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1 Introduction and Overview

Since 2001 the US military has been involved in operations in Iraq, Afghanistan, Somalia,

and Libya. These conflicts are not conventional wars where armies fight each other with tanks

and artillery, they are fought against insurgents with roadside bombs using guerilla tactics and

propaganda campaigns. The US Army is increasingly involved in small conflicts against

asymmetric foes that hide amongst the populace to protect themselves from the devastating

weaponry of the US military. In order to effectively operate in these conflicts it is crucial for US

forces to build ties with the people and win their support in order to deny the enemy the ability to

hide amongst the populace.

A difficult question often faced by US Army commanders is how to optimally influence the

populace. One of the major techniques used by Army commanders in Iraq and Afghanistan has

been key leader engagement, where US forces regularly meet with local leadership to help them

address their problems and win the support of the leader's constituents. One of the toughest

questions that US commanders must answer is deciding which key leaders to engage. It is often

unclear what impact talking to a leader may have. US forces do not have the time or resources to

engage every leader available to them. Understanding the second and third order effects of

talking to different leaders, and understanding which ones will lead to more effective influence

in the populace is critical to ensure that US forces win the support of the populace. The problem

motivation and further background is discussed in Chapter 2.

In this thesis a game theoretic approach is used to address the problem of choosing which

key leaders to engage. To represent the social network we use a model initially formulated by

Acemoglu et al[l] and expanded by Hung[2] in his thesis. The model is a discrete-time agent

based model. Each agent has a scalar belief and interacts stochastically pairwise with their

neighbors according to a set of influence parameters that are in input to the model. Agents in the

model have different levels of influence, and there are also stubborn agents, which have extreme

beliefs, and never change this belief. In our context stubborn agents represent the Taliban and US

forces in the network. Both try to influence the rest of the network to adopt their extreme beliefs.

These stubborn agents also wield the most influence in the network. The presence of stubborn

agents and the stochastic interactions lead to the beliefs of the non-stubborn (mutable) agents



being a random variable. Thus the mutable agent's beliefs do not converge to any specific set of

beliefs. However, their beliefs do converge in expectation asymptotically, and this property is

used to analyze the state of the network at some sufficiently large time in the future. This set of

equilibrium beliefs turns out to be independent of the initial state of the network, and depends

only on the influence parameters and topology of the network. The social networking model is

discussed in greater detail in Sections 3.2 and 3.3.

On top of this social network architecture we formulate a perfect information symmetric two

player game where a US player and Taliban player each try to find optimal strategies for

influencing social networks. Strategies are defined as the choice of where to connect their

stubborn agents to the rest of the network. The players want to connect their stubborn agents to

the most influential agents in the networks, but finding the most influential agent is not always

an easy task. We define a set of two payoff functions of the equilibrium beliefs of the network

and then find the pure Nash equilibria using combinations of these payoff functions. The game

and its payoff functions are defined in Section 3.4.

The game has pure Nash equilibria in all test networks used (see Section 4.1). These initial

test cases give each player only one strategy choice (each player has one stubborn agent that can

connect to only one agent in the network), and all of the equilibria are found by explicitly

calculating the entire payoff matrix. However, if players have more than one strategy choice (if

they can influence more than one agent at a time by creating multiple connections from their

stubborn agents to the rest of the network), the strategy space increases exponentially, and the

payoff matrix becomes difficult to enumerate.

To solve this problem a simulated annealing heuristic is used to conduct best response

dynamics to search through the payoff matrices without fully enumerating them. The heuristic is

defined in Section 3.5. This approach allows optimal best response strategies and pure Nash

equilibria to be found in large networks with multiple connections allowed per player. The

method also finds better strategies than Hung was able to find using the Knitro solver on a math

program he formulated. It also finds better strategies than an experienced US Army officer who

has dealt with this problem many times in combat solving this problem using US Army targeting

doctrine. The simulated annealing heuristic is shown through experimentation to be able to find

pure Nash equilibrium strategy profiles in a network of up to 519 agents, with each player



making 6 connections to the network (resulting in 51912 possible strategy profiles) in a few hours

(Matlab was used to implement the heuristic - faster times may be possible if it were

implemented in a faster programming environment like Java or C++). The experimental results

are shown in Sections 4.3 and 4.5.

Sensitivity analysis conducted in Section 4.4 also shows that the model is robust to changes

in the influence parameters than affect how agents interact. Significant changes in these

influence parameters do not change the pure Nash equilibria in many cases.

In the real world players often want to choose strategies with low variability. Especially

when considering the problem of insurgencies, the stakes of losing the support of the populace

are extremely high for both the US forces and the Taliban, and both players would like to be able

to minimize the variance their strategies create in the beliefs of the network. Different strategy

profiles used in influencing the network not only change the equilibrium beliefs, but also change

the variance of the random variables corresponding to each agent's belief. In this thesis a

potential candidate for characterizing the variance of the mean belief of the mutable agents is

analyzed, but unfortunately does not work for our model (see Section 3.3 for a definition of the

method and Section 4.2 for experimental results). However, in Section 4.5 we analyze a scenario

based on real world experience that shows that if players have different objectives in influencing

the network, pure Nash equilibria with low variance can be naturally achieved.

One weakness of the approach outlined here is that the state of the social network is only

analyzed at equilibrium, which is independent of any transient state of the network. This means

that players formulate strategies based without regard to the current beliefs of the network. This

was done in order to make the problem tractable for our analysis methods because when players

consider the current state of the network, the payoff matrix becomes exponentially large as the

size of the network increases. This assumption makes the solutions less realistic than we would

like, because in the real world US military forces and insurgents both care what people's current

beliefs are when determining how to influence the populace.

Counterinsurgencies are not the only area where opposing sides are trying to influence social

networks. Competing companies vying for customers both try to influence customers through

advertising campaigns. Political candidates influencing voters are another natural example of

players working against each other while influencing a social network. These are just two simple



examples of the many social networks in the world that the game theoretic approach to

influencing social networks can be applied to find optimal strategies.
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2 - Identifying Key Influencers to Win Popular Support in
Counterinsurgency

As of May 2011, the US is currently involved in major military campaigns in Iraq,

Afghanistan, and Libya. The aim of these operations is to establish functional democratic

societies. Prior to these conflicts the US military was involved in lengthy peacekeeping and

counterinsurgency operations in Haiti, Somalia, Bosnia, Macedonia, and Kosovo. As the US

military looks to the future, it expects to continue to operate in these types of conflicts. In 2010

the United State Department of Defense conducted it's quadrennial defense review (QDR),

discussing its planning priorities and expectations for the future. In this report they said the

following:

... the U.S. Armed Forces will continue to require capabilities to create a secure
environment in fragile states in support of local authorities and, if necessary, to support civil
authorities in providing essential government services, restoring emergency infrastructure, and
supplying humanitarian relief... Nor are these types of operations a transitory or anomalous
phenomenon in the security landscape. On the contrary, we must expect that for the indefinite
future, violent extremist groups, with or without state sponsorship, will continue to foment
instability and challenge U.S. and allied interests.

Excerpt from the 2010 Quadrennial Defense Review[3]

For the US military to operate successfully in its missions, it will need to continue to

improve and hone its counterinsurgency and peacekeeping skills.

2.1 - Insurgencies and Counterinsurgencies

The US Army defines an insurgency as "...an organized, protracted politico-military

struggle designed to weaken the control and legitimacy of an established government, occupying

power, or other political authority while increasing insurgent control[4]." Insurgents attempt to

overthrow the government or existing power in many ways. When they conduct attacks against

the government or civilians, the insurgents demonstrate their own strength while highlighting the

inability of the government to maintain control. Insurgents also cause disruptions through

aggressive information operations and propaganda campaigns to de-legitimize the government



and spread their own ideology. Both of these are dimensions to how insurgents work to influence

the population to gain popular support in their efforts to overthrow the government.

The US Army defines counterinsurgency as "...military, paramilitary, political, economic,

psychological, and civic actions taken by a government to defeat insurgency [4]."

Counterinsurgencies are undertaken by existing government forces or sometimes foreign soldiers

to assist an ailing regime (as in the case of all US counterinsurgencies). Counterinsurgents try to

simultaneously destroy the insurgents (literally and figuratively), while maintaining support

among the populace. Their methods include traditional military tactics against insurgent

strongholds such as bombings, artillery strikes, and raids. However, this also includes various

public outreach efforts. A critical objective the counterinsurgent must achieve is to protect the

people from the insurgent's attacks. The counterinsurgency can only be won with the support of

the people, and not through killing insurgents alone[4].

2.2 - Popular Support in Insurgencies and Counterinsurgencies

In his book The Logic of Violence in Civil War, Kalyvas[5] defines popular support as either

1) a confluence of attitudes, preferences, and allegiances, or 2) a set of observable behaviors

(attitudes and actions). Although these two sound similar, Kalyvas' research has shown that they

are not the same. People with attitudes supporting an insurgency may not be willing to openly

support them, and thus there are no observable behaviors. However, he does state that attitudes

affect behaviors, and are thus targeted by both the insurgent and counterinsurgent.

For our analysis we subscribe to this idea that insurgents and counterinsurgents focus on

changing people's attitudes, understanding that it may not lead immediately to action on the part

of the individuals. However, the more that the population's attitudes support one side or the

other, the more likely we are to see actions in terms of giving support and aid to one side or the

other.

The methods that each side employs to win popular support can differ significantly. For

insurgents, leaving threatening letters on doorsteps at night (night letters) are an easy way to

intimidate people. Killings and assassinations against pro-government figures can be used to

intimidate a populace that is not responding to propaganda or night letters. Spectacular attacks

are effective at making evening headlines around the world and demonstrating the impotence of



the government. As they gain control of areas, insurgents set up local governments to provide

rule of law and basic services to the populace, showcasing the insurgents' ability to hold de facto

control over the country.

Counterinsurgents use targeted operations against insurgents strongholds to degrade their

ability to conduct operations. In addition to military operations, the counterinsurgent focuses on

maintaining the support of the populace, and often undertakes activities to increase the quality of

life in key areas. For example, increasing access to water or roads in insurgent strongholds can

serve to win the populace's support back to the government.

To develop public support, both sides rely on direct contact with local leaders. In

Afghanistan, Iraq, and other tribal societies, there are often tribal power structures operating

outside of traditional government. In these tribal societies, millions of dollars used to build a new

road may not be as effective at winning support as simply having tea and engaging with local

elders over the course of a few months[6]. Consequently, the insurgent and counterinsurgent

both focus heavily on identifying and influencing these key individuals.

Identifying the key influencers in the communities can be a difficult task, but lessons learned

by the US Army in Iraq and Afghanistan help to address this. In tribal societies, most of the key

people who wield power are well known among the populace. Consequently, focused patrols

asking the right questions of several people in an area can usually determine who the power

brokers are. Specifically, the Tactical Conflict Assessment Framework (TCAF) developed by the

United States Agency for International Development (USAID) was implemented with success in

Iraq and Afghanistan. TCAF consists of a series of questions used by patrolling soldiers to

determine the needs and desires of the local populace are. (Appendix F contains a TCAF

questionnaire). Given knowledge of the structure of the society and its key influencers, a

significant problem still remains for both the insurgent and counterinsurgent. Who amongst the

key influencers should be targeted? In the US Army, this analysis is referred to as non-lethal

targeting.



2.3 - US Army Non-Lethal Targeting

The Army's methods for targeting local leaders have grown primarily from experience. In

the US Army's two primary manuals on counterinsurgencyl, several pages cover how to set up a

"targeting group", along with guidance as to what they should produce and their focus should be.

At the company level in the Army the targeting group generally consists of the company Fire

Support Officer, the Executive Officer, and the senior intelligence analyst. The Army states that

the purpose of the targeting group is to "prioritize targets and determine the means of engaging

them that best supports the commander's intent and operation plan. The focus of the targeting

cell, in a counterinsurgency environment, is to target people, both the insurgents and the

population. [7]" However, there is a lack of content on how they should go about selecting

targets. In more than 200 pages of doctrine, the two primary field manuals on counterinsurgency

for the Army (FM 3-24[4] and FM 3-24.2[7]) states only the following:

* Identify leaders who influence the people at the local, regional, and national levels.
* Win over passive or neutral people.
* Non-lethal targets include people like community leaders and those insurgents who

should be engaged through outreach, negotiation, meetings, and other interaction.
* Meetings conducted by leaders with key communicators, civilian leaders, or others whose

perceptions, decisions, and actions will affect mission accomplishment can be critical to
mission success.

* Start easy... Don't try to crack the hardest nut first-don't go straight for the main
insurgent stronghold, try to provoke a decisive showdown, or focus efforts on villages
that support the insurgents. Instead, start from secure areas and work gradually outwards.

Do this by extending your influence through the locals' own networks.

These two manuals combined spend more than 30 pages on targeting without discussing

specifically how a unit should determine which local leaders to target. This is partly because

targeting involves many local variables that are difficult to encapsulate in a manual. Cultural

aspects and local history can have an enormous impact on power structures. Identifying these

facts and determining not only who should be influenced, but also how this will impact society

as a whole can be extremely difficult to predict.

Although doctrine explains that this analysis to identify influencers should be conducted,

and warns about the difficulties of the task, it provides little concrete guidance or tools to aid the

commander and staff in planning operations. How well a unit performs its non-lethal targeting is

Field Manual 3-24: Counterinsurgency, and Field Manual 3-24.2: Tactics in Counterinsurgency
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based largely on the experience and talents of the individuals performing both the targeting and

analysis.

Most of the information leading to non-lethal targeting comes from patrols. The reason is

that soldiers and leaders on patrols routinely ask questions to better understand the local culture,

community structure, and environment. As a unit's understanding of the environment grows, it

hears certain names repeated many times, indicating these individuals are local power brokers.

However, simply because someone has power does not indicate that they should be targeted. To

illustrate this, we give a short example from the author's experience.

While serving as a company commander in Afghanistan in 2008, one of our lieutenants
found out that there was a person with a small militia that was exercising control over a very
unstable part of our area of operations. The area had been one of the most violent in our
area, and then suddenly quieted down one day. We learned that this militia commander had
personally interceded and killed several opposing tribal elders. We then also learned that the
militia commander had been a mujahedeen commander in the Soviet-Afghan jihad, and
owned several heavy weapons and anti-tank rockets, which are illegal to own in
Afghanistan. It was troubling to learn that a well armed and trained militia force had been in
our area of operations without our knowledge. We considered disarming them, but also
thought about conducting an outreach to this very well armed and potentially dangerous
individual to try to build ties with someone who had become a clear power broker in our
area. After much deliberation and consideration, we decided that disarming him may simply
lead to counterattacks, renewing the cycle of violence. We also decided not to engage him
simply because we were uncertain of the tribal dynamics, and we didn't want to be seen as
supporting him. We also did not know if we began to support him whether it might
embolden him, or upset the tribes he had attacked. The resolution we came to was to simply
wait and watch this commander and be happy the violence had stopped in the area. Whether
this was the best decision is still unknown.

In addition to the difficulties in analyzing each person that a unit may want to target, US

Army forces are quite constrained in their ability to conduct influencing operations. This stems

from two issues: the low density of US troops in Afghanistan, and the requirement for troops to

move in large groups for security. In Afghanistan it is not uncommon for a single infantry

company of 140 soldiers to have an area of operations nearly 50% the size of Rhode Island

(around 1500 square km), with anywhere from 60,000 to 100,000 Afghan citizens. Although the

company has over a hundred soldiers, each patrol takes 20 or more soldiers. Additionally, the

company must guard their bases, cook its food, fix its vehicles, and run an operations center. As

a result, the company can sustain at most three patrols a day. The company has multiple

requirements like escorting logistics convoys, visiting ongoing projects, delivering humanitarian



assistance, and conducting maintenance each week. These may easily can consume half of a

company's patrol capacity, leaving only a few missions for engaging local leaders. As a

company commander in Afghanistan we could make at most three meetings with sub-governors

(government leader for a district) or tribal elders each week. Each of our three lieutenants may

have been able to make another two engagements each week. This means that for a company of

over a hundred people, only about 10 local Afghans out of a population of tens of thousands

spread over more than a thousand square kilometers can be regularly engaged and influenced.

This constraint means that focusing on influencing the right people is critical to mission success.

The goal of this thesis is to develop a more refined model for the populace of a rural Afghan

district, and develop decision aid tools to help commanders decide their non-lethal targets.

Specifically it seeks to examine the 2 nd and 3rd order effects of targeting one key individual over

another, as well as the impact on the population's attitudes over time. If we had chosen to

influence the militia commander in our area of Afghanistan, what might have happened? If I had

a better understanding of the tribal dynamics at play there, then using the tools developed here I

could have conducted an analysis to help decide whether engaging him, arresting him, or

ignoring him would be the best solution. What might I have been able to accomplish with better

analysis tools?
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3- Modeling Approach and Formulation

Chapter 3 begins with an overview of previous work done in modeling societal beliefs. Next

we discuss our model developed by Hung and Acemoglu et al. We then discuss analysis methods

for determining expected belief propagation in the stochastic network, and discuss a potential

method for characterizing the variance in the network's average belief over time. Finally we look

at formulating a two player game on the network, in which the Taliban insurgents and the US

forces are both trying to optimally influence the beliefs of the populace modeled by the network.

3.1 - Previous Work

Before discussing our methods we look at previous work done in the field leading to the

development of our model.

3.1.1 - Social Science Literature on Opinion Leaders and Influential people

Katz and Lazerfeld[8] first hypothesized in 1955 that small numbers of influential opinion

leaders play critical roles in determining societal consensus and public opinion. They stated that

these key individuals wield significant influence over the people around them. Information from

mass media and other external sources are filtered, dampened, and modified by these opinion

leaders within the social network. They developed a 'two-step' model explaining the diffusion of

messages from mass media through these opinion leaders to the general public. This model

helped explain why some media campaigns did not affect all groups in the same way, and raised

the idea of focusing media campaigns on opinion leaders to influence the rest of the populace.

They also said that these opinion leaders are not necessarily public figures or traditional

hierarchical leaders, but are often less visible individuals (like family members, co-workers, or

neighbors).

Many people have since offered improvements to Katz and Lazerfeld's model to increase its

utility, suggesting ways to help identify these opinion leaders in society. Weimann[9] postulated

a new method for identifying the opinion leaders in society, saying that leaders tend to be in

higher social strata than non-influential people. His research indicated that influence should be

measured on a scale, as people cannot simply be categorized as 'influential' or 'non-influential'.

Emerson[ 10] thought that although people with 'legitimate' authority exist in society, their



power is not the key variable but rather their relationship with others. It is these connections

between people that indicate how powerful an opinion leader is, and thus the amount of influence

they wield differs with each of their neighbors. For example, a CEO of a major corporation has a

lot of influence over their workers, but the CEO may have little sway in changing their own

parents' minds. Lazer[ 11] observed that because people tend to associate with others like

themselves, they form self-organizing networks consisting of like-minded people in closely

connected communities, rather than waiting passively for other people to influence them.

3.1.2 - Opinion Dynamics Literature

While social scientists have formulated models for individual interactions and general

processes for how groups reach consensus, other researchers have formulated mathematical tools

for analyzing groups and beliefs. In 1964 Abelson[ 12] formulated a simple network model where

interactions occur pairwise between all adjacent agents in the network. The result of each

interaction is a function of the two individual's beliefs and each person's persuasiveness. These

relationships are formulated as a series of differential equations whose solution yields a set of

equilibrium beliefs (or societal consensus). He also identified a problem that these types of

models have - over time they always lead to a consensus in belief which is not generally true in

the real world. Degroot[ 13] later formulated a similar model using Markov chains in which each

individual gives different weights to the opinions of their neighbors. Using Markov chain theory,

the steady state probabilities of each individual's belief can be calculated (assuming the Markov

chain is recurrent and aperiodic)[14]. Similar to Abelson, DeGroot's model leads to a consensus

in belief where all individuals have identical beliefs. To address this problem in existing models,

Friedkin and Johnson[ 15] created their theory of social influence which uses a system of linear

equations to model how equilibrium is reached, but beliefs among actors are not necessarily

identical in this equilibrium. Another model with non-consensus beliefs was given by Deffuant et

al[ 16]. They proposed a model of confidence intervals for each agent in the network, wherein

some agents have uncertain beliefs, and others are very certain in their beliefs. He studied the

mixing of these beliefs and the establishment of equilibrium in the network. Later Deffuant

extended the model by analyzing the effect of extreme agents, whose beliefs are completely

certain and thus rarely change. He showed that depending on the network parameters and

structure, extremists can have a polarizing effect on networks.



3.1.3 - Development of Our Model

More recently, Acemoglu et al[1] have proposed a stochastic agent-based model for

analyzing dynamics beliefs in a network. Their model includes 'normal' and 'forceful' agents.

Interactions between neighboring agents occur pairwise randomly according to a series of

parameters, with forceful agents more likely to spread their beliefs than other agents. The belief

of each agent is a random variable, but the beliefs of agents in the network eventually converge

to a convex combination of the initial belief states. Acemoglu et al developed methods for

characterizing the expectation of this set of beliefs that all agents converge to. Hung[2] made

modifications to the model to include a set of 'very forceful' agents (who are even more likely to

spread their beliefs than forceful agents), and a set of 'stubborn' agents each of whose beliefs

never change. These stubborn agents also act as the most forceful types of agents in the model,

propagating their beliefs throughout the network. In his model, the beliefs of agents are still a

random variable, but they never converge to a single value due to the presence of 'stubborn'

agents. Using the tools developed by Acemoglu et al, Hung showed that the random variables for

each agent's belief have a well-defined first moment. Furthermore this first moment converges to

an equilibrium value over time (meaning the expected state of each agent's belief converges to a

fixed value over time). Finally, although the actual beliefs of agents in simulation don't converge

to a fixed value (they converge only in expectation), beliefs do converge to a type of stochastic

equilibrium in which the average of all agent beliefs oscillates around the expectation. Recently,

Yildiz et al[17] showed that the variance of this oscillation around the expected mean belief can

be tightly bounded in a model that has only binary beliefs. In Chapter 4 we conduct

experimentation that shows this bound unfortunately has limited utility in our continuous belief

model, as it fails to consistently predict the actual standard deviation in our model.

Hung's model maintains key features of Acemoglu et al's model and addresses several key

limitations of previous social network models. First - the model uses the standard concept of

pairwise interaction from the successful social science models. Second - the beliefs of agents do

not converge to a set of fixed beliefs due to the model's randomness, which provides for more

realism than many previous models. Third - although individual beliefs don't converge to a fixed

value, they do converge in expectation, which allows us to analyze the expected spread of beliefs

from stubborn agents to the general populace.



Beyond development of this social networking model, Hung's thesis makes two other

important contributions. Hung created a network generator tool, which takes a series of simple

inputs to generate homophilly based networks that resemble real tribal social networks in

Afghanistan. The tool was the product of a significant amount of research in collaboration with

the MIT Political Science Department, and will be used in this thesis to help rapidly create

realistic Pashtun tribal networks for testing and analysis.

Hung also considered a network in which stubborn agents are attempting to maximally

influence the network, and formulated a mathematical program to find an optimal strategy

representing the connections that stubborn agents should make within the network to best

influence people. This is a non-linear, non-convex, and mixed integer formulation. The solver

used (Knitro) returned local optima even with significantly long run times (we know they are

local because we are able to find better solutions using our Simulated Annealing algorithm in

Chapter 4). However, the solutions Hung found to this formulation provide good policies for a

set of stubborn agents to influence a network, and was an important first step in analyzing the

problem of optimally influencing a stochastic social network.

3.2 - Network Model

The model initially formulated by Hung is designed to model a district in Afghanistan. A

district generally consists of 10-20 villages of 100 or more households each. There were several

reasons for this scope of analysis. First Hung's motivation was based on solving a problem faced

by the US Army in Afghanistan of optimally influencing districts in Pashtun regions. Second, it

was generally unknown at the time whether sufficient data could be reasonably gathered to

model more than one district. Third, the optimization tools used by Hung did not scale well with

the size of the network, and thus he could not analyze networks of more than a hundred agents

sufficiently fast. Finally, it was believed that most rural Pashtun society beliefs within a district

are highly independent of other districts because district boundaries follow tribal and social fault

lines. Thus analysis of larger areas could be done a single district at a time.

In Chapter 4 we show that the basic network structure and tools developed here can be used

to analyze much larger networks (hundreds of agents, corresponding to more than ten thousand



individuals). However, most of the analysis stays within Hung's scope of multi-village and

single district size since most of the data we have fits such networks.

For the reader's convenience all of the notation and definitions we introduce in Chapter 3

are also located in Appendix A.

3.2.1 - Agents in the Network

Each node in the network is called an agent, which represents a person (or persons). Arcs

between agents represent relationships between them. The overall structure of the network is not

dynamic, which means that once the network topology is set it will not change. One exception is

the connections to and from stubborn agents that are controlled by the players as described later

in the chapter.

3.2.1.1 - Types of Agents

Every agent in the model is characterized by a scalar belief between -0.5 and +0.5. This

indicates how pro-US or pro-Taliban the agent is (see Figure 3.1).

Favorable to Taliban Favorable to US
-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5

Unfavorable Neutral Unfavorable
to US to Taliban

Figure 3.1 - Belief Scale for Agents

In addition to their individual beliefs, agents have a level of influence associated with them

that can be one of four possible types:

Regular

A 'regular' agent represents a head of household. In rural Pashtun society, a household is

generally defined as 2 or more generations of a family living together under the same roof, and

can comprise up to 40 individuals[18]. Each of these has a head of household that is typically the

eldest male. The head of household speaks for their family within village and tribal disputes.

Although there is undoubtedly some disagreement on important issues within a household,

because the head of the household is the only one voiced in important meetings, it is used as the



smallest unit of analysis in our model. Thus each 'regular' agent in the network actually

represents 20-40 individuals in a village.

Influential

An 'influential' agent is a village leader that wields more influence than a normal head of

house within their village. Examples include a wealthy merchant, a local religious figure, or a

member of the district Shura (decision making/advising council in rural Pashtun society).

'Influential' agents are more likely to spread their beliefs to other agents than 'regular' agents

are.

Very Influential

A 'very influential' agent represents a district leader who wields influence outside of just

their immediate village. Examples include district religious figures, government figures, or the

district chief of police. 'Very Influential' agents have a higher probability of spreading their

beliefs than 'Influential' or 'Regular' agents.

Stubborn

'Stubborn' agents are individuals whose opinions never change. Their objective is to sway

the population to their belief as much as possible. They are the key players in the model, and

their beliefs and how they propagate in the network is the key part of the model analysis.

Examples of 'stubborn' agents in our context are either Taliban insurgents or United States

forces. It is highly unlikely that either of them is going to suddenly decide that the opposing side

is right and then lay down their arms and quit. It is also assumed that 'stubborn' agents wield the

most influence in the network and have the highest probabilities of influencing other agents.

All stubborn agents have extreme beliefs, and their belief is either -0.5, or +0.5. All other

agent types have mutable beliefs that change over time as described below in Section 3.2.1.2.

Agents belong to one or more of the following sets within the network:

VTB - Set of Stubborn agents with belief - 0.5

Vus - Set of Stubborn agents with belief + 0.5
Vs - Set of all Stubborn agents = VTB U VUS

VR - Set of Regular Agents

V1 - Set of Influential Agents



Vy - Set of Very Influential Agents
VM - Set of mutable agents = VR U VI U Vy

V - all agents = VM U Vs = VR U V, U Vy U VTB U VUS

In Figure 3.2 we illustrate the ideas and definitions presented above.

A7

V:

Stubborn Agent
Very Influential Agent
Influential Agent
Regular Agent

- Local Leader to Local Leader Connection

- Taliban Connection

- US Connection

Agent Attitude States:
Unfavorable to
Counterinsurgents

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2

Favorable to
Insurgents

Neutral

Favorable to
Counterinsurgents

0.3 0.4 0.5

Unfavorable to
Insurgents

Figure 3.2- Sample Network and Description of Network Symbology

Table 3.1 shows the agent sets represented in the above network.



Set: VTBVUs VS VR Vi Vv VM V
Nodes in Set: 12 111,12 3,4,6,7,9,10 2,5,8 1 1-10 1-12

Table 3.1 - Node Set in Example Network

Figure 3.2 shows a network of 3 villages with 2 households each. Every village has an

'influential' leader, and between the three villages there is a district leader that is 'very

influential'. The two stubborn agents represent a US agent and a Taliban agent, each trying to

sway different villages to side with them.

3.2.1.2 - Agent Interactions

The active agent is chosen according to a set of Poisson arrival processes. Every agent has

an identical Poisson process with rate 1, and when an arrival occurs in an agent's process they

become the active agent. Once active, the agent randomly selects a neighbor and interacts with

them as described below. In our network we define time step t as the time of the t-th interaction

on the network. With time steps servings as an index for interactions, we know exactly one

arrival has occurred at each time step. We assume that all agents have identical Poisson

processes (although this assumption could be relaxed), so conditioned on an arrival occurring

somewhere in the network, the arrival is equally likely to have occurred in any agent's Poisson

process.

P(arrival occurred for agent ilan arrival occurred in the network)

= P(arrival occurred in agent jlan arrival occurred in the network) Vi,j E V

1
therefore: P(arrival occurred in agent ilan arrival occurred in the network) = -

n

where n is the number of agents in the network

The belief of agent i at time step t is denoted as:

Xi(t) E [-0.5,0.5]

The beliefs of the n agents in the network at time t is denoted as an n x 1 vector:

X(t) = (X1(t),X2(t),....,Xn(t))

Once agent i has been selected, it then selects a random neighbor j. Hung's model allowed

for a non-uniform distribution for the selection of neighbors, but we have omitted it here to



simplify the model. One of the primary motivations for non-uniform interactions would be to

better simulate 'closeness' among agents (e.g. people talk to their immediate family members

and close friends more often than their village leader). Lacking any sufficient data to inform this

distribution, we use a uniform distribution for our analysis.

Once a neighbor j has been selected to interact with, a pairwise interaction between agents i

and j occurs in one of the following three ways:

Averaging (p-type interaction):

With probability pij, they reach a consensus equal to the average of their prior attitudes:

Xj(t + 1) = Xj(t + 1) = X 2(t) + X (0 (3.1)

Forceful (a-type interaction):

With probability aij, agent i 'forcefully' imparts (1 - Eij) of its attitude on agent j:

Xi(t + 1) = Xi(t) 0<c* <05 (3.2)
Xi(t + 1) = Eij -Xj(t) + (-E) -X(t) - - (3.2)

where Ei; represents the stubborness for agent j interacting with agent i

In 'forceful' interactions the parameter Eij is a rating of stubbornness for each agent. This

parameter represents the amount of their own belief an agent will retain after being forcefully

influenced by another agent. For simplicity this is assumed to be identical for all agent pairs.

Eij = E Vi, j E { 1, 2, ..., n}

Identity (y-type interaction):

With probability yij, both agents exhibit no change in attitude:

Xi(t + 1) = Xi(t)
Xj(t + 1) = X (t) (3.3)

where fi; + a; + yi= 1



We assume that within our model, all aij, pij, yij, are the same between different classes of agents.

For example, all regular agents interacting with other regular agents have the same aij, 3ij, Yij.
Similarly, any time a stubborn agent i interacts with some influential agent j, those interactions

have identical aij, pij, yij. However, if an influential agent i interacts with some stubborn agent j
there is a different set of aij, pij, yij (order matters). By assuming that aij, pij, yij, are the same

between different classes of agents it simplifies the data requirements of the model. It is unclear

whether the absence of this level of data has a large impact on the model or not. In Section 4.4

we show that inaccuracies in aij, pij, yij do not have a significant impact on optimal strategies, but

whether changing from a class-wise set of influence parameter to pair-wise influence parameters

would change this is currently unknown. Even with this simplification there are still 16 different

values of aij, pij, and 'Yij. (4 types of agents that can each interact with 4 other types of agents).

3.2.2 - Belief Propagation with a Matrix-Vector Model

As mentioned previously, the belief state of all agents in the network at time t is represented

by the n x 1 vector X(t). We now show that the stochastic evolution of these beliefs can be

represented with a random matrix W:

X(t + 1) = W * X(t) (3.4)

Where W is a random stochastic matrix that can take on one of three different forms, based on

whether an a-type interaction, a P-type interaction, or a 7-type interaction occurs between agents

i and j.

Aij if a 3 -type interaction occurs between agents i and j
W = Jj if an a - type interaction occurs between agents i and j (3.5)

I if a y - type interaction occurs between agents i and j

If a y-type interaction occurs, then W becomes the identity matrix - all agents retain their current

beliefs. To better illustrate the other types of interactions we consider a network of 5 agents that

are all connected to each other. Consider if agent 1 and agent 2 had a f-type interaction (they

average their beliefs):



X(t + 1) =

2
X1 (t) + X2 (t)

2
X3 (t)
X4 (t)

- X5(t)

Thus W= A12 =

[0.5
0.5

0
0
0

0.5 0 0 0]
0.5 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1.

This can be also written as:

1- -0- -1- -0
0 1 0 1
0 - 0 0 - 0'

0 0 0 0

0- -0- -0- -0-

_ I
(e1 - e2)(e 1 - e2)

2

DEFINITION. ei is a unit vector of length n, with entry i equal to 1 and all others equal to zero.

In general when a p-type interaction occurs, W=Aij, where Aij is:

Aij = I - (e 1 -ej)(e 1-ej)'
2

Vi, j E {1,2, ... n}

This only occurs if agent i is selected as the active agent, neighbor j is selected to interact

with, and a f-type interaction occurs:

P(W = Aij) = P(agent i selected) * P(neighbor j selected) * P(P - type interaction)

Recall that the probability of any agent being selected as the active agent is equal:

1
P(agent i is selected) = -

n
Vi E {1,2, ... n}

Once an agent is selected, it then chooses a neighbor uniformly:

1
P(any neighbor is chosen agent i is selected) =

DEin

DEFINITION:- Ei is the set of agents adjacent to agent i.

Vi E {l,2, ... n}

-0.5
0.5

= 0
0
0

0.5
0.5
0
0
0

*X(t)

A12 = I -

(3.6)



Thus, the probability that W takes on value Aij is:

P(W = Aij) = n *i|
n * lEdj Vi, j E {1,2, ... n}

Next we consider the structure of the matrix Jj for an a-type interaction for this same 5-

agent network. Assume that agent 1 has forcefully influenced agent 2.

X(t + 1) =

(1
X1 (t)

- E)X 1 (t) +

X3 (t)
X4 (t)
X5 (t)

1 0
EX2 (0) -E E

=0 0

0 0

. - 0 0

1 0 0 0 0-
1-E E 0 0 01

0 0 1 0 01
0 0 0 1 01
0 0 0 0 1-

J12 = I - (1 - E)e2(e2 - )'

In general:

i I - (1 - E)ej(ej - ei)' Vi, j E (1,2, ... n)
(3.8)

The probability that W takes on value Jj is:

P(W = Jij) = P(agent i selected) * P(neighbor j selected) * P(a - type interaction)

P(W = Jij) = at;
n * |Ed|

Vi, i E f 1,2, ... n}

We now combine (3.5), (3.6), (3.7), (3.8), and (3.9) to define the random matrix W as the

following:

(ei - ej)(ei - ej)'
2

(1 - E)ei(ei - e )'

w. P. fi

w. p.

n * |Ei|
W, P, ij

n * |Ei|

W. P. Yi j
w. p.~j

(3.7)

0 0 0-
0 0 0
1 0 0 * X(t)
0 1 0
0 0 1-

W = J12 =

0

-(E)

=l- 0 0

0 0

0 0

0 0
1-E 0

0
0
0

(3.9)

A I

W = Ji I - (3.10)



This illustrates how the stochastic process of pairwise interactions is modeled using vector-

matrix notation. Another key insight is that although W is a random matrix, it is neither time

dependent nor belief dependent. The possible realizations of W and the probabilities associated

with each realization depend only on the network structure and influence parameters.

Furthermore, although W is a random matrix, it is a random stochastic matrix, meaning all of its

rows sum to one no matter what particular realization occurs.

3.3 - Network Analysis

We now discuss how this stochastic model of belief evolution can be analyzed. Specifically

we concern ourselves with the expectation of the beliefs of the network, and discuss a potential

method for characterizing the second moment of the average belief of the network.

3.3.1 - Expected State of Network

The time-independence and state-independence of W means that the expected state of the

network can be calculated at any time in the future. The state of the network k steps into the

future is given by:

X(t+k) =W* ... *W*W*X(t) (3.11)

Taking the expectation of each side of (3.11) yields the expected state of the network at k steps

in the future:

E[X(t + k)] = E[W *...*W * W * X(t)] (3.12)

Due to the independence of the W matrices from each other, the expectation of the product is

equal to the product of the expectation.

E[X(t + k)] = E[W] *...* E[W] * E[W] *E[X(t)] (3.13)

DEFINITION: W = E[W]

E[X(t + k)] = W * ...*V * * X(t) = Nk * X(t) (3.14)



Finding the expected state of the network k steps into the future is done by multiplying our

current beliefs by Vk.

The expectation of the W matrix is found by taking the expectation of each element to yield:

E[W11] --- E[Win]-
w[W-. (3.15)

E[Wn1]-- E[Wnn].

To better organize the matrix W some structure is imposed in how the agents as ordered in

the belief state vector X(t). This is done so that we can easily sub-partition W for computational

reasons later. All mutable agents (non-stubborn) are numbered first (the first IV I entries of X(t)

are all mutable agents), followed by the stubborn agents with belief -0.5, and then stubborn

agents with belief +0.5 are last. This results in the last IVs I entries of X(t) corresponding to

stubborn agents, whose beliefs never change. This convention was followed in the example

network shown previously (see Figure 3.2), and will be used throughout.

The (ij) entry of W indicates how much of agent j's belief spreads agent i. This means the

(ij) entry of W is the expected amount of belief agent j imparts to agent i. The off-diagonal

entries of W are calculated first. Recall from the types of interactions allowed and the definition

of W that any off-diagonal entry of the matrix W can only take on 3 possible values: 0.5, 1-6, and

0 (values of 1 and e can only exist on diagonal entries); yielding the following equation:

Nij = 0.5 * P[Wij = 0.5] + (1 - E) * P[Wij = (1 - E)] + 0 * P[Wi = 0]

Vi, j E {1,2, ... ni#j (3.16)

The last term in (3.16) equals zero and is removed, yielding:

Wij = 0.5 * P[Wij = 0.5] + (1 - E) * P[Wi = (1 - (3.17)

The events which cause Wij to equal 0.5 or 1-a are:

Value Event Required
0.5 Node j averages with node i, or node i averages with node j
1-E Node j forcefully influences node i

Table 3.2 - Events and Values of W&

These events occur with the following probabilities:



Event Probability Statement
Node j averages with node i P(j averages with i)=P(node j is selected)*P(neighbor i is selected)*@ji
Node i averages with node j P(i averages with j)=P(node i is selected)*P(neighbor j is selected)*pij
Node j forcefully influences i P(j forcefully influences i) = P(node j is selected)*P(neighbor i is selected)*aji

Table 3.3 - Events and Probabilities

Substituting these individual probabilities yields the following:

P[Wij(t) = 0.5] = P(j averages with i) + P(i averages with j)

= P(agent j is selected) * P(neighbor i is selected) * @ji + P(agent i is selected)

* P(neighbor j is selected) * pij

Therefore:

1 1 1- 1 1_ j pj
P[Wij(t) = 0.5] = - * * 1i *--- * Pi = IL+IiI

n E |Ei| n |EI |Ei|

Now do the same for the (1-E) case:

P[Wij (t) = (1 - E)] = P(j forcefully influences i)

= P(j is selected) * P(neighbor i is selected) * cji

(3.18)

P[Wi(t) = (1 - E) = - * 1 * aji = jI
n |E n * Eeo

We now combine (3.13), (3.14), and (3.15) for finding off-diagonal entries of WV:

(3.19)

Vi =0.5 * P[Wij(t) = 0.5] + (1 - E) * P[Wij(t) = (1 - E)]

Therefore:

1
W.. = 0.5*-

n
Pii @ij aji

(f--i+ + (1-|Eg| |Eiln * |EJ|
(3.20)

(0.5 * fli + (1 - E) * aji) 0.5 * fl
n * |EjI n * E|

Vi,j such that i * j, and nodes i and j are adjacent



The diagonal entries of W are calculated using the fact that W is stochastic, which means its

rows must sum to 1:

Nii = 1 - Nij Vi, j E f1,2, ... ,nj (3.21)
jsi

We could alternatively use a probabilistic calculation as done for the off-diagonal entries by

calculating all the possible ways in which the diagonal entry would equal 1, 0.5, or a, but it

would yield the same result. Having shown how to calculate each entry of W, we discuss some

special structure in the matrix. The requirement that all of the stubborn agents are numbered last

means the last |Vs rows of W represent the influence of the network on stubborn agents.

Stubborn agents never change their beliefs, consequently the diagonal entries of the last |Vs|

rows of W are all 1 and all other entries in the row are 0 (because every stubborn agent retains all

of their belief at every step). The first IVm I rows of W represent the expected effect of the

network on each of the mutable agents. More specifically, within each of these rows, the first

I Vm columns are the expected influence on agent i from all of the other mutable agents, and the

last Vs I columns are the expected influence of agent i from the stubborn agents. Using this

structure we partition W into 4 sub-matrices:

0 I I (3.22)

IBI = IVMxIVMI, IDI = IVMIXIVsI, III = iVsIxIVsI, 101 = IVsIXIVMI

The matrix B is the expected effect of mutable agents on each other, matrix D is the

expected effect of stubborn agents on mutable agents, and the zero and identity matrices

represent the fact that stubborn agents never change their beliefs.

3.3.2 -Equilibrium State

To calculate the equilibrium state of the network, Equation 3.10 can be used to find the

expected value of the network at k steps in the future, and then take the limit as k goes to infinity.

The equilibrium belief vector is defined as X*.

DEFINITION: The Equilibrium belief of agent i is:

lim E[Xi(t + k)]
k->oo



DEFINITION: The vector X* is the vector of the equilibrium agent beliefs.

E [(X(t + k)|X(t)] = Nk * X(t) (3.23)

X* = lim E [(X(t + k)|X(t)] = lim Wk X(t) -* * X(t) 3.24
k-oo k-oo (3

A dual approach using Markov chain theory is used to calculate this infinite matrix product.

3.3.3 - Markov Chain Analysis

We consider W as the transition probabilities for a Markov chain. This is possible because

W is a stochastic matrix (meaning all rows sum to 1), and can represent a series of transition

probabilities of an n-state Markov chain. The chain has one state for every agent in the network,

and the transition probabilities are the entries of W (e.g - the probability of moving from state 1

to state 2 in the Markov chain is W12). An example of this isomorphism is shown below in

Figure 3.3.



W10,10 W12,1z = 1

12

Absorbing State V1

Absorbing State VO

Figure 3.3 - Illustration of Network to Markov chain isomorphism

In the Markov chain, all of the stubborn agents are absorbing states. This is because in the

W matrix, the diagonal entry of every stubborn agent is 1, which means that in the Markov chain

they have a self-transition probability of 1. Thus once a random walk on the Markov chain enters

one of these states they can never leave.



As shown in (3.24), the equilibrium beliefs X* are a function of W'. In a Markov chain with

transition matrix W, finding W is equivalent to finding the steady state probabilities of the

Markov chain. This is the same as a random walk across the chain until being absorbed by one of

the absorbing states for Markov chains with a set of absorbing classes. Using this fact, Yildiz et

al have shown that finding the equilibrium state of a social network such as ours can be done by

finding the absorption probabilities of a random walk on this Markov Chain (though we will not

reiterate the proof here). His methodology is described below:

DEFINITION: rlij is the probability that starting in state i on the Markov chain, a random

walk ends in one of the absorbing states j corresponding to stubborn agentj in the network.

" Start a random walk from state i in the Markov chain corresponding to agent i in the

network

* Find the set of probabilities {ilij) Vj E Vs (find Tlij for each possible absorbing state j).

" Denote the expected equilibrium belief of agent i as X* with the following definition:

X= rij * X (3.25)
jEVS

where X is the belief of stubborn agentj corresponding to absorbing state j in the Markov chain

This means that the equilibrium belief is independent of the starting beliefs of the mutable

agents and in fact is only a function of the network topology (meaning the types of agents and

their connections between each other). The topology and influence parameters affects the

absorption probabilities, because it changes the values of IEIl, aij, pij, and yij, which are used in

calculating W. To actually calculate the absorption probabilities for every node corresponding to

a mutable agent we rely on the results of Yildiz et al, who showed that the probability of any

mutable agent being absorbed by a stubborn node is the following:

f = (I - D)- * B

Where j is a IVMIx I VsI matrix, and the i, jth entry corresponds to 7h j (3.26)

X* = lim E[X(t + k)] = 71 * Xs = (I - D) * B * Xs
k-+c (3.27)



Xs is the vector of stubborn agent beliefs, which corresponds to the last I Vs| entries of the belief

vector X(t), and D and B are the submatrices of W as previously defined.

This gives a simple tool for calculating the equilibrium beliefs of all mutable agents in the

network. This formula allows the equilibrium state vector of the network to be easily calculated

but as previously discussed, the network only converges in expectation, the actual state vector

does not converge to this:

X(t + k) # E[X(t + k)] w.h.p. (3.28)

limk-,oo X(t + k) # limk-, E[X(t + k)] w.p. 1 (3.29)

Although it is possible for the belief vector to actually equal the expected belief vector, the

sample path required for this to occur over a long time interval has zero probability. The plot

below in Figure 3.4 demonstrates this point. It shows the mean belief of the mutable agents over

time for a simulation of 5000 interactions of the sample network. The average of the equilibrium

beliefs of mutable agents is 0.3439. The actual average belief of the mutable agents starts at zero,

and moves towards 0.3439, but then continues to oscillate around it, never settling into a perfect

convergence.

Mean Belief of Sample Network over 5000 Interactions
0.45

0.4

0.35--

0.3

0.25-

0.2 I
Expected Equilibrium Mean Belief =.3439
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0-
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Figure 3.4 - Mean Belief of Network over 5000 interactions

The Mean Belief of the network settles into a type of stochastic equilibrium, where it

continues to oscillate around the equilibrium mean belief of.3439 over time.



Being able to calculate the equilibrium is useful. It allows players controlling a set of

stubborn agents to determine if a particular set of connections in the network will move the

network more towards their stubborn agent beliefs. It would also be useful to measure the

variance in this equilibrium. By variance in the equilibrium we mean a measure of how close the

network beliefs actually match the equilibrium beliefs. The equilibrium belief of an agent may be

.1, but in simulation that agent's beliefs can be anywhere in the interval [-0.5,0.5], and follows

some unknown distribution associated with the network topology and influence parameters. The

first moment of this distribution can be calculated efficiently using (3.27), but knowing

something about its second moment would give greater insight into the behavior of the network

over time. In the real world, someone trying to influence the network may be risk averse. They

may prefer to influence a network in a way that may not have high equilibrium mean belief, but

has a very high probability of actually reaching and staying at the equilibrium. High volatility in

individual beliefs can lead to serious upheaval and unexpected consequences in societies, and the

desire to minimize this variance motivates the next section.

3.3.4 - Analyzing Variance

Hung's work showed that the mean belief of a network generally converges within the

equilibrium mean belief +/- 6, where 6 is some constant on the order of 0.15, as shown in Figure

3.4. However, the randomness of the model still causes individual beliefs, and the mean network

belief, to continually change. It is even possible to move from having all equilibrium beliefs to

having all extreme beliefs (either +0.5 or -0.5), although this is an extremely unlikely event.

Yildiz et al formulated a bound for the standard deviation of the equilibrium beliefs for a

model in which agents have only a binary belief (either 0 or 1). We start with a quick review of

prior notation and a few definitions required for his formula.

Absorbing states VTB in the Markov chain correspond to stubborn agents with belief -0.5 in

the network.

Absorbing states Vus in the Markov chain correspond to stubborn agents with belief +0.5 in

the network.

Let node i E VM become a new absorbing state V1 in the Markov chain



DEFINITION: p5 is the probability that a random walk started at state j on the Markov

chain will be absorbed by Vi corresponding to mutable agent i

Once we change node i to be an absorbing state in the Markov chain, there are 3 classes of

absorbing states (VTB, Vus, and V1), which may actually consist of more than three states on the

Markov chain (VTB and VUS may contain several absorbing states if there are more than 2

stubborn agents in the network). To better show this transformation, Figure 3.5 shows the

Markov chain corresponding to the network shown in Figure 3.4, in which node 1 has been

converted into an absorbing state VI:

V10,10 %12,12 = 1

Absorbing State Vus

AbsorbingState V1

Absorbing State

Figure 3.5 - Modifying the Markov chain to include new absorbing states

State I is has been nodified and is now an absorbing state

After modifying the transition matrix for the Markov chain to reflect this new absorbing

state, all of the p5 can be efficiently calculated by simply raising this matrix to a very large

power (essentially finding VV'). This is not as efficient as using (3.27) to find the absorption

probabilities in a single step, but in order to do this would require re-ordering of the W matrix to



move the new absorbing state to the end of the belief vector. Our code is implemented in

MATLAB, and it is generally faster to calculate N1 6 than it is to recalculate the entire W matrix

and then use (3.27). This is because MATLAB is very efficient at matrix multiplications, but is

slow to execute the for-loops we use to re-calculate a new W matrix. After finding WV06 the i-th

column contains all of the pj. This is repeated for each mutable agent to calculate all possible pj.

The last quantity required for Yildiz et al's bound on the standard deviation is:

ri = p Vi E Vm (.0
r~ I~ M (3.30)

jEVM,jIi

r' is the sum of probabilities over all mutable agents being absorbed by node i (if it were an

absorbing state). The interpretation for r' is it is a measure of how central and influential an agent

is. The transition probabilities in the Markzov chain represent pairwise influence, and thus the

more influence an agent has, the higher the transition probabilities are, and the more likely

random walks will end up in the absorbing state i.

Yildiz et al then derives the following bound on variance of equilibrium average belief of

the network.

DEFINITION: p5VS is the probability of a random walk starting at node j being absorbed by one

of the states in Vus.

pis7j

iEVUS

o(X*) 5 (pS (ps)2) * (ri)2 (3.31)

jIEVM

where -(X*) is the standard deviation of the equilibrium mean belief of the network

Note ps is only the probability of being absorbed by Vus, and absorption probabilities for

VTB are not considered in the bound. This is a consequence of the binary derivation done by

Yildiz et al, in which the belief corresponding to VTB was 0, and thus did not affect the

calculation of variance. Because this derivation is based off of a model of binary beliefs for all

agents (either 0 or 1) the proof is not true in our model. However, we had hoped it would serve

as a useful metric (if not a strict bound) in our model. Chapter 4 conducts the analysis on the



bound, and unfortunately finds that the bound does not consistently predict standard deviation

well in our model.

3.3.5 - Key Points

One of the most important facts is that the equilibrium belief is independent of the starting

beliefs in the network. The only thing that affects the equilibrium is the topology, the influence

parameters, and the beliefs of the stubborn agents (which are fixed in the beginning). Initial

beliefs of the mutable agents do affect how quickly the network belief move to the equilibrium

beliefs (convergence speed), but they do not affect the actual equilibrium beliefs themselves.

We have a method for analyzing the expected belief state of the network at any time in the

future, and a candidate for analyzing the variance at that equilibrium. We do not have a tool for

analyzing how quickly the beliefs converge to this equilibrium, or the variance at any time other

than at equilibrium. Yildiz et al showed that in the worst case a network should converge to its

equilibrium beliefs in 0 (n3 log(n - I Vs| )) time steps, but empirical analysis and simulations

have shown that in general the networks converge much faster. Explicitly calculating the

variance at any fixed number of time steps beyond 1 becomes exceedingly difficult, as the

number of sample paths at each time step is 0(1 El) where E is the set of all arcs in the network.

This means in order to calculate the exact variance 10 time steps in the future would require the

calculation of O(jEj10) possible realizations. Even for a small network with only 10 edges, this

would require calculating 0(1010) realizations and summing across their probabilities to calculate

the variance and it is generally not feasible. Alternatively it is possible to run many simulations

of a network and collect sample variances, but in the game described below, the connections

from stubborn agents to the mutable agents change. The number of associated topologies can be

exponentially large, and thus calculating sample variances is not feasible.

3.4 - 2-Player Game Description

Now that we have formulated a model for the belief of a populace, we formulate a game in

which 2 players compete to influence the populace.



3.4.1 - Players and Game Space

There are two players - the US (US Forces) and the TB (Taliban insurgents) each of which

controls their corresponding set of stubborn agents - either Vus or VTB. Each player controls --

stubborn agents, each of who have I Es I connections they can make to the network:

IVs I = # of stubborn agents, each player controls half of them

|EsI = # of arcs from each stubborn agent to the network of mutable agents

I Es is the same value for each stubborn agent and is an input to the model

Let C be the number of connections from a player's stubborn agents to the mutable

agents in the network such that C = IEs|*

A strategy is defined as the set of connections from the player's stubborn agents to the

network. Each connection can be made to any mutable agent in the network. This is a perfect

information, symmetric game - at any time, both players know the exact state of the network,

they know the other player's strategy, and they can both choose the same set of possible

strategies. The set of strategy options is defined as follows:

S - Set of strategies available (same for both players)

Sus - Strategy chosen by the US player

STB - Strategy chosen by the TB player

|SI = O(IVMIC )

In the example network presented earlier (see Figure 3.2), C = 1, Sus={ 2 } , and STB={ 8 1

(the US player connects their stubborn agent to agent two, and the TB player connects their

stubborn agent to agent eight).

All the games will be open loop one-step games, so each player makes a single strategy

selection and then plays it forever. Once each player chooses a strategy the equilibrium state of

the network determines the value of their payoff function (defined below).



3.4.2 - Payoff Functions

The payoff functions we examine are functions of the equilibrium state of the network.

Recall that the equilibrium state of the network is defined as:

X* = lim E [(X(t + k)|X(t)] = lim Wk * X(t) * * X(t) = * XSk--co k-+co

The equilibrium state of the network was shown in Section 3.3.3 to be independent of the

current beliefs of the network, and depends only on the connections between agents, the

influence parameters, and the beliefs of the stubborn agents.

This means that the payoff functions depend only on the strategies chosen by each player

(which affects the connections between agents), and the payoff functions have a finite support. It

also means that as a player chooses a strategy to maximize their payoff function, this strategy

will be optimal regardless of the state of the network. This is not entirely realistic, as our

motivation for this model is to better understand how US forces and insurgent forces influence

public opinion to maintain popular support and in the real world, it is not accurate to assume that

both sides will choose a strategy and maintain it forever. To understand why we make this

assumption, consider if we maximized the mean belief at some finite time in the future (for

example 50 time steps in the future), the current network state must be accounted for in

calculating the this non-equilibrium state:

E[X(t + k)] = Vk * X(t)

The current state of the network matters for any finite k; only when we take the limit as k

goes to infinite does the current state become irrelevant. This means that if we maximized payoff

for the beliefs of the network at some finite time, the support of the payoff function must include

not only the strategies of the players, but also the current beliefs of the network. This increases

the support of the payoff function from a finite set of strategies, to an infinite set of all possible

strategy-belief state combinations. Even if the belief states were discretized to make them finite,

the support space for payoff functions would increase exponentially with the size of a network

and the problem becomes intractable for the analysis methods presented in this thesis.

Given this difficulty, strategies are chosen using equilibrium payoff functions,

understanding it is not a perfect fit, but hoping that it will lead to some insight and intuition we



can apply to the real world problem. Each player's goal is to select a set of connections in the

game that allows their stubborn agents to maximally influence the mutable agents. The definition

of what maximal influence is may change depending on the payoff function selected.

Below three different payoff functions for the game are defined: Mean Belief, Agents Won,

and Risk Averse Mean Belief. We now introduce a slightly modified notation for the matrix W.

We now write it as W(SUS, STB) which denotes the fact that the matrix is a function of the

strategies chosen by each player. That is, the topology of the network changes based on the

connections associated with each strategy and thus W also changes.

Because N(SUS, STB) changes with each player's strategy, we now redefine some of the

network matrices and equations as functions of the strategies chosen by each player.

Original Equation 3.22:

V = E[W] =DB

New Notation:

W(sUS, STB) = E[W(Sus, STB)] _ D(Sus,STB) B(Sus,STB) (3.32)
01

Original Equation 3.27:

X* = lim E[X(k)] = r* Xs (I - D)-* B Xs
k-+oo

New Notation:

X*(sos, STB) = (I - D(sus, STB))-l * B(sUS, sTB) *XS (3.33)

where Xs is a IVsI x I vector of the stubborn agent beliefs, and X* is the IVM| x I vector

containing the equilibrium beliefs of each mutable agent.



3.4.2.1 - Mean Belief

In the 'mean belief' payoff function, each player is trying to move the equilibrium mean

belief towards their side. When the US player's stubborn agents have high influence, the mean

belief of the mutable agent in the network moves towards +0.5. When the TB player's stubborn

agents have high influence in the network, the mean belief of mutable agents moves towards

-0.5. This means that the US player wants the network to have a high mean belief, and the TB

player wants it to have low mean belief.

We define the payoff function as:

IVMI

fusT(ss, ST) = IX*(ss, STB) - -fTB(sUS, STB) (3.34)
]=1

3.4.2.2 -Agents Won

If a mutable agent is being equally influenced by both the TB and US stubborn agents, then

their equilibrium belief is zero (halfway between each stubborn agents' beliefs). If the US is

influencing a mutable agent more than the TB player, then the mutable agent's belief will be

greater than zero and if the TB is influencing them more, it will be less than zero. The 'agents

won' payoff function awards 1 point to each player for mutable agent that they influence more

than their opponent, and they lose 1 point for every mutable agent that their opponent influences

more. If a mutable agent is equally influenced by both players stubborn agents, its equilibrium

belief is zero, and both players get zero points.

TB Points Earned Mutable Agent Equilibrium Belief US Points Earned

1 <0 -1
0 0 0
-1 >0 1

Thus the maximum value of the payoff function is IVM|, and the minimum value for each is

-|Vm l. We denote this payoff function as g(-). The definition is:

-1 if x > 1
1TB(x) 0 ifx = 0

( 1 ifx<0 (3.35)



1 if x > 1
lus(x) 0 ifx = 0 (3.36)-1 if x < 0

IVMI

gi(sUSs,ST) = 1i (X (SUs, STB)) i E {US,TB} (337)
j=1

3.4.2.3 - Risk Averse Mean Belief

The last payoff function is a variant of the 'mean belief' payoff function. In the 'mean

belief' payoff function we cared only about equilibrium agent beliefs, disregarding the variability

of the actual beliefs. Here variability is taken into account by calculating the standard deviation

of the equilibrium solution using methods from Section 3.3. The payoff function is denoted as

h(.). Its basic form will be:

h(Sus, STB) = Mean Belief Payoff -2A

* Expected Standard Deviation of Equilibrium Beliefs of Network

where A is a constant representing how much high standard deviation is penalized

hi(Sus, STB) = fi (Sus, STB) - 2 * c-(X*(Sus, STB)) i E {US, TB} (3.38)

The standard deviation associated with the two strategies at equilibrium is found using

Equation 3.31, and is a measure of how much variability we expect to see in the mean belief of

the network over time. Although the result of this equation is simply a bound on the standard

deviation in the binary model and not an explicit characterization of the variability at

equilibrium, it is used here as a metric. The constant 2. is a penalty parameter which allows us to

control the risk tolerance of players. Although in the real world, the parameter would likely be

different for each player, here we make it identical for both to simplify analysis. Chapter 4

conducts further refinement and analysis of this payoff function and its tuning parameter. Two

main questions are considered - "What are good values for the tuning parameter?" and "How

useful is the bound on the standard deviation in actually characterizing the variability of different

strategies?"



3.4.3 - Existence and Characteristics of Nash Equilibria in the Game

Now that we have formulated a game on the network model, the next question we hope to

answer is whether equilibria exist in this game. Do pure Nash equilibria exist, and what do they

look like? We do not care about mixed Nash equilibria, because it would mean a player has to

randomly choose among a set of strategies. Telling a US commander in Afghanistan to randomly

choose a strategy for winning the support of the populace is not useful operationally.

3.4.3.1 - Definition of Pure Nash Equilibrium

A strategy profile is a vector containing both players' strategies. In a game, a pure Nash

equilibrium is a strategy profile from which neither player has any incentive to deviate on their

own. More precisely, a pure Nash equilibrium is a strategy profile from which neither player can

improve through a unilateral deviation in their strategy[ 19]. Although it may be possible to

improve their payoffs if they both simultaneously change their strategies, a single change by one

player is not sufficient. Consider the following payoff matrix:

Player 1
A B

A (1,2) (0,0)

O- B (0,0) (2,2)

where (x,y) indicates that player 1 receives payoff x, and player 2 receives payoff y

In this simple game, there are two Nash equilibria in which players choose identical

strategies. Player 1 would prefer to play strategy B because that has the maximum payoff for

them, however if player 2 has decided to play strategy A, then player 1 would also play strategy

A, because a payoff of 1 is better than a payoff of 0. This demonstrates the principle that a Nash

equilibrium is not necessarily the best payoff for a player, but rather, it is the best they can do

given an opposing strategy. In a pure Nash equilibrium neither player can unilaterally deviate

and result in an increased payoff. If a pure Nash equilibrium exists, it is equal to the maximum of

its row and column in the payoff matrix.



Although there is no guarantee that our game has a pure Nash equilibria, computational

experiments presented in Chapter 4 show empirical evidence indicating that they do always exist

under the 'mean belief' and 'agents won' payoff functions.

3.4.3.2 - Zero Sum vs. Non-Zero Sum Games

A zero-sum game means that if a player obtains some payoff, the other player's payoff must

be the negative of this[19]. The way the 'mean belief' (fi(Sus, STB)) and 'agents won'

(gi (Sus, STB)) payoff functions are defined they result in a zero sum game if both players use

them.

fUS (SUS, STB) + fTB (SUS, STB) 0

gUS (SUS, STB) + gTB(SUS, STB) 0

Any other combinations of payoff functions f(-), g(-), or h(-) will not result in a zero sum

game (example, if we use fTB , gUS(0, or hTB(-), hus())

3.4.3.3 - First-mover advantage

In a game where players do not choose their strategies simultaneously, one of the players

may gain an advantage by choosing first. For example tic-tac-toe has a significant first mover

advantage. By taking the middle square in tic-tac-toe on the first move, a player can ensure that

they will never lose the game. Many games have first mover advantages (and sometimes

disadvantages). If both players use the payoff functions f(-) or g(-), there is no first mover

advantage. We show in Chapter 4 that first mover advantages can exist if players are using

different pairs of payoff functions. The existence of first mover advantages can have a significant

impact on game outcomes, and understanding when and why they exist can be important for

players to maximize their payoff.

3.5 - Finding Optimal Strategies and Pure Nash Equilibria

First we examine the problem of a single player optimizing their strategy - given the

network, and an opponent's strategy, what is my best response? We then discuss how we can

either exhaustively enumerate the payoff matrix to find all of the pure Nash equilibria (defined in

Section 3.5.2), or we can use best response dynamics to find a single pure Nash equilibrium. Best



response dynamics optimizes each player's strategy individually, given the other player's current

strategy (it finds their best response). For example, we fix the US player's strategy, and then

optimize the TB strategy. This gives us the best response strategy for the TB. We then fix the TB

player's strategy and optimize the US player's strategy against the TB strategy (find the US best

response). This continues until a strategy profile is reached from which neither player can find a

better strategy. Best response dynamics is not guaranteed to find pure Nash equilibrium strategy

profiles unless the payoff matrix can be expressed as using convex function, but Chapter 4 shows

that best response dynamics is able to find pure Nash equilibria very well in our game.

3.5.1 - Finding Optimal Strategies

An obvious question any player would want to ask is, "What is my best strategy?" Given a

network, and an opponent's strategy, where should we connect our stubborn agents to have

maximal influence in the network? Solving this problem can be very challenging for two

reasons. First, if a player has several connections, the number of strategies increases

exponentially with the number of connections, and it becomes difficult to efficiently search

through the strategy space. Second, because the strategy sets are discrete, we cannot use any type

of gradient descent or non-linear programming methods to find an optimal solution; any math

program would have to be an integer program with a large number of binary decision variables.

Hung's work focused on developing such a math program to find strategies, but the

formulation and solver used did not return optimal solutions. In this section we will discuss

another approach that finds good solutions that are close to optimal (though there is bound of

how close to optimal).

3.5.1.1 - Exhaustive Enumeration

Description

Exhaustive enumeration means that we evaluate every possible strategy available for a

player, and then select the highest payoff strategy for that player.

Benefits/ Disadvantages

There are two advantages to this method. First - it guarantees optimality - we have searched

every possible solution and chosen the best available payoff. Second - it shows if there are



multiple optimal solutions. While this is easy to do for smaller networks, the problem becomes

intractable very quickly. For example in a 20 agent-network in which a player has 3 connections

we must calculate 203=8000 potential strategies for the player in order to guarantee optimality. In

general, finding a single player's optimal strategy given an opposing strategy takes nc

calculations in our payoff function, where n is the size of the network, and C is the number of

connections defined above. When considering each strategy, a new VV matrix must be calculated

(which take O(n 2) calculations) and then inverted (which requires O(n 3)) for every calculation of

a player's payoff[20]. This means that each strategy evaluated takes O(n 3 ) calculations, and there

are nc strategies that must be evaluated. This yields 0(n3 *nc)=O(nc+ 3 ) calculations required to

use this method. This is polynomial for a fixed C, but as C increases, the time required for

exhaustive enumeration increases exponentially. In general the method is very efficient for C=1,

but for values of C that are larger than one this method is very slow.

3.5.1.2 - Simulated Annealing

Description

Simulated Annealing is a neighborhood random search heuristic first described in 1983 by

Kirkpatrick et al[21]. The heuristic is designed to simulate a system cooling (annealing). There is

a system temperature that start at 1, and decreases geometrically with every iteration. The

geometric decrease is defined as:

Temperature=a*Temperature

where a is the cooling rate, (generally between 0.95 and 0.99)

At each step, the heuristic checks a random neighboring solution, and moves there if the

solution is an improvement. If it is not, then with some probability that decreases as the

temperature decreases, the heuristic may still move to it. As the temperature of the system cools,

the heuristic will only take improving steps and settles into some local optimum, until finally the

temperature reaches some minimum value and the algorithm is terminated.

The definition of a neighboring solution can mean many things; for our algorithm we define

a neighboring solution as follows:

1). Choose a random stubborn agent, agent i.



2). Choose one of their connections to a neighboring agent j at random.

3). Choose a random agent k that is a neighbor of agent j.

The neighboring solution is the one in which connection i-j is replaced by i-k.

An example of this is demonstrated below in Figure 3.6.
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Figure 3.6 - Illustration of Neighboring Solutions for Simulated Annealing

If the neighboring solution increases our payoff, then it becomes the new solution. If it does

not improve our payoff, then it may still be chosen probabilistically, as a function of the

temperature of the system. The probabilistic function we use is:

P(Moving to nonimproving solution) = e
New Solution Payoff-Current Solution Payoff

Temperature



In the example from Figure 3.6, the neighboring strategy {12,21 yields less payoff than the

original solution of {1,21 for the US player. The algorithm will move to this solution with

probability:

f({1,2})-f({12,2)

P(Strategy f 1,2} is discarded for {12,2}) = e Temperature

A summary of the simulated annealing heuristic we use is below.

Simulated Annealing Heuristic Summary

Initial strategy is So, and the new strategy is S1.

The payoff function isf(e).

Initial Temperature = 1.

1. Choose one of the player's stubborn agents at random, agent i.

2. Choose one of agent i's connections to some neighboring agent j at random.

3. Choose one of agent j's neighbors at random, agent k. Let strategy Si be the strategy

where connection i-j is replaced by i-k.

4. If f(So) < f(S) then change to strategy S,

f(si)-f(so )
5. If f(So) > f(Sl) then with probability eTemperature change to strategy S]; otherwise

retain strategy So.

6. Temperature=a*Temperature, where a is a cooling rate less than 1 (0.97 in our code)

Iterate until the temperature drops below the minimum temperature (below 10-20 in our

code).

The algorithm also keeps track of the best solution seen thus far. Once the algorithm

terminates, it returns the best solution seen thus far (which may or may not be the ending

solution). The algorithm runs for log (minimum temp) iterations. With a cooling rate of 0.97 and
log (a)

minimum temperature of 10-20, this is ~1500 iterations. Each step of the algorithm calculates a

new VV matrix and inverts it, requiring 0(n3) calculations. As shown, the heuristic runs through a

fixed number of iterations, which does not scale with n.



Benefits/Disadvantages

One of the major advantages of simulated annealing is that it has been widely used; it is well

understood and has been shown to generate high quality solutions in practice. It also runs very

quickly compared to the solution times required for Hung's math program, and is relatively easy

to implement. The major disadvantage of simulated annealing is the same as all heuristics - it

has no guarantees on the quality of solutions but this is also true for Hung's optimization

problem due to the non-convexity.

3.5.2- Finding Nash Equilibria

The previous section discussed how to find an optimal strategy given a fixed opposing

strategy. In the game, a player's opponent cannot be counted on to play a fixed strategy

throughout. One way to better understand the dynamics of how players behave in the game is to

find and characterize the pure Nash equilibrium strategy profiles in the game.

Finding Nash equilibria within a payoff matrix is a straightforward thing to do. Any Nash

equilibrium corresponds to cells that are both row and column maximums for each player (which

means that no unilateral deviation can improve their payoff). The difficulty in this case becomes

the problem of calculating the payoff matrix. If we had a 20 agent network, with 2 connections

each, the payoff matrix would be 202 x 202 or 400 x 400 = 16000 entries. Given the fact that

calculating all of these entries each takes O(n3) calculations, we need O(ncncn 3) =O(n2C+3 ), or

O(20')-O(10) calculations to fully enumerate the payoff matrix. Although Chapter 4 has

experiments that exhaustively calculate the payoff matrix when C=1, this is not a tractable

approach for finding Nash equilibria with more than one connection per player.

To deal with this problem we again use the simulated annealing heuristic. Each time

simulated annealing is used for a player, it is the same as doing a row or column search for an

optimal solution. Nash equilibria can be found by running simulated annealing for one player,

and then for the other player, and then repeat this over and over until we converge to a stable set

of strategies. If we converge to a pure Nash equilibria, then no unilateral deviation can produce

an improved payoff for either player, which means simulated annealing will not be able to find

any improvements.



This method of repeatedly optimizing each player's strategy while fixing the other one is

called best response dynamics. There is no guarantee that best response dynamics will converge

to a pure Nash equilibrium strategy profile, however in Chapter 4 we find that for our game on

the payoff functions defined, best response dynamics generally does converge to pure Nash

equilibrium strategy profiles.
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Figure 3.7 - Notional Search through the Payoff Matrix via Simulated Annealing using Best

Response Dynamics

Both players start at strategy nc-J and the TB player gets a payoff of 5 and the US player gets 1. Through simulated annealing the US

player finds a strategy that increases their payofffrom I to 3. The TB player then finds a strategy that increases their payofffrom 2 to 3. The US

and TB then continue to unilaterally improve their payoffs and eventually the Nash equilibrium strategy where both players use strategy 2 and

get a payoff of 3 is found through best response dynamics.

Figure 3.7 shows a notional payoff matrix for a zero-sum game, where simulated annealing

conducts row and column searches until it reaches the estimated Nash equilibrium. We estimate

that a Nash equilibrium is reached if, after several iterations for both players (we use 5 in our

code), no improvements have been found. Short of calculating the entire row and column in the

payoff matrix, it is unknown whether the resulting solution is a true Nash equilibrium, but



Chapter 4 provides strong evidence indicating the method works well in practice. The key

advantage to this approach is that simulated annealing searches through the payoff matrix

without fully enumerating it.

The simulated annealing method does have a significant disadvantage - it has difficulty in

cases with multiple equilibria. It can find a pure Nash equilibrium if at least 1 exists, but this

does not mean there are not others. Even if the algorithm is run several times with random

starting solutions (a multi-start approach), it may converge to a single equilibrium repeatedly,

having difficulty finding the other equilibria. A deeper discussion of this along with experimental

results is presented in Chapter 4.

3.6 - Modeling Summary

We described a stochastic, pairwise-interaction model with stubborn agents whose beliefs

never change. Although this stochastic network does not converge to a fixed set of beliefs, it

does converge in expectation. This equilibrium can be easily calculated using an isomorphism to

a Markov chain. Unfortunately the second moment of the network beliefs cannot be efficiently

calculated but we examine (3.31) (the bound on standard deviation from Yildiz et al) in Chapter

4 to see whether it has any use as a metric. The stochastic network's equilibrium is independent

of the starting beliefs, and depends only on the topology and influence parameters. More

specifically it depends on the probabilities of stubborn nodes absorbing random walks on the

associated Markov chain. We defined a 2-player game where each player controls a fixed

number of connections from their set of stubborn agents to the rest of the network. For this game

we defined 3 different payoff functions, where all of the payoff functions are measures of

network properties at equilibrium. This makes the support space of the payoff functions

tractable because the equilibrium state depends only on the connections made (strategies

chosen). We defined a simulated annealing heuristic for finding near-optimal solutions for a

single player, in addition to exhaustive enumeration. The simulated annealing heuristic can be

used to rapidly find estimated pure Nash equilibria in the game using best response dynamics

without fully calculating the payoff matrix.
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4 - Experiments and Model Analysis

In this chapter we conduct several experiments to understand the dynamics of the 2-player

game and analyze the simulated annealing heuristic. The first set of experiments finds the Nash

equilibria in a variety of networks. Next we examine the bound on standard deviation proposed

by Yildiz et al discussed in Chapter 3 to see if it properly characterizes the standard deviation in

this model. Third, the simulated annealing heuristic is analyzed to better understand its

performance. Fourth we perform sensitivity analyses on the model with regard to the influence

parameters. Finally we conduct an experiment showing how the game can naturally lead to non-

symmetric low variance equilibria when players value agents differently.

4.0.1 - Data Parameters

In all of the experiments (except the sensitivity analysis section) we use the same set of

influence parameters used by Hung. This is done so that we can compare our results to his. In

addition, the numbers chosen by Hung were based on his research of Pashtun societal structure

and thus were intended to be representative of an actual society. Furthermore, sensitivity

analyses of these influence parameters conducted in Section 4.4 show surprising robustness to

significant variations in the parameters, indicating that even if these parameters aren't entirely

accurate, we can still have a high degree of confidence in the results.

The influence parameters developed by Hung for 'regular' agents are:

tl;=1.0, aiy=O.O, rij=o-o, if ij E VR
flj;=O.o, aij=1.0, yjj=o.o, if i E V, U Vy,j E VR (4.1)

(4.1) means that a villager who is a 'regular' agent (head of household (E VR)) always

reaches a pair-wise consensus with other regular agents, and always adopts a higher leader's

attitude. Hung's parameters for 'influential' village leaders and district/regional leaders are:

1 flij=o.1, ai;=o.o, yj;=o.9, if ij E V
flj=o.1, aij=o.o, yij=o.9, if ij E Vv (4.2)



This second set of parameters in (4.2) implies that a village leader (E VI) or district/regional

leader (E Vy) reaches a pair-wise consensus with another leader of the same level with small

probability (0.1), but would otherwise retain their own attitude.

{fli=O.1, aij=O.4, Yij=O.5, if i E VyJ E VI (4.3)

The parameters in (4.3) imply that an 'influential' village leader reaches a pair-wise

consensus with a 'very influential' district/regional leader with small probability (0.1), and either

adopts the district/regional leader's attitude (0.4) or retains his own attitude with greater

probability (0.5).

(pij=0.0, a;=1.0, yj=0.0, if i E Vs,j E VM
flij=o.o, aij=o.o, yi;=1.o, if i,j E Vs (4.4)

This final set of parameters implies both the US and Taliban stubborn agents can always

persuade any other agent to adopt their extreme attitude. This last assumption is justified by the

observation that Taliban agents use armed propaganda and violence to persuade the population.

Similarly, US forces have significant resources at their disposal to build projects and aid the local

economies, and thus both wield significant influence.

4.0.2 - Experimental Setup

The computer used to perform all of the analysis is an HP Pavilion Notebook, with an AMD

Turion II dual core Mobile M500 processor running at 2.2 GHz. The laptop has 8 GB of RAM,

and is running 64 bit Windows 7 Home Premium. All of our code is written and run in 32-bit

MATLAB version 8.8.0.346.

4.1 - Experiment Set 1: Characterizing Nash Equilibria

The purpose of this first set of experiments is twofold. First, it will verify when pure Nash

equilibria exist in our game. Second, it will provide a set of Nash equilibria for us to compare

other experiments against. For these experiments, we exhaustively enumerate the payoff matrix.

As previously discussed in Chapter 3 computationally this can be very slow, but for a single

connection per player (C=1), run times are reasonable. Furthermore, it is important for us to



ensure optimality for this first set of experiments to provide a set of baseline results to later

compare against heuristics to see whether they achieve optimality or not.

Three major classes of networks are analyzed along with two other specific networks created

by Hung's network data generator. The three major classes are line networks (Figure 4.1), circle

networks (Figure 4.9), and (fully) connected networks (Figure 4.12). Line networks and circle

networks with both odd and even numbers of mutable agents are analyzed as well as different

cases for each network type where there are different structures of 'regular', 'influential', and

'very influential' agents. Each case is selected to characterize a topology that is representative of

properties found in segments of larger more complex networks. The full listing of networks is

summarized in Table 4.1.

Graph # Mutable
Type Agents Description Reason

9
Case A - AI agents are'regular' Base Case

9 Case B - 1 'Influential' agent in the middle, rest are How does the addition of an agent that is both
10 'regular' influential and central effect the network?

9 Case C - I 'Infl uential' agent on the end, rest are How does an influential but peripheral agent affect
10 'regular' the network?

9
Case A - All agents are 'regular' Base Case

9 Case B - 1 'Infl uential' agent, rest are 'regular' How does the addition of a single influential agent
10 affect the network?

ii 9 Case C - 2 'Influential' agents on opposite sides, rest are What happens when 2 influential agents are on
10 'regula r' opposite sides of a society?

9 Case D - 2 'Influential' agents adjacent, rest are 'regular' What happens when both influential agents are
10 highly connected?

Case A - AlI agents are'regular' Base Case
10

CC
1 Case B - I Influential agent, rest are'regular' Effect of influential agent in highly connected groups?o 10

Case C - 1 'Very Influential' agent, 2 'Influential' agents, Effects of multiple types of agents in highly connected
_ _ 10 rest are 'regular' groups?

Table 4.1 - Network Test Case Descriptions

For all of these cases each player has one stubborn agent with a single connection. The

strategy for each player is defined by the choice of agent they connect the stubborn agent to.

Each player has 9 or 10 options (depending on how many mutable agents are in each network).

For the line networks and circle networks we test both with 9 and 10 mutable agents each in

order to see if having odd or even degree (numbers of mutable agents) affects the pure Nash

equilibria. All initial beliefs for mutable agents are 0 (i.e,- initially they are indifferent to

supporting the Taliban or US Forces).



Three experiments for each network are performed - first the Nash equilibria are calculated

when both players' payoff function is f(-) (mean belief); second, when both use the payoff

function g (-) (agents won in equilibrium); and third, when the TB player uses f(-), and the US

player uses g (-). The first two experiments are both zero sum games, but use different payoff

functions. They will give some intuition on when and why different equilibria arise under

different functions. The last experiment examines how the equilibria change when players have

different payoff metrics, and whether non-symmetric equilibria and first mover advantages come

into existence with different payoff functions.

Throughout the discussion of experimental results we refer to the 'centrality' of an agent in

the network. There are several possible definitions of centrality. Here we use the term to mean

the average number of steps required to get to any other agent in the network (where a step is

moving to an adjacent agent). We also use the term 'strategy profile' throughout the chapter. For

our game, a strategy profile is a vector containing the strategy of the TB player and the US

player. Any pure Nash equilibrium has an associated strategy profile (although not every strategy

profile is a pure Nash equilibrium).

4.1.1 - Line Networks

Figure 4.1 has diagrams of each of the cases of the even degree (10 mutable agent) line

networks (diagrams of all of the networks along with their Nash equilibria are in Appendix B), to

better illustrate the structure. The three cases allow us to examine the effect of an influential

agent that is highly central versus one that is on the periphery of the network. It will help

determine whether or not peripheral influential agents have a significant impact on pure Nash

equilibria.

12 12 12

Case A: All 'regular' Case B: 1 'Influential' in Middle Case C: 1 'Influential' on end
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

11 11 11

Figure 4.1 - Even Line Network Test Cases



4.1.1.1 - Payoff Functions: Mean Belief vs. Mean Belief (f(-) vs. f(-))

Table 4.2 shows all of the pure Nash equilibria in the line network for 'mean belief' vs.

'mean belief' payoff functions. Each strategy profile corresponding to a pure Nash equilibrium is

denoted as (x,y), where x is the strategy for the TB player and y is the strategy for the US player.

Because both players have identical payoff functions, if strategy profile (x,y) is a pure Nash

equilibrium, so is (y,x), although these matching strategy profiles are not listed in Table 4.2 for

brevity.

Pure Nash Equilibria for Line Networks
Payoff Functions - Mean Belief vs Mean Belief
Case Even Degree Odd Degree

A (5,5), (5,6), (6,6) (5,5)

B (5,5) (5,5)
C (8,8) (7,7)

Table 4.2 - Line Network Nash Equilibria for f(-) vs t(-)

For each test case A, B, and C, the pure Nash equilibria are found by enumerating the entire payoff matrix when both players use the

mean belief' payofffunction This is done for even degree line networks (10 mutable agents) and odd degree line networks (9 mutable agents).

Each pair (xy) is a strategy profile corresponding to a pure Nash equilibrium where X is the TB player's strategy and Y is the US player's

strategy. For these payofffunctions if (x,y) is an equilibrium so is (y,x).

For case A (all regular agents), the results are not surprising - when all agents are of the

same type, centrality is the most important factor in determining Nash equilibria. On the even

degree line network we do see multiple pure Nash equilibria corresponding to the two most

central agents (agent 5 and 6 are equally central). Figure 4.2 shows two different pure Nash

equilibrium strategy profiles on the line network with even degree and all regular agents.



Figure 4.2 - Even Line Network Equilibrium Beliefs with Different Strategy Profiles that are

both Pure Nash Equilibria

The network on the left shows the equilibrium beliefs of each agent when the US player connects to 5 and the TB player connects to 6.
Each player strongly influences 5 of the agents, but the mean belief of the network is zero. On the right both players connect to agent 5, and the

equilibrium belief of every agent is zero, yielding a mean belief of zero. This shows 2 different strategy profiles that are both pure Nash equilibria

and have identical payoffs for the players, but result in different equilibrium beliefs for the mutable agents.

In Case B, both players connecting to the influential agent in the middle is the only pure

Nash equilibrium strategy profile, whether there are even or odd numbers of agents. This is

expected, because the middle agent is both highly central and the most influential agent in the

network.

Case C has much more interesting equilibria due to two different phenomenon. First, with

the current influence parameters, 'regular' agents cannot change the minds of influential agents

(belief only flows down to regular agents, never up to more influential agents), which means that

if no stubborn agent connects to an 'influential' agent, that agent will never change its belief, and

effectively becomes a new type of stubborn agent with belief 0. Second, influence gets diffused

over a long chain of agents. To better understand why connecting to the most influential agent is

not an equilibrium strategy, we consider an example where the TB player connects to the

influential agent (agent 1) under the naYve belief that this is the best strategy. Assuming complete

information (players know the payoff matrix) and rationality, the US player would then connect

to agent three and get an expected mean belief of 0.18 (see Figure 4.4). Figure 4.3 shows the

equilibrium beliefs of each agent in the network if the TB player chooses to connect to agent one,

and the US player connects to agent three.

I



Figure 4.3 -Even Line Network, Case C Equilibrium Beliefs for 1 vs. 3

Connecting to the most influential agent is not always the best strategy. If the TB player connects to the influential agent above, they

influence agent I very strongly, but the US player is able to strongly influence agents 3-10 and cause the mean belief of the network to be 0.188,

which yields a payoff of -. 188 for the TB player.

Figure 4.3 shows that although the TB influences agent one's belief to -0.5, the influence is

rapidly diffused through the line network, and the US player strongly influences agent three and

everything to the right of it. The reason that agent three is not completely won over to belief of

+0.5 is that agent two moderates agent three's belief. This outcome is not good for the TB player,

as Figure 4.4 shows that it yields -0.188 payoff (negative of US player). Assuming that the TB

has full information and is rational, they would then connect to agent four. Each player then

continues to move away from the influential agent until they both reach agent eight, which is the

pure Nash equilibrium. Figure 4.4 shows the payoff matrix along with the set of strategy changes

each player would make in order to maximize their payoff, eventually leading to the equilibrium

strategy profile (8,8). Once they are at (8,8), any deviation by either player would strictly

decrease their payoff (cell (8,8) is the maximum of the column and minimum of the row).

12
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TB Player chooses to connect to the influential agent

'00orStrategy for TB Playe r

112 3 4 5 6 7 8 9 10
1 .00 -0.100 -0.188 -0.186 -0.164 -0.131 -0.094 -0.053 -0.011 0.026
2 .10 0.000 -0.249 -0.257 -0.245 -0.224 -0.197 -0.168 -0.136 -0.109
3 .18 -____ 4 -0.188 -0.186 -0.167 -0.139 -0.105 -0.069 -0.037

4 . 0.257 0.188 0. -0.140 -0.130 -0.106 -0.073 -0.036 -0.003
2 5 .1 0.245 0.186 0. 0 0.000 -0.093 -0.076 -0.046 -0.009 0.024
S6 .13 0.224 0.167 0.130 . . -0.047 -0.022 0.013 0.047
w 7 .09 0.197 0.139 0.106 0.076 0.047 0 -0.002 0.032 0.067
. 8 .05 0.168 0.105 0.073 0.046 0.022 0.002 .000 0.043 0.080

9 .01 .136 0.069 0.036 0.009 -0.013 -0.032 -0.043 0.000 0.081
10 .02 109 0.037 0.003 -0.024 -0.047 -0.067 -0.080 -0.081 0.000

US Player responds by connecting to agent 3

Figure 4.4 -Even Line Network, Case C Payoff Matrix Showing Convergence to Nash

Equilibria

Though best response dynamics, even if the TB player starts with a sub-optimal strategy, the players can unilaterally search through the

payoff matrix and get to the pure Nash equilibrium strategy profile of (8,8).

These results at first may seem counterintuitive, but occur because regular agents cannot

change the belief of influential leaders. For an odd-degree network the equilibrium is at agent

seven instead of agent eight, but the principles causing this are identical.

This simple example also demonstrates best response dynamics. Each player takes the

other's strategy as a fixed strategy, and then finds their best possible response to it. This is then

repeated for the other player. This is continued, resulting in a series of row and column searches

through the payoff matrix.

4.1.1.2 - Payoff Functions: Agents Won vs. Agents Won (g () vs. g())

In case A the results for g (-) vs. g (-) are the same as when using the 'mean belief' payoff

functions (f(-) vs. f(-)), which is not surprising. In the absence of influential agents, centrality

among the regular agents remains the most important factor even with the new payoff function.

Case B has similar results - players choose to connect to the influential agent that is also the

most central in the network.



Pure Nash Equilibria for Line Networks
Payoff Functions - Agents Won vs Agents Won

Case Even Degree Odd Degree
A (5,5), (5,6), (6,6) (5,5)

B (5,5) (5,5)

C (6,6) (5,5), (5,6), (6,6)

Table 4.3 -Line Network Nash Equilibria for q(-) vs q(-)

For each test case A, B, and C, the pure Nash equilibria are found by enumerating the entire payoff matrix when both players use the

'agents won' payofffunction. This is done for even degree line networks (10 mutable agents) and odd degree line networks (9 mutable agents).

Each pair (x,y) is a strategy profile corresponding to a pure Nash equilibrium where X is the TB player's strategy and Y is the US player's

strategy. For these payofffunctions if (xy) is an equilibrium so is (y,x).

In case C, for the even degree line network, each player connects to the most central agent

and both get zero payoff. The odd degree line network yields more interesting results in Case C.

Because regular agents cannot change the belief of influential agents it affects the equilibrium in

a surprising way. To better understand this, Figure 4.5 shows the payoff matrix for the US player

(the TB player's payoff is the negative of this matrix).

Expected Nodes Won by US Player
Strategy for TB Player

1 2 3 4 5 6 7 8 9

1 0 -7 -5 -5 -3 -3 -1 -1 1

5 2 7 0 -6 -6 -6 -4 -4 -4 -2
M 3 5 6 0 -4 -4 -2 -2 0 0

'A 4 5 6 4 0 -2 -2 0 0 2

0 5 3 6 4 2 0 0 0 2 2

6 3 4 2 2 0 0 2 2 4

7 1 4 2 0 -2 0 4 4

0 8 1 4 0 0 -2 -2 -4 0 6
9 -1 2 0 -2 -2 -4 -4 -6 0

Set of Equilibrium Payoffs

Figure 4.5 - Line Network, Case C Payoff Matrix for q(-) vs q)

Above we see that if the TB players selects any strategy besides 5 or 6, then the US player can find a strategy with positive payoff -

meaning that column 5 and 6 are the only columns with no positive entries. Because the TB player's payoff is the negative if the US player's

payoff under these payofffunctions, it means that if the TB player selected any strategy besides 5 or 6, then the US player's best response would

yield negative payofffor the TB player.



Figure 4.6 shows what the equilibrium beliefs of the network are under the pure Nash

equilibrium strategy profile (5,6).

Figure 4.6 - Line Network, Case C, Equilibrium Beliefs When Playing Nash Equilibrium

Strategy

With the strategy profile (5,6), the TB player influences agent 2, 3, 4, and 5 enough to make them have negative equilibrium beliefs, The
US player influences agents 6, 7, 8, and 9 such that their equilibrium beliefs are positive. Agent 1 maintains their initial belief of 0 because agent

2 cannot influence them - 'regular' agents cannot influence 'influential' agents. This means both players 'win' 4 agents and 'lose' 4 agents,

yielding zero payofffor both under the 'agents won' payofffunction.

Under the payoff function of 'agents won', case C becomes equivalent to a line network

with eight regular agents and the influential agent can be ignored in the network.

4.1.1.3 - Payoff Functions: Mean Belief vs. Agents Won (f(-) vs. g (-))

For this set of payoff functions it cannot be assumed that if (x,y) is an equilibrium that (y,x)

is an equilibrium. The payoff functions for each player are different and there is no guarantee of

symmetric equilibria.

1 2



Pure Nash Equilibria for Line Networks
Payoff Functions - Mean Belief vs Agents Won

Case Even Degree Odd Degree
A (5,5), (5,6), (6,5), (6,6) (5,5)
B (5,5),(5,6) (5,5)
C (7,6), (8,7) (7,6),(6,5)

Table 4.4 - Line Network Nash Equilibria for f (-) vs g (-)

For each test case A, B, and C, the pure Nash equilibria are found by enumerating the entire payoff matrix when the TB player uses the
'mean belief' payofffunction and the US player uses the 'agents won' payofffunction. This is done for even degree line networks (10 mutable

agents) and odd degree line networks (9 mutable agents). Each pair (xy) is a strategy profile corresponding to a pure Nash equilibrium where X

is the TB player's strategy and Y is the US player's strategy.

In case A both players connect to the most central agents. For the even degree case, any set

of any agents five and six will yield a 'mean belief' of zero and hence zero payoff for the TB

player. It also yields zero payoff for the the US player under the 'agents won' payoff function.

Thus in case A both players get zero payoff in the any of the equilibria.

Case B has an interesting result for the even degree network. The TB player only wants to

connect to agent five, but the US player can connect to agent 5 or 6 and still have a pure Nash

equilibrium strategy profile. This is our first example of a non-symmetric equilibrium. It also

demonstrates the game is not zero-sum, because if both connect to agent five then they both get

zero payoff (mean belief of all agents is zero with identical strategies), but if the US player

instead connects to agent 6 we see an increase in the TB player's payoff to 0.125 (see Figure

4.7), while the US player's payoff remains zero. This shows the game is non-zero sum, because

the TB increases their payoff without decreasing the US payoff (which remains zero either way).



Beliefs When Plaving

Strategy

The TB player influences agents 1, 2, 3, 4, and 5 stronger than the US player influences agents 6, 7, 8, 9, and 10. The TB player using the
mean belief' payofffunction gets a payoff of 0.125. The US player using the 'agents won' payofffunction 'win's 6-10, but 'loses' 1-5 yielding

zero payoff

Case C also yields interesting results. There are two equilibria, with different payoffs for

each player. Table 4.5 summarizes the payoffs for each player at the two equilibria in the even

network (similar results apply for the odd degree case).

Strategy Profile TB Player Payoff US Player Payoff
(7,6) 0.0475 1
(8,7) 0.0002 3

Table 4.5 - Player Payoffs at Equilibrium for Line Network, Case C, f () vs a(.
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Figure 4.7 - Line Network Case B Equilibrium
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Figure 4.8 - Depiction of Equilibrium Beliefs of Line Network, Case C, f (- vs (- Using

Equilibrium Strategies

If the US player gets to select which agent to connect to first, then they will select agent 7 because it yields greatest payofffor them. This

would cause the TB player to select agent 8, as it is the best response for them given that the US player has selected agent 7. If the TB player

selects first, then they would select agent 7, because it would maximize their payoff However, once the TB player has chosen agent 7, the US

player's best response becomes agent 6. This is an example of a first-mover advantage.

Table 4.5 and Figure 4.8 show that having different payoff functions can induce a first

mover advantage to the game.

4.1.1.4 - Line Network Experiment Summary

The first sets of experiments on the line networks have shown that with identical payoff

functions it is a zero sum game with no first mover advantage. There are not significant

differences between even and odd degree line networks. In some cases having a different degree

can add or remove equilibria, but the principles that lead to the existence of the equilibria

(generally centrality and influence) do not change whether the network has odd or even degree.

When players use non-identical payoff functions the game can become non-zero sum, non-

symmetric equilibria may exist, and a first mover advantage can be created.

We have also seen that the power of a single influential agent can be rapidly diffused over a

line of regular agents, and effectively isolated from the rest of the network. This means that

peripheral influential agents may have minimal effects on the rest of the network.

Finally, we see that pure Nash equilibria exist in all of the line networks, regardless of

payoff functions.



4.1.2 - Circle Networks

The next set of experiments is conducted on circle networks of both odd and even degree

(again 9 and 10 mutable agents each). The major difference between the circle networks and line

networks is that every agent is equally central in a circle network. Four different cases are

examined for the circle networks. Case A has all regular agents, Case B has a single influential

agent, Case C has two influential agents on opposite sides of the circle, and Case D has

influential agents adjacent to each other. This helps to examine the effect of highly central and

connected influential agents versus influential agents controlling a small neighborhood of regular

agents. Case C is an example wherein two groups interact with each other, but whose leaders

have no direct communication with one another. Figure 4.9 has depictions of each of the

different cases (all even degree).

Case A: All 'regular' Case B: 1'influential'

12 12

10 2 10 2

9 3 9 3

7 55
6 6

Case C: Two 'influential'on opposite sides Case D: 2 'influential' adjacent

1 12 12

10 2 10 2

9 3 9 3

7 5 7 5
6 6

11 11

Figure 4.9 - Even Circle Network Test Cases



4.1.2.1 - Payoff Functions: Mean Belief vs. Mean Belief (f(-) vs. f(-))

For the circle networks with mean belief vs. mean belief, we see that the determining factor

for the pure Nash equilibria is the level of influence of an agent. In Case A when there are no

influential agents, any pair of agents is an equilibrium strategy profily. For all other cases the

equilibria correspond to influential agents, as seen in Table 4.6.

Pure Nash Equilibria for Circle Networks
Payoff Functions - Mean Belief vs Mean Belief

Case Even Degree Odd Degree
A All pairs All pairs
B (1,1) (1,1)
C (1,1), (1,6), (6,6) (1,1), (1,5), (5,5)
D (1,1), (1,10), (10,10) (1,1), (1,9), (9,9)

Table 4.6 - Circle Network Pure Nash Equilibria for f (-) vs f()

For each test case A, B, C, and D, the pure Nash equilibria are found through enumerating the entire payoff matrix when both players use

the 'mean belief' payofffunction. This is done for even degree line networks (10 mutable agents) and odd degree line networks (9 mutable

agents). Each pair (x,y) is a strategy profile corresponding to a pure Nash equilibrium where X is the TB player's strategy and Y is the US

player's strategy. For these payofffunctions if (x,y) is an equilibrium so is (y,x). All strategy profiles corresponding to pure Nash equilibria only

connect to influential agents.

When all agents are regular, any strategy profile is a pure Nash equilibrium. This is due the

symmetry in the circle network with no influential agents. Figure 4.10 shows an example of this.



Figure 4.10 - Circle Network, Case A Equilibrium Beliefs When Playing Nash Equilibrium

Strategies

Each player connects to a regular agent. For every agent that they influence more than the other player. there is an agent opposite them

that the other players influences identically. For example, agent 3 is won very strongly by the US player, but agent 8 is won equally strongly by

the TB player. Thus the mean belief of the network is zero

For cases B, C, and D, any strategy profile consisting of any combination of influential

agents is a pure Nash equilibrium. This occurs because in a circle network all agents are equally

central. Thus the positioning of influential agents is less important than in the line networks, and

it is unsurprising that the forcefulness of an agent is the most important characteristic in

determining pure Nash equilibria strategy profiles.

4.1.2.2 - Payoff Functions: Agents Won vs. Agents Won (g(-) vs. g(-))

For these payoff functions the results for Case A are identical to 'mean belief' vs. 'mean

belief'. The symmetry of the circle network when all agents are regular makes any set of agents

an equilibrium strategy profile, where each player 'wins' five agents and 'loses' five agents,

yielding a payoff of 0 (or they have matching strategies and every agent has mean belief zero

yielding zero payoff for both players).



Pure Nash Equilibria for Circle Networks
Payoff Functions - Agents Won vs Agents Won

Case Even Degree Odd Degree
A All pairs All pairs
B (1,1), (1,6), (6,6) (1,1)
C (1,1), (1,6), (6,6) (1,1), (1,5), (5,5)
D (1,1), (1,10), (10,10) (1,1), (1,9), (9,9)

Table 4.7 - Circle Network Pure Nash Equilibria for g(-) vs g (-)

For each test case A, B, C, and D, the pure Nash equilibria are found by enumerating the entire payoff matrix when both players use the

'agents won' payofffunction. This is done for even degree line networks (10 mutable agents) and odd degree line networks (9 mutable agents).

Each pair (x,y) is a strategy profile corresponding to a pure Nash equilibrium where X is the TB player's strategy and Y is the US player's

strategy. For these payofffunctions if (x,y) is an equilibrium so is (y,x).

Case B has a more interesting result. There is only 1 influential agent, but there is a pure

Nash equilibrium involving agent six, which is not an influential agent. This is because agent six

is exactly opposite of the influential agent.

Figure 4.11 - Circle Network, Case B Equilibrium Beliefs When Playing Nash Equilibrium

Strategy Profile (1,6)

Although the TB player influences agents 9, 10, 1, 2, and 3 stronger than the US player influences 4, 5, 6, 7, and 8, they each influence 5

agents stronger than the other player. Under the 'agents won' payoff function this means they each get 5 points and lose 5 points, yielding a

payoff of zero for both, even though the TB player wields more overall influence in the network equilibrium beliefs (the equilibrium mean belief of

the network is negative)



4.1.2.3 - Payoff Functions: Mean Belief vs. Agents Won (f (-) vs. g (-))

For this combination of payoff functions there is no guarantee of symmetric equilibria, and

the reader should not assume that if (x,y) is a pure Nash equilibrium then (y,x) is also an

equilibrium unless it is listed in the table. Again for a circle network of all regular agents any

strategy profile is a pure Nash equilibrium due to the symmetry.

Pure Nash Equilibria for Circle Networks

Payoff Functions - Mean Belief vs Agents Won

Case Even Degree Odd Degree

A All pairs All pairs

B (1,1), (1,6) (1,1)

C (1,1), (1,6), (6,1), (6,6) (1,1), (1,5), (5,1), (5,5)

D (1,1), (1,10), (10,1), (10,10) (1,1), (1,9), (9,1), (9,9)

Table 4.8 - Circle Network Pure Nash Equilibria for f (-) vsg(-)

For each test case A, B, C, and D, the pure Nash equilibria are fbund by enumerating the entire payoff matrix when the TB player used

the 'mean belief' payofffunction and the US player uses the 'agents won' payoff function. This is done for even degree line networks (10 mutable

agents) and odd degree line networks (9 mutable agents). Each pair (x,y) is a strategy profile corresponding to a pure Nash equilibrium where X

is the TB player's strategy and Y is the US player's strategy.

Case B has a pure Nash equilibrium at (1,6). This is similar to what we saw in the g(-) vs

g(-) case. The TB player wants to select agent one because it is the best strategy under the mean

belief payoff function. The US player is ambivalent towards selecting either agent one or six, as

both of them yield a payoff of zero for the US. This is another example of a non-zero sum

equilibrium. If the US moves from strategy one to six, there is an increase in the TB's payoff

with no change in the US payoff.

In case C and D any combination of influential agents yields a pure Nash equilibrium, as

seen before. Because centrality is identical for all agents, influence is again the only determining

characteristic in determining pure Nash equilibria.

4.1.2.4 - Circle Network Experiment Summary

In the circle networks any strategy profile in a circle network with all regular agents is a

pure Nash equilibrium because all agents are equally central in a circle network. This symmetry

in circle networks makes the influence level of agents the most important factor in determining

pure Nash equilibrium strategy profiles.



4.1.3 - Fully Connected Networks

The third set of network is fully connected (meaning all agents are connected to all other

agents). These fully connected networks illustrate how equilibria are achieved in highly

connected networks. We do not test both even and odd degree cases, because there is no

significant difference for a fully connected network. No matter how many agents are in the

network, all agents are adjacent to every other agent. Three different cases are tested - Case A is

again all regular agents, Case B has a single influential agent, and Case C has 2 influential agents

and one very influential agent. These different cases will allow us to see the impact of the

introduction of a single influential agent, as well as the impact of multiple types of influential

agents. We do not consider different locations for the influential agents because all agents in the

network have identical positions (every agent is adjacent to every other agent). Figure 4.13 has

diagrams of the three cases.

Case A: All regular Case B: 1 Influential Case C: 2 x Influential, 1 Very Influential

1 12 112 112
10 2 + 10 2 + 10 2 +

9 3 3 93

1111I1

Figure 4.12 - Fully Connected Network Test Cases

In the fully connected networks the pure Nash equilibria are identical regardless of the

payoff functions used.



Neash Equilibria for Fully
Connected Graphs

Case Any Payoff Functions

A All pairs

Table 4.9 - Fully Connected Network Pure Nash Equlbi for All Payoff Functions

For each test case A, B ,and C the pure Nash equilibria are found by enumerating the entire payoff matrix when both players use

different payofffunctions. The equilibria turn out to be identical regardless of payoff function used. Each pair (x,y) is a strategy profile

corresponding to a pure Nash equilibrium where X is the TB player's strategy and Y is the US player's strategy.

These results are unsurprising. Every agent is equally central in a connected network, and

thus when there are all regular agents, any strategy profile is a pure Nash equilibrium. When an

influential agent is added, connecting to them should be the best strategy for both players to

choose, since the influential agent communicates directly with every other agent. When a very

influential agent is added the same phenomenon occurs, yielding the same results. In a fully

connected network the influence of an agent is the only thing that matters. It is also unsurprising

that this is independent of payoff function. The 'agents won' payoff function is related to the

mean belief payoff (very high mean belief also indicates large numbers of agents won). Thus, if

choosing one particular agent is a very strong strategy under one payoff function it is often a

strong strategy under the other.

4.1.4 - Small Rural Pashtun Network

This network was formulated as a simple scenario by Hung for experimental results

developed in his thesis. It is a 16 mutable agent network, with three villages. Each village has a

single 'influential' leader, and there is a 'very influential' agent at the district level that

influences each of the village leaders. Village leaders talk to adjacent village leaders, but the first

and third village leaders (agents 2 and 12) do not communicate directly.



Figure 4.13 - Small Rural Pashtun Network

As in all of the previous Nash equilibria experiments, each player controls the connection of

a single stubborn agent. This network differs from the three classes of networks previously

analyzed in that it is larger, more complicated, and has characteristics of each type. There are

small fully connected networks within each village, but connections between villages are much

sparser as in the circle and line networks. It also has a perfect correlation between centrality and

influence of agents. By this we mean that the most central agent is also the most influential, the

second most central agent (agent 7) is one of the second most influential, etc. This mixture of

both centrality and influence in the district leadership yields the following unsurprising results:

no matter which payoff function is selected, (1,1) is the only pure Nash equilibrium strategy

profile. This small rural Pashtun network has no non-symmetric equilibria or first-mover

advantages independent of payoff functions used.

4.1.5 - Large Rural Pashtun Network

The last network analyzed in this set of experiments is a large rural Pashtun network, also

developed by Hung in his thesis. This network is far more complex than any other network

analyzed thus far. It has seven villages of differing sizes. Villages have different mixes of

'influential' and 'very influential' agents, with several district leaders operating in the network.
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Figure 4.14 - Large Rural Pashtun Network

In this network, agents have different starting beliefs. The colors reflecting these initial

beliefs in Figure 4.14 help visualize the different villages and associated leaders, but these colors

do not represent any equilibrium beliefs.

Unlike most previous examples, determining which agents are most central and best to

connect to is not obvious in any way. It turns out that agent 48 is the most central agent (mean

distance of 1.68 to every other agent), with agent 70 being the second most central agent.

As in the small rural Pashtun network, we have a single pure Nash equilibrium for all sets of

payoff functions - strategy profile (70,70). This is surprising because agent 70 is not the most

central agent. To better understand this we looked at centrality among the 'very influential'

agents only, thinking that although agent 48 is more central, perhaps agent 70 has more centrality
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among the district leadership. Both agents 48 and 70 are equally central among the 'very

influential' agents, and also among all of the 'influential' agents. Clearly there is a more complex

relationship between agent 70 and the rest of the network beyond centrality, highlighting the

difficulty in determining these key influencers in social networks.

4.1.6 - Experiment Set 1 Summary

Every network analyzed had at least one pure Nash equilibrium. This provides evidence that

our game always has pure Nash equilibria. This is useful; if mixed Nash equilibria were present

it would mean that a player would have to randomly choose among a set of strategies, and telling

a US commander to randomly select among a set of strategies is not useful operationally.

For all of the experiments discussed above the times taken to exhaustively calculate the

payoff matrices and find the pure Nash equilibria are in Table 4.10.

Network Size Time (sec)
Line Networks 9-10 Agents 0.14
Circle Networks 9-10 Agents 0.14
Fully Connect Networks 10 Agents 0.15
Small Rural Pashtun Network 16 Agents 1.5
Large Rural Pashtun Network 73 Agents 300

Table 4.10 - Time to Find Pure Nash Equilibria through Exhaustive Enumeration

This shows the computational challenge that exhaustive enumeration has with larger

networks. The 9-10 agent networks run almost instantly, but a seven-fold increase from 10 to 73

agents results in 2000-fold increase in run time to find the equilibria.

Across all of the experiments we found that the strategy profiles correspdoning to pure Nash

equilibria are a function of centrality of agents combined with their influence level. In sparse

networks the centrality and topology of the network become the most important factors, but as

we increase the number of connections between agents, the influence level starts to dominate in

importance. Interesting results emerge in the cases between a sparse line network and a fully

connected network where a combination of location in the network and influence level combine

to make some agents more important than others. The larger and more complex the network

becomes, the more difficult it is to determine equilibrium strategy profiles simply using

centrality metrics.



We also find that using different payoff functions yields situations with non-symmetric

equilibria, and can induce a first-mover advantage, although we did not see any examples of this

in the larger networks. We believe this is mainly due to the high correlation between centrality

and influence level in the rural Pashtun networks.

4.2 - Experiment Set 2: Analysis of The Bound on Standard

Deviation

In this experiment we address the issue of variance in the model. There are two main reasons

for this. First - in the real world most players would prefer to avoid a highly variable strategy.

Second - penalizing high variance strategies (like using the 'risk averse mean belief' payoff

function) will hopefully cause players to avoid the pure Nash equilibrium strategy profiles with

identical strategies for both players (matching strategies) that we have seen throughout the

previous set of experiments. In Iraq or Afghanistan it is important for commanders to show

steady incremental improvement to maintain domestic political support. If a strategy has a 50-50

chance of leading to huge success, this is too much risk for an environment where quick success

is less important than steady progress. Similarly a company planning an advertising campaign to

introduce a new product to market would much rather start out by securing a base level of

support in the market to establish a steady revenue stream than immediately try to win, at high

risk, the entire network. Because most people influencing social networks have some level of

risk aversion, we would also like to be able to mediate risk in the strategies chosen by players in

our game.

Yildiz et al derived a bound on the standard deviation of the equilibrium mean belief in a

model with only binary beliefs (all mutable agent beliefs are either 0 or 1); here we conduct an

analysis to see how useful this bound is for predicting the standard deviation in our non-binary

model. First the behavior of the bound is analyzed for different networks to see how the

predicted standard deviation bound matches experimental standard deviation. Second the 'risk

averse mean belief' payoff function is analyzed in the two player game to see what types of pure

Nash equilibria occur, and whether it can result in low variance strategy profiles that perform

well in mean belief.



4.2.1 - Experimental vs. Predicted Variance

The first experiment analyzes the line network used previously. We use the even degree line

network with 10 regular agents because its behavior is simple and easy to understand.

Throughout this section the term 'predicted standard deviation' is used to indicate the value

produced by the bound on standard deviation yielded by (3.31). Although the number is a bound

on standard deviation in a binary belief model the hope is to use this bound as a metric for

variability in strategy profiles and is thus referred to as a predicted value throughout this

analysis. We re-iterate the bound on standard deviation here for the reader's convenience.

DEFINITION: p5 is the probability that a random walk started at state j on the Markov

chain will be absorbed by Vi corresponding to mutable agent i

ri = p vi e VM
. . . i (3.30)
I EVMI)i

DEFINITION: p5's is the probability of a random walk starting at node j being absorbed by

one of the states in Vus.

iEVus

U(X*) (ps - (p s) 2) * (ri)2 (3.31)
jEVm

where o-(X*) is the standard deviation of the mean equilibrium belief of the network

4.2.1.1 - Line Network

Several strategy profiles are simulated on the network, and the sample standard deviation of

the mean belief of the network is calculated and compared to the predicted standard deviation.

The goal is to determine how well the predicted standard deviation predicts the sample standard

deviation. The strategy profiles are listed in Table 4.11, and were chosen to represent several

cases in the network that would yield different variances. It includes strategy profiles that are

expected to have high variability (e.g., like matching strategies), strategy profiles with low

expected variability (e.g., when each player connects to opposing ends of the network), and



several strategy profiles in between these two extremes. Each case listed shows the TB strategy

vs. the US strategy, so 1 vs. 10 means that STB={ 11, Sus={ 101. Predicted Std Dev is the standard

deviation predicted by (3.31). Experimental Std Dev is the standard deviation of the equilibrium

mean belief of the network in simulation. Each simulation was run for 5000 interactions, and all

of the experiments converged within the neighborhood of the network equilibrium mean belief

within 1000 interactions (this was determined by visually inspecting the mean belief plot over

time for each of the experiments). To ensure that our experimental standard deviation was

actually the standard deviation of the network only around equilibrium, the first 1000

interactions were not used in calculating the standard deviation of the sample. This is shown in

Figure 4.15 below.

Line Graph, TB=5, US=10, 5000 Interactions
0.2

Equilibrium Mean Belief = -.0161
PredictedStandard Deviation = 0.3031

0.1

The mean belief of the networkfrom interaction 1001-5000z
is used to calculate the sample std dev

0 Starting Mean Belief is 0

0 Network Converges near the expected
!!! equilibrium mean belief of -.16

-0.1 -

-0.2,
1000 2000 3000 4000 5000

Number of Interactions

Fi gure 4.15 - Simulated Mean Belief of Line Network, ST = 5,Sus = 10

The network moves towards the equilibrium mean belief and converges near it within 1000 interactions, and then oscillates around this
value. To calculate the sample standard deviation of the equilibrium mean belief, only the mean belieffrom interaction 1001-5000 are used.

The sample versus predicted values are in Table 4.11.



Strategy Profile Predicted Std Dev Sample Std Dev
5 vs 5 0.3230 0.0655
5 vs 6 0.1322 0.0351
5 vs 7 0.0944 0.0308
5 vs 8 0.0800 0.0272
5 vs 9 0.0811 0.0212

5 vs 10 0.0919 0.0233
4 vs 10 0.0977 0.0172
3 vs 10 0.1184 0.0181
2 vs 10 0.1529 0.0133
1 vs 10 0.1938 0.0139

Table 4.11 - Predicted vs Sample Std Dev of Line Network

The data is plotted in Chart 4.1 to better visualize it. The predicted standard deviation is

plotted as the x coordinate and the sample standard deviation is plotted as the y coordinate for

each strategy profile.
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Chart 4.1 - Predicted vs. Sample Std Dev for Line Network

The predicted vs sample standard deviation plot shows no useful correlation between the two, although matching strategies (5,5) is

correctly predicted to have high standard deviation.

A Kruskal-Wallis test was conducted to verify whether the predicted standard deviation had

any statistical relation to the experimental standard deviation. In this test the null hypothesis is



that the samples are related. The test returned a p-value of .0001, indicating that the null

hypothesis is incorrect and that the samples are not related with any statistical significance.

The ideal plot would have a linear relationship, indicating that as the predicted standard

deviation increases so does the experimental, but this is not evident. At first glance it is clear that

one prediction is accurate - the strategy profile of matching strategies (5 vs. 5) is correctly

predicted to have the highest standard deviation. After this prediction, the strategy profile of

near-matching strategies (5 vs. 6) is predicted to have higher than normal standard deviation (it is

the fourth largest prediction of the ten experiments). Unfortunately (3.31) also predicts very high

standard deviation in strategy profiles that have low standard deviation. The most obvious case is

1 vs. 10, which is the second least variable of all the cases, yet is predicted to be the second

highest.

The reason this occurs is due to how (3.31) calculates the bound on standard deviation. To

illustrate this we look at the line network when players connect to the agents on the ends of the

line network (1 vs. 10). In this case r'becomes large for nodes in the middle of the line network.

For example consider r5 - to find r5 agent five is turned into an absorbing state, and the

probabilities of absorption into node five are calculated for all of the remaining mutable agents.

Agents 3, 4, 6, and 7 are more likely to be absorbed by agent five than to be absorbed by either

of the stubborn agents, since they are closer to agent five than they are to agent 11 or 12.



1 2 3 4 5 6 7 8 9

To find rs, agent 5 is turned into an absorbing state on the Markov chain, and rs is
the sum of the absorption probabilities into state 5

6 7 8 9

I State on the Markov chain 1 2 13 14 15 16 17 18 19 1101
Absorption probability into State 5 0.112 0.334 0.556 0.778 - 0.818 0.637 0.455 0.273 0.092

1r 4.055

Figure 4.16 - Example of Absorption Probabilities for r5 on Even Degree Line Network

When stubborn agent connections are on the extreme ends of the network, there are several

central nodes that will have large values for r', and the bound on the standard deviation becomes

large. This may be problematic, and is investigated further in our next experiments. The initial

results indicate that the predicted standard deviation is large for strategy profiles that are highly

variable, but it is unfortunately also large for strategy profiles that are on the edges of the

network that in fact show very low variability in their equilibrium mean belief in simulation.

4.2.1.2 - Small Rural Pashtun Network

As with the line network, several strategy profiles are selected that represent different cases

as described in the Table 4.12. The cases are listed in order from highest expected standard

deviation to lowest.



Strategy Profile Reason
1 vs 1 Both choose 'Very Inf'
1 vs 2 TB has 'Very Inf', US has 'Inf'
1 vs 3 TB has 'Very Inf', US has 'Regular'

12 vs 3 TB has 'Inf', the other has 'Regular'
13 vs 3 Both Have 'Regular'

Table 4.12 - Description of Strategy Profile Test Combinations for Testing the Bound on

Standard Deviation for the Small Rural Pashtun Network

The predicted standard deviation is matched against the sample standard deviation from

simulation. Again the sample standard deviation is calculated by excluding the first 1000

interactions to ensure that the standard deviation only measures the network behavior at

equilibrium, and all experiments are run for 5000 interactions.

Case Predicted Std Dev Sample Std Dev
1vs 1 0.2639 0.1489
1vs 2 0.0313 0.0443
1vs 3 0.0051 0.0374

12 vs 3 0.0051 0.0885
13vs3 0.0051 0.0296

Table 4.13 - Predicted vs. Sample Std Dev for Small Rural Pashtun Network
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Chart 4.2 - Predicted vs. Sample Std Dev for Small Rural Pashtun Network

No meaningful correlations are seen in the predicted vs sample values of standard deviation except for correctly predicting high standard

deviation for matching strategies - (1,1).

0000



Again we performed a Kruskal-Wallis test was conducted to verify whether the predicted

standard deviation had any statistical relation to the experimental standard deviation. The test

returned a p-value of .7584, indicating that the null hypothesis is correct and that the samples are

related. Given the previous results in the line network for the Kruskal-Wallis test we believe the

positive results on this test may be due to a small sample size and not necessarily indicative that

the predictions and experimental values are highly correlated.

The prediction correctly gives a high standard deviation to the worst case strategy profile of

matching strategies. Beyond that are some strange results; 1 vs. 2 is predicted to be the second

highest, but actually has relatively low standard deviation. All of the other 3 strategy profiles

predicted to have identical standard deviation. All three of these strategy profiles have the US

player connecting to a regular agent, but regular agents cannot spread any belief to influential

agents. This has an enormous effect on the absorption probabilities on the Markov chain when

calculating r' and results in significant error in predicted standard deviations.

The behavior of predicted versus actual standard deviation in the small rural Pashtun

network works well in predicting the high variability of matching strategies, but otherwise

exhibits poor results.

4.2.1.3 - Large Rural Pashtun Network

Two different sets of strategy profiles are analyzed for the large rural Pashtun network. The

first set starts with the Nash equilibrium strategy profile of 70 vs. 70, and the next four profiles

move from this central winning strategy to 'influential' and then 'regular' agents. With these

strategy changes there is a corresponding move from the center of the network to the periphery,

and there should be a decrease in experimental standard deviation and hopefully a decrease in the

predicted standard deviation. The second set has 10 strategy profiles of different combinations of

'very influential' agents in the network. The reason these combinations of agents are analyzed is

in the hope that we may see some combinations of 'very influential' agents, that do well in

'mean belief', but also have low variance. If the bound correctly predicts the standard deviation

in these cases it would hint at the existence of pure Nash equilibria strategy profiles with the

desired properties (high mean belief and low standard deviation) under the 'risk averse mean

belief' payoff function.



The first 5 strategy profiles on the large network yield the following:

Strategy Profile Predicted Std Dev Sample Std Dev

70 vs 70 0.8388 0.0414

48 vs 70 0.2490 0.0365
48 vs 29 0.3748 0.0203
49 vs 29 1.5431 0.0299
50 vs 28 0.1803 0.0057

Table 4.14 - Predicted vs. Sample Std Dev for 1st Strategy Set on Large Rural Pashtun

Network

Again the prediction correctly penalizes matching strategies. There is an anomaly in the

strategy profiles (49,29) though - the predicted standard deviation is 1.54. Considering that the

maximum sample standard deviation possible in the network is only 0.5 (if the network mean

belief moved from -0.5 to 0.5 at every step), this is troubling. The reason for this occurrence is

that both 49 and 29 are 'regular' agents. The reducibility of the Markov chain and the fact that

regular agents can only communicate to other regular agents in their village means that stubborn

agents connected to regular agents cannot communicate with most of the network, and thus the

values of ri will be very large (as seen previously). Overall we see that the prediction of standard

deviation is not particularly accurate, but it does penalize matching strategies.

Next are ten strategy profiles of 'very influential' agents

(70,70) for a total of eleven strategy profiles.

along with the strategy profile

Strategy Profile Predicted Std Dev Sample Std Dev

70 vs 70 0.8388 0.0414
70 vs 21 0.2918 0.0434
48 vs 21 0.3748 0.0208
70 vs 56 0.2857 0.0524
21 vs 56 0.6529 0.0324

70 vs 72 0.3479 0.0489
70 vs 71 0.2652 0.0394
70 vs 69 0.2837 0.0396
21 vs 69 0.3724 0.0680
48 vs 71 0.3247 0.0615
48 vs 56 0.3467 0.0456

Table 4.15 - Predicted vs. Sample Std Dev for 2nd Strategy Set on Large Rural Pashtun

Network



The data of predicted vs. sample standard deviation is plotted in Chart 4.3. Matching

strategies (70 vs. 70) is once again predicted to be the worst, although it is not actually the most

variable strategy profile. This is interesting, as in all previous networks a matching strategy

always yielded the highest sample standard deviation. For these strategy profiles there is no

useful relationship between the predicted and sample standard deviation. Previously the bound

always properly predicted matching strategies as being the worst, but for the large rural Pashtun

network this prediction is not correct.
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Chart 4.3 - Predicted vs. Sample Std Dev for 2nd Strategy Set on Large Rural Pashtun

Network

No correlations seen between predicted and sample standard deviation. Matching strategies (70,70) is incorrectly predicted to have the

highest standard deviation.

A Kruskal-Wallis test returned a p-value of .0007, indicating that the samples are not related

with any statistically significance.

Thus far the results of the predicted variance bound seem poor. It penalizes matching

strategies by predicting high standard deviation, but for other strategy profiles seems to be

unable to make consistently useful predictions. Furthermore, we've just seen in the large rural

Pashtun network that matching strategies is not always the most variable strategy profile.
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4.2.1.4 - Modifying the Influence Parameters

We were concerned that the poor performance of the bound may be due to our selection of

influence parameters. With 'regular' agents unable to influence 'influential' agents, it means the

Markov chain is reducible and there are several states that are unreachable from other states,

which has large effects on the absorption probabilities of random walks. Because (3.31) is a

function of absorption probabilities, this could create problems. To investigate and account for

this potential source of error, all of the above analyses were repeated for the small and large rural

Pashtun networks (the line network has all regular agents and therefore this problem does not

affect it because they all communicate in the Markov chain) with the following modification to

the influence parameters:

Increase the chance of a -type (averaging) interaction between 'regular' agents and

'influential' agents from 0 to 0.1, with interactions from 'influential' to 'regular' agents

remaining the same (always forcefully influence them). 'Influential' agents still completely sway

the minds of regular agents, but regular agents can occasionally influence their leaders by

averaging with them. Making this change enables beliefs from a 'regular' agent to propagate to

an 'influential' agent. This modification makes limited changes to the influence parameters, but

fixes the problem of reducibility among the nodes corresponding to mutable agents in the

Markov chain.

Chart 4.4 plots the predicted vs. sample standard deviation on the small rural Pashtun

network with these changed parameters.
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Even with updated influence parameters to allow 'regular' agents to change the belief of 'influential' agents, the predicted vs sample

standard deviation has no useful correlation.

As before with the small network, matching strategies is correctly predicted to have large

standard deviation, but strategy profile (13,3) is incorrectly predicted to have much larger

standard deviation. In general there are not any useful predictions. The results for the large rural

Pashtun network are shown in Chart 4.5.
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Chart 4.5 - Predicted vs. Sample Std Dev w/Updated Influence Parameters for Large Rural

Pashtun Network

Updated influence parameter to allow 'regular' agents to change the belief of 'influential' agents still does not lead to any useful

correlations.

In the large rural Pashtun network there is no correlation between predicted and sample

standard deviation. Matching strategies is incorrectly predicted to be high variance. Strategy

profiles with low standard deviation are predicted to be high, and the highest experimental

standard deviation is predicted to be one of the lowest (70 vs. 56).

This analysis further indicates that (3.31) and the bound developed by Yildiz et al does not

accurately predict the variability of the mean network equilibrium in our continuous belief

model.

For the remainder of the analysis in this chapter, we revert back to the original set of

influence parameters.

4.2.2 - Nash Equilibria in the 'Risk Averse Mean Belief' Payoff Function

Although the previous section indicated that the bound derived by Yildiz et al does not work

well in our model, it does have a tendency to predict high variance for matching strategies. Thus,
we conduct an analysis of the pure Nash equilibria in the 'risk averse mean belief' payoff

function, as one of the goals of this payoff function is to penalize players just enough to deviate

from matching strategies and move to another strategy profile. The main reason that we are
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concerned with eliminating matching strategies is that in the real world it is unlikely that both the

US and Taliban would expend resources influencing all of the same people. Because the 'risk

averse mean belief' payoff function depends on both the predicted standard deviation and the

equilibrium mean belief, it is possible that these two components of the payoff function may

have an interaction that makes the payoff function useful. We also conduct the analysis to ensure

thoroughness prior to drawing a firm conclusion about whether there is any utility in the bound

on standard deviation for our model.

The 'risk averse mean belief' payoff function h(-) is used for both the US and TB player.

h(Sus, STB) = Mean Belief Payoff - A * Predicted Standard Deviation of Network

where ? is a constant representing the penalty for high standard deviation

hi(SUS,STB) = fi(Sus,STB) - A * o(X*(SUSSTB)) i E {US,TB} (3.38)

Initially the penalty parameter A is set to one. The networks used are the same as all of the

networks used in Experiment 1 (see Section 4.1). They are reiterated below for the reader's

convenience.

Graph # Mutable
Type Agents Description Reason

9
Case A - AlI agents are 'regular' Base Case

9 Case B - 1'Influential' agent in the middle, rest are How does the addition of an agent that is both
10 'regular' influential and central effect the network?

9 Case C - 1 'Influential' agent on the end, rest are How does an influential but peripheral agent affect
10 regular' the network?

9
Case A - AlI agents are'regular' Base Case

9 B - 1'Influential' agent, rest are 'regular' How does the addition of a single influential agent
10 affect the network?

9 Case C - 2 'Influential' agents on opposite sides, rest are What happens when 2 influential agents are on
10 'regular' opposite sides of a society?

9 D - 2 'Influential' agents adjacent, rest are 'regular, What happens when both influential agents are
10 highly connected?

10 Case A - All agents are'regular' Base Case

1 Case B- 1 Influential agent, rest are 'regular' Effect of influential agent in highly connected groups?

Case C - 1 'Very Influential' agent, 2 'Influential' agents, Effects of multiple types of agents in highly connected
__ _ 10 rest are 'regular' groups?

Table 4.1 - Network Test Case Descriptions
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Because both players use the same payoff function, if strategy profile (x,y) is an equilibrium,

so is (y,x), but the second equilibrium is omitted from the charts below for brevity.

4.2.2.1 - Line Networks

The pure Nash equilibria for the line networks are shown in Table 4.16.

Nash Equilibria for Line Networks, A=1
Case Even Degree Odd Degree

A (5,6) (4,5), (5,6)
B (5,7) (5,5)
C None None

Table 4.16 - Line Network Pure Nash Equilibria for h(-) vs. h(-), A=]

For each test case A, B ,and C the pure Nash equilibria are fbund through enumerating the entire payoff matrix when both players use

the 'risk averse nean belief' payoff/unction. Each pair (x,y) is a strategy profile corresponding to a pure Nash equilibrium where X is the TB

player's strategy and Y is the US player's strategy. For Case C there are no pure Nash equilibria.

First it is interesting to note that with an influential agent on the end of the line (case C),

there is no pure Nash equilibrium present. The other two cases yield encouraging results - the

matching strategies have been largely removed. On the even degree line network when both

payoff functions were just 'mean belief' two matching strategies ((5,5) and (6,6)) were present,

but with the 'risk averse mean belief' payoff function there are only non-matching strategy

profiles remaining. This is the goal of the 'risk averse mean belief' payoff function - penalize

matching and highly variable strategy profiles and force players to move to other strategy

profiles with identical (or almost identical) mean belief but lower variance (the previous

experiments showed that 5 vs. 6 has half the sample standard deviation that a matching strategy

does).

On the even line network with a single 'influential' agent in the middle (Case B), one player

connects to the influential agent, and the other chooses the agent that is 2 agents away. This

induces a significant first mover advantage.
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Figure 4.17- Line

12

1 2 3 4 5 7 8 9 10

Network, Case B Equilibrium Beliefs when PlayingNash Equilibrium

Strateg y under h(-) vs. h(-), A=1

The US player connects to agent 5, which results in them influencing the network much stronger than the TB player. However, because the

'risk averse mean belief' payofffunction penalizes high variance strategies the TB player does not want to match the US player by connecting to

agent 5. They instead connect to agent 7. Although this means they influence the network less, there is much less variance in this strategy profile,

and is the TB player's best response given that the US player connects to agent 5.

It is interesting that in the case illustrated in Figure 4.17 the TB player's best response is not

agent six. Choosing agent six would yield a higher mean belief in the network for them, but it

also increases the variance and decreases the overall payoff function (it decreases from -.21 to -

.26 for the TB player in the case shown in Figure 4.17).

4.2.2.2 - Circle Networks

The results for the circle network equilibria are:

Nash Equilibria for Circle Networks t=1
Case Even Degree Odd Degree

A All opposing pairs All opposing pairs
B (1,6) (1,5),(1,6)
C None None
D (1,10) (1,9)

Table 4.17 - Circle Network Nash Equilibria for h(-) vs. h(-), A=1

For each test case A, B, C, and D, the pure Nash equilibria are found by enumerating the entire payoff matrix when both players use the

'risk averse mean belief' payofffunction. Each pair (xy) is a strategy profile corresponding to a pure Nash equilibrium where X is the TB

player's strategy and Y is the US player's strategy. For Case C there are no pure Nash equilibria.
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Again there is a case with no pure Nash equilibria (Case C is 2 'influential' agents on

opposite sides of the circle). This is surprising; if each player chooses an influential agent on

opposite sides of the circle it yields very low standard deviation, and zero mean belief. This is

the type of strategy profile we hope that this payoff function would lead to. The reason it does

not is because the bound on standard deviation incorrectly characterizes the strategy profile (1,5)

as high-risk, heavily penalizing it and preventing it (or any other strategy profile) from being a

pure Nash equilibrium.

In all of the other cases the behavior is what is wanted from the 'risk averse mean belief'

payoff function - high variance matching strategies are no longer equilibria, and the payoff

function instead rewards strategy profiles with connections on opposite sides of the circle (which

are low variance).

In Case A all agents are regular and the risk averse payoff function removes all of the

strategy profiles except the lowest variance ones, which are opposing pairs.

In Case B with a single influential agent the pure Nash equilibrium strategy profile is one

player connecting to the 'influential' agent (number one), and the other player connects to the

opposite agent. The player that connects to the 'influential' agent has a first mover advantage.

In Case D each player chooses one of the two adjacent 'influential' agents, but the matching

strategies that previously existed have been removed.

4.2.2.3 - Connected Networks

Next are the results from analyzing the fully connected networks.

Nash Equilibria for Connected Networks, A=1
Case Equilibria

A All non-matching pairs
B (1, 1)
C -(1, 1)

Table 4.18 - Connected Network Nash Equilibria for h(-) vs. h(-), =1

For each test case A, B, and C, the pure Nash equilibria are found by enumerating the entire payoff matrix when both players use the

'risk averse mean belief' payofffunction. Each pair (x,y) is a strategy profile corresponding to a pure Nash equilibrium where X is the TB

player's strategy and Y is the US player's strategy.
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In Case A (all regular agents), any non-matching strategy profile is a pure Nash equilibrium.

This is due to the symmetry of the connected network. Any non-matching strategy profile is

identical to any other non-matching strategy profile in both variance and mean belief. The

matching strategies have identical mean belief, but higher variance and thus are not equilibria.

In Case B and C both players choose to connect to the most influential agent present.

Although this is a more variable strategy profile, the high connectedness of the network increases

the variance of every strategy (any agent can influence any other agent at every step), and there

is not sufficient difference in the variance to penalize matching strategies sufficiently to

incentivize a player to deviate from this strategy profile.

4.2.2.4 - Rural Pashtun Networks

It turns out that for both the small and large rural Pashtun networks, the pure Nash

equilibrium strategy profiles under the 'risk averse mean belief' payoff function are identical to

all of the previous payoff functions - (1,1) for the small network, and (70,70) for the large

network.

The initial results for the 'risk averse mean belief' payoff function are encouraging. It

successfully removes many undesirable matching strategies. For example, in networks with

multiple equilibria that all have identical 'mean belief' payoff, only the least variable strategy

profiles survive with the introduction of risk aversion, which is the intent. Unfortunately for our

two networks that are based on a real societal structure - the small and large rural Pashtun

networks - there is no change in the 'risk averse mean belief' from the 'mean belief' payoff -

matching strategies is still the equilibrium strategy profile.

In order to further investigate the performance of the 'risk averse mean belief' payoff

function on these networks we analyze the results from changing the penalty parameter, A. The

goal is to see what values of A are required for the equilibria to change from matching strategies

to a new strategy profile, and what that profile is.

As seen in Table 4.19, as the penalty parameter is increased to 1.72, the equilibrium strategy

profile for the small rural Pashtun network change from (1,1) to (1,7). Agent seven is the next

most influential agent after agent one, so this is reasonable (and desirable) behavior. It induces a

first mover advantage, and causes the players to avoid matching strategies with a strategy profile
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that is as close to being equal as possible. As A is increased further to 1.78, the equilibrium

moves to strategy profiles (1,12) and (1,2). Agents 2 and 12 are the third most influential agents

in the network after agent 1 and 7, but because they are more peripheral in the network they

reduce variability, so again this is a reasonable strategy set. As A is increased past 6, the

equilibria becomes agent 1 and any 'regular' agent. This is expected, as connecting to 'regular'

agents reduces the variability of the network.

Nash Equilibria for Small Rural Pashtun Network
Case Equilibria

21 s1.72 (1,1)
1.72 5 A1 s1.78 (1,7)
1.785 15 5.99 (1,2),(1,12)

5.99 1 Agent l and any 'regular' agent

Table 4.19 - Small Rural Pashtun Network Pure Nash Equilibria for h(-) vs. h(-), varying A

Depending on the values of the penaltyparameter2, there are different pure Nash equilibrium strategy profiles.

However, it is a bit troubling that such a small change from 1.72 to 1.78 can cause the

payoff function to change the equilibrium strategy profiles. If the payoff function requires such

fine tuning to get the desired results it indicates that the function is not robust to changes in input

parameters. Furthermore, if we have to perfectly tune the payoff function to some arbitrary value

for each network then it is equivalent to simply selecting which strategy profiles 'look good' and

loses any real predictive power.

Table 4.20 shows that the large rural Pashtun network does not change equilibrium strategy

profiles until A increases past 6.48. Furthermore, once they change they move to significantly

different strategies. The new equilibrium strategy profiles are agent 70, and any 'regular' agent

from the village 2 (contains agents 11-19 and is at the bottom right of the network diagram in

Figure 4.14).

Nash Equilibria for Large Rural Pashtun Network
Case Equilibria

A 5 6.47 (70,70)
6.47! /1 (70,15), (70,16), (70,17), (70,18)]

Table 4.20 - Larege Rural Pashtun Network Pure Nash Equilibria for h(-) vs. h(-), varvyingA
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Again, we see that for the large rural Pashtun network the payoff function requires

significant tuning, and does not even yield reasonable or interesting equilibrium strategy profiles.

This leads us to conclude that the 'risk averse mean belief' payoff function using the bound on

standard deviation is not very useful for avoiding high risk strategies while still maintaining

strategies that have strong 'mean belief' payoff.

4.2.3 - Experiment Set 2 Summary

Although some results are encouraging for the small networks, there is a fair amount of

tuning required for the larger more complex networks. Furthermore, there is no guarantee of

finding 'good' equilibrium strategy profiles. Experimental data indicate that the prediction of

standard deviation in the network does not match simulation, and thus the payoff function is not

correctly measuring the variability of the networks. The large rural Pashtun network is the most

realistic one we have and for this network the results are very poor. Even on the small rural

Pashtun network we see that depending on the choice of A we can get one of many possible

equilibrium strategy profiles, and one of the equilibria (1,7), only works for a very small range of

A.

In conclusion, the bound on the standard deviation on the equilibrium mean belief of the

network does not work well in our model. Consequently the 'risk averse mean belief' payoff

function does not work well with this proxy for variability. Although the payoff function can be

finely tuned to yield the desired results, the tuning required is different for each network, and is

thus equivalent to changing the function every time to get an intuitively desirable result.

4.3 - Experiment Set 3: Analysis of Simulated Annealing Heuristic

In this section the simulated annealing heuristic is analyzed with regard to three questions:

-Can simulated annealing correctly characterize Nash equilibria using best response

dynamics?

-How well does the run time for simulated annealing scale for larger networks?

-How does the simulated annealing algorithm perform compared to the solutions found

using the Knitro solver for Hung's math program?
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The first question is important to see how close to optimal the heuristic can perform. The

answer to the second question will give anecdotal evidence of whether the heuristic can

reasonably be applied to much larger and more realistic problems (hundreds or thousands of

agents). Answering the last question allows us to verify if our heuristic can provide the same

quality of solutions as Hung's math program or not.

4.3.1 - Can simulated annealing find Pure Nash Equilibria?

For this experiment, the simulated annealing heuristic is used to characterize pure Nash

equilibrium strategy profiles through best response dynamics. It optimizes the US player's

strategy against a fixed TB strategy. It then optimizes the TB strategy against the optimized US

strategy. This continues until the simulated annealing heuristic gets to a solution that repeats

itself five times for both players. This means once an equilibrium strategy profile is reached,

simulated annealing is run five more times for each player before accepting it as an actual pure

Nash equilibrium. This method will only find one pure Nash equilibrium strategy profile at a

time. To determine whether multiple equilibria exist, the entire process is repeated 10 times, with

a different random strategy profile as the starting point each time. This process is run on all of

the same networks used in Experiment 1 (see Section 4.1). The resulting equilibrium strategy

profiles and run times are recorded, and compared to the known equilibrium strategy profiles

found previously.

In some cases the simulated annealing heuristic does not converge to a solution. There are

instances where the heuristic cycles through multiple solutions repeatedly due to the existence

nearby solutions of equal quality (multiple local optima); because the heuristic runs until it finds

the same solution five times in a row this cycling prevents the heuristic from ever finding a

solution. To prevent indefinite cycling, the heuristic is limited to 20 iterations - if both players

have optimized their strategies through simulated annealing twenty times, and no set of strategies

has been repeated at least five times in a row, the algorithm terminates with no solution. If the

algorithm is able to find an equilibrium, it usually finds it within 2-3 iterations, and then repeats

it five times, thus terminating at 20 iterations allows sufficient time for the algorithm to find a

solution.
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4.3.1.1 - Line Network Simulated Annealing Pure Nash Equilibria vs. Actual Pure Nash
Equilibria

Table 4.21 shows the equilibria found by simulated annealing on the even degree line

networks. At the bottom of the chart the actual equilibria found through exhaustive enumeration

in Experiment Set 1 (see Section 4.1) are listed.

Even Line Network Pure Equilibria Found by Simulated Annealing

Case A: All Regular Case B: 1 lnf in Middle Case C: 1 lnf on End
US Strat TB Strat Time (sec) US Strat TB Strat Time (sec) US Strat TB Strat Time (sec)

6 6 28 5 5 20 8 8 34
5 5 28 5 5 20 8 8 25
5 5 28 5 5 21 8 8 21
5 5 28 5 5 20 8 8 34
6 6 24 5 5 21 8 8 21
5 5 29 5 5 20 8 8 21
5 5 23 5 5 20 8 8 25
5 5 28 5 5 20 8 8 30
5 5 29 5 5 21 8 8 25
6 5 33 5 5 20 8 8 21

Actual Nash Equilibria Time (sec) Actual Nash Equilibria Time (sec) Actual Nash Equilibria Time (sec)
(5,5), (5,6), (6,5), (6,6) 0.15 (5,5) 0.16 (8,8) 0.15

Table 4.21 - Even Line Network Nash Equilibria found by Simulated Annealing
Each time it is run, simulated annealing finds a single pure Nash equilibrium using best response dynamics. By running it several times we are
able to discover multiple equilibria. With only 1 connection in the network, simulated annealing runs slower than exhaustively enumerating the

payoff function.

In Case A there are 4 different equilibria. Simulated Annealing found (5,5) seven times,

(6,6) twice, and (6,5) once. It did not find (5,6), but this is not a problem; we know that for

identical payoff functions all equilibria are symmetric, so the strategy profile (6,5) can be

inferred from (5,6). In Case B and C simulated annealing finds the correct equilibria every time.

For these small networks with only a single connection, the simulated annealing heuristic

takes a much longer time to find the equilibria than exhaustive enumeration does (20 seconds vs.

0.15 seconds). This is expected and is not an issue of concern. The simulated annealing

algorithm runs through several hundred iterations (based on the cooling rate and minimum

temperature), independent of the number of connections. This means it runs slower when C=1,

but as we show in Section 4.3.2, scales very well with increasing numbers of connections.

For brevity in the remaining cases just the summary information is shown instead of the

output of every single run of the simulated annealing heuristic. Also, the times to exhaustively

find the actual Nash equilibria are not shown, as they are all well under a second, and as
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previously discussed, the comparison of performance time on these small networks is not an

issue we are concerned with yet.

In the odd degree line networks, there is only one equilibrium strategy profile for each case,

and simulated annealing finds it correctly every time.

Actual Pure Nash Pure Nash Equilibria found Mean Time

Odd Line Networks Equilibrium by Simulated Annealing (sec)

Case A: All Regular (5,5) (5,5) 22

Case B: 11nf in Middle (5,5) (5,5) 18

Case C: 1 lnf on End (7,7) (7,7) 25

Table 4.22 - Odd Degree Line Network Pure Nash Equilibria found by Simulated Annealing

Simulated Annealing finds the correct pure Nash equilibria correctly using best response dynamics.

4.3.1.2 - Circle Network Simulated Annealing Nash Equilibria vs. Actual Nash Equilibria

Table 4.23 summarizes the results of the even degree circle networks. This set of networks

presents a unique challenge for the simulated annealing heuristic - for Case A any pair of

strategies is an equilibrium.

Actual Pure Nash Pure Nash Equilibrium found by Mean Time

Even ci rcl e Networks Equilibrium Simulated Annealing (sec)

(1,6), (2,4), (3,5), (3,6), (3,10),
Case A: All Regular All pairs 23

(4,4), (7,7), (7,9), (8,9), (9,10)

Case B: 1 Inf (1,1) (1,1), (1,6) 27

Case C: 2 Inf Opposite (1,1), (1,6), (6,6) (1,1), (1,6), (6,6) 38

Case D: 2 Inf Adjacent (1,1), (1,10), (10,10) (1,1), (1,10), (10,10) 21

Table 4.23 - Even Degree Circle Network Pure Nash Equilibria found by Simulated Annealing

Simulated Annealing finds the correct pure Nash equilibria correctly using best response dynamics. For Case A because any strategy

profile is a pure Nash equilibrium, simulated annealing does not find all possible pure Nash equilibria.

Because we only run the heuristic 10 times, it cannot find all 45 possible strategy profiles.

However, the heuristic does converge and provide a solution on every run, and provides 10

different strategy profiles. If this were a much larger network that we did not know the actual

answer for, and if simulated annealing yielded 10 distinct strategy profiles we could re-run the

algorithm several times to see whether there are more equilibria or not. On the rural Pashtun

networks that we test this will not be an issue, as there is only a single equilibrium strategy

profile.
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Case B also has a problem - it incorrectly returns (1,6) as an equilibria. It found this

equilibrium in 2 of the 10 runs. This occurs because (1,6) is a local optimum in the simulated

annealing heuristic. To demonstrate this, consider that the temperature has dropped low enough

that we only take improving steps, the US player is connected to agent one, and the TB player's

strategy is any agent three through eight. Looking at the payoff chart in Figure 4.18, every step

of the algorithm will only allow moves towards agent six, because the only neighboring solutions

with improvements move towards agent six. This is shown below.

1 12

102
US Player Strategy = 1

TB Strategy Payoff for TB

Player3
1 0.000
2 -0.130

3 -0.083

4 -0.067

5 -0.059

6 -0.056

7 -0.059

8 -0.067

9 -0.083
7 F 10 -0.130_ 5

6

Figure 4.18 - Even Circle Network, Case B, Demonstrating why Simulated Annealing

Conver ges to Local Optimum

When the temperature is low enough, simulated annealing takes only improving steps. This means that if the US player is connected to

agent 1, and the TB player is connected to agent 3, 4, 5, 6, 7, 8, or 9, the only improving steps lead to agent 6, although this is not the optimum

and is not a pure Nash equilibrium strategy profile.

In cases C and D simulated annealing finds all 3 of the equilibria present with no incorrect

solutions returned.

The results for the odd degree circle network are similar to those for the even degree circle

network (see Table 4.24). In Case A simulated annealing finds 8 different equilibrium strategy

profiles of the 36 possible (there were 2 repeats of the 10 found). Case B finds 2 incorrect

strategy profiles for the same reason as in the even degree circle network (it finds (1,5) and

(1,6)). Cases C and D return all correct solutions with no errors.
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Actual Pure Nash
Equil ibrium

Pure Nash Equilibrium found by
Simulated Annealing

Mean Time
(sec)

Case A: All Regular All pairs (1,3), (1,8), (2,5), (2,9), (4,5), (4,6), 19
CaseA:_AllRegularAllpairs (4,7), (4,8) _ _

Case B: 1 1nf (1,1) (1,1), (1,5), (1,6) 23

Case C: 2 Inf Opposite (1,1), (1,5), (5,5) (1,1), (1,5), (5,5) 20

Case D: 2 lnf Adjacent (1,1), (1,9), (9,9) (1,1), (1,9), (9,9) 28

Table 4.24 - Odd Degree Circle Network Pure Nash Equilibria found by Simulated

Annealing

Simulated Annealing finds the correct pure Nash equilibria correctly using best response dynamics. For Case A because there any strategy

profile is an equilibrium, simulated annealing does not find all possible pure Nash equilibria. In Case B it incorrectly returns 2 local optima as

pure Nash equilibria.

4.3.1.3 - Fully Connected Network Simulated Annealing Pure Nash Equilibria vs. Actual

Pure Nash Equilibria

As seen in Table 4.25, the simulated annealing heuristic performed very well on the fully

connected networks. For Case A, it found 8 different equilibrium strategy profiles (one of the

equilibria was found twice, and another time it returned no solution due to cycling). The average

run time in Case A was almost twice as long as for the other cases due to increased cycling of the

algorithm with every strategy profile being an optimal solution.

In Case B and C, every iteration of the algorithm returned the correct equilibrium strategy

profile of (1,1).
r 1

Actual Pure Nash

Eauilibrium

Pure Nash Equilibrium found by

Simulated Annealing

Mean Time
(sec)

Case A: All Regular All pairs (2,4), (2,5), (2,6), (2,7), (3,6), (4,7), 42
(6,7), (7,9)

Case B: 11nf (1,1) (1,1) 21

Case C: 1 Inf +, 2 Inf (1,1) (1,1) 23

Table 4.25 - Connected Network Pure Nash Equilibria found by Simulated Annealing

Simulated Annealing finds the correct pure Nash equilibria correctly using best response dynamics. For Case A because there any strategy

profile is an equilibrium, simulated annealing does not find all possible pure Nash equilibria.
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4.3.1.4 - Rural Pashtun Networks

The algorithm correctly found the pure Nash equilibria on both the small and large rural

Pashtun networks every time they ran, although the run times were much larger than for the

small 9 and 10 agent networks.

Actual Pure Nash Pure Nash Equilibrium found by Mean Time
Rural Pashtun Networks Equilibrium Simulated Annealing (sec)

Small (1,1) (1,1) 70
La rge (70,70) (70,70) 1200

Table 4.26 - Rural Pashtun Network Nash Equilibria found by Simulated Annealing

Sinulated Annealing finds the correct pure Nash equilibrium strategy profiles correctly using best response dynamics.

Recall that the exhaustive enumeration method took 1.5 seconds for the small rural Pashtun

network and 300 for the large rural Pashtun network. We still have longer run times for

simulated annealing, even on the larger networks.

For the 'mean belief' vs. 'mean belief' set of payoff functions, the simulated annealing

algorithm works well in finding pure Nash equilibria. Although it does occasionally find

incorrect equilibria, often they are easily verifiable. For example, in the circle network where

strategy profiles (1,1) and (1,6) were returned as pure Nash equilibria, by simply checking the

payoff of each player at each solution we can verify if they are both equilibria or not. If (1,1) has

higher payoff for the US player than (1,6) does, it means the US player can unilaterally deviate

to (1,1) and improve their payoff, thus (1,6) cannot be an equilibrium strategy profile, and is

instead a local maximum returned by the algorithm.

In cases with only a single connection per player, exhaustive enumeration is much faster

than simulated annealing. This occurs because the simulated annealing algorithm runs through

the same number of iterations (recall the run time is a function of the cooling rate and minimum

temperature, which were identical for all of these experiments), no matter the size of the

network. To further compare the performance of simulated annealing vs. exhaustive

enumeration, another experiment was conducted on the large rural Pashtun network. Each player

was given 2 connections they could make from their stubborn agent to the mutable agents. This

increases the number of strategies from 73 to 5184 (732), and exhaustive enumeration requires

the calculation of a 5184 x 5184 payoff matrix. Exhaustively calculating this entire matrix for
'mean belief' vs. 'mean belief' took a bit over three days (-73.4 hours, or 264242 seconds). The

114



only Nash equilibrium strategy profile was when both players connected to agent 48 and 70.

Simulated annealing found the exact same strategy profile ten times in a row, with an average

run time of only 1500 seconds. As seen in Table 4.27, when we have more than one connection,

simulated annealing is the preferred solution method.

Time to find Pure Nash Equilibria in Large Rural
Pashtun Network

Method Used 1Connection 2 Connections

Exhaustive Enumeration 300 264242
Simulated Annealing 1200 1500

Table 4.27 - Time to find Pure Nash Equilibria in Large Rural Pashtun Network with

different numbers of connections

Exhaustive Enume ration finds pure Nash equilibria faster with only 1 connection available to each player, but with 2 connections,

simulated annealing is nuch faster. This is because the run tine in simulated annealing is insensitive to the number of connections, whereas

exhaustive enumeration scales exponentially with the number of connections.

4.3.2 - Simulated Annealing on Larger Networks

The next analysis is for a synthetic network of 519 agents. The network was randomly

generated with a series of rules designed to create a network with properties similar to Hung's

rural Pashtun networks. (The exact methodology is listed in Appendix C, along with a picture of

the network).

This network is designed to generate something approximating the rural Pashtun networks.

There are villages with 'influential' leaders, who talk to other village leaders, and at the district

level several 'very influential' leaders communicate amongst themselves and the village

leadership. It is not designed to be a perfect generator of actual rural Pashtun society, but rather

something to generate networks with properties similar to Hung's that are much larger for testing

the scalability of the simulated annealing algorithm.

In this large network, we give each player 2 stubborn agents, with 3 connections each.

Simulated annealing optimizes a single player's strategy on this network in roughly 360 seconds.

We ran simulated annealing on the network 10 times, and it returned the same pure Nash

equilibrium strategy profile every time (matching strategies with both players connecting to

agents 507, 508, 509, 510, 512, 513). The average run time was 8,358 seconds (about 2.3 hours).
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The fact that simulated annealing returned the exact same solution every time, gives a high

degree of confidence that this is a true pure Nash equilibrium in the network. There is of course

no guarantee that this is a true Nash equilibrium, but calculating the true equilibria of this

network exhaustively would take years with current computing power (the number of possible

strategies is 5196 or about 1016). The simulated annealing algorithm gives a good solution with a

high degree of confidence in reasonable time for this very large network.

4.3.3 - Comparison of Simulated Annealing Algorithm to Hung's Math
Program

In his thesis, Hung performed several experiments to analyze the performance of his math

program formulation for finding optimal strategies for a single player. He conducted experiments

on both the small and large rural Pashtun networks, wherein there was a fixed TB strategy, and

the US player used Hung's math program to find locally optimal solutions using different

numbers of US stubborn agents, with different numbers of connections. His initial results had

significant run times using the Knitro non-linear solver. When analyzing the large rural Pashtun

network with 3 stubborn US agents with 3 connections each, the solver returned no solution after

more than 14 hours (at which point Hung terminated the run). However, in the course of his

experiments Hung found that by reducing the number of multi-start points, and increasing the

integrality gap (his program is non-linear and mixed integer), he was able to get rapid results

with relatively minor decreases in performance.

The specific test case that we use from Hung's thesis is the largest and most complex

network for which we were able to obtain results (there was another larger network, but none of

the solutions or run times were listed in his thesis). This test case uses the large rural Pashtun

network of 73 mutable agents. The TB player has 3 stubborn agents, who each connect to the

same four mutable agents (every TB agent connects to the same 4 mutable agents). Although it

may not be realistic for the TB player to do this, it was how the experiment was designed by

Hung in his thesis, and is thus repeated here to ensure we are using the same test case. The US

player then has 3 stubborn agents, with 3 connections each. Figure 4.19 shows the initial setup of

the network (prior to the US player choosing their strategy).
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Figure 4.19 - Large Rural Pashtun Test Case from Hung's Thesis
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Hung was able to find solutions in about a second (mean run time of .65 sec) that yielded an

equilibrium mean belief of the network of 0.2295. After tuning the simulated annealing

algorithm (by adjusting the cooling rate from .97 to .8) to operate in the same amount of time, it

yielded solutions with an expected mean belief of 0.2866. These results are summarized in the

Tables 4.28 and 4.29

Hung's Results

Run # Time (sec) US Strategy Equilibrium
Mean Belief

1 2.65 (19, 21, 29, 37, 39, 49, 67, 69, 70) 0.2496
2 0.32 (1, 12, 21, 49, 56, 68, 69, 71, 73) 0.2407
3 0.27 (1, 12, 13, 21, 49, 56, 68, 69, 71) 0.2061
4 0.39 (1, 12, 21, 39, 49, 56, 68, 69, 71) 0.2517
5 0.23 (1, 13, 21, 49, 56, 68, 69, 71, 73) 0.2357
6 0.45 (1, 13, 21, 40, 49, 56, 68, 69, 71) 0.2167
7 0.29 (2, 13, 21, 49, 56, 67, 68, 69, 71) 0.2062

Table 4.28 - Hung's Results on Large Rural Pashtun Network
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Simulated Annealing Results

Run # Time (sec) US Strategy Equilibrium
Mean Belief

1 0.686 (3, 14, 30, 48, 56, 69, 70, 70, 72) 0.2775
2 0.624 (1, 13, 22, 39, 48, 67, 69, 70, 70) 0.2848
3 0.686 (1, 19, 21, 37, 39, 48, 56, 69, 73) 0.2852
4 0.748 (1, 31, 39, 48, 68, 69, 70, 70, 73) 0.2857
5 0.764 (12, 21, 39, 40, 48, 67, 69, 70, 71) 0.292
6 0.671 (14, 21, 39, 48, 55, 56, 69, 70, 70) 0.2875
7 0.733 (1, 12, 21, 39, 48, 57, 69, 70, 70) 0.2933

Table 4.29 - Simulated Annealing Results on Large Rural Pashtun Network

Simulated annealing finds better solutions in the same amount of time than Hung's math programformulation

If the simulated annealing algorithm is allowed to run around 10 seconds (this is with our

original cooling parameter set to .97), it can provide solutions with a mean belief over 0.30. Thus

we see that the simulated annealing algorithm can run in the same time as the best cases of

Hung's math program while simultaneously providing better solutions. If Hung's math program

is allowed to run for longer, there was essentially no increase in performance (less than 1%

increase in optimality), but there were exponential increases in run time. If the simulated

annealing algorithm is allowed to run longer by cooling at a slower rate, it can provide a 30%

improvement over Hung's math program with only a 10-fold increase in run time. We've also

already demonstrated that simulated annealing can analyze much larger networks in reasonable

times in the previous experiment.

In Table 4.29, we see that simulated annealing has returned multiple solutions. With a higher

cooling rate this still occurred, although the solutions were more similar to each other than those

in Table 4.29. This occurs because the TB player is playing a highly sub-optimal strategy. When

one player is player a sub-optimal strategy, there are many different solutions of almost equal

quality available to the other player, and the chances of returning a local optima increase

significantly. However, allowing it to cool slower does create more homogeneity in the solutions.

4.3.4 - Experiment 3 Summary

In this set of experiments we have shown that simulated annealing performs very well across

all of the sample problems. In small networks is may be slower than an exhaustive search, but as

the strategy options and size of the network increase, simulated annealing scales extremely well
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and can be used to analyze very large problems (500+ agents in a few hours). This is because

simulated annealing runs in O(n3 ) time, whereas exhaustive enumeration is exponential in the

number of connections. The solutions it provides are better than the solutions that the Knitro

solver found for Hung's formulation. It is capable of finding pure Nash equilibrium strategy

profiles efficiently in large networks. Although the algorithm may return local optima as false

equilibria, by running the algorithm several times answers can be cross checked and verified, and

a high degree of confidence can be gained in the solutions.

4.4 - Experiment Set 4: Sensitivity Analysis to Influence Parameters

In these experiments we analyze the impact that changes in the influence parameters, a, 0,

and y, have on pure Nash equilibria. Recall that these parameters control the interactions between

agents:

aij = P(agent i forcefully imparting their belief to agent j I agent i and j interact)

pij = P(agent i and agent j averaging beliefs I agent i and j interact)

'yij = P(agent i and agent j retain their beliefs I agent i and j interact)

To test this we use 4 different sets of influence parameters. The first set is the control set and

is the same set formulated by Hung and used throughout all of the previous analysis. Two others

are extreme examples designed to test the robustness of the model, and the fourth set is a

modification of the control set. Below we describe each of these data sets qualitatively, but for a

listing of the exact parameters the reader can consult Appendix D.

The first extreme data set is representative of a consensus based heterarchical society, in

which all mutable agents average with all other mutable agents. Everyone prefers to get along

with each other, and thus always adopt middle of the road opinions instead of forcefully

changing other's minds. Stubborn agents forcefully influence all mutable agents, but there is no

difference between 'regular', 'influential', and 'very influential'. Every mutable agent averages

with any other mutable agent they meet, regardless of agent type.

The second extreme data set is representative of a hierarchical society in which belief flows

down from leaders. All mutable agents forcefully influence lower classes of agents, average
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within their own class, and have no influence on more influential classes of agents. Again,

stubborn agents forcefully influence all classes of agents.

The last influence parameter data set is a modification of the control set, which includes

small probabilities of lower agents influencing more influential types of agents. This is more

representative of a western society in which there are influential leaders, but they also are

influenced by their followers, instead of simply dictating beliefs to their constituents.

For each of these parameter sets, the pure Nash equilibrium strategy profiles are computed

under the 'mean belief' vs. 'mean belief' set of payoff functions using exhaustive enumeration

for all of the networks tested in Experiment Set 1 (see section 4.1).

The results of the line networks are in Table 4.30. Only the even line networks are shown, as

the odd line networks have identical results (the reader can consult Appendix E to see all of

them).

Pure Nash Equilibria for Even Line Networks
Case Control Set Consensus Society Heirarchical Society Western Society

A (5,5), (5,6), (6,6) (5,5), (5,6), (6,6) (5,5), (5,6), (6,6) (5,5), (5,6), (6,6)
B (5,5) (5,5), (5,6), (6,6) (5,5) (5,5)
C (8,8) (5,5), (5,6), (6,6) (8,8) (5,5), (5,6), (6,6)

Table 4.30 - Nash Equilibria for Different Influence Parameters on Even Line Networks

The pure Nash equilibria were found for all of the line networks with each of the four different influence parameter sets. (xy) is a strategy

profile in which the TB player connects to agent x, and the US player connects to agent y.

In Case A (all regular), the equilibrium strategy profiles are identical for all parameter sets.

The consensus based society has the same equilibrium strategy profiles throughout, as it doesn't

matter if there are any influential agents (all mutable agents operate the same). In case C, the

control set and hierarchical set have different equilibria than the consensus and western society.

This is because the influential agent on the end of the line acts as a stubborn agent with belief

zero in these parameter sets (because regular agents cannot change the opinion of influential

agents). Overall the line networks show good robustness to parameter changes.
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Pure Nash Equilibria for Even Circle Networks

Case Control Set Consensus Society Heirarchical Society Western Society

A All pairs All pairs All pairs All pairs

B (1,1) All pairs (1,1) (1,1)

C (1,1), (1,6), (6,6) All pairs (1,1), (1,6), (6,6) (1,1), (1,6), (6,6)

D (1,1), (1,10), (10,10) All pairs (1,1), (1,10), (10,10) (1,1), (1,10), (10,10)

Table 4.31 - Nash Equilibria for Different Influence Parameters on Even Circle Networks

The pure Nash equilibria were found fbr all of the circle networks with each of the four different influence parameter sets. (x,y) is a

strategy profile in which the TB player connects to agent X, and the US player connects to agent Y.

In the circle networks the major difference from the control set is for the consensus based

society, where all pairs of agents are equilibria in all cases. All other modified parameter sets

have pure Nash equilibria identical to the control set. Although the difference between the

consensus society and the other sets is significant, the other Nash equilibria are subsets of the

consensus based societies equilibria. This means if a player had incorrect information, thinking

the influence parameters were the control set, hierarchical set, or western society set, and the

game was being played in a consensus based society, the strategies would still be equilibria.

Pure Nash Equilibria for Fully Connected Networks

Case Control Set Consensus Society Heirarchical Society Western Society

A All pairs All pairs All pairs All pairs

B (1,1) All pairs (1,1) (1,1)

C (1,1) All pairs (1,1) (1,1)

Table 4.32 - Nash Equilibria for Different Influence Parameters on Connected Networks

The pure Nash equilibria were foundfor all of the connected networks with each of the fbur different influence parameter sets. (x,y) is a

strategy profile in which the TB player connects to agent X, and the US player connects to agent Y.

In the fully connected networks we see results similar to those for the circle networks - any

strategy profile is a pure Nash equilibrium in the consensus based society, and all of the other

parameter sets yield identical equilibria.
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Pure Nash Equilibria for Rural Pashtun Networks
Case Control Set Consensus Society Heirarchical Society Western Society

Small (1,1) (7,7) (1,1) (1,1)
Large (70,70) (48,48) (70,70) (70,70)

Table 4.33 - Nash Equilibria for Different Influence Parameters on Rural Pashtun Networks

The pure Nash equilibria were found for the rural Pashtun networks with each of the four different influence parameter sets. (xy) is a

strategy profile in which the TB player connects to agent X, and the US player connects to agent Y. The equilibrium strategy profiles for the

consensus based society are the 2nd best strategies for a player in the other societies, and the strategies in the equilibrium strategy profiles in the

control set, hierarchical, and western societies are the 2"' best strategies available to a player in the consensus based society.

For the rural Pashtun networks the equilibria again differ only for the consensus based

society. However, it should be noted that the equilibrium strategies for the consensus based

society are the 2"d best individual strategies for the other three data sets, and the equilibrium in

the other three data sets is the 2nd best strategy for the consensus based society. This is true for

both the large and small rural Pashtun networks. Thus even with significant error in the influence

data parameters, the chosen strategy profiles are either optimal or near-optimal.

4.4.1 - Summary of Experiment Set 4

We have found that there is robustness in the pure Nash equilibria to influence parameter

changes. The exception to this is for the consensus based society. The influence parameters for

the consensus based society dictate that all types of mutable agents interact the same, and thus

the model essentially has only 'regular' agents and 'stubborn' agents. If this were the case, then

the model reduces to a much simpler model, with only 2 types of agents (regular and stubborn).

It is unlikely that any society would be as uniform as this notional consensus based society, with

all agents being equally influential. Furthermore, if a society were totally consensus based, but

the player assumed otherwise, the resulting strategy profiles would still work well in the

consensus based society. The only difficulty would be if an analysis assumed a consensus based

society when it was not. As long as there are in fact differences between differing classes of

agents, and the more influential agents are correctly identified, the equilibrium strategy profiles

are extremely robust to the exact degree of influence represented in the parameter set. This

indicates that an exhaustive analysis of a society need not be conducted to determine exactly how

agents influence each other.
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4.5 - Experiment Set 5: Real World Scenarios

For this set of experiments, we analyze two different scenarios to examine the utility of the

methods developed in this thesis as potential decision support tools. First - we look at using the

simulated annealing algorithm to provide a near optimal solution against a known TB strategy,

and compare this to a strategy found using US Army counterinsurgency doctrine. Second - we

look at a scenario where both the US and TB players use a weighted mean belief payoff function

- with different weights for each player, to show an example of a real world scenario that creates

non-symmetric equilibrium strategy profiles with low variance.

4.5.1 - Doctrine

The purpose of this experiment is to verify whether the simulated annealing heuristic can

perform as well as an experienced US Army officer using doctrine to inform their decisions. We

contacted a fellow US Army officer that has recently returned from Afghanistan, where he

commanded a company and faced the problem of identifying key influencers in his area of

operations. We set up the large rural Pashtun network with 3 stubborn agents, with 3 connections

for each player as seen in Figure 4.20. The Taliban player's connections were set to the

following strategy: (12,13,14,38,39,47,48,49,54).
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Figure 4.20 - Large Rural Pashtun Network set up used for Experiment 5.1

Each player has 3 stubborn agents with 3 connections each. The TB player has afixed strategy of (12,13,14,38,39,47,48,49,54). This

scenario was then presented to an experienced combat leader from the US Army and they were asked to find an optimal solution using doctrine.

This experienced US officer was then given the following set of doctrinal principles and

asked to conduct an analysis of the network shown in Figure 4.19 to determine which mutable

agents he would like to influence.

Doctrinal Principles:

* Identify leaders who influence the people at the local, regional, and national levels.

* Win over passive or neutral people.
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e Nonlethal targets include people like community leaders and those insurgents who should

be engaged through outreach, negotiation, meetings, and other interaction.

e Meetings conducted by leaders with key communicators, civilian leaders, or others whose

perceptions, decisions, and actions will affect mission accomplishment can be critical to

mission success.

e Start easy... Don't try to crack the hardest nut first-don't go straight for the main

insurgent stronghold, try to provoke a decisive showdown, or focus efforts on villages

that support the insurgents. Instead, start from secure areas and work gradually outwards.

Do this by extending your influence through the locals' own networks.

The strategy he selected is shown in Table 4.34, and results in an equilibrium mean belief of

0.1268. Simulated annealing was run 10 times on the network from Figure 4.20 and found 7

different solutions. The average payoff for the US player was 0.1902, and the best was 0.1984.

Doctrine - Informed Strategy

US Strategy Payoff
1 10 55 56 67 68 69170171 0.1268

Best Simulated Annealing Strategy
US Strategy Payoff

14 39 48 49 56 68 69170|71 0.198350149

Table 4.34 - Best Simulated Annealing Strategy vs Doctrine Based Strategy

I Average: 0.1902 92.3743
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Simulated Annealing Strategies
US Strat Payoff Time (sec)

1 39 48 49 56 68 69 70 71 0.1954 92.5780
14 39 48 49 56 68 69 70 71 0.1984 91.7230

1 1 14 39 48 56 68 69 70 0.1773 91.9460

1 39 48 49 56 68 69 70 71 0.1954 93.1090

1 14 39 48 56 68 69 70 73 0.1914 92.2910

1 14 39 48 56 68 69 70 73 0.1914 92.1510

1 39 47 48 56 68 69 71 73 0.1870 93.0490

1 14 21 39 48 56 68 69 70 0.1920 92.0920

1 38 39 48 48 56 68 69 70 0.1834 92.4300
1 14 21 39 48 56 68 69 70 0.1920 92.4200

Table 4.35 -Simulated Annealing Solution for Large Rural Pashtun Network, fixed TB

Strategy



These results show that the simulated annealing heuristic is able to find much better

solutions under the 'mean belief' payoff function than even a highly experienced combat officer

in the US Army that has dealt with this problem many times in Afghanistan. This provides

evidence that simulated annealing finds high quality strategies.

4.5.2 - Weighted Mean Belief Payoff Functions

The motivation for this experiment is twofold- first is to demonstrate that although the 'risk

averse mean belief' payoff function using a bound to approximate standard deviation was found

not to be useful, the problem of matching strategies can be addressed if agents have different

value for each player. The second reason is to verify that the model and analysis tools can be

applied to and compared with real world scenarios. The author served as a company commander

in Khowst and Paktika provinces in Afghanistan in 2008. While serving, our unit's primary

motivation was to win the maximum number of people to the US side. Consequently most of our

operations focused in the more heavily populated valleys that contained 80% or more of the

provincial population. The Taliban on the other hand, were more focused on using parts of our

area of operations as a route to the interior to the major cities of Gardez, Sharana, and Kabul.

Thus, they cared only about maintaining supply routes through mountainous, sparsely populated

villages. This often resulted in both of us settling into an equilibrium, where we maintained the

majority of the population's support, and the Taliban maintained a minority of support in the key

routes they needed. This experiment demonstrates this phenomenon using our model.

In this experiment, each player assigns a weight to each mutable agent in the network

representing that player's value of winning the agent's attitude. Thus far, all of the 'mean belief'

payoff analysis has used an identical set of weights (equal weights for all agents) for both

players. Here each player assigns a different set of weights and thus has a different payoff

function.

For this experiment we use the large rural Pashtun network, and each player has 3 stubborn

agents, with 2 connections each. In this scenario, village 7 (agents 55-67) is notionally a

mountainous village with only a small trail network connecting it to the rest of the valley, where

villages 1-6 reside. The valley has a major road that moves through it that is important for US

forces to use as a supply route. The US player is concerned with maintaining freedom of

maneuver through the valley on this road, and thus wants to win the populace of these villages to
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the US side. The TB player utilizes the mountain trail network moving through village 7, and

cares only about village 7. The US player evenly weights all agents in villages 1-6 with zero

weight assigned to village 7 agents. The TB player evenly weights all agents in village 7, with

zero weight assigned to villages 1-6.

The simulated annealing algorithm is run 10 times and finds the following equilibria:

Average Run Time 697.9429997

Table 4.36 - Simulated Annealing Nash Equilibria on Large Rural Pashtun Network with
Weihted Mean Belief Pavoff Functions

Simulated Annealing returns different strategy profiles almost every time using a weighted mean belief payofffunction, although all strategy

profiles have good strategy options for both players. This demonstrates that simulated annealing can have problems with many local optima in

the network.

Unfortunately, there is no clear winner on which strategy sets are the true Nash equilibria.

The algorithm has returned 5 different strategies for the US player, and 6 different strategies for

the TB player. In order to better analyze this, we evaluate each of these strategies against each

other, creating a 5 x 6 payoff matrix as seen in Table 4.37 and 4.38.
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Simulated Annealing Nash Equilibria on Large Rural Pashtun
Network; 3 Stubborn Agents w/2 Connections Each

Run US Strategy TB Strategy Time (sec)
1 1 48 68 69 70 71 55 56 56 58 67 67 524.3640035
2 39 48 56 68 69 70 55 56 56 57 58 67 646.6049921
3 1 21 48 68 69 70 55 56 56 57 58 67 703.7960015
4 1 48 68 69 70 71 55 55 56 56 58 67 530.3540032
5 1 21 48 69 70 71 55 55 56 56 67 71 1467.323001
6 1 39 48 68 69 70 55 55 56 56 67 67 530.7290062

7 1 21 48 68 69 70 55 55 56 56 67 67 406.1459966
8 1 21 48 68 69 70 55 55 56 56 57 67 463.2659946

9 39 48 56 68 69 70 55 56 56 57 58 67 967.1419982

10 1 39 48 68 69 70 55 55 56 56 67 67 739.7050001



US Strategies TB Strategies

1 (1, 48, 68, 69, 70, 71) 1 (55, 56, 56, 58, 67, 67)
2 (39, 48, 56, 68, 69, 70) 2 (55, 56, 56, 57, 58, 67)
3 (1, 21, 48, 68, 69, 70) 3 (55, 55, 56, 56, 58, 67)

4 (1, 21, 48, 69, 70, 71) 4 (55, 55, 56, 56, 67, 71)
5 (1, 39, 48, 68, 69, 70) 5 (55, 55, 56, 56, 67, 67)

6 (55, 55, 56, 56, 57, 67)

Table 4.37 - Different Strategies Returned by Simulated Annealing on Large Rural Pashtun

network with Weighted Mean Belief Payoff Functions

TB Strategy

1 2 3 4 5 6
1 0.271, 0.41 0.278, 0.419 0.27, 0.409 0.222, 0.396 0.263, 0.395 0.27, 0.409
2 10.258, 0.316 0.266, 0.358 0.26, 0.296 0.184, 0.232 0.253, 0.229 0.26, 0.296
3 0.266, 0.413 0.273, 0.422 0.264, 0.412 0.205, 0.404 0.257, 0.398 0.264, 0.412
4 0.264, 0.414 0.271, 0.422 0.263, 0.412 0.218, 0.401 0.256, 0.399 0.263, 0.412
5 0.274, 0.412 0.281, 0.421 0.273, 0.411 0.212, 0.403 0.266, 0.397 0.273, 0.411

Table 4.38 - Constructed Payoff Matrix of Different Strate gies Returned by Simulated

Annealing on Large Rural Pashtun Network with Weighted Mean Belief Payoff Functions

The payoff matrix shows a pure Nash equilibria amongst the strategies returned by simulated annealing that is a new strategy profile - the

strategies used by the US and TB were not originally a strategy profile amongst the solutions returned by simulated annealing.

This allows us to rule out several strategies, by allowing each player to use any of the

strategies returned above to play the game. If a unilateral deviation from any of the strategies

above to any other one strictly increases a player's payoff, the payoff matrix will show this.

Although not all of the strategies are optimal, they are all strong strategies with very similar

payoff. By finding the best strategy for each player, it will hopefully rule out several local optima

and return a single Nash equilibrium in the game.

In this payoff matrix the only equilibrium strategy profile is:

Sus={1,39,48,68,69,70}

STB={ 5 5 ,56,56,57,58,67}

Payoff for US Player = 0.281, Payoff for TB Player = 0.421

This strategy profile was not returned by simulated annealing. This shows that although the

strategy profiles returned by simulated annealing may not be true pure Nash equilibria, the

128



strategies found can be used to provide a better strategy profile that is more likely to be a pure

Nash equilibrium.

In this equilibrium strategy profile, each player chooses to influence different agents in the

network. This shows a realistic example where each player has a different objective in

influencing the network, which naturally leads to non-symmetric equilibrium strategy profiles.

We have also shown a useful method to employ when multiple equilibria are found through

simulated annealing. By creating a payoff matrix of all the returned solutions and finding the

Nash equilibria among them we can determine a better candidate for the true pure Nash

equilibria. Multiple equilibria become more likely as the number of connections and stubborn

agents increases because this exponentially increases the size of the strategy space that simulated

annealing must search through, making it difficult to find global optima.

4.6 - Summary of Experiments

The first set of experiments showed that in sparse networks, centrality is very important in

determining equilibria. The more connected the network becomes, the more the level of

influence of an agent matters, and in fully connected networks influence level is the only thing

that matters. When players use different payoff functions we see both non-symmetric

equilibrium strategy profiles and first mover advantages, although most of the equilibria

characterized were matching strategies. There is also experimental evidence that the game under

these payoff functions always yields a pure Nash equilibrium.

We hoped that we could remove these matching strategies and also reduce the risk in a

strategy profile using Yildiz et al's bound on standard deviation for a binary belief model. This

did not work well for our model, and we currently have no useful method for accurately

predicted risk and variance beyond simulation. However, in the real world, players often have

different weighted mean beliefs, yielding non-matching equilibrium strategy profiles, as shown

in experiment set 5.

Simulated annealing has proven to be a useful tool for finding optimal player strategies and

characterizing Nash equilibria through best response dynamics in networks. For a single

connection it is not an efficient as exhaustive enumeration, but as the number of players'

connections increases beyond 1, simulated annealing performs several orders of magnitude
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faster. Unfortunately, as the number of connections increases it becomes more and more difficult

for the algorithm to return global optima. However, combining all of the strategies returned by

simulated annealing into a payoff matrix allows us to find the equilibrium strategy profile

amongst the local optima returned by simulated annealing (though there is no guarantee it is a

true pure Nash equilibrium). Simulated annealing is also able to return much better solutions

than an experienced combat officer using doctrine, and also provides a better solutions than the

Knitro solver found using Hung's math program.

The model shows robustness to changes in influence parameters as well. This is important as

it indicates estimates of the a, P, and y parameters do not have to be highly accurate.
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5 - Recommendations for Future Work

In this chapter we discuss several potential modifications and extensions to the social

network model and 2-player game for future research. We first discuss reformulating the game as

a stochastic game, which would consider the current state of the network in formulating strategy

profiles. A second modification would be to make the game a partially observable game by

restricting information on opposing player's strategies or the beliefs of the agents in the network.

Another extension is to consider analyzing the social network and game on a dynamic network

that changes over time. By increasing the range of strategy options to include media campaigns

and more diffuse effects on the populace (like the goodwill generated by building a school) the

game would be more realistic and better reflect the range of tools used to influence social

networks. The final modification is to expand the possible interactions within the social

networking model to include peer and group pressure effects.

5.1 - Stochastic Games

Stochastic games are played in a sequence of stages, in which each player receives some

payoff. After each stage the game then evolves to a new stage stochastically, with the previous

stage and the player's strategies affecting this evolution. This is a way to analyze the stochastic

nature of the social network model more realistically. The network has a set of beliefs, and based

off of how the player's choose their strategies, it affects the way in which the network beliefs can

evolve.

Formulating the problem as a stochastic game could yield more interesting analysis by

giving players the ability to respond to the network's beliefs as the evolve. For example, in

Figure 5.1 we have a line network with a single central influential agent. It all of our previous

analysis both players would want to connect to agent number three, as it is the most influential

agent in the network. However, what if we considered the transient behavior of this network?

The US player may instead want to connect to agent one in order to win it back more quickly

than staying at agent three. However, if the US player leaves agent three, do they risk losing the

rest of the network? Being able to analyze the short-term opportunity costs of engaging other
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leaders like this would be very useful for both commanders and staff, and could be analyzed

more effectively through a stochastic game.

I

17 
' 

] 3 4

Figure 5.1 - Line Network with US winning agents 2-5 and the TB winning Agent I

Should the US player connect to agent I to win thern back quickly, or if they do this will they lose the rest of the network to the T B player?

To investigate this question we conducted some preliminary analysis using approximate

dynamic programming. The initial results were encouraging, and showed that if one player has

the ability to change strategies based off of the network state and the other player only played a

single strategy that the player who considered the state of the network could influence the

network far more effectively.

Unfortunately we were unable to analyze anything larger than around 16 agent networks,

because the possible beliefs states of the network grow exponentially with the number of mutable

agents (we approximated continuous beliefs with binary beliefs and thus the state space was 2",

which was still more than 65,000 possible belief states for a 16 agent network).

Formulating the problem as a stochastic game would be interesting, but would also be

difficult to analyze. The current and future belief states would have to be considered to determine

optimal strategies, and payoff functions would depend on the network state. This would mean the

support space of the payoff function would grow exponentially in the size of the network.

133



5.2 - Partially Observable Games

In Afghanistan, neither US forces nor the Taliban have perfect intelligence. For example, it

is easy for US forces to tell if a village or tribe supports the Taliban, but it is much harder to

figure out if that means the Taliban are actively influencing the village, and if so who they are

specifically influencing.

The game could be reformulated as a partially observable game. There are two major pieces

of information that would make sense to have as partially observable - the opposing player's

strategy and the network beliefs. Knowledge of the opposing player's strategy could be made

partially observable by having player's infer the opposing strategies by observing the current

state of the network. The best response strategy for each player depends on the opposing strategy

(even in equilibrium payoff functions), which means that as the state of the network changes, it

would change the player's belief of the opposing strategy. This would have the effect of making

strategies state dependent.

It would not make sense to completely obscure knowledge of the network state, as both the

US and the Taliban have many methods they use to gauge the support of the populace. However

it would make sense to obscure parts of the information. In our game both players know the

exact belief of every agent in the network. In reality neither the US nor the Taliban know the

belief of every household in a district. Replacing this with some type of village or tribal

aggregate beliefs would better reflect the true level of information both players usually have

available in the real world.

5.3 - Evolving Networks

Our model assumes a static network, but over a long period of time this is not a reasonable

assumption. Even in rural tribal societies tribal relations shift and leaders change. In societies

where new leaders evolve, being able to recognize them and influence them early can be key to

maintaining long term influence within a society. Furthermore, being able to find strategies that

are robust to changes in society could be extremely valuable to players trying to insure

themselves against an uncertain future.
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5.4 - Other Strategy Options: Assassinations, Intimidation, Media
Campaigns, and Reconstruction Projects

In our game the only strategy choices available were deciding who to engage within a

society. While this is an important question, it is not the only method the US Army or insurgents

use to influence networks. As discussed in Chapter 2, insurgents often use intimidation

campaigns and assassinations to influence a populace. The US Army often uses broadcast media

to distribute pro-government messages on radio and TV, in addition to spending millions of

dollars on reconstruction projects. These media campaigns and reconstruction projects have

diffuse effects in areas, and even though US soldiers may not be engaging any local leadership,

these projects and media campaigns may serve to influence the populace. Similarly, insurgent

intimidation campaigns can influence the populace without directly engaging individuals.

Additionally, allowing players to have more strategy options would introduce the problem of

resource allocation to the game - should the US spend all of their time and effort influencing

tribal leaders, or split it between reconstruction projects and influencing leaders? Being able to

answer these tough questions would significantly increase the utility of these methods as a

decision support tool for commanders.

5.5 - Peer Pressure and Group Dynamics

In a pro-Taliban village no matter how much US forces talk to and influence a single regular

head of household (non-leader), it is unlikely that they can get this agent to support US forces

while the rest of the village supports the Taliban. This is because of peer pressure that exists in

groups. Although a group can be changed over time, overcoming peer pressure and group

opinion dynamics greatly complicate the matter. We conducted some simple analysis where

individuals adopt some small portion of their village mean belief at each time step. Adding this

peer pressure effect did affect the transient behavior of the network, but it did not affect any of

the long term equilibrium beliefs, and thus had no impact on our game. If the game were

reformulated as a stochastic game this peer pressure effect would change the game.
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6 - Summary and Conclusions

In this thesis we consider the problem of finding optimal strategies for influencing social

networks for US forces in Afghanistan. The social network is analyzed using a discrete time

agent based model. Each agent has a scalar belief and interacts stochastically pairwise with their

neighbors. In this model the beliefs of agents are random variables, but they approach an

equilibrium belief in expectation. This convergence in expectation is used to analyze the future

behavior of the network. This equilibrium belief is also independent of the agent's starting belief,

and depends only on the network topology and influence parameters.

A 2-player game is formulated with different payoff functions on this social networking

model where a US player and a Taliban player each control a set of stubborn agents whose

beliefs never change. Each player then connects these stubborn agents to the rest of the network

in a way that maximally influences the network beliefs according to each player's payoff

function. Two primary payoff functions ('mean belief' and 'agents won') are defined, and

depend only on the equilibrium beliefs of agents in the network. This means that the payoff

depends only on how the players connect their stubborn agents to the network, and not on the

current state of the network. Because the payoffs do not depend on the state of the network it

significantly reduces the strategy space for each player, but it still increases exponentially in the

number of connection that each player gets to make (there are n possible strategy choices for

each player, where C is the number of connections each player makes and n is the number of

mutable agents in the network).

To understand the dynamics of the game we study pure Nash equilibria is a series of test

networks to better understand the behavior of the model and the game. Two approaches are used

- first is to exhaustively calculate the payoff matrix, which takes O(n 3) calculations per strategy

profile. With n2C strategy profiles, it requires O(n3+2C) total calculations, and the calculation time

is exponential in C. When C is one, this approach works well in our experiments, but for any

value larger than 1 it rapidly increases in run time and is no longer tractable. The second

approach is to use simulated annealing to individually optimize each player's best response
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against the other's current strategy. The simulated annealing heuristic uses best response

dynamics to conduct a series of row and column searches through the payoff matrix without fully

enumerating it. This approach takes O(n 3) calculations and does not scale with the number of

connections.

In analyzing pure Nash equilibria we find that in sparse networks, the location and centrality

of agents become very important in determining the most influential agents (which are generally

part of the equilibrium strategy profiles). As the number of connections increases, the level of

influence of an agent (as defined by input parameters) becomes more important. The most

interesting results emerge between a sparse and a highly connected network, where it becomes

extremely difficult to predict the most influential agents. For identical payoff functions almost all

of the pure Nash equilibria consist of identical strategies. This can be naturally avoided when

players use weighted mean belief payoff functions, awarding different value to influencing

different parts of the network.

The 2-player game in the social networking model presented here provide a way to analyze

the behavior of popular support in insurgencies. Finding globally optimal best response strategies

is a difficult problem in large networks, and characterizing the pure Nash equilibria is even more

difficult. Fortunately we are able to use a simulated annealing heuristic to find the equilibria

through best response dynamics. There is no guarantee that pure Nash equilibria exist, but we

have shown evidence through experimentation that under the two main payoff functions of

'mean belief' and 'agents won' that the game admits pure Nash equilibria.

We were unable to characterize the variance in the social network, and hence the variance

associated with strategy profiles. This is a problem that we leave for future research.

The game theoretic approach can also be extended to work in many other fields where

multiple players are trying to influence social networks. For example, voter models where

politicians compete for votes could be analyzed. Companies running advertising campaigns for

competeing products are another example of players trying to influence social network. There are

many more possible applications where players are trying to influence social networks in order to

bring about a change in attitudes or adopt certain behaviors.

Modeling popular support in an insurgency is an extremely difficult task. Determining who

to influence and how to influence them is rarely obvious, especially when an opponent is
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working against any efforts. The US Army has learned through trial and error how to influence

Iraqis and Afghans, but there is still significant room for improvements. It is our hope that the

tools and analysis methods discussed in this thesis help to continue the development of analysis

techniques to aid the US Army as it looks to the future.
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Appendix A - Notation and Definitions

Agent Sets in the Network

VTB - Set of stubborn agents with belief - .5

Vus - Set of stubborn agents with belief + .5

V, - Set of all stubborn agents = VO U V1

VR - Set of Regular Agents

V, - Set of Influential Agents

Vy - Set of Very Influential Agents

Vm - Set of mutable agents = VR U VI U Vy

V - all agents = Vm U V, = VR U V, U Vy U VTB U VUS

Network Definitions and Notation

n: number of agents in the network n=V|

Xi (t): Belief of agent i after interaction t, Xi (t) E [-.5, .5]

X(t): vector of all beliefs of all agents in the network after interaction t

X(t) = (X1 (t),X2 (t),.., Xn (t) E Rnx1

pij: Probability of agent i having an averaging (s-type) interaction, conditioned on agent i

interacting with agent j

aij: Probability of agent i having a forceful (a-type) interaction, conditioned on agent i

interacting with agent j

yij: Probability of agent i having an averaging (7-type) interaction, conditioned on agent i

interacting with agent j

c: stubbornness rating of mutable agents - meaning the amount of their own belief an agent

retains after being forcefully influenced by another agent
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Vector and Matrices Definitions and Notation

ei - A unit vector of length n (number of agents in the network), with entry I equal to 1, and all

other entries equal to zero.

Ei - The set of agents connected to agent i; lEil = the degree (number of connections to other

agents) of agent i

W - Random matrix that represents a single interaction on the network: X(t+1)=W*X(t)

(ei - ej)(ei - e)

2
A I

W =i I

VV E [W]

Vw [B Di

- (1 -

#ij
with probability * Ei

E)ei(ei - ej) with probability
n * IEI|

Yiji
with probability * j

n * |Eil

IBI = |Vm|X|Vm|, IDI = IVmIXIVsI, lI| = IVsXIIVsl, 101 = IVsIXIVmI

Network Equilibrium State Definitions and Notation

Xi - equilibrium belief of agent i

X*- vector of equilibrium beliefs of agents in the network

X= lim E [(X(t + k)IX(t)] = lim VV * X(t) -* * X(t)
k-*oo k-4o

Xs - |Vsj x 1 vector of stubborn agent beliefs; contains values of only +0.5 and -0.5; is also equal

to the last |Vs| entries of the belief vector X(t) or X* (stubborn agents are the same no matter

what time).

Markov Chain and Variances Analysis Definitions and Notation

r/ij: the probability that starting in state i on the Markov chain, a random walk ends in one of the

absorbing states j.

p4 : probability that a random walk started at state j on the Markov Chain is absorbed by state i
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r - jEVj Pi Vi E Vm r can be thought of as a metric for centrality

DEFINITION: p s is the probability of a random walk starting at node j being absorbed by one

of the states in Vus.

Pus_
i EVUS

o-(X*) - The standard Deviation of the mean belief of the network around equilibrium - this is a

measure of how much deviation we would expect to see in the actual mean belief of the network

if it was simulated, versus the expected equilibrium mean belief we can calculate.

o(X*) ! (pI s - (Pjs)2) * (ri)2
jEVm

2-Player Game Definitions and Notation

First, we rewrite several previous quantities as functions of the strategies chosen by each player

(strategies affect topology and change these quantities). They retain the same meaning as before,

but we use this notation to indicate that they change with player's strategy choices.

VV(SUS,STB) = E[W(Sus,STB)] = ID(SusSTB) B(Sus, STB)I
0I

X*(SUs,STB) = (I - D(SUs,STB))> * B(SUS,STB) *XS

S - Set of strategy options available (same for both players)

Sus - Strategy chosen by the US player

STB - Strategy chosen by the TB player

|ES| - the number of connections from each stubborn agent to the mutable agents in the network

- identical for all stubborn agents.

C -the total number of connections each player has from their stubborn agents to the mutable

agents in the network
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C = lEs| *
2

Mean Belief payoff functions:

fUS(SUS, STB)

IVmI

= Y X (SUS, STB) = -fTB (SUS, STB)
]=1

Agents Won Payoff Functions:

-1 ifx > 1
1TB(X) 0  ifx = 0

1 ifx < 0
1 if x > 1

1us (x) 0 if x = 0

-1 if x < 0

i (X (SUS, STB)) i E fUS, TB}

Risk Averse Mean Belief Payoff Function:

hi(Sus, STB) = fi(SUS, STB) - / * c(X*(Sus, STB)) i E {US,TB}
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Appendix B - Test Networks and Pure Nash Equilibria

Line Networks

Even Degree (10 Mutable Agents)

12 12 12

Case A: All 'regular' Case B: 1 'influential' in Middle Case C: 1 'Influential' on end

Odd Degree (9 Mutable Agents)

11 11 1

Case A: All 'regular' Case B: 1 'influential' in Middle Case C: 1'influential' on end

1 2 3 4 5 6 7 8 9 1 2 3 4 6 7 8 9 1 2 3 4 6 6 7 8 9

10 10 10

Pure Nash Equilibrium Strategy Profiles

Nash Equilibria for Line Networks

Payoff Functions - Mean Belief vs Mean Belief

Case Even Degree Odd Degree

A (5,5), (5,6), (6,6) (5,5)
B (5,5) (5,5)
C (8,8) (7,7)

Nash Equilibria for Line Networks

Payoff Functions - Nodes Won vs Nodes Won

Case Even Degree Odd Degree
A (5,5), (5,6), (6,6) (5,5)

B (5,5) (5,5)
C (6,6) 1(5,5), (5,6), (6,6)
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Nash Equilibria for Line Networks
Payoff Functions - Mean Belief vs Nodes Won

Case Even Degree Odd Degree
A (5,5), (5,6), (6,5), (6,6) (5,5)
B (5,5), (5,6) (5,5)
C (7,6), (8,7) (7,6),(6,5)

Circle Networks

Even Degree (10 Mutable Agents)

Case A: All 'regular' Case B: 1'influential'

Odd Degree (9 Mutable Agents)
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Pure Nash Equilibrium Strategy Profiles

Nash Equilibria for Circle Networks
Payoff Functions - Mean Belief vs Mean Belief

Case Even Degree Odd Degree

A All pairs All pairs

B (1,1) (1,1)

C (1,1), (1,6), (6,6) (1,1), (1,5), (5,5)

D (1,1), (1,10), (10,10) (1,1), (1,9), (9,9)

Nash Equilibria for Circle Networks

Payoff Functions - Nodes Won vs Nodes Won

Case Even Degree Odd Degree

A All pairs All pairs

B (1,1), (1,6), (6,6) (1,1)

C (1,1), (1,6), (6,6) (1,1), (1,5), (5,5)

D (1,1), (1,10), (10,10) (1,1), (1,9), (9,9)
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Nash Equilibria for Circle Networks
Payoff Functions - Mean Belief vs Nodes Won

Case Even Degree Odd Degree
A All pairs All pairs
B (1,1), (1,6) (1,1)
C (1,1), (1,6), (6,1), (6,6) (1,1), (1,5), (5,1), (5,5)
D (1,1), (1,10), (10,1), (10,10) (1,1), (1,9), (9,1), (9,9)

Fully Connected Networks

Case A: All regular Case B: 1 Influential Case C: 2 x Influential, 1 Very Influential

Pure Nash Equilibrium Strategy Profiles

Nash Equilibria for Fully

Connected Networks
Case Any Payoff Functions

A All pairs
B (1,1)

C (1,1)
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Small Rural Pashtun Network

For all combinations of payoff functions, the Pure Nash Equilibrium Strategy Profile for the small rural

Pashtun Network is (1,1).
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Large Rural Pashtun Network

75

74

For all combinations of payoff functions, the Pure Nash Equilibrium Strategy Profile for the largerural

Pashtun Network is (70,70).
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Appendix C - Random Large Network Methodology and
Equilibrium

Methodology for Generating Large Random Networks:

-Number of Villages = Uniform(10,20)

-Number of Regular Agents in Each Village = Uniform(20,30)

-Number of Influential Leaders in each Village = 0.2 * Number of Regular Agents

-Within a village all regular and influential agents are fully connected.

-Every Influential Leaders Randomly connect to 30% of the other Influential Leaders

-Number of Very Influential Agents = 0.2 * Total Number of Influential Village Leaders

-Very Influential Leaders randomly connect to 50% of the influential and very influential

leaders in the network

This methodology creates a series of villages with a few different leaders, in which every

person knows everyone else in the village.Villages leaders know about a third of other village

leaders within their districts. At the district level are several very influential leaders that know

50% of the district and village leadership in the district.

The particular instance generated using this random network generator had 18 villages, with

a total of 471 regular agents. There were 35 influential agents in the villages, and 7 very

influential district leaders.
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Appendix D - Listing of Influence Parameters in Experiment 4

Here we list the four different influence parameter sets used in Experiment 4. The influence parameters

affect how each class of agents interacts with the other classes. The four classes of agents used in our

model are:

Regular Agent

Influential Agent

Very Influential Agent

Stubborn Agent

Each interaction can take on one of three types:

a is the probability of agent i forcefully influencing agent j

P is the probability of agent i averaging beliefs with agent j

y is the probability of agent i having no impact on agent j

Control Set of Influence Parameters

a 13 Y a

U-. 0 1 01

E-Y 0 0 1 0

-A 0 0 10

. + 0 0 1 0

a 13 ya

A ) 1 0 0 .- ~ 1

0.4 0.1 0.5 1

0 0.1 0.9 1

A- 0 0 1 0

13
0

0.1

0.1

0

13
0

0

0

0

Y

0

0.9

0.9

0

0

0

1
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The Consensus society is one in which all agents always adopt middle of the road opinions and agree
with each other. Every mutable agent always averages their belief with every other type of mutable
agent.

Consensus Society Influence Parameters

a $ y a 0
0 1 0 0 1 0

0 1 0 0---> 1 0

0 1 0 V--A 0 1 0. 0 0 10 o

a y a p y

0 1 0 1 0 o

0 1 0 A, T 1 0 0

A 0 1 0 > 1 0 0. 0 0 10 0 1
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The Heirarchical society is one in which belief is imposed upon less influential agents by more influential

agents. All agents will forcefully influence any less influential type of agent every time they interact.

Agents that are the same level of influence will average opinions every time they interact.

U-->.

A-
>M-

Heirarchical Society

a @ y

o 1 0

o 0 1 -

o 0 1

a y

1 0 0 A

10 0

010

0 0 1

I

AL

I
V

a @

1 0 0

0 1 0

0 0 1

0 0 1

a y

1 0 0

1 0 0

1 0 0

0 0 1
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The Western Society is a modification of the control set. It allows less influential agents to occasionally
influence more influential agents. This is intended to model a western democratic society in which
influential people don't have the ability to impose their beliefs on their constituents, and instead must
sometimes respond to the demands of the masses.

Western Society Influence Parameters

a @ y a @

0.1 0.9 0 0.5 0.1

0 0.1 0.9 W0.1 0.5

0 0.1 0.9 0 0.1

0 0

a @ a @

0.9 0.1 0 1 0

0.5 0.1 0.4 1 0

Av-A 0.1 0.5 0.4 1W A 1 0

A0 0 1 --- * 0 0

y

0.4

0.4

0.9

1

0

0

1
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Appendix E - Nash Equilibria for Experiment Set 4

Line Network Pure Nash Equilibrium Strategy Profiles for Experiment Set 4

Nash Equilibria for Even Line Networks

Payoff Functions - Mean Belief vs Mean Belief

Case Control Set Consensus Society Heirarchical Society Western Society

A (5,5), (5,6), (6,6) (5,5), (5,6), (6,6) (5,5), (5,6), (6,6) (5,5), (5,6), (6,6)

B (5,5) (5,5), (5,6), (6,6) (5,5) (5,5)
C (8,8) (5,5), (5,6), (6,6) (8,8) (5,5), (5,6), (6,6)

Nash Equilibria for Odd Line Networks

Payoff Functions - Mean Belief vs Mean Belief

Case Control Set Consensus Society Heirarchical Society Western Society

A (5,5) (5,5) (5,5) (5,5)

B (5,5) (5,5) (5,5) (5,5)

C (7,7) (5,5) (7,7) (5,5)

Circle Network Pure Nash Equilibrium Strategy Profiles for Experiment Set 4

Nash Equilibria for Even Circle Networks
Payoff Functions - Mean Belief vs Mean Belief

Case Control Set Consensus Society Heirarchical Society Western Society

A All pairs All pairs All pairs All pairs
B (1,1) All pairs (1,1) (1,1)

C (1,1), (1,6), (6,6) All pairs (1,1), (1,6), (6,6) (1,1), (1,6), (6,6)
D (1,1), (1,10), (10,10) All pairs (1,1), (1,10), (10,10) (1,1), (1,10), (10,10)

Nash Equilibria for Odd Circle Networks

Payoff Functions - Mean Belief vs Mean Belief

Case Control Set Consensus Society Heirarchical Society Western Society

A All pairs All pairs All pairs All pairs

B (1,1) All pairs (1,1) (1,1)

C (1,1), (1,5), (5,5) All pairs (1,1), (1,5), (5,5) (1,1), (1,5), (5,5)

D (1,1), (1,9), (9,9) All pairs (1,1), (1,9), (9,9) (1,1), (1,9), (9,9)

Fully Connected Network Pure Nash Equilibrium Strategy Profiles for Experiment Set 4
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Nash Equilibria for Fully Connected Networks
Case Control Set Consensus Society Heirarchical Society Western Society

A All pairs All pairs All pairs All pairs
B (1,1) All pairs (1,1) (1,1)
C (1,1) All pairs (1,1) (1,1)

Rural Pashtun Network Pure Nash Equilibrium Strategy Profiles for Experiment Set 4

Nash Equilibria for Rural Pashtun Networks

Payoff Functions - Mean Belief vs Mean Belief

Case Control Set Consensus Society Heirarchical Society Western Society

Small (1,1) (7,7) (1,1) (1,1)
Large (70,70) (48,48) (70,70) (70,70)
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Appendix F - Sample TCAF Questionnaire

TACTICAL CONFLICT ASSESSMENT FRAMEWORK
GENERAL QUESTIONS - Initial Interview

KEY STAKEHOLDER INTERVIEW QUESTIONNAIRE

Q12. How many people live in this village?

Q13. How many households are there in this village?

Q14. In the past 12 months, have more people moved in or out of this village?
El More moved El More moved E The same number 0 None moved in E I don't know
(4) in (3) out (2) moved in as (1) or out (9) [DO NOT

moved out READ]

Q15. Why?

Q16. What are the major problems facing the residents of this village today? [READ OPTIONS ONLY IF
RESPONDANT IS UNABLE TO PROVIDE AN ANSWER; PLEASE PROBE FOR THREE MOST
IMPORTANT SHOULD THE RESPONDANT LIST MORE THAN THREE]

Worst Second Third Problem
Problem Problem (15C)

(A) (15B)

A. Lack of food/potable water 1 1 1
B. Lack of paid work opportunities 2 2 2
C. Lack of shelter 3 3 3
D. Limited roads, sewage/sanitation, 4 4 4
electric power
E. Access to health care 5 5 5
F. Access to education 6 6 6
G. Security 7 7 7
H. Discrimination 8 8 8
1. Government responsiveness to 9 9 9
citizen concerns
J. Corruption 10 10 10
Other:
Other:
Other:
None 0 0 0
No further reply [DO NOT READ] 990 990
1 don't know [DO NOT READ] 999
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Q1. Province: Q2. MGRS/GPS
Reference:

Q3. District: Q4. Village:

Q5. Last Name of Q6. Date of Interview
Interviewer: (00/00/06)

Person Interviewed

Q7. First Name: Q8. Last Name:

Q9. Title: Q9A. Tribe:

010. Who is your
Tribal Elder?
Q11. Organization/Affiliation (category)
El 1 District El 2 Local El 3 Tribal/Clan El 4 Religious

Government Government Leader Leader
O 5 Police E 6 Army O 7 Political Part O 8 Civil Society
O 9 Health El 10 Schools/ El 9 9 9 Other:

Sector Education
Sector



Q17. How much do you think the residents of this village
OPTIONS; PROBE FOR STRENGTH OF ANSWER]

trust each of the following institutions? [READ

Not at all Just a little Somewhat A lot I don't know
[DO NOT

READ]
A. The National Government 0 1 2 3 9
B. The Provincial Government 0 1 2 3 9
C. The municipal/local government 0 1 2 3 9
D.The courts 0 1 2 3 9
E. The local police 0 1 2 3 9
F. The national army 0 1 2 3 9
G. International forces 0 1 2 3 9
H. Tribal leaders 0 1 2 3 9
1. Religious leaders 0 1 2 3 9
J. Local social service organizations 0 1 2 3 9
K. Radio broadcasts 0 1 2 3 9
L. Newspapers 0 1 2 3 9
M. Television reports 0 1 2 3 9

Q18. What are the most important things that can be done in the next six months to improve conditions for
residents of this village? [READ OPTIONS ONLY IF RESPONDANT UNABLE TO ANSWER; PLEASE
PROBE FOR THREE MOST IMPORTANT TO RESPONDANT]

Primary Secondary Tertiary
Response Response Response

(44A) (44B) (44C)
Increase food availability 1 1 1
Provide job/employment opportunities 2 2 2
Shelter construction 3 3 3
Property dispute adjudication 4 4 4
Reliable power supply 5 5 5
Potable water 6 6 6
Improve local roads 7 7 7
Waste management programs 8 8 8
Build schools 9 9 9
Teachers 10 10 10
School supplies 11 11 11
Health care facilities 12 12 12
Health care training 13 13 13
Medical supplies 14 14 14
Improve policing 15 15 15
Integrate militias into security structures 16 16 16
Increase or withdraw international forces 17 17 17
Improve rule of law 18 18 18
Decrease human rights violations 19 19 19
Anti-corruption/transparency programs 20 20 20
Citizen access to government representatives 21 21 21
Increase local government influence/activities 22 22 22
Other (1s'
response):
Other (2 "ld
response):
Other(3'_
response):
Nothing / No problem 0
No further reply [DO NOT READ] 1 990 990
Don't know [DO NOT READ] 999
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