then

|III AS0 - Rg1)AS -MItN Ce
E*(A5, 0) (1 - /)2 . (1 - a-1)2 - (9.1.2)

fA5(Q)tos fA 'f(Q)tors|(log(1 + p)) r
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where L* (A, 0) is the leading coefficient of the p-adic L-series C,,(A,T), CV is the

unit root. - its conjugate, and = is an equality up to a sign c= ±1.
If p splits in 0

1 ,, then

L* (p 0 = L, (p O)*, Ap 0 - I -a 1) '(10|2l1 I 2 U(A f | -Regp( A f) - 11|
L*( P,0 ,,( 0L*( ,0 1 aiP) -(-2 ).A (Q)tc-s|| IAv f(Q)tors|I(log(1 + p))r

where p0 Kf = P1P2, the aY correspond to the two embeddings of Kf into Q,, and

is an equality up to a sign c = ±1.

9.2 p-adic height pairings and regulators

We take as our list of candidate Af those appearing in [FpS+01] of rank 2, as these

have nontrivial p-adic regulator. Let us recall what is known about computing the

quantities appearing on the right side of Equation 9.1.2. As described in [FpS+01],
the order of the torsion subgroups and Tarnagawa numbers c, are computable. While

no general techniques exist to compute the Shafarevich-Tate group III(Af), for each

of the abelian varieties in [FpS+011, the conjectural order of the group is given. condi-

tional on the usual. BSD conjecture. It thus remains to compute the p-adic regulator,
Reg (A1 ).

In Chapter 8, we gave algorithms to compute the local height at p. These results,

combined with those of MUller [Mil10], give the first algorithm to compute p-adic

regulators of Jacobians of hyperelliptic curves. The strategy is to compute each

relevant p-adic height pairing as a sum of local height pairings, which we compute by

Coleman integration (at the prime above p) and intersection theory (at primes away

from p). We will treat Mdller's work as a black box from which we can obtain the

relevant local heights as needed.

Definition 9.2.1. Let D 1 ,... , D, be a set of generators of J(Q)/J(Q)tors. The p-adic

regulator is the determinant of the matrix M whose entries mnij are the global p-adic

height pairings

mij =(i Dy ), hi (Di, Dj).

Rermark 9.2.2. There are a few normalizations of p-adic heights throughout the lit-

erature. Here is what we have chosen: the local and global heights computed by

our algorithms agree with the global heights for elliptic curves computed by Harvey

[Har08]. However, to obtain agreement with the Birch and Swinnerton-Dyer con-

jecture, the p-adic regulator must then be computed as 2' det(M), where M is the

matrix of global p-adic height pairings (Di, D')i.

Algorithm 9.2.3 (p-adic regulator of a rank 2 Jacobian J of a hyperelliptic curve

C).
Input: Non-Weierstrass points P, Q, R, S E C(Qp) arising from rational points on an

integral model of C such that {(P) - (Q), (R) - (S)} give a basis for J(Q)/J(Q)tors,
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p a prime of good ordinary reduction.
Output: The p-adic regulator of J.

1. Using Algorithm 8.5.10, compute the following p-adic local heights at p:

h,((P) -- (Q), (- Q) - (P)), h,((R) - (S), (- S) - (- R)),
h ((P) - (Q), (R) - (S)), h,((R) - (S), (P) - (Q)) = hp((P) - (Q), (R) -- (S)).

2. Using the rnethods of [Mn1110], compute the sum of p-adic local heights away
from p for the pairings of divisors above.

3. Cornpute the global p-a(lic heights (-, -), = h1(-, -) for each of the divisors in
Step 2.

4. Take the determinant of the 2 x 2 matrix whose entries are the global heights
in Step 3. For nornalization purposes, multiply this deterrninant by 4. This is
the p-adic regulator.

9.3 p-adic L-series

The left side of Equation 9.1.2 concerns the appropriate generalization of p-a(lic L-
series associated to modular abelian varieties attached to iewformns. We take as our
st arting point the algoritIn to compute p-adic L-series associated to elliptic curves,
as in [SWI 1]. Suppose Af is an abelian variety as in [FpS+01). The key difference is
that the modular symbol map now takes values in a real quadratic field Kj instead
of just in the field of rational numbers. The p-adic L-series then has coefficients in
the completion of K. at a prime above p.

More precisely, let f(z) = ri a,e 27inz be the newform associated to A , with
coefficients ai in a real quadratic field Kf. The plus modular symbol map is the map

[]:Q -+Kf

r (r] 2i f(z)dz + f(z)dz),

up to scaling.
Now consider the polynomial

h(x) :X2 - ax + p K [x]

and let p pOg,. This is where our algorithm diverges from the original: at this
point, there are two separate cases to consider, depending on the factorization of p
into primes.

9.3.1 Inert case

If p is inert, let F = (K),, and consider h(x) e F[x]. Let o' E F be the unit root of
h, i.e., the root with |od - 1.
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Using the plus modular symbol map [ define a measure p on Z* by

p+(a + p"Z) = [aI_

Now we can define the p-adic L-function as a function on characters G E Ho11conts (Z* C*)
For a character y, we have

L,(Atx) = J dp. (9.3.1)

To obtain a Taylor series associated to Lp, we view Lp as a p-adic analytic function

on the open unit disk
D = {u E C, : 17 - 1, < 1},

as follows:

* let 7 = 1 + p

" for u E D, let ;' 1 + pZ, -- C* be the continuous character given by sendinlig

' to U

* extend $t to a character Z* -:* C* by letting x (:c) = , where

r(x) is the Teichnjller lift of x

" let, Lp(Af, v) := L1(A ,).

Theorem 9.3.1. The function Lp(A 1 ,u) is a p-adie analytic function on ) ith
Taylor series about u= 1 in the variable T

LC(Af, T) := L,(Af, T + 1) C F[[T]]

that converges on {z E C, : Iz|, < 1}.

Proof. This is a straightforward generalization of [Ste07, Theorem 1.15]. D

To compute the integral (9.3.1), we rewrite it as a "Riemann sum" by summing

over residue classes mod p". More precisely, for each integer n > 1, let

P-1 p ~ -

Pp(T) = ( j , (T(a)(1 + p)i + p"Z) (1 + T)i E F[T].

a=1 (j=0O

Proposition 9.3.2. We have that the p-adic limit of these polynomials is the p-adic

L-series:
lim P,(T) = L, (A f, T).

This convergence is coefficient-by-coefficient, in the sense that if P, (T) =- a, 1Tj

and Lp(Af, T) - g aT 3 , then

lim a, = aj.
n-+oo

117



Proof. This is a straightforward generalization of [SW 11, Proposition 3.1].

9.3.2 Split case

If P = PiP2 splits, let F1 = (Kf),, ~ Qp, F2 = (Kf), 2 ~ Q, be
each prime. Consider h(x) E F1 [x], and let a1 E F1 be the unit
the unit root a'2 e F2 -

Now for each unit root ac, we define a measure pi on Z* by

pi(a + p"Z) 1
a7-

For each integer n > 1, let

Pi(T) =
a=1 j=0

Fal
_p _

the completions at
root; likewise, find

12 
a

p, (-r(a)(1 + p)i + p"Zp) - (1 + T) C E F[[T]]i,

where r(a) here is the lift of r(a) modulo p".

Proposition 9.3.3. We have that the p-adic limit of these polynomials is the p-a dic
L-series at pi:

lin P,(T) = i (Arf, T).

The p-adic L-series associated to Af is then the product

1 (Ayf, T),p(A f, T).

To summarize:

Algorithm 9.3.4 (p-adic L-series).
Input: Good ordinary prime p, Af modular abelian variety
precision n.

attached to newform f,

Output: p-adic L-series Cp(Af, T).

1. Let p = pOK. If p is inert, let F := (Kf),. If p is split, we consider the two
copies of Qp corresponding to the two primes: (Kf),l and (KA), 2.

2. If p is inert, compute the unit root a E F; if p is split, compute the two unit
roots ai, a2 C Q,. Note that if p is inert, a is defined over F, where [F : Q ] = 2.
If p is split, we have ai, a2 corresponding to the two embeddings of (Kf)V, into

QP.
3. Define measure(s) p(a mod p"f) or pi(a mod p"l), i 1, 2.

4. Compute Lp(T) := P, (T) as a Riernann sum, using the measure(s) computed in
Step 3. If the prime p is split, LP is a product of two L-functions: L, = L,4L,2-

Remark 9.3.5. Note that this algorithm is exponential in p; see §9.4.3 for a possible
enhancement.
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9.4 Data for rank 2 Jacobians of genus 2 curves

As we now have algorithms to compute the p-adic regulator and p-adic L-series, we
proceed to verify Conjecture 9.1.4 for specific abelian varieties, using BSD data from
[FpS+01, Table 2] and local intersection data from [Mul 11].

9.4.1 Auxiliary data

Here is a table of the curves and levels. Note that for each curve,
abelian variety has Mordell-Weil rank 2.

the associated

Table 9.4.1: Levels and integral models (Table 1, [FpS+g0))

For our algorithms, we take the curves in Table 9.4.1 and do a change of coor-
dinates to obtain the corresponding curves of the form y2 = f(X). We record these
models in Table 9.4.2.

We will also need the following Birch and Swinnerton-Dyer data:

The table below (computed by Mnller [Ml 11]) provides the data necessary to

compute the local heights away from p. The global generators for J(Q)/J(Q)ors are

given by the pair of points [[P, Q], [R, S]I]. The intersections list has three entries,
namely the intersections needed to compute the global height pairing ([P - Q], [R -
S])p, those for ([P - Q], [(-Q) - (-P)]), and for ([R - S], [(-S) - (-R)]),. The

intersections of two divisors D and E are returned as a list of pairs [1, -i(D, E))i],
where I is a prime and (D, E) is the intersection of D and E at 1.

Remark 9.4.1. The generators given for N = 125, A are actually generators for an

index 2 subgroup of J(Q)/J(Q)tors. (An actual set of generators for the full group
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N Equation
67 y '2 +(x 3+ + )y = X5 -x
73 2+ 3 + X2 I)y 2X3 + x
85 y 2 + (x 3 + 2 )y x 4 + x + 3x - 2x + 1
93 2 + (x+F )y 2X+ X4 + '3

103 y2 + (X3 +X2 + 1)y = X5 + Xf

107 y2 + (X3 + X2 + 1)y = 4 - X 2 _ 
115 y 2 + (X3 + x+1)y 2x 3 + x 2 +

125,A y2 +3 + X + 1)y = X + 2x' + 2x3 +x 2  x
133,B y2 + (X3 + x 2 + 1)y = - x 4 -2x 3 +2X2 - 2x

17 j2 + (X3 + X2 + xyA+ 2x + X, +v X2 ±1

161 y2  ( 3 + x + 1)y x 3 -42 + 4x + 1
165 y2 + (x 3 + x 2 +X) A + 2X4 +3X3 + X2 - 3x
167 y2 + (X3 +:X + 1)y -x5 -3 -X _ i
177 y2 +(X 3 + X2 + )y = X5 + x 4 + Xj

188 Y2 = z 5 - X4 + X3 + x2 - 2x + 1
191 y2 + (X3 +X + 1)y 3 + x 2 + x



Table 9.4.2: Levels and y2 = f(x) models

Table 9.4.3: BSD data for rank 2 Jacobians of genus 2 curves (Table 2, [FpS+01])

J(Q)/J(Q)tors whose support solely consisted of non-Weierstrass points was not read-

ily available.)
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N Equation
67 y2 = x 4x5 +2x 4 + 2x 3 + x2 - 2x+ 1
73 y2 = x6 - 2x' + x 4 - 6x 3 + 2 +4x+ 1
85 y2  X6 +2x' + 7X4 +6x 3 + 13x 2 - 8x+4
93 y 2 = -x6 6x' + 5x4 + 2X3 +2x 2 + 1

103 y 2 X' + 6x + 5:c4 + 2X3 + 2X2 +1

107 y2 X + 2x5 + 5x4 + 2x3 - 2X2 - 4x - 3
115 y2 = x + 2x4 + 10x3 +5x 2 + 6x + 1

125,A y2 X + 4x' + 1OX 4 + 10x 3 + 5X2 - 2x - 3
133,B y2 X -2x5 + 5x4 -- 6x3 + 10x2 - 8x + 1

147 y2  x + 6X5 + 11x 4 + 6X3 +5x 2 +4
161 y2  e6 +2X4 + 6X + 17x 2 + 18x + 5
165 y2  5 + 5x 168) + 15842 - 10368x + 20736

167 y2 = 4x5+2x 4 - 2x" - 3x2 + 2x - 3
177 y2 =- + 6X +5x +6X3 +2X2 + 1

188 2 - x 3 + X 2 - 2x + 1
191 y2 x + 2x 2x + 5x2 + 6x + 1

N c,'I s J(Q)tors IL ?

67 1 1 1
73 1 1 1
85 4,2 2 1
93 4,1 1 1
103 1 1 1
107 1 1 1
115 4,1 1 1

125,A 1 1 1
133,B 1,1 1 1

147 2,2 2 1
161 4,1 1 1
165 4,2,2 4 1
167 1 1 1
177 1,1 1 1
188 9,1 1 1
191 1 1 1



N global generators for J(Q)/J(Q)tors intersections

67 [[-1,0, 1], [1, - 1,0]], [[0 -1, 1], [1, 0,0]]
73 [[-1, -2, 1], [1, -1,0]], [[ , - ,1], [1,0, 0]] [[3 1]],
5A [[-1,0,1], [1, -1,0]], [[1 -4, 1], [1, 0, 0]] - [], [[5, ]]
93 [[- 1, -2, 1], [1, -1,0]], [1, -3,) 1] [1 0,0]

1 3 [[-1, -1,1], [1, 1,0]], [[1, - ,1], [1, 0, 0]] [[3 []
147 [[-1, , 1], [1, -1,)0]],[[1,- , 1], [1, 0, 0]]
11 [[1, -5, 1], [1, - 1, 0]], [[1 , 2, 1], [1, 0, 0]] [], [['1 7
15 [[ - 1, 5 ,1], [1, -1,]] [[- , 1], [1, 0, 1 ]] [,
133,B1[[0, - 1, 1], [1, -1, 0]], [[1 1], [1, 0, 0]][] , [1 47A [[ 1, -1, 1], [1, - 1, 0], [[L-3,4, 1], [1, 0, [[,-]] [5 ]

161 [ 1, -- , 1], [1 - 17 0]], [[ , 24, 2], [1, 0, 0]][2) 1], [3 il, [7
16 [-8 - 28 1, 0,-1 4,1], 4[ , 80 , 1, [0, 14,0]] [7 ],[5 ]

167 No dlata (no generators sulpported1 on Q
177 [[00, 1], [1, -1, 0]], [[-2, -7,3 [1, 0,0]]

191 [[0, 1,1], [1, -1.]], [[-1 , 1 , 1], [, 1, 1]] [ ],[ ,

[, (c p [[3 , 1 ] [,

[2, -1]], [5, j],[[, ] ]

177 1] [11 1 01]) 2 -7, ] [1 0,[] [[3, jf ]], [[3 , 7 11

- 111,1 -1 -1 ], [2,5, 1]][[3, -1], [[, 2 ]], [[5 ,j[) ] ]
188~[2 -1]], [] [[5 1]]1) 1

[[2, -1]-[ ,j] ,[7 )
[],1 [[7, ]], [[5 1],[7 ]

Table~ ~ ~ ~ ~ ~ ~~~~~~~~~[2 2].4 [3,ba -eeatr j]],esctindt cmptdb tffnNIfl

9.4.2 Evidence for Conjecture 9.1.4

Theorem 9.4.2. Conjecture 9.1.4 is satisfied for all N in Table

ordinary p < 100 satisfying the hypotheses of our algorithms.
9.4.1 at all good

The tables below show the specific primes p and precision O(p") for each level N

at which Conjecture 9.1.4 is satisfied.

Remark 9.4.3. A note on our models and choices of primes. Since our p-adic heights

algorithm requires that the curve be given by an odd degree model, for each curve

y2 =q(x) above, we consider those good ordinary primes p for which g(x) has a

Qp-rational zero and do another change of coordinates to obtain the odd model y2

f(x), f(x) E Qp[x]. We compute the p-adic regulators and p-adic L-values for these

primes.

To clarify Remark 9.4.3, for example, for N = 67, p = 7, we work with the model

y2 = (1 + 0(710)) X5

+ (2 + 2 - 7 + 6 - 72 + 73 + 3 74 + 6- 75 + 3 - 77 + 5 - 78 + 7) + 0(710)) x 4

+ (6 + 7 ± 2- 72 + 6- 73 + 2 74 + 3- 75 + 76 + 4. 77 + 3 - 7" + 2. 79 ± 0(710)) x 3

+ (4. 7 + 4- 72 + 6- 73 + 6- 74 + 6 - 5 + 76 + 77 + 2 -78 + 3 - 7 + 0(710)) x2

+ (6. 7 + 3- 72 + 6 73 + 5 - 74 + 5 - 75 + 76 + 4 . 77 + 4. 78 + 3. 79 + 0(711)) X

S1 + 3- 7 + 5 72 + 6- 7 3 + 3- 75 + 7' + 4. 77 + 2 - 78 + 0(710)
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and the points

P= (O(7'0), 1 + 5 - 7+ 5 - 73 +6 -74 + 2- 75 + 7' + 5- 77 + 5 - 7" + 5 .79 + O(7 10))

Q = (3+6 -7+4 -7 + 7 3 +2. 7' + 7' + 77 + 6- 78 + 5- 7' + 0(710),

1 + 3 7+ 2. 72+ 5- 73 + 3 - 74 + 5. 76 + 6. 77 + 79 + 0(710))

R = (0(70), 6 + 7 + 6 72+ 73 + 4. 7' + 5- 76 + 7+ 7+ 7 + 0710)

S = (2 + 5. 7 + 2 - 72+ 5 7 + 2. 74 + 6- 75 +5 . 7' + 2 - 77 + 7" + 3 -7 + 0(710),
6 + 4. 7 + 4. 74 + 3 . 7 + 4 77 + 5 - 78 + 5 . 79 + 0(710))

As these models and points are cunibersoie, we omit them for the reirainiing primes.
For each N,p for which we have data. we provide the correspon(ling a and e

(1 - a-1)2 factors in Appendix A.
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N = 67

For N = 67, c = 1.

We obtain the following p-adic regulators:

p p-adic regulator

7 6.72 + 2- .73 +3.7 4 + 5. 75 + 2. 7: + 4 77 +0(78)
13 7. 132 +7. 133 +3. 134 +4. 135+ 10 - 136 + 2. 13O7 + (138)

17 10. 172 +2. 173 + 9 - 174 +9 . 175 + 8 . 17 + 11 - 177 + O(178)
19 14- 192 + 13. 193 + 17. 194 19 + 14 196 + 8. 197+0(198)
37 13-372 + 35 - 373 + 22 374 + 28 .375 + 17 376 + 14 377 + 7 .37 + 0(379)
41 27.4 12 413 +2-414 + 15 -415 + 17 416 + 27 - 417 + 18. 418 + 0(41)
43 20 .432 +33-433 + 16-434+ 16 - 435 + 27 - 436 + 13 - 437 + 36 - 438 + 0(439)

47 46 - 472 +44 473 +45.474 + 18-475+34-476 + 18-47 7 + 43 -47 O (479)

59 24 - 592 + 19. 593 +44594 + 22 - 595 + 52 -596 + 37 - 597 + 21 -598 + 0(599)
61 55 . 612 + 10 .613 +3. 614 + 52 .615 + 46 .616 + 12.617 + 4 - 618 + (619)
73 20. 732 +27-733 +24 734 + 2 - 735 + 49 736 + 18. 737 + 45 . 73 + O(739)

79 8. 792 +25.793 +794 +41 795 + 57 -796 + 36 - 797 +24-798 -O (799)

83 82 -832 +3833 + 80 83 + 43 - 83 + 7 - 83 + 7 83 + 31 - 838 + 0(839)

Table 9.4.5: p-adic regulators, N = 67

Here are values of the special value of the p-adic L-series for various p:

p p-adic special value
7 5+5-7+6-7 3 + 0(74)

13 8+ 10 - 132 + 10. 13±3 +0(134)
17 14 + 17 + 13 - 172 +3- 17 3 + (174)
19 14+ 12. 19+ 192 +7. 193±0(194)
37 3.5 + 30 -37 + 9 . 372 +0(373)
41 19 + 4 .41 + 13 -412 ±0(413)
43 32 + 32 -43 + 5 . 432 +0(433)
47 38 + 40 -47 + 16 472 +0(473)
59 52 + 45 .59 + 0(592)
61 43 + 58 .61 + 0(612)
73 34 + 25 . 73 + 0(732)
79 73 + 74. 79 + 0(792)
83 35 + 57. 83 + 0(832)

Table 9.4.6: p-adic special values, N = 67
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N = 73

For N = 73,c= 1.

We obtain the following p-adic regulators:

p p-adic regulator
11 112 + 5 - 113 +6 - 114 + 7- 115 +6 - 11 + O(118)
13 8. 132 + 133 +4. 134 + 3. 13' + 10 - 136 + 4 . 137 + 0(138)
23 7.232 +9-233 ± 13- 234 + 17 -235 + 2 -23" + 14 237 + 0(238)

31 4 . 13 +21 - 3 14 + 2 2 -31' + 13 .31' + 18 -.3 17 + O( 3 18)
41 31 .412 + 10-413 +32 414 + 30 -415 + 14 -416 + 29 417 +0(418)

59 12. 9 2 + 58 . 59 + 594 + 19 - 9 + 21 .59' + 2 . 59 7 + O(5 98)

61 15.6 12 +32.6 13 + 50 614 + 30 .615+ 52 - 61 + 28. 617+0(618)
71 2.7 12 + 26. 713 + 68 -71 + 44 -71' + 50 - 716 +48.7 17 + 0(718)
83 42-832 + 10. 833+ 77 83 + 71 83) + 3 - 837 +0(838)

97 57 -972 + 43 . 973 + 45 .974 + 15 -97' + 13 . 976 +44-977 +0(978)

Table 9.4.7: p-adic regulators, N = 73

Here are values of the special value of the L-series for various p:

p p-adic special value

11 3+6- 11 +8 112 +10 . 113 +7 114 + 0(115)
13 8 + 12 . 132 + 12. 133 +0 (134)
23 10 + 5 - 23 + 10 . 232 + 19233 + 0(234)

31 25 .31 + 19 312 +0(313)
41 33 + 38 41 + 10 - 412 +0(413)
59 9 + 20 - 59 + 0(592)
61 9 + 36. 61 + 0(612)
71 16 + 16 - 71 + 0(712)
83 56 + 53 - 83 + 0(832)
97 78 + 16 -97 + 0(972)

Table 9.4.8: p-adic special values, N = 73
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N = 85

ForN =85,c= 1.
We obtain the following p-adic regulators:

p p-adic regulator

37 15.372 + 14 -373 + 35 . 374 + 18-375+ 28 -376 + 5 .377 +0(378)
41 28.4 12 +40.4 13 +31 .414 + 35 -415 + 2 -41' + 17 417 + 0(418)
53 42-532 +41 533 + 26 - 534 + 26 -.535 + 27 . 536 + 30 .537 +0(538)
61 8.6 12 +42.6 13 +20.6 14 + 23. 61 + 0(61')
73 7-732 +20 733 + 42 -734 + 27 -735 + 17 - 73' + 43 . 737 +0(738)
89 15.892+27.893+5.894+8 -895+58 896+86 .897+0(898)
97 57 -972 + 21 -973 + 13 .974 +22-975+ 81 .976 + 60 .977 + 0(978)

Table 9.4.9: p-adic regulators, N = 85

Here are values of the special value of. the L-series for various p:

p p-adic special value
13 8 + 11 13 + 5. 132 + 9 - 133 + O(134)
29 11 + 18. 92 + 0(293)
37 3 3 + 17 3 7 + 3 72 + O( 3 73)

41 17 + 14 .41 + 22 - 412 0(413)

53 32 + 16. 53 + 0(532)
61 47+10-61 +0(612)
73 10 + 9 73 + 0(732)
89 58+42-89+ 0(892)
97 45 + 70 .97 + 0(972)

Table 9.4.10: p-adic special values, N = 85
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N = 93

For N = 93, c -1.
We obtain the following p-adic regulators:

p p-adic regulator
11 6+2. 11 + 112 +6. 113+2. 114 +4 - 115 + 116 + 5. 117+0(118)
13 12- 132 +4- 13±3 +4- 134 + 11 - 136 + 12. 137 + 0(138)
23 20. 232 +4. 233 + 13 .234 + 18. 235±+ 12 -236 + 5 . 237 +0(238)
29 17- 292 +5. 293 +3-29 4 + 23 - 295 + 2 -29' + 20 -297 + 0(298 )
37 25. 372 + 13.373 +23-374 + 6 -375 + 27 - 37 + 33 -377 +0(378)
43 24-432 + 42 - 433 + 18 - 434 + 40 - 43 + 14 43( + 35 - 4 3 7 + O( 4 3 8)
47 25-472 + 44 473 + 11 474 + 11 475 + 39 - 476 + 38 - 477 +0(478)
53 19. 532 +30 - 533 +9 534 + 15 -53 + 4 7 53' + 16 -5 3 7 +O(5 38)
61 60.6 12 +25.6 13 + 12 . 614 + 52- 61 5 + 5-616 + 60-617 +0(618)
67 66.672 +49.673 + 19.674 + 27 - 6 7 5 + 2 3 -6 7 + 50 . 6 7 7 + O( 6 78)
73 38 732 + 11 -733 +6 - 734 + 3 .73!) + 55 .736+ 9 737 +0(738)
79 52. 792 +48- 793 +8. 794 + 13 -795 + 29. 79; + 51 -797 + 0(798)
83 7.832 +58-833 +45 -834 +32 -835 + 42 -83; + 79 837 +0(838)
89 61 . 892 +57. 893 + 19.894 + 74 .895 + 72 .89; + 8 897 + 0(898)

Table 9.4.11: p-adic regulators, N = 93

Here are values of the special value of the L-series for various p:

p p-adic special value
11 5+3. 112 +8. 113+0(114)
13 10+5. 13+ 132 + 133 + 0(134)
23 13+20-232 + 11 .233 + 0(23T)
29 17 + 19 29 + 28. 292 +0(293)
37 34 + 26 -37 + 29. 372 +0(373)
43 3+7-432 +0(433)
47 11 + 23 -47 + 15 - 472 +0(473)
53 30+28 .53+ 11 532 +0(53 3)
61 3 + 58 - 61 + 0(612)
67 49 + 15 .67 + 0(672)
73 18 + 46 - 73 + 0(732)
79 7 + 14 - 79 + 0(792)
83 2+34-83+0(832)
89 62 + 43 -89 + 0(892)

Table 9.4.12: p-adic special values, N = 93
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N = 103

For N = 103, c 1.
We obtain the following p-adic regulators:

p p-adic regulator
11 4.- 112 + 4 - 113 + 4 . 114' + 8 - 115 + 2 . 116 + 8 - 11' + O(11")

13 3. 132 + 133 + 2 - 13 4 + 5 - 13' + 2 . 136 + 5 -137 + 0(13")

19 8- 192 + 13. 193 + 3. 194 + 14 195 + 11 197+0(198)
23 14-232 + 12 . 2 33 + 21 . 2 3 " + 4 2 3 5 + 18 -.2 3 + 8 . 2 3 + O( 2 3 8)
29 222 9 2 + 5 - 9 3 +22 .2 94+ 3 -295 + 7 2 9 ' + 29 7 + O(2 98)

41 7.4 12 + 34 -41 3 + 17 -41 4 + 17.415 + 26 - 41' + 16 -417 +0(418)
47 7 - 4 72 + 16- 4 7 3 + 4 7 + 12 - 4 7 + 13 . 4 7' + 44 4 7 7 +O( 4 78)
53 16 -532 + 15 -533 +50-53 4 +22- 535+ 9 -53' + 32 . 537 +0(538)

59 8 592 +4593 +33-594 + 27 . 595 + 39 -59' +30 - 597 + 0(59")

61 14 - 61' + 18- 614+ 2 -615 + 47 - 617 + 0(61")
71 12- 12 + 4 5 - 713 + 18 7 14 + 3 4 . 715 + 3. 71' + 6 3 - 717 + O( 7 18)

73 66- 732 +48 733 +22-734 +49- 735 +68 -73' + 16 - 737 + 0(73")
79 72. 792 49. 793 +63-794 + 14 79' + 16 79" + 59 797 + 0(79")
83 74 832 + 32 - 833 + 35 -831 + 55 - 835 + 82 - 83" + 75 83 0(838)

89 30- 892 +62. 893 +31 -89 4 +88 89' + 20 896 +42 897 +0(898)

97 95. 972 +51 - 973 +28-974 + 12. 975+78 97' + 62 -977 +0(978)

Table 9.4.13: p-adic regulators, N = 103

Here are values of the special value of the L-series for various p:
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p p-adic special value
11 1 + 10 - 11 + 3. 112 + 6- 113+ 0(115)
13 12 + 11 - 13 + 5 - 132 +5. 133 + 0(134)
19 13+9 -19+ 18- 192 + 10 . 194 + 0(19)
23 7 + 19 -23 + 13 -232 + 13-233 +0(234)
29 25 + 5 - 29 + 24 - 292 + 0(293)
41 26 + 10 -41 + 31 -412 +0(413)
47 18 + 31 - 47 + 0(472)
53 47 + 36 .53 + 0(532)
59 44 + 48. 59 + 0(592)
61 13. 61 + 0(612)
71 36 + 13 71 + 0(712)

73 30 + 39 - 73 + 0(732)
79 20 + 57 - 79 + 0(792)
83 8 + 80 .83+ 0(832)
89 35 + 5 .89 + 0(892)
97 70 + 50 .97 + 0(972)

Table 9.4.14: p-adic special values, N 103
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N = 107

For N = 107,c = 1.
We obtain the following p-adic regulators:

p Ip-adic regulator
2. 132 + 4. 13 9 13 + 11. 135 + 4. 136 + 6 137 + 0(138)
172 + 9 . 173 + 4. 17 + 15 . 175 + 5 . 17' + 16 - 177 + 0(178)
3. 192 + 17. 193 + 7 194 + 13 - 195 + 2 - 196 + 3. 197 + 0(198)
14- 372 + 17 373 + 5 .374 + 19 -375 + 3. 376 + 20 -377 + 0(378)

17. 412 + 24 . 413 + 14- 414 + 39- 41 + 35 . 417 + 0(418)
20- 432 + 14 434 + 22 - 435 + 9. 436 + 29 -437 + 0(438)
4 - 472 + 25 - 417 + 23 . 474 + 21 . 475 + 43 - 476 + 25 - 477 + O(478)

592 + 41 ..593 + 56 -594 + 58 .595 + 59' + 48 . 597 + 0(598)
20 -612 + 36 -613 + 50 -614 + 40- 61 + 41 - 616 + 32 -617 + 0(618)
49. 672 + 62 - 673 + 66 -674 + 4 . 67' + 21 . 67(- + 8 677 + 0(678)
43. 712 + 61 -71 + 34. 714 + 60- 71r + 55 - 716 + 32 - 717 - 0(718)

11 - 792 + 46 - 793 + 32. 7 + 32- 795 + 51 - 796 + 55. 797 + 0(798)

64. 832 +47 833 + 11 -834 + 57 -83F + 35 -836 + 59 - 837 + 0(838)

Table 9.4.15: p-adic regulators, N = 107

Here are values of the special value of the L-series for various p:

f) p-a(dic special value

13 2 + 8. 13 + 6 - 132 +4. 13 3 +0(134)
17 8 + 8 - 17 + 16 - 172 +7. 17 3 +0(174)
19 12 + 18. 19 + 17 - 192 +4. 193+0(194)
37 29 + 8 -37+ 0(372)
41 28 + 34 - 41 + 0(412)
43 39 + 39 .43 + 0(432)
47 17 + 18 -47 + 0(472)
59 16 + 44 .59 +0(592)
61 45 + 44 61 + 0(612)
67 6 + 30 .67+ 0(672)
71 20 + 57 - 71 + 0(712)
79 11 + 50. 79 + 0(792)
83 29 + 18 . 83 + 0(832)

Table 9.4.16: p-adic special values, N 107
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N = 115

For N = 115,c = 1.

We obtain the following p-adic regulators:

p p-adic regulator
11 9 - 113 +7. 114 + 8 - 11' + 111 + 9 - 117+ O(1111)
17 14- 172 +3. 173 + 14 174 + 16 - 17 + 2 - 1787 7 7 +0(178)
37 3.372 + 11 373 + 10-374 + 26 37 + 24 -37' + 18 - 377 + 0(378)
43 38 432 +16 -433 + 15 -434 + 21 -435 + 26 -436 + 25 - 437 + 0(438)
53 44 -532 + 2 -53' + 46 -534 + 7 - 535 + 17 .536 +35-537 +0(538)
59 42.592 + 47 593 + 8 -594 + 2. 595 + 37 -59' + 51 . 597 +0(598)
61 38 612 +59.613 + 57-614+29 615 + 4 .61 + 27 - 617 + 0(618)
67 55 672+9 673+18 674 + 13-675 + 26 -676 + 10 -67+ (678)

79 66. 792 + 56. 793 + 14 .794 +78-795 + 77 79' + 7 797 + 0(798)
83 64. 832 +20-833 + 82 834 + 26 - 835 + 18 -83) + 34 -837 +0(838)
89 9. 892 +9.893 +28 .894 + 67 . 895 + 75 .89' + 65 .897 + 0(898)
97 17-972 +54-973 +95-974 +80 975 + 66 -97' + 16 -977 + 0(978)]

Table 9.4.17: p-adic regulators, N = 115

Here are values of the special value of the L-series for various p:

Table 9.4.18: p-adie special values, N = 115
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p p-adic special value
11 5 - 11 + 112 + 4 113 + 4. 114 + 0(115)
17 10 + 9 - 17 + 15. 172 + 11 - 173 + 13. 174 + 0(175)

19 12 + 18. 19 + 14 192 + 18- 193 + 13. 194+0(195)
37 28 + 23 . 37 + 6 - 372 +0(373)
43 6 + 41 43 + 0(432)
53 29 + 6 - 53 + 37 - 532 +0(533)
59 40 + 5 59 + 0(592)
61 37 + 53 .61 + 0(612)
67 37 + 36 .67 + 0(672)
79 41+44 .79+ 0(792)
83 38 + 4 .83 + 0(832)
89 10+59-89+ 0(892)
97 21 + 61 .97 + 0(972)



N = 125, A

For N = 125, we have c1.

4.

132 + 6- 134 + 5. 13' + 6 - 137 + 0(138)
192 + 8- 193 + 14. 194 + 13. 195 + 11 - 197 + 0(198)
232 + 11 233 + 5 - 23 4 + 3. 235 + 18 . 23(: + 10 - 237 + 0(238)
372 + 35 -373 + 24 374 + 19 - 375 + 31 -376 + 30 - 377 + 0(378)

472

532

592

612
672
732

832
892
972

+37
+52
+ 7.
+3-
+44
+45
+76
+87
+48

-473 + 34
533 + 35

594 + 34.
613 + 11

67' + 16
-733 + 23
-833 + 49

893 + 26
973 + 89

-474 + 16. 475 + 46
. 534 + 28. .535 + 12
595 + 29. 59- + 597
614 + 8 - 61' + 51 -6
-674 + 18- 67- + 31
-734 + 55. 73? + 10
834 + 39 -835 + 24

-894 + 51. 395 + 70
-974 + 92- 975 + 33

- 477 + 0(478)
-536 + 43 - 537 + 0(538)

+ 0(598)
16 + 59- 617 + 0(618)
- 676 + 26- 677 + 0(678)

736 + 33 - 737 + 0(738)
836 + 51 - 831 + 0(838)
896 + 77- 897 + 0(898)
976 + 92 - 977 + 0(978)

Table 9.4.19: p-adic regulators, N = 125. A

Here are values of the special value of the L-series for various p:

p p-adic special value

13 8 + 9 - 13 + 10 -132 + 6 . 133 +0(134)
19 9 + 6 - 19 + 16 . 193 + 0(194)
23 12 + 22 . 23 + 13 . 232 +13-233+(234)
37 34+37+0(372)
47 11 + 40 . 47 + 0(472)
53 40 + 13 .53 + 0(532)
59 54 + 47 59 + 0(592)
61 13 + 55. 61 + 0(612)
67 20 + 21 .67 + 0(672)
73 4 + 37 .73+ 0(732)
83 44 + 40 - 83 + 0(832)
89 59 + 58 - 89 + 0(892)
97 63 + 60 - 97 + 0(972)

Table 9.4.20: p-adic special values, N 125, A
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N = 133, B

For N= 133,c= -1.
We obtain the following p-adic regulators:

p p-adic regulator
17 4- 172 + 173 + 8. 174 + 13 - 17' + 6 . 176 + 10 - 177 + 0(178)
29 27 + 5 -29 + 7 - 292 + 16.2 93 +3-294 + 7 29 + 0(296)
31 5. 3 12 +6-3 13 + 3- 3 14+ 19 .315 + 14 31 + 10 - 317 + O( 3 18)
41 17.4 12 +4 413 +31 .414 + 21 . 415 + 38. 41' + 17 .417+0 (418)
43 12. 432 +10-433 + 17-434 + 37 . 43 5 + 4 43 6 + 8 . 437 +0(438 )
53 4- 532 +20 533 +51 -534 + 11 -535 + 42 -5.3" + 30 - 537 +0(538)
67 6.672 +19-67 3 +3.67 4 +32.67 5 +18-67"+55.67 7 +(67 8 )
73 22-732 +49. 733 + 16-734 + 36. 735 + 67 . 736 + 64 - 737 +0(738)
79 8- 792 +54. 793 +21 .794 + 68 - 796 49. 797 + 0(798)
83 21 - 832 +81 .833 +32-834 +8.83'5+ 57 -83' + 49 - 837 +0(838)
89 18.8 92 + 36 -893 +81 .894 + 18.895+ 89' + 79 .897 + 0(898)

Table 9.4.21: p-adic regulators, = 133, B

Here are values of the special value of the L-series for various p:

p p-adic special value
17 8 + 10 17 + 13- 172+ 4 17 + 0(17)
29 11 + 23 - 29 + 24 - 292 + 0(293)
31 21 + 20 - 31 + 20 - 312 + 0(31')
41 24 + 14 41 + 12. 412 +0(413)
43 36 + 22 -43 + 40 432 +0(433)
53 28 + 51 .53 + 0(532)
67 2 + 62 .67+ 0(672)
73 60 + 27 - 73 + 0(732)
79 47 + 56 -79 + 0(792)
83 14 + 72 .83 + 0(832)
89 16 + 50 .89 + 0(892)

Table 9.4.22: p-adic special values, N 133, B
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N = 147

For N= 147, c= -1.
We obtain the following p-adic regulators:

Table 9.4.23: p-adic regulators, N = 147

Here are values of the special value of the L-series for various p:

p p-adic special value
13 4 + 3 - 13 + 6 - 132 +2. 134 + 0(135)
19 1 +8. 19+ 13- 192 9 . 193 + 0(194)
23 8 + 21 -23 + 15 - 232 + 21 . 233 +0(234)

31 12+ 10-31 +312 +0(313)
37 29 + 7 - 37 + 0(373)
43 33 + 26 - 43 + 0(432)
53 52 + 6 - 53 + 0(532)
61 1 + 0(612)
67 22 + 13 - 67 + 0(672)
71 2 + 61 - 71 + 0(712)
73 20 + 41 - 73 + 0(732)
79 28 + 28 - 79 + 0(792)
97 70 + 25 97 + 0(972)

Table 9.4.24: p-adie special values, N 147

133

p p-adiC regulator
13 13 2+6 . 13 3 +8- 134 + 10 - 13' + 8 136 + 137 + 0(138)
19 8 - 192 +8. 193 + 194 + 7 195 + 15. 19' + 13. 197 + 0(198)
23 15 + 9 - 23 + 6 -233 + 11 - 23z + 12 - 235 + 0(23')

31 7 . 3 12 + 23 . 13 + 2 6 . 315 + 316 + 25 - 317 + O( 3 18)
37 6-372 + 14-373 +32-374 + 15 . 37' + 33 - 376 + 15 - 377 + 0(378)
43 9-432 + 17-433 +30-434 + 26 -435 + 24 - 436 + 437 + 0(438)
53 46 - 532 +47-533 +43-534 + 12 .53 + 51 -1536 + 20. 537 +0(538)
61 20-612 + 37 .613 + 41 .614 +'50 .615 + 20 61' + 12 .617 + 0(618)
67 43-672 + 61 .673 +39-674 +40 .675 + 41 676 + 32. 677 + 0(678)
71 33-712 + 61* -71 3 +43-71 4 + 50 - 71' + 51 71' + 69. 717 +0(718)
73 53+1 3 + 6 . 732 + 6 - 733 + 42 - 734+ 14.735 + 13. 736 +33. 737 + 0(738)
79 32-792 +27-793 +4.794 + 57 - 79' + 75 - 796 + 57 - 797+ 0(798)
97 85-972 + 2 -97 3 +90-974 + 54 .97' + 54 -97' + 17 977 + 0(978)



N = 161

For N = 161 c =1.
We obtain the following p-adic regulators:

p p-adic regulator
11 7. 112 +3. 114 +2 111+3- 11'+ 2 . 117+0(118)
19 12 - 192 + 13 - 19 3 + 8 . 194 + 16 - 19 + 1 -l. 19' + 17 19 7 +0(1 9

8)
37 35- 372 +30 . 37 +18 -374 + 32 - 375 + 15 -376 + 15 .377 +0(378)
43 22 -432 + 3- 43' + 38 -434 + 29 -435 + 26. 436 + 27 -43 7 +0(438)
53 51 532 + 25 -533 + 11 534 +27- .535+ 26 . 536 + 6 . 537 +0(538)
59 2- 592 +37.5 93 + 2 1 . 5 94 + 10 . 595 + 31 5 9 " + 54 -5 97 +O(5 9 8)

61 24. 612 +57.6 13 + 19.6 14 + 48 . 615 + 15 . 616 + 617 + 0(618)
67 40 . 672 + 62 - 673 + 4 - 674 + 2 -675 + 53 . 676 + 61 - 67 + 0(678)

79 792 +68 793 +55-794 +37-795 +50 -79 + 77 - 797 +0(798)
83 26 . 83 2 + 48 - 83 3 + 16-.83 4 + 53 - 83-5 + 58 - 83" + 19 -83' + O(838)
89 86-892 +67893 +77894 + 12-895 +81 . 896+9 - 897 +0(898)
97 66 - 972 + 58 -973 +17.974 +71 .975 + 28 - 976 + 26 - 977 +0(978)

Table 9.4.25: p-adic regulators, N = 161

Here are values of the special value of the L-series for various p:

p p-adic special value
11 8 + 2- 11 + 2. 112 + 2. 113 + 0(114)
19 15 + 11 - 19 + 4 192 +7. 193+0(194)
37 19 + 31 .37 + 0(372)
43 8 + 9 .43 + 0(432)
53 23 + 22 .53 + 0(532)
59 6+56-59+ 0(592)
61 8 + 31 61 + 0(612)
67 56 + 21 .67 + 0(672)
79 42 + 34 - 79 + 0(792)

83 4 + 76 - 83 + 0(832)
89 61+52-89+0(892)
97 33 + 86 - 97 + 0(972)

Table 9.4.26: p-adic special values, N = 161
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N - 165

For N = 165, c = 1. We obtain the following p-adic regulators:

p p-adic regulator
7 5-72 +2 73 +6.7 4 + 7 ± + 5 - 7 +78+0(79)

13 132 + 2. 133 + 6- 134 + 8- 13' + 2. 137 + 11 . 138 + 0(139)
17 6 + 7 - 17 + 12. 172 +7 173 + 13 174 + 0(175)
19 18- 192 +17. 193 +2 194 + 2 195 + 18. 196 + 13. 197 + 17 - 198 + O(19)

23 6 -23 2 + 23 3 + 16 -23 4 + 18 - 235 + 19 - 23" + 3.- 23 7 + 15 - 238 + 0(23')

29 21 .292 + 18-293 +25- 2 94 + 11 . 2 95 + 11 . 2 9 6 + 13.2 9 7 + 2 98 + 0(29)

37 36-372 + 16.37 3 +22-374 + 376 + 23 - 377 + 34 - 37 + (379)

41 12.4 13 +29.4 14 + 19.415 + 17 41' + 29 - 41 7 +27-41 8 + 0(419)
43 9 -4 3 2 + 3 0 - 4 33 + 14 43 4+11 - 4 35 + 19 -4 3 + 8 -4 37 + 26 . 4 38 + 0(43)

47 13.472 + 39 - 473 + 36 - 474 +41 -475 + 46 -47 + 16 - 477 + O(47))

53 24-.532 +3 533 +6 - 534 +26 535 + 20 -.533 + 51 - 537 + 6 - 53 + O(53")

59 40 592 +23- 593 +44-594 + 30 .595 + 8 596 + 24 -.597 + 43 - 598 + O(599)
61 49.6 12 +44-613 + 31 -614 + 6 -615 + 28 -61 + 37 . 617 + 46 - 618 + 0(619)

67 4.672 +51 .673 +18-674 + 17-67 5 + 31 - 676 + 4 -677 + 63 -67 +O(679)

71 2.712 + 10.73+7. 71 + 11 7 + 37 - 71' + 10 717 + 42 71" + 0(719)
73 41 -732 + 40 - 733 + 27 - 73 52 -735 + 47 736 + 16 - 737 + 63 - 73 + O(739)

79 70 - 79 +979 + 31 795 + 3 - 796 + 18 797 + 28 - 798+O(799)

83 6 6 -8 3 2 +72-83 3 +49-834 +39-835 + 59 - 83' - 23 . 837 + 54 - 83± + O(83')

89 70 892 +42 -893 + 51 - 894 + 71 - 895 +28 896 +55-897 +69 - 898 + O(89)

97 4972 +50- 973+25-97 +22-975 +8.97+35.97 +33.978+0(97)

Table 9.4.27: p-adic regulators, N = 165

Here are values of the special value of the L-series for various p:
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p p-adic special value

7 6+7+0(74)
13 9+10. 132 + 11 - 133 + 0(134)
17 14 + 7 -17 + 8- 172±7. I ±0(174)
19 13 + 10 - 19 + 5- 192 +12. 193+O(194)
23 8 + 16 -23 + 14 232 +0(233)
29 14 + 8 -29 + 26 -29 2 +0(293)
37 27 + 6 . 37 + 8 - 372 +0(37 3)
41 6 -41 + 38. 412 +0(413)
43 38 + 20 -43 + 41 . 432 +0(433)
47 40±3947 + 0(472)
53 40 + 50 . 53 + 0(532 )
59 11 + 47 - 59 + 0(592)
61 12 + 28 .61 + 0(612)
67 26 + 32 .67 + 0(672)
71 24 + 63 .71 + 0(712)
73 4 + 39 - 73 + 0(732)
79 35 -79 + 0(792)
83 42 + 54 .83 + 0(832)
89 52 + 41 - 89 + 0(892)
97 85 + 57 . 97 + 0(972)

Table 9.4.28: p-adic special values, N 165
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N = 177

For N = 177, c = 1.
We obtain the following p-adic regulators:

Table 9.4.29: p-adic regulators, N = 177

p p-adic special value
7 1+2 7+6- 72 +6-7 3 ±0(74)

19 1 + 19+2. 193+0(194)
23 16 + 16 -23 + 10 . 232 + 0(233)
29 20 + 13 -29 + 24 - 292 + 0(293)
31 25 + 12 . 31 + 0(313)
37 8+5-372 + 0(373)
41 5 + 13 41 + (412)
47 9 + 3 .47+ 0(472)
61 34+ 16.61 +0(612)
73 67 + 58 - 73 + 0(732)
83 22 + 56 -83 + 0(832)

Table 9.4.30: p-adic special values, N 177
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p p-adic regulator
7 4-72 + 2 -73 + 74 + 3 - 7 + 76 + 5 . 7O7 +O(78)

19 1 + 10 19 + 18- 193 + 14 . 194 + 15- 19' + 0(196)
23 6.232 + 20-233 + 18 - 234 + 4 -235 + 12 -236 + 9 237 + O(238)
29 23.2 92 + 9 .29 3 + 11 294 + 25 -29' + 3. 297 + 0(29')
31 10.3 12 +30-31 3 + 13-314 + 20 .31 5 + 17 .31 6 + 7 -317 +0(318)
37 17. 372 + 32 - 373 + 9 - 374 + 5 -375 + 35. 37' + 5 . 377 + 0(378)
41 18-412 +9.4 13 +23.4 14 + 8 -41 5 + 23 . 41' + 19 417 +O(418)
47 28-47 2 +40473 + 27 .47' + 37 - 47 5 + 30. 47' + 31 - 47 7 + 0(478)
61 49. 612 +36.6 13 +22- 614 + 42 - 615 + 46 - 616 + 8 . 617 +0(618)
73 69- 732 +62. 73 3 +43-734 + 15 - 735 + 56 - 736 + 62 . 737 + 0(738)
83 22. 832 +58 .833 +36.834 + 8 -835 + 38 - 836 + 49 837 +0(838)



N = 188

For N = 188, c
Here are values of the p-adic regulator for various p:

Table 9.4.31: p-adic regulators, N = 188
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p p-adic regulator
7 6.7 2 +5.7 3 +7 4 + 7' + 2 . 7' + 6. 77 +0(78)

11 3 + 8 . 112 +6. 113 + 2 . 114+ 115+ 10. 113+O(117)
13 2- 132 +3. 13±3 + 4 - 13 + 9 - 13' + 5 . 136 + 10 - 137 + 0(138)
17 2. 172 + 13. 173 + 2- 174 + 4* 17' + 11 17 7 + 0(178)
19 12. 192 +5. 193 + 10 . 194 + 2. 195 + 9 - 196 + 7 - 197-0(198)
23 19.232 + 14.233 +2. 234 + 19 . 235 + 20 -236 + 13 - 237 + 0(238)
37 33372 +8373 +28-374 +36-375+237+15-37 +0(378)
41 6.4 12 + 15.4 13 +7.41 4 + 40. 41' +J5. 41 7 + 0(418 )
43 19-432 + 29 - 434 + 9 - 435 + 2 . 36 + 12. 437 + 0(438)
53 46-532 +26.533+ 19534+33535 + 17 .53 + 11 537+(538)
59 51 .592 +54-593 +37-594 +5. 595 + 58 -.596 + 27 . 597 +0(598)
61 37- 612 +20- 613 + 37 .614 + 56 -61 + 32 -616 + 8- 617 +0(618)

67 22-67 2 +3.67 3 + 26-674 + 23 -67' + 11 67' + 17 677 + O(67")
71 68.7 12 +25.7 13 + 62. 714 + 36 -715 + 62 - 716 +2.717 +0(718)
73 60. 732 +7.733 + 12. 734 + 22 - 735 + 46 - 73 6 +30- 737 + 0(738)
79 21 - 792 + 15-793 + 17-794 + 78. 795 + 2. 79' + 25 -797 + 0(798)
83 44. 832 +71 833 + 32 - 834 4 54 -835 4 18 - 836 + 56 . 837 +0(838)
89 30.8 92 + 27 -893 + 11 .894 + 43. 895 + 27 . 896 + 43 - 897 + 0(898)
97 50.972 +8-973 +77-974 + 73 - 975 + 82 - 97' + 16 .977 + 0(978)



Here are values of the special value of the L-series for various p:

p p-adic special value
7 3+5. 7+4.72 +2.74 +0(74)

11 5+ 10 - 11 + 9 112 + 5 113 + 0(114)
13 8+ 13+ 132 +6- 133 +0(134)
17 8 + 15 - 17 + 5 - 172 +2. 173 + 0(174)
19 8+ 13. 19+6- 192+ 17. 193 + 0(19)
23 5+ 15. 23+2- 232 +8-233 + 0(234)
37 33 + 13 -37 + 22 - 372 +0(373)
41 35 + 2 - 41 + 37 -412 +0(413)
43 26 + 15 -43 + 19 . 432 +0(433)
53 9+41 - 53+ 13.532 + 0(533)
59 46+41 59+2- 592 +0(593)
61 59 + 59 . 61 + 0(612)
67 37+67+0(672)
71 66 + 14 71 + 0(712)
73 13 + 10 73 + 0(732)
79 26 + 13 79 + O(79 2 )
83 10+4 3 + 0(832)
89 24 + 54 -89 + 0(892)
97 4+0(972)

Table 9.4.32: p-adic special values, N = 188
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Table 9.4.33: p-adic regulators, N = 191

p p-adic special value
7 6 + 2 - 7 + 5. 72 0(74)

23 10+ 4 -23 + 20. 232 + 17-233 + 0(23h)
31 3 + 19. 31 + 0(312)
43 1 + 25 .43 + 0(432)
47 8 + 5. 47 + 0(472)
53 48 + 32 -.53 + 0(532)
71 41 71 + 0(712)
73 31 + 37 - 73 + 0(732)
97 80 + 72 - 97 + 0(972)

Table 9.4.34: p-adic special values, N = 191
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N = 191

For N = 191, c = 1.

p p-adic regulator
7 6-7 2 +3 -7 3 +3 -74 + 47 75 + 2 -76 + 6 - 77 +0 (78 )

23 10-232 + 15 - 233 + 8. 234 + 6 -235 + 2 -236 + .5. 237 +0(238)
31 24-312 + 12 - 31 3 + 28 .31 4 + 2 -31 5 + 6 -316 + 9 - 317 + 0(318)
43 41 -432 + 24 - 433 + 15. 43'4 +41 - 435 + 20 -43" + 29 -437 +O(438)
47 3 -472 + 27 - 47 3 + 3 9 47 4 +20 4 7 5 + 10 - 4 7 ' + 29 . 4 7 O7 +O( 4 78)
53 48 -532 +46 -533 +26 -534+8- 53 + 29 536± 14 . 537 +0(538)
71 61 -713 +34. 714 +22-715 + 28 - 716 + 20 -717 + 0(718)
73 58-732 +24. 733 +3-734 + 55 -735 + 18 -73' + 38 - 737 +0(738)
97 68 .972 +46-973 +75-97 4 +37-975 +36 -97±6 +20-977 + 0(978 )



9.4.3 Future work

We suggest some avenues of future work below:

More data

It, would be very interesting to generate more data for Conjecture 9.1.4, first starting
by extending the range of primes considered, and second, using another potential list
of curves [BS]. Moreover, if one were able to generalize the techniques in Chapter 8
to handle number fields, we could finish the list in [FpS+01] and obtain data for
N = 167.

The sign c

Note that Conjecture 9.1.4 is stated up to a sign c. Where does this sign come from?

Algorithm for p-adic L-series

The work of Pollack-Stevens [PS] gives a polynomial-time algorithm (in p) for coin-
puting p-adic L-series via overconvergent modular symbols. Using their algorithm
instead of ours could make it possible to generate data for the conjecture for much
higher precision.
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Appendix A

Auxiliary p-adic BSD data

A.1 N = 67

The quadratic field K1 is generated by a root a of x2 + 3x + 1.
Here are tables giving a,e factors:
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p C or CI a2
7 (3 -a+ 4) +(a+ 4) - 7+ (2 a+ 6) -72 + (4ao+3) 7 3 + (5 a + 4) 74 +5-5.a

75 + (5. a + 5) - 76 + 6- 77 + (2 . a + 5) - 78 + 0(7')
13 (10 -a -5) + (9. a+11) -13+ (11 -a + 9). 132 + (4 a +1) - 133 + (11 a+10) -

13z' + (6 - a + 6). 135 + 7 a . 136 + (4 - a + 3) - 137 + (11 a + 2) -138 + 0(13')
17 (15-a+11))+(7-a+16)17+(7.a+5).17 2 +(12.a,+10).17 3+ (2.a+16)17 4+

(6. a + 14). 175 + (6 -a + 10). 176 + (2 - a + 4). 177 + (12. a + 15). 178 + O(17')
19 6 + 15- 19 + 12 - 192 + 16 - 193 + 12- 195 + 7 - 19" + 3- 197 + 9 - 198 + 0I91)

14+10-19+12-192+2-193+6-194+8.195+7.19 +8197+16-198+0(19)
37 (3 -a+ 4)+ (30 . a+13).37+15 a - 37 2 + (34. a+6) .37 3 + (26 -oa+17).37 4 +

(15 -a + 33) -37! + (21 . a + 16) - 376 + 16 -a - 377 + (12 - a + 4)- 378 + 0(379)
41 3 3 +13-41+ 38 . 4 12+ 2 0 . 4 13+l17. 4 14+ 2 -415+ 4 1'+ 3 6 . 4 17+ 3 3. 4 18+0(419)

5+30 -41 +20-412+20 -413 +21-414+ 17-415 +3. 4 1' +34- 417+ 12.418 +0(419)
43 (40 -a + 40) + (28. a + 14).43+ (a + 11) -43 2 + (20 - a + 34). 433 + (a+ 39)-

434 + (36 - a + 11) .435 + 9 -436 + 30 -a - 437 + (32 - a + 19) - 438 + (439)
7 (a+41)+(6 -a+6)47+(18a+46)472 +(3 a+15) -473 +(19.a+28)47'4-

(44 - + 19) - 475 + (32. a+25) .476+ (28 -a +3). 477+ (43 -a+9) .478 +0(479)
59 6+49-59+ 12-.592+33-593+23.594+33-595+14-596+31.597+57-59 +0(599)

6+49-59+ 12.592+33.593+23- 594+33-595+ 14-596+31.597+57-598 +0( 5 9 9)
61 32+32.61+32.612+14.613+54-614+59-615+31-61 +14-617+12.618+0(619)

22+43.61+ 51.612+53 -613+37-614+4 -615+50-616+4.617+46.618+0(619)
73 6 9 + 5 4. 7 3 + 6 2 -7 32+ 72 -7 3 3+ 7 73 4+ 5 6 -735+ 2 0- 73 ' + 2 5 . 7 3 7+31-738+0(739)
79 47+37-79+11-792+4793+45-794+30 -795+51 -796+57-797+798+0(799)

25+64-79+17.792+69-793+74 79"+14 795+37.796+29-797+6.798+0(799)
83 (7.a+3)+(65.a+13).83+(66. a+69).83 2 +(8-a+57).83 3 +(72.a+51).83 4 +

(21 -a+ 68) . 835+ (12 -a+3) .836+ (68 -a +50) - 837+ (60 -a+ 11) .838 0(839)

Table A.1.1: a factors for N = 67
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p (1 I )2 or ( 1 1 ) 2  (1 1)2

7 2±5.7+72 +5 - 74 + 7 +77 + 2. 78+ 0(79)
13 3+ 5 - 13 + 6 - 1322.13 +2- 134 +3. 135 + 12 - 136 + 137 + 7 138 + O(3)
17 15+2. 172 + 12- 173 + 3 . 174 + 2. 175 + 5 - 176 + 7 177 + 13. 17 -0(179)
19 1+3- 19+7- 192+ 15 - 194+ 16. 195 + 9 196± 7. 197 + 11. 198 + 0(199)
37 34 + 4 37+ 35 - 372 +27-373 + 12-374 + 17 37 +21 -37 + 18 377 + 14 - 37 + 0(379)
41 2 5 + 4 41 + 23 - 412 + 16. 4 13 + 3 8 - 14 + 10. 4 15 + 4 -41± + 3 -417 + 2. 418 + (419)
43 36+38-432 +3-433 + 6. 434 + 14 . 435 + 39. 43' + 42 - 437 + 18 . 438 + 0(439)
47 9 + 2 6 - 4 7 + 29 - 4 72 + 3 4 - 4 7 + 40 - 4 7 4 + 3 4. 4 7 5 + 2 7 -47 + 4 2 - 477 + 30 - 4 7 + O( 4 7 f)
59 12 + 22 - 59 + 15 . 592 +4-593 +23-594 +51 -595 +31 -597+0(591)
61 3+ 13. 61 + 23. -612 + 11 613 +43- 614 +23. 615 + 27 -616 + 42 - 617 + 14 618 + 0(619)
73 9 + 53. 73 + 31 - 732 +66-73 3 +46-734+37-735 +51 - 736 + 41 - 737 +53 - 738±+ 0(739)
79 19 + 69. 79 + 58 - 792 +28-793 +69.794 + 20 - 795 +56 -796 + 41 -797 +41 -798 +0(799)
83 48 + 3 - 83 + 27 - 832 + 27. 833 +81 .834 +5-835 +82 - 836 + 5 .837 + 14838 + 0(839)

Table A.1.2: c factors for N = 67
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A.2 N = 73

The quadratic field Kf is generated by a root a of x 2 + 3x + 1. Here are tables giving
ac factors:

p a orG1, G 2

11 6+.5- 11 + 10. 112+5. 11 +7 114+ _ 10I 5 + 10_ 116+ 10 117+ 118+0(119)
2+8. 11+7- 112 + 10. i3 +5- 114 + 9. 115+ 116 + 6- .117+ 7 118 + 0(11P)

13 (3 -a+5)+(8. a+2).13+(8. a+4) -13 2 + (a+11) 133 + (5 - a+8) -13 4 +
3 13 5 + (12 - a + 12). 136 + (9. a + 7) - 137 + (9 -a + 5) - 138 + 0(139)

23 (a+17)+18. a.23+(10 a+21). 23 2 +(9. a+15).23 3 + (20 - a+9). 23 4 +
(5 -a + 22) - 23-5+ (2 - a + 6) -236 + (20 - a + 5) - 237 + (4. a + 1) - 238 + 0(239)

31 19+5.314 8.312+8.313+30.314+28.315+6-316+8.317+7-318+0(319)
14±+18-31 +12-312 +24- 313+ 18-314 +6-31'+28-316 +4.317+ 15.318 ±0(311)

41 26+17- 41+39. 412+34.413+39.4 14+4. 41'+25. 41'+38. 418+0(41)
15 + 23 - 41 + 412 +6 413 + 414 + 36 - 415 + 15- 416 +40.41 7 +2.418 +0(419)

59 10+16-59+6-592+53-59+38.594+16-595+17.596+10-597+20-598+0((599)
37+28-59+47592 +55-593+44- 594+56-595+32.596 +51- 597+ 15-598 +0(59)

61 56+5-61+6.612436-613+22-61 4 +56-61+12-61 6 +61 7 +4261 8 +0(619)
12+48-61 +37.612+21-613+45-614+9 -61+48-61'+47.617+32-618 0(61P)

71 6 9 +60-71+101.7 2+40.71+17. 7 14+ 4 3 -715+7-71t+1717+65-718+0(7 1)

52+60- 71 + 19-712 + 17. 713+36. 14 -28 -71'+16-716 3G. 17 +29-718+0(71-)
83 (80-a+77)+(27.a+27).83+(52-a+12).832+(10.a+33).833+(47-a+28)-83-+

(15 - a+ 49) -835 + (41 a+32)-83)+ (33. a+17).83 7 + (71 -a+53) - 838 + 0(839)

97 (94 -a +88) + (31 .a + 96).97+ (82 -a + 42).972  (45 -a +88)-97 3 + (82 -a 4
75)-97 4 (52. a +60). 97 5 +(2 -a +86).97 6 - (17 -a + 96) - 97 +97+097)

Table A.2.1: a factors for N = 73

Table A.2.2: c factors for N = 73
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p (1 - a1)2 or (1 - a )2 (1 - )2

11 3+ 10- 11 + 9 112 + 7. 113+ 10 114 +8. 115 + 9 . 116 + 9 .117 + 10 118 0(119)
13 1 + 7 - 13 + 8 - 132+ 4 - 133+ 4 - 134 + 12 - 135 + 12- 13±7 + 2 13+0(139)
23 8 + 15 - 23 + 10 - 232 +8.233 + 12-234 + 17 - 23 + 3 -23 + 14 -237 +21 238 0(239)
31 14 + 10 - 31 + 19 - 312 +8-313 +314 + 315 + 28 -316 + 30 . 317 +28. 318 + 0(319)
41 9 + 5 -41 + 27 -412 +2.-413 +414 + 22 415 + 26. 416 + 27 -417 + 26. 41 + 0(419)
59 45 + 58 . 59 + 35 .592 +37-593 +21 .594 +53-595 +24.596 +45.597 + 18 .598 + 0(599)
61 25 + 5 -61 + 24 -612 + 15.6 13 + 15. 61 4 +37.6 15 + 22 -61 + 25 - 617 + 55 .61 8 + (61 )

71 8 + 38 -71 + 9. 712 +31 -713 +23. 714 + 12.7 15 + 70 - 716 + 50 -718, 0(719)
83 29 + 50 -83 + 79 - 832 +5-833 +74-834 + 19 83 + 44 83 6 +26-837 +65-838 +0(839)
97 3 2 + 17 - 9 7 + 7 8 - 9 7 2 + 8 - 9 73 +50- 9 7 4 + 2 9 . 9 75 + 41 - 97 ' + 4 9 9 7 7 + 7 8 - 9 7 8 + O( 9 79)



A.3 N = 85

The quadratic field Kf is generated by a root a of x2 + 2x - 1.
Here are tables giving a,e factors:

Table A.3.1: a factors for N = 85

Table A.3.2: c factors for N = 85
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p a or G1 , G2

13 (11 - a + 11) + (9 a+ 9) 133+ (7 a +7) - 132 + (5 -a +5) - 13+ (5 .- a+ 5)
134 + (3 - a + 3). 135 + (3 -a + 3)- 13( + (a + 1) 137 + (3. a + 3) 138 + 0(13)

29 (27.a+25)+(14. a+28).29+(11 -a+6)-.292+(25 -a+28)-293+(11 .a+23)-
294+ (28 -a + 21)- 295 + (25. a+ 12). 296 +(21- a +25)-297+ (a + 20)- 298 + 0(299)

37 (6.a +4)+(aA+26)-37+(15-a+11)-37 2 +(6-a +20) .37 3 +(19- a+24) -374+
(22 - a + 16) . 375 + (6 - a + 3) .376 + (25 - a+ 1) -377 + (30 - a + 10) . 378 + 0(379)

41 22+21-41+22.41 2 +11.41 3 +11 .41 4 +12-41 5 +2.416 +33.417+39-41 8 +0(4l')
23 + 7. 41 + 19. 412 + 18. 413 + 13- 414 + 3 - 41" + 19- 417 + 18 -418 +0 (419)

53 (49. a+2)+(51 -a+24) -53+(30- a+38).53 2 +(3. a+21) .53 3 +(34. a+ 17) -534+
(34 - + 17) -535 + (46. a +- 22). 536 + (8 -a+9) -53 7+ (16. a + 40) . 538 + O(539)

61 (4.a+6)+(26-a+13).61+(39-a+36).612+(18.a+60).613+(9 a+4).614+
(32 -a +43)- 615 + (35 -a +48).616 + (42 -a +9). 617+ (26 -a +36) .618 + 0(619)

73 62-+ 15-73+67-73 2 +57 73 3 +21-734+19 735-+10-736 +42-73 7-+27-738+O(73 9)
7 + 56 - 73 + 58 - 732 + 45 -734 + 16 - 735 + 34 . 736 + 52 - 737 + 53. 738 + 0(739)

89 3+63-89+15-892+82-893+80-894+84-89'+80-89'+49-897+15-898 +0(89)
89 70+70-89+10 -892+ 8 0 -893+70.894+70-895+85-89'+69.897+75.898+0(899)
97 54+60-97+ 75- 9 72+4 3 -97 3+54.974+67- 9 75+6897+49-977+16-978+0(979)
97 39+22-97+54 -97 2 +5-97 3 +84-97 4 +59-97+36-97 6+91 -97 7 +3-97 8+0(97V)

p (1 - 1)2 or ( 1 )2 . ( 2 _ ) 2

13 3 + 8 - 1-13 2 + 12.- 133 + 10 134 63 5 + 7 - 136 + 6. 137 + 9 138 + O(13 9)
29 20 + 4 29 + 5 -292 +28-29 3 + 17-294 + 4 29 + 21 -29 + 9 -29 7 + 17.2 98 +O(299)
37 27 + 34 . 37+ 20 - 373 +32-374 +21 -37 5 +20-37 6 +10.377 + 29 . 37 + (37)
41 23 + 9 -41 + 38 -412 + 36 413 + 3 - 41 4 + 415 + 30 - 41 6 +36.4 17 + 1741 08 -F(41 9 )
53 13+26 .53+5. 532 + 38 .533 + 13 -534 +2.536 +38-537 +6-53 8 + (53 9 )
61 22 + 42 -61 + 41 .61 2 + 52 .61 3 + 7 614 + 54 - 615 + 55 .61 + 22 - 617 + 6. 618 +0(619)
73 32+28 .73+58-732 +17-733 +36-73 4 + 31 - 73 + 69 - 73' + 2 -737 + 8 731 + 0(739)
89 85+71 .89+36-89 2 +63 893 +28-89 4 +78-89 5 + 41 89 + 23 - 89 7 + 6 -89 8 + O(899 )
97 54+7. 97+33-972 +92-973 +74-974 +88-975 +80-976 +46-977 + 57 - 97 + O(979)



A.4 N = 93

The quadratic field K is generated by a root a of x 2 + 3x + 1.
Here are tables giving (yc factors:

Table A.4.1: a factors for N - 93
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p a or a, a2
11 4 + 3- 11 + 8. 112 -- 10 . 114 +3 115 + 116 + 4 117 + 10 . 118 + 0 ( 11 )

1 + 3- 11 + 2 112 + 9 . 113 + 114 + 4 115 + 2 11' +2 117 + 0(119)
13 (2 - a + 2) + (6 -a + 12) - 13 + 9. a - 132 + (3 - a + 8) - 133 + (7 a + 12) - 134

(7 - a + 7) - 135 + (2 - a + 9) - 13(' + (6 - a + 7) - 137 + (3 -a + 12) - 138 + 0(13))
23 (21 -a +21)+ 11 - a. 23+ (17. a +15). 232 + (a+16).233 + (15. a+ 1) 234+

(10 -a + 7). 23F + (22 -a + 17). 23(; + (13 a + 3). 237 + (11 a +3) -238 + 0(23')
29 12 +25-29 +15-29 2 +25-29. 3+729 4+4.29+-29 6 +11.29 7 +18-29 8 +029')

19+18-29+13.292 +20.293 +15-294 + 22-295 + 11 .29' +2-297+22.298 +0(29 9)
37 (31 -a +29)+(21 -a+11) .37+(5. a+3) -372 + (5. a+35) . 373 +6 - a -374 + (34-

a + 10) - 37- + (29 . a + 12) - 37( + (28 - a + 26) . 377 + (16 - a + 14) - 378 + 0(37)
43 (37-a+31)+(35.a+35).43+(37.a+36).43 2 +(42.a +11).433+(20-a+33).

434 + (18 a + 18) 43 5+ (6 -a+ 13) -43(3+ (39 -a+31). 43 7+ (3 -a+ 15) .438 + (439)
47 (43 -a+43)+(11 a+23) -47+(13 -a+15).472 +(9- a+31).473+(43 -a4 36)-471+

(42 -a+33) -47 5 + (18. a- +16). 47  + (31 -a +27) .477+ (17 a + 46) -478 + 0(479)

53 (8-a+12)-(37.a +29)-53+(15-a+23).53 2+(26.a+39)-53 3 +(25-a+1 1)-53'+
(34. a + 25) -535 + (25 -a + 38). 536 + (28 -a + 42) -53 7+ (12. a,+ 18) . .538 + 0(539)

61 8+38-61+40.612+.51.613+48-614+36.615+41 616+37.617+39-618+0(619)
8+38-61+40.612+51 -613+48-61+36 -61F+41-616+37.617+39-618+(619)

67 55+27-67-37-672 + -674 + 25 -67 + 47 -67' + 40 -677 + 9 678 + 0(679)
73 (2- 0+4)+ (36. a+36). 73+(54 a+45) 732+ (40. a+54). 73 + (36.-+27).

734 + (67 -a+ 60). 735 + (9 -a + 20) - 736+ (21 . a + 9) .737 + 2. 738 + 0(739)
79 43+30-79+47-792+73-793+43-794+52.795+66-796+41 -797+9 .798+0(799)

44+50.79+ 792 +71 793+31 - 794+31 -795+ 9 796+ 25. 797 + 4. 798 + 0(79')
83 (79.a+65)+(7 a+70).83+46.a-83 2 +(8-a+75).83 3 +(65-a+19) 83+

(50 . a + 31) .835 + (16 -a + 1) .83( + (53- a A- 14) .83 7+ (35. a- +6.5) -838+ 0(839)
89 74+29 -89+45-892+77-8933894+69 895+69-896+75.897+62-898+O(899)

11+73-89+12-892+49.893+49-894+76 -895+64-896+75.897+51-898+0(899)



Table A.4.2: e factors for N= 93
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) (1 -- 1)2 or (1 - -1)2 (1 - 1a2

11 3.- 112 + 9 _113 +6 - 114 + 2 . 115 + 6 . 11I' + 8 - 11P + 0(11')
13 9+ 13+6. 132 + 12- 133 +7 134 +8 13 5 + 8 - 13 + 3 - 137 + 6- 138 + O(139)
23 3+8-232 + 19-233 + 18-234 + 15 . 23 + 14 - 237 + 7 238 + O(23)
29 7 + 16 -29 + 28 -29 2 + 15-293 + 22 .294 + 17 -29 5 +26.2 96 + 12.2 97 + 21 .29 8 + 0(29 9)
37 30 + 14 -37 + 21 - 372 + 17 373 + 24 374 +11 - 37 5 + 19 . 37 6 + 14 - 377 - 32 - 37 8 + 0(379 )
43 4+43+ 18.433 +2-434 + 40 435 + 26- 436 + 11 -437 + 11 - 438 + 0(439)
47 6+6-472 + 9. 47 + 45 - 474 + 34 .475 + 16 -476 + 16 -477 +8 - 478 + 0(479)
53 1 + 4 - 53 + 24 - 532 + 39 - 53' + 9 534 + 39 - 535 + 38 - 533 + 19 537 + 6 . 538 + 0(539)
61 16 + 33 . 61 + 39 -612 +3 . 613 +27. -614 + 56 .615 + 6 .616 + 39 - 617±+ 37 - 61 + 0(61')
67 29+51 -67 + 35. 672 + 62 -673 +49-67 4 + 53 - 67' + 29 - 677 + 44 678 + 0(679 )
73 70+66 .73+20. 732 +28-73 3 +28. 734 + 67 - 73 + 15 - 736 + 37 - 737 + 6 73 + 0(73')
79 52+6. 79 + 7 7 92 +5- 7 9 3 +21 . 7 94 + 46 -795 + 18 - 796 +26- 7 97 + 45. 7 9 ' -O(799)
83 77 + 18 - 83 + 2 4 - 83 2 + 4 6 - 83 3 + 2 4 . 83 4 + 21 . 8 3 + 41 - 8 3' + 3 9 - 83 7 +6 - 8 38 + O( 8 3 ')
89 53+24 .89+ 14 892 + 14.893 +74-894 + 52 .895 + 28 - 896 +34-897 + 53 . 898 + O(899)



A.5 N = 103

The quadratic field Kf is generated by a root a of x 2 + 3x + 1.

Here are tables giving a,c factors:

p a or A1 a2

11 2+8.11+7-12 ±l.13+5 14+9115+116+6.117+7-118+O(l9)

6+5- 11 + 10. 112 +5- 113 +7. 114 + 10- 15 + 10- 116+ 10- 117+ 118+H0(1i)

13 (3-a+3)+(4-a+8) -13+(2.a+3)-132+(4.a+5)133 +10-a-3 4 +(5.

a + 9) -135 + (6 - a + 9) -136 + (4- a + 7) - 137 + (- + 1) .138 + 0(139)
19 16+3- 192+3.193+8.194+8. 195+196+11 .197+0(198)

8+ 10 192 + 16. 193 +4. 194 +2. 195+ 12- 196 + 9. 197 + 0(198)

23 (19-a+17)+(13-a+20)-23+(7-a+22)-232+(14.a+9)23 3+(21-a+9).23 4 +

(a+ 14). 23 + (22- a + 21) -236 + (14- a + 10) - 237 + (13-a + 20)- 238 +0(239)

29 8+2.29+23-292+4 293+9 294+13-295+7-296+20 -297+298+0(299)

15+13-29+15.292 +26-293+ 17-29-"+7295 +23-296 +7-297+ 12.298 +0(299)
41 30+41+29.4 12+26.4 13+38.414+32.415+ 17-416 +38 -417+16.418 - 0(419)

11+39 41+11.4 12+ 14.4 13+2-414+8.415+23.416+2-417+24. 418 +0(419)

47 (42.a+38)+(17.a+30).47+(210 a+35).472 +(6. a+10) -47 3 +(5-a+44)-474 +

(5 -a+ 40) .475 + (38-a+45) 47 + (40-a+28) -477+ (14 a,- 39) -478 +0(479)

53 (48-a+41)+(38 a+33).53+(39.a+12)-532+(6 -a+2).533+(24-a+1) .534+

(33 -a + 29) -535 + (15- a + 12) .536 + (42. a +29) -537+ (6. a + 1) -538 + 0(539)

59 411+28-59+50-592+3-593+39-59z+17.595+16-596+26.597+39-598+0((599)
33+19-59+38.592+16-593 +32-594+ 19.59'+48.59'+17.597+56-598+0(599)

61 60+18-61+27.612+14. 613+34-612+13-615+6.61'+617+9.618+0(619)
16 +61 + 21 .612 +57. 613 +33- 614 +46.615 +616 + 15- 617 + 13 618 + 0(619)

71 44+33-71+53.712+64.713+38.714+10 -715+37.716+48-717+28.718+0(719)

30+42-71+69-712+65-71'+54.714+62-71+14. 716 +27-717+59-718+0(719)

73 (3-a+70)+(39. a+9).73+(37. a+24)732+(25-a,+66)733+(25.a+48).73 4 +

(68 -a+58) -735+ (7. a+ 55). 736+ (65. a+ 43) -73 7+ (40. + 64) .738 + 0(73')

79 32+41-79+67-792+74-793+33-794+48-795+27-796+21-797+77-798+0(799)
54+14.79+61-792+9.793+4794+64-795+41.796+49797+72-798+0(799)

83 (7- a+12)+(66-a+ 7 3 )- 83 + (72.a+2) -83 2 +(17. a+37) 833+(81- a+31).

83 4+ (35. a+ 2). 83+ (78 -a+7) -836+ (68. a+ 6)- 83 7+ (58 -a+ 5). 838 + 0(83')

89 23+62-89+36-892+8.893+66.894+60.895+61-896+77-897+65-898+0(899)
48 + 7189+59. 892 +84 -893 + 11 89z+45. 89' + 896 + 23 -897+ 17-898 + 0(899)

97 (6.a+14)+(87.a+58).97+(64-a+92).972+(71.a+66).97
3 +(13.a+43).974+

(86 -a +81). 975 + (23. a+ 54).976 + (62 -a+54). 977 + (76 -a+52). 978 + 0(979)

Table A..5.1: a factors for N = 103
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Table A.5.2: c factors for N = 103

151

p) (1 - 1)2 or (1 -- . )2 (1 1)2

11 3 + 10 - 11 + 9 - 112 + 7 113 + 10) - 114 + 8 - 115 + 9 - 1 16 + 9 .117 + 10 .118 -+ 0 119)

13 4 + 7 - 13 + 9 - 132 +6 . 133 + 6 134 + 12 13 5 + 4 - 13' + 5 - 131 + 8 - 138 +0(139)

19 4+ 14- 192 +3. 193+ 4 194 + 14 - 19J + 11 .196 + 13 - 197 +7. 198+0(199)

23 12+ 18 -23+17. 232 + 13 233 + 5 - 234 + 6 - 235 + 5 - 2 3 ' + 13 - 237 + 13 - 238 + O(23')

29 13+29+22.2 92 + 3-293 +6-294 + 2 -29' + 21 -29( + 14 - 298 + O(29)

41 33 + 30 -41 + 15 - 412 + 15 41 3 + 12 -414 + 17 415 + 9 41' + 27 - 417 + 8 . 41 8 + 0(419)

47 16 + 12 -47 + 29 47 2 + 2 - 47 3 +12 - 47 4 + 20 -47 + 30 476 + 3 -47 + 47 + 0(479)

53 46+ 15 .53+29. 532 +6 533 +43 -53 4 +38-53 5 + 3- 5-3 +40 - 53 7 + 22 - 538 - 0(53')

59 35+ 1259+6592 +24593 +9- 594+ 14 595 + 3 -59 + 54 597 + 2759 + 0(599)
61 14 + 52 - 61 + 36 612+9613 +48614 + 31 -61 5 + 3 -61' + 29 617 + 35 -61 8  0(61l)

71 3 + 46 - 71 + 67 - 712 +35-713 +60-714+ 68 71' + 3 . 71 + 35 - 717 + 19 718 0(719)

73 27 + 10 - 73 + 9 - 732 + 39 - 733 +41 - 734+ 9 - 735 + 60 - 73 +7-73 +48-73 +0(73)

79 31 + 69 -79 + 51 793 +63 794+13-795 + 36 - 79 + 70 - 797 + 56 - 79+ 0(79')

83 36 + 59 -83 + 55 - 832 + 13 833 +9- 834+ 11 83' + 73 - 83' + 54 -837 + 80 - 838 + 0(83')

89 16 + 34 89 + 74 - 892 +48- 893 +33 -894 +84-895 + 41 - 896 + 45 - 89 7 + 16 . 89 8 + 0(899 )

97 62 + 69 -97 + 31 - 972 +69-973 +68-974 + 63 -97 + 58 - 97' + 3 - 977 + 47 - 978 + O(97')



A.6 N = 107

The quadratic field Kf is generated by a root a of x 2 + x - 1.
Here are tables giving ac factors:

Table A.6.1: a factors for N = 107
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p a or ai, a 2

13 7+ 10 - 13 + 2 - 132 + 10. 134+ 10 - 13' + 2 - 136 + 2 - 138 + 0(139)
17 (a + 16) + (a + 1) - 17+ (8 .a+ 13).17 2 + (8 -a +8) . 173 + 4 -a - 174 + (9 . a +

13) - 17- + (2 . a + 13) - 176 + (4. a + 10) - 177 + (15 - a + 4) 178 + 0(179)
19 9 + 15. 19 + 8 . 192 + 11 193 + 9 194 + 17 195 + 12 - 19" + 3 - 19' + 0(199)

12+ 16-19+ 14 192+9. 193+9- 194+5.19'+ 14- 196+ 13- 197+2- 198+ 0(199)
29 (34. a+29)+(18- a+29).37+(20. a+ 15) .37 2 +(24. a+31) -37 3 +(22. a+14) -

374 +22 -375 + (28 .a+26). 373 + (23 -a+ 36) .377 + (31 - a + 31) - 378 + (37J)
41 18+28-41+20.412+19.413+25.414+11.415+6-41'+27.417+29-418+0(419)

33+32-41+4 12 + 24 413 + 11 414 +3. 41' +36 -416 + 16 417 +39- 41,+ 0(419)
43 (3- a+6)+(29.a+14).43+(6.a+17).43 2 +(18.a+14).43 3 +(15.a+32).43 4 +

(14 -a + 27) -435 + (5 -a + 1) -43t + (36 -a + 40) .437+ (34. a + 41) .438 + 0(439)
47 (2.a+41)+(15.a+12).47+(23-a+34).472+(19.a+11).473 +(43-a+36).474 +

(37. a+20) .47 5 +(44- a+37).47c +(36 -a+14) .47 7 + (40 a+ 14) .478+0(479)
59 84 13-59+48.592+4.593+4-594 +22-595+51-59'+22.591 +50-598+0(599)

.54 + 20 - 59 + 33- 593 + 46 -594 +50 -595 + 41 . 59 + 42 .59 + 35- 598 + 0(599)
61 2+12-61+25-612+11-613+7.614+57.615+17-61+53.617+4.618+ 0(619)

46+ 13-61+ 45 .612 +22.613+9 614+30 -61'+53. 616 +2 -617+54-618+ 0(619)
67 (65. a+61)+ (19. a+26) -67+(64. a+10) .67 2 +(39. a+37) -67 3 + (20 . a+42) -

674 +(24-a +18).67 5+(66.a+54).67 +(18-a+4)-67 7 +(16-a+24) 67 8 +0(679)
71 64+47. 71+54.712+32.713+2.714+27.715+36.71'+51.717+34 -718+0(71')

4+66-71+8.712+37.71'+51.71 +69.71+55.716 +8 -1 -20.718+0(719)
79 10+46-79+37-792+18-793+46-794+66-795+26-79'+64.797+58-791+0(799)

70+68- 79+3. 792+4 793+ 18 794+70.795+ 19.796 +70 797+63-798 +0(799)
83 80.a+(27.a+28).83+(52.a+9)-83 2 + (10-a+71)833 + (47. a+65).834 +

(15 -a + 64) .835 + (41 -a + 49) .836 + (33 -a+49) .83 7+ (71 -a + 6). 838+ 0(839)



p) (1 -- 1)2 or (1 - o1 )2 (1 - a2 )2

13 1 + 13+ 132 +12. 13312 . 134 + 3 - 135 + 7 - 13 + 11 - 13 +6138+O(139)

17 8 + 13 - 17 + 3. 172 + 11 173 + 14. 174 + 4 17' + 16 - 176 + 15 - 177 + 12 . 178 -O(17)

19 4+ 11 19+6- 192 + 15- 193 + 14* 194 + 3- 19 + 3 .196 + 13. 197 + 11 198 + O(199)
37 10 + 2 - 37 + 14 37 + 22 - 37 +15 .374 + 20 -37 + 9 - 37(' + 5 .37± 19 378 + 0(379)

41 33 + 35 -41 + 29 - 412 + 14.413 + 22 - 414 + 4 -41 + 34 - 11 + 4 4F1 + 21 - 418 + 0(41)

43 17 + 19 -43 + 33 - 432 +35. 433 + 31 .435 + 20 - 436 + 5. 437 + 34 438 + 0(439 )

47 16 + 41 47 + 46 - 472 + 26 - 473 + 3- 474 + 33 . 475+30 - 47( + 7 477 + 23 47 8 + O(479)

59 16 + 21 -59 + 53 -592 +43. 593 +24-594 +3-595 +43 596 +26 597 4- 52 . 59 + O(599)
61 48+47-61 + 17 t1 2 +35 613 +5-61 4 + 41 .615+ 3 4 - 61 + 4 7 - 617 + 3 9 g 6l + O( 6l9)

67 22 + 53 -67 + 3 -672 +45 673 +10.67 4 +47-675 + 35-67' + 49 677 + 65 -678 + 0(679)

71 50 + 2 5 -7 1 + 15 - 712 + 12. 7 13 + 4 9. 7 14 + 49 -715 + 50 . 71 + 32 - 717 + 6)7 - 71) + 071)
79 1 + 64 - 79 + 74 - 792 +22-793 +35-794 + 28 - 79 + 14 79' + 33 . 797 + 73 - 798 + O(79')

83 64 + 61 -83 + 61 - 832 +26.833 +50-834 + 6 . 835 + 42 - 83 + 4 837 + 51 - 83 + O(839)

Table A.6.2: c factors for N = 107
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A.7 N = 115

The quadratic field Kf is generated by a root a of x 2 + 3x + 1.

Here are tables giving a,c factors:

p a or a 1 , a 2

7 (5. a+ 3) + (3 a+ 3) - 7+ (5. a+4) -7 2 +3.7 3 + (4-a+5) 74 + (6. a + 4)

75 + 5 -a - 76 + (6 - a + 6) - 77 + (a + 5) - 78 + 0(7')

11 6+4-11+7. 112+5. 113+4-114+9. 115+7 -116+7. 117+7 118 +0(11), 3+
3. 112 +5- 113 + 3 114 + 10- 11' + 8 -117+ 9. 118 + 0 (11)

17 (13-a+9)+(12-a,+12).17+(3-a+16)-172+(6-a+4) 173+(5.a+8) 17 +

(4- a + 16) -175 + (6 -a + 13).176 + (16 -a + 2). 177 + (12- a + 5)- 178± 0(17')

19 12+16- 19+14-192 9.193+9 .194+5. 19'+14 19+13- 197+2. 198+

0(199), 9+15-19+8- 192 + 11. 193+9_ 194 + 17. 19' + 12- 19+3- 197+0(199)
37 (6.a,+6)+(6-a+12).37+(31-a+19).372+(4.a+33).373+(20.a+1).374+

(16. a + 26) .375+ (11 a + 6) -376+ (25- a + 1) 377 + (26 -a+6) 378 + 0(37')

43 (37.a+31)+(35.a±+35).43+(37-a+36)-43 2 +(42. a+11) .43 3 +(20.a+33).
434+ (18-a + 18)-43' + (6.a+13)- 436 + (39. a +31)-437+ (3- a+ 15) -438- 0(439)

53 47 +8-53 +31-5D'3 2 +22 -533 +42-53 4+30-53 5+ 19-53' + 6-537+ 8-538+0(539)
59 27+38-59+57-592+22-593+51-594+24-595+45-596+3.597+14-598+0(599)

32 + 20 59 + 592 + 36593 .594 +34.595+159+55-597 +459 8 +(59 9

61 9+8-61+16.612+52.613+52.614±12.615+45-616+33617+58.618+0(611))
54+53-61+15-.612 +13.613+32-614 +8.61'+8.616+60. 17 +40-618+0(619)

67 (61-a+61)+(55.a+44).67+(6.a+22).67 2 + (39 a+53).67 3 +(11 a+

44).67 4+ (2- a + 32) .67 5 +(2-a+33)-676+19. 67 7+ (60 -a + 4).678 + 0(67)

79 70+53-79+76-792+45-793+57-794+77-795+26-79' 4-43 79 7+38-79 8 +0(79 9)
31+18-79+10-792+41 793+23-794 +32-795+39-79+56- 797+77-798+0(799)

83 (4.a+4)+(62.a+41)83+(7a+50).832+(14a+42)833+(52a+19)834+
(80 -a+61) .835+(19. a+6) -836+.(11 -a+13) -83 7 +(76. - +5)83 8 +0(839 )

89 24+2.89+75.892+26-893+59.894+68-895+76-896+66-897+66-898+0(899)
75+41 89+9.892 +32-893 +7. 894 +2-895 +58.896+ 14. 897 + 43-898+0 (89')

97 (10 -a+20)+(29. a+29).97+(74. a+32) .972+(11 a+74) -973+ (50.a+80) -974+

(67. a+48) .975 + (18 -a +92). 976 + (23 -a+27) .977 + (93 -a +33) - 978+ (979)

Table A.7.1: a factors for N = 115
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Table A.7.2: c factors for N = 115
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p (1 - -- )2 or ( 1 )2 - ( , a 2

7 4+5-7+72 +3. 73 +4.74 +4-75 + 7' + 77 + 6 - 78 - 0(79)

11 9 + 4 - ll + 5. 112 + 7. 1 13 ± 4 . 1 14 + 3. 115 + 9. -11' + 2. 1 7 + 2 - 118+O( 1 19)
17 2 + 4 . 17+ 6 - 172 +8. 173 + 12 . 175 + 6 - 177 + 6. 178 + 0(179)
19 4+ 11 - 19 + 6 192 + 15. 193 + 14- 194 + 3 - 19r- + 3- 196 + 13 - 197 + 11 - 198 + 0(199)
37 27 + 14 -37+ 30 -372 + 11 37 3 +30-374 + 37' + 17 .37" + 5 -377 + 37 + 0(37)
43 4+43+ 18-433 + 2-434 + 40 -43 + 26. 43' + 11 - 437 + t - 438 + 0(439)
53 36 + 9 - 53 + 44 532 +27. 533 +5. 534 + 31 - 53 5 + 536 + 21 .53 7 + 43. 53 + 0(539 )
49 48+58 - 59 + 50 .592 +55-593 +47- 594 + 36 -.595 + 6 .596 + 45 -597 + 37 - 598 + 0(599)
61 48 + 48 .61 + 47. 612 + 29 . 613 + 12 - 614+ 34 .- 615 + 54 .61 6 + 45. 17 + 16 - 618 + 0(6 9 )
67 9 66 67+59-672+5-673+17 674 + 40 -67 + 7 - 67 + 64 -67 + 49678+(67)

79 22+8. 79+ 18. 792 + 13 793 +57 794 + 40 -79' + 47 - 79 + 44 - 797 + 60 - 798 + 0(799)
83 41 + 54 - 83 +8 - 832 +69. 833 +61 .834 + 62 . 835 + 23 . 836 +82.837 + 17 - 83 8 + O(83 9)
89 25+28 .89+36. 892 + 24 - 893 + 33 . 894 + 5 -895 + 65 - 89' + 32 - 897 + 25 - 898 + 0(899)
97 16 + 68 . 97+ 10 - 972 +89-973 +44-974 + 97 + 52 -97 + 68. 977 + 17 978 + O(979)



A.8 N = 125, A

The quadratic field Kf is generated by a root a of x 2 +:c - 1.

Here are tables giving a,,c factors:

Table A.8.1: a factors for N = 125, A

p (1 - a1)2 or (1 - 2-1
)

2 - (1 -

37 27 + 14 37 + 30 - 372+ 11 373+30374 + 375 + 17 376 + 5 . 37 + 37 - 0(379)

47 18 + 45 - 47 + 17 472 + 18-473 + 16-474 +8-475 +35-476 +39-477 + 23 -478 + 0(479)

53 37 + 13 -53 + 18 - 532 +3 534 + 17 - 535 + 36. 53) + 38 - 537 + 20 .538 + 0(539)

59 4+ 19.59+12 . 592 + 17593 +8-594 + 11 595 + 48 .597 + 26 - 598 + 0(599)

61 9 + 9 61 + 18 612 + 59 .613 + 20 -614+30.6 15 + 49 .616 + 42 - 617 + 28 .618 + 0(619)

67 23 + 62 - 67 + 47 .672 +61 .673 +57-674+25-675 + 9 .676+ 9 . 677 + 21 .678 + 0(67')

73 67 + 13 73 + 60 - 732 + 13-733 + 51 - 734 + 64 - 735 + 44 736 + 30 - 737 + 27 .738 + (73')

83 69 + 5 - 83 + 24 . 832 + 68 -833 + 77 834 +81 .835 +40. 836 +62-837 + 77 838 + 0(839)

89 67 + 66 -89 + 77 892 +77. 893 +70-894 + 59 -895 + 73 . 897 + 72 - 898 + O(89)

97 6 + 69 -97 + 63 - 972 +61 .973 + 83 -974 + 30 - 975 + 69. 976 + 81 - 977 + 77 97± 0(979)

Table A.8.2: c factors for N = 125, A

156

p A or I, a2

37 (31 -a+31)+(30. a+36).37+(5. a+30) -372+(32. a+23)37 3 +(16. a+35).374+

(20- a+29) 375+ (25- a+ 20).376-+(11 a+ 24).377 + (10 -a+ 26) .378 +0(379)

47 (7. a+3)+(23. a+40).47+(20. a+25).472+(8. a+41).473+(20-a+34).47 4 +

(24. a+36) .47 5 + (10 -a+24) .47 6+ (12. a+ 45) .477 + (12 a+13) 478 0(479)

53 (52. a+3)+(23-a+43).53+(43-a+18).532+(4. a+1).533+(7-a+28).534+

(41 -a + 16) .535 + (3 -a + 20) -536+ (9 a + 12) 53 7+ (14. a + 26) .538 + 0(539)

59 49+22-59+36.592+35-593+26.594+43.59+28-596+48.597+24-598+0(599)
25+16-59+28-592+55.593+7-59 4 +28-59 5 +8 -596+36.59 7 +21 -598+0(599)

61 26+16.61+46-62+14.613+12.615+29-61+ 56-61W+32.618 +0(61)

34+42-61+57.612+31-61 +8-61 +41-61'+47-61'+31.61±+51 .618± 619)

67 (3. a+58)+ (65 -.a+58). 67+(28. a+61) - 672+ (54 -a +58) -673 + (32. a +22).

67 4 +(28. a+7).675 +(7. a+62) .67 6+(37. a+ 49) .677+( 2 5. a+ 3) -678+0(679)

73 (70.a +70) +(48 -a+72).73+(67 a+26).732+(61-a+69)-73 3+(61 a+25).73 4+

(13- a + 35) -735 + (10. a + 50). 736+ (29. a +20). 73 7+(38. a +26). 738 + 0(73)

83 (79 a+77)+40 -83+(25 a+28) -832+(69 a+2) -833 +(55- a+59) -83 4 +

(38. a + 12) .835 + (12. a + 38) .836 + (24 a +9) -837 + (58. a + 9)-838 + (83))

89 25+23-89+47. 92+46.893+56.894+84-895+88-89'+26.897+8-898+0(899)
64 + 65- 89 + 41 - 892 +42-893 +32 894 +4 895 + 62 .8 97 +80 898+ (899)

97 (94 a+3)+(31 -a+64) -97+ (82 -a+24) -97 2 + (45 -a+3). 973 +(82. a+ 89 ) -

974 + (52 -a+ 44) -975+ (2 -a+15) -976 + (17 a+34). 977 +95 - 978 +_0(979)



A.9 N = 133, B

The quadratic field Kf is generated by a root a of X2 + 3x + 1.
Here are tables giving a, factors:

Table A.9.1: a factors for N = 133, B

157

p a, or a 1 , a 2

17 (3-a+3)+(11 a+5).17+(15.a+2).17 2 +(4.a +8).17 3 +(4- a+7) 174 +
(2-a+8)175+ (11-a+10) 17)+ (12-a+14).17 7 +_(16-a +11)17 8 + (17 9)

29 1+20 -29+24-292+24 -29+6 -295+14 296+2297+15 -298+ (299)
19+10-29+4.292+9 293 +6-294+6 -29' + 18- 29') + 13-297+ 13.298 +0 (29')

31 27 +19-31+26.31 2 +2-31 3 +12.31 4 +15.31 5 +431+12- 317 +3-31 8 +(31 9)
9 + 12 31 + 18 .312 + 313 + 13. 314+ 13 .31' +8 31' + 15- 317+ 4-318 +0 (31')

41 8 +27.41+2 -412+20.4 13+23. 414 +38-415+39 -41'+ 4. 417+7418 +(419)
36+10 -41 +20.4 12 +20.4 13+19 .414+23-415+37-41'+6 -417+28-418+0 419)

43 41+21-43+5.432 +8.433+19-43 4 +32-43 5+24-436+42.437+16-43 8 + 0(439 )
53 (48 -a+41)+(38 -a+33). 53+(39 a+12) -53 2 +(6. a+2).533+(24- a+1) 534 +

(33 . a +29) -535 + (15. a + 12) -53(+ (42 -a + 29) - 537 + (6 .a + 1) -538 + 0(53')
67 (58.a+50)+(39-a+36).67+(58. a+9) 672 +(48-a+44)-67 3+(39-a+18).674+

(20 -a+ 27). 67r + (51 .a + 20).676 + (63.a + 32).67 +(6- a + 57) .678 + O(67')
73 (3. a+12)+(39.a+-34)-73+(37.a+15).73 2 +(25-a+10)-73 3 +(25-a+27).

734 + 68 a - 735 + (7. a + 41) -736 + (65 .a+ 5) . 737+ (40. + 58) . 738+ 0(39)
79 69+7.79-30.792 +24-79 3 +26-79 4 +21-79 5 +36-79'+3- 79 7+6798 +0(799)

69+7-79+30. 792 +24.793 +26 794+21-795+36. 796+ 3- .797+6-798 +(79 9)
83 3. a + (28 -a+1) .83+ (43. a+10) -832+(58. a+81). 833+ (38 -a+26) -83' +

(19. a 38) .83 5+ (47 a+44) 836 + (65. a- +44) .83 7 + (53 -a+ 20) .838 + O(839)
89 66+26-89+52-89 2 +80.89 3 +22-89 4 +28-89 5+27.89'+11-89 7 +23-89-+0(89 9 )

41+17.89+29.892+4- 893+77 894 +43. 895 +87-89'+65- 897+ 71-898 + 899)



Table A.9.2: c factors for N = 133, B

158

p (1 - 5 1)2 or (1 - (1 2

17 15 + 16. 17 + 16 - 172 + 15- 173 + 174 + 7 175 + 12 - 176+3. 177 + 15 . 178 + 0(179)
29 20-2 92 +22-293 +21 .294 + 13. 295 + 26 . 296 + 10 -29' + O(299)
31 2 + 10 - 31 + 12 -312+5 31 + 9 31 + 22 - 31 + 11 .316 + 2 31 + 8 - 318 + 0(310)
41 1 + 22 -41 + 13 -412 +27.4 13 +22.4 14 +6. 415 + 23 - 116 + 26 - 417 + 33 418 + 0(41)
43 40 + 17 -43 + 42 - 432 +27-433 +28 .434 + 36 - 43' + 16 -436 + 26 - 137 + 18 - 438 + 0(43')
53 46 + 15 -.53 + 29 - 532 +6. 533 +43-534 + 38 -.535 + 3.536 + 40 - 537 + 22 -5384 O(53 9)
67 22 + 54 . 67 + 33 - 672 +41 .673 +30-674 + 60 .67 5 + 32 - 676 + 47 - 677 + 58 - 67 8 + 0(67')
73 57 + 33 - 73 + 71 - 732 + 64 - 733 + 50 - 734 + 21 - 735 + 29 . 73' + 19 - 737 + 44 738 + 0(739)
79 4 + 31 - 79 + 18 .792 +55. 793 + 73. 794 + 26. 795 + 36. 796 + 4 797 + 3 -798 + 0(799)
83 2 7 + 39 - 8 3 + 38 - 832 + 23 . 8 33 +61 - 8 3 4 +71 - 8 3 5 + 25 - 8 3 ' + 53 - 8 3 7 + 13 - 838 + O( 83 9)
89 9 + 69 - 89 + 51 - 892 + 45 - 893 + 80 - 894 + 2 -89 + 47 896 + 35 . 897 + 3 898 + 0(89 9)



A.10 N = 147

The quadratic field K is generated by a root a of X2 + 2x - 1.

Here are tables giving a,e factors:

Table A.10.1: a factors for N = 147

Table A.10.2: c factors for N = 147

159

p a or a1 , a 2

31 19+20-31+6-312+7.313+20-314+26-315+30.31+22.317+26.318+0(319)
20+9.31+4-312+ 14. 313 +3-314+ 13.31+ 12.316+ 12-31'+ 10.318+0(311)

37 33+27-37+372+10-373+11 374+33-375+15-376+17-377+32-378+0(379)
43 (4. a+4)+ (16 -a+16).43+ (27. a+27).432+ (13. a+13) .43 3 + (4. a+ 4) -43 4 +

(6 . a + 6) .435 + (28- a + 28) .43( + (25 -a + 25) - 437 + (21 -a + 21) 438 ± 0(439)

53 51+ 2 6 -5 3 + 4 6.5 3 2+ 2 9 -5 3 3+9- 5 3 4+ 2 2 -53 5+53 6+ 2 9. 5 37+ 4 8 -5 38+ 0(539)
61 (58.a+ 50)+(48.a, +19).61+(36.a+28).612+(35-a+45).61 3+(43.a+60).61 4+

(49. a +30) -615 + (45- a +24).616 + (19. a + 25) -617+ (38 -a + 56) .618 + 0(61 )

67 (63. a+63)+(41 a+41) -67+(30. a+30) -672+(8 - +8) -673 +(59-0a+59)-67 4 +

(66 -a + 66). 675 + (20. a +20) .676 + (47. a + 47) .67 +(42. a+42). 678 +0(67)

71 23+61 .7166 712 +36-713 +21-7 14+ 17-715+13.716+51.717+50.718+0(719)
44+25.71+44.712+53. 713+36. 714+46-71+55-716+28. 717+65-718 + 0(71)

73 1+21-73+38-732+25.733+4-734 +34-735+26-736+61-737+26.738+0(73 9)

64+42-73+25-732 +38733+50-734+2.735+48-73'+62-73+7731A+0(731)
79 44+61-79+41 792 +33-79 3 +74-79 +53-79A+18-79A+20-79+ 7 1-798+0(99)

51+56-79+50-792 48 793-+72.79 +15-795+57.796+55.797+13.798+0(79)

97 10 +22 -97 443 -972+56-973+67-974+66 .973 +17. 977+22 .978 +0(979)

79+33-97+32-972 +38-973 +27-974+36-975+7-97"+93-977+73.978+0(979)

p (1 -a1)2 or (1 - a--1)2 . (1 _ - ) 2

31 16 + 18 - 31 + 18 -312 +23-313+29.3 14 + 22 - 315 + 6 - 316 + 8. 317 + 16 .318 + 0(319)
37 26 + 10 - 37 + 3 .372 + 16-37 3 +27-374 +20-375+ 27 37 + 9 .377 + 23 - 378 - 0(379)

43 25 + 15 - 43 + 14 - 432 + 19-434 + 4 435 + 14 436 + 5 - 437 + 17 438 + 0(439)

53 15 + 28 -53 + 49 532 +40-533 +41 .534 + 4 - 535 + 12 - 537 + 44 - 538 + 0(539)

61 3 + 28 -61 + 14 .612 +6-613 +45.6 14 + 42 61 + 26 -61 + 40. 617 + 56 -618 + 0(619)
67 40 + 27 .67 + 9 .672 +53-673 +57. 674 + 48 .67 + 40 - 676 + 2 .677 + 44 67 + 0(679)

71 15 + 9. 71 + 45 - 712 +38-713 + 10.7 14 +50 . 715+ 70 - 716 + 49. 717 +32 718 + O(719)

73 732 +2 733 +5-734 + 30 - 73 + 59 -736+23-737 + 24 - 73 + 0(739)

79 9 + 54 - 79 + 30 . 792 +26-793 +59-794 + 39 - 79' + 67 - 796 + 3 - 797 + 12. 798 + O(79')

97 22 + 42 -97 + 17 .972 +38-973 +4.974 + 4 .975 + 84 976 + 91 .977 +26-978 + 0(97')



A.11 N = 161

The quadratic field Kf is generated by a root a of x 2 + x - 1.
Here are tables giving ae factors:

Table A.11.1: a factors for N = 161

160

p or 1 , a2
11 3+9.11 +5.112+8.113+114+9 .115+2-116+5117+6-118+(119)

8 + 11 +5. 112 +2 113 + 9 114 + 115 +8 - 116 + 5 - 117 + 4. 118 ± O(11V)
19 4 + 18- 19 +18. 192 4 . 193 + 6 . 194 +13. 196 + 17. 197 + 11 .198 + O(199)

5+ 10.19+10-192+8. 193+17- 194+ 12.19'+ 14. 196+10- 197+9. 198 +O(199)
37 (31-a+35)+(21-a +26).37+(5.a +34).37 2 +(5-a+29).37 3 +(6-a+31).37 4 +

(34. a + 12) -37-5+ (29- a + 19). 37(+ (28- a + 34).37 7+ (16. a+ 34).378 ±0(379)
43 4.a+(32- a+3 2 ). 43+(14. a+16).43 2 +(13 -a+9).43 3 +(7 a+9) -43 4 +(32.

a + 22) . 435 + (6 - a + 25) - 43c + (36 - a + 29) - 437 + (42 - a + 15) - 438 + 0(43')
53 (2.a+10)+(7-a+25).53 + (31-a+16).53 2-+ (3-a+28).53 3 +(28-a + 33).531+

(51 -a + 32).53 5+ (25. a + 29).53' + (27- a + 4) .53 7+ (35- a+ 38) .538 + 0(53')
.59 10+l16-59+6-_592+53-593+38.594+16-595+17-59"+10.-597+20-598+0(599)

37+28-59+47-592+55.593 +44-5 94+56-59'+32.596+51-597+15-591+0(59)

61 27+19-61+22.612 +34-613+37.614+.56-61+40.61 6 +56.617+47.61+0(61 9)
34+41.61+38-612 126-613+23-61 4+4-615 + 20.616+4.617+13-618+0(61P)

67 (57.a+61)+(65.a + 12).67+(27.a +15)-67 2 +(27.a+66).67 3+(62.a+6).67'+
(35- a +65)-675+ (22.a+55).67('+ (42 -a-+42) -67 7 + (42-a+33).678+ 0 (679)

79 15+11.79+5-792 t74-793 +22.79"+45-79 5 +49-79 6 +21-79 7 +32-79 8 + 09(79)
54+28-79+38-792+41.793+415-794+37.79+ 56-796 +78-797 +26-798+0(799)

83 (4. a+4)+62 -a -83+(7. a+48). 83 2 +(14. a+68). 83 3 +(52- a+1) -83/+(80.
a + 17) - 83 5+ (19 - a + 33) - 83c + (11 -a + 9) . 837 + (76 - a + 64) - 838 + 0(83T)

89 76+71 89+51-892+59-893+50.894+61.895+27-896+80.897+53-898+0(899)
13+17 89+37 892+29. 893+38. 894+27-89±5+61-896+8-897+35.898-0(899)

97 6 . a+ (16 - a + 16) - 97+ (60 -a+82) - 97 2 + (a + 48) - 973 + (31 -a +88). 97 4 +
(a+ 70) - 975+ (39. a+ 88) . 976 + (70 -a+ 62) . 977 + (12 - a+ 88) . 978 + 0(97')



Table A.11.2: c factors for N = 161

161

p (1 -- - )2 or (1 - 1)2 (1 _ 1)2

11 5 + 8 11 + 112 ±4. 1 3 + 6 . 115 + 5 - 11' + 2 - 117 + 9 . 111 + O(119)
19 11 + 10 19 + 8 - 192 11 193 + 15 194+ 9 - 19' + 7 19 + 11. 197 + 14 198 + 0(199)
37 30 + 14 37 + 21 - 372 +17 373 + 24 . 37z + 11 - 375 +19 -37 + 14 37 + 32 - 378 + O(379)
43 4 + 37 . 43+8-432 + 5. 433 + 37 -43- + 5 -43 5 + 3 - 43 + 27 -437 +O(439)
53  17+22 . 53 + 6 - 532 + 44 - 53 + 5 - 53 + 4-53 5 + 45 -.53 + 31 - 53 + 4 -53 8 + O(539 )
59 45 + 58 .59+35. 592+37-593 + 21 - 59 + 53 595 + 24 -59' + 45 -597 + 18. 598 + 0(599)
61 56 + 22 - 61 + 39 -612+59 .613 + 26 . 61 + 10 615 + 52 61' + 60 - 61 17 61' + (6)
67 64+24 .67+37-672 +31 .673 +2. 67' + 2 - 675+49-676 + 37 -677 +25. 678+0(679)
79 50+34 -79 + 74 -792 +21 .793 + 18 794 + 17 795 + 68 - 796 + 71 -797 + 16 - 7984 0 (799)
83 16+38 .83+38-832 +55-833 +70 83z + 53 .835 + 49 83' + 73 - 837 + 2 - 838 + 0(839)
89 32+73 .89+83.8 92 +28. 893 +78 .89" + 12 89 5 + 12 896 + 9 -897 + 68. 89' + (899)
97 85 + 40 - 97+ 46. 972 +77.973 +48 - 974 + 20 975+ 96 .97 + 46 .977 + 16-978+0(979)



A.12 N = 165

The quadratic field Kf is generated by a root a of x 2 + 2x - 1.
Here are tables giving a-,c factors:

162



p a or a1 aV2
7 6+4 - 7+6 .73 4. 74 + 3 .75 + 6 . 76+0(79)

4+6 72+6- 73+ 5 -7 + 4 76 + 3. 77+5 - 78 + 0(79)
13 (4 -a + 4)+ (8. a +8). 13+ (11 -a+11) - 132 + (a+1) - 133 + (6 -a+ 6). 134 +

(11 - a + 11) 135 + (12. a + 12) - 136 + (3. a + 3) - 138 + 0(13')
17 1+ 4 - 17+8 - 172+8. 173 +13- 174 +4 175 +8 . 17 + 3. 177 + 0(179)

8 + 13 - 17 + 15- 17 2 +8- 175 + 3 - 17' + 10 - 17 + 4. 177 + 16. 178 + 0(179)
19 (2.a+17)+(5-a+14).19+(16.a+17). 192 +(2-a+11)-19 3 +(2.a+11).19 4 +

(13 -a + 13).195 + (11 -a + 14) -196+(a-±4). 197 (17 -a + 12). 198 +0(199 )
23 19+5 -23+3 -232+15. 233+ 234+ 16 -235+ 20 -236± 9 -237+20.238 +0(239)

19 +5 -23 + 3 -232 + 15 -233 +234 + 16 -23' + 20- 23" + 9. 23 7 +20 -238 + 0(239)

29 2 -a + (14 -a + 28) .29 + (17 -a + 12) - 29 2 + (3. a + 6) - 29' + 17 a - 29 4 +23-
295 + (3 - a + 18) . 296 + (7 -a + 10) - 297 + (27 -a + 17) 298 + 0(299)

37 (33.a+2)+(35.a+16) -37+(18. a+20).372 +(31 -a+17).373+(21 -a+24) -37 4 +
(22- a + 12).375 + (27. a+29)- 376 + (24- a + 13).377 + (8. a+24).378+ ) 0(379)

41 36+35-41+23.412+9 .413+21-414+17-415+39-410+2. 417+29-418 +0(49)
9 + 6 - 41 + 29. 412 + 11 411 + 6 - 41' + 34 - 41' + 6 - 417 + 13 - 418 - 0(41)

43 (2. a+39)+ (40. a+30). 43+(30. a+10) - 43 2 + (34 -a+ 13) -433+ (12.a - 16) -
434 + (32 -a + 9). 435 + (18 -a,+ 40). 4 3 ( + (a+ 7). 437+ (9. a +26) -438+ 0(439)

47 43+11 47+24-472±15-47 3 +37-4 74+42-475+8.476+23-477+4.478+0(479)
43+11.47+24-472 +15-4 +37-47 +42-475+8- 47 +23-47 +4.4780(4799)

53 (455.a+43)+(23.a+17).53+(21-a+46).53 2 +(35. a+11)*53 3 +(31 -a+40).
534+(-3.a+48)-535+(32.a+30).536 +(18. a+14) 537+ (24. a+34) .538+0(539)

59 55+14-59+56.592+7-593+47-594+31 .595+21.0596+51597+58 -598±0(599)
61 (4.a+59)+(a+32).61+(24.a+13).61 2 +(34-a+12).61 3 +(55.a+6) .61 4 +

(4 -a + 28) . 615 + (30 . a + 6) - 616+ (7 -a + 10) -617+ (33 -a, + 45) . 618 + 0(619)
67 (4 - a + 4) + (25 . a + 25) . 67+ (36. a + 36) . 672 + (58 - a + 58) - 673 + (7 a +

7) . 674 + (46 -a + 46) - 676 + (19 - a + 19) . 677 + (24 -a + 24) - 678 + 0(679)
71 56+66-71+59.712+16-713+51 .714+57-715+ 9.716+9.7 17+42 -718 (719)

31+39- 71+67-712+14-713+52- 714+48. 715 +63-716 +34717+ 10.718 0(719)
73 37+ 54 - 73 + 18. 732 +37-733 + 17. 735 + 14 - 736 + 40. 737 + 33. 738 0(739)

36+18 -73+54-732+35.733+72-734+55-735+58. 736+32-737+39-738 0(739)
79 25+33-79+48-792+37-793+31.794+62-795+66-796+45-797+49-798±0(799)

54+45-79+30-792+41 793+47 794+ 16-795 +12.79'+33-797+29-798+0(799)
83 73+ 24 -83+29 -832+79-833+40-834 + 41 .83 +56.83 +51 .838+ 0(839)
89 76+43-89+46.892+58-893+49.894+39-895+65-896+53.897+87-898+0(899)

9+83-89+11-892+45 893+ 16 89z+3- 895+88 .896 +29-897+ 14-898+0(899)
97 47+60-97+81-972+90.973+76-974+16-975+78-976±14.977+69.978+0(979)

62 + 33 -97 +63.972 + 82.973 + 14 97' + 15 -976 + 34 977 + 28 -978 + 0(979)

Table A.12.1: a factors for N = 165

163



p (1 - 1)2 or (1 - 1-1)2 (1 - a )2

7 4+4-7+4-72 +6. 73 +5. 74 +2-75 +3- 76 +2 - 7 + 2-78 + (79)

13 9 + 12 - 13 + 12 - 132 + 5 - 133 + 6 - 134 + 12 - 135 + 3 . 136 + 12 - 138 + O(3S)

17 8- 172 + 9 173 + 11 174 +6. 175 + 7 176 + 16 - 177 + 14 - 178+(17 9)

19 46 + 15 - 19 + 3 - 192 + 15. 193 + 18- 194 + 18 - 195 + 12 - 19' + 18 - 197 + 4 -198 + 0(199)

23 9+ 11 - 2 3 + 18- 2 3 2 + 4 2 33 + 17 2 34 + 2 35 + 11 23 ' + 9 - 237 + 4 - 238 + O( 2 3 9)

29 20 + 4 - 29 + 5 - 292 + 28 -293 + 17 - 29 4 + 4 . 29 5 + . 29' + 9 - 297 + 17. 29 8 + O(29')

37 10+5- 3 7 + 15 - 37 2 -3 + 3 - 3 7 + 30 - 3 7 + 2 - 3 7 " + 20 - 37 + 20 . 378 +O(379)
41 21 + 30 - 41 + 26 - 41 2 +18-41 3  12 1+8- 41' + 37 - 41 +-O(41')
43 9 + 30 -43 + 11 43 2  18 - 43 + 37 - 43 4 + 13 - 435 + 26 - 43' + 3  3 + 15 . 438 + O(439)

47 32 + 19 -47 + 15 - 472 + 27 - 473 + 8 474 + 27 475 + 12 47' + 31 .47± + 16 -478 + 0(479)

53 37 + 5 .53+4-532 +27-533 +534+40-535+ 13 53 + 15-53. + 21- 538±0(539)

59 46+4359+3592 +8593 +4594 +57 595 + 1259 + 13 59+ - 598 + 0(59')

61 60+60 -61 + 17.6 12 + 10.613 +35 . 614 + 12 - 615 + 38 -6) + 32 617 +34-618+O(619)
67 40+27-67+9672 +53-673 +57,674+48-67'+40-676+2-67-+44-67+O(679)
71 12 + 6 6 - 71 + 19. 7 12 + 18- 713 + 12. 714 + 4 3 - 715 + 56 -71" + 3 77 + O( 7 19)

73 9 + 24 - 73 + 59 - 732 +46-733 +26- 734 + 43 -73 + 43 . 73 + 3 -73 + 36 - 738+0(739)

79 40+40 .79+76.792 +39- 793 +2 794 +77- 795+ 55 793 + 9 797 +5-798 +O(799)
83 61 +31 .83+ 12-832 +70-833 +65 . 834 + 40 -83 + 35 - 83 + 5.5 -837 +60-838 + 0(839)

89 16+60 -89+84-892 +3893 +87 89 4 + 45 .89 + 26 -89 + 41 89 7 + 71 - 89 8 + O(899 )

97 94 + 54 -97 + 21 -972 + 19 973 + 59 - 974 +62-975 + 34 - 97' + 54 - 977 + 88 97 + O(979)

Table A.12.2: E factors for N = 165

164



A.13 N = 177

The quadratic field Kf is generated by a root a of x 2 + x - 1.

Here are tables giving a,e factors:

Table A.13.1: a factors for N = 177

165

p a or a 1, A2
7 (a+ 4) + 2- a -7+ (4. a+ 3).7 2 +5 -7 3 + (a+ 3) 74 + (6. a+ 5) -75 + (5 -a+

6) - 7' + (2 a+ 2) 77 + 5 - 78 + 0(7')
17 3. a+ (11 -a 11) - 17+ (15. a+3).l 72+ (4 a + 3).173 + (4 a+ 3).174 + (2.

a + 6) - 175 + (11 - a + 16) 176 + (12 -a + 1). 177 + (16. a + 12). 178 + 0(17')
19 13+4. 19+10. 192 +19 3 +13. 194 +11 -19 5+2 -196 +5- 197+14 .198 + 0(199)

1 + 10. 19 + 3. 192 + 14. 193 + 18 - 194 + 17 - 195 + 15 - 197 + 6- 198 + O(199)
23 (22 -a +19) + (a +16).23+ (7 -a + 19).23 2-+ (13 .a+ 18). 233 + 22. 234 +(7-

a + 16) - 235 + (3. a + 3) -236 + (5. a + 9) -237 + (10 - a + 21) . 238 + 0(23')
29 2 + 22 -29 + 13 -293 +6-29 4 + 4 .29 5 + 17 29 + 23. 29 + 23 - 298 + O(29')

13+12-29+26292 +23-29'+4- 29+26-29'+19.296+9.297+19.298+0(299)
31 19+8 -31+16.312+7-313+11 .314+9 .315+10.316+2-317+4-38+0(319)

11+ 18-31 +16-312+11 313+ 17-314+11-31'+18.316 +9-317 +23.318 +0(319)
37 (3-a+35)+(3.a+4).37+(33.a+11).37 2 +(28. a+31). 373 +(11 a+14).

374+ (14. a +6)375 + (25- a +20).376 + (a +26).377 A- (23. a +9) 378 + 0(37)
41 3 5+ 3 5 4 1+9. 4 12+ 14 .4 13+ 2 9 .414+ 2 6 .4 15+10-.4 16+11 41+ 3 5. 4 18+0( 4 19)

11+38-41+24.412+22.413+25.411+12.415+26.416±22.- 17+30-418+0(1j)

47 (44.a+38)+(24.a+43).47+(9-a+35).47 2 +(23.a+19).473+(18.a+1)-47 4 +
(13. a+ 27). 475 + (21. a + 34)- 476 + (3. a + 43) .47 7+ (45- a + 21) -478 + 0(47')

61 46+13-61+45.612+22.613+9.614 +30.615+53.616+2-617+54-618+0(619)
2+12-61+25.612+11 613+7 614+57-61+ 17-616+53.617+44.618 +0(619)

73 (3. a+72)+(14.a+42).73+(2-a+7)73 2 +(5-a+44)73 3 +(72-a +41).734+
(7. a+ 51). 73-5+ (3- a + 53) .736 + (59. a + 63) -737 + (33. a + 64) -738 + 0(73()

83 (82-a+82)+82.83+(2.a+81).83 2 +(10.a+76).83 3 +(65-a+42).83 4 +
(61- a+ 37) -83-5+ (8. a+ 10) -836 + (8- a + 54) .837 + (30. a + 53) .838 + 0(839)

89 72+43.89+64.892+80.893+67.894+37-895+49-896+19.897+38-898±0(899)
14+85-89+68.892+32-893 +52-89 4+26.89 5 +67.896+11.897+28-898+0(899)



Table A.13.2: c factors for N = 177

166

p (1- 1) 2 or(1-T )2( . 2)2

7 2+6- 7+3.7 2 +2-7 3 +74 + 2. 7' + 4 .7 + 78 + 07 9)
19 192 + 9 . 193 + 15- 194 + 9 19' + 11 196 + 12- 197+ 15 - 198 +O(191)
23 18+ 16 -23 + 16 - 232 + 8 - 233 +1523 4 +13.23 + 2. 23 + 237  14 - 238 + (239)
29 16+3- 29+ 19.292 + 10-293 + 6 -294+14.2 95 + 22 . 296 + 3 -297 + 12 - 29 8 + 0(299)
31 18+ 18.3 12-1:'+4-3 +25-31'+26-3 18. 31 + 1 - 31 - 0319)
37 7 + 21 - 37 + 32 - 372 + 15 - 373 + 374 + 12 . 37 + 28 - 37' + 10 - 377 + 37 8 + O(37 9)
41 39+21 -41 + 20 -412 + 8. 413 + 21 -41 + 6 - 41' + 16 - 416 + 30 . 417 + 12 -418 + O(419)
47 2 + 12 - 47 + 21 -472 +28-473 +7-474 + 26 - 47 + 28 - 47 + 35 . 477 + 25 - 478 + O(47V)
61 48+47-61 +17.612 +35. 613+ 5. 614+41 . 61 + 34 - 616 + 47 617 + 39 -618 + (61)
73 38 + 16 - 73 + 50 - 732 + 36 - 733 + 10-734 + 41 - 73 5 + 36 - 733 + 42 . 737 + 33. 73 8 + O(739)
83 1 + 14 . 83 + 40 .832 + 5 - 83 + 60. 83 + 64 83 + 80 - 83 + 74 83 + 46 838 + (83)
89 25 + 22 . 89 + 25 - 892 +28. 89 22894 + 6 - 895 + 77 -8997 +75-89 8 O(89 9)



A.14 N = 188

The quadratic field Kf is generated by a root a of x 2 - 3x + 1.

p a or V1 ,cG2

7 (a+2)+(2.a+3)-7+(4-a+1) 72 + 47 3 +(a+1).7 4 +6-a.7 5 ++(5-
a+2) -76+ (2-a+4) .77+478 +0(79)

11 6+6- 11+2- 112 +113 +3- 114 + 6-11'+ 9 -11 + 7 -117 +7- 118+0(111)

1 +11+2- 112 + 2-I13 + 9 114 + 9 115t+ 4- 116 + 8- 117 + 4- 118 + 0(11w)
13 (2-a+4)+(8.a+6).13+(2-a+11) 132 +(6-a+5)-13 3 +(7.a+ 11)-

134 + (2- a + 6). 135 + (a + 3). 13' + (9. a + 9)- 137 + (5 -a + 3).138 + 0(13 )
17 (14-a+6)+(5-a-+11), 17+(a+10)-17 2 +(12-a+6)- 173 +(12. a+5)-

174 + (14. a + 15) - 17,5+ (5 -a + 5) - 176 + (4. a + 6) . 177 +4 178 + 0(179)
19 10+3-19+10.192 7.193+9. 194+ 191 +6.196+1 - 19 7 +18.198+ 0(199)

7 + 2- 19 + 4. 192 + 9. 193 + 9. 194 + 13 .195 + 4. 19' + 5. 197+ 16- 198 + 0(199)
23 (21-a+17)+(6.a+20)23+(15-a+22)-23 2 +(18-a+9)23 3 +(10. a+9)-234 +

(12- a + 14) 235(22- a +21) .23(+ (18 -a + 10) -237+ (6 -a +20) -238 +0(239)
37 (20 -a+27)+(21.a+1) .37+(18 -a+30) .37 2 +(15- a+24).373 +(2- a+31)-

374 + (3.5. a + 13) . 375 + 9 376 + (29. a + 16) - 377 + (9 - a + 9) .378 + 0(379)

41 22+16.41+5.412+20.413+4.414+37.415+8.416+21 -4]7+20.418+0,19)
37+27- 41+3- 412+35- 413+ 13.414+31 -415+25- 416 +24 417+ 10-418+O (49)

43 33+12-43+8.432+21-43l+18-43z+4.43+12-43'+16-4-37+22.438+0(439)
53 (5. a + 40) + (48. a + 1) 53 + (25 -a + 21).532 + (34 -a + 25) . 533 +40-534 +

(8 -a + 31) . 535 + (5 - a + 11) .53" + (23 -a + 6) . 537 + (37 - a + 46) - 538 + 0(53')
59 34+31-59+21-592+.58-593+23.594+18-595+36-593+26.597+21.598+0(59))

26+28 -59+41 .592+22.593+3.594+45-595+20-596+34 597 + 19.598+0(599)
61 55+7 .61+5.612+l10.613+43.614+24.615+32-616+50617 + 8.618+0(619)

11 +54- 61+20-612+55.613+15. 614+566 15+52.616+ 16 6 17 +4 618+0(61 9)
67 (a+63)+(32. a+51).67+(21-a+15).67 2 +(5a+57)67 3 +(41 a+51).67 4 +

(61- a + 41)- 675+ (63- a + 30).676+ (13. a + 11) .67 7+ (27. a+ 17).678 +0(679)

71 36+14-71+62.71 2 +21.713+15.71 4 +61-71 5+20.71 6 +6.71 7 +25-71 8 +0(71 9)
50+27-71+27-712+43.7 13 +36714+64-715+13716+49.717+59.718+0(719)

73 (67.a+67)+(60-a+48).73+(35.a+ 2 2 ).73 2 +(42.a+64).73 3 +(35.a+49)-73 4+
(66. a+13) .73 5+ (27. a+66)- 736+ (21 -a+30)- 73 7+ (59- a+ 16)- 738+0(73')

79 65+41-79+70.792+60-793+34-794+35-795+67-796+4.797+55-798+0(799)5+
38. 79+ 35. 792 +6.793 +32 -794 + 6.79' +2 -796 +53 -797 +26 -798 + 0(79')

83 (4. a+71)+(29.a+78)83+(55-a+82).83 2 +(21- a+17)833 +(54-a+3)-83 4 +
(66 -a + 49) -83-5+ (20. a + 20) .836 + (69 -a + 41) -83 7+ (7. a+ 59).838 +0(839)

89 59+49-89+9.892+68.893+26.894+54-895+66-896+18-897+59.898+0(899)27+
9-89+ 66.892+ 12-893+ 77 894 + 52-895 + 45.896 + 19_ 897 + 83-898 + 0(899)

97 (50.a+82)+(73.a+2).97+(63.a+80).97 2 +(50.a+42)-97 3 +(66-a+37).974+
(92. a+ 76).975+ (74. a+41). 97' + (47 -a +88). 977 + (78 -a+ 18) .978+ 0(979)

Table A.14.1: a factors for N = 188
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Table A.14.2: e factors for N = 188

168

p (1 - 4) 2 or ( 1 -- o )2 (1 2 2

7 2 + 6 - 7+ 3 - 72 + 2. 7 3+ 7 4+ 2 - 7 5 + 4 7 78 + O( 79)

11 112 +5. 113 +5. 114 + 9. 115 + 3. 116 + 7 - 117 + 3 - 118 + 0(119)
13 12 + 6- 13 + 10 - 132 + 9 .13 + 12 . 13 4 +6- 13-5+4- 13 6 +8. 137 + 12. 138 + 0(139)
17 8 + 15 - 17 + 5 - 172 + 2- 173 + 7 - 174 + 3 - 17' + 16 - 17 ' _ 10 . 177 + 12- 178 + 0(17')
19 .5 + 16- 19+17. -192 +2. 193 +2. 194 + 1.5 . 19 5 + 5. 19 + 5. 197+9 .198 +0( 199)
23 12 + 18 -23 + 17 -232 + 13- 233 + 5 . 234 + 6. 23' + 5 . 23' + 13- 237 + 13 -238 + 4(239)
37 33 + 4. 37 + 17 - 372 + 29 - 37 3 +17-374 + 16 . 375 + 30 - 376 + 19 . 377 + 26 -37 + O(37)
41 9 + 23. 41 + 10 - 42+ -413 +35 414+17.415 17-41 +22.417 +22-418+0(419)

43 17 + 35 - 43 + 28 - 432 +3- 433 +21 -434+ 25. 43' + 13 43' + 30 - 438 + 0(43')

53 15 + 15 - 53 + 41 - 532 +26- 533 +22.534 + 40 -535 + 10 -53' + 5. 537 + 47 538 + 0(539)
59 1 + 2 - 59 + 15 -592+ 53593 +56-594 +56.595 + 31 - 59 + 39 597+20. 598 + 0599)
61 13 + 49 61 + 23 - 612 + 60 -613 + 15 614 + 48. 615 + 39. 61" + 43 . 617 +8 .618 - 0(619)
67 10+4-672 +46-673 + 44 .674 + 41 - 675 + 21 .676 + 6 -67 7 +50-678+0(679)
71 37+ 17 71 + 51 - 712 + 3 7 . 7 13 + 2 7. 7 14 + 70 - 715 + 26 . 71' + 58 7 17 + 6 - 71. + O(71)
73 8 + 56 -73 + 43 -732 +33. 733 +45-734 +59-735+ 53 - 736 + 14 - 737 + 70. 738 +0 (739)
79 62 + 51 - 79 + 74 792 +22-793 +70.794+43 795+ 30 - 79 + 55 - 797 + 75. 79 + 0(799)
83 11 + 58 -83 + 20 .832 + 16-833 +31 -834 +2-835 + 56 - 83' + 40 -837 + 61 - 83 + 0(839)
89 8 + 66 - 89 + 48 - 892 +50-893 +81 - 894 +78-895 +79.8 96 +22-897 +86 - 89 + 0(899)
97 47+ 67 - 97+ 75 -972 + 12-973 +6-974 + 77 -975 + 88 .97' + 78 -977 +24-978+0(979)



A.15 N = 191

The quadratic field Kf is generated by a root a of x2 + x - 1 Here are tables giving

ae factors:

p a or 1 , a 2
7 (6 a + 6) + 6 - 7+ (2 -a + 5) 72 + 3 -a . 73 + (3 -a + 1) 71 + (2 - a + 1). 7'+

(6 a + 6) - 76 + (2 a + 3) - 7' + 3 - 78 + 0(7')

23 a + (22 a+ 22). 23+ (20 -a +19). 232+ (12- a +6) -233 + (3 - a + 9). 234 + (4.

a +-7) 23- + (13 -a + 13) 23" + (15 -a + 19) 237 + (16 a + 16) .238 + O(239)
31 28+19. 31+6 -312+26 313+3-314+2 -315+17. 31' +3.3 17+2. 318+(319)

29 +16-31 +26.312+9 31' +11 - 314 +315+ 26 -3 16 + 28. 317+ -5.318 + 0(31')

43 (39 - a + 2) + 23 . 43 + (15 -a + 1) - 432 + 11 a - 433 + (15 . a + 13) - 434 + (38.

a + 3) - 435 + (31 - a + 34) . 436 + (13. a + 14) . 437 + (39 - a + 12) - 438 + O(439)

47 (40 -a+45)+(27. a+19).47+(9. a+41). 472 + (35 -a+44) .473+(41 a+3 2 )-

474+(41 .a+35)-47!+ (14. a+ 18) -47'+ (17. a+20) .47 (6- a+5)-478 0(47)

53 (5.a+3)+(46.a+29)-53+(15.a+12).532+(5.-+40)-53
3 +(24-a+9)534 +

(13. a+20).535+ (22. a +48)-53" + (36- a +44) 537 + (50 -a+16).538 +0(539)

71 41+33,71+53-712+64-713+38714+10.715+37.71;+ 48-717+28-718+0(71)

30+42-71 +69.712+65.713+54 714+62.715+14-716+27.717+59-718+O(719)
73 63+21-73+70-732+23-733+33-734+15.735+47-73+65.-737+12-738 +(7339)

97 (85 -a+87)+(18. a+83).97+(2. a+1) .972+ (78 -a+16) -973+(76 -a+76).974+
(29 -a +27). 975 + (44 a+91) -976 + (31 a+80) -977 + (15. a+33)- 978 + 0(979)

Table A.15.1: a factors for N = 191

p '(1 - 1)2 or (1 - a') 2 . (1 - a- 1) 2

-7 1 + 6 - 7 2 +2-7 73 + 3- .4 + 6 -7' + 6 -7 6 + 7 7 + 7s -+ 0(79)
23 1 + 14 -23 + 8 - 23 2 + 16 -23 3 + 5- 23 4 + 12 - 23' + 22 - 23'- + 13.- 23 7 + 15 -23 8 + 0(23 9)

31 4 +5-31 +6-3 312 + 133 13 + 27-3 314 + 20 - 31' + 6 - 31' + 22 -3 17 + 223 - 18 + O(31 9)

43 21 + 35 -43 + 32 - 43 2 + 12 -43 3 + 32 -43 4 + 16 -43 5 + 4 - 43' + 37 - 43 7 + 3 - 438 + 0(43')

47 34 + 37 -47+ 8 472 +20. 473 +23-474 +24-475 + 19 476 + 19 477 + 14 478 - 0(47')
53 1 + 23 - 53 + 15 - 532 + 48. 533 + 16-534 +33. 535 + 51 53 + 18. 537 + 10 . 53 + O(539)

71 3 + 46 - 71 + 67 - 712 +35. 713 + 60 - 714 + 68 - 715 + 3 - 71' + 35. 717 + 19. 718 + (719)
73 32 + 33 - 73+ 5 - 732 +52. 733 +35-734 +69. 735 + 36 -736 + 14 737 + 35 . 738 + 0(739)

97 24 + 69 -97+ 9 -972 +77-973 + 12-974 + 10-975 +81 -976+20.977 + 30 -97' + O(97')

Table A.15.2: c factors for N = 191
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