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ABSTRACT: The equation of state (EOS) has been extensively used to evaluate the
saturation pressures of petroleum fluids. However, the accurate determination of
empirical parameters in the EOS is challenging and time-consuming, especially when
multiple measurements are involved in the regression process. In this work, an ensemble
smoother (ES) -assisted EOS method has been proposed to compute the saturation
pressure by intelligently optimizing the to-be-tuned parameters. To be specific, the to-
be-tuned parameters for the Peng−Robinson EOS (PR EOS) are integrated into a
model input matrix and the measured saturation pressures are collected into a model
output matrix. The model input matrix is then integrally and iteratively updated with
respect to the model output matrix by using the iterative ES algorithm. For convenience,
an in-house module is compiled to implement the ES-assisted EOS for determining the
saturation pressures of crude oils. Subsequently, the experimentally measured saturation
pressures of 45 mixtures of heavy oil and solvents are used to validate the performance
of the in-house module. In addition, 130 measured saturation pressures of worldwide
light oil samples are collected to verify the applicability of the developed ES-assisted EOS method. The in-house module is
found to be competent by not only matching 45 measured saturation pressures with a better agreement than a commercial
simulator but also providing a quantitative means to analyze the uncertainties associated with the estimated model parameters
and the saturation pressure. Moreover, the application of the ES-assisted EOS to 130 light oil samples distinctly demonstrates
that the new method greatly improves the accuracy and reliability of the EOS regression. Consequently, the in-house module
representing the ES-assisted EOS is proven as an efficient and flexible tool to determine the saturation pressure under various
conditions and implement uncertain analyses associated with the saturation pressure.

1. INTRODUCTION

Reservoir fluid properties are the fundamental factors for
reserve evaluation, development technique screening, reservoir
simulation, and production optimization. It is necessary to
understand the interactions among fluids for optimizing lab-
scale or field-scale enhanced oil recovery techniques, for
example, CO2 flooding.1,2 Saturation pressure of crude oil is
one of the reservoir fluid properties that attracts increasing
attention in either the academic or the industry since it affects
both the operational design and the potential recovery. The
saturation pressure is a comprehensive reflection of the
composition, critical properties, and other properties of each
individual component consisting of the crude oil.3 The
pressure−volume−temperature (PVT) experiment is the
most accurate approach to determine the saturation pressure
of reservoir fluid. However, it is impossible to conduct the
expensive test for every new fluid sample due to the lengthy
procedure and limited resources.
In addition to experiments, theoretical models have been

widely used to estimate the crude oil saturation pressure by
integrating intrinsic properties of components together with

experimentally determined or regressed coefficients. EOS has
been developed and extensively applied to quantify fluid
properties due to its accuracy and practicability. The accuracy
of EOSs and other correlations have been comparatively
investigated.3−5 It has been demonstrated that either the EOSs
or the correlations are powerful to calculate the saturation
pressure of the studied crude oil; however, their reliability is
limited to a certain degree while applied to crude oils collected
from different blocks. It is attributed to the fact that the
regression process is usually implemented to derive the to-be-
estimated coefficients involved in either the EOSs or
correlations, and various crude oils intend to yield different
values of coefficients.6,7 In addition, the regression process
could be nonconvergent, provided that the initial guesses of
the to-be-estimated coefficients are too far away from its true
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values.8 Overall, the regression to determine the unknown
coefficients is of significant importance to the EOSs.
Numerically, some correlations have been generated based

on an abundant database of measured saturation pressures with
the assistance of advanced algorithms, for example, gene
expression programming.9,10 However, these correlations
usually present a rough manner to determine the saturation
pressure since a large number of measurements of various
crude oils are required to obtain reliable and accurate
correlations. It is hardly possible to achieve an accurate
estimation of the saturation pressure while there is limited data
to conduct the regression. However, such advanced algorithms
are greatly helpful for estimation of unknown coefficients in
EOSs.
The reliability of EOSs determining the saturation pressure

is subject to the quality of the to-be-estimated coefficients
derived in the regression process, which can be considered as
one of history matching problems. As such, the ensemble-
based algorithms that have been extensively applied in the
history matching process will be a competitive candidate for
calibrating the EOSs with limited data.11−17 By reproducing
the production profiles, the ensemble-based algorithm can
effectively estimate permeability, porosity, rock-fluid proper-
ties, and other inputs of reservoir simulation.17−22 The iterative
ensemble smoother (IES), that is, one of the ensemble-based
algorithms, has been developed to compute a global update by
simultaneously assimilating all available data instead of a
sequential data assimilation adopted by the ensemble Kalman
filter (EnKF) or the ensemble randomized maximum like-
lihood algorithm (EnRML).21−24 In contrast, the IES
algorithm is more efficient because the entire observation is
assimilated at once while the data at different time points are
assimilated one by one in the sequential data assimilation
algorithms. Moreover, the reliability of the sequential data
assimilation algorithms might be challenged while handling the
EOS equations because of the scatter nature of the PVT
property measurements. Therefore, given measured saturation
pressure of certain oil samples, the to-be-estimated coefficients
in the EOSs can be automatically, coordinately, and efficiently
determined with the assistance of the IES algorithm. Also, the
uncertainties associated with the to-be-estimated coefficients
and its corresponding effects on the estimated saturation
pressure can be properly estimated.
In this paper, an ES-assisted EOS is proposed to estimate the

saturation pressure of various crude oils. To be specific, the to-
be-estimated coefficients of the EOS are included in a matrix
that is iteratively tuned and updated by assimilating the
measured saturation pressure data. A modified IES algorithm
by Fan et al.25 is used to dominate the updating process, which
directly reflects the influence of various coefficients on the
saturation pressure. The ES-assisted EOS has been pro-
grammed and applied to estimate the saturation pressure of
gas-heavy-oil mixtures. The performance of the ES-assisted
EOS is compared with that of the WinProp against the same
system. Furthermore, the applicability of the ES-assisted EOS
on gas-light-oil mixtures has also been discussed.

2. METHODOLOGY

2.1. Peng−Robinson Equations of State (PR EOS). The
PR EOS26 has been extensively applied to quantify the vapor−
liquid equilibrium (VLE) properties of reservoir fluids.
Therefore, the PR EOS is used as an example to demonstrate

the feasibility of the ES-assisted EOS. The PR-EOS is
formulated as follows,
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where p is pressure in kPa, pc is critical pressure in KPa, T is
the temperature in K, Tc is critical temperature in K, Tr is
reduced temperature, VM is a molar volume in m3/kmol, ω is
the acentric factor, and R is universal gas constant. Regarding
mixtures, the parameters a and b are determined by using the
van der Waal’s mixing rule.27
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where yi and yj are the compositions of the ith and jth
substance, respectively; δij is the binary interaction parameter
(BIP) between the ith and jth substance. Numerous efforts
have been made to develop BIP correlations for mixtures.28−31

In the present work, the BIP values are determined by Gao’s
correlation29 in which the BIP matrix can be regenerated by
adjusting only one parameter. The BIP is expressed as a
function of critical temperature as follows,
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The coefficient θ can be adjusted to match the experimental
data. Then, the properties of a mixture at the equilibrium state
can be calculated when the fugacity of all components are
identical in both the liquid and the gas phases; that is,

f fi ig l= (8)

where fgi is the fugacity of component i in the gas phase and f li
is the fugacity of the same component in the liquid phase.
Given PR EOS, the saturation pressure (ps) can be

computed by conducting two-phase flash calculation or directly
performing saturation pressure calculation; however, both of
them are found to be not fully reliable and computationally
expensive.32 Phase stability examination is a widely accepted
approach to determine the phase boundaries. A phase is
considered stable if the system has the lowest Gibbs energy
indicating there would be no phase splitting, whereas it is
considered unstable if the system could have a lower Gibbs
energy by splitting into multiple phases.33 Michelsen (1982)34

proposed phase stability criteria by creating a second phase
inside any given mixture to determine the stability. Note that
the second phase is possibly vapor-like or liquid-like.
Considering its accuracy and efficiency, Michelsen’s stability
test is applied in this work to search the saturation pressure at a
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given temperature at which the phase stability is changed from
unstable to stable status.
2.2. Ensemble Smoother. It is reasonable to consider the

PR EOS as a nonlinear system in which the saturation pressure
is the output and the compositions, BIPs, and properties of
components are the inputs. Gu and Oliver proposed the
EnRML algorithm to handle the history matching problems in
strongly nonlinear systems.35 Chen and Oliver demonstrated
that the EnRML algorithm associated with sequential
assimilation was also able to simultaneously incorporate all
data to estimate the model parameters.36 Therefore, the
EnRML-based iterative ensemble smoother was derived, and
updating the model parameters, that is, inputs, satisfies the
following equation:

m m m C G C G C G
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where mpr is prior distribution of the ensemble of model
parameters; ml and ml + 1 denotes the ensemble of model
parameters at l and (l + 1) iterations; βl is the damping factor,
0 < βl < 1; CM is the covariance of model parameters; Gl are the
sensitivity matrix, which represents the dependence of the
model outputs on the model inputs; CD is the covariance of
model outputs; g(·) represents the nonlinear system, that is,
PR EOS in the present work; psmd is the measured saturation
pressure in kPa. T represents the transpose of a matrix. Fan et
al.25 proposed modifications to improve the efficiency and
accuracy of the iterative ES algorithm by introducing the
normalization of model variables and a recursive approach for
determining the βl. The modified iterative ES algorithm is to
be used to assist determining the coefficients of EOS in the
present work.
Given a series of saturation pressure data of a mixture

measured at various temperatures, the implementation of the
ES-assisted EOS that is encapsulated in an in-house module is
briefly illustrated in a flowchart (see Figure 1). First, the to-be-
tuned parameters of the specific PR EOS for the mixture are
selected; meanwhile, the ensemble size and damping factor are
initialized. Then the ensemble of inputs m is generated with

the ensemble size and the predefined standard deviation
associated with each individual parameter. By applying the PR
EOS, the ensemble of saturation pressure is calculated.
Subsequently, the ensemble of inputs is regenerated by using
the updating equation of the IES algorithm. Note that the CM
and CD can be computed from the ensemble of inputs and
outputs, respectively. The Gl is calculated by Δpls = Gl Δml

where Δpls represents the difference between the calculated
and measured saturation pressure and Δml denotes the
difference between the model inputs in two continuous
iterations.
To optimize the performance of the ES-assisted EOS

program, the necessary termination criteria are proposed to
control the iteration. The maximum iteration number of 10 is
utilized to restrict the time cost. To avoid invalid iteration, the
minimum difference between the model inputs at two
continuous iterations is set to be 10−3 while the minimum
difference between the model outputs at the two continuous
iterations is set to be 10−4. The ES-assisted EOS program will
terminate once any of these three criteria is satisfied.

3. EXPERIMENTAL DATA
3.1. Heavy Oil and Solvents Mixtures. A series of

saturation pressure measurements for heavy oil and solvents
mixtures have been conducted by using a piston-equipped
visual PVT system (PVT-0150-100-200-316-155, DBR,
Canada). The heavy oil collected from the Lloydminster area
has a molecular weight of 482 g/mol, a specific gravity of
0.9997, and a viscosity of 8477.1 cP at the standard condition.
The experimental procedure is briefly summarized as follows.
The desired amount of oil and solvents are injected into the
PVT cell. The temperature of the air bath is set to the desired
value for at least 12 h. The continuous depressurization
method37 is applied in this study. The mixture is depressurized
starting from a liquid state at a withdrawal rate of 3.0 cm3/h.
The cell pressure and the volume are recorded during the
depressurization process. The saturation pressure can be found
from the p−V diagram by locating the turning point. The
detailed procedure description can be found elsewhere.38−41

Li et al.38 have demonstrated that it is reasonable to
characterize the heavy oil as six pseudocomponents in the
theoretical calculation. The determined physical and critical
properties of six pseudocomponents (i.e., PC1, PC2, PC3,
PC4, PC5, and PC6) are listed in Table 1. By considering
various compositions, we designed 17 scenarios consisting of
45 experiments where the saturation pressure was separately
measured at different temperatures which can be found
elsewhere.38−41 The composition, temperature, and measured
saturation pressure of 45 experiments have been listed in Table
2. These measurements are used to validate the performance of
the ES-assisted EOS, and the results will be discussed in
section 4.1.

3.2. Light Oil and Solvent Mixtures. The saturation
pressures of various oil samples from worldwide fields have
been collected to further demonstrate the adaptability of the
ES-assisted EOS. Elsharkawy9 measured saturation pressures
and compositions of 55 mixtures of crude oil samples and
solvents (i.e., N2, CO2, and H2S) from the Middle East (see
experiment No. 1−55 in Table S1 in the Supporting
Information). These experiments cover pressure ranging
from 5516 kPa to 34474 kPa and a temperature range of
327.6−394.3 K. These oil samples are featured as the low
content of nonhydrocarbons (less than 10%), oil formation

Figure 1. Flowchart for iteratively determining the saturation
pressure.
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Table 1. Properties of Solvents and Six Pseudocomponents Representing the Heavy Oil Sample

critical pressure, kPa critical temp, K acentric factor molecular weight critical molar volume, m3/kmol Rackett parameter

C3 4246.0 369.8 0.15 44.10 0.20 0.28
nC4 3799.0 425.2 0.19 58.12 0.26 0.27
CO2 7378.0 304.1 0.22 44.01 0.09 0.27
PC1 2048.1 669.2 0.56 171.15 0.68 0.25
PC2 1633.1 744.1 0.72 232.96 0.88 0.25
PC3 1365.0 811.4 0.88 307.85 1.07 0.24
PC4 1136.2 894.8 1.05 436.42 1.25 0.25
PC5 995.9 997.2 1.19 694.52 1.37 0.27
PC6 1066.5 1129.6 1.20 1396.46 1.39 0.35

Table 2. Measurements of Saturation Pressure Conditioned to Various Compositions and Temperatures

composition

scenario no. C3 nC4 CO2 PC1 PC2 PC3 PC4 PC5 PC6 temp, K measured ps, kPa

1 0.00 0.00 0.55 0.09 0.08 0.08 0.07 0.07 0.06 323.2 7942.8
0.00 0.00 0.55 0.09 0.08 0.08 0.07 0.07 0.06 343.5 9332.5
0.00 0.00 0.55 0.09 0.08 0.08 0.07 0.07 0.06 362.6 11093.9

2 0.00 0.00 0.28 0.15 0.12 0.13 0.12 0.11 0.09 324.0 3039.0
0.00 0.00 0.28 0.15 0.12 0.13 0.12 0.11 0.09 348.4 3781.8
0.00 0.00 0.28 0.15 0.12 0.13 0.12 0.11 0.09 362.8 4212.7

3 0.59 0.00 0.00 0.08 0.07 0.08 0.07 0.06 0.05 323.9 1311.7
4 0.73 0.00 0.00 0.05 0.05 0.05 0.04 0.04 0.04 323.9 1532.7
5 0.59 0.00 0.00 0.08 0.07 0.08 0.07 0.06 0.05 298.9 803.6
6 0.66 0.00 0.00 0.07 0.06 0.06 0.06 0.05 0.04 298.9 821.9
7 0.74 0.00 0.00 0.05 0.05 0.05 0.04 0.04 0.03 298.9 882.6
8 0.67 0.00 0.00 0.07 0.06 0.06 0.05 0.05 0.04 298.9 867.0

0.67 0.00 0.00 0.07 0.06 0.06 0.05 0.05 0.04 323.2 1444.0
0.67 0.00 0.00 0.07 0.06 0.06 0.05 0.05 0.04 348.2 2342.0
0.67 0.00 0.00 0.07 0.06 0.06 0.05 0.05 0.04 395.2 5030.0

9 0.00 0.62 0.00 0.08 0.07 0.07 0.06 0.05 0.05 298.9 238.8
0.00 0.62 0.00 0.08 0.07 0.07 0.06 0.05 0.05 323.2 412.3
0.00 0.62 0.00 0.08 0.07 0.07 0.06 0.05 0.05 348.2 696.2
0.00 0.62 0.00 0.08 0.07 0.07 0.06 0.05 0.05 369.2 1697.6

10 0.00 0.83 0.00 0.04 0.03 0.03 0.03 0.02 0.02 298.9 247.3
0.00 0.83 0.00 0.04 0.03 0.03 0.03 0.02 0.02 323.2 454.8
0.00 0.83 0.00 0.04 0.03 0.03 0.03 0.02 0.02 348.2 828.0
0.00 0.83 0.00 0.04 0.03 0.03 0.03 0.02 0.02 369.2 2007.8

11 0.55 0.16 0.00 0.06 0.05 0.05 0.05 0.04 0.04 298.9 679.5
0.55 0.16 0.00 0.06 0.05 0.05 0.05 0.04 0.04 348.2 1816.9
0.55 0.16 0.00 0.06 0.05 0.05 0.05 0.04 0.04 396.2 4063.0

12 0.36 0.00 0.39 0.05 0.04 0.05 0.04 0.04 0.03 280.5 3173.3
0.36 0.00 0.39 0.05 0.04 0.05 0.04 0.04 0.03 298.9 4651.1
0.36 0.00 0.39 0.05 0.04 0.05 0.04 0.04 0.03 318.8 6642.2

13 0.00 0.34 0.32 0.07 0.06 0.06 0.06 0.05 0.04 298.9 3154.0
0.00 0.34 0.32 0.07 0.06 0.06 0.06 0.05 0.04 318.8 4058.0
0.00 0.34 0.32 0.07 0.06 0.06 0.06 0.05 0.04 347.7 5670.0
0.00 0.34 0.32 0.07 0.06 0.06 0.06 0.05 0.04 391.6 8350.0

14 0.20 0.17 0.34 0.06 0.05 0.05 0.05 0.04 0.04 296.5 4867.7
0.20 0.17 0.34 0.06 0.05 0.05 0.05 0.04 0.04 317.7 6894.8
0.20 0.17 0.34 0.06 0.05 0.05 0.05 0.04 0.04 327.9 8122.0

15 0.17 0.14 0.29 0.08 0.07 0.07 0.07 0.06 0.05 302.6 4605.7
0.17 0.14 0.29 0.08 0.07 0.07 0.07 0.06 0.05 323.9 6184.6
0.17 0.14 0.29 0.08 0.07 0.07 0.07 0.06 0.05 343.1 7839.3

16 0.15 0.13 0.25 0.10 0.08 0.08 0.08 0.07 0.06 322.1 5240.0
0.15 0.13 0.25 0.10 0.08 0.08 0.08 0.07 0.06 343.0 6591.4
0.15 0.13 0.25 0.10 0.08 0.08 0.08 0.07 0.06 362.9 8039.3

17 0.12 0.11 0.21 0.12 0.10 0.10 0.09 0.08 0.07 333.8 4764.3
0.12 0.11 0.21 0.12 0.10 0.10 0.09 0.08 0.07 353.8 5722.6
0.12 0.11 0.21 0.12 0.10 0.10 0.09 0.08 0.07 373.4 6736.2
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factor of 1.0−2.0 m3/m3, and solution gas−oil ratio of 0−350
m3/m3. For theoretical computation, the oil samples have been
characterized by C1 to C6 and a heptane plus-fraction C7+.
The molecular weight of the C7+ was determined by a vapor
pressure osmometer. More details of the 55 measurements of
the Middle East crude oil sample and solvents can be found
elsewhere.9

In addition, 75 measurements of saturation pressure and
compositions of various oil samples from the Middle East,
North Sea, and North America have also been collected from
the literature to test the validity of the ES-assisted EOS. More
details about these 75 measurements can be found from
experiment No. 56−130 in Table S1 in Supporting
Information.

4. RESULTS AND DISCUSSION
4.1. Validation: Heavy Oil Data. Although the saturation

pressure of a crude oil is affected by multiple factors, only the
BIP coefficients of CO2−hydrocarbon and hydrocarbon−
hydrocarbon (HC−HC) together with the critical pressure,
critical temperature, and acentric factor of the heptane plus-
fraction are tuned in the present work to match the 45
measured saturation pressures. Considering the trade-off
between the accuracy and the computational cost, an ensemble
size of 50 and an initial damping factor of 0.5 are used in the
developed in-house module. By assigning Gauss-distributed
errors to the to-be-estimated parameters, an input matrix is
generated with a size of 5 × 50 and includes various
configurations of BIP coefficients, critical pressure, critical
temperature, and acentric factor of the heptane plus-fraction.
Moreover, Gaussian distributed errors are also added to the 45
measured saturation pressure, which is anticipated to improve
the performance of the ensemble-based algorithm to a certain
degree.42 Subsequently, the input matrix is iteratively updated
by using eq 9.
Scenarios 1 and 2 in Table 2 are used as examples to

demonstrate the performance of the ES-assisted EOS. Figure
2a presents the distribution of the initial ensemble of saturation
pressure calculated by using the initial ensemble of model
inputs. It is worthwhile noting that the box plot in Figure 2
includes 95th percentile (cross mark at the top), 75th
percentile (top of the box), mean (square symbol), 50th
percentile (bar in the box), 25th percentile (bottom of the
box), and fifth percentile (cross mark at the bottom). Those
box plots directly and quantitatively represent the uncertainties
of the calculated saturation pressure inherited from the
uncertainties associated with the model inputs. After any of
the aforementioned termination criteria is satisfied, the final
ensemble of saturation pressure is obtained and shown in
Figure 2b. It can be found that the saturation pressure
distribution of most experiments has converged to its
measured one to a large extent. Experiment no. 1 is relatively
overcorrect by the updated model inputs, which is unavoidable
while matching multiple measurements simultaneously.
An ensemble of estimated model inputs has also been

obtained and shown in Figure 2c, which is with respect to the
saturation pressure in Figure 2b. The uncertainties indicated by
the box plot demonstrate that the critical pressure, critical
temperature, and acentric factor of the heptane plus-fraction is
less important to the saturation pressure evaluation compared
to the BIP coefficients. The quantified uncertainties associated
with the model inputs provide more value options for
analyzing the fluid properties in a large-scale oil field. In

Figure 2. (a) Initial ensemble and (b) final ensemble of saturation
pressure obtained by ES-assisted EOS; (c) estimated model inputs;
(d) schematic of the boxes indicating the uncertainty.
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addition, the possible saturation pressure indicated by the box
plot conveys more valuable information to the economic
analysis, and therefore, is especially conducive to optimize the
saturation-pressure-based operational parameters at the field
scale.
4.2. ES-Assisted EOS versus WinProp. The calculation

results of the ES-assisted EOS are compared with that of the
CMG WinProp module, which is an extensively used tool to
determine the saturation pressure of petroleum fluids. Both the
ES-assisted EOS and the WinProp are employed to estimate
the saturation pressures of all 45 experiments in section 3.1 by
using the same model inputs. Table 3 shows the initial guesses

and the estimation of model inputs by the ES-assisted EOS and
the WinProp, respectively. Since the WinProp can only tune
the BIPs between CO2 and individual hydrocarbons instead of
the interaction coefficients of CO2−hydrocarbon, the BIPs for
various pairs of CO2 and hydrocarbon are listed. The variation
between results obtained by the ES-assisted EOS and the
WinProp distinctly demonstrate that there are uncertainties
associated with the EOSs. Therefore, the quantification of the
uncertainty by the ES-assisted EOS is of great importance to
the applicability of the EOSs in practice.
Figure 3 presents the comparison of two methods in both

qualitative and quantitative manners. The diagonal black line
represents the perfect match between the calculated and the
measured saturation pressure. It can be observed that the solid
squares are closer to the perfect match line while the solid
circles are more scattered. Quantitatively, regressions have
been made to the ES-assisted EOS and WinProp results,
respectively. The ES-assisted EOS yields a coefficient of
determination of 0.85 while the WinProp gives a 0.78. This
implies that the EOS is more powerful in simultaneously
estimating the saturation pressures of multiple experiments
than the WinProp. In addition, the performance of the ES-
assisted EOS is rarely affected by the initial guesses of model
inputs since the ES-assisted EOS can intelligently search for
the optimal solution regardless of the initial guess. In contrast,
the accuracy of the WinProp is dramatically impacted by the
initial guesses of the model inputs. An abnormal result will be
generated by the WinProp provided that inappropriate model
inputs are used. In other words, the ES-assisted EOS is not
only more accurate but also more flexible in handling the
saturation pressure estimation.

4.3. Adaptability of the ES-Assisted EOS for Light Oil.
The 55 measurements of Middle East oil samples and the other
75 measurements are characterized by the ES-assisted EOS,
respectively. The to-be-tuned parameters for estimating the
saturation pressure for mixtures of light oil and solvents
include BIP coefficients for different pairs of gas components.
To compare the performance of the ES-assisted EOS and other
methods, cumulative errors of different methods are calculated
by summarizing the relative error of each calculation
corresponding to one experimental point.
As can be seen in Figure 4, the cumulative error of the ES-

assisted EOS method is distinctly smaller than that of Soave−

Redlich−Kwong (SRK) EOS and PR-EOS methods calculated
by Elsharkawy.7 Quantitatively, the ES-assisted EOR yields an
average absolute relative deviation (AARD) of 7.7% while the
SRK EOS and PR-EOS are associated with AARDs of 10.8%
and 9.4%, respectively. The low AARD generated by the ES-
assisted EOR method demonstrate its adaptability in dealing
with light oil samples and its superiority over the other two
methods. We also apply the ES-assisted EOS to match the
saturation pressure of 75 worldwide light oil samples as

Table 3. Tuned Parameters by ES-Assisted EOS and
WinProp

tuned parameters
initial
value

estimated by ES-
assisted EOS

estimated by
WinProp

critical pressure of C7+,
kPa

1066.5 1582.0 1032.8

critical temp of C7+, K 1129.6 718.0 903.7
acentric factor of C7+ 1.198 1.565 1.322
HC−HC interaction
coefficient

1.000 0.619 1.068

BIP: CO2−C3 0.135 0.125
BIP: CO2−nC4 0.130 0.115
BIP: CO2−PC1 0.076 0.105
BIP: CO2−PC2 0.097 0.143
BIP: CO2−PC3 0.114 0.173
BIP: CO2−PC4 0.136 0.000
BIP: CO2−PC5 0.161 0.000
BIP: CO2−PC6 0.091 0.200

Figure 3. Comparison of ES-assisted EOS and WinProp in the
estimation of saturation pressures of 45 experiments.

Figure 4. Cumulative error of various methods for matching the 55
measurements of light oil samples from the Middle East.
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aforementioned. The cumulative errors of different methods
for these 75 measurements have been shown in Figure 5.

Similarly, the ES-assisted EOS method dramatically exceeds
the other two methods with the lowest AARD of 8.6%. The
AARDs of the SRK-EOS and PR-EOS methods are 12.1% and
10.3%, respectively. These two applications of the ES-assisted
EOS method indicate its feasibility and flexibility in handling
different oil samples. More demonstrations can be conducted
by estimating more model inputs with sufficient measurement
of the fluid properties.

5. CONCLUSIONS
An in-house module to implement the ES-assisted EOS has
been developed to estimate the saturation pressure of various
petroleum fluids. The validity of the in-house module has been
well proven by successfully matched experimental measured 45
saturation pressures in the laboratory. The ES-assisted EOS
comprises important progress to the applicability of the EOSs
since it can automatically optimize the model’s parameters or
coefficients of the EOSs and provide an explicit way to analyze
the uncertainties associated with the estimated saturation
pressure. The validation against the measured saturation
pressure of heavy oil samples demonstrates that the ES-
assisted EOS is capable of matching the measured saturation
pressure with determined model inputs. The developed ES-
assisted EOS avoids the possible collapse of the regression
process caused by inappropriate initial guesses of model inputs.
It is attributed to the fact that the ES-assisted EOS can
intelligently search for the optimal solution regardless of the
initial guess. The quantified uncertainties associated with the
model inputs provide more value options for analyzing the
fluid properties in a large-scale oil field, while the possible
saturation pressured indicated by the box plot conveys more
valuable information to the economic analysis.
In addition, the application of the ES-assisted EOS to

extensive worldwide light oil samples indicates its adaptability
in various oil samples. Consequently, the in-house module
representing the ES-assisted EOS can be an efficient and
flexible tool to determine the saturation pressure under various
conditions and implement uncertain analyses associated with
the saturation pressure, which is of the essence to oil recovery.
It is worthwhile noting that the ES-assisted EOS method is

conveniently applied to other EOSs for intelligently updating
or estimating the to-be-tuned parameters, which then improves
the accuracy and reliability of those EOSs.
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