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Abstract

Advances in technology have allowed for the collection of diverse data types along

with evolution in computer algorithms. This dissertation focuses on the development

and application of novel methodologies to model and improve inference on clinical

outcomes. First, a new prognostic approach of modeling time-to-event data using

Bayesian Networks (BNs) is developed and illustrated using publicly available cancer

data. This approach allows for flexible modeling of different structural relationships

that might exist between variables at different periods, hence, improving our under-

standing of critical prognostic factors that can inform patient care and development of

targeted interventions. As a prognostic model, BNs demonstrated better or comparable

performance as compared to other equivalent models for bladder and lung cancer data.

In this dissertation, we also reviewed application of predictive modeling algorithms in

randomized clinical trials (RCTs). RCTs are costly and time-consuming. Predictive

modeling has the potential to mitigate challenges associated with clinical trial failures

and facilitate efficient clinical trial conduct in areas such as patient recruitment, trial

optimization, and safety & efficacy evaluations. Finally, we present a new approach

for estimating causal treatment effect in RCTs that are prone to post-randomization

intercurrent events (ICE). Examples of ICE include treatment switch, treatment dis-

continuation, or adverse events. Here, we adopt the principal stratification framework

where we first predict the latent strata membership using baseline covariates and then

estimated causal treatment effects using appropriate stratum having a homogeneous

group of subjects. Using simulations, our approach demonstrated a better performance

in estimating treatment effects as compared to the standard intent-to-treat (ITT) strat-

egy.
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Chapter 1

Introduction

Diagnosis and prognosis are fundamental aspects of medical practice that are used to inform a

lot of decisions from treatment regimens to the investigation of new effective interventions. Most

often, informed decisions are made on the likelihood of disease presence (diagnosis) or predicting

future risk of occurrence of a specific event (prognosis) (Collins et al., 2015; Moons et al., 2015)

based on observed patient characteristics. Lately, there has been an increased interest in developing

optimal patient-centered therapeutic approaches tailored to meet individual patient’s needs termed

as personalized, stratified, or precision medicine (Erikainen & Chan, 2019; Juengst & McGowan,

2018; Personalized Medicine Coalition, 2014; Abrahams, 2008). These have been driven by ad-

vances in data collection technologies on high-dimensional data as well as evolution in computing

algorithms. However, there still exists a need for more robust methods capable of handling diverse

data types collected from patients in order capture patient heterogeneity to improve inference on

clinical outcomes and promote development of novel therapeutic interventions in order to achieve

precision medicine.

Analysis of time-to-event (TTE) data is the center stage of most biomedical cancer studies.

The most common and widely used modeling approach for time-to-event data involves the Cox

proportional hazards model (Cox, 1972). This model assumes a constant multiplicative effect of

covariates on the hazards function over time. However, violation of this assumption might lead

to biased results (Persson & Khamis, 2005). In Chapter 2, we introduce a new approach to ana-

lyze TTE data using Bayesian Networks (BNs), (a machine learning algorithm with a semantically

meaningful interpretation). We demonstrate the use of BNs model on clinical, gene expression

and integrated data with the goal of improving prediction as well as facilitating inference on the

structural relationship between variables over time in regards to their contribution to survival out-

comes. We demonstrate how to pre-process data in order to analyze it using BNs and applied the

new approach to publicly available cancer data from The Cancer Genome Atlas (TCGA) reposi-
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tory (Grossman et al., 2016). Our approach exhibit comparable or better performance as compared

to other commensurate models for bladder and lung cancer. However, this performance was not

observed when the model was used in kidney cancer. A significant benefit from our approach is

the flexibility to model and reveal different relationships between phenotypic and genomic charac-

teristics at different time points, improving our ability to understand how factors influence clinical

outcomes, and hence, could prove substantial in informing targeted treatment therapies.

In Chapter 3, we review literature materials on predictive modeling in randomized clinical trials

(RCTs). RCTs are costly and time-consuming (Morgan et al., 2011; Van Norman, 2016). In this

review, we searched for materials on applications of predictive modeling at different stages of RCT.

An area of RCTs identified to be substantially influenced by predictive modeling included patient

enrolment, where predictive models are used to screen subjects for recruitment into trials as well

as using databases to match patients to appropriate trials. Predictive modeling has the potential

to mitigate challenges associated with clinical trial failures due to patient accrual. Studies that

retrospectively analyzed clinical trial data found that predictive modeling could make clinical trial

efficient by identifying subgroup of patients who would have the most benefit from the drugs

(Kueffner et al., 2019) for inclusion in the trial which can limit exposure to potentially harmful

drugs to non-responders. Other advantages and challenges associated with predictive modeling in

RCTs are also discussed.

In Chapter 4, we present a new approach that uses prediction and extends principal stratifica-

tion (PS) framework (Frangakis & Rubin, 2002) to estimate causal treatment effects in the presence

of intercurrent events (ICE). RCTs are prone to post-randomization factors e.g. treatment discon-

tinuation, treatment switch, or adverse events that might influence treatment effects evaluation.

This study is motivated by the recent ICH E9/R1 guidelines on estimands and sensitivity analy-

sis in clinical trials that require strategies for addressing intercurrent events to be clearly stated

(International Council for Harmonization, 2019). Here, we adopt PS framework where we first

use predictive modeling on baseline covariates to predict and allocate subjects to strata based on

their counterfactual likelihood of experiencing an ICE under the alternative treatment assignment,
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after which we use the appropriate stratum with a homogeneous group of subjects to estimate the

causal average treatment effect as well as the weighted average treatment effect. Using simula-

tions, our approach demonstrated a better performance in estimating the causal treatment effect as

compared to the standard intent-to-treat (ITT) approach when there is heterogeneity in the impact

of the treatment across subjects.

Lastly, we note that there are limitations and challenges associated with the proposed modeling

approaches. We discuss these and future directions in each chapter.
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Chapter 2

Prognostic Models with Data Integration of Clinical Characteristics and

Gene Expression Data Using Bayesian Networks

Abstract

Recent advances in technology have generated vast amounts of heterogeneous types of data col-

lected from human participants with a variety of conditions. Lately, there has been considerable

interest in integrating information from multiple sources to better understand patient heterogeneity

and help to inform treatment regimens and achieve precision medicine. Time-to-event analysis has

wide application in the biomedical domain, especially in cancer studies, with overall survival a

common measure of prognosis. The Cox proportional hazards model remains one of the dominant

models for the analysis of time-to-event data. However, violations of its assumptions may lead

to biased results. Thus, more flexible methods are needed to address patient heterogeneity and

violations of the proportional hazards assumption. This study develops survival analysis models

using Bayesian Networks that integrate both clinical characteristics and gene expression data for

improved inference of prognostic variables and associations among variables. Importantly, it also

provides the ability to infer different prognostic relationships at different survival times, which may

shed new light on factors that affect prognosis throughout the disease course. Publicly available

data from The Cancer Genome Atlas (TCGA) were used to develop and assess the performance

of the survival Bayesian Networks. We evaluated model performance using concordance index by

comparing our approach to other commensurable strategies as well as standard methods using pe-

nalized Cox proportional hazards models. Models using our graphical network approach can infer

or confirm meaningful relationships among patient characteristics at multiple timepoints, support-

ing biomarker discovery and help inform the development of targeted interventions. Despite our

emphasis on inference, results from our approach show comparable or better prognostic perfor-

mance for some cancer types, which suggests that the inferred relationships are ones that should
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be investigated further for their therapeutic potential and that our approach may provide a useful

way to study complex relationships associated with prognosis.

2.1 Introduction

Innovations in genomic data collection have allowed for vast amounts of disparate types of data to

be collected from individual subjects, although effective modeling of integrated data is still an area

of active research (Hamid et al., 2009; Neums et al., 2020; Zarayeneh et al., 2017). These data types

range from patient-reported outcomes and clinical characteristics to high-dimensional molecular

data. In the quest for precision medicine, there is a need to harness and incorporate all available

and relevant information from these diverse sources in order to capture patient heterogeneity for

improved disease progress tracking and treatment regimens. Currently, most prognostic modeling

techniques have a pre-defined structure that associates time-to-event outcomes to observed subject

characteristics; that is, the outcome of interest is defined a priori such that the covariates influence

the outcome marginally or through interaction. This, in turn, may be far from the true unknown

causal inter-relationship between the covariates as well as their association with the survival out-

come. Moreover, inference based on these models is affected by missing covariate values. Of

interest is understanding and assessing structural covariate relationships at different time points,

which can improve comprehension of the dynamic system related to a patient’s journey. In this

study, we seek to develop survival prognostic models using Bayesian Networks (BNs) that inte-

grate clinical characteristics and gene expression data for patients with cancer. Here, we focus on

cancer prognostic models, although we note that our approach is equally applicable in other health

and disease processes.

Machine learning (ML) algorithms have become ubiquitous in the last decade, with many stud-

ies showing the potential for more flexible methods to improve performance in regards to diag-

nostic, prognostic, and predictive models (Gupta et al., 2011; Kim et al., 2019; Kourou et al.,

2015; Weng et al., 2017). However, the complexity and adaptability of flexible machine learning

algorithms are an obstacle to implementation in a biomedical domain where interpretability is of
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primary importance, despite their considerable predictive performance.

A person is a dynamic biological system with a complex network of interactions. For in-

stance, genes function within biological pathways and interact within biological networks, with

each interaction playing different roles. Understanding the relationships in biological systems’ can

play a critical role in informing targeted patient treatment regimens. Network analysis provides

a framework to comprehend the underlying structural relationships among predictors, from gene

regulatory networks to protein-protein interactions and phenotype-genotype associations (Mulder

et al., 2014; Schadt, 2009), with many studies linking changes in gene-protein networks to human

disease (Man et al., 2019; Raj et al., 2017; Wang et al., 2009). Information obtained from these

networks improves our ability to find the causes of complex diseases (Chuang et al., 2007). As

such, informed decisions based on relevant multi-source data may lead to patients reaping the full

benefits from targeted interventions, founded on empirically discovered relationships.

The rate of generation of diverse data has outpaced our ability to integrate these multi-platform

data into effective models. Many approaches for data integration have been proposed (Neums

et al., 2020; Pittman et al., 2004; Thompson et al., 2018; Zarayeneh et al., 2017). These methods

have encompassed two major techniques, meta-dimensional and multi-stage modeling (Holzinger

& Ritchie, 2012). Meta-dimensional data integration involves simultaneously combining different

data during analysis. However, it is challenging when there are structural differences across data

types to be integrated. To mitigate this challenge, multi-stage integration techniques have been

used where analysis involves processing the data in stages during the model building and analysis

process (Ritchie et al., 2015a). However, in multi-stage modeling, information may be lost during

the sequential steps of modeling. Hence, both methods have limitations regarding integration. A

review of emerging approaches for integrating genomic and phenotype characteristics have been

explored (Hamid et al., 2009; Lin & Lane, 2017; Ritchie et al., 2015a; Sun & Hu, 2016). Other

studies have integrated multi-omic, clinical, demographic, imaging and epidemiological data to

develop diagnostic/prognostic models (Sun & Hu, 2016; Zhu et al., 2017).

This study centers on developing prognostic models using Bayesian Networks (Pearl, 2014) by
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adopting a semi-supervised approach to perform survival analysis whilst integrating multi-platform

data. Our graphical approach provides a flexible model with good interpretability. We assess the

performance of the proposed method using readily available cancer data from The Cancer Genome

Atlas (TCGA) repository. We demonstrate the possibility of using this approach to build prog-

nostic models that integrate baseline clinical characteristics and gene expression data to calculate

periodic survival probabilities. Although we focus on survival probabilities, Bayesian Networks

can integrate data to reveal relationships that are not dependent on a single outcome, providing

an interesting new perspective in the data integration space. Furthermore, by leveraging Bayesian

Networks, we show that one can learn different structural relationships at different periods, which

we believe could be critical in understanding biological systems exhibiting dynamic regulatory

relationships.

2.2 Materials & Methods

2.2.1 Bayesian Networks

Our proposed approach is based on Bayesian Networks (BNs), also known as belief networks.

BNs are a special class of graphical models that encode conditional relationships between vari-

ables via Directed Acyclic Graphs (DAGs) (Pearl, 2014). DAGs are structural graphs that have

directed edges with no cycles. BNs have two main components: a qualitative and a quantitative

part. The qualitative component corresponds to the network structure which defines the dependen-

cies between variables (nodes/vertices). Let the network structure of a BN can be represented by

G = (X ,E) where X is the set of variables or nodes in the network and E, the directed edges con-

necting the variables which reflect the conditional dependencies between the connected variables.

The quantitative component of a BN is the respective set of parameters quantifying the marginal

and conditional probability distribution of the variables in the model. Hence, we can completely

represent a BN by BN = (X : Θ,E) with Θ representing the set of marginal and conditional param-

eter distributions.

Consider a set of variables X1, . . . ,XN with the corresponding networks shown in Figure 2.1
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(N=3). Here, the parent-child relationships can loosely be interpreted as an independent-dependent

variable relationship, although with a conservative implication of association rather than causation

in an empirically learned network structure. Dependency in a BN is explained through a princi-

ple known as d-separation, which is used to infer the expected pattern of dependencies given any

pattern of paths in the model (Pearl, 2014). That is, two variables are d-separated if changing

the status of a third variable influences the dependency status between the two variables. Diver-

gent and serial connections have d-separated paths (Figure 2.1). With d-separation, we can learn

which variables are independent of each other given a third set. A set of parents, children, and chil-

dren’s parents (spouses) of a node/variable is referred to as a Markov blanket (MB). An important

property of an MB regarding inference from our proposed modeling approach is that a variable is

conditionally independent of all other variables given its Markov blanket (Witten et al., 2017).

X1

X2 X3

(a). Divergent

X1

X2 X3

(b). Serial

X1

X2 X3

(c). Convergent

Figure 2.1: Simple Bayesian Networks: In (a) & (b), X2 and X3 are marginally dependent (or
conditionally independent) while for (c), X2 and X3 are marginally independent (or conditionally
dependent)

We express the joint distribution of the BN in Figure 2.1.a probabilistically as

Pr (X1,X2,X3) = Pr(X1)×Pr(X2|X1)×Pr(X3|X1) (2.1)

Note that the consequent probabilities from the joint distribution of the variables are recursively

decomposed using chain rule. If we consider θ as parameters associated with the probability

distribution of a node, then, in general, a BN with p variates is expressed using

Pr (X1, ...,Xp|G,Θ) =
p

∏
i=1

Pr
(
Xi|X(i)parents,ΘXi

)
(2.2)
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where G represents the network structure and Θ the marginal or the set of parameters corre-

sponding to the probabilities of each random variable given its parent node-set. All parameters

of a BN have a semantically meaningful interpretation as opposed to black-box models like mul-

tilayer neural networks. Data-driven modeling of a BN involves learning the structure and the

parameters of the model. For this study, the bnlearn package (Scutari & Ness, 2012) in R is

used to learn the BN, where Hill-Climbing (HC) algorithm is used to learn the structure. HC uses

a greedy search technique to identify a DAG that best fits the data by evaluating different DAGs,

iteratively adding/removing/reversing possible arcs (Russell & Norvig, 2010), with evaluation of

the goodness of fit using Bayesian Information Criterion (BIC).

With both discrete and continuous variable types in the data, as in most cases, conditional

linear gaussian distributional assumptions are used (Lauritzen & Wermuth, 1989). One current

limitation of this approach is that discrete features are assumed to be categorical with no order and

the continuous feature can only depend on discrete features but not vice versa. Continuous features

conditional on the respective discrete parents are modeled as sets of standard linear regression

models in which the continuous parents are considered explanatory variables.

2.2.2 Survival Analysis

Time-to-event data commonly have outcomes with two main components: i) whether the event

occurred (status), and ii) when the event status was evaluated (time, which represents the event

time or time at which status was assessed). In the absence of the event, the time typically represents

the time at the last observation (though more generally represents a boundary for when the event

did or would have occurred). To cope with these divergent meanings of event time (typically called

censoring), special analysis techniques have been developed to handle time-to-event or censored

data. The most used approach in the biomedical literature is the Cox proportional hazards model

(Cox, 1972) in the context of right-censored data (i.e., either the actual event time or a lower bound

indicated a time after which the event would have occurred). The hazard in the Cox PH regression

models measures the instantaneous risk of an event at a specific time point conditional on survival
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to that time, but what is actually estimated is the ratio of this hazard to the hazard in observations

without the same value of a given variable. In the presence of covariates, standard Cox models

assume a constant effect of covariates on hazards function over time which may lead to biased

results when this assumption is violated (Persson & Khamis, 2005).

There is a limited number of machine learning models that are available to perform time-to-

event analysis, which is in part is attributable to handling of censored outcomes. New methods

have augmented Cox models with neural networks (Ching et al., 2018; Katzman et al., 2018)

while others have considered converting time-to-event into a classification problem where censored

subjects are treated as event-free (Štajduhar et al., 2009). Another study considered using inverse

probability of censoring weights to account for censoring when developing Bayesian Networks

(Bandyopadhyay et al., 2015). Our approach takes a different route on modeling the data which

involves discretization of survival outcomes through artificial interval censoring as outlined in the

next section.

In order to model the data adopting our approach, we illustrate in the following section how the

time to event together with censorship status can be discretized into multiple responses analogous

to multivariate data. With the discrete responses, any classification algorithm can be used to per-

form the analysis. However, the BNs approach is advantageous in this setting, due to its flexibility

in learning the structure of the network as well as revealing the different relationships that exist

at different periods. Independent modeling of the outcome in each period may result in different

structural relationships between the factors being studied across the periods leading to changes in

how they influence survival outcome over time. Additionally, once a BN is learned, prediction can

be performed even with missing covariate values for new data, which is an extremely common

challenge with biomedical data, and one that can be further accentuated for multi-platform data.

2.2.3 Survival Bayesian Networks

Our modeling approach involves interval-based discretization of survival times based on event time

and event status. Assuming K periods/intervals, the probability of survival beyond period k is then
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obtained from the product of conditional periodic survival probabilities, intrinsically,

P(Sk+1) =
k

∏
j=0

P(S j) (2.3)

where S is a binary variable representing survival outcome. This is akin to a Kaplan-Meier estimate

of a survival function. In this framework, we assume P(S0) = 1, meaning each subject has a

survival probability equivalent of 1 before the first period, which is logical since follow up is

impractical if the subject was unavailable to start at baseline. Furthermore, we assume there are

no competing risks, that is, only one type of event is of interest during follow-up. This results

in binary outcomes within each period. This is analogous to a special case of K-multivariate

binary outcomes. The outcomes are then analyzed sequentially assuming independence with the

probability of surviving beyond period k obtained from the product of survival up to and including

period k, (k = 1,2,3, . . . ,K). Essentially, P(Sk+1) = P(S1)×P(S2)×·· · ×P(Sk) (Equation 2.3),

where P(S1) is the proportion of subjects who do not experience the event during the first period

(survival past the first period). P(S2) is the proportion of subjects who do not experience the event

in the second period given that they neither experienced the event nor were artificially censored

during the first period, and so forth. Notice that starting with p2 up to pK , we only consider subjects

who do not experience the event in the preceding period.

As an illustration, consider a simple case of time-to-event right-censored data for 10 subjects

as shown in Table 2.1. Columns 2 and 3 are a representation of typical survival data. Column 4

(Status Period) represents the period during which an activity (event/censor) was observed on the

subject based on pre-defined intervals (1-year intervals). In addition, for censored subjects, we

proceed to codify the subjects’ Status Period as follows: If the subject’s actual time of censoring

is before the mid of the pre-defined interval, then we artificially censor the subject in the prior

period (subject 4), otherwise they are artificially censored in the current period (subjects 2, 8 & 9).

Discretized survival outcomes are then created (columns 5:11) based on the Status Period column,

and the actual Status column as a sequential indicator of the binary event. Generally, the process

of creating new binary responses only requires the knowledge of event time and the status at event
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time. If the study event (e.g. death) occurs at time t where t falls in period k, then all the responses

preceding period k (i.e 1,2, . . . ,k−1) are assigned values 0 (event-free), and the status at period k

is assigned value 1 (event). On the other hand, if a subject is censored at time t which falls in period

k, then, a rule-based artificial censoring is used to create the responses, such that, if the subjects’

time of censoring occurred pre-midpoint of period k interval, then the subject is assigned value 0

(artificial censor/event-free) at period k−1 and assigned a missing status for the remainder of the

subsequent periods. Similarly, if the subjects’ time of censoring occurred post-midpoint of period

k interval, then the subject is assigned value 0 (artificial censor) at period k and the subsequent

periods assigned missing status. These can be visualized in Figure 2.2. The new columns, “Status

Pk”, then serve as the new responses and are modeled independently with a subject’s survival

probabilities calculated sequentially from the models.

Table 2.1: Discretization illustration data

Pre-Defined Intervals Discretized Survival Outcomes
Subject ID Time (Years) Status Status Period Status P1 Status P2 Status P3 Status P4 Status P5 Status P6 Status P7

1 1.49 1 2 0 1
2 2.87 0 3 0 0 0
3 6.66 1 7 0 0 0 0 0 0 1
4 1.26 0 1 0
5 4.84 1 5 0 0 0 0 1
6 3.28 1 4 0 0 0 1
7 5.24 1 6 0 0 0 0 0 1
8 6.57 0 7 0 0 0 0 0 0 0
9 5.8 0 6 0 0 0 0 0 0
10 3.37 1 4 0 0 0 1

In the presence of covariates, K independent Bayesian Networks are learned for each period

with inference performed on the binary responses. During the BN structure learning process,

we impose the constraint that all the variables be associated with the binary response. This is

a characteristic of most standard modeling approaches where the outcome of interest is always

modeled as a function of covariates, e.g. classification/regression methods. Constraining all the

other variables in the network to have an association with the binary response allows for prediction

of the outcome with all the variables having an influence. This leverages the Markov Blanket

property of a Bayesian Network.

We then perform prediction on the binary status variable using the observed covariate values
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Figure 2.2: Visualization of right-censored time-to-event data and discretized survival times.

as evidence. That is

P(S|E) = P(S,E)
P(E)

(2.4)

where S is the binary status variable and E is the available evidence. For instance, considering the

interest in the probability of no event for an individual in each period, i.e. S = 0, we query the

learned BN using

P(S = 0|Xobserved) =
P(S = 0∩Xobserved)

P(Xobserved)
(2.5)

Our approach considers independent modeling of outcomes in each time period but this can

be extended to consider periodic structural dependency as in the case of dynamic BN approach.
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However, subject characteristics are only available at baseline limiting applicability of dynamic BN

or other approaches such as Hidden Markov models, otherwise, for longitudinal cases, a dynamic

BNs can be adopted (Exarchos et al., 2014), or Hidden Markov models depending on the context.

2.2.4 Analysis Framework and Inference

Both clinical and gene expression data are preprocessed before learning the structure and the pa-

rameters of the BN. Analysis were performed on subjects with both clinical characteristics and

gene expression (RNA-Seq) data available. In addition, binary responses based-on survival time

and status variable were created using one-year intervals to define the periods.

We then performed 5-fold cross-validation where folds were created randomly while trying to

maintain a balanced proportion of events in each period across the 5 folds. With high dimensional

data, learning the structure of the Bayesian Network is a challenging task due to the number of co-

variates and the computational resource cost problem associated with increasing number of nodes.

Therefore, on the gene expression training set, we subjectively selected 10 genes based on p-value

and effect size (β coefficient) from the univariable Cox regression model on each gene prior to

modeling using BNs (being careful to perform this selection only on the training data for each

fold). This involved ranking genes based on p-value followed by their absolute effect size, then

arbitrarily selecting the top 10 genes. For the binary periodic responses, BNs and cross-validated

logistic regression models were fit on the training set (Figure 2.3).

Following gene selection, and within each periodic interval, the structure of the BN is learned

by bootstrapping different network structures using the HC algorithm with the final structure of the

network being the average of the learned structures. This is analogous to an averaged ensemble of

networks, where the averaging on the structure entails using both directionality of influence and

strength of relationship between pairs of variables. We also impose a relation constrained such that

all variables in the network be associated with the response (binary periodic response). Once the

structure of the network is learned, the parameters of the network are obtained from the averaged

network using maximum likelihood estimation.
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Figure 2.3: Analysis flowchart.

With the fitted BN model, prediction on new data (testing set) is conducted with new data as

evidence and probability of survival in each period, P(S = 0), as event. With this framework,

prediction of survival during each period is possible for all subjects regardless of censoring. BN

learning and prediction is carried out independently for each of the periods, while allowing for

change in structural variable relationships across the periods. However, the final inference on

subject survival over time is based on the product of survival during each individual period.

Since we were also interested in the performance of the standard approaches, Regularized Cox

proportional hazards regression models with α weighting parameter were trained (Figure 2.3).

That is, ridge α = 0, LASSO α = 1 and Elastic Net α = 0.5 regularization (glmnet definition).

These were conducted on the same training set with unfiltered genes but with overall survival as the

main outcome, rather than the transformed responses. The trained regularized Cox models were

then used to predict the risk score for each subject at the specific time points corresponding to the

interval boundaries from the initially prespecified discretization time point cutoffs. Even though

we caution on the comparability of the two modeling approaches, we wanted to determine how

standard approaches performed on the same data.

The analysis was executed independently on clinical characteristics, gene expression, and the

integrated data (both clinical characteristics and gene expression). To assess the performance of the
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models, we used the concordance index (c-index) (Pencina & D’Agostino, 2004). C-index is the

probability that for two randomly chosen subjects, the subject with higher predicted risk value will

experience the event first. The c-index is analogous to the ROC-AUC, and it measures how well

the model ranks two random individuals in terms of survival and does not depend on the choice of

time for evaluation of the model.

The above is repeated with random resampling of the data herein referred to as different seeds

for assessment of the stability of the models. Here, resampling of the data to generate the training

and testing sets was performed 100 times. Evaluation of the model performance was then carried

out on the c-indices from the multiple seeds.

2.3 Application to Cancer Data

2.3.1 Cancer data profiles

Publicly available data from The Cancer Genome Atlas (TCGA) were utilized in this study. The

cancer types selected for the study included bladder, kidney and lung cancer. Clinical characteris-

tics and gene expression data were downloaded through the Genomic Data Commons Data Portal

(Grossman et al., 2016). Baseline clinical characteristics selected were based on known cancer-

specific prognostic factors and whether there was considerable availability of values for most of the

subjects. The selected variables included age, sex, tumor stage, race, diagnosis subtype and status

at last follow up Table 2.2. Preprocessing of RNA-seq data involved normalization of raw gene

counts using edgeR (Robinson et al., 2010) and Limma (voom function) (Ritchie et al., 2015b)

packages in R. Genes with low variance were then filtered out using median absolute deviation

(MAD), which is more robust and resilient to outliers than standard deviation. To remain with

approximately 12,000 genes, we used MAD thresholds of 1.4, 1.3, 1.34 for bladder, kidney, and

lung cancer respectively.

The tumor stage for bladder cancer was reclassified into low and high-risk corresponding to

the combination of Stage I & Stage II and Stage III & Stage IV respectively. This was due to the

low counts on the number of subjects with Stage I cancer (n=1). For lung and kidney cancer, we
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Table 2.2: Baseline demographic profiles for each cancer type

Cancer Type
Characteristics Bladder Lung Kidney

(N=335) (N=454) (N=521)
Age, Median[Q1, Q3] 69[61, 76] 66[59, 72] 61[52, 70]
Sex, n(%)

Male 91(27.2) 204(44.9) 339(65.1)
Female 244(72.8) 250(55.1) 172(34.9)

Tumor Stage, n(%)
Stage I 1 (0.3) 250(55.1) 261 (50.1)
Stage II 96(28.7) 106(23.3) 56 (10.7)
Stage III 119(35.5) 74(16.3) 122(23.4)
Stage IV 119 (35.5) 24(5.3) 82(15.7)

Race, n(%)*
White 280(86.7) 347(86.3) 453(88.1)
Black 20(6.2) 47(11.7) 53(10.3)
Other 23(7.1) 8(1.9) 8(1.6)

Diagnosis Subtype, n(%)*
Papillary 68(20.6) - -
Non-Papillary 262(79.4) - -

Follow up vital status, n(%)
Alive 180(53.7) 282(62.1) 349(67.0)
Dead 155(46.3) 172(37.9) 172(33.0)

∗ Some subjects missing values; the numbers in parenthesis represent percentages

only considered age, sex and tumor stage as clinical characteristics to include in developing the

prognostic models, whereas for bladder cancer, age, sex, race, and diagnosis subtype were used.

2.3.2 Discretizing survival time

For all the cancer types, we used one-year intervals of survival to discretize the periodic responses.

These intervals were defined as (0-1], (1-2], . . . years with the last periodic interval chosen such that

the remaining at risk proportions of subjects was at least 10 percent of the sample study total. Based

on these criteria, we ended up with 5 periods for both bladder and lung cancer while kidney cancer

has 8 periods. Table 2.3 shows the distribution of binary outcomes across the periodic intervals.

The censored column represents subjects who were artificially censored, while the at-risk column

represents the total number of subjects who are at risk of death or censor during that period. Note
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that for bladder and lung cancer, the survival time is partitioned into 5 periods corresponding to

yearly periodic survival with the last period being survival beyond the 4th year from the day of

diagnosis. Similarly, the last survival period for kidney cancer implies survival beyond year 7.

Table 2.3: Cumulative summary of discretized survival endpoints

Cancer Type
Status Time Bladder Lung Kidney

(1-Year (N=335) (N=454) (N=521)
Intervals) Censored Died At-Risk Censored Died At-Risk Censored Died At-Risk

(n=155) (% of total) (n=172) (% of total) (n=172) (% of total)
Period 1 29(16.1) 71(45.8) 335(100) 44(15.6) 52(30.2) 454(100) 42(12.0) 49(28.5) 521(100)
Period 2 65(36.1) 55(35.5) 235(70.1) 113(40.1) 45(26.2) 358(78.9) 45(12.9) 31(18.0) 430(82.5)
Period 3 28(15.6) 15(9.7) 115(34.3) 48(17.0) 31(18.0) 200(44.1) 35(10.0) 28(16.3) 354(68.0)
Period 4 11(6.1) 4(2.6) 72(21.5) 31(11.0) 19(11.0) 121(26.7) 51(14.6) 20(11.6) 291(55.9)
Period 5 47(26.1) 10(6.5) 57(17.0) 46(16.3) 25(15.4) 71(15.7) 50(14.3) 19(11.0) 220(42.2)
Period 6 - - - - - - 41(11.7) 10(5.8) 151(29.0)
Period 7 - - - - - - 29(8.3) 8(4.7) 100(19.0)
Period 8 - - - - - - 56(16.0) 7(4.1) 63(12.0)

2.4 Results

Preliminary assessment of overall survival is performed using Kaplan Meier (KM) curves for the

three cancer types, (Figure 2.4). We observe a rapid decrease in the curve for bladder and lung

cancer reaching median survival in approximately 2.5 years and 4 years respectively. On the other

hand, the rate of decrease in the KM curve for kidney cancer is gradual, reaching the median

survival time at about 7.5 years.

Using univariate cox models to empirically select prognostic genes, a summary of the 10 most

frequently selected genes from the random resampling of the data, (multiple seeds), for each cancer

type are shown in Table 2.4. For instance, GSDMB, PITX3, and FIRRE were the most frequently

selected genes for bladder, lung and kidney cancer respectively.

From a single seed and fold, BNs for clinical characteristics, gene expression data, and inte-

grated data in association with binary periodic responses, (StatusPk), are learned and we provide a

sample of the integrated data BNs in the first period for the 3 cancer types (Figure 2.5). Since we

imposed the restriction that all variables in the network be associated with the response variable,

18



+++++++++++++++++++
++

+
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++ ++ ++++ +++++++++ ++++++++ ++ ++++++ ++ ++++ ++

335 236 115 72 58 39 23 190.00

0.25

0.50

0.75

1.00

0 365 730 1095 1460 1825 2190 2555
Time (Days)

S
ur

vi
va

l p
ro

ba
bi

lit
y

(a). Bladder cancer

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++

++++++++++++++++++++++
++ + +++ ++ + + + +

+

454 359 201 121 71 48 35 25 16 11 8 6 6 6 30.00

0.25

0.50

0.75

1.00

0 365 730 1095 1460 1825 2190 2555 2920 3285 3650 4015 4380 4745 5110
Time (Days)

S
ur

vi
va

l p
ro

ba
bi

lit
y

(b). Lung cancer

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++ +++ ++ +++++++

521 432 354 291 220 151 101 63 40 31 13 30.00

0.25

0.50

0.75

1.00

0 365 730 1095 1460 1825 2190 2555 2920 3285 3650 4015
Time (Days)

S
ur

vi
va

l p
ro

ba
bi

lit
y

(c). Kidney cancer

Figure 2.4: Overall survival Kaplan-Meier curves: The inset numbers represent the number of
subjects at risk at the corresponding specific time.

Table 2.4: Proportion of frequently selected genes (univariate Cox models)

Overall frequency of gene selection
Bladder Lung Kidney

Gene Selection Gene Selection Gene Selection
Proportions Proportions Proportions

GSDMB 1.00 PITX3 0.99 SLC16A12 1.00
KLRK1 0.98 ANLN 0.79 COL7A1 1.00
EMP1 0.94 ESYT3 0.60 ZIC2 0.95
ENSG00000240291 0.59 ENSG00000260412 0.56 WDR72 0.84
SETBP1 0.56 MELTF 0.56 FIRRE 0.68
ENSG00000275178 0.40 ENSG00000233609 0.45 OTX1 0.57
TNFRSF14.AS1 0.37 ENSG00000255325 0.40 EMCN 0.53
LAMA2 0.34 LINC01117 0.34 CAVIN2 0.44
NR2F1.AS1 0.29 CLEC17A 0.29 EDNRB 0.41
ENSG00000279254 0.27 DLGAP5 0.27 GPR78 0.29

and as a result of these models being DAG, cycles in the structure are restricted. The network

structure exhibited is an average of multiple (1000) bootstrapped network structures and it is ap-
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parent that the response variable is the parent of all variables due to the outcome variable type

being discrete and the imposed association constraints.
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(a). Bladder cancer
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Figure 2.5: A sample of learned Bayesian Networks created for the first period for each cancer
type.

Using the selected networks for the first time period, see Figure 2.5, we observe no inter-

relationship between clinical characteristics and genes for bladder and lung cancer. However, an

association between age and a gene (EDNRB), is observed for kidney cancer. From the learned

networks, we also identify hub genes (genes exhibiting high connectivity with other genes) that

have a potentially direct or indirect impact on other genes as well as the binary survival outcome.

For instance, from the selected networks, genes with the most edges as compared to other genes

in the networks include NR2F1.AS1, ENSG00000240291, and LOC101927943 for bladder cancer

(Figure 2.5.a); ARNTL2, FOSL1 and MELTF for lung cancer (Figure 2.5.b). Most genes in kidney

cancer are connected to at least two other genes (Figure 2.5.c). To evaluate the performance of the
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models, we plotted the c-index of the BNs and logistic regression during each period (Figures 2.6,

2.7, 2.8). For all the cancer types, BNs exhibited a better or comparable performance on clinical

characteristics data as compared to logistic regression. This is also apparent in the integrated data

except for kidney cancer. However, performance on gene expression was inferior in all cases. We

also included the results from the standard penalized Cox models where the c-index are calcu-

lated at the periodic boundaries. Although, and as previously stated, we caution against making

direct comparisons between the results obtained from the two approaches. We observe stability in

performance across the time points for all the penalized Cox models.
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(a). Clinical data
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(b). Integrated data
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(c). Gene expression data

Figure 2.6: Comparison of concordance index for bladder cancer cohort with clinical, integrated
and gene expression data. BN - Bayesian Networks, Log.Reg - Logistic regression, Cox.LASSO
- Cox PH LASSO regularization (α = 1), Cox.Ridge - Cox PH Ridge regularization (α = 0),
Cox.ENet - Cox PH Elastic Net regularization (α = 0.5),
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(a). Clinical data
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(b). Integrated data
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(c). Gene expression data

Figure 2.7: Comparison of concordance index for lung cancer cohort with clinical, integrated and
gene expression data. BN - Bayesian Networks, Log.Reg - Logistic regression, Cox.LASSO - Cox
PH LASSO regularization (α = 1), Cox.Ridge - Cox PH Ridge regularization (α = 0), Cox.ENet
- Cox PH Elastic Net regularization (α = 0.5),

2.5 Discussion

Biological systems have an inherently complex structural association between features. Under-

standing this phenomenon becomes even more challenging with time-to-event data when learning

the structural relationship over time. As such, designing a prognostic model capable of capturing

such an association from a cross-sectional data adds complexity to the inference obtained from

such models. This study sought to answer two questions: i) does creating prognostic models that

allow for periodic inference having flexible variable relationships at each period provide useful

information, and ii) are BN a useful approach to integrating data from two source data?

Our approach using BNs achieves better or comparable performance compared to logistic re-
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(a). Clinical data
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(b). Integrated data
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(c). Gene expression data

Figure 2.8: Comparison of concordance index for kidney cancer cohort with clinical, integrated
and gene expression data. BN - Bayesian Networks, Log.Reg - Logistic regression, Cox.LASSO
- Cox PH LASSO regularization (α = 1), Cox.Ridge - Cox PH Ridge regularization (α = 0),
Cox.ENet - Cox PH Elastic Net regularization (α = 0.5),

gression for clinical and integrated data as observed in bladder and lung cancer Figure 2.6 and

Figure 2.7. This is particularly discernible for lung cancer where there is a pronounced difference

in overlaps of the box plots in clinical and integrated data. For kidney cancer, performance on

clinical data is comparable, however, with integrated data, we observe that BNs perform poorly

(Figure 2.8). In all cases, the performance on gene expression is barely comparable and it exhibits

fairly poor performance. This is attributable to the problem of overfitting since, with conditional

linear gaussian distributions, we assume different distributions for each discrete parent of a con-

tinuous child. Thus, given even a moderate number of genes, BNs will tend to overfit. This means

the other methods were better able to leverage the gene expression data, and this challenge will
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need to be addressed in the future. Even though logistic regression appears to perform better than

the BNs in other cases, there are some caveats associated with their performance evaluation. For

instance, if the training data has only one class label (events only or non-events only), then a lo-

gistic regression model cannot be fit, leading to no predictions made on the test set. This benefits

the results obtained from the logistic regression as compared to BNs. Furthermore, there is an

increased variability on the estimates obtained from logistic regression compared to BNs.

One benefit from this modeling framework is the potential to reveal complex interactions that

might exist between phenotype and genotype characteristics in relation to the outcome of interest.

As observed in the BNs created (Figure 2.5.c), we note some clinical characteristics (e.g. age)

are found to associate with genes (EDNRB) which may not be detected if the data types are in-

dependently studied. Moreover, the fact that we can allow factors to have different interactions at

different time points is manifested in the concept that the biological system works in a dynamic and

complex mechanism that varies over time. Thus, we might expect that the expression of different

genes at tumor resection, or different clinical characteristics at baseline, might be associated with

survival over time. It may be of interest to perform a further investigation on hub genes identified

by such networks. Considering bladder cancer hub genes; NR2F1.AS1, ENSG00000240291, and

LOC101927943 (Figure 2.5.a), it is very interesting that all three of these genes are long non-

coding RNA genes. In the case of NRF2F1.AS1, it has been previously reported to be associated

with oxaliplatin resistance in hepatocellular carcinoma and poor survival in osteosarcoma, poten-

tially by sponging different miRNA (Huang et al., 2018; Li et al., 2019). Possibly, this hints at

a relationship among these long noncoding RNA genes in post-transcriptional regulation that was

detected by our approach. In the lung cancer data; ARNTL2, FOSL1, and MELTF were hub genes

(Figure 2.5.b). All have previously been identified as associated with lung cancer survival (Brady

et al., 2016; Elangovan et al., 2018; Ma et al., 2020). For example, FOSL1 is a transcription factor

sub-unit that regulates the RAS-ERK cascade, possibly inhibiting apoptosis or driving cell cycle

progression (Chang et al., 2003), and ARBTL2 may facilitate cancer cell metastasis. Furthermore,

the ENCODE project identified ARNTL2 as a possible FOSL1 target (Consortium, 2011), which
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again supports the interpretability of our results. Standard approaches, whether linear or nonlinear,

assumes identical inter-relationship of variables across the different time points. Understanding

the dynamic variable relationship is crucial in performing targeted interventions.

This approach also allows periodic assessment of risk for individual patients. Conditional on

patients’ observed disease associated characteristics, having certainty estimates of experiencing an

event is imperative if we can create a path for each individual patient on their survival over time

which can help inform targeted treatment decisions over time. Moreover, this framework allows

for survival prediction on censored observations. In standard analysis, once a patient is censored,

we loose information about their future. Of interest for instance would be whether the censorship

status could be related to post-censorship factor and this approach provides prediction on censored

observations that can reveal meaningful information. In addition, once a BN has been learned,

we can query outcomes for new subjects even with limited patient information. If we only have

clinical characteristics, we can still get their predicted survival probabilities from the model fit on

the integrated data without performing any imputation on the genes.

In this study, we chose the interval bounds for the Cox models to assess their performance as

compared to the classification algorithms during the pre-specified periods. For instance, perfor-

mance was evaluated at time 365, 730,. . . during periods 1,2,. . . respectively. There is a limitation

with a direct comparison of Cox models with the classification algorithms since they both are es-

timating different quantities, but it suffices to mention that Cox models are the standard methods

and hence were included here for reference. Firstly, Cox models assume constant hazard overtime,

which in contrast to our approach, utilizes the entire range of event times when creating models

at specific times consequently resulting in stable performance as observed in all the plots. Despite

making such noncomparability statements, we still note how closely BNs achieve during the first

period in all cases involving clinical characteristics. Moreover, BNs performed poorly on kidney

cancer with integrated data, but this trend is also apparent with ridge regularization. This seems to

indicate a limited contribution of gene expression in building prognostic models for kidney cancer.

Survival time were split into a pre-defined number of periods using 1-year intervals for all
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cancer types for ease of model inference and achieve a systematic framework that captures infor-

mation about the dynamic biological system. The time intervals were pre-determined based on the

context of the study. For instance, different cancer types have dissimilar survival rates, therefore,

of interest might be periodic six-month survival or periodic one-year survival for a specific cancer

type. Most reported in the literature are 5-year survival rates, however, it is also important to de-

termine survival probabilities for individual subjects at different time periods based on observed

characteristics. One could consider extending change point detection techniques to identify such

specific times at which the hazard rates change (Goodman et al., 2011) and utilize it for periodic

cutoffs.

The assumption of non-informative censoring in time-to-event data motivates the use of artifi-

cial censoring. Explicitly, subjects who are censored have the same probability of experiencing the

event as subjects who remain in the study. In essence, artificial censoring balances survival esti-

mates by considering subjects who are lost to follow-up prior to the midpoint of the interval as not

contributing to the survival estimators for the current period and subjects who survive beyond the

midpoint but lost to follow-up before the interval cutoff contributing to survival estimators during

the current period.

One limitation of this modeling approach is the stability in performance for the subsequent pe-

riods if there is a substantially fewer number of subjects to learn the BNs. Another limitation in our

model involves the independent modeling of outcomes periodically rather than a sequential depen-

dency of survival outcomes on their preceding survival estimate. As much as this is a limitation,

it offers an advantage over other techniques since feature association can flexibly co-exchange re-

garding their association at different periods. Future work will consider using dependency on prior

state structure when considering predicted probabilities of the current state. Such approaches are

directly applicable to panel data where developed methods closely related to BNs include but not

limited to Dynamic Bayesian Networks and hidden Markov models. Another future direction will

be to consider using an undirected graph to develop prognostic models.
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2.6 Conclusions

Bayesian Networks is an invaluable tool that provides a representation of relationships between

variables of interest in the situation of uncertainty while handling complexity in the data. The

structure of the DAG corresponds to a set of conditional independence assumptions, which can be

helpful in revealing and understanding causes of complex diseases. In this study, we have demon-

strated how BN can be adopted to model time-to-event data that allows for flexibility in variable

relationships over time as well as integrating multi-platform data. In addition, this study shows

how we can build an inference tool on time-to-event analysis to understand the association existing

between variables overtime which can instigate discussions into developing targeted intervention

from the learned relationship.
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Chapter 3

Predictive Modeling in Clinical Trials: A Narrative Review

Abstract

Rapid technological advancement has seen increased development of computer algorithms capable

of facilitating fast and efficient decision making in clinical trials. This has allowed predictive

machine learning algorithms to evolve into being able to model complex systems that were once

deemed infeasible, such as in the drug-development sector. Despite these advances, there is still

limited progress in the utilization of predictive models in different facets of the highly regulated

clinical trial domain. In this article, we review the literature on predictive modeling in clinical

trials. We also consider the benefits and challenges of applying these models in a randomized

clinical trial setting. Future directions of predictive modeling in the context of clinical trials are

discussed.

3.1 Introduction

Predictive modeling involves first modeling outcomes based on input features and a given func-

tional relation (Breiman, 2001) and then utilizing future observable features with the predictive

model to predict future outcomes. In a randomized clinical trial (RCT) setting, these input features

are typically clinical measures obtained from a subject’s health data (e.g. demographic informa-

tion, vital signs, height, weight, disease duration etc.). These input features are important in many

aspects of an RCT from subject screening for inclusion/exclusion, randomization stratification, ef-

ficacy/effectiveness covariate adjustments to adverse event (AE) coding (as in treatment-emergent

vs non-treatment-emergent AE’s). These features are useful in building a predictive model that

allows for an efficient clinical trial. While predictive modeling has proven to be effective in other

fields, it is imperative to understand the associated benefits and the future of predictive modeling

in RCTs.
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Predictive modeling is sometimes used interchangeably with machine learning (ML) or predic-

tive analytics. Here, we consider ML as distinct statistical techniques used to construct predictive

models, while predictive analytics refers to the commercialized application of predictive modeling

which is beyond the scope of this review. In the context of RCTs, predictive modeling and ML are

invaluable tools that have the potential to solve complex problems that were considered infeasible

in the past (Obermeyer & Emanuel, 2016; Passos & Mwangi, 2018). The past two decades has

seen an explosion of novel machine learning algorithms which has been driven, in part, by ad-

vances in computing-resource technologies. Additionally, the amount of data collected in the past

decade alone is possibly more than what had been collected in all other years combined (Science

Daily, 2013). Despite these growths, application of novel ML algorithms has been accompanied

by regulation, especially in the clinical trial setting, where interpretability is of greatest impor-

tance. Hence, simpler and more interpretable ML algorithms are commonly preferred (e.g. linear

regression logistic regression, decision tree, etc.).

Another class of statistical modeling that is closely tied with predictive modeling involves the

use of Bayesian methodologies. There are three basic components of Bayesian models; prior, like-

lihood and posterior. In the RCT setting, the prior component is the information from a previous

trial or expert knowledge that can be combined with accruing information from trial data to make

a decision in regard to early drug efficacy or futility evaluation enabling an efficient clinical trial.

A special category of designs in clinical trials that utilize Bayesian methods (Bayesian adaptive

designs) are efficient due to their unique capability with respect to early decision-making to stop

the trial for futility or efficacy.

Clinical trials are costly and time-consuming: it takes approximately 10 to 15 years from pre-

clinical testing to the approval of a new drug by regulatory agencies, with the average cost of the

process running over $1 billion (Morgan et al., 2011; Van Norman, 2016). Furthermore, about

70% of clinical trials fail due to lack of efficacy or safety with over 55% failing due to inadequate

efficacy (Fogel, 2018; Harrison, 2016). Moreover, almost 9 out of 10 new drugs fail in the human

testing phase (Van Norman, 2016). Therefore, there is a need to mitigate this challenge of cost and
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time while improving clinical trial outcomes. Predictive modeling has the potential to facilitate

clinical trial efficiency in areas such as patient recruitment, safety assessment, trial monitoring,

and efficacy and effectiveness evaluations.

Recently, there has been an increased interest in utilizing historical data, real-world data (RWD)

or in other cases real-world-evidence (RWE) in RCTs (Garrison et al., 2007; Swift et al., 2018).

By retrospectively analyzing clinical trial data, prediction models developed from community-

wide challenges have demonstrated substantial performance using open clinical trial data (Abdal-

lah et al., 2015; Guinney et al., 2017; Kueffner et al., 2019; Seyednasrollah et al., 2017). For

example, the top 10 prediction models in the Prostate Cancer Dream Challenge outperformed the

current gold-standard prediction model for prostate cancer survival (Meier et al., 2016) which

could prove useful in patient stratification during randomization. Many such promising predictive

models have lingered in their development platforms after the conclusion of the challenge that

created it, awaiting use in clinical research.

Here, we review the literature on predictive modeling at different stages of RCT conduct and

draw attention to the emerging potential of predictive modeling to improve clinical trial efficiency

and optimization.

3.2 Methods

In this review, we searched for articles published between 2000 to 2020 in scientific databases in-

cluding PubMed, ScienceDirect, Web of Science, and Google. Specifically, search terms included,

“predictive modeling”, “clinical trials” and other gray literature articles on predictive modeling in

clinical trials. Most of the research articles identified were either a retrospective evaluation of pre-

dictive modeling on clinical trial data or were based on future potential applications of predictive

modeling in RCTs. We recognize the closeness of predictive modeling with adaptive design ap-

proaches and we supplemented our search to include predictive modeling approaches augmented

by adaptive clinical trial designs which have the flexibility to modify one or more aspects of clinical

trials based on accumulating information.
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3.3 Results

There are several aspects of predictive modeling that could benefit clinical trials. Here we highlight

key features of predictive modeling and their associated uses in the various stages of clinical trials

(e.g. pre-screening, trial optimization and, safety and efficacy evaluation). We note that at the time

of writing this paper there are many areas of clinical trials that predictive modeling can potentially

be applied to, and they cannot all be addressed in this narrative.

3.3.1 Setting the Scene: A perfect model

Consider a hypothetical scenario of a clinical trial where there is a perfect prediction for some parts

of the trial. For instance, these predictions may be in the form of simple tasks such as the number

of patient accruals in a specific period, the expected number of safety issues, the population of

subjects who will benefit the most from the study drug as well as quantifying the effectiveness of

the study drug. Note that a perfect prediction model for either of the listed parts of the clinical

trial can tremendously improve the efficiency of a clinical trial in terms of cost and time. There

is currently no such thing (yet) as a perfect model, hence, these examples are too optimistic but

represent the “optimum”. However, some algorithms that are “non-perfect” but good have been

developed.

The goal of a perfect model is to speed up the trial as well as reduce the financial cost associated

with clinical trials (Morgan et al., 2011; Van Norman, 2016). Some components of a clinical trial

that are targets for predictive modeling utilization are concerned with; i) safety and toxicity of an

intervention (Menard et al., 2019; Seyednasrollah et al., 2017), ii) whether there are subjects who

will respond to the study drug (Chekroud et al., 2016; Gullick et al., 2017), iii) overall efficacy

and effectiveness evaluation of an intervention (Ezzati & Lipton, 2020), and iv) developing new

information from the collected clinical trial data related to drug dynamics as well as the molecular

drug profile that will inform future drug development or drug repurposing (Yella et al., 2018).

The current era of high-dimensional complex data e.g. molecular data as well as data from
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different platforms requires prediction models capable of improving understanding of patient out-

comes (Hernandez & Zhang, 2017), in addition to assessment of drug safety and efficacy. There has

been an increased interest in using real-world data (RWD) as well as real-world evidence (RWE)

to streamline health care decision-making (Bate et al., 2016; US Food and Drug Administration,

2018). Regulatory agencies are currently using RWD and RWE for monitoring post-market safety

and adverse events to make regulatory decisions (US Food and Drug Administration, 2018). RWD

and historical data from closely related studies, provides a great platform for developing an in-

formative predictive model. Models utilizing historical data have been efficiently implemented in

designs adopting Bayesian approaches where information is borrowed (Wang et al., 2019).

3.3.2 Trial Design: Pre-trial

Predictive modeling from the clinical trial design perspective entails identification and consider-

ations for more robust and clinically meaningful endpoints. This involves the identification of

important factors that are most predictive of trial outcome which is useful in understanding uncer-

tainties that might arise during the clinical trial conduct. For instance, models can be designed as

in in silico clinical trials which are virtual trials where virtual cohorts of patients are created for

testing safety and efficacy of new drugs (Pappalardo et al., 2019) or by relying on previous trials

and/or observational studies to identify parameters that are most predictive of trial outcomes to

mitigate uncertainties associated with trial expectation (Cui et al., 2014).

An appropriate study population for a study drug can be selected using predictive modeling.

Strategies using patient demographics, historical, molecular drug profile among other characteris-

tics have been established for the identification of subjects who have the potential to benefit from

the drug. Such strategies that are chosen in advance of a clinical trial include predictive enrichment

strategies where subjects are chosen based on their likelihood of responding to drugs (Renfro et al.,

2016; US Food and Drug Administration, 2019).
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3.3.3 Patient Enrollment

About 80% of clinical trials are unable to meet enrolment goals with over 75% of cancer trials

failing to enroll a sufficient number of patients (Fogel, 2018). There has been an uptick on the need

to use predictive models for patient recruitment to mitigate this challenge (Barnard et al., 2010),

from development of prediction models capable of translating free text information from electronic

health records (EHRs) data to support patient recruitment (Thompson et al., 2019), to utilization of

prediction models to assess patient eligibility (Kopcke et al., 2013). Besides, platforms have also

been developed to perform fast and early pre-screening of potential subjects in databases for target

populations and subject accrual feasibility assessments (Mudaranthakam et al., 2018). Ni et al.

utilized Natural Language Processing (NLP), Information Extraction (IE), and machine learning

techniques to develop an automated clinical trial eligibility prescreening tool which demonstrated a

substantial increase in screening efficiency for matching patients to clinical trials (Ni et al., 2015).

Over the past decade, several technology start-ups have developed platforms to link patients with

appropriate clinical trials that meet patient needs.

Predictive modeling should be useful for patient stratification in regard to their potential re-

sponse to drugs. For example, in the crowdsourced analysis of clinical trial data to predict amy-

otrophic lateral sclerosis progression, predictive models reduced the heterogeneity of patients in

a highly complex disease by differentiating subgroups of patients (Kueffner et al., 2019) which

shows how such models can be implemented during patient randomization. Predictive models

used for patient stratification could be instrumental in screening for patients who are the best fit for

the trial as well as limiting harm to potential non-responders.

By adopting predictive modeling techniques for patient accrual, there is a potential to improve

clinical trial efficiency during patient recruitment by predicting the likelihood of patient’s partici-

pation in the clinical trial (Ni et al., 2015). Also, fewer subjects are exposed to unnecessary drugs

because subjects who are most likely to respond to the drug are identified for inclusion into the

trial (Escudero et al., 2011; Kueffner et al., 2019). Hence, financial cost, logistical, and ethical

constraints can be mitigated and live-saving treatments can reach patients faster.
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3.3.4 Monitoring Trials

During interim analysis, it is typical that some subjects will have missing outcomes. Missing data

may influence clinical trial inferences depending on the missingness patterns and how the missing

data are handled (Jakobsen et al., 2017). Typically, subjects will have baseline or prior interim

data that can be useful in imputing the missing outcomes. Predictive algorithms are a great tool in

such settings where missing outcomes are imputed for subjects that have not reached the intended

endpoint but have baseline or prior interim data . In addition, use of predictive modeling during

interim has the ability to identify subgroup of treatment responders which could inform potential

trial modification (Ballarini et al., 2018). As noted previously, there is an overlap in predictive

modeling and adaptive clinical trial designs and we briefly review the benefits of typical adaptive

designs.

Adaptive clinical trial designs are a type of trial that allows for modifications on the trial based

on accumulating information (Berry, 2004). Of significant importance in adaptive designs is the

ability to monitor and predict patient accrual (Gajewski et al., 2008; Jiang et al., 2015) and make

early decision rules where trials can be stopped early for success or futility based on predictive

probabilities (Berry, 2006; Broglio et al., 2014; Gupta, 2012; Krams et al., 2003). Such models

also permit for sample size re-adjustment with accumulating trial data. As such, these models

represent a clear example of a current use of predictive models in the clinical trial setting that has

been found to have great utility.

3.3.5 End-of-trial

At the conclusion of the trial, missing values are imputed using predictive models similar to impu-

tations performed at interim. To assess efficacy, new approaches have been developed that extend

propensity score methods to stratify subjects while borrowing information from historical data

using power prior technique (Wang et al., 2019). This is particularly beneficial for single-arm

studies, especially in trials with rare diseases. Besides, this can provide some information regard-

ing whether the drug is beneficial to some subgroup of subjects which can inform future clinical

34



trials (Ballarini et al., 2018; Schnell et al., 2016; Weisberg & Pontes, 2015; Kueffner et al., 2019).

With predictive models, new indications for approved drugs can be assessed for future thera-

peutic potentials (Gottlieb et al., 2011; Li & Jones, 2012; Napolitano et al., 2013; Yella et al., 2018).

After the drug has been approved, there is a need for exploring interactions of the new intervention

with other co-administered medications to assess adverse events from drug interactions. Predictive

models have been developed to predict drug-drug interactions based on drug characteristics and

adverse drug events (Cheng & Zhao, 2014; Page et al., 2012).

3.3.6 Challenges

A major challenge of using predictive modeling is the potential complexity of some predictive

algorithms. Although sophisticated predictive models can sometimes have high predictive accu-

racy, there are limitations associated with their interpretability. In many cases, there is a tradeoff

between model accuracy and interpretability (Johansson et al., 2011). The most flexible predictive

models, capable of modeling the most complex functions of the data, also require a large sample

size to effectively estimate parameters of interest. This is especially true when there is a large

number of input features.

Model generalizability is also a concern in adopting developed prediction models from one

clinical trial to another. For instance, if borrowing information from unrelated historical data or

RWD, prediction models developed from these data may be unreliable and can lead to biased

inference if the models are adopted for the task at hand.

Due to the need to protect patient information, it is often challenging to obtain the most relevant

data for developing predictive models. Because of this, great effort is expended by researchers

on developing models on data that are easier to obtain but that are likely suboptimal in terms

of what could be achieved. Future considerations for such situations might require development

of predictive modeling algorithms in an encrypted framework, after which parameters or model

summary characteristics are the only attributes available on the front end, thus limiting access to

private data.
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Finally, there are challenges associated with adoption of new techniques especially in a highly

regulated field that has a well-established standard of practice requiring more validation on new

approaches.

3.4 Discussion

Predictive modeling has the potential to dramatically improve clinical trial efficiency in terms

of patient recruitment, safety assessments, trial monitoring, and efficacy assessments. It could

facilitate a real-time accurate understanding of drug mechanisms and streamline the development

of targeted drugs in regards to personalized medicine.

Currently, there is an under-utilization of predictive modeling in clinical trials. However, there

are potentially important benefits that are associated with predictive modeling: fewer patients ex-

posed to potentially harmful drugs and improved resource optimization. Prediction in combination

with adaptive designs has the potential to significantly reduce the duration of trials, minimizing

their cost as well as allowing important drugs to be available to patients sooner. ML algorithms

are becoming an indispensable tool for solving complex problems in nearly all walks of life, and

some of the studies that have retrospectively analyzed clinical trial data have shown the potential

of prediction models to improve clinical trial efficiency. For instance, subgroups of patients who

can benefit from the drug might better be screened using predictive models.

There have been considerable efforts to consider novel validated approaches that have gained

popularity in other fields. A Project funded by US FDA is currently being carried out to evaluate

whether using RWD and RWE can successfully replicate the outcomes from a pragmatic clinical

trial (RCT Duplicate, 2020). The study aims to use RWD to reproduce RCTs and compare findings

to predict the results of seven ongoing Phase IV clinical trials. If validated, it could pave the way

for drug developers to apply for approval of new indications based on predictive modeling and

in silico trials, although this is likely still far off. Drug developers might also be interested in

predicting future outcomes of drug approval after phase II in order to assess the logistics of the

clinical trial moving forward (DiMasi et al., 2015).
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Most machine learning approaches involve the assessment of model performance regarding

sensitivity and modeling assumptions. This is beyond the scope of this narrative review. However,

we note that predictive models should be assessed for their predictive accuracy. This is typically

hard to evaluate in a clinical trial setting given that every clinical trial is unique. However, historical

data or RWD may provide a platform for development and validation of prediction models. Before

such predictive models are eventually accepted as a standard of practice, robust proof is required to

validate with randomized pragmatic trials, so that future implementation of such predictive models

results in more efficient and reliable clinical trials.

Finally, we note that predictive modeling algorithms may not necessarily apply to every clinical

trial. As such, standard methods and ethical concerns may supersede applicability of predictive

modeling techniques. To fully adopt predictive models in clinical trials, domain experts will be

required to validate developed predictive models. With advances in computational capabilities,

assessment of different scenarios in a clinical trial is possible using simulations and validation of

the predictive models will require in-depth review by experts before deployment.
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Chapter 4

Estimating Causal Treatment Effects in the Presence of Intercurrent Events:

A Bayesian Inference Approach Adopting Principal Stratification with

Strata Predictive Covariates

Abstract

Treatment effect in randomized clinical trials is often evaluated after post-randomization intercur-

rent events such as treatment discontinuation/switch, use of rescue medication or even death. How-

ever, without appropriate adjustment for these intercurrent events, the treatment effect estimate is

very likely to be subject to bias and therefore misleading since it no longer reflects the treatment

causal effect. The recently released ICH E9(R1) guidelines on estimands and sensitivity analysis

in clinical trials also emphasizes the importance of this adjustment to ensure the statistical validity

and clinical meaningfulness of the estimated treatment effect. To adjust for intercurrent events,

we adopt the principal stratification framework where we first predict the latent strata membership

based on observed baseline characteristics and then evaluate the causal treatment effect within the

appropriate principal stratum. In addition, a weighted treatment effect based on observable stra-

tum specific outcomes is calculated. Since the true causal effects of a treatment is not known in

a real setting, we assessed the performance of our approach using simulations and compared our

results to the standard ITT approach that does not adjust for intercurrent events. In the presence

of intercurrent events, our approach demonstrates a reduction in treatment effect bias compared

to ITT analysis using MSE and is more robust to heterogeneity in treatment effects between sub-

jects. In addition, this approach can further inform the design of succeeding phases of a clinical

trial regarding screening for inclusion/exclusion through predictions of the potential of subjects to

experience an intercurrent event.
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4.1 Introduction

In Randomized clinical trials (RCTs), selection bias on baseline covariates that can confound treat-

ment effects are mitigated through randomization. However, RCTs are prone to post randomization

confounding factors such as treatment discontinuation due to adverse events or lack of efficacy, use

of rescue medication, treatment switch, protocol deviation or even terminal events that preclude

observation of the outcome of interest. Treatment effects in clinical trials are normally considered

causal effects due to their natural control of selection bias through randomization (Schulz, 1998).

However, the aforementioned factors that arise in the course of the clinical trial may influence ac-

curate estimation of the treatment effect estimand Gupta (2011). Despite the inclusion/exclusion

criteria at the trial onset serving as powerful tools in screening for potential factors that might lead

to trial participants experiencing an intercurrent event (ICE), it is unrealistic to assume that no

such events will occur. Analyses that fail to consider intercurrent events may subsequently lead to

biased inference on the treatment effect estimand. Standard analysis using the intent-to-treatment

(ITT) strategy in presence of intercurrent events are generally conservative to treatment effect esti-

mation because of treatment effect dilution by post-randomization confounders. Thus, intercurrent

events may limit the maximum inferential benefits from randomization resulting in treatment effect

bias (Gupta, 2011; Zheng et al., 2020). In other words, this limits the accurate estimation of the

desired treatment effect and can preclude the conclusion of causality. Hence, these events need to

be adjusted for during analysis. However, adjusting for post-treatment variables as if they were

baseline confounders can similarly bias the treatment effect estimate (Rosenbaum, 1984). Some

strategies for addressing such events have been outlined in the recent ICH E9/R1 guidelines (Inter-

national Council for Harmonization, 2019) with several studies exploring such strategies (Aroda

et al., 2019; Keene, 2019; Ratitch et al., 2020). Nevertheless, there is a need for more robust meth-

ods that addresses the new guidelines on ICE whilst obtaining unbiased estimates of treatment

effects which may be biased by ICEs.

In this work, we propose a method that not only helps to accurately estimate causal treatment
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effects but also provides a framework for using factors observed at baseline to identify subjects who

are likely to experience intercurrent events in any follow-up clinical trials. Our proposed approach

is an extension of principal stratification (PS) framework (Frangakis & Rubin, 2002) to estimating

causal treatment effects in the presence of intercurrent events by first utilizing baseline covariates

to predict intercurrent event under the control/drug alternative assignment and then estimating the

causal treatment effects using the homogeneous group of subjects in the appropriate stratum.

This approach is motivated by the ICH E9/R1 guidelines on estimands and sensitivity analysis

in clinical trials (International Council for Harmonization, 2019) and inspired by techniques that

addresses treatment noncompliance in RCTs (Feller et al., 2017; Roy et al., 2008). The fundamen-

tal property of causal inference is based on the concept of potential outcomes framework (Rubin,

1986, 2005). In a two-arm study, this involves imagining a hypothetical outcome scenario under

the alternative treatment assignment referred to as a counterfactual outcome, with the difference of

outcomes obtained from these two concurrent scenarios resulting in a causal effect interpretation.

In the presence of intercurrent events, we adopt the principal stratification framework to first clas-

sify subjects into strata according to their potential intercurrent event outcomes. Principal stratum

refers to the subgroup of subjects who would have homogeneous outcomes in regards to their joint

potential outcomes (Vanderweele, 2011), hence, the resulting effects from the principal stratum

are causal effects. Several studies have adopted the principal stratification framework on clinical

trial data to address treatment noncompliance (Mattei & Mealli, 2007; Odondi & McNamee, 2013;

Sheng et al., 2019), while others have augmented PS and principal score methods for predicting

strata (Ding & Lu, 2017; Feller et al., 2017; Funk et al., 2011). PS have been used in other context

to identify responders to treatments (Porcher et al., 2019). Our approach provides a simple frame-

work that is applicable to other post-randomization factors beyond treatment non-compliance, and

with limited assumptions.

In this study, we assume the desired principal stratum of interest to be the stratum where the

subjects do not experience the intercurrent event regardless of treatment assignment. Others have

referred to the subjects in such stratum as compliers, and the treatment effects from such stratum as
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complier average causal effect (CACE) (Imbens & Rubin, 1997) or local average treatment effect

(Imbens & Angrist, 1994). We develop the methodology of evaluating causal treatment effects

in the presence of intercurrent events and assess performance of the approach on simulated data

under different scenarios.

4.2 Methods

4.2.1 Potential Outcomes

Clinical trials are prone to intercurrent events. These are events that occur post-randomization and

are challenging to completely prevent using inclusion/exclusion criteria. In the causal inference

perspective, once a subject has been randomized to receive either study drug or control, there are

two potential outcomes regarding intercurrent events, that is, the subject will or will not experience

an intercurrent event. For a two-arm clinical trial, let Z represent treatment assignment with Z = 0

corresponding to placebo and Z = 1 corresponding to the study drug, which may interchangeably

be referred to as treatment. Further, let D represent a binary indicator of intercurrent event status

(D = 0: No Intercurrent Event (NICE), and D = 1: Intercurrent Event (ICE)). For simplicity, we

assume that subjects with intercurrent events eventually end up having unobserved endpoint out-

comes, although we note that there are many possible ramifications to intercurrent events. Even

though we focus on unobserved outcomes after ICE, this approach can also be extended to in-

corporate scenarios that allows for observable endpoints e.g. treatment switch or use of rescue

medication. However, the resultant treatment estimand from these scenarios might have a differ-

ent interpretation. For now, we defer dealing with complex intercurrent events such as treatment

switch or use of rescue medication for future research. Further, we assume that D is a composite

variable bearing all information pertaining to an intercurrent event without considering the type of

intercurrent event (again, we will consider a more nuanced approach in future work).

A fundamental property of defining causal effects involves the potential outcomes framework

(Rubin, 1974, 1986, 2005). In a two-arm study, each subject i has a set of two potential outcomes,

Yi(0),Yi(1). In order to conclude causal treatment effect, causal inference assumes that the same
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subject is observed under both treatment groups simultaneously; in addition, the subject should not

experience an intercurrent event. This is not possible, since we can only observe one outcome at a

time for each subject:

Yi = (1−Zi)×Yi(0)+Zi×Yi(1) (4.1)

where Z is the observed treatment assignment and Y (0) and Y (1) are the associated potential

outcomes under both treatment arms. Similarly, once a subject has been randomized to one of

the two arms, there are also two potential intercurrent event statuses, D(Z) = 0 and D(Z) = 1

corresponding to NICE and ICE respectively except that we can only observe intercurrent event

status under the assigned arm adding to the complexity of assessing treatment effects. Figure 4.1.a

shows all the possible paths a subject can take in a randomized clinical trial. The elements of

the outcome variable Y , (Y (z,d)), correspond to the treatment assignment and intercurrent event

status respectively. An estimand that reflects the causal treatment effect would therefore imply

comparing Y (0,0) to Y (1,0). This stratum represents homogeneous group of participants who

would have similar joint potential outcomes, (NICE in both arms), during follow-up. However,

subjects can only be randomized to one group followed by an observed intercurrent event status on

the assigned arm, resulting in partially observed information as illustrated in a case of assignment

to control with no intercurrent event (Figure 4.1.b). Note that the intercurrent event status and the

counterfactual outcome under the alternative assignment for this case are unidentifiable. Therefore,

the overall goal is to decipher whether the resultant outcomes from the same subject under the

alternative treatment assignment would be Y (1,0) or Y (1,1).

One key assumption in causal inference is the Stable Unit Treatment Value Assumption (SUTVA)

(Rubin, 1980; VanderWeele & Hernan, 2013). Under this assumption, there is only one version of

the treatment and no interference between units. That is, the treatment status of a subject does not

interfere with the potential outcomes of other subjects (no hidden treatment variation). In addition,

this allows for consistency in outcomes under the two arms and the ability to express the outcomes

as in Equation 4.1 (Pearl, 2010). In the absence of intercurrent events, potential outcomes in ran-

domized clinical trials are independent of the treatment assignment. Hence, with independence,
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Control (Z=0)

NICE (D=0)

ICE (D=1)
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Y(0,0)

Y(0,1)

Y(1,0)

Y(1,1)

Causal
Treatment
Effect

(a) All potential paths for a subject pre-randomization

Control (Z=0)

NICE (D=0)

Drug (Z=1)

NICE (D=0)

ICE (D=1)

Y(0,0)

Y(1,0)

Y(1,1)

Randomization
(Z=0)

?

Causal
Treatment
Effect

(b) Observed outcomes and counterfactuals, assuming randomization to con-
trol and no intercurrent event

Figure 4.1: Illustration of all paths for a subject in a clinical trial. Y is the final outcome mea-
sured on the subject. Elements on Y are treatment assigment z and intercurrent event status D
respectively. NICE- No Intercurrent Event, ICE -Intercurrent Event.

randomization, and the SUTVA assumptions, we can estimate the average causal treatment effect

∆ directly from observed outcomes in a two-arm clinical trial. Assuming δi = Yi(1)−Yi(0) are

individual level causal treatment effects, the average treatment effect is evaluated as

∆ = E(Y (1)−Y (0))

= E(Y (1))−E(Y (0)) (Independence)

= E(Y (1)|Z = 1)−E(Y (0)|Z = 0) (Randomization)

= E(Y |Z = 1)−E(Y |Z = 0) (SUTVA)

(4.2)

With the potential outcomes framework, the outcomes Y (1) and Y (0) are fixed and consistent

for each subject, hence, the expectations of these outcomes can be expressed independently. If

there are no intercurrent events, then causal treatment effect is straightforward to calculate from

Equation 4.2. On the other hand, the presence of intercurrent events requires further assumptions

on estimating causal treatment effects. Subjects are characterized by strata based on their observed
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treatment assignment, intercurrent event status and their potential intercurrent event under their

alternative treatment assignment. As a result, subjects are considered to emanate from a latent

strata mixture.

4.2.2 Principal Stratification and ICE Predictor Covariates

To model the latent strata mixture, we assume there are associated effects of baseline covariates

on experiencing an intercurrent event. That is, based on the observed baseline covariates (X),

treatment Z, and observed intercurrent event status D, we create a model to obtain the likelihood

(probability or propensity) of experiencing the intercurrent event under the current treatment as-

signment using the latent strata model

πD|Z,X = P(D|X ,Z) = I(Z) · fX(x) (4.3)

where I(Z) is an indicator of treatment assigned taking values 1 or 0 conditioned on the assigned

arm Z. For instance, if a subject is assigned to control, then I(Z) = 1 for control and I(Z) = 0 for

drug. This results in two expression/models corresponding to independent modeling of intercurrent

event for each arm. f (x) is the standard logistic function with covariates X used in modeling the

intercurrent event variable. As a function of covariates, f (x) can be presented as

fX(x) =
exp
(
δI(Z)x

)
1+ exp

(
δI(Z)x

) (4.4)

where δ ’s are the arm specific associated parameters obtained using the logit link such that

logit
(
πD|Z,X

)
= I(Z) ·δδδ I(Z)xxx (4.5)

As a consequence of having the indicator, two independent models are created for modeling

intercurrent event status for each arm. In addition, if the same covariates are used for the two mod-

els, the number of parameters to estimate is therefore doubled. The fitted latent strata models are
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then used to obtain counterfactual posterior predictive probabilities (propensities) of experiencing

an intercurrent event under the alternative assignment.

π̃D|Z,X ,δI(Z∗) = I(Z∗) · fX |δI(Z)
(x) (4.6)

where Z∗ represent the alternative assignment. We refer to the estimates obtained from Equation

4.6 as the posterior predictive counterfactual probability of an intercurrent event under the alterna-

tive assignment. With this approach, all subjects will have the observed intercurrent event status

under their true assignment and the predicted probability of having an intercurrent event under the

alternative assignment. Allocation of subjects to stratum will then be simulated using MCMC and

will be based on these posterior predictive probabilities where a subject’s class follows a categori-

cal distribution. A two-arm RCT with binary intercurrent event status generates four strata (Table

4.1). With observed treatment assignment and intercurrent event status, a subject can only belong

to one of two complementary strata,

S ∈ {s,s∗} 3

 S = s i f πs ≥ πs∗

S = s∗ i f πs < πs∗
(4.7)

Here, s and s∗ are the complementary strata. For example, a subject randomized to control who

doesn’t experience an intercurrent event (D = 0) can only belong to stratum 1 or stratum 2 (Table

4.1). The elements, πs and πs∗ in Equation 4.7 represent the counterfactual posterior predictive

probabilities of belonging to s and s∗ respectively. Therefore, πs∗ = 1−πs.

Table 4.1: Randomization-Intercurrent event strata distribution

Strata
Group Never(S1) AE/Other Event(S2) TS/Efficacy (S3) Always(S4)

Control D = 0 D = 0 D = 1 D = 1
Drug D = 0 D = 1 D = 0 D = 1

AE-Adverse Event, TS-Treatment Switch: D = 0 - No intercurrent event(NICE), D = 1 - Intercurrent event(ICE)

The first stratum, S1, represents subjects who will not experience the intercurrent event regard-
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less of treatment assignment. S2 represents subjects who will experience an intercurrent event if

assigned to the drug but not to the control, whilst S3 are the subjects who will experience the in-

tercurrent event when assigned to the placebo group but not to the drug. Stratum S4 represents

the group of subjects who will always experience the intercurrent event regardless of treatment

assignment. As an illustration, if a subject is randomized to control and doesn’t experience an

intercurrent event, then this subject is considered to be from a mixture of two potential strata, S1 or

S2, depending on the likelihood of experiencing the intercurrent event under the drug assignment.

If the likelihood of experiencing an intercurrent event vs not experiencing the intercurrent event if

assigned to drug is low, then the subject is more likely to be allocated to S1 rather than S2.

The causal treatment effect of interest is then estimated by comparing the effects in the first

stratum, (S1), which contains a homogeneous group of subjects. In addition, an overall weighted

effect of the treatment can also be obtained using the stratum specific effects and model generated

latent strata proportions. However, if intercurrent events result in missing outcomes, as in our case,

the weighted treatment effect is evaluated only from observable stratum outcomes, hence, some

strata (strata 3 & 4 in control, and 2 & 4 in drug) may not be utilized in calculating the weighted

treatment effect. For instance, recognize that if ICE result in missing outcomes, all subjects in

stratum 4 have missing outcomes, hence, estimates of treatment effect in this stratum will highly

be influenced by prior definition.

4.2.3 Estimands

Treatment effects are estimated within each stratum by using an appropriate modeling distribution.

For instance, if dealing with continuous outcome, as in our simulated data scenarios, then we can

model the outcomes in general using a regression model;

Yis = θ0sZ0is +θ1sZ1is +β1Xi1 + · · ·+βqXiq + εs (4.8)
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where θ0s and θ1s are the effects in the control and drug group respectively in stratum s with the

Z’s being a column vector of 1’s and 0’s representing an indicator of treatment assignment. The

causal treatment effect estimand is then obtained from the difference between the estimate of these

two parameters. Here, we define the Causal Average Treatment Effect (CATE) as the estimated

treatment effects in the first stratum (S1):

CAT E = ∆CAT E = ∆̂1 = θ̂11− θ̂01 (4.9)

The subscript in ∆ (i.e. 1) represents stratum 1. The first and second subscript in θ correspond

to treatment assignment and stratum respectively. We also define a Weighted Average Treatment

Effect (WATE) as the overall average effect of the treatment that is evaluated with consideration of

the stratum specific proportions. For this estimand, we only consider using strata with estimable

quantities due to the missingness on ICE status.

WAT E = ∆WAT E = ∆̂W =

(
π̂11

π̂11 + π̂13
θ̂11 +

π̂13

π̂11 + π̂13
θ̂13

)
−
(

π̂01

π̂01 + π̂02
θ̂01 +

π̂02

π̂01 + π̂02
θ̂02

)
(4.10)

where the two subscripts in π represent the treatment assignment and stratum number respectively.

Another standard treatment effect estimand that was calculated for comparison with CATE and

WATE is the Intent-To-Treat (ITT) effect.

IT T = ∆IT T = θ̂1− θ̂0 (4.11)

In the context of ITT strategy, θ1 and θ0 represents the effects in the drug and control arm

respectively regardless of intercurrent events. Using simulations, subject stratum membership, and

hence strata proportions, are known. Similarly, the causal treatment effects values as well as their

weighted causal treatment effects are also known.
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∆c = θ11−θ01

∆w = π1×∆1 +π2×∆2 +π3×∆3 +π4×∆4

(4.12)

4.2.4 Performance Assessment

To assess the performance of the models, we compare the posterior mean square error (MSE) of the

estimators. The posterior MSE in this case measures the average squared deviation of the estimated

value from the true value and is useful in evaluating estimator efficiency. MSE is defined by

MSE{Estimator} = E∆

[(
∆̂−∆

)2
]

(4.13)

Here, the expectation is taken as the average across the number of iterations. From the simulated

data, both the causal effects in the first strata (∆c) and the weighted treatment effect (∆w) are

known. The MSE’s for ITT, CATE and WATE are then calculated using the following functions

MSE-CIT T = E∆c

[
(∆IT T −∆c)

2
]

MSE-WIT T = E∆w

[
(∆IT T −∆w)

2
] (4.14)

For the principal stratification approach,

MSECAT E = E∆c

[
(∆CAT E −∆c)

2
]

MSEWAT E = E∆w

[
(∆WAT E −∆w)

2
] (4.15)

A variant of MSE, Root Mean Square Error (RMSE) of the estimands, is used to visualize the

performance of the estimands.

4.2.5 Motivating Example and Simulation Setup

Data for analysis was simulated based on partial descriptive statistics from a randomized control

trial (Pollom et al., 2019), with various treatment effects of specific sizes imposed to aid in model
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assessment. The distributions for simulating the data are provided in the appendix and are briefly

defined below.

The primary outcome measure in the clinical trial (ELEMENT 5) was the change from baseline

to 24 weeks in Hemoglobin A1c (HbA1c) for adults with type 2 diabetes. This was a prospective

RCT to evaluate the safety and efficacy of the study drug known as LY2963016. Of clinical im-

portance is reduction in HbA1c. All the data used in this study are based on simulation and should

not be interpreted as results from the trial data. We simulated baseline characteristics in accor-

dance with the distribution of the descriptive statistics from the study with some changes applied

to other characteristics (Appendix: Table A.1). Intercurrent event status were then generated using

arm-specific logistic function on baseline characteristics. This was followed by stratum alloca-

tion using the generated intercurrent event status and utilizing the alternative arm-specific logistic

function. The alternative arm-specific logistic function generates counterfactual ICE probabilities.

The parameters in the two logistic functions were chosen such that an approximate predetermined

proportion for the four strata was achieved, which we also wanted to determine whether our mod-

eling approach could recover. The responses (HbA1c) at week 24 were then generated using a

regression function on baseline HbA1c and the specified values of treatment effects in each arm.

Finally, subjects with intercurrent events at the week 24 were assigned missing values (assuming

the intercurrent event precludes observation of HbA1c at week 24). Change in outcome was then

calculated as the difference of response from baseline.

For performance assessment of the estimands, different simulation scenarios on the outcome

(change in HbA1c) were considered in generating the final responses at week 24. We note that

there are a multitude of possible scenarios and we only consider 5 possible scenarios that could

affect treatment effect estimation and inference.

i. Homogeneous treatment effect across the four strata

ii. Heterogeneous treatment effect (a) (underestimated under ITT)

iii. Heterogeneous treatment effect (b) (overestimated under ITT)
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iv. Reversed treatment effect

v. No treatment effect

For the scenario i, this assumes that the treatment effect is similar across the four strata (Figure 4.2).

Here, it is assumed that if all potential outcomes were to be observed, the treatment effect would

have been the same across the 4 strata. scenario ii and iii implies different effects of treatment

depending on the subject’s strata membership. This implies treatment effects are dependent on the

subject’s strata. The same applies to scenario iv, except that it considers other strata as having a

reversed treatment effect. That is, subjects from one stratum will have positive treatment effects

but subjects in other strata have negative effects from the treatment across the four strata. The last

case is a scenario where there are no effects of the drug across the four strata. Table 4.2 shows all

the prespecified values for simulating the five scenarios.

Table 4.2: Treatment effects simulation values

STRATA

Effect Scenario Stratum 1 Stratum 2 Stratum 3 Stratum 4

∆1(θ01,θ11) ∆2(θ02,θ12) ∆3(θ03,θ13) ∆4(θ04,θ14)

i. Homogeneous -1.25 (-0.25, -1.5) -1.25 (-0.25, -1.5) -1.25 (-0.25, -1.5) -1.25 (-0.25, -1.5)

ii. Heterogeneous (a) -1.25 (-0.25, -1.5) -2.90 (-0.10, -3.0) -3.75 (-0.25, -4.0) -0.5 (-0.25, -0.75)

iii. Heterogeneous (b) -1.25 (-0.25, -1.5) -0.25 (-0.50, -0.75) -0.75 (-0.25, -1.0) -0.05 (-0.25, -0.3)

iv. Reversed -1.25 (-0.25, -1.5) -2.50 (1, -1.5) 3.0 (-1.5, 1.5) 0 (1.5, 1.5)

v. No Effect 0 (-0.25, -0.25) 0 (-0.25, -0.25) 0 (-0.25, -0.25) 0 (-0.25, -0.25)
The values are treatment effects (∆S = θ1S−θ0S); and the changes/effects in control and drug in parenthesis

respectively (θ0S - control effect stratum S; θ1S - Drug effect stratum S)

We simulated data for the scenarios in Table 4.2 using different sample sizes; 50, 100, 200,

400, and 1000. Figure 4.2 provides a supplementary visualization of the scenarios using a sample

of size 1000 and without imposing missingness in the subjects who had intercurrent events.

In the homogeneous group (scenario i), note the similarity of trend of boxplots across the four

strata. This implies the treatment effects are the same across the four strata. As for scenario ii,

there exist differences in treatment effects across the four strata with pronounced treatment effects
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Scenario i. Homogeneous treatment effect
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Scenario ii. Heterogeneous treatment effect (b)
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Scenario iv. Reversed treatment effect

●

●

●

Stratum 1 Stratum 2 Stratum 3 Stratum 4

Control Drug Control Drug Control Drug Control Drug

−2

−1

0

1

2

Arm

C
ha

ng
e 

in
 H

bA
1c

Scenario v. No treatment effect

Figure 4.2: Graphical illustration of simulation scenarios

in stratum 2 & 3 as compared to stratum 1 & 4. Visualization for scenario iii, (not shown), is

similar to scenario ii, except with a different type of heterogeneity in treatment effects. As for the

reversed case, we observe an opposite treatment effects for strata 1 & 2 compared to strata 3 & 4.

Finally, the no effect scenario v exhibits cases where responses in controls are similar to responses

in the drug across all four strata.

4.2.6 Bayesian Modeling Framework

We adopt MCMC techniques to estimate all parameters in the model using JAGS version 4.3.0 via

rjags package in R version 3.6.0 (Plummer, 2003, 2019; R Core Team, 2019). The outcome

(change in HbA1c) are modeled using a continuous distribution. HbA1c is regressed on the treat-

ment indicator variables and the baseline HbA1c. In addition, we included baseline covariates in

the model even though, only the baseline HbA1c was used to generate the final HbA1c. Intuitively,
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this is an ANCOVA type model. Our approach entails two main parts, the latent strata and the

response models. The latent strata principal stratification model is defined as follows

D01i ∼ Bernoulli(π01i)

D11i ∼ Bernoulli(π11i)
(4.16)

where i is the subject index, D01 and D11 the observed intercurrent event status in control and drug

respectively, with π01 and π11 their respective probabilities of experiencing an intercurrent event.

The two equations are arm specific and of interest is estimating the attributes π01 and π11 for each

subject. These estimates are obtained from the standard logistic function using two independent

logit link function on baseline covariates

logit (π01i) = δ00 +δ01x01i + · · ·+δ0qx0qi

logit (π11i) = δ10 +δ11x11i + . . .+δ1qx1qi

(4.17)

As discussed previously, the two functions correspond to modeling intercurrent events for each

arm independently, hence the reason for the two-subscript index on the δ parameters as well as

the covariates. These result in treatment specific δ parameters. Covariates used in the model

to simulate the events includes baseline HbA1c (X1), baseline age (X2), disease duration (X3),

and concomitant drug use (X4). We assume these factors can influence a subject’s ICE. During

the data generation process, δ00 and δ10 control the proportions of generated ICE events in the

control and drug arms respectively. As previously discussed, prediction of intercurrent events

under the alternative assignment are calculated using the alternative treatment function and the

model fit parameters. Therefore, all subjects have probabilities of experiencing an ICE under the

alternative assignment. The latent strata membership for each subject i given their true assignment

and observed ICE status is then modeled using a categorical distribution

Si ∼Categorical(π1,π2,π3,π4) (4.18)
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where π’s are based on the counterfactual predictive posterior distribution of experiencing an ICE

using π̂01 and π̂11. During each iteration, some elements of S will be zero due to the fact that given

a subject’s true assignment and observed ICE status, they are considered to come from a mixture

of only two strata.

After subject stratum allocation, the outcomes in each stratum are then modeled using a normal

distribution
Y ∼ Normal

(
µs,σ

2)
µs = ZZZθs +XXXβ

(4.19)

where µs represent the estimated stratum specific means parameterized as a linear function of

covariates. ZZZ is an n× 2 matrix containing indicator elements of treatment assignment; and XXX

represent an n×q matrix of covariates to be adjusted for in the model. σ2 is the associated variance

of the outcome. In all models, diffuse normal priors for the latent strata model parameters δ as well

as the regression parameters θ and β are defined. A noninformative inverse-gamma distribution is

adopted for the variance parameter.

δ ∼ Normal (0,100)

β ∼ Normal (0,100)

σ2 ∼ Inverse-Gamma(0.001,0.001)

(4.20)

For the standard ITT estimation of treatment effects, the model and prior definitions follow

the above specifications except that the intercurrent event status variable and hence the strata are

ignored, otherwise all parameters are estimated in the same way for effective comparison. We

recognize that the Bayesian framework treats missing outcomes in the ITT model as unknown

quantities and are simulated during each iteration using MCMC.

4.3 Results

The posterior mean estimates as well as the 95% credible intervals for the treatment effect esti-

mands (CATE, WATE, ITT) and their performance measures (MSEs) for scenario i are summa-
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rized in Table 4.3. Ideally, the desired estimated values are the causal treatment effects among a

homogeneous group of subjects in stratum 1 (see Table 4.1) and the weighted average treatment

effects across the four strata. The latter would be interpreted as reflecting the average treatment ef-

fects in the general population. In addition, treatment effects using the ITT approach is presented.

Since a single value can only be estimated using ITT approach, we use this value to obtain both

the MSE-CIT T associated with true true causal effect as well as MSE-WIT T associated with the

true weighted treatment effects. MSE-CIT T is useful in assessing the magnitude of deviation be-

tween the estimated ITT and true causal effect among a homogeneous group of subjects. Similarly,

MSE-WIT T reflects the level of deviation between the same ITT estimate with the true weighted

treatment effects.

For scenario i, we assume the same effects of treatment across the four strata, (a difference

of -1.25). From the simulated data, it is apparent that for small sample sizes, the estimate of

the mean treatment effect is considerably farther than the true treatment effect. This is precisely

captured using MSE, where we observe a consistent decrease with increasing sample size for

all the estimands (Figure 4.3). We also observe comparable MSEs at different levels of sample

sizes for all the treatment estimands. However, there is large variation that is associated with

MSE for the CATE estimand as compared to WATE and ITT. It is important to note here that

MSE-CIT T = MSE-WIT T because a single value of ITT is estimated. In addition, this scenario

assumes the same treatment effects across the four strata, hence, the MSE-CIT T and MSE-WIT T

obtained in this scenario is denoted as MSEIT T in the table

In the case of heterogeneity in treatment effects across the four strata, scenario ii, a substantial

difference of estimates of treatment effects is observed for the different treatment effect estimands

(Table 4.4). Firstly, we compare MSEs of CATE and ITT estimators. It is clear here that CATE has

a consistently lower MSE (MSECAT E) as compared to ITT (MSE-CIT T ) for all the sample sizes.

On the other hand, the MSE for the WATE estimate (MSEWAT E) is slightly lower to some degree

as compared to MSE-WIT T . Secondly, from this scenario, we see that the estimates from WATE

and ITT estimands will tend to overestimate the causal effects of the treatment as compared to the
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Table 4.3: Scenario i. Homogeneous treatment effect (∆s = −1.25); Weighted ∆ = −1.25(n =
1000)

Sample Estimator Mean SE 2.5% 50% 97.5%
Size
50 CATE -1.616 0.248 -2.114 -1.614 -1.135

WATE -1.588 0.239 -2.058 -1.588 -1.117
ITT -1.597 0.238 -2.062 -1.599 -1.123
MSECAT E 0.196 0.208 0.001 0.133 0.747
MSEWAT E 0.171 0.183 < 0.001 0.115 0.654
MSEIT T 0.177 0.184 < 0.001 0.123 0.66

100 CATE -1.425 0.206 -1.832 -1.425 -1.022
WATE -1.498 0.191 -1.874 -1.497 -1.123
ITT -1.481 0.192 -1.86 -1.48 -1.102
MSECAT E 0.073 0.095 < 0.001 0.038 0.34
MSEWAT E 0.098 0.108 < 0.001 0.062 0.39
MSEIT T 0.09 0.103 < 0.001 0.055 0.372

200 CATE -1.315 0.179 -1.652 -1.32 -0.951
WATE -1.252 0.129 -1.504 -1.251 -0.998
ITT -1.255 0.131 -1.513 -1.255 -0.998
MSECAT E 0.036 0.05 < 0.001 0.017 0.176
MSEWAT E 0.017 0.024 < 0.001 0.007 0.085
MSEIT T 0.017 0.025 < 0.001 0.008 0.087

400 CATE -1.307 0.126 -1.548 -1.308 -1.058
WATE -1.225 0.085 -1.392 -1.226 -1.059
ITT -1.224 0.088 -1.395 -1.223 -1.053
MSECAT E 0.019 0.026 < 0.001 0.009 0.092
MSEWAT E 0.008 0.011 < 0.001 0.004 0.039
MSEIT T 0.008 0.012 < 0.001 0.004 0.042

1000 CATE -1.246 0.08 -1.397 -1.247 -1.086
WATE -1.272 0.054 -1.38 -1.272 -1.165
ITT -1.271 0.056 -1.381 -1.271 -1.163
MSECAT E 0.006 0.009 < 0.001 0.003 0.032
MSEWAT E 0.003 0.005 < 0.001 0.002 0.018
MSEIT T 0.004 0.005 < 0.001 0.002 0.018

CATE. Both WATE and ITT exhibit an almost identical estimates of treatment effects, except that

WATE estimate shows lower variability than the ITT estimate.

For the other three scenarios, we provide a similar, structured tabular results in the appendix.

In the case of heterogeneous treatment effects in scenario iii, we observe the same trend in per-

formance that is comparable to scenario ii. However, both WATE and ITT estimates of treatment

effect will tend to underestimate the causal treatment effect for this scenario using moderate to

large sample size (Table B.1 - Appendix). With reversed treatment effects across the four strata
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Table 4.4: Scenario ii. Heterogeneous treatment effect (a) (∆1 = −1.25, ∆2 = −2.90, ∆3 =
−3.75, ∆4 =−0.50); Weighted ∆ =−1.654 (n = 1000)

Sample Estimator Mean SE 2.5% 50% 97.5%
Size
50 CATE -2.266 0.351 -2.953 -2.266 -1.574

WATE -2.27 0.348 -2.953 -2.269 -1.583
ITT -2.271 0.346 -2.947 -2.274 -1.583
MSECAT E 1.156 0.735 0.106 1.032 2.899
MSE-CIT T 1.162 0.724 0.112 1.048 2.881
MSEWAT E 0.393 0.405 0.001 0.273 1.451
MSE-WIT T 0.393 0.4 0.001 0.278 1.439

100 CATE -1.528 0.211 -1.944 -1.528 -1.112
WATE -1.63 0.196 -2.016 -1.63 -1.242
ITT -1.607 0.198 -1.998 -1.606 -1.215
MSECAT E 0.122 0.134 < 0.001 0.079 0.481
MSE-CIT T 0.166 0.152 0.001 0.127 0.56
MSEWAT E 0.039 0.057 < 0.001 0.018 0.2
MSE-WIT T 0.039 0.057 < 0.001 0.018 0.204

200 CATE -1.258 0.189 -1.617 -1.264 -0.875
WATE -1.675 0.131 -1.934 -1.675 -1.418
ITT -1.683 0.172 -2.022 -1.683 -1.346
MSECAT E 0.036 0.05 < 0.001 0.017 0.177
MSE-CIT T 0.217 0.155 0.01 0.188 0.597
MSEWAT E 0.032 0.04 < 0.001 0.017 0.142
MSE-WIT T 0.042 0.057 < 0.001 0.02 0.204

400 CATE -1.234 0.114 -1.456 -1.235 -1.009
WATE -1.372 0.087 -1.542 -1.372 -1.2
ITT -1.383 0.096 -1.57 -1.382 -1.196
MSECAT E 0.013 0.019 < 0.001 0.006 0.067
MSE-CIT T 0.027 0.029 < 0.001 0.018 0.102
MSEWAT E 0.097 0.053 0.017 0.089 0.222
MSE-WIT T 0.092 0.057 0.01 0.084 0.226

1000 CATE -1.291 0.08 -1.45 -1.29 -1.137
WATE -1.505 0.055 -1.612 -1.505 -1.398
ITT -1.503 0.063 -1.627 -1.503 -1.381
MSECAT E 0.008 0.011 < 0.001 0.004 0.04
MSE-CIT T 0.068 0.032 0.017 0.064 0.142
MSEWAT E 0.025 0.017 0.002 0.022 0.066
MSE-WIT T 0.027 0.02 0.001 0.023 0.075

(scenario iv) the results from our simulation do not exhibit much deviation when comparing ITT

to CATE as well as ITT to WATE (Table B.2 - Appendix). Similarly, when there are no treatment

effects across the four strata (scenario v) we observe the same trend in terms of estimates as well

as performance (Table B.3 - Appendix). This is comparable to the homogeneity in treatment ef-
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fect as in scenario i. We also present the plots of RMSE for all scenarios (Figure 4.3). RMSE is

calculated as the square root of MSE. There are two factors evaluated by the models: the effect

within the homogenous group of subjects, and the weighted effects from all strata. In all the plots,

CATE is compared to ITTc (from associated causal ITT difference) while WATE is compared to

ITTw (from associated weighted ITT difference). The line type in Figure 4.3 differentiates the pair

of estimands to compare. In all cases, we note the substantial decrease in RMSE with increasing

sample sizes. ITTc (solid red) performs better in both scenario i and v as compared to CATE (solid

black). With increasing sample size, the pattern is consistently lower using the ITT estimand. This

is similarly observed by comparing ITTw (dashed red) to WATE (dashed black). In these two cases,

ITT models benefits from the fact that it is estimating the same parameter with a larger sample size

as compared to the other two estimands. In scenario ii, both CATE and WATE exhibit better per-

formance as compared to estimates obtained from the ITT especially with increasing sample sizes.

In case of scenario iii, we observe large values of RMSE for the ITT model compared to WATE

and this trend is also observed in scenario iv which appears unstable even with increasing sample

size when the treatment effects are reversed.

4.4 Discussion

In this study, we developed a framework of assessing treatment effects for clinical trials that are

prone to intercurrent events. The goal of randomized clinical trial is to obtain the causal effect of

the treatment through randomization hence controlling for potential confounders. However, certain

factors do occur in the course of a clinical trial that precludes observing the outcome of interest

during trial follow up. Using MSE, we have shown that, utilization of principal stratification with

strata predictive covariates to estimate treatment effects demonstrates a better performance than

standard approaches that adopt the ITT strategy specifically when there is presence of heterogene-

ity in treatment effects.

Two simulation scenarios: scenario ii & iii, provide a clear illustration on how causal treatment

effects can be overestimated or underestimated when there are intercurrent events and the standard
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Scenario i. Homogeneous treatment effect
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Scenario ii. Heterogeneous treatment effect (a)
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Scenario iii. Heterogeneous treatment effect (b)
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Scenario iv. Reversed treatment effect
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Scenario v. No treatment effect

Figure 4.3: RMSE plots for estimator comparison: Plots of Root Mean Square Error (RMSE)
for all the scenarios. The lines with same color correspond to the same-type model i.e. ITT or
PS. Comparisons should be performed on similar line type i.e. CATE-Causal Average Treatment
Effect with ITTc-Intent-to-treat causal comparison (Solid black vs solid red): WATE- Weighted
Average Treatment Effect from principal Stratification with ITTw-Intent-to-treat weighted effects
comparison (dashed black vs dashed red). NOTE: Horizontal axis not drawn to scale.

ITT strategy is adopted. For instance, in the heterogeneous treatment effect case we note that the

ITT will overestimate the causal effect of the treatment scenario ii, while the principal stratification
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framework provides a robust way of assessing the treatment effects using two estimands, CATE

and WATE. The CATE yields a lower estimate of treatment effect than ITT that does not overes-

timate the treatment effect. In addition, CATE has a lower RMSE (Figure 4.3). A similar case

but with underestimated treatment effects when using ITT is observed in scenario iii. This will

cause approval of drugs that the risk outweighs their benefits leading to unnecessary harm to more

patients that might not benefit from the treatment. On the other hand, underestimated treatment

effects may result in early clinical trial termination leading to patients who would have benefit-

ted from such drugs being denied of potentially life-saving interventions. Both scenarios warrant

in-depth assessment and this framework provides a complementary means to assess effects of the

treatments that might inform critical decisions. For instance, an overestimated treatment effect is

considerably important for regulatory agencies when making drug approval decisions. In addi-

tion, it could be extremely important for investigators to assess the effectiveness of treatments in

subgroup of patients during late-phase clinical trials or post-marketing of the new drug. On the

other hand, an underestimated treatment effect could be crucial in drug development process for

investigators especially if the threshold of efficacy is not achieved using standard ITT methods.

Compared to the standard ITT strategy, we obtained more precise estimates using a weighted

treatment effects approach in almost all the scenarios. A feature that is lacking using the standard

ITT is the identification of the causal treatment effects if there is heterogeneity in treatment effects

across subjects. Our approach provides a way to establish both the causal effects based on a

predicted homogeneous group of subjects in addition to weighted treatment effects based on the

entire pool of subjects under study. We note that, in the case of the weighted average treatment

effects (WATE), the results can only be obtained using observable strata. That is, if ICE results in

missing outcomes, then effects in stratum 4 will be highly influenced by the prior definition. Non-

informative priors will most likely have undesired effects on this stratum. Therefore, calculation of

the WATE in our approach involved using only those strata with estimable quantities. On the other

hand, cases of intercurrent events that result in non-missing outcomes (e.g. treatment switch or use

of rescue medication) do not affect calculation of the WATE since all quantities will be estimable
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from all strata. What is interesting from our simulation examples is the fact that MSE using a

weighted approach is less than the MSE of the ITT strategy in almost all scenarios (Figure 4.3).

This suggest that using predictive covariates for strata prediction post-randomization is beneficial

in estimation of treatment effects. When the treatment effects are similar across the four strata

(scenario i and scenario v, see Table 4.3 & Table B.3), we observed larger variation in MSE for

CATE estimand as compared to WATE and ITT. This is attributed to the fact that CATE is estimated

with a smaller sample size compared to WATE and ITT.

In designing a new clinical trial based on historical data or real-world-data (RWD) from simi-

lar trials, the latent strata membership model can be useful in defining inclusion/exclusion criteria

where subjects who might potentially experience an intercurrent event are flagged pre-randomization.

This is similarly applicable during screening of participants for the succeeding phases of a clin-

ical trial. Specifically, it ensures the treatment effect is estimated using a homogeneous group

of subjects. During interim analysis for flexible designs like adaptive clinical trial designs, this

framework can prove to be beneficial in facilitating trial modification through efficacy evaluation

and identification of patient population who have the potential of reaping the greatest benefits from

the drugs whilst limiting exposure to harm in patient populations who would not benefit.

The factors included in the latent strata models do not need to have a significant marginal

association with the intercurrent event variable in order to be included in the latent strata models

since their parameter estimates will be shrunk to 0 during MCMC iterations. In addition, for

the two latent strata models, the predictive covariates used to define the two models need not be

identical. That is, one can have different number of predictor covariates in the latent strata for

control arm compared to the treatment arm. Similarly, the variables used to predict strata can be

different from the covariates used in the modeling the actual outcome.

In this study, we do not impose any assumptions of monotonicity or the exclusion restrictions.

We recognize that while these assumptions are regularly considered when using the principal strat-

ification framework (Imbens & Rubin, 1997; Page et al., 2015), they are sometimes hard to test.

In practice, some assumptions regarding monotonicity can be helpful in mitigating issues of iden-
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tifiability (Magnusson et al., 2019). In all simulations, evaluation of performance on estimators

involved comparing the MSE of the estimands between the principal stratification approach and

the standard ITT strategy without imposing any assumptions.

Bayesian analysis require prior definition on parameters. Here, we used non-informative priors,

however, if evidence exists from prior studies or RWD, precision on treatment effects estimates

could benefit from informative prior definition. In our analysis we utilized an overall variance

parameter across the four strata. Other cases might consider different variances for each stratum

but this will result in convergence issues especially when using a vague prior for the variance

parameters in each stratum. In addition, this may result in label switching issues (Malsiner-Walli

et al., 2017). In our model definition, the ANCOVA model is adopted in modeling the outcome

(change in HbA1c) with adjustment for baseline measure (Clifton & Clifton, 2019; Liu et al.,

2009). Given that this is an RCT, the Bayesian approach will shrink the covariate mean effects to

zero if they do not contribute to the response.

Our approach relies on an aggregate of intercurrent events, or in other terms, single type inter-

current event. We recognize this limitation given that there is a finite diverse type of intercurrent

events. Although this limitation is not addressable with our current approach, future work will in-

volve extension of our approach to handle multiple types of intercurrent events simultaneously in

assessing causal treatment effects. In addition, we only considered cases where ICE results in un-

observed outcomes. Other cases may involve observed outcomes even after an intercurrent event,

for example, when subjects use rescue medication or switched treatments. While this approach

can still be used, further assessments needs to be performed to assess the impact on the estimate of

causal treatment effect.

4.5 Conclusion

This approach provides additional benefits of inference beyond the ITT effect since we can get a

better estimate of the true magnitude of treatment effect in addition to the standard ITT effect that

can improve the inference on estimated treatment effect as well as identifying subjects or subgroup
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of population who will benefit from the drug. It also creates a framework to flag subjects who

would not benefit from the drug especially for adaptive clinical trials hence, limiting harm that

may be caused by the treatment. Study drugs that do not show efficacy in trials may be due to

conduct of the trials on non-responders, however, there may be a group of patients that would

benefit from the drug. Therefore, screening for inclusion in the trial can be informed by such an

approach on historical data or RWD investigating similar compounds. This could prove to be of

great benefit in the design and analysis of clinical trials as well as the inference and interpretation

of treatment effect estimates. Although this study is based on simulated data on RCT, it can also

be applied to observational data. Finally, it would be useful to know which subjects would benefit

most from treatments, and our approach could help provide helpful information in regards to drug

efficacy on a subgroup of patients, leading to targeted interventions.
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Chapter 5

Summary and Future Directions

This dissertation work provides a framework for enhanced understanding and evaluation of clinical

outcomes. First, we extended application of a machine learning algorithm (Bayesian Networks)

to model time-to-event data, and second, proposed a new approach for estimating treatment ef-

fects in clinical trials with intercurrent events. These approaches provide a path to understanding

and improving inference in clinical outcomes especially with the evolution in the diversity of data

types collected from patients and the need to gain a better understanding of the structural relation-

ship between variables over time as well as obtaining unbiased estimates of treatment effects in

randomized clinical trials with intercurrent events.

In Chapter 2, we introduced the new approach of analyzing time-to-event data using Bayesian

Networks, which allows for flexibility in structural variable relationships at different periods. The

data is first pre-processed by discretizing survival times into binary outcomes which are then mod-

eled sequentially using Bayesian Networks. This analysis approach is primarily driven by the in-

creasing diversity in data types and the need to understand variable relationships at different time

points. The new analysis framework, survival Bayesian Networks, demonstrated a better or compa-

rable performance as compared to logistic regression for clinical characteristics and the integrated

clinical characteristics and gene expression data. However, this was not the case for all cancer

types where logistic regression exhibited better performance than the survival Bayesian Networks

for integrated data in kidney cancer. This poor performance on kidney cancer was attributed to

overfitting with the inclusion of the selected genes. We provided a sample of the learned networks

for the first time period using integrated data. The flexibility in learning different structural rela-

tionships between variables at different time periods might potentially inform patient care and the

development of targeted therapies. Our method further mitigates challenges associated with pro-

portional hazard assumptions using the standard Cox proportional hazards model. Currently, this

approach requires pre-specification of periodic interval cutoffs for creating periodic binary out-
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comes. However, future research will consider other strategies to identify the time-points to adopt

as interval cutoffs. Also, approaches to prune the network to improve efficiency and accuracy of

modeling and avoid cases of overfitting will be utilized. Another future consideration involves an

extension to model competing risk events (e.g. relapse, remission, death, e.t.c).

In Chapter 3, we provided a review of applications of predictive modeling and their benefits

to clinical trials. Randomized clinical trials are associated with high cost and long durations with

high proportions of failures. In this chapter, we highlighted some aspects of clinical trials that have

benefited or have the potential to benefit from applicability of predictive modeling. Identified areas

encompass stages of clinical trial process from trial design, patient recruitment, trial optimization

to safety and efficacy evaluation.

In Chapter 4, we expanded the principal stratification framework (Frangakis & Rubin, 2002) to

estimate treatment effects in clinical trials having post-randomization/intercurrent events. Clinical

trials are prone to post-randomization events that can have an impact on evaluation and interpreta-

tion of the estimated treatment effects. Intercurrent events e.g. treatment discontinuation or death,

leads to missing outcomes at the end of the trial while other intercurrent events e.g. treatment

switch or use of rescue medication, will have outcomes observed at the end of the trial. Our anal-

yses are based on simulations and we considered cases of missing outcomes after an intercurrent

event. In this chapter, two estimators are presented; Causal Average Treatment Effect (CATE)

and Weighted Average Treatment Effect (WATE). CATE ensures estimation of treatment effects

using a homogeneous group of subjects. WATE, on the other hand, represents an estimation of

overall treatment effects similar to the ITT approach but with the effects adjusted for by estimated

strata specific proportions. These two estimators provide a robust means of estimating treatment

effects or can be used to complement analysis based on the Intent-to-treat (ITT) strategy. For

both CATE and WATE, subjects are stratified based on their observed baseline covariate values,

treatment assignment, observed intercurrent event and their propensity of experiencing an intercur-

rent event under the alternative treatment assignment. Using simulations, both CATE and WATE

demonstrated lowest estimator MSEs, specifically with heterogeneity in treatment effects across
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the strata. When the treatment effect is homogenous across strata, using ITT strategy was better

than using CATE. However, WATE and ITT did not exhibit a difference in performance. Moreover,

WATE had the lowest variability as compared to ITT. In this chapter, we considered a combina-

tion of multiple intercurrent events when defining the intercurrent event variable. Future studies

will look into strategies to address the different types of intercurrent events when estimating the

treatment effects.
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Appendix A: Variable Definitions

Table A.1 shows variable definition, their data generation simulation values and Bayesian MCMC

node representation.

Table A.1: Variable definition and simulation values

Variable Description Data generation distributions Node (Bayesian)
i Unit/subject index
Z Control (z0) 1 : 1 θ0S

Drug (z1) θ1S

X1 Baseline HbA1c N(8.66,1.092) δ1,β1

X2 Baseline age N(58,92) δ2,β2

X3 Disease duration N(12,62): Truncated (1,20) δ3,β3

X4 Baseline BMI N(29,52) δ4,β4

X5 Sex Male = Bern(0.53) δ5,β5

X6 Concomitant drugs Yes = Bern(0.60) δ6,β6

D ICE under control Binary function π01

ICE under drug of X1,X2,X3,X4 π11

S Strata Conditional categorical function πs

of Z,D,X1,X2,X3,X4

Y Change in HbA1c Conditional regression function Outcome
of Z,D,X1
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Appendix B: Other Results Tables
Table B.1: Scenario iii. Heterogeneous treatment effect (b) (∆1 = −1.25, ∆2 = −0.25, ∆3 =
−0.75, ∆4 =−0.05); Weighted ∆ =−1.012 (n = 1000)

Sample Estimator Mean SE 2.5% 50% 97.5%
Size
50 CATE -1.49 0.26 -2.02 -1.483 -0.992

WATE -1.418 0.242 -1.896 -1.416 -0.945
ITT -1.443 0.241 -1.914 -1.445 -0.964
MSECAT E 0.126 0.167 < 0.001 0.063 0.594
MSE-CIT T 0.095 0.126 < 0.001 0.049 0.444
MSEWAT E 0.18 0.191 < 0.001 0.121 0.683
MSE-WIT T 0.197 0.198 0.001 0.142 0.713

100 CATE -1.374 0.211 -1.787 -1.373 -0.96
WATE -1.424 0.196 -1.806 -1.424 -1.039
ITT -1.416 0.195 -1.801 -1.415 -1.031
MSECAT E 0.06 0.084 < 0.001 0.028 0.293
MSE-CIT T 0.066 0.085 < 0.001 0.034 0.304
MSEWAT E 0.231 0.181 0.005 0.193 0.674
MSE-WIT T 0.224 0.177 0.004 0.185 0.666

200 CATE -1.263 0.176 -1.596 -1.268 -0.902
WATE -1.131 0.126 -1.378 -1.131 -0.882
ITT -1.135 0.131 -1.394 -1.135 -0.878
MSECAT E 0.031 0.046 < 0.001 0.014 0.16
MSE-CIT T 0.03 0.039 < 0.001 0.016 0.139
MSEWAT E 0.04 0.045 < 0.001 0.025 0.161
MSE-WIT T 0.042 0.049 < 0.001 0.026 0.175

400 CATE -1.28 0.124 -1.521 -1.28 -1.038
WATE -1.153 0.085 -1.318 -1.152 -0.987
ITT -1.152 0.088 -1.324 -1.151 -0.98
MSECAT E 0.016 0.023 < 0.001 0.007 0.081
MSE-CIT T 0.017 0.021 < 0.001 0.01 0.073
MSEWAT E 0.03 0.028 < 0.001 0.023 0.101
MSE-WIT T 0.03 0.029 < 0.001 0.023 0.104

1000 CATE -1.208 0.079 -1.36 -1.21 -1.051
WATE -1.182 0.055 -1.29 -1.182 -1.073
ITT -1.181 0.057 -1.292 -1.181 -1.07
MSECAT E 0.008 0.011 < 0.001 0.004 0.04
MSE-CIT T 0.008 0.009 < 0.001 0.005 0.032
MSEWAT E 0.032 0.019 0.004 0.029 0.077
MSE-WIT T 0.032 0.02 0.003 0.029 0.079

82



Table B.2: Scenario iv. Reversed treatment effect (∆1 = −1.25, ∆2 = −2.50, ∆3 = 3.00, ∆4 =
0.00); Weighted ∆ =−1.172(n = 1000)

Sample Estimator Mean SE 2.5% 50% 97.5%
Size
50 CATE -0.946 0.327 -1.608 -0.942 -0.315

WATE -0.897 0.313 -1.516 -0.896 -0.279
ITT -0.909 0.311 -1.518 -0.911 -0.288
MSECAT E 0.199 0.248 < 0.001 0.11 0.877
MSE-CIT T 0.214 0.26 < 0.001 0.123 0.925
MSEWAT E 0.098 0.144 < 0.001 0.043 0.508
MSE-WIT T 0.097 0.145 < 0.001 0.043 0.502

100 CATE -1.576 0.235 -2.031 -1.578 -1.105
WATE -1.618 0.215 -2.041 -1.618 -1.195
ITT -1.589 0.247 -2.077 -1.589 -1.102
MSECAT E 0.162 0.17 < 0.001 0.11 0.61
MSE-CIT T 0.176 0.189 < 0.001 0.116 0.683
MSEWAT E 0.149 0.153 < 0.001 0.104 0.553
MSE-WIT T 0.146 0.169 < 0.001 0.088 0.607

200 CATE -1.199 0.202 -1.601 -1.194 -0.816
WATE -0.98 0.141 -1.256 -0.98 -0.701
ITT -0.961 0.173 -1.302 -0.961 -0.623
MSECAT E 0.043 0.058 < 0.001 0.021 0.209
MSE-CIT T 0.113 0.109 0.001 0.084 0.394
MSEWAT E 0.02 0.029 < 0.001 0.009 0.103
MSE-WIT T 0.031 0.045 < 0.001 0.014 0.157

400 CATE -1.275 0.11 -1.497 -1.273 -1.067
WATE -1.322 0.088 -1.495 -1.322 -1.149
ITT -1.294 0.108 -1.505 -1.293 -1.082
MSECAT E 0.013 0.02 < 0.001 0.006 0.066
MSE-CIT T 0.014 0.019 < 0.001 0.006 0.068
MSEWAT E 0.045 0.036 0.001 0.037 0.134
MSE-WIT T 0.039 0.039 < 0.001 0.027 0.142

1000 CATE -1.332 0.069 -1.467 -1.331 -1.2
WATE -1.275 0.056 -1.386 -1.275 -1.164
ITT -1.278 0.072 -1.419 -1.278 -1.138
MSECAT E 0.011 0.013 < 0.001 0.007 0.047
MSE-CIT T 0.006 0.008 < 0.001 0.003 0.03
MSEWAT E 0.014 0.012 < 0.001 0.011 0.046
MSE-WIT T 0.016 0.017 < 0.001 0.011 0.061
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Table B.3: Scenario v. No treatment effect (∆s = 0.00); Weighted ∆ = 0.00(n = 1000)

Sample Estimator Mean SE 2.5% 50% 97.5%
Size
50 CATE -0.365 0.248 -0.859 -0.363 0.117

WATE -0.34 0.238 -0.807 -0.339 0.127
ITT -0.347 0.238 -0.812 -0.349 0.127
MSECAT E 0.195 0.206 0.001 0.133 0.737
MSE-CIT T 0.177 0.184 < 0.001 0.123 0.66
MSEWAT E 0.172 0.182 < 0.001 0.116 0.651
MSE-WIT T 0.177 0.184 < 0.001 0.123 0.66

100 CATE -0.17 0.207 -0.577 -0.17 0.237
WATE -0.246 0.192 -0.623 -0.246 0.131
ITT -0.231 0.192 -0.61 -0.23 0.148
MSECAT E 0.071 0.093 < 0.001 0.036 0.334
MSE-CIT T 0.09 0.103 < 0.001 0.055 0.372
MSEWAT E 0.097 0.108 < 0.001 0.062 0.388
MSE-WIT T 0.09 0.103 < 0.001 0.055 0.372

200 CATE -0.066 0.179 -0.401 -0.072 0.306
WATE -0.002 0.129 -0.253 -0.002 0.251
ITT -0.005 0.131 -0.263 -0.005 0.252
MSECAT E 0.037 0.05 < 0.001 0.017 0.178
MSE-CIT T 0.017 0.025 < 0.001 0.008 0.087
MSEWAT E 0.017 0.024 < 0.001 0.007 0.083
MSE-WIT T 0.017 0.025 < 0.001 0.008 0.087

400 CATE -0.057 0.126 -0.298 -0.058 0.192
WATE 0.025 0.085 -0.142 0.024 0.191
ITT 0.026 0.088 -0.145 0.027 0.197
MSECAT E 0.019 0.026 < 0.001 0.009 0.092
MSE-CIT T 0.008 0.012 < 0.001 0.004 0.042
MSEWAT E 0.008 0.011 < 0.001 0.004 0.039
MSE-WIT T 0.008 0.012 < 0.001 0.004 0.042

1000 CATE 0.005 0.08 -0.147 0.003 0.166
WATE -0.023 0.055 -0.129 -0.022 0.084
ITT -0.021 0.056 -0.131 -0.021 0.087
MSECAT E 0.006 0.009 < 0.001 0.003 0.032
MSE-CIT T 0.004 0.005 < 0.001 0.002 0.018
MSEWAT E 0.003 0.005 < 0.001 0.002 0.017
MSE-WIT T 0.004 0.005 < 0.001 0.002 0.018
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Appendix C: JAGs Code

The JAGs code for the principal stratification with strata predictive covariates is provided.

#===============================================================

# Model Section

#===============================================================

model {

for (i in 1:N)

{

#===============================================================

# RANDOM/COVARIATE PREDICTION OF LATENT STRATA

#===============================================================

# P01 is probability of event in control group

# P01 (in Rx) are counterfactual predicted probabilities of event under treatment

# P11 is probability of event in treatment group

# P11 (in Rx) are counterfactual predicted probabilities of event under control

Dz0[i] ~ dbern(p01[i])

logit(p01[i]) <- delta0[1]*step(z0[i]-1) + delta1[1]*X1[i]*step(z0[i]-1) + delta2[1]*X2[i

]*step(z0[i]-1) + delta3[1]*X3[i]*step(z0[i]-1) + delta5[1]*X5[i]*step(z0[i]-1)

Dz1[i] ~ dbern(p11[i])

logit(p11[i]) <- delta0[2]*step(z1[i]-1) + delta1[2]*X1[i]*step(z1[i]-1) + delta2[2]*X2[i

]*step(z1[i]-1) + delta3[2]*X3[i]*step(z1[i]-1) + delta5[2]*X5[i]*step(z1[i]-1)

# Counterfactual posterior predictive values on the control for those on the treatment

p1z0.ppred[i] <- 1/(1+exp(-(delta0[1] + delta1[1]*X1[i] + delta2[1]*X2[i] + delta3[1]*X3[

i] + delta5[1]*X5[i])))
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# Counterfactual posterior predictive values on the treatment for those on the control

p1z1.ppred[i] <- 1/(1+exp(-(delta0[2] + delta1[2]*X1[i] + delta2[2]*X2[i] + delta3[2]*X3[

i] + delta5[2]*X5[i])))

p[i,1] <- (1-p1z1.ppred[i])*(1-D[i])*(1-Z[i]) + (1-p1z0.ppred[i])*(1-D[i])*(Z[i])

p[i,2] <- (p1z1.ppred[i])*(1-D[i])*(1-Z[i]) + (1-p1z0.ppred[i])*(D[i])*(Z[i])

p[i,3] <- (1-p1z1.ppred[i])*(D[i])*(1-Z[i]) + (p1z0.ppred[i])*(1-D[i])*(Z[i])

p[i,4] <- (p1z1.ppred[i])*(D[i])*(1-Z[i]) + (p1z0.ppred[i])*(D[i])*(Z[i])

S[i] ~ dcat(p[i,1:4])

#==============================================================

# MODELING OUTCOME IN EACH STRATUM

#==============================================================

# Assumes same variance across all strata

Y[i] ~ dnorm(mu[i], prec)

# Assumes same effects of covariate on outcomes across the four strata

mu[i] <- theta0[S[i]]*z0[i]+theta1[S[i]]*z1[i] + beta1*X1[i] + beta2*X2[i]+ beta3*X3[i]+

beta4*X4[i] +beta5*X5[i]

}

#==============================================================

# PRIORS

#==============================================================

###############################################################

# Define prior for within strata regression parameters

###############################################################

# Treatment effect priors

#-------------------------------------------------

for (r in 1:4) {

theta0[r] ~ dnorm(0, 1.0e-4)

theta1[r] ~ dnorm(0, 1.0e-4)

}
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# Non-informative prior for precision

prec ~ dgamma(0.001, 0.001)

sigma <- 1/sqrt(prec)

# Latent strata predictor parameter priors

#------------------------------------------

for (d in 1:2) {

delta0[d] ~ dnorm(0, 1.0e-4)

delta1[d] ~ dnorm(0, 1.0e-4)

delta2[d] ~ dnorm(0, 1.0e-4)

delta3[d] ~ dnorm(0, 1.0e-4)

delta5[d] ~ dnorm(0, 1.0e-4)

}

# Priors for regression parameters

#------------------------------------------

beta1 ~ dnorm(0, 1.0e-4)

beta2 ~ dnorm(0, 1.0e-4)

beta3 ~ dnorm(0, 1.0e-4)

beta4 ~ dnorm(0, 1.0e-4)

beta5 ~ dnorm(0, 1.0e-4)

#===============================================================

# CALCULATED QUANTITIES

#===============================================================

# Estimate of treatment effect in each strata as a difference between drug and placebo

for(ITTS in 1:4){

trt_diff[ITTS] <- theta1[ITTS] - theta0[ITTS]

}
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# Estimated strata proportions based on latent membership assignment.

for(pr in 1:4){

prp.strata[pr] <- mean(equals(S, pr))

}

# Estimated proportions by treatment group and strata

for(tr in 1:2){

for (st in 1:4){

prop.ZS[tr, st] <- mean(equals(Z,(tr-1)) && equals(S,st))

}

}

#==============================================================

# CALCULATED QUANTITIES

# Both CATE and WATE are known quantities from simulation

#==============================================================

# PERFOMANCE ASSESSMENT METRICS

# Causal Average Treatment Effect (Stratum 1)

# Mean Square Error (MSE)

MSEc <- pow((trt_diff[1] - CATE), 2)

# Weighted Causal Average Treatment Effect (Stratum 1, 2, 3) : This is due to the imposed

missingness after ICE

W.CATE <- ((((theta1[1]*prop.ZS[2,1])/(prop.ZS[2,1] + prop.ZS[2,3]))+ ((theta1[3]*prop.ZS

[2,3])/(prop.ZS[2,1] + prop.ZS[2,3]))) -

(((theta0[1]*prop.ZS[1,1])/(prop.ZS[1,1] + prop.ZS[1,2]))+ ((theta0[2]*prop.ZS[1,2])/(

prop.ZS[1,1] + prop.ZS[1,2]))))

MSEw <- pow((W.CATE - WATE), 2)

}
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#============================================================

# OTHER SUPPLEMENTARY ELEMENTS OF THE CODE

# Assuming real or simulated data with the following variables

#============================================================

# Y Continuous outcomes: Simulated change in HbA1C from baseline

# Z Randomization

# D Intercurrent event status

# X1 Baseline HbA1C

# X2 Baseline Age

# X3 Baseline Disease Duration

# X4 Sex

# X5 Race

# N Sample Size

# Other generated variables

z0 <- ifelse(Z==0, 1, 0) # Indicator variable of control assignment =1 if control, 0

otherwise

z1 <- ifelse(Z==1, 1, 0) # Indicator variable of treatment assignment =1 if treatment, 0

otherwise

Dz0 <- ifelse(Z==0, D, NA) # Indicator variable of ICE under control; =1 if control, 0

otherwise

Dz1 <- ifelse(Z==1, D, NA) # Indicator variable of ICE under treatment; =1 if control, 0

otherwise

S <- c(rep(NA,N)) # Assign missing strata for all subjects

#==========================================================

# TRUE Values of treatment effects

#==========================================================

# Empirical==TRUE implies the true effects estimated from the data

# betaxmat: Matrix with simulation values; treatment and covariate effects

# mn_sk_zt: Calculated empirical mean of outcomes stratum k, treatment t
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# Observed Weighted Average Treatment Effect

CATE <- ifelse(empirical==TRUE, mn_s1_z1 - mn_s1_z0, betaxmat[1,2] - betaxmat[1,1])

WATE <- ifelse(empirical==TRUE,

sum(c(p1*(mn_s1_z1 - mn_s1_z0), p2*(mn_s2_z1 - mn_s2_z0),

p3*(mn_s3_z1 - mn_s3_z0), p4*(mn_s4_z1 - mn_s4_z0)), na.rm = TRUE),

sum(c(p1*(betaxmat[1,2] - betaxmat[1,1]), p2*(betaxmat[2,2] - betaxmat[2,1]),p3*(

betaxmat[3,2] - betaxmat[3,1]), p4*(betaxmat[4,2] - betaxmat[4,1])), na.rm =

TRUE))

#======================================================

# Define list in standard mode used in the model

model.data <- list("Y", "Z", "z0", "z1", "D", "Dz0", "Dz1",

"X1", "X2", "X3", "X4", "X5", "N", "S", "CATE", "WATE")

# INITIAL VALUES######################################

# Initializing parameter values

init.val <- function()

{

list( theta0=rnorm(4, 0, 2),

theta1=rnorm(4, 0, 2),

beta1=rnorm(1, 0, 2),

beta2=rnorm(1, 0, 2),

beta3=rnorm(1, 0, 2),

beta4=rnorm(1, 0, 2),

beta5=rnorm(1, 0, 2),

prec = 1)

}
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# Compile and output results based on predefined functions and values

output <- jags(data = model.data,

inits = init.val,

parameters.to.save = parameters,

model.file = modfile,

n.chains = n.chains,

n.iter = n.iter,

n.burnin = n.burn.in,

jags.seed = jagseed,

n.thin = nthin )
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