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Abstract

Parallel server queues are a family of stochastic models useful in a variety of ap-
plications, including service systens and telecommunication networks. A particular
application that has received considerable attention in recent years is the analysis
of call centers. A feature common to these models is the notion of the 'trade-off'
between quality and efficiency. It is known that if the underlying system parameters
scale together according to a certain 'square-root scaling law', then this trade-off can
be precisely quantified, in which case the queue is said to be in the Halfin-Whitt
regime.

A common approach to understanding this trade-off involves restricting one's mod-
els to have exponentially distributed call lengths, and restricting one's analysis to the
steady-state behavior of the system. However, these are considered shortcomings of
much work in the area. Although several recent works have moved beyond these as-
sumptions, many open questions remain, especially w.r.t. the interplay between the
transient and steady-state properties of the relevant models. These questions are the
primary focus of this thesis.

In the first part of this thesis, we prove several results about the rate of conver-
gence to steady-state for the A/M/rn queue, i.e. n-server queue with exponentially
distributed inter-arrival and processing times, in the Halfini-Whitt regime. We iden-
tify the limiting rate of convergence to steady-state, discover an asymptotic phase
transition that occurs w.r.t. this rate, and prove explicit bounds on the distance to
stationarity. The results of the first part of this thesis represent an important step
towards understanding how to incorporate transient effects into the analysis of par-
allel server queues.

In the second part of this thesis, we prove several results regarding the steady-
state G/G/n queue, i.e. n-server queue with generally distributed inter-arrival



and processing times, in the Halfin-Whitt regime. We first prove that under minor

technical conditions, the steady-state number of jobs waiting in queue scales like the
square root of the number of servers. We then establish bounds for the large devia-

tions behavior of this model, partially resolving a conjecture made by Gamarnik and

Momcilovic in [431. We also derive bounds for a related process studied by Reed in

[91].
We then derive the first qualitative insights into the steady-state probability that

an arriving job must wait for service in the Halfin-Whitt regime, for generally dis-
tributed processing times. We partially characterize the behavior of this probabil-

ity when a certain excess parameter B approaches either 0 or oo. We conclude by
studying the large deviations of the number of idle servers, proving that this random

variable has a Gaussian-like tail.
We prove our main results by combining tools from the theory of stochastic com-

parison [99] with the theory of heavy-traffic approximations [113]. We compare the

system of interest to a 'modified' queue, in which all servers are kept busy at all times

by adding artificial arrivals whenever a server would otherwise go idle, and certain

servers can permanently break down. We then analyze the modified system using

heavy-traffic approximations. The proven bounds hold for all n, have representations
as the suprema of certaii natural processes, and may prove useful in a variety of set-

tings. The results of the second part of this thesis enhance our understanding of how

parallel server queues behave in heavy traffic, when processing times are generally

distributed.

Thesis Supervisor: David Gamarnik
Title: Associate Professor of Operations Research
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Chapter 1

Introduction

1.1 Parallel Server Queues

Parallel server queues are a family of stochastic models useful in a variety of ap-

plications, including service systems and telecommunication networks. This family

of models captures the notion that in such systems, users arrive according to some

stochastic arrival process, receive service in parallel according to some stochastic pro-

cessing mechanism, and ultimately depart the system. Questions of performance of

these models has a rich history in the operations research and applied probability

literature, under the heading of queueing theory [26],[581, and goes back to the pio-

neering work of Erlang [39] and Pollaczek [85].

The modeling power of parallel server queues has led to their being used in a great

diversity of applications, including call centers [3],[45],[74],[12]; health care [6],[19];

homeland security [108],[46]: transportation [79],[95]: and manufacturing [80),[13].

This diversity of application has led to the creation of a plethora of queueing models,

each customized to a particular application. A unifying feature of many of these

models is that at their core lie a handful of fundamental models, which are often used



as building blocks in more complicated models. Perhaps the most common of these

'building block' models is the First-Come-First-Serve (FCFS) parallel server queue,

in which jobs arrive over time according to some stochastic arrival process, and are

served in the order in which they arrive, with jobs waiting in a queue until a server

becomes available [1111.

A particular queueing application that has received considerable attention in re-

cent years is the analysis of call centers [45),[3],[12]. In such systems, the jobs represent

incoming calls, and the servers represent call center agents who answer the calls. It

has been observed that queueing models suitable for the analysis of call centers have

several underlying features, including a large number of servers, a large arrival rate,

and a traffic intensity close to unity. Another feature common to these models is the

notion of the 'trade-off' between quality and efficiency. Indeed, the managers of call

centers must balance the quality of service they provide to callers, e.g. response time,

with the cost of providing the chosen level of service, e.g. staffing costs [45),[3],[12].

A common approach to better understanding this quality-efficiency trade-off in-

volves restricting one's models to have exponentially distributed call lengths, and

restricting one's analysis by allowing the relevant cost functions to depend only on

the steady-state behavior of the system. However, since it is believed that call lengths

are actually log-normally distributed [12], and transient effects can be important in

staffing a call center [51],[45], these are considered shortcomings of much work in the

area. Although several recent works have moved beyond the assumption of Marko-

vian call lengths [87],[60],[75],[43),[91],[64], many open questions remain, especially

w.r.t. the interplay between the transient and steady-state properties of the relevant

queueing models. These questions are the primary focus of this thesis.



1.2 Model Formulation

In this section we describe the fundamental model studied in this thesis, emphasizing

those features most relevant to our results.

FCFS GI/GI/n queue and stability

The main model studied in this thesis is the well-known FCFS parallel server queue

with n servers, in which inter-arrival times are drawn independently and identically

distributed (i.i.d.), distributed as some random variable (r.v.) A with mean E[A],

and processing times are drawn i.i.d., distributed as some r.v. S with mean E[S]. In

the literature, this model is referred to as the FCFS GJ/GI/n queue; we refer the

reader to [4] for a formal mathematical treatment. Furthermore, if the inter-arrival or

processing times are exponentially distributed, the corresponding GI is replaced by

an A; e.g. the FCFS Al/G/n queue is the FCFS G/G/n queue with exponentially

distributed inter-arrival times. We let Q(t) denote the number in system (number in

service + number waiting in queue) at time t.

A classical result of Kiefer and Wolfowitz [68] asserts that if the traffic intensity,

defined as p E[ s strictly less than unity, then the FCFS GI/GI/n queue has a

meaningful steady-state distribution. In particular, if p < 1, then under very minor

technical conditions on the inter-arrival and processing time r.v.s A and S, the r.v.

Q(t) converges in distribution, as t -* 00, to a limiting r.v. Q(oo), independent of

initial conditions; we refer the reader to [4] for details. It is well-known that this

steady-state distribution captures the 'long-run' behavior of the underlying system.

Note that P(Q(oo) ;> n) represents the probability that an arriving job at some

very large time has to wait for service, and we thus refer to P(Q(oo) ;> n) as 'the

steady-state probability of delay.



Quality-efficiency trade-off and the Halfin-Whitt regime

Designers of large parallel server queueing systems must balance the quality of service

(QoS) offered to the system users, e.g. the probability of delay, with the cost of

providing that service, e.g. the number of servers. In the literature, several strategies

have been identified for striking the desired balance. Different strategies result in

the queue operating in three fundamentally different regimes as the system grows,

where performance metrics behave very differently in each regime [52],[74]. In the

quality driven (QD) regime, there is an abundance of servers, and the overwhelming

majority of arriving jobs do not have to wait for service. In the efficiency driven (ED)

regime, there are barely enough servers, and the overwhelming majority of arriving

jobs must wait for service. In the quality and efficiency driven (QED) regime, there

are 'a reasonable number' of servers to handle the given load, and some non-trivial

fraction, bounded away from both 0 and 1, of arriving jobs must wait for service. It is

generally accepted that well-run call centers should operate in the QED regime, and

that deciding exactly what constitutes a 'reasonable number' of servers is a challenging

optimization problem [45],[10].

Recall that a fundamental feature of call center models is that there are a large

number of servers n and a large arrival rate A. It is sensible to ask, given that n and

A are both large, how should they scale together so that n represents a 'reasonable

number' of servers for the arrival rate A. Although this question has been studied as

far back as Erlang [40] and Jagerman [59], the solution was formally given in [52] by

Halfin and Whitt, where it was shown that for the case of exponentially distributed

processing times, if n scales like A + BAN for strictly positive excess parameter B (or

equivalently A scales like n -Bn), while the processing time distribution is held fixed,

then by letting B vary between 0 and oc, one can attain any desired probability of

delay in the limit as A, n -4 oc. This provides the desired formalization of the quality-



efficiency trade-off, parametrized by B.

As empirical studies suggest that call lengths are not exponentially distributed

[12], researchers needed a way to extend the model of [52] to more general call length

distributions. This was done in a natural manner, see e.g. [91]. Namely, for any

fixed inter-arrival distribution A and processing time distribution S, and fixed excess

parameter B > 0, we define An,B 1 n - Bn&, and let QB denote the FCFS GI/GIl/n

queue with inter-arrival times drawn i.i.d. distributed as AA-, and processing times

drawn i.i.d. distributed as S. Observe that if E[A] = E[S], then as in the Markovian

model studied in [52], the traffic intensity equals 1 - Bn-2. Q' will be the primary

model studied in this thesis. If E[A] = E[S] and n is large, then Qn is called the

FCFS GI/GIl/n queue in the Halfin-Whitt (H-W) regime. Also, we let Qn (t) denote

the number in system (number in service + number waiting in queue) in Q' at time t,

and Q'(oo) the corresponding steady-state r.v., when it exists. When the dependence

on B is implicit, we will let Qn, Q"(t), and Q"(oo) denote Qn. Qi(t), and Qn (oo)

respectively.

1.3 Problem Formulation and Literature Review

In this section we formally pose the main problems that we will address in this thesis,

and review the relevant literature. We keep our discussion at a high level, saving

details for the chapter-specific introductions.

Rate of convergence to steady-state for the M/M/n queue in

the Halfin-Whitt regime

Transient effects can be quite important in staffing a call center [51],[45], and thus

it is important to understand the error of steady-state approximations for various



performance metrics in the H-W regime. Although little is known about the quality

of steady-state approximations for the FCFS GI/GI/n queue with general processing

time distribution, much more is known when both the inter-arrival and processing

time distribution are Markovian. Indeed, the question of how quickly the A/A/n

queue approaches stationarity has a rich history in the queueing literature. In [81],

Morse derives an explicit solution for the transient M/M/1 queue, and discusses im-

plications for the exponential rate of convergence to stationarity. Similar analyses are

carried out by Clarke in [25] and Saaty in [941.

Around the same time, both Ledermann and Reuter [72], and Karlin and Mc-

Gregor [62], worked out powerful and elegant theories that could be used to give the

transient distributions for large classes of birth-death processes (b-d-p), including the

M/M/n queue, in terms of certain integrals. Karlin and McGregor (K-M) devote

an entire paper [63 to the application of their theory to the A/A/n queue, and

discuss implications for the rate of convergence to stationarity. These implications

were later made rigorous and expanded on in a series of papers [17],[18],[104],[22].

Let P(t) denotes the matrix of transient probabilities for the A/M/n queue, namely

Pi(t) is the probability that there are j jobs in system at time t, if there are i jobs

in system at time 0. Let A denote the generator matrix associated with the A/A/n

queue, namely the unique rate matrix s.t. P(t) = A - P(t) [41],[22]. Then it is

demonstrated in [17],[18],[104],[22] that Pij(t) converges exponentially quickly to its

steady-state value, at a rate equal to the absolute value of the supremum of the set

of strictly negative real eigenvalues of A. This rate is referred to as the spectral gap

y of the associated Markov chain, and we refer the reader to [65] for details, and an

excellent survey on transient Markov chains.

It is well-known that for the positive recurrent A/A/1 and A/A/oo queues, -Y

can be computed explicitly, and has a, simple representation in terms of the underly-

ing system parameters [63]. Unfortunately, for the general positive recurrent Al/Al/n



queue, the known characterizations for -y are cumbersome and hard to use [104]. Sig-

nificant progress towards understanding the spectral gap of the M/M/n queue was

made in a series of papers by van Doorn [102],[103],[104],[105]. Van Doorn used the

results of K-M and the theory of orthogonal polynomials to give several alternate

characterizations and bounds for the spectral gap of a b-d-p, and applied these to the

M/M/n queue. He also showed that for each fixed n, there is a phase transition in

the nature of the spectral gap of the M/M/n queue as one varies the traffic intensity

[102]. Unfortunately, all of the characterizations given by van Doorn, including that

of the underlying phase transition, are again fairly complicated, and van Doorn him-

self comments in [104] that one is generally better off using the approximations that

he gives in the same paper. Van Doorn's work was later extended by Kijima in [69],

and similar results were achieved by Zeifman using different techniques in [119].

However, it seems that prior to this thesis, these techniques had not been used

to analyze the quality of steady-state approximations in the H-W regime. Recently,

Leeuwaarden and Knessl studied the rate of convergence to steady-state of a certain

related diffusion [70], proving several results analogous to our own. Also, Kang and

Ramanan studied the rate of convergence to steady-state of a related fluid limit [61].

However, many questions associated with the rate of convergence to steady-state of

the A/M/n queue in the H-W regime were unresolved prior to this thesis.

Explicit bounds on the distance to steady-state for the M/M/n

queue in the Halfin-Whitt regime

For applications, it is often desirable to have explicit bounds on the error of the

steady-state approximation, as opposed to just an understanding of its behavior up

to exponential order. There are several such results in the literature for the M/M/n

queue, including the work of Zeifman [119], Chen [23], van Doorn and Zeifman [106],



and van Doorn, Zeifman, and Panfilova [107]. Most of these bounds are given in

terms of an explicit prefactor attached to an exponentially decaying term. However,

these bounds are generally not studied in the H-W regime, and thus may not scale

desirably with n in the H-W regime. Indeed, prior to this thesis no explicit bounds

on the distance to steady-state for the AJ/M/n queue were known to perform well in

the H-W regime.

Asymptotic scaling of the steady-state GI/GI/n queue in the

Halfin-Whitt regime

A first-order consideration when analyzing a queueing model is the question of how

the model's performance scales asymptotically with the underlying system parame-

ters. Since it is believed that the call length distributions arising in practice are not

Markovian [12], it is important to understand how the FCFS Gl/GI/n queue scales

in the H-W regime for generally distributed processing times.

In their paper [52], Halfin and Whitt studied QA in the H-W regime when S is ex-

ponentially distributed, i.e. Qi is a GI/A/n queue. They proved that the sequence

of processes {(QB(t) - n)n- -, n > 1}, i.e. the diffusion-scaled number of jobs in

system, converges in distribution (as a process) to a non-trivial Markovian diffusion,

which we call the H-W diffusion, on compact time intervals. They also proved that

the sequence of r.v.s {(Q (oo) - n) n -,n > 1, i.e. the diffusion-scaled steady-state

number of jobs in system, converges weakly to the mixture of a Gaussian distribution

and an exponential distribution, which coincides with the steady-state of the H-W

diffusion.

Similar convergence results under the H-W scaling were subsequently obtained for

more general multi-server systems. Puhalski and Reiman treated the case of phase-

type processing times in [87]. Jelenkovic, Mandelbaum, and M\Iomcilovic treated the



case of deterministic processing times in [60]. Mandelbaum and Momcilovic treated

the case of processing times with finite support in [75]. Gamarnik and Momcilovic

also treated the case of processing times with finite support, albeit from a different

perspective, in [43]. Kaspi and Ramanan treated the case of processing times satisfy-

ing a mild technical condition in [64], taking a stochastic partial differential equation

approach, and showing that the underlying process is an Ito diffusion, in an appropri-

ate sense. The most general known results, essentially covering the case of generally

distributed processing times, were proven by Reed in [91], for a class of restrictive

initial conditions. Those results were later extended to general initial conditions by

Puhalski and Reed in [88].

However, as the theory of weak convergence generally relies heavily on the as-

sumption of compact time intervals, the most general of these results hold only in

the transient regime. Indeed, with the exception of [52] (which treats exponentially

distributed processing times), [60] (which treats deterministic processing times), and

[43] (which treats processing times with finite support), all of the aforementioned

results are for the associated sequence of normalized transient queue length distri-

butions only, leaving many open questions about the associated steady-state queue

length distributions. In particular, in [43] it was shown for the case of processing

times with finite support that the sequence of steady-state queue length distribu-

tions, normalized by n2, is tight. Although the authors conjectured that this result

should hold for more general processing time distributions, prior to this thesis no

further progress on this question had been achieved, leaving open the question of

whether (Q(oo) - n) O(n).



Large deviations for the steady-state GI/GI/n queue in the

Halfin-Whitt regime

In many service systems, one is interested in the probability of rare events, which

although unlikely, can have serious consequences. The set of associated questions

generally falls under the heading of large deviations theory. There is a rich general

theory of large deviations in the literature [30]. Although general theorems, such as

the celebrated Gartner-Ellis Theorem, provide a framework for proving such results,

it is often challenging to derive explicit solutions and insights into any particular

stochastic model. There has been much interest in the large deviations of queues

[44], and the question has been previously studied in the H-W regime. In particular,

in [43], Gamarnik and Morncilovic showed that for the case of processing times with

finite support, the sequence of steady-state queue length distributions (normalized

by ni) has a limit whose tail decays exponentially fast. The authors further proved

that this exponential rate of decay (i.e. large deviation exponent) is -2B(c2 + c2)-I,

where c2 and c2 denote the squared coefficient of variation (s.c.v.) of the inter-arrival

and processing times, respectively. Similar results are also known to hold for the case

of exponentially distributed processing times [52] and deterministic processing times

[60].

However, for generally distributed call lengths, the probability that the normalized

steady-state number of jobs waiting in queue exceeds some very large value x was not

well-understood prior to this thesis, although it had been conjectured by Gamarnik

and Momcilovic that the probability of such a rare event should decay exponentially

fast at the same rate -2B(c2 + ci). Furthermore, even less was known about the

large deviations properties of the number of idle servers.



Probability of delay for the steady-state GI/GI/n queue in

the Halfin-Whitt regime

An important property of the H-W regime is that the steady-state probability of

delay should scale as some non-trivial function of B as n -+ oc. This probability

often appears in objective functions used to capture the quality-efficiency trade-off in

the H-W regime [10],[76], and thus it is important to understand the scaling of this

probability for the optimization of such models. The steady-state probability of delay

for exponentially distributed processing times was computed explicitly by Halfin and

Whitt in [521, and an explicit formula is also known for the case of deterministic

processing times [60]. Gamarnik and Momcilovic give an implicit description (in

terms of a certain Markov chain) of the steady-state probability of delay for the case

of processing times with finite support, and prove that this probability lies strictly

in (0, 1). However, it seems that essentially nothing was known about this important

quantity for more general processing time distributions prior to this thesis, and very

little was known about the qualitative features of this probability beyond the setting

of Markovian or deterministic processing times.



1.4 Organization of the Thesis and Main Contri-

butions

Chapter 2: Rate of convergence to steady-state for the M/M/n

queue in the Halfin-Whitt regime

In Chapter 2 we prove several results about the exponential rate of convergence to

steady-state for the M/M/n queue in the H-W regime. We identify the limiting rate

of convergence to steady-state, and discover an asymptotic phase transition that oc-

curs w.r.t. this rate in the H-W regime. In particular, we demonstrate the existence

of a constant B* ~ 1.85772 s.t. for B E (0, B*), the error in the steady-state ap-

proximation converges exponentially fast to 0 at rate B. For B > B*, the error in

the steady-state approximation converges exponentially fast to 0 at a different rate,

which is the solution to an explicit equation given in terms of special functions. This

result may be interpreted as an asymptotic version of the phase transition proven to

occur for any fixed n by van Doorn in [102], unifying several earlier characterizations

for the spectral gap of the M/M/n queue [63],102],[104],[119],[69].

Chapter 3: Explicit bounds on the distance to steady-state

for the M/M/n queue in the Halfin-Whitt regime

In Chapter 3, we prove explicit bounds on the distance to stationarity for the M/A/n

queue in the H-W regime, when B < B*, e.g. characterizing the error in estimat-

ing the transient probability of delay by the corresponding steady-state quantity.

Our bounds hold for any sufficiently large fixed n, i.e. number of servers, and scale

independently of n in the H-W regime. Also, we use our bounds to provide a heuris-

tic rule-of-thumb which could be used to determine the time it takes an overloaded



(underloaded) queueing system to return (probabilistically) to the steady-state. In

Chapters 2 - 3, we prove our main results by carefully studying the asymptotics of

previously known characterizations for the transient M/M/n queue.

The results of Chapters 2 - 3 represent an important step towards understanding

how to incorporate transient effects into the analysis of parallel server queues.

Chapter 4: Asymptotic scaling and large deviations for the

steady-state GI/GI/n queue in the Halfin-Whitt regime

In Chapter 4, we prove several results regarding the steady-state GI/GI/n queue

in the H-W regime. We first prove that under minor technical conditions, the

steady-state queue length scales as the square root of the number of servers. More

formally, we prove that there exists an a.s. finite r.v. Q' s.t. for all x > 0,

limsup,P(Qn(oo) > n + xn-2) < P(Qo > x), i.e. the sequence {(Qn(oo) -

n)+n-'21, n > 1} is tight. We go on to establish bounds for the large deviations behav-

ior of the steady-state G/GI/n queue in the H-W regime, proving that the tail of

the limiting steady-state queue length decays exponentially fast, with exponent less

than or equal to -2B(cA + cS) 1 . When the arrival process is Poisson, we prove a

matching lower bound on the tail of the limiting steady-state queue length. These

results partially resolve a conjecture made by Gamarnik and Momcilovic in [43]. We

also derive the first non-trivial bounds for a related process studied by Reed in [91].

In particular, in [91], Reed proved that the queue length of the transient GI/GI/n

queue converges weakly to a non-trivial process in the H-W regime, under very gen-

eral assumptions. However, the associated weak limit is only described implicitly, as

the solution to a certain stochastic convolution equation (see [91]). We derive the

first non-trivial bounds for this weak limit.



Chapter 5: Probability of delay for the steady-state GI/GI/n

queue in the Halfin-Whitt regime

In Chapter 5, we derive the first qualitative insights into the steady-state probability

of delay in the H-W regime for generally distributed processing times. In particular,

we analyze the probability of delay in the H-W regime for the cases B -+ 00 and

B -+ 0. We prove that for any fixed distributions A and S, there exist Ei, 62 > 0,

depending only on A and S, s.t. the limiting steady-state probability of delay is

bounded from above by exp (- ciB 2 ) as B -+ oc; and the limiting steady-state prob-

ability that an arriving job does not have to wait for service, i.e. no delay, is bounded

from below by 62B as B -+ 0. We then revisit the question of large deviations for the

steady-state GIIGI/n queue in the H-W regime, but now examine the probability

that the steady-state number of idle servers exceeds some large value x. We prove

that there exists c > 0, depending only on A, S, and B, s.t. the tail of the limiting

steady-state number of idle servers is bounded from below by exp ( - ex 2 ) as x -+ oc.

These results match known results for the case of Markovian [52] inter-arrival or pro-

cessing times, and are thus in a sense tight.

We prove our main results by combining tools from the theory of stochastic com-

parison of queues [99) with the theory of heavy-traffic approximations for queues [113).

In Chapter 4, we compare Q" to a 'modified' queue, in which all servers are kept busy

at all times by adding artificial arrivals whenever a server would otherwise go idle.

We then analyze the modified system in the H-W regime using heavy-traffic approx-

imations. In Chapter 5, we compare Q" to a different 'modified' queue, in which all

servers are kept busy on some fixed time interval, at the end of that time interval

certain servers break down and cease functioning, and for the remaining time the re-

maining functional servers are again kept busy. In both cases, the proven bounds are

of a structural nature, hold for all n and all times t > 0. and have intuitive closed-form



representations as the suprema of certain natural processes which converge weakly

to Gaussian processes in the H-W regime. In both cases, we use special initial con-

ditions to aid in our analysis, since the steady-state distribution does not depend

on initial conditions. In particular, we are able to analyze the relevant steady-state

distributions without having to analyze the corresponding transient systems under

general initial conditions. Furthermore, the results of Chapters 4 - 5 do not follow

from naive infinite-server bounds, which either scale incorrectly, or yield inequalities

pointing the other direction. Although we ultimately customize these bounds to the

H-W regime to prove our main results, we note that our bounds are in no way limited

to that regime, and may prove useful in a variety of settings.

The results of Chapters 4 - 5 represent a step towards understanding how to incor-

porate more general processing time distributions into the analysis of parallel server

queues.

1.5 Summary and Open Questions

In this thesis, we prove several results for the performance of the so-called FCFS

G/GI/In queue in the Halfin-Whitt regime. We characterize the error in the steady-

state approximation when inter-arrival and processing times are Markovian, an impor-

tant step towards understanding how to incorporate transient effects into the analysis

of parallel server queues. We also prove bounds for the asymptotic behavior of the

steady-state queue length, and the probability of certain rare events associated with

the steady-state queue length and the probability of delay. Since our bounds hold

for a very general class of processing time distributions, these results enhance our

understanding of how parallel server queues behave in heavy traffic, when processing

times are generally distributed.

This thesis leaves several interesting directions for future research. There are



many open questions related to the interaction between weak convergence and con-

vergence to stationarity. Although the results of Chapters 2 - 3 show that one can

uniformly bound the rate of convergence to steady-state in the Halfin-Whitt regime

for the case of Markovian inter-arrival and processing times, independent of the num-

ber of servers, it is open whether such a result holds for more general processing time

distributions. A set of related questions has to do with the 'interchange of limits' in

the Halfin-Whitt regime. Namely, it is an open question whether or not the sequence

{n2 (Q"(oo) - n)+, n > 1} has a unique weak limit. Furthermore, should such a

unique weak limit exist, must it coincide with the long-time behavior of the transient

weak limit identified by Reed in [91]? Another related interchange question pertains

to the fact that many of our large deviations results hold for the limiting diffusion

only. In particular, what can be said about the large deviations properties of the

pre-limit systems?

Other interesting questions center around the so-called insensitivity phenomenon

in queueing systems. In particular, the results of Chapter 4 - 5 can be interpreted as

statements about the universality of certain scalings and behaviors. In Chapter 4, we

take a step towards proving that the large deviations behavior depends only on the

first and second moments of the underlying distributions, and the excess parameter.

In Chapter 5, we prove that as one varies the excess parameter, certain fundamen-

tal probabilities always scale in the same way, independent of the particulars of the

underlying inter-arrival and processing time distributions. Similar phenomena have

been observed about queues in the Halfin-Whitt regime by many authors, but the full

extent of this insensitivity is not well-understood. Important further steps include

generalizing our large deviations lower bounds to non-Poisson arrival processes, and

better understanding the steady-state probability of delay.

On a final note, we believe that the bounding methodology introduced in Chapters

4 - 5 may be applicable to a variety of queueing models, and it would be interest-



ing to pursue a research agenda along these lines. For example, perhaps these tools

could be used to investigate systems with abandonments in the Halfin-Whitt regime.

This setting is practically relevant, since customer abandonments are an important

modeling component in the analysis of call centers [3],{12].
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Chapter 2

Rate of Convergence to

Steady-state for the M/M/n

Queue in the Halfin-Whitt Regime

2.1 Introduction and Literature Review

It is well-known that the steady-state behavior of the A/A/n queue in the H-W

regime is quite simple in practice [52], while the transient dynamics are more compli-

cated [52], and it is common to use the steady-state approximation to the transient

distribution. Thus it is important to understand the quality of the steady-state ap-

proximation. The only work along these lines seems to be the recent paper [70], which

studies the transform of the H-W diffusion and proves several results analogous to

our own for the H-W diffusion. The key difference is that in this paper we study

the pre-limit A/Al/n queue, not the limiting diffusion. We note that the relevant

transform functions were also studied in [5], although in a different context.

The question of how quickly the positive recurrent M/M/n queue approaches



stationarity has a rich history in the queueing literature. In [81], Morse derives an

explicit solution for the transient M/M/1 queue, and discusses implications for the

exponential rate of convergence to stationarity. Similar analyses are carried out in [25]

and [94]. Around the same time, two different research groups [72], [62] worked out

powerful and elegant theories that could be used to give the transient distributions

for large classes of birth-death processes (b-d-p). The transient probabilities are

expressed as integrals against a spectral measure #(x) that is intimately related to

the eigenvalues of the generator of the b-d-p. Karlin and McGregor (K-M) devote an

entire paper to the application of their theory to the M/M/n queue, in which they

comment explicitly on the relationship between the rate of convergence to stationarity

and the support of #(x) [63]. This relationship was later formalized in a series of

papers by other authors [104],[22]. Recall that the spectral gap -Y of a b-d-p is the

absolute value of the supremum of the set of strictly negative real eigenvalues of the

associated generator matrix A, where jP(t) = A - P(t) [41]. If no such eigenvalues

exist, we set y =00. Then it follows from [22] Theorem 5.3, the discussion in the

Introduction of [104], and the results of [63] that

Theorem 1. For any positive recurrent A/A/n or M/M/oo queue, y E (0, oc). For

all i andj, limt, -t 1 log |Pj(t) - P(oo)| > -y. For at least one pair of ij,

limt, -t 1 log |Pj(t) - P(oo)| = y. Furthermore. -y = inf{x : x > 0, d#(x) > 0}.

We note that -y is also closely related to the singularities of the Laplace transform

of #(x), and refer the reader to [63] for details. It is well-known that for the positive

recurrent A/A/1 and A/A/oo queues, -y can be computed explicitly. In particular.

it is proven in [63] that

Theorem 2. For the positive recurrent Al/A/1 queue with arrival rate A and service

rate p, =- (A2 - PI)2 and the spectral measure #(x) consists of a jump at 0. and an

absolutely continuous measure on [(A -- I)2 (A 2. For the M/I/oc queue



with arrival rate A and service rate p, -y = p, and the spectral measure $(x) consists

of a countably infinite number of jumps, at the points {ky; k E Z+}.

Unfortunately, for the general positive recurrent A/A/n queue, the known char-

acterizations for -y involve computing the roots of high-degree polynomials, which

may be computationally difficult. This arises from the fact that for the positive re-

current M/M/n queue with arrival rate A and service rate p, the spectral measure

#(x) consists of three parts [63]. The first part is a jump at 0, which corresponds to

the steady-state distribution [63]. The second component is an absolutely continuous

measure on the interval [(A -- (ny))2, (A- + (ny)p)2], whose density is described in

[63]. The third component consists of a set of at most n (but possibly zero) jumps,

which all exist on (0, (A- - (np/)2 ) [63]. The complexity of determining Y arises

from the difficulty of locating these jumps [104]. In [63], the set of jumps is expressed

in terms of the zeros of a certain polynomial equation.

Significant progress towards understanding these jumps was made in a series of

papers by van Doorn [102],[103],[104],[105]. Van Doorn used the K-M representation

and the theory of orthogonal polynomials to give several alternate characterizations

and bounds for the spectral gap of a b-d-p, and applied these to the A/A/n queue.

He also showed in [102] that for each fixed n there is a transition in the nature of the

spectral measure of the A/A/n queue as one varies the traffic intensity, proving that

Theorem 3. For all n > 1. there exists p* E [0,1) such that for any M/M/n queue

satisfying ;> p y= (A' -(ny)i) 2 ; and for any M/Al/n queue satisfying g < p*

y < (A2 - (nyj ) 2

Unfortunately, all of the characterizations (including that of p*) given by van

Doorn are again stated in terms of the roots of high-degree polynomials, and van

Doorn himself comments in [104] that one is generally better off using the approxi-

mations that he gives in the same paper. Van Doorn's work was later extended in



[69], and similar results were achieved using different techniques in [119]. It was also

shown in [119] that p* < (1 - 1)2

In this chapter, we prove several results about the exponential rate of convergence

to steady-state for the M/M/n queue in the H-W regime. We identify the limiting

rate of convergence to steady-state, and discover an asymptotic phase transition that

occurs w.r.t. this rate in the H-W regime. In particular, we demonstrate the exis-

tence of a constant B* ~ 1.85772 s.t. for B E (0, B*), the error in the steady-state

approximation converges exponentially fast to 0 at rate . For B > B*, the error in

the steady-state approximation converges exponentially fast to 0 at a different rate,

which is the solution to an explicit equation given in terms of special functions. This

result may be interpreted as an asymptotic version of the phase transition proven to

occur for any fixed n by van Doorn in [102], unifying several earlier characterizations

for the spectral gap of the M/M/n queue [63],[102],[104],[119],[69].

2.1.1 Outline of chapter

The rest of the chapter proceeds as follows. In Section 2.2, we introduce some notation

and state our main results. In Section 2.3, we prove a new characterization for ',,
which is amenable to asymptotic analysis. Sections 2.4 - 2.7 are devoted to studying

the asymptotic properties of this characterization. This culminates with Section 2.7,

in which we prove our main results. In Section 2.8 we summarize our main results

and present ideas for future research. We include a technical appendix in Section 2.9.



2.2 Main Results

2.2.1 Definitions and notations

We now define several important quantities for the l/M/n queue Q", namely the

M/M/n queue with arrival rate A, = n - Bn2 and service rate p = 1, where we

assume throughout that n is sufficiently large to ensure that n > A,, + 1. Recall

that Q"(t) denotes the number in system at time t in Q". We define PF7,(t) A

Pr(Qn(t) =jQn(O) i), P7(oo) Z Pr(Q"(oo) j), Pi"j(t) E E(j P0J'7t), and

P_ (oC) k Zi 0 P(oo). Let yn denote the spectral gap of the associated Markov

chain. For a complex-valued function f(x), we let Z(f)(Z+(f)) denote the infimum

of the set of (strictly positive) real zeros of f(x). Set Z(f) (Z+ (f)) = oc if f(x) has no

(strictly positive) real zeros. We let Hk A Ek denote the kth harmonic number.

All logarithms will be base e. Unless otherwise stated, all functions are defined only

for real values of x. All empty products are assumed to be equal to unity, and all

empty summations are assumed to be equal to zero.

2.2.2 The parabolic cylinder functions

We now briefly review the two-parameter function commonly referred to as the

parabolic cylinder function Dx(z), since we will need these functions for the state-

ment (and proofs) of our results. For excellent references on these functions, see [50
Section 8.31 and Section 9.24, [14] Sections 3.3-3.5, and [38] Chapter 8. Let F(x)

denote the Gamma function (see [54], Chapter 8.8). It is stated in [14) that for real

x and Z, D(z) c R, and

{ e _ o e cos({x-zt)tdt if x ;>0;
Dz)7= 2 24 0(2.1)

fo e 2 - t-(x+)dt if xr < 0.



D,(z) takes on a simpler form for x E Z. In particular, it is stated in [50] that for

z E R,

D_1 (z) = 22 eT e- dt, Do(z)= e-, and D1(z) = ze--T . (2.2)

Note that since F(-x) E (0, oo) for x < 0, (2.1) and (2.2) imply that

for all z E R and x < 0, Dx(z) > 0. (2.3)

The parabolic cylinder functions arise in several contexts associated with the limits

of queueing models, such as the Ornstein-Uhlenbeck limit of the appropriately scaled

infinite server queue [56] and various limits associated with the Erlang loss model

[116]. We note that the parabolic cylinder functions have been studied as the limits of

certain polynomials under the H-W scaling, using tools from the theory of differential

equations [32],[33],[37],[89].

2.2.3 Main results

WVe now state our main results. We begin by describing the asymptotic phase transi-

tion that occurs w.r.t. the spectral gap 7, of the A/Al/n queue in the H-W regime.

Let

vt,'y) A Dx -I
V(X' o )=

if D1 _1 (y) / 0:

otherwise:



Also, let z () v(x, -B) + B, p(B) A v({, -B), ((B) ( p(B) + 2, and

v(x, -B) + !(B+ (B2 - 4x))
oW

if Dx- (-B) z/ 0, < 2

4,

otherwise.

Note that ((B) = W(i). We include a plot of ((B). Let B* A Z+((). Then

0.8

0.6

0.2

1.5 \ 2.0

Figure 2-1: ((B)

Proposition 1. B* C [221, 2), and Z+({,) < min(1, 2) for B > B*. Numerically,

B* ~ 1.85772.

Our main result is that

Theorem 4. The limit -YB = linn-o 7n exists for all B > 0. For 0 < B < B*,

YB = L-. For B > B*, YB = Z+(po ).

We include a plot of 7B.

We note that due to the non-linear manner in which the steady-state probability of

delay scales in the H-W regime, the case 0 < B < B* actually encompasses most



0 0.5 1 1.5 B; 2 2.5 3 3.5

B

Figure 2-2: 'YB

scenarios of interest. Indeed, it is proven in [52] that

lim P""(oo) 1 - (1 + B exp( B2) exp(-z2)dz)l
n o - 2 _, 2

As this limit is monotone in B, the case 0 < B < B* includes all scenarios for which

the steady-state probability of delay is at least .04.

The following corollary may be interpreted as an asymptotic version of Theorem

3, unifying several earlier characterizations for the spectral gap of the A/A/n queue

[63], [1021,

[104],[119],[69].

Corollary 1. The p* parameter of Theorem 3 satisfies

liin n, ( - p*) = B*.

We now give an interpretation of Theorem 4 and Corollary 1. The A/A/n queue



behaves like an M/M/1 queue when all servers are busy, and an M/M/oo queue

when at least one server is idle. The phase transition of Theorem 4 formalizes this

relationship in a new way. For 0 < B < B*, the K-M spectral measure of the M/M/n

queue in the H-W regime has no jumps away from the origin, and has spectral gap

equal to (A2 - n2)2, two properties shared by the associated M/M/1 queue (see

Theorem 2). For B > B*, the K-M spectral measure has at least one jump away

from the origin, like the associated M/M/oo queue (whose spectral measure has only

jumps and spectral gap equal to 1, see Theorem 2). Another interpretation is that

the M/M/n queue cannot approach stationarity faster than either component system

would on its own.

2.3 Characterization for yn

In this section we give a new characterization for -y, which will be amenable to

asymptotic analysis.

We begin by associating several functions to the M/M/n queue, as in [69] and [102].

Let

1 if k = 0;

fn,k(x) 1 + An - x if k = 1;

(An, + k -- X)fI1(X) -- A,(k - 1)fn,k- 2 (x) otherwise.

By a simple induction argument, for 0 < k < n,

k k k-j

f,,k (X) A - x). (2.4)

j=0 i



Also note that

and fn,,_1(x) > 0 for X < Z(fn_1 ). (2.5)

Indeed, for x < 1 and 0 <j < n - 1, Hi_-j(i -- x) > 0, and by (2.4), fn, 1 (x) is a

non-negative sum of such terms with the (n - 1)st term (A n- 1) strictly positive. Let

otherwise.

I
Note that an(x) is real-valued for x K (ni - AX)2 , and therefore

anx = (An + n - x - ((n" - n 2-z ( 2_ . (2.6)

Also,

(2.7)

We also define

(B ( 2- x)') ifX < 
2 ;

aW~x A 2( - (B4

otherwise.

Let on(y) A fm n(y) - (A 1 -n)1f ,_(y), On(y) f(y) -a f_

zn(y) k (Y)
fn. k Y

if f k- 1(y) / 0:

otherwise;

Z(fn,n_1) > 1,

an(x) = (n n x (n nX2-4n)1

oo 0

2)2if x < (n2 An

an ((n2 An)2 = (Ann)I.



and zn(y) z z,,,(y). Let

A Zn(y) - an(y) if zn(y) / oo or an(y) / 00.

oo otherwise;

Before proving our new characterization for yn, we cite some properties of zn (x), an (x),

and WI'(x), as stated in [69], which will be necessary for later proofs.

Lemma 1. (i) Z(fn.k_1) ;> Z(fnk) for k < n.

(ii) For x E (- oo, Z(fn,n_ 1)) and k < n, Z, 1 k(x) is a strictly positive, continuous,

and strictly decreasing function of x.

(iii) For x o ( - 00,(n2 - A )2], an(x) is a strictly positive, continuous, strictly

increasing function of x.

(iv) For x E (-oomin ((n A) 2 , Z(fnrii))) ,I'(x) is a continuous, strictly de-

creasing function of x. Also, if (n -A )2 < Z(fn_1), then 'W'(x) is continuous

at (ni - An)2.

We now prove the main result of this section, namely a new characterization for

7Y, which is more amenable to asymptotic analysis. In particular, we prove that

Lemma 2. (i) If (n - An < 1 and T,, ((n - A < 0 then Z(kI') = Z+(P )

is the unique zero of Pn(x) in the interval (0,(n'2 - An )2). and -, = Z+(

(ii) If(n - A ) 2 < 1 and I' ((n2 - A 2) 2 ) > 0. then y = (n2 - A2

(iii) If (n - An > 1,then Z(xF,) = Z+ (I,) is the unique zero of XI'(x) in the

interval (0, 1), and -y = Z+(k).

The proof of Lemma 2 relies heavily on a known characterization for 'Yn, proven

in [69]. Namely,



I A,) then iy7, (ni - A2) 2 If Z(o-n) < I- A)Theorem 5. fZ1  ) (n? -y 1 n A( An)

then -y = Z(4pn).

With Theorem 5 in hand, we now complete the proof of Lemma 2.

Proof of Lemma 2. We begin by proving some properties of ''n and on. From (2.4),

- (An(nn )Ak 1lk 2

_ -1n1 )kfn-1-k -
k= 0 k n i=1

+n - ((An + n)
2 - 4An)2

n \0

In k! > 0.

If (n 1 - An)' 1, then

XP(1)
n= ( ) [ ,,- ( ,I -_ 1) 1

n n =1-k An+n

n1 n-) k n- 1-k ( (A -1)2

An n++ - -((An +)2-4A)

1-((An + n - 1)2 - 4An)2

4A<) )

< 0,

since Tn(1) E R by (2.5) and Lemma 1.iv, and thus 0 < (An -

(n - An - 1)2. Also,

n + 1)2 - 4A <

n n-k

(nOA
k=0=

(n-1 1)! (n I k
k=0

> (n -A1 (n
kA

k=()

12
(Ann)E

k=0

(Ann)
k=0

- (Annli) )

n-1-k

Ak
) 71

Ak
)!

> 0.,

X'n (0)

or (0)



and

n n n-k n-1 n-1-k

n ( A)- 1) - (Ann ) , (i - 1)
k=O i=1 k=0 i=1

= n (Ann)i Ann-1 0.

We first prove assertion i. Since (n2 - AN) 2 < 1, we have by (2.5) that min ((ni -

An) 2 , Z(fn,n-1)) = (nl - An) 2 , and f,n_1 (X) > 0 on 0C, (ni - AN)2). Thus from

definitions and dividing through by fn,n-1(y), we find that on(y) is the same sign as

Zn(y) - (Ann)!, and that On(y) is the same sign as WJ(y), on ( - 00, (nil - A)

Also, by Lemma 1.ii, Zn(y) is strictly positive, continuous, and strictly decreasing on

o, (n2 - An)2). Thus by the Intermediate Value Theorem, on(y) has a zero on

( - oo, (n - An)2) iff zn((n2 - Ai) 2 ) - (Ann)2 < 0. By definitions and (2.7), we

thus have that Z(on) < (ni - A2) 2 iff xp 2 - ') 2 ) < 0. Since by assumption
-i 1

A((In 2- An) 2 ) < 0, it will be the case that Z(o-n) < (n2 
- An) 2. Furthermore, it

follows from the fact that TP(0) > 0 and the continuity and monotonicity of I!,(y)

guaranteed by Lemma 1.iv that Z(T4) will be the unique zero of Tn in the interval

(0, (n1 - AA)2). Since V/n(y) is the same sign as 'Wn(y) on ( - oo, (ni - An) 2 ), we

will also have that Z(@n) = Z(q4). This, combined with Theorem 5, completes the

proof of assertion i. The proof of assertion ii. proceeds nearly identically to the

proof of assertion i. Indeed, the only difference is that in this case by assumption

XPn((n - An) 2) > 0, and thus one concludes that Z(Un) > (n - AA)2 , which com-

bined with Theorem 5 proves assertion ii.

We now prove assertion iii. By assumption, (nr -AA)2 ' 1. Thus since Z(f,- 1) >

1 by (2.5), we have that fnn_(x) > 0 on (-oo, 1]. Thus from definitions, and dividing

through by fn,r_1(y), we find that @'?(y) is the same sign as 'Wn(y) on (-oo, 1]. Since

on(y) is a polynomial and thus continuous, by the Intermediate Value Theorem and



the fact that Un(0) > 0 and an(1) < 0, we have Z(o-n) < 1. Thus Z(U) < (nA -2A) 2 .

By the continuity and monotonicity of In(y) guaranteed by Lemma 1.iv and the fact

that XJ'(0) > 0, XI'(1) < 0, we will have that Z(XIn) is the unique zero of ', in the

interval (0, 1). Furthermore, since 4yn(y) is the same sign as WI'(y) on (-oo, 1], we will

have that Z(l#n) = Z(1'). This, combined with Theorem 5, completing the proof of

assertion iii. L

2.4 Asymptotic Analysis of the Function TIn(x)

In this section we derive the asymptotics of WIi(x) and Tn((ni - An)2). In particular,

we prove

Theorem 6. For all B > 0 andx E (0, 1),4x < B lim An (X).

We also prove

Corollary 2. For 0 < B < 2, limn1 A-- mn ((n2 - (B).

We proceed by separately analyzing the asymptotics of (an (x) - An)A and (z (x) -
I I I

An)An2 ,and then use the fact that by definition TI'(x)A 2 = (zn(x) - An)An2 -

1

(an(x) - An)An.

We first analyze a,,(x). We begin by proving some bounds for n2 - An, namely

Lemma 3. B < - An < + O(n -), and limn,(nl - AN) -

Proof. Note that

1 (n- An)(n + A2) B B2n2
nl2 -An - -+I

1 2 2(n+ A')2
fro2 + wi the ll

from which the lemmna follows. L



We now study the asymptotics of an(x), proving that

Lemma 4. For 0 < x < B, lim-o (an(x) - An)An= a,(x).

Proof. From (2.6) and Lemma 3,

(a,(x) - A)A Bn + A ((n -A (2A) (2.8)

The lemma then follows from the fact that limn oD(Bnu -x)(2An )1 = } lim. ((n +
11 1A2) 2 - x) 2 (2A) = 1. and Lemma 3.

We now analyze the asymptotics of zn(X), proving that

Proposition 2. For x E (0, 1). lim-, (zn(x) - An)A = z"(x).

Suppose that x E (0, 1) is fixed. Our proof will use a truncation argument to

ensure boundedness of certain quantities, and thus let us fix some integer T E [3, oc),
A ma 2(T+1)T- (T+1)2

T-x'\and define C'.x max ( ). Then we begin by proving that

Lemma 5. For all sufficiently large n. (z(x) - An) A is at least

- I E-+-(T - k)1-xe-A Ak

2T-1 A - - kn k)-xe -- 2 \ +n\k 2e
2 

T 2 + An2 CTr.n k=O k!1-X
(2.9)

and at most

2T-I 2
1  1 C- n k X_21

er 1 -r+1)(n - k)T1-e~ + A 2 CT n-

A 2  I I _ +. (2.10)

-2T- 1A Z ->n kA 2 (n - k)-

Proof. The proof is deferred to the appendix.

We now relate the summations appearing in (2.9) and (2.10) to the expectations of

certain functions of a Poisson r.v., and then show that these expectations converge



to certain integrals as n - oc. Let X, denote a Poisson r.v. with mean A,, and

Zn - (Xn - An)An . For an event {E}, we let I({E}) denote the indicator function

of {E}. Thus
1i 1

Xn A Zn + An, and n - Xn = B Zn. (2.11)

Furthermore, we define

Yn - Zn) I Z<(Z B( - (T +)An

and

,A (B( )Z ) I( Zn < (B-T- )( )2+([n-T-ln2l (n-T 1n))An .

We then have that

Lemma 6. if limn,. E[Y1 .], fim*o. E[Y2,,]. and limri. E[Z Y2,n] all exist, and

are finite and strictly positive, then

lim inf (zn(x) - An)A7 > e_4 7 limes E[Yj
n-o lim -l E[Y2,n) + 2T (1 x)

and

lim sup (zn(x) - An)AJ e4A' lim_+0 JE[Yi.]
71_ 0 lim,__. E[2,n]'

Proof. Suppose that lim-, E[Y,n] lim> E[Y2 ,n], and lim,. E[ZY 2 ,n) all exist,

and are finite and strictly positive. We begin by expressing the summation appearing

in the numerator of (2.9) and (2.10) as an expectation. Namely, A Z r+1)(n

- to 1k)'-xed -Tj-is equal to

Afl (Bn -An!Zn) 'I A Zn +An n-(T+1) =E[Y1.n] by (2.11). (2.12)



We now analyze the summation appearing in the denominator of (2.9) and (2.10).

Note that An k24 k(n - k)-xAn k equals

A ~ 2n k2 2 k) A
2

e ! e
An2E[(Zn + A) (Bnl Z - An Z)-I (An + [n - T-n] by (2.11). (2.13)

Furthermore, I(Zn < ([n - T-1n'1 - An)An) equals

IZ < (B - T- 1)( ) + ([ n - T-nl - (n - T-1n))An . (2.14)

Plugging (2.14) back into (2.13), we find that the summation appearing in the nu-

merator of (2.9) and (2.10) equals An 2 E[ZnY2,n] + E[Y2 n]. The lemma then follows

by combining the above bounds for (2.9) and (2.10), and observing that
2e

2
T T- (-x)(fl- - 2e

2
T- T-(-x) 1

imnC) 1 1 lim 7 soo An CT, = 0, and

-1
lim oo An 2 E[ZnY2 ,n] = 0.

We now explicitly compute the limiting values of all expressions appearing in Lemnma
1

6, allowing us to compute lim72 -oo (zn(x) - An)An.

Lemma 7.
22

(-fB ( - z) 1  e- dz
lim (zn (X) - An) An (2.15)

"-_ -B- -c 2d

Proof. It is easily verified that {Y 1,}, {Y2, }, and {Z, Y2 n,} are all sequences of uni-

formly integrable r.v.s. Let fi(y) A (B - y)lx-(y < B),f 2(y) = (B - y)"I(y < B-

T'), and f3(y) y(B-y)-Ix(y < B-T-1 ). Let N denote a normal r.v. with mean 0

and variance 1. It may be easily verified that {Y1 2}, {Y2 n}, and {Zn Y2 ,,n} converge in

distribution to f; (N), f 2 (N), f 3 (N) respectively, where all three convergences follow

from the well-known convergence of the scaled Poisson r.v. Zn to N. It thus follows

from the uniform integrability of all three sequences that lim1_,7 o E[Y1 , ]= E[fi (N)] =

(27r)- fB -)1xe_dz, lima,ooE[Y2,,] E[f 2 (N)] = (2r)- fB



z
2  

1z - ,
2

z)~xe-'dz, and limco E[ZnY2 ,n] = E[f 3 (N)] = (27r)~i fB z(B - z)-xe dz.

The lemma follows from plugging the above limits into Lemma 6, and letting T -+

00.

We now complete the proof of Proposition 2 by relating the integrals appearing in

(2.15) to the parabolic cylinder functions. First, it will be useful to state some

additional properties of the parabolic cylinder functions. Dx(z) is an entire function

of z for fixed x ([38], Chapter 8, Section 8.2) and an entire function of x for fixed z

[24]. It is stated in [50] that for all x, z E R,

Dz+1 (z) - zD 1 (z) + xDx_1 (z) = 0; (2.16)

d 1
dD(z) + -zD(z) - xD_1I(z) = 0. (2.17)

dz 2

With these properties in hand, we now complete the proof of Proposition 2.

Proof of Proposition 2. Note that the r.h.s. of (2.15) equals

S e (B d (2 -x)(DX(-B)+BDx(-B))
fotl-e- dt F(2- x1-Ix -= 0(,-B) + B
(B _Xe 2 F-x

ft-e 2di (1-- x)Dx_1 (-B)

by (2.1) and (2.16), since ( -x = (1 - x), completing the proof.

We now complete the proofs of Theorem 6 and Corollary 2.

Proof of Theorem 6. Since by definition 1'(x) = zn(x) - a,(x), Theorem 6 follows

immediately from Lemma 4 and Proposition 2. D

Proof of Corollary 2. Suppose 0 < c < iin(B, 1 - P). Then for all sufficiently large

n, 0 < - e < (n - A)2 < min(1 - , + ) by Lemma 3, and < 1 - e.
1

By Lemmia 1.ii and (2.5), we have that (z-:-(x) - A,,)An? is a continuous, strictly



decreasing function of x on (-oo, (n' - A )2 + (]. It follows that for all sufficiently

large n, (z ( +,E) -(An)An < zn ((n2A - A)2) _ -i (zn( -) - An) An.

Thus by Proposition 2, for all sufficiently small c > 0,

z 2 (2 (( 1A)2) ) 1 (2.18)z( +) 0< liminf zn((n -- A n)2) A4 n-+oo

< lim Sup zn ((ni - A 2)2) -in

B2

4

To proceed, we will now prove that zo(x) has certain continuity properties. In

particular,

zo(x) is a differentiable, non-increasing function of x on (-oo, 1]. (2.19)

Indeed, by (2.3), Dz 1 (-B) > 0 for x < 1. The differentiability of zo(x) on (-oo, 1]

then follows from the fact that Dx(-B) is an entire function of x. That zO(x) is

non-increasing follows from Lemma 1.ii, (2.5), and Proposition 2.

The continuity of zo(x) in a neighborhood of B (guaranteed by (2.19) since

0 4< < 1), along with (2.18), thus implies that lz ((0 -A2 )2) _

zo(E). By (2.7). (an((n2 - A) 2 ) - A) = nAn A. Thus by Lemma 3,

lim. (an((ni - A2) 2) - A-)A = , and the corollary follows since ((B)

z"'(B2) -BJ4 2i

2.5 Asymptotic Analysis of the Function Z+(T,)

In this section we derive the asymptotics of Z+(xIi,). In particular, we prove



Theorem 7. If B < 2 and ((B) < 0, or B > 2, then limn, Z+(IF,) = Z+

We begin by establishing some additional properties of kP',(x).

Lemma 8. WI'o(x) is a continuous function of x on (-oo, min(1, {)), left-continuous

at min(1, 2), and a differentiable function of x on ( - oo, min(l, E2)), satisfying

<-(B 2 - 4x)- for x < min(1, ').

Proof. That a, is differentiable on (-oc, E), left-continuous at (, and satisfies

d 2
2

Tao(x) = (B 2 - 4x)2 for x < -i-, follows from elementary calculus. The lemma

then follows from (2.19) and the fact that WIJo(x) = z,(x) - a,(x). O1

We now prove some additional properties of Z+(xJJ,).

Lemma 9. If B < 2 and ((B) < 0, or B > 2, then: 'xIJ(x) has a unique zero

Z+( ) E (0, min(,' )); T'(x) > 0 on [0, Z+(TIy)); and

'xI'(x) < 0 on (Z+(Ix ),min(1, !1 )]. Alternatively, if B < 2 and ((B) = 0. then:

I',W (x) > 0 on [0, min(1, p)), and Z+ (TOO)

Proof. We first treat the case B < 2 and ((B) < 0, or B > 2. By Lemma 8, Wo(x)

is a strictly decreasing function of x on [0, min (1, ')), continuous on [0, min(1, B)),

and left-continuous at min(1, ). ',(0) > 0, since WI!o(0) = v(0, -B) + B, and by

(2.2), v(0, -B) > 0.

Also, T,'I(min(1, n)) < 0. Indeed, if B > 2, min(1, B2) 1. Furthermore,

T,(1) < 0, since by (2.2), T (1) = -B + 1(B + (B 2 - 4)) < 0. If B < 2,

then min(l. ) - , and B22) = ((B) < 0. Combining the cases B < 2 and

B > 2 demonstrates that 4'.(min(1, B)) < 0, and combining the above completes

the proof for the case B < 2 and ((B) < 0, or B > 2.

We now treat the case B < 2 and ((B) = 0. In this case, the lemma follows from

the fact that T,(x) is strictly decreasing on ( - oc, min(1, -)) and left-continuous

at B by Lemma 8, and ((B) = 0. El
4



Proof of Theorem 7. We first show that for all sufficiently large n, Z+('4) is the

unique zero of IVW in the interval (0, min(1, (n 1- A )2) Indeed, if B < 2 and ((B) < 0,

then for all sufficiently large n, min (1. (n 2 - 2 _ )2 by Lemma 3 and

qWn ((n- - A )2) < 0 by Corollary 2. It follows from Lemma 2.i that for all sufficiently

large n, Z+(I') is the unique zero of 'T in the interval min (1, (n2 - An) 2 ). If instead

B > 2 then for all sufficiently large n, (n - An > 1 and min (1, (nI - AN)2)) 1

by Lemma 3. It follows from Lemma 2.iii that for all sufficiently large n, Z+(pr,) is

the unique zero of T, in the interval (0, min (1, (n- - An

Now suppose for contradiction that liminfr, Z+('Iy) < Z+(TIi). By Lemma

9, Z+('I'2) E (0, min(1, 4)), and TW (x) > 0 on [0, Z+(IJ)). It follows that there

exists c > 0 such that 0 < lim infn_,, Z+(In) + e < min(1, B), and

'kp, ( lim infr,, Z+(XTn) + C) > 0. Thus by Theorem 6, for all sufficiently large n,

Tn (lim inf,,e Z+(k4) + C) > 0. By the monotonicity of T',(x) (from Lemna 1.iv),

it follows that for all sufficiently large n, kI',(x) > 0 on (-oo, lim infn1 Z+(Xn)+ ).

But by the definition of lim inf, there exists an infinite strictly increasing sequence

of integers {n} s.t. Z+(T,,,) < lim infn_, Z+ (P) + C for all i. Thus for all suf-

ficiently large i', . , (Z+(I',)) > 0. This is a contradiction, since from definitions

Tni (Z+ (Tj)) = 0 for all i.

Alternatively, suppose for contradiction that lim supn,, Z+(''r) > Z+(TIy). By

Lemna 9. Z+({m) E (0,imin(1, 2 )), and 'T%(x) < 0 on (Z+('P ), min(1, )]. It

follows that there exists c > 0 such that 0 < lim sup,, Z+(T,) - c < min(1, 4),

and T, (lin sups_, Z+(kIn) - < 0. Thus by Theorem 6, for all sufficiently large

n, 'n ( lin supn, Z+ (IP,) - c) < 0. By the monotonicity of AP, (x) (from Lemma

1.iv), it follows that for all sufficiently large n, I,(x) < 0 on (lim suPn, Z+('I) _

miln (1, (n - An)2)

By the definition of lim sup, there exists an infinite strictly increasing sequence of



integers {n} s.t. Z+(J,) > lim sups,, Z+(1',) - e for all i. Combining the above,

we find that for all sufficiently large i, WIj (Z+(4Jn)) < 0. But this is a contradiction,

since from definitions X1n, (Z+(W1!)) 0 for all i. We conclude that for the case B < 2

and ((B) < 0, or B > 2, liminf",, Z+ (') = lim supnZ+( 4) =Z+(I'). l

2.6 The Zeros of ((B)

In this section we characterize the set of B E (0, 2) for which ((B) < 0, which will

allow us to use Theorem 7 effectively. In particular, we prove

Theorem 8. B* E [22, 2). ((B) > 0 on [0, B*), and ((B) < 0 on (B*, 2].

We also complete the proof of Proposition 1. We begin by proving some properties of

the derivatives of v(x, y), which will then enable us to analyze ('(B) 1 dB((B) using

the multivariate chain rule.

Lemma 10. Dx_ 1(y) E (0, oc) for x < 1 and all y. Also, v(x, y) is a smooth

function of y for x < 1. and a smooth function of x for x < 1 and all y. Furthermore,

dv(, y) = + v2 (x, y) - yv(x, y).

Proof. Note that if x < 1 then Dx_ 1(y) > 0 for all y by (2.3), from which the first part

of the lemma follows. Since D, (y) is an entire function of y for each fixed x, it follows

that for x < 1, v(x, y) is a smooth function of y. The second part of the lemma then

follows from the fact that Dx(y) is an entire function of x for all y, and (2.3). The

final part of the lemma then follows from the chain rule, (2.17), and (2.16). O1

We now prove some properties, including existence, of p'(B) A o(B), by applying

the chain rule to Lemma 10.



Lemma 11. D (-B) E (0, oo) on (-oc, 2]. Furthermore, o(B) is a differentiable
4

function of B on (--oo,2], and on (-oo,2] we have

B dv B2 B2

2 dx 4 4

Proof. D _1(-B) > 0 for B < 2 by (2.3). The lemma then follows from the

multivariate chain rule and Lemma 10. l

Although it seems clear from Figure 2-1 that ((B) is strictly negative on (B*, 2), the

formal proof of this fact is somewhat involved, and will necessitate careful arguing

about p'(B). Due to the fact that A+D2(y) has no simple analytic form (as opposed

to dDx(y), see (2.17) ), to proceed we will have to derive good bounds for yv(x, y).

Our bounds will rely on the concavity of certain functions. We begin by proving that

Lemma 12. For any fixed y < 0, v(x, y) is a concave function of x on (0, 1).

Proof. We begin by demonstrating that Zn,k(x) is a twice-differentiable concave func-

tion of x on (0, 1) for all k < n, which will imply that zo(x), and ultimately v(x, y)

are concave by taking limits. We proceed by induction on k. For the base case, con-

sider k = 1. By definitions, zn, (x) = A, + 1- x, and the assertion is trivial. Now, let

us assume the statement is true for j = 1, ... k - 1 with k - 1 < n - 1. By definitions,

f,.k(x) =(An+ k - x)f,k-1(x) - An(k - 1)fn,k- 2 (x). Since by (2.5), Z(fn,n_ 1) > 1,

we have by Lemma 1.i that fk- 1 (X) > 0 and fn,k-2(x) > 0, from which it follows

that Znk_1(x) > 0 and zn,k(x) = (A, + k - x) - An(k - 1)(znk1(x))-'. Thus

2 
-nk_ An~k d 1(X))2 ± Zn(k-2 d2 Z

dx z(x) = An(k - 1)- 2z,k_1(V) zdx 2 d-1 2 z _(X

(2.20)

Since Zn,k1 (x) > 0, (-z1,k_1(x)) 2 > 0, and by the induction hypothesis b2 Zn,k_1(x)

0, it follows from (2.20) that z,k(x) is twice-differentiable on (0, 1) and satisfies



d 2 Zn,k (x) < 0 (concavity), proving the induction.

It follows that for any fixed B > 0, z,(x) is a concave function of x on (0, 1), due

to Proposition 2, and the fact that pointwise limits of concave functions are concave.

The lemma follows, since v(x, y) = z,(x) - B. El

We now use the concavity of v(x, y) and the associated monotonicity of Av(x, y) to

prove that

Lemma 13. For any fixed y < 0 and xo E (0, 1), 4(xO, y) < X- 1 v(xo, y).

Proof. By Lemma 10 and the Mean Value Theorem, there exists c E (0, xo) such

that (c,y) = zo1(v(xo, y) - v(0, y)). The lemma then follows from concavity, since

v(0, y) > 0 by (2.2). El

We now plug our bounds on Av(x, y) from Lemma 13 into Lemma 11 to prove that

Lemma 14. For 0 < B < 2.

2 B2  1
p'(B)< (B B)p(B) - - 2 (B); -1

B 4 B2

Proof. By Lemma 11 and Lemma 13, for 0 < B < 2,

B B 2  B2
' (B) < 2 (4 )p(B) - B - P2 (B) - By-,(B)

2 4 4
2 B2

- ( - B)p(B) -B - (B).

This proves the first inequality. Furthermore, it follows that there exists xB E R (we

may take xB = P(B)) such that p'(B) < a(B, XB) - B)XB - x2B - B Since by

elementary calculus, for any fixed B > 0, the function a(B, x) attains its maximum

atx-(-B)at x = 2 , we find that for B E (0, 2),

< (2 _ ( -B) (_-B) 2  B 2  1
'p' B)< B -){ 2 2 4 B2



We are now in a position to study the zeros of ((B).

Lemma 15. ((B) > 0 on [0, B*), and B* E (0, 2).

Proof. By (2.2), ((0) = (21 fo e 2 dt)- > 0, and ((2) = -2c + 1 = -1 < 0. By

Lemma 11 and definitions, ((B) is a differentiable (and continuous) function of B

on (-oc, 2]. It follows from the Intermediate Value Theorem that B* E (0,2), and

((B) > 0 on [0, B*).

Lemma 16. B* E [2-1,2).

Proof. It is proven in [104] Theorem 4.1 i. that

1 1
A(m~in~ ,n in) (2)1i7 , >n An + min(k, n) - A n(k - 1, n) + min(k,21)

Note that for 1 < k < n, An + min(k, n) - A ( mini(k - 1, n) + inin(k, n) ) equals

I I11 1
(Ai-k)2 + n - . (2.22)

k0 + (k - 1)2 2 n

For all k > n + 1, the r.h.s. of (2.21) equals (n. - A )2 . Combining this fact with

(2.21) and (2.22), we find that

1 A2
-y > min (- , (n- An) 2

). (2.23)2 n2

By Lemma 3. lime(n0 - A2) 2 
- 1. Trivially, lim c ! - 1 Thus for any

B < 21 and all sufficiently large n, j$ > (n - A2) 2 It follows that >7 , (ni - A2) 2

12

for all sufficiently large n by (2.23).



Now, suppose for contradiction that B* < 22. By Lemma 14 and the fact that

B* E (0, 2) by Lemma 15, we have that p(B) is differentiable at B*, and p'(B*) is

strictly less than

2 B* B*2  (B* -

B* 2 4 2

since yo(B*) -* It follows that ('(B*) < 0, since ('(B*) =p'(B*) + j. Thus

there exists e > 0 s.t. ((B) < 0 on (B*, B* + e) since ((B*) = 0. It follows that

there exists B' E (0, 22) such that ((B') < 0. Thus if we define all relevant functions

in terms of B', 'Ii ((ni - A )2 ) < 0 for all sufficiently large n by Corollary 2. Also,

n2- A)2 < 1 for all sufficiently large n by Lemma 3. Thus by Lemma 2.i, for
I I

all sufficiently large n, yn < (n2 - An) 2 . But this is a contradiction, since we have

already shown that B' < 2' implies that Yn ;> (n - A2 for all sufficiently large n,

completing the proof. O1

Proof of Theorem 8. In light of Lemma 15 and Lemma 16, all that remains to be

shown is that ((B) < 0 on (B*, 2). In light of Lemma 16, it would suffice to prove

that ((B) is strictly decreasing on (22, 2). But for B E (21, 2), ('(B) equals

1 1 1
p'(B)+- < - - 1 +- = 0

2 B32  2

by Lemma 14. This demonstrates that ((B) is strictly decreasing on (22, 2), conclud-

ing the proof of Theorem 8. 11

Proof of Proposition 1. That B* c [21, 2) follows immediately from Theorem 8. That

Z+('PJc) < min(1, m±) for B > B* follows immediately from Theorem 8 and Lemma

9. El



2.7 Proof of Main Results

In this section we complete the proofs of our main results, Theorem 4 and Corollary

1.

Proof of Theorem 4. First, suppose 0 < B < B*. Then B < 2 by Theorem 8, and

thus (ni - An < 1 for all sufficiently large n by Lemma 3. ((B) > 0 by Theorem

8, and thus since B < 2, 'In ((n2 -A)2) > 0 for all sufficiently large n by Corollary

2. It follows from Lemma 2.ii that -yn = (n2 - An) 2 for all sufficiently large n. That

limno yn = B2 then follows from Lemma 3.4

Now, suppose B = B*. Since B* < 2 by Theorem 8, it follows from Lemma 3 that

(n - An < 1 for all sufficiently large n. By Lemma 2, for all sufficiently large n,

either XWn ((n -An < 0, in which case y, = Z+(X1') is the unique zero of X', in the

interval (0, (n - An) 2 ) or -y, (n - An) 2 . Let {n} denote the subsequence of {n}
for which 9n((n2 - A )2) < 0. If {ng} is a finite set, then trivially y, = (n -An)

for all sufficiently large n. That lim,, 7, = 2 then follows from Lemma 3.4

Alternatively, suppose {ni} is an infinite set. Suppose for contradiction that

lim infj, Z+(4i,) < B. Note that by Lemma 9, Z+({2) =B 2 , and WI'o(x) > 04 4,

on [0, i). It follows that there exists c > 0 such that 0 < lim infj, Z+(Wan) + C <

B *2 < 1 and (l (im info. Z+ (T,,) +) > 0. It follows from Lemma 3 and Theorem
1 1

6 that for all sufficiently large i, 0 < lim infi, Z+(91 ') + e < (n2 - AA, )2 < 1 and

'I'm (lim inf 1 x Z+( In)+ c) > 0. By the monotonicity of Tni (x) (from Lemma 1.iv),

it follows that for all sufficiently large iT,i1 '(x) > 0 on (- oo, lim info, Z+ (9,)+c).

But by the definition of lim inf, there exists an infinite strictly increasing sequence of

integers {n} s.t. Z+(T,,) < lim infi, Z+(Tn,) + c for all i. Thus for all sufficiently

large i, WI'; (Z+(XI,;,)) > 0. This is a contradiction, since ' (Z+(1;)) - 0 for all i.

This proves that lim infi, Z+(TII7 > )
N 1

Note that (n7 - A2 )2 < 1 for all sufficiently large i by Lemma 3 and Proposition



1 1

1. It follows from Lemma 2.i that for all sufficiently large i, Z+ 2 -(n

and thus limsup_,, Z+(Tnj) < B by Lemma 3. Combining the above, we find

that limi_. Z+(4,) = 1. Thus -y, alternates between two sequences, that of the

(ni - An) 2 and that of the Z+('I,'), both of which converge to !, proving that

limas. , = Z+(Xp').

Now, suppose B E (B*, 2). Then (n -n < 1 for all sufficiently large n by

Lemma 3. ((B) < 0 by Theorem 8, and thus since B < 2, T'((ni - An) 2 ) < 0 for

all sufficiently large n by Corollary 2. It follows from Lemma 2.i that 'n = Z+(P,)

for all sufficiently large n. That limly, = Z+('I') then follows from Theorem 7.

Now, suppose B > 2. Then (ni - An) 2 >1 for all sufficiently large n by Lemma

3. It follows from Lemma 2.iii that -yr, =Z+('P) for all sufficiently large n. That

limnl -Y, Z+(4Kw) then follows from Theorem 7. This treats all cases, and we

conclude that linir y A YB exists for all B > 0. We also conclude that for

0 < B < B*, 'B = B 2 ; for B > B*, YB Z+(4 ).

Proof of Corollary 1. Suppose for contradiction that liminfan n (1 - p*) < B*.

Then there exists c > 0 and an infinite strictly increasing sequence of integers {ni}
1 1

s.t. n 2(1 - p*,) < B* - c, and thus p*, > 1 - (B* - c)ni . Consider the sequence

{Zi} of continuous time markov chains, in which Zi is an M/MI/ni queueing system
I

with A,, = ni - (B* - e)ni, p 1. Since B* - c < B*, it follows from Theorem 8

that ((B* - c) > 0 and B* - c < 2. Now, let us define all relevant functions (e.g.

Ani (x)) w.r.t. B* - c. It then follows from Corollary 2 and Lemma 3 that for all
1 1 1 1

sufficiently large i, WIJ ((ni - Ani) 2 ) > 0, and (ni - Ai)2 < 1. Thus by Lemma
1 1

2.ii, 'Yn, (nf - AR) 2 for all sufficiently large i. However, note that by assumption

1 - (B* - )n 2 < p* for all i. But this is a contradiction, since by Theorempn

3. < p* implies that the spectral gap 7yn, of Zi is strictly less than (n - A)2.

Alternatively, suppose for contradiction that lim supn,, n-21(1 - p*) > B*. Then



there exists E E (0, 2 - B*) and an infinite strictly increasing sequence of integers {n}
1 1

s.t. ni (1-p*,) > B*+e, and thus p*, < 1-(B*+e)n . Consider the sequence {Zi}

of continuous time Markov chains, in which Z is an M/M/ni queueing system with

Ani = ni - (B* + E)n/, p2 -1. Since B* + E (B*, 2), it follows from Theorem 8 that

((B* + E) < 0. Now, let us define all relevant functions w.r.t. B* + C. It then follows
1 1from Corollary 2 and Lemma 3 that for all sufficiently large i, X'i' ((n - A <0,

I I 
I Iand (n2 - A 2)2 < 1. Thus by Lemma 2.i, 'y^, = Z+ X.'i) < (rig - Ai) 2 for all

sufficiently large i. However, note that by assumption = 1 - (B* + E)fnl 2 > p*

for all i. But this is a contradiction, since by Theorem 3, > p*. implies that the
nilt

spectral gap -y, of Zi is equal to (n' - An$)2. It follows that lim infnl,0 n (1 - p*) -

lim sup, n2 (1 - p*) B*, completing the proof.

2.8 Conclusion and Open Questions

In this chapter we studied the rate of convergence to stationarity of the Al/A/n

queue in the H-W Regime. We explicitly computed the limit of the exponential

rate of convergence to stationarity, i.e. the spectral gap. We proved that there is

an interesting phase transition in the system's behavior, occuring when the excess

parameter B reaches B* ~ 1.85772. For B < B*, the exponential rate of convergence

is -*; above B* it is the solution to an equation involving the parabolic cylinder

functions. We showed that this transition asymptotically characterizes a phenomenon

previously observed to occur for fixed n, unifying and simplifying several earlier lines

of work.

This work leaves several interesting directions for future research. There are many

open questions related to the interaction between weak convergence and convergence

to stationarity. Although our results and those of [70] show that for the 1l/M/n

queue in the H-W regime there is an 'Interchange of limits' in this regard, namely the



limiting rate of convergence equals the rate of convergence of the limit, it is unknown

to what extent such an interchange must hold in general. It would also be interesting

to prove that a phase transition occurs in other related models, and for preliminary

results along these lines the reader is referred to the recent paper (71].

2.9 Appendix

2.9.1 Proof of Lemma 5

In this subsection, we complete the proof of Lemma 5.

Proof of Lemma 5. By (2.5), f, 1 1(x) > 0 on (0, 1), and thus by (2.4), (zn(x) -
1

A,) An equals

Note that the numerator of (2.24) equals

n n (-kn-1 n-(k+1)

j - +j - )-1 (k+1) ) 1)Al J (

j=1 k1 j=1k=j=

1n n-k 1 k

Z(n - k) H(1 - X) f; (2.25
k=0 j=1



and the denominator of (2.24) equals

n-i n-(k+1)

E((k +1)-1
k=O j=1

n n-k

An 2(n -1)!E k (1
k=O j=1

x Ak
- ) .26)

Combining (2.25) and (2.26), and normalizing both by ':_ " , we find that (zn(:) -

An) An2 equals

kO(n - k) H"--(1 - ) e-n !j

k=0 kl - fk( - l ) e-A A'
(2.27)

1
We now demonstrate that the numerator of (2.27) (ignoring the A2 prefactor) is

bounded from below by

T n-(T+1)

J(1 -) 
j=1 k=O

n-k

(n-k) f (1
j=T+1

k- -) eA k

and bounded from above by

n-(T+1) n-k

>E (n-k) 1j
k=O j=T+1

(1-4)
k

e~-" + T(T+ 
1)2

1= I- l

Note that by a simple application of Stirling's Inequality, we find that

LAnJn
lim nie-Ar

n-+oo [Anj!
(27rI)-1.

Thus we may w.l.o.g. assume that n is sufficiently large to ensure that

< 2, [n - T-'n'1 + 1 < n - (T + 1). An , and e-' < n-, and we
a m [Ati t

assume this throughout.

-I n 
n k -k

k=1 j=1

T

(1 )(

j =1IS



The numerator of (2.27) equals

T n-(T+1)

I(1 - )
j=1 k=0

+(: 1 - ))
j=1

n-k

(n - k) H (1
j=T+1

n n-k
E (n - k) H(1

k=n-T j=1

The second summand in (2.28) is non-negative, yielding a trivial lower bound. We

now obtain an upper bound on the same expression. Since the mode of a Poisson

r.v. with mean A, is [Aj, and by assumption e-A''n < n -, we have that for all

k > 0,
Ak A LAnJ

< e-A < n
k! - Anj1! -

(2.29)

We now use the fact that n - k < T + 1 for k > n - T, 1- < 1 and (2.29)

to conclude that the second sumnand in (2.28) is at most (T+ 1)
2  Combining

r1> (1-j)n2

our lower and upper bounds on (2.28) proves the desired bound on the numerator of

(2.27).

We now demonstrate that the denominator of (2.27) is bounded from below by

T n- (T+1) n-k

(1- ) k ] (1
j=1 k=O j=T+1

- e Ak
")6~'_

and bounded from above by

T

j=1

Ak
e~ 

n

e-n")k

x

j-x)

-J)

(2.28)

n-(T+1)

- -)( Z
k=0

n-k

k f
j=T+1

(l-i~)e
J

Ak
A (T+1)n2

+ 
)

3 1(



Note that the denominator of (2.27) is equal to

T

1 3

n-(T+1)

Zk
k=O

n-k

j=T+l

T n n-k

j=1 k=n-T j=1

k!

- i) e-An
k!

We now bound the second summand in (2.30). Note that it is non-negative, yielding

a trivial lower bound. Also, it is at most

T + 1

HT(1 - X) n-

n-k

max k 11(1
T<k<n

j=
1

1;
xAn n

- -) e~-An
k!

(T + i)n
< 

T

- I(1

by (2.29).

Combining our lower and upper bounds on (2.30) proves the desired bound on the

denominator of (2.27).

Combining the above upper and lower bounds for the numerator and denominator

of (2.27), it follows that

SIA
(zn (x) - An) An '

and

(z'(x) - An)An 2

,A(n-(T+1) u-n-k - (T 1
k = j =T + k - k(-!

n T+1 - n (T+)n2
E kllk~ jT L - k! T 1f (1 _)

Zn (T+)(knllrkl)e A Ak +__(T___2

- Hf (1-)n2
< Any~n T+1) 3-k+

2.31)

(2.32)

We now simplify the terms in (2.31) and (2.32) containing products of the form

(2.30)

j=



[],"_- (1 - x), by proving that for all n > T + 1, and k E [0, n - T - 1],

n-k

e- 2T (n- k)-xTx 1 7 (1
j=T+1

(2.33)- ) < e2T (n - k)-xT.

Indeed, since 0 < x < 1, by a simple Taylor series expansion we have that for j > 3,

1 < 1 . Thus for j > T + 1,

n-k -_

(1-i)j=T+1 3

n-k

j fT (1
1

+ 7 ) < efUbax

and
n-k n-k n-k

e- 1 e-X<Q ( ) < Q

j=T+1 j=T+1 j=T+1

It follows from [118], and the fact that n - k > T, that

(2.34)

log( k) -
T

1 n k
- < Hn-k - HT < log( )

2T T

Combining (2.34) and (2.35) yields

e Te- x(n - k)-T' <
n-k

fjT
j= T + 1

x
< ef (n - k)~xTx. (2.36)

Since 0 < x < 1 we have 0 < - < ', and the desired bound follows from (2.36).

Combining (2.31), (2.32), and (2.33), with the assumptions on n, it follows that

(z'(x) - An)A is at least

(2.37)
e2T-1 En T+0(n - x -reA -

ek=T k!

1
+ .T

2T
(2.35)

- eT-

e~i



and at most
e2 T- n- T+1)(n - k)1-x e~A" + CT,Xn-

e-2T 1 n (T+) . (2.38)
e 2 T -1 Z n T+ )kAn (n - -k)- - e A " k

With Inequalities (2.37) and (2.38) in hand, we are now in a position to com-

plete the proof of Lemma 5. We begin by proving the lower bound. The term

Z +l kAn I (n - k)-X eAn appearing in the denominator of (2.37) is at most

[n-T- n21 ]

k(n-k)--A 2k! (2.39)
k=O

k n-(T+1)

+ max (kAn e" ) E (n - k)-x. (2.40)
[n-T-n2+1<k<n k[n-T -lnN+1

It follows from (2.29), and the fact that n < 2, that the second sunimand of (2.39)

is at most

n-(T+i) - T-l n -(i )n2T ( 2

n-2 (n - k)-x () y-xdy <
A2 An 01x

n k=[n-T-In21+1

Using the above to upper-bound the denominator of (2.37), and then multiplying

both numerator and denominator by An2 , completes the proof of the lower bound.

We now prove the upper bound. By non-negativity the denominator of (2.38) is

at least
n-TT 2 n ] _

e k An1 (n-k) k!
k=O

The upper bound then follows from (2.38) and multiplying both numerator and de-
x-1

nominator by A"2 , completing the proof of the lemma.
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Chapter 3

Explicit Bounds on the Distance to

Steady-state for the M/M/n

Queue in the Halfin-Whitt Regime

3.1 Introduction and Literature Review

It is well-known that the steady-state behavior of the Al/Al/n queue in the H-W

regime is quite simple in practice [52], while the transient dynamics are more compli-

cated [52], and it is common to use the steady-state approximation to the transient

distribution. Thus it is important to understand the quality of the steady-state ap-

proximation. In Chapter 2, we identified the rate of convergence to steady-state of

the Al/Al/n queue in the H-W regime, up to exponential order. However, in many

applications it is desirable to have explicit bounds on the error of the steady-state

approximation, as opposed to just an understanding of its behavior up to exponential

order. It seems that prior to this thesis, no such explicit bounds had been studied for

the A/A/n queue in the H-W regime.



As discussed in Section 2.1, the question of how quickly the positive recurrent

M/M/n queue approaches stationarity has a rich history in the queueing literature.

The most relevant work is that of Karlin and McGregor [62], who worked out a pow-

erful and elegant theory that gave explicit integral representations for the transient

distributions of b-d-p. In [63], they applied their framework to the M/M/n queue,

giving integral representations for the transient distribution of the M/M/n queue.

As explained in Section 2.1, these representations involve integrals w.r.t. a certain

spectral measure, which is itself defined in terms of the set of zeros of a high-degree

polynomial. Thus these integrals may be difficult to evaluate numerically, and it is

unclear how to translate the representations into simple, usable bounds in the H-W

regime.

Although much of the literature on the rate of convergence to steady-state of the

M/M/n queue has focused on the exponential rate of convergence (i.e. spectral gap,

see Section 2.1), some explicit bounds have been proven. In [119], Zeifinan used tools

from the theory of differential equations to give explicit bounds on the total varia-

tional distance between the transient and steady-state distributions of a b-d-p, and

explicitly examines the A/Ml/n queue. In [106], van Doorn and Zeifman used the

techniques developed in [119] to derive explicit bounds on the distance to stationarity

for a different queueing model, and examined how their bounds perform in a certain

heavy-traffic regime (not H-W). In [107), the authors extended the results of [119] and

[106]. In [23], Chen developed very general bounds for the distance to stationarity for

Markov chains, and then applied these to b-d-p. However, these bounds are generally

not studied in the H-W regime. and thus may not scale desirably with n in the H-W

regime. We note that the complexity of bounding the distance to stationarity uni-

formly for a sequence of b-d-p is related to the cutoff phenomenon for Markov chains

[31], which has been studied in the context of queueing systems [42].

In this chapter, we prove explicit bounds on the distance to stationarity for the



M/M/n queue in the H-W regime, when B < B*, e.g. characterizing the error

in estimating the transient probability of delay by the corresponding steady-state

quantity. Our bounds hold for any sufficiently large fixed n, i.e. number of servers,

and scale independently of n in the H-W regime. Also, we use our bounds to provide

a heuristic rule-of-thumb which could be used to determine the time it takes an

overloaded (underloaded) queueing system to return (probabilistically) to the steady-

state.

3.1.1 Outline of chapter

The rest of the chapter proceeds as follows. In Section 3.2, we state our main results.

In Section 3.3, we present the proof of our main theorem. In Section 3.4, we compare

our bounds to other bounds from the literature. In Section 3.5 we summarize our

main results and present ideas for future research. We include a technical appendix

in Section 3.6.

3.2 Main Results

3.2.1 Definitions and notations

We now recall several important quantities (defined in Chapter 2) for the A/A/n

queue Q", namely the M/M/n queue with arrival rate A, = n - Bn2 and service

rate p = 1. Recall that Q"(t) denotes the number in system at time t in Q". As in

Chapter 2, Pj(t) = Pr(Qn(t) = j|Q"(O) = i), PJ1(oo) - Pr(Q"(oo) = j), Pg (t)

0 Pik(t) and P",(oo) = 0 Pk"(oo). Unless otherwise stated, all functions are

defined only for real values of x. All empty products are assumed to be equal to unity,

and all empty summations are assumed to be equal to zero.



3.2.2 Main results

We now state our explicit bounds on the distance to stationarity for the case B < B*.

Theorem 9. Let us fix some B E (0, B*) and ai, a2 E R. Let a = max(Iail, 1a2 |).

Then there exists NB,a1 ,a2 < oo, depending only on B, a1, a2, s.t. for all n > NB,ai,,a2

and t > 1,

In P 1 (t) - n-P 1 (oo)| < ts exp (120(a 2 + 1) - t), (3.1)[n+anin21,[n+a2n21 n+a2n 1 4

and

1 B2

|P" (t) - 1 (oo)| < B-1t-2 exp (120(a 2 + 1) - _t). (3.2)
En+ain21,K[n+a2n21 <Fn+a2n21 4

Note that Theorem 9 provides a bound for any sufficiently large fixed n and all times

greater than 1, which is stronger than the bounds that would follow by naively ap-

plying the weak-convergence theory. Indeed, using the weak-convergence theory one

could derive bounds of the form 'for any fixed time t, there exists a sufficiently large

Nt s.t. n 2 N, implies ... ', but these bounds would be too weak to make statements

about all time for any fixed n. Furthermore, in light of the results of Chapter 2, the
B

2

exponent - - is asymptotically the best possible. We note that although we were able

to derive partial results for the case B > B*, the derived bounds were considerably

more complicated than those of Theorem 9, and we leave it as an open question to

derive simple explicit bounds for the case B > B*.

We now discuss a practical 'rule-of-thumb' interpretation of Theorem 9 in the con-

text of managing call centers. Suppose one is operating a call center in the H-W

regime (with 0 < B < B*) and at time I = 0 the center begins either very overloaded

(Q(0) = n + an') or underloaded (Q(0) = n - an-) with a > 0 a large constant



(independent of n). Then Theorem 9 says that for any E > 0, the probability that a

caller at time taB A 24 2 + 4log(!) has to wait for service will be roughly within

c of the probability that a caller in steady-state has to wait for service. In particu-

lar, after t*, time units have elapsed, the system will have returned to within e of

steady-state.

3.3 Proof of Main Result

In this section we prove our main result.

3.3.1 K-M representation when the traffic intensity is at least

p* .

In this subsection we formally state Karlin and McGregor's representation for the

transient distribution of the A/A/n queue, as derived in [63] and reviewed in [102],

when the traffic intensity is at least p* (defined in Section 2.1). In particular, recall

from Section 2.1, in particular Theorem 3, that in [102] van Doorn proved that for any

fixed n, there exists p* E [0, 1) s.t. if g > p*, then the spectral measure appearing

in the K-M integral representation for {P(t), i, j ;> 0} has no jumps away from the

origin. As proven in [102], in this case the K-M integral representation simplifies

considerably. We now introduce some additional notations, and then explicitly give

the K-M integral representation for Pi'.'(t), for the case ; p*. We define

if k 0;

Qn,k) 1 if k 1; (3.3)

( + - """iflT'lGA l)Qn,k-2(x) otherwise;



and let cn(x) = Qn,.(x) - Qn,n_ 1(x)Qn,n+1 (x). We note that the Q,k(x) polynomials

can be related to the well-studied Poisson-Charlier polynomials, and refer the reader

to [102] for details. Also, it is proven in [102] that x E ((n2 -A) ) + A )2 ) implies

cn(x) > 0. We define

bn(x) { (4An (An + n - x)2)' if (ni _ A'<2 + A)

oo otherwise.

Note that bn(x) is real-valued for x E [(ni - A) 2, (n + A )2], and therefore

bn (X) = (X- (n 2 - An )2)i n( + An)2 _ (.4

We also define

A if 0< k <n

(A)n ~ { otherwise.

We now formally state Karlin and McGregor's representation for the transient dis-

tribution of the Al/A/n queue, as derived in [63] and reviewed in [102], when the

traffic intensity is at least p*. Namely, it follows from the K-M representation that if

p, then for all ij >0,

Theorem 10.

(n2+A )
2

P",(t)-Pn(oo) = (27r<)gn(j) I(A n)e Qi(x)'Qnj (x)b.(x)c (x)~-dx.
n (nQ b 2>)2



3.3.2 Bounds for Q,a,,,(X)i, |Qn,n_1(x)|, and IQn,n(X) - Qnn_1(z)|

In this subsection we prove some bounds for |Qn,n(x)I, IQn,n_ 1(x)I, and IQn,n(x) -

Qn,n-_(x)| in terms of cn(x) and b,(x). Let hn(X) 2nbn(x)- 1 . Then we prove that

Lemma 17. For all x E ((n - /An) 2, (12 + A) 2 ),

(i) |Q,,,.(X)|cn(x)- 2 h, (x),

(ii) |Qn,n_1(x)|cn(x)-_2 < hn (X),

(iii) |Qnn(X) - Q.,n_ (x)|cIr(X) < () Ihn(X)

Proof. It follows from the definition of the Qn,k(x) polynomials that

Cn(X) = Q2,n(x)
A ,nAn n -n

We now prove assertion i. First, note that bn (x) > 0 and

cn(x) = Qn(x) - Q,_I(x)Qn,n+1 (x) > 0, ensuring that cn(x) 1 and bn(x)- are

well-defined. If Q,,n(X) 0, then IQ,n(x)|c,(x)-12 = 0 < h(x). If Qn,.n(X) / 0 then

A= + n - X Qn,n_ (X) + ( ))2)An Qn,n(x) A, Q n(x)

< sup(1 - + Xz + z .
zE-R An An

(3.6)

By elementary calculus, a1(z) 1_An+n-xz+-z2 is a convex function of z minimized

at z - A,+fl ", and a 1 ,( +n-x) - b . Combining with (3.6), taking the square root

of both sides, and observing that 2V/\n < 2n completes the proof of i.

We now prove assertion ii. If Qn,_ 1 (x) = 0, then IQn,,- (X)Icn(X)~2 = 0 < h,(x).

(3.5).,(X).

Q , (x)s -)



If Qn,n_1(x) / 0 then

2 n
Qn(X) ) 2 _An + n - x Qn,n(x)

= ((X) Q ,-I

< sup(z 2 A +n-X +)
zER An An

n-
+A)

(3.7)

Letting a 2 (z) A z - _ z + g, we find by elementary calculus that a 2 (z) is a

convex function of z minimized at z A, and a 2( A,) = Combining

with (3.7), taking the square root of both sides, and observing that 2An < 2n com-

pletes the proof of ii.

We now prove assertion iii. It is shown in [102] that Qn,n(x) and Q.,_1(x) do

not have any common zeros. Thus first suppose Qn,n(x) = 0.

cn(x) =n n_-(x). Thus

(Qn".(x) - Qn,n_1(X))2cn(X)_j

Then from (3.5),

= ,_ 2"^
Qn g~)

(3.8)
An

Furthermore,

4Anx

b2(x)

4A+x - 1+

4Ann - (An + n - X)2 b2 (X)
> 1.

Combining (3.8) and (3.9) with the fact that n < 1, we find that

2nx
(Qn,n(X) - Q.n,-_(X)) 2cn (X) _ <; b nX) .

Now suppose Qnn 1(x)

(3.9) that

0. Then from (3.5), cs(x) =Qi.n(x), and it follows from

(Qn,n(x) - Qn,n- I(x)) 2 cn(x) (
Q n(x)

< 4AnX.
b 1

(3.9)

(3.10)

(3.11)



Now suppose Q.n(x) = 0 and Q,,, 1(x) :/ 0. Then

Qn,_(X) 
_ 1)2

(Qn,.(x) - QQnx-1(x)))2c CW) -nf- W
(Q- -- (x)) An Q.n.. (x) +

(z. -I 1)2 n- X) A

< sup 2 Z 1)2 (3.12)
zGR z - Anxz +

Let as(z) ~ (*-2 Note that infze(z 2 
- An+n-XZ + -a-) > 0 from our earlier

An A

analysis of a2 (z). Thus by elementary calculus, a 3 (z) is a continuously differentiable

rational function of z on R, and

d (z - 1)(n - An + X) + (An - n + X)z)

dz a3 (z) - An(z 2 
- A,+n-xz + g)2dzAn An

It follows that the zeros of ja 3 (z) occur at z = 1 and z = A". Thus by elementary

calculus, supz1R G 3(z) must be one of a 3 (1), 3 limzo a3 (z), lim_, a3(z).

Trivially, a 3 (1)= 0, and limz , a3 (z) = liim-z a 3 (z) = 1. Furthermore,

(A.n -lx) (An-n±~) 4xAn
a - n + x (1- x) _ An+n-x( 1 - 2x) + b(X)

Combining the above with (3.9). we find that supzCR a 3 (z) 5 ". Combining with

(3.10) - (3.12) and taking square roots completes the proof of the lemma. E

3.3.3 Bounding Q,k(x) for k = n ± O(nI)

In this subsection, we bound the Q,, .(z) polynomials for k = n ±O(n2). In particular,

we prove that

Lemma 18. For each a > B > 0, there exists N0 s.t. n > N, z C ((n12 -

v/A )2 (n + ,2 ), and k E [n - an - 2, n + an 2] implies that



(i) IQn,k(x)|c.(x)-1 < h.(x) exp ((a + n- )(a + 3x )),

(ii) IQn,k+1(x) - Qnk(x)Icf(x)- < h,,(x)r1,(x) exp ((a + n-)(a + 3xn)).

We proceed by bounding the growth of IQn,k+l(x)| and tQn,k+1(X) - Qn,k(x) as

k diverges from n, and then combining with Lemma 17. We begin by proving some

simple asymptotic bounds. We define q, A 1 + n-i, rn(x) qnxn--1 , and sn(a) A

qnan 2 Then

Lemma 19. For each a > B > 0, there exists N, s.t. n > N0, k E [In - an2 - 3, n+

an2 + 31, and x > 0 implies Ixnin|, -| < r(x); and in, - 1 + sn(a).

Proof. For any constants a > 0 and b > 0 and all sufficiently large n, n(n - ani2 -

b) < 1+sn(a), and (n - an 1- b)-1 < qnn- 1. The lemma then follows from a simple

case analysis. 11

We now bound the growth of IQnk+1(x)I and IQnk+1(x) - Qn,k(x)I as k diverges

from n, proving that

Lemma 20. For each a > B > 0, there exists N_ s.t. n > N, k C [n - an2 - 3, n+

an2 + 3], x > 0, and i E {1, -1} implies that

(i) IQn,k+i(x)I (I + rn(x)) (1 + sn(a)) (Qn.k(x)| + lQn,k(x) - Qn,k-i(x)I),

(i) Qn,k+i(x) - Qn.k(x)| (1 + r,(x)) (1 + ss(a)) (r,(x)Qn0 (x)I + IQ,(x) -

Proof. Let us choose N, to satisfy the conditions of Lemma 19 (the existence of such

an N, follows from the same lemma), and suppose n > N0 . We first treat the case

i = 1, and begin by proving assertion i. Recall that for k > 1, IQn.k+1(x)I equals

A(1 - -+ '"i"kn))Qn,k(X) - mJ" 1'"Qn,k-l(X)I, which is at most

(1 + rn(x))IQ,,k(x)| + (1 + s,(a))IQn,k(X) - Qnk-1(x)|, (3.13)



by the triangle inequality and Lemma 19. Assertion i. follows by multiplying the first

summand of (3.13) by 1 + s(a), and the second summand by 1 + r0 (x).

We now prove assertion ii. for the case i = 1. Rearranging Definition (3.3), we

find that for k > 1, IQn,k+l(x) - Qn,k(x)| is equal to I- g Q,(x) + ,n (Q,k(x) -

Qn,k-_1(x)) , which is at most

r, (x)IQn,k(x)I + (1 + sn(a))IQ,k(x) - Qn,k-1(x)|, (3.14)

by the triangle inequality and Lemma 19. Assertion ii. then follows by multiplying

the first summand of (3.14) by (1 + rn(x)) (1 + s 0 (a)), and the second summand by

(1 + r(x)).

The proofs for the case i = -1 follow very similarly, and are omitted. E

We now use Lemma 20 to bound IQnk(x)| for values of k that are O(n) away from

ri.

Lemma 21. For each a > B > 0, there exists N 0 s.t. n > N,. k E [n - an2 - 3, n +

an-+ 31, and x E ((ni - vn )2 (n- + V 0)
2) implies that

() IQn.k(x)I < 1+ r,(x))(1 + s0 (a))(1+rn(X) c n(X)

(ii) IQn(x) - Qn,k+I(k<n)-I(k>n)(X)| is at most

(1+ rn(x))(1 + sn(a)) (1 + rn(x) )j rn()c(x)hn(x).

Proof. Let us choose N, to satisfy the conditions of Lemma 20 (the existence of such

an N0 follows from the same lemma), and suppose n > N. We first treat the case

k > n. We proceed by induction on assertions i. and ii. simultaneously. The base

case k = n follows immediately from Lemma 17.i and Lemma 17.iii. Now, suppose



the induction is true for some k E [n, n + an- + 2]. Then by Lemma 20, 1|Qn,k+1(x)I

is at most

(1 + rn(x)) (1 + sn (a))(Qlak(x) + IQl,k(x) - Q.k_1(X)1)

< (1+rn(x))(1±+s,(a))((1+rn())(1+sn(a))(1+rn(x)) c (x)i h(x)

S +((1 rn(x)) (1 + s,(a)) (1 + r(x))) rn(x) cn(x) hn(x)) by ind. hyp.

((i + rn(x))(1 + s,(a))(1 +rn(x)2)+ c.(x) h.(x). (3.15)

Similarly, by Lemma 20, IQn,k+i(x) - Qn,k(x)| is at most

(I + rn (x)) (1 + s, (a)) (rn (x)IQn,k(x)I + IQ,k (x) - Qn,k- I(x))

1+rn (X)) (1 + s,, (a)) (1+ r, (X)) (1 + sn (a)) (1+ rn xW )rn (X)cn (Xi hsn(X)

k)k-

+ ((1+ rf(x))(1+sn(a))(1+rn(x)')) rn(x)?c(x)ihn(x) by i. hyp.

k+1-n
- n (X() -'(x).h(x). (3.16)

(1rn W) (1 + sn (a)) (1 + rn (X) rnxs cW xih~x.(.6

This concludes the induction, proving assertions i. and ii. for the case k > n.

The proof for the case k < n follows from a very similar argument, and is omitted.

We now complete the proof of Lemma 18.



Proof of Lemma 18. By Lemma 21, we find that there exists N0 s.t. n > N, implies

|Qn,k (x)Ic(x)~ 2 hn(x) exp ((an2 + 2)(rn(x) + sn(a) + rn(X))

= hn(x) exp ((an + 2)(q2n-1 + qnan-2+ gnx-! ))

< hn(x) exp (qn(a + 2n-1)(xn- ax)). (3.17)

By identical reasoning,

|Qn,k+1(X) - Qn,k(X)|cn(X)-!' < hn (X)rn (X) exp (qn (a + 2n - i)(xn--+a+ ).

(3.18)

Furthermore, note that since

x 2X2n2 2n1 . 1 2

it will be the case that xn-i < 2xi for x E (0, (ni + A2) 2 ) The lemma follows

by combining with (3.17), (3.18), and the fact that qn(a + 2n-2) < a + n- for all

sufficiently large n.

3.3.4 Proof of Theorem 9

In this subsection we complete the proof of our main result, Theorem 9. We begin

by deriving a variant of Theorem 10 for P,j(t), as opposed to Pin(t), that does

not simply sum over all j + 1 states < j, but instead relies on a 'probability flow'

interpretation using the Chapman-Kolmogorov equation. This will allow us to bound

the distance to stationarity uniformly in n for the c.d.f., since we can sidestep having

to sum over 'too many' error terms.



Lemma 22. For p * |PJ ,(t ) - P 3(oo)| is at most

(27)~ gnj) nn-
n

(n2 +

(n 2-A

n)2
e-xx-'IQ,,i(x)I|Qn,j+1(x) - Qn,j(x)|bn(x)c,,(x)-'dx.

-2)2

Proof. It follows from the Chapman-Kolmogorov equation and a straightforward tele-

scoping sum argument that P-4- (t) min(j+1, n)Pin+1 (t) - APn (t). Thus for all

it > 0, P",(oo) = P(,(t)+ ( min(j+1, n)Pi(s)-AnFO(s))ds. It follows that

Pij(t) - Pj(oo)|= f (min(j+ 1, n)P%±1 (s) - Anj(s))dsI, which by detailed

balance equals

jo (min(j + 1, n)(Pi1(s) ~ Pinj+1(O0)) - An(Pf,(s) - Pi~j(oo)))ds

27r)-IgnWj) n- 
n

1 1

(n2 +A )2

e- Q,,j(x)(Q,j+1(x)-Qn, (x))b (x)c '(x)-dx
.(,2 -A2 )2 ) ds .

by Theorem 10, since min(j + 1, n)g,(j + 1)+(Ann)-- = gn(j) 3n-
1

. Further simpli-

fying, we find the above to be at most

((27)
t

gn(j) n

n

(n_2+A2)2

e-'"Q,,i (X)|| Qn,j+1 (x) -Qn,j (x)|1b,(X)cn(x)- dx ds
(n2-A2)2

i (nN+An)

(27r)->gn(j) n
n(n

2
e-x~Xl1|Qn,,(x)I|Qn,j+1(x) - Qn~j(x)|b.(x)c(x)- 1dx

by Tonelli's Theorem, and the lemma follows.

We now prove bounds on a special type of integral that arises in the analysis of

Ie(t) - PF 9o).

Lemma 23. For all B, C > 0 there exists NB.c s.t. n > NB.c implies that for all

oo

t 
(



cE (0,C] and t > 1,

(n+ 2 2

(n A;exp (-xt+cx-! bn(x)-'dz < qn(-")i
(n-2 - )2 tAn

Proof. The proof is deferred to the appendix.

exp (I Bc+c2(2t)_1 B t). (3.19)
2 4

Before completing the proof of our main result, we derive an asymptotic bound

for gn(k), proving that

Lemma 24. For each B > 0, there exists NB s.t. n > NB implies supk>Ogfn(k) K

qn exp(B 2 ).

Proof. Since A < 1, we have that gn(k) < for all k > 0. Thusn-[AJ

gn (k)
An

< AnJ n!

- [A~j \I
K; (=)^A 1 = exp (B 2 + O(n12)),

and the lemma follows from a simple Taylor series expansion.

We now complete the proof of Theorem 9.

Proof of Theorem 9. Suppose B E (0, B*) , ai, a2 C R. Let a = max(B, jai, 1a2 |),
i = [n + ain1], and j [n + a 2n1. Then it follows from Theorem 10, Corollary 1,

Lemma 24, and Lemma 18 that for all sufficiently large n and all t > 1, the l.h.s. of

(3.1) is at most

-27- 
1 qn exp (B2) 12

An2 A2)2 exp (- xt +2(a+Ih)(a +3x))bn(x)- 1dx. (3.20)

(n +A' )2

(27)~'q, exp ( 2
~2 R)2

2 -1
exp (-xt)hn(x)exp(2(oz+n-")(a+3x ))b,(x)dx



We now bound the integral appearing in (3.20). In particular, by applying Lemma 23

with C = 6(a+ 1), c = 6(a +n--'), and combining with the fact that for all sufficiently

large n, exp ((2a + 3B)n-1) < 1 + n- i and exp ((36an-I + 18n-)t-1) 1 + n--,

we find that for all sufficiently large n, and all t > 1, the integral appearing in (3.20)

is at most

(1 + n1)3 7T
tAn

exp (202 + 3Ba + 18a 2t 1 - t) (3.21)

Combining (3.20) and (3.21), we find that the l.h.s. of (3.1) is at most

27-qn exp (B2) (1+n-)3 ( J exp 22 + 3Ba + 1821
-2t)

2(7t)- (1+ni)4( ) exp (B2 + 2 + 3Ba + 18a2 I t)

< 2(lt)- (1 + n)4 ) exp (2(a + B)2 18a2-1 - t,

and the first part of Theorem 9 follows, since for B < B*, t > 1, and all sufficiently

large n, 27-w (1+n-!)4( "-)I exp (2(a + B) 2 +18a 2 t- 1) < exp (120(max(a1, . a2) 2 +

1)). Similarly, it follows from Lemma 22, Corollary 1, Lemma 24, and Lemma 18

that for all sufficiently large n and all t > 1, the l.h.s. of (3.2) is at most

(2)- 1q, exp (B 2 ) -1
(n2 +A )2

1 hn(x)2rn(x)' exp (-xt+2(a+n -
J2AR 2)2

which is itself at most

:3

Iqn exp (B Wn J(n2 +A2)
2J 1 exp

2(n -A
2

)2

(-xt+2(a +n- )(a+3xl))x-'b(x)~1dx. (3.22)

It follows from Lemma 3 that x > (ni - n )2 implies x 5 2B-, and thus applying

- )(a+3x1))x- bn(x)dz,



(3.21), we find that (3.22) is at most

3 n( +An2)2

27r- q, exp (B2)n (2B- 1  exp ( - xt + 2(a + n -1)(a + 3xi))bn(x)- 1 dx
J(n 2An-2)2

K 4(Birt)2(1 + n-1)" )' exp (B2 + 2a 2 + 3Ba + 18t 2 
- ).

The second part of Theorem 9 follows, since for all sufficiently large n and all t > 1,

4(1+ n--" r(g)" exp (B2 + 2o2 + 3Ba + 18 <t) exp (120(max(IaiI, 1a2 |)2 +

1)). D

3.4 Comparison to Other Bounds From the Liter-

ature

In this subsection we compare the bounds from Theorem 9 to two other explicit

bounds given in the literature [119],[23). In both cases we will prove that the bounds

from the literature (applied to |P 1 ",(t) - P,(oo)j for 0 < B < B*) grow with n,

rendering them impractical in the H-W regime. We begin with the bounds given in

[119], which translate to the statement that for each B E (0, B*) there exists NB s.t.

n ;> NB implies that for all t > 0,

|P,,(t) - P",(oo)| is at most

4(n - 1)( ((r 1)i - 1)P"(oo) + ( )" - 1)(1 - 2P"(o))) e n- t. (3.23)

Note that since limn c Bn1 1 = 0, the exponential rate of convergence demonstrated

by (3.23) goes to zero as n -+ o, rendering the bound in [119] ineffective. We now

examine the bounds given in [23], which translate to the statement that for each



B E (0, B*) there exists NB s.t. n > NB implies that for all t > 0,

|P&,",(t) - P"n(oo)I < (Pn"(oo)- 1 - 1) 1 e-'nt. (3.24)

2 1

It is well-known (see [52]) that liminf+,- (P"(oo)-1 - 1) n-:i > 0. It follows that

the prefactor demonstrated by (3.24) diverges as n - oc, rendering the bound in [23]

ineffective.

It should be noted that although the bounds given in [119] and [23] are ineffective

for the particular events of interest in this paper, both bounds hold in much greater

generality, and thus remain interesting and applicable in a variety of other settings.

3.5 Conclusion and Open Questions

In this chapter we derived explicit bounds on the distance to steady-state for the

M/Al/n queue in the H-W regime for the case B < B*, e.g. characterizing the error

in estimating the transient probability of delay by the corresponding steady-state

quantity. Our bounds hold for any sufficiently large fixed n, scale independently

of n in the H-W regime, and (in light of the results of Chapter 2) are tight up to

exponential order. We also used our bounds to provide a heuristic rule-of-thumb

which a call center manager could use to determine the time it takes an overloaded

(underloaded) queueing system to return (probabilistically) to the steady-state. We

also studied several known explicit bounds appearing in the literature, and showed

that they did not scale favorably with n in the H-W regime.

This work leaves several interesting directions for future research. There are many

open questions related to the interaction between weak convergence and convergence

to stationarity. In particular, it is an open challenge to derive uniform bounds on the

distance to steady-state in the H-W regime for the A/M/n queue with B > B*, and



more generally for the GI/GI/n queue with non-Markovian processing times.

3.6 Appendix

3.6.1 Proof of Lemma 23

In this subsection we complete the proof of Lemma 23.

Proof of Lemma 23. By Lemma 3, (n2 - An) 2 < 2v /Ai < (n2 + An) 2 for all suffi-

ciently large n. Thus it follows from (3.4) that for all sufficiently large n, the l.h.s. of

(3.19) equals

(n 2 -A
2 
)2

(n +A )2

+ 12 An

- xd (3.25)

exp ( - xt + (x - (ni - A)()2)-2 ((N + An) 2 - £)2dx.(3.26)

Let un 2v An - (n - An) 2 . Since ((n2 + An) 2 -X) < ((n2 + A )2 -2v nn)

for x E ((ni A ) 2 2 Ann), (3.25) is at most

1 _1
((n + An)2 - 2 nn)

(An +n) exp(

2 /An
(n2 -A)2

- (y2+ (n - A )2)t + c(y + (rI - A2)2)2)dy

< (An + n) exp ( - (n -A ) 2
t +cI- ))ep(- yt + cyl)y-Ady,

since (y + (n - A~~~) 2)1<+n Art It follows from elementary calculus that for

all y > 0. -yt + cy2 < -jyt + c2(2t)-. Plugging into the above, we find that (3.25)

xp (-xt + cxrj) (x - ( n A)2 2 ((n + An)2

Xt + CX-1) (X I 1 1
2 

2 _A2),')
exp (n n dx



is at most

(A + n exp ( - (ni - An) 2 t + c(ni - A ) + c2 (2t) )Jep ( - 2yt)y dy

(An + n)> exp (-( - ( A 2)2t + c(n2 - A) + c2 (2t)- ) p ( - yt)y-dy~ ) 2,

= An+ )ex (-2n - A )2t + c2i- + C22t)e)( )d,

which is itself at most

(Anexp ( - (n - )2[ + c(ni - A) + c2 (2t)-). (3.27)

We now bound (3.26). Since (x -(ni - A22)- 5 (29/n (n -- A 2-- for

2~ 2 (2 (n2 + 2)2)

x E (2vinn, (n + A )2) (3.26) is at most

sup exp(-zt+ci) ,

ze[2 %~rf.(n A+Ai)2] /(2+A4b) ((n~ + A ) 2 
_ x) 4 dx

(2v /A - (n2t A+ C)2) ( 2.2

slip exp(- z czA)

ze[2v -i,(ni+A )2I f n 1

(2W x - (ni - A2)2 o -

S2( +) exp (c2 (2t)+ - (Ann)t), (3.28)

since -z[+czi K - tc(t 2v n n -A) > 3A -n, and f-nnyid
2(An + ni) . Also, it follows from simple asymptotics that for all sufficiently large n

and all tZ> 1,

2(3 ) (1 - 2t+c(n4 -AA)). (3.29)

- 2V7 - n'- n!V



Combining with (3.28), it follows that for all sufficiently large n and all t > 1, (3.26)

is at most

n-'(-")-2 exp (n -!i - A )24 + c(n- - An )+c(2t)-'). (3.30)
Ant

The lemma then follows by using (3.27) to bound (3.25), (3.30) to bound (3.26),

applying Lemma 3 and a simple Taylor series expansion, and noting that in all cases

for all sufficiently large n' can be defined in terms of B and C only (as opposed to

c).
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Chapter 4

Asymptotic Scaling and Large

Deviations for the Steady-state

GI/GI/n Queue in the

Halfin-Whitt Regime

4.1 Introduction and Literature Review

Recall from Section 1.3 that the H-W regime was formally introduced by Halfin and

Whitt [52], who studied the GI/A/n system (for large n) when the traffic intensity

scales like 1 - Bni for some strictly positive B. They proved that under minor tech-

nical assumptions on the inter-arrival distribution, this sequence of G/A/n queueing

models has the following properties:

(i) the steady-state probability that an arriving job finds all servers busy (i.e. the

probability of wait) has a non-trivial limit;

(ii) the sequence of queueing processes, normalized by n2, converges weakly to a



non-trivial positive recurrent diffusion;

(iii) the sequence of steady-state queue length distributions, normalized by n2I is

tight and converges distributionally to the mixture of a point mass at 0 and an

exponential distribution.

Similar weak convergence results under the H-W scaling were subsequently ob-

tained for more general multi-server systems [87], [60], [75], [43], [91] with the most

general results appearing in [91] (and follow-up papers [90],[88]). As the theory of

weak convergence generally relies heavily on the assumption of compact time inter-

vals, the most general of these results hold only in the transient regime. Indeed,

with the exception of [52] (which treats exponential processing times), [60] (which

treats deterministic processing times), and [43] (which treats processing times with

finite support), all of the aforementioned results are for the associated sequence of

normalized transient queue length distributions only, leaving many open questions

about the associated steady-state queue length distributions.

In particular, in [43] it is shown for the case of processing times with finite sup-

port that the sequence of steady-state queue length distributions (normalized by n2) is

tight, and has a limit whose tail decays exponentially fast. The authors further prove

that this exponential rate of decay (i.e. large deviation exponent) is -2B(c + c -1 ,

where B is the spare capacity parameter, and c2, c2 are the squared coefficients of

variation of the inter-arrival and processing time distributions. In [43] it was con-

jectured that this result should hold for more general processing time distributions.

However, prior to this thesis no further progress on this question has been achieved.

In this chapter we resolve the conjectures made in [43] w.r.t. tightness of the

steady-state queue length, and take a large step towards resolving the conjectures

made w.r.t. the large deviation exponent. We prove that as long as the inter-arrival

and processing time distributions satisfy very minor technical conditions (e.g. finite



2 + c moments), the associated sequence of steady-state queue length distributions,

normalized by n2, is tight. Under the same minor technical conditions we derive

an upper bound on the large deviation exponent of the limiting steady-state queue

length matching that conjectured by Gamarnik and Momcilovic in [43]. We also prove

a matching lower bound when the arrival process is Poisson.

Our main proof technique is the derivation of new and simple bounds for the

FCFS GIl/Gl/n queue. Our bounds are of a structural nature, hold for all n and all

times t > 0, and have intuitive closed-form representations as the suprema of certain

natural processes which converge weakly to Gaussian processes. Our upper and lower

bounds also exhibit a certain duality relationship, and exemplify a general method-

ology which may be useful for analyzing a variety of queueing systems. We further

illustrate the utility of this methodology by deriving the first non-trivial bounds for

the weak-limit process studied in [91].

We note that our techniques allow us to analyze many properties of the G/G/n

queue in the H-W regime without having to consider the complicated exact dynam-

ics of the G/GIl/n queue. Interestingly, such ideas were used in the original paper

of Halfin and Whitt [52] to show tightness of the steady-state queue length for the

GI/A/n queue under the H-W scaling, but do not seem to have been used in subse-

quent works on queues in the H-W regime.

4.1.1 Outline of chapter

The rest of the chapter proceeds as follows. In Section 4.2, we present our main

results. In Section 4.3, we establish our general-purpose upper bounds for the queue

length in a properly initialized FCFS GI/GI/n queue. In Section 4.4, we establish

our general-purpose lower bounds for the queue length in a properly initialized FCFS

M/Gl/n queue. In Section 4.5 we use our bounds to prove the tightness of the



steady-state queue length when the system is in the H-W regime. In Section 4.6

we combine our bounds with known results about weak limits and the suprema of

Gaussian processes to prove our large deviation results. In Section 4.7 we use our

bounds to study the weak limit derived in (91]. In Section 4.8 we summarize our

main results and comment on directions for future research. We include a technical

appendix in Section 4.9.

4.2 Main Results

Recall from Chapter 1 that A, = n - Bni, and Q" is the First-Come-First-Serve

(FCFS) GI/GI/n queue with inter-arrival times drawn i.i.d. distributed as AA;

and processing times drawn i.i.d. distributed as S (initial conditions will be specified

later). Suppose that E(A} = pA' < oc, E[S] = p1 < oc, and P(A = 0) = P(S = 0)

o Recall that o and o denote the variances of A and S, respectively, and c2 and

c2 denote the squared coefficients of variation (s.c.v.) of A and S, respectively. All

processes should be assumed right-continuous with left limits (r.c.l.l.) unless stated

otherwise. All empty summations should be evaluated as zero, and all empty products

should be evaluated as one.

4.2.1 Main results

Our main results will require two additional sets of assumptions on A and S. The first

set of assumptions, which we call the H-W assumptions, ensures that {Q"(t). n ; 1}

is in the H-W scaling regime as n -+ o0. We say that A and S satisfy the H-W

assumptions iff PA = is, in which case we denote this common rate by p. The

second set of assumptions, which we call the To assumptions, is a set of additional

minor technical conditions we require for our main results.



(i) There exists c > 0 s.t. E[A2 +<], E[S 2+ < oc.

(ii) c2 + c2 > 0. Namely either A or S is a non-trivial r.v.

(iii) lim suptlo t-'P(S < t) < 00.

(iv) For all sufficiently large n, Q"(t) converges weakly to a steady-state distribution

Q"(oo) as t -+ 00.

We note that technical condition (iii) of the To assumptions is not very restrictive,

and is (for example) satisfied by any discrete distribution with no mass at zero, and

any continuous distribution with finite density at zero. Furthermore, condition (iii) is

in some sense natural, as certain closely related tightness results from the literature

are known to require a similar condition (see the discussion in [110]). We refer the

interested reader to [4] for an excellent discussion of technical condition (iv), which

is also not very restrictive.

We now state our main results. We begin by establishing the tightness of the steady-

state queue length for the FCFS G/GIl/n queue in the H-W regime.

Theorem 11. If A and S satisfy the H-W and To assumptions, then the sequence

{(Qfl(oo) - n)+n-, n > 1} is tight.

In words, the queue length (Q"(oo) - n)+ scales like O(n).

We now establish an upper bound for the large deviation exponent of the limiting

steady-state queue length for the FCFS G/GIl/n queue in the H-W regime, and a

matching lower bound when the arrival process is Poisson.



Theorem 12. Under the same assumptions as Theorem 11,

lim sup x- 1 log lim supP n(Q2(oo) -n)+ni > X < -2B(ci + cr).
x->oo n-oc>c/

If in addition A is an exponentially distributed r.v., namely the system is M/GI/n,

then

lim x- log lim inf P (Q(oo) - n X

= lim X-1 log lim suP IP(Q(oo) -n)n > x -2B(c + c 1.X->00o n->oo

In words, Theorem 12 states that the tail of the limiting steady-state queue length

is bounded from above by exp (-2B(c2+c2)-x+o(x)) and when the arrival process

is Poisson, the tail of the limiting steady-state queue length is bounded from below

by exp ( - 2B(c2 + c2) 1 X - o(x)), where o(x) is some non-negative function s.t.

lim_,oO XaIo(x) = 0. Note that Theorem 12 translates into bounds for the large

deviation behavior of any weak limit of the sequence {(Q(oo) - n)+ n

where at least one weak limit exists by Theorem 11.

4.3 Upper Bound

In this section, we prove a general upper bound for the FCFS GI/GI/n queue,

when properly initialized. The bound is valid for all finite n, and works in both the

transient and steady-state (when it exists) regimes. Although we will later customize

this bound to the H-W regime to prove our main results, we note that the bound is in

no way limited to that regime. For a non-negative r.v. X with finite mean E[X] > 0,

let R(X) denote a r.v. distributed as the residual life distribution of X. Namely, for



all z > 0,

P(R(X) > z) = (E[X])- 1  IP(X > y)dy. (4.1)

Recall that associated with a r.v. X, an equilibrium renewal process with renewal

distribution X is a counting process in which the first inter-event time is distributed

as R(X), and all subsequent inter-event times are drawn i.i.d. distributed as X;

an ordinary renewal process with renewal distribution X is a counting process in

which all inter-event times, including the first, are drawn i.i.d. distributed as X.

Let {Ni(t), i = 1,. .. , n} denote a set of n i.i.d. equilibrium renewal processes with

renewal distribution S. Let A(t) denote an independent equilibrium renewal process

with renewal distribution A.

Let Q denote the FCFS GI/GI/n queue with inter-arrival times drawn i.i.d.

distributed as A, processing times drawn i.i.d. distributed as S, and the following

initial conditions. For i = 1, . .. , n, there is a single job initially being processed on

server i, and the set of initial processing times of these n initial jobs is drawn i.i.d.

distributed as R(S). There are zero jobs waiting in queue, and the first inter-arrival

time is distributed as R(A), independent of the initial processing times of those jobs

initially in system. We now establish an upper bound for Q(t), the number in system

at time t in Q.

Theorem 13. For all x > 0, and t > 0.

/ n

P((Q(t) - I)+ > x) < P sup (A(s) - N (s)) > x.

If in addition Q(t) converges weakly to a steady-state distribution Q(oo) as t -+ oc.

then for all x > 0.

> sn

IP((Q (oC)) - n) + > X) < I? slip (A (t) - >3N, (t)) >x
t>O1



Note that our bounds are monotone in time, as when t increases the supremum

appearing in Theorem 13 is taken over a larger time window, and the bound for the

steady-state is the natural limit of these transient bounds.

We will prove Theorem 13 by analyzing a different FCFS G/GI/n queue Q which

represents a 'modified' FCFS GI/GIl/n queue, in which all servers are kept busy at all

times by adding artificial arrivals whenever a server would otherwise go idle. We note

that our construction is similar to several constructions appearing in the literature.

Our bounding system is closely related to the so-called Queue with Autonomous

Service, a model studied previously by several authors [9],[57),[113],[66]. Another

related work is [201, in which the queue length of the G/GI/i queue is bounded by

considering a modified system in which the server goes on a vacation whenever it

would have otherwise gone idle. Also, in [52], the queue length of the GI/M/n queue

is bounded by considering a modified system in which a reflecting barrier is placed at

state n.

We now construct the FCFS G/GIl/n queue Q on the same probability space as

{Ni(t),i = 1,...,n} and A(t). We begin by defining two auxiliary processes A(t)

and Q(t), where A(t) will become the arrival process to Q, and we will later prove

that Q(t) equals the number in system in Q at time t. Let ro 0, {Tk, k > 1}

denote the sequence of event times in the pooled renewal process A(t) + E', N?(t).

dA(t) A(t) - A(t-), A(s.t) A A(t) - A(s), and dNi(t) ± Ni(t) - Ni(t-), Nfi(s,t) ±

Ni(t) - Ni(s) for i = 1,. . ., n.

We now define the processes A(t) and Q(t) inductively over {rk, k > 0}. Let

A(ro) ± 0, Q(To) n. Now suppose that for some k > 0, we have defined A(t) and

Q(t) for all t < k. We now define these processes for t E (rk, Tk+1]. For t E (Tk., Tk+1),

let A(t) A A(-k), and Q(t) Q(rk). Note that w.p.1 dA(Tk+1) + E= dNi(k+1 ) -

1, since R(A) and R(S) are continuous r.v.s, P(A = 0) = P(S = 0) = 0, and



A(t), {Ni(t), i = 1, . .. , n} are mutually independent. We define

A(Tk.)

A(Tk+l) A(r)

A(Tk)

Similarly, we define

+1

+1

if dA(Tk+1) = 1;

if El dNi(rk+1) = 1 and Q(-rk) < n;

otherwise (i.e. E'l dNi(rk+1) = 1 and Q(rk) > n).

Q(Tk)+1 if dA(Tk+) = 1;

Q(Tk+1) A Q(rk) if El dNi(Tk+1) = 1 and Q(rk) < n;

Q(rk) - 1 otherwise (i.e. E l dNi(Tk+1) = 1 and Q(rk) > n).

Combining the above completes our inductive definition of A(t) and Q(t). Since w.p.1

linlk, rA = 00, it follows that w.p.1 both A(t) and Q(t) are well-defined on [0, oo).

We note that it also follows from our construction that w.p.1 both A(t) and Q(t) are

r.c.l.l., and define dA(t) A A(t) - A(t-). It also follows from our construction that

the dynamics of Q are identical to those of the so-called Queue with Autonomous

Service, a model studied previously by several authors [9],[57],[113],[66]; we refer the

reader to [113] for details.

We now construct the FCFS G/GI/n queue Q using the auxiliary process A(t).

Let Vi' denote the length of the jth renewal interval in process Ni(t), j > 1,

1, .. , n. Then Q is defined to be the FCFS G/GI/n queue with arrival process A(t)

and processing time distribution S, where the jth job assigned to server i (after time

0) is assigned processing time V/+1 for j > 1, i = 1, . . . , .. The initial conditions for

Q are s.t. for i = 1..., n, there is a single job initially being processed on server i

with initial processing time V/. and there are zero jobs waiting in queue.

We now analyze Q, proving that



Lemma 25. For i = 1, ... n, exactly one job departs from server i at each time

t E { Ej=1 V', j > 1}, and there are no other departures from server i. Also, no

server ever idles in Q, Q(t) equals the number in system in Q at time I for all I > 0,

and for all k > 1,

/n

Q(Tk) - n = max (0, Q(Tk_) - n + dA(Tk) - dNi (Tk (4.2)

Proof. The proof proceeds by induction on {rk, k > 0}, with induction hypothesis

that the lemma holds for all t < T. The base case k = 0 follows from the the

initial conditions of Q and Q(t). Thus assume that the induction hypothesis holds

for some fixed k > 0. We first establish the induction step for the statements about

the departure process and non-idling of servers. Let us fix some i E {1,. . . , n}. By

the induction hypothesis, server i was non-idling on [0, Tk.], and the set of departure

times from server i on [0, rk) was exactly {E' K', j = 1, . . . , Ni(rk)}. We claim that

the next departure from server i occurs at time ENriTk)+1 I'. Indeed, if Ni(Tk) = 0,

the next departure from server i is the first departure from server i, which occurs

at time V/j. If instead Ni(Tk) > 0, then the last departure from server i to occur

at or before time T occured at time E=1) 1l. At that time a new job began

processing on server i with processing time Vij(TK)+1. This job will depart at time
EN?(rk)+1 V/1, verifying the claim. It follows that no server idles on (Tk, Tk1), since

1rk)+1 V/ {TJ, j > 1}, and thus EN(T)+1 Vl > rk+1. We now treat two cases.

First, suppose Vi+1V/ > T k+1. Then there are no departures from server i on

(Tk rk+i) and the induction step follows immediately from the induction hypothesis.

Alternatively, suppose Tk)+1 V = rk+1. In this case the next departure from

server i occurs at time Tk+1, dNi(Tk+1) = 1, and all other servers are non-idling and

have no departures on (Tk, Tk+ 1]. Thus if there are at least n + 1 jobs in Q at time T.,

then there are at least n + 1 jobs in Q at time T+l. and some job begins processing



on server i at time Tk+1. Alternatively, if there are exactly n jobs in Q at time Tk,

then Q(Tk) = n by the induction hypothesis. Thus dA(Tk+1) = 1, and this arrival

immediately begins processing on server i. Combining the above treats all cases since

there are at least n jobs in Q at time Tk by the induction hypothesis, completing the

induction step.

We now prove the induction step for the statement that Q(t) equals the number

in system in Q at time t, as well as (4.2). Since we have already proven that any

departures from Q on (Tk, Tk+1] occur at time Tk+1, and by construction any jumps

in A(t) and Q(t) on (Tk,Tk+1] occur at time Tk+1, it suffices to prove that Q(Tk+1)

equals the number in system in Q at time Tk+1. First, suppose dA(Tk+1) = 1. Then

i dNi(Tk+1) = 0. Q(Tk) > n by the induction hypothesis, and Q(Tk+1) - Q(k)+1.

Thus

max (0, O(Tk) - n + dA(Tk+1) - 1 dN(TAr+ 1 )) = max (0,Q(Tk) - n +

= Q(Tk) - n+ I1- Q(Tk+1) - n,

showing that (4.2) holds. Note that E> dNi(Tk+1) - 0 implies that E r)+l
1 i>

Tk+1 for all i = 1,...,n, and we have already proven that in this case there are no

departures from Q on (Tk, Tk+1]. Since dA(Tk+1) = 1 implies dA(Tk+) = 1, it follows

that the number in system in Q at time Tk+} is one more than the number in system

in Q at time Tk. Thus Q(Tk+1) equals the number in system in Q at time Tk+1 by the

induction hypothesis.

Now suppose that E dN(Tk+1) = 1. Then dA(Tk+1) = 0, and there exists a

unique index i* s.t. E (Tk)+l _ Tk+1. We have already proven that in this case

there are no departures from Q on (rk, Tk+1), and a single departure from Q at time

Tk+1 (on server i*). First suppose that there are at least n + 1 jobs in Q at time Tk.



Then Q(Tk) > n + 1 by the induction hypothesis, and Q(rk+1) - r(Tk) - 1. Thus

max (0, Q(Tk) - n + dA(rk+1) - 'I= dNi(k+1)) = max (0, Q(Tk) -n - 1)

= O(rk -- n - 1 = (rk+1) - n,

showing that (4.2) holds. Since dA(Tk+1) = 0, there are no arrivals to Q on (Tk, Tk+1I-

Combining the above, we find that the number in system in 0 at time Tk+1 is one

less than the number in system in Q at time Tk. Thus Q(Tk+1) equals the number in

system in Q at time Tk+1 by the induction hypothesis.

Alternatively, suppose that 2L dNi(Tk+1) = 1 and there are exactly n jobs in Q
at time Tk. Then Q(Tk) = n by the induction hypothesis, and Q(Tk+1) = Q(Tk). Thus

max (0, Q(rk) - n + dA(Tk+1) - 1 dNi(rk+1)) = max (0, Q(Tk) - n -)

= 0 Q(k+1) - n,

showing that (4.2) holds. Since dA(Tk+1) = 1, there is a single arrival to Q on

(Tk, Tk+ 1]. Combining the above, we find that the number in system in Q at time

Tk+1 equals the number in system in Q at time Tk. Thus Q(Tk+1) equals the number

in system in Q at time rk+ by the induction hypothesis. Since Q(Tk) > n by the

induction hypothesis, this treats all cases, completing the proof of the induction and

the lemma.

We now 'unfold' recursion (4.2) to derive a simple one-dimensional random walk

representation for Q(t). We note that the relationship between recursions such as

(4.2) and the suprema of associated one-dimensional random walks is well-known (see

[9],[20]). Then it follows from (4.2) and a straightforward induction on {rkT k > 0}
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that w.p.1, for all k > 0,

Q( Tk) - n = max A (Tk- , kT N, (Tkj, k .

As all jumps in Q(t) occur at times t c {Tk, k > 1}, it follows that

Corollary 3. W.p.1, for all t > 0,

Q(t)-n = sup A(t - s,t) Ni(t - s,t)

We now prove that Q(t) provides an upper bound for Q(t).

Proposition 3. Q(t) and Q(t) can be constructed on the same probability space so

that w.p.1 Q(t) < Q(t) for all t > 0.

For our later results, it will be useful to first prove a general comparison result for

G/C/n queues. Although such results seem to be generally known in the queueing

literature (see [109],[97]), we include a proof for completeness. For an event E, let

I(E) denote the indicator function of E.

Lemma 26. Let Q1 and Q 2 be two FCFS /G/n queues with finite, strictly positive

inter-arrival and processing times. Let {Tk, k > 1} denote the ordered sequence of

arrival times to Q'. i E {1, 2}. Let S, denote the processing time assigned to the job

that arrives to Q' at time T,. k > 1, i E {1, 2}. Further suppose that

(i) The initial number in system in Q is at most n;

(ii) For each job J initially in Q' there is a distinct corresponding job J' initially in

Q2 s.t. the initial processing time of J in Q1 equals the initial processing time

of J' in Q2;
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(iii) {Tk, k > 11 is a subsequence of {T, k > 1};

(iv) For all k > 1, the job that arrives to Q2 at time Tk' is assigned processing time

Sk, the same processing time assigned to the job which arrives to Q1 at that

time.

Then the number in system in Q2 at time t is at least the number in system in Q1

at time t for all t > 0.

Proof. Let Z'(t) denote the number of jobs initially in Qi which are still in Q' at

time t, i E {1,2}. We claim that Z 2 (t) > Z 1 (t) for all t > 0. Indeed, let J be any

job initially in Q', and let Sj denote its initial processing time. Then (ii) ensures

the existence of a distinct corresponding job J' initially in Q2 , with the same initial

processing time Sj. Since by (i) all jobs initially in Q1 begin processing at time 0, it

follows that J departs Q1 at time Sj, while J' departs Q2 no earlier than Sj. Making

this argument for each job J initially in Q' proves that Z 2 (t) Z1 (t) for all t > 0.

Let D' denote the time at which the job that arrives to Qi at time T departs

from Qi, k > 1, i E {1, 2}. We now prove by induction that for k > 1, D2 > D', from

which the proposition follows. Observe that for all k > 1,

k-1

D' = infft :t > TV, Z1(t) + E I(D) > t) < n - 1} + S1.(43
j= 1

Also,
k-1

D ;> inf{t: t > T , Z 1(t) + I(D > t) < n - 1} + Sc, (4.4)
j=1

where the inequality in (4.4) arises since Z 2 (t) > Z1(t) for all t > 0, and the job

that arrives to Q2 at time T may have to wait for additional jobs, which either were

initially present in Q2 but not Q', or which arrive at a time belonging to {Tk, k >

1} \ {T!, k > 1}.
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For the base case k = 1, note that D = inf{t : t > T1
1, Z 1 (t) < n - 1} + S, while

D 2 > infft : t > T1, Z1(t) < n- 1}+ Si.

Now assume the induction is true for all j < k. Then for all t > 0, E _ f(D? >

t) > Z>1 I(DJ > t). Thus

k

inf{t: t>Tk,1 Z'(t) + I(D > t) < n - 1 + Ski1
j=1

k

< infft : t > Tkl+,Zl(t)+( I7(D > t) < n - 1}+ Sk +.
j=1

It then follows from (5.3) and (4.4) that D < D , completing the induction. FI

We now complete the proof of Proposition 3.

Proof of Proposition 3. We construct Q and Q on the same probability space. We

assign Q and Q the same initial conditions, and let A(t) be the arrival process to Q

on (0, oc). Let {tk, k > 1} denote the ordered sequence of event times in A(t). It

follows from the construction of A(t) that {tk, k > 1} is a subsequence of the set of

event times in A(t). We let the processing time assigned to the arrival to Q at time

tk equal the processing time assigned to the arrival to Q at time tk, k > 1. It follows

that w.p.1 Q and Q satisfy the conditions of Lemma 26. Combining the above with

Lenna 25 completes the proof.

We now complete the proof of Theorem 13.

Proof of Theorem 13. By elementary renewal theory (see [27]), A(s)O<,<t has the

same distribution (on the process level) as A(t - s, t)<,<, and EiUI N(s)os<t has

the same distribution (on the process level) as E 4 N (t - s, t) 0 <,<. Combining with

the independence of A(t) and E', Ni(t), Corollary 7, and Proposition 3, proves the

theorem.
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We now prove the corresponding steady-state result. Note that for any x > 0, the

sequence of events { supo0 s~s (A(s) - Zl Ni(s)) > x, t > 0} is monotonic in t. It

follows from the continuity of probability measures that

n n

lim P sup (A(s)-S Ni(s)) > x P sup (A(t) - Ni(t)) > .
t>00 (Ogsst (2 t>0

The steady-state result then follows from the corresponding transient result and the

definition of weak convergence, since Q(oo) has integer support.

4.4 Lower Bound

In this section, we prove a general lower bound for the M/GI/n queue, when properly

initialized. Suppose A is an exponentially distributed r.v. Let Z denote a Poisson r.v.

with mean LA. Let Q2 denote the M/G/n queue with inter-arrival times drawn i.i.d.

distributed as A, processing times drawn i.i.d. distributed as S, and the following

initial conditions. At time 0 there are Z jobs in system. This set of initial jobs

have initial processing times drawn i.i.d. distributed as R(S), independent of Z. If

Z > n, a set of exactly n initial jobs is selected uniformly at random (u.a.r.) to

be processed initially, and the remaining initial jobs queue for processing. Suppose

also that the first inter-arrival time is distributed as R(A) (also an exponentially

distributed r.v.) independent of both Z and the initial processing times of those jobs

initially in the system. Recall the processes A(t) and {Ni(t),.i 1. n}, which

were defined previously at the start of Section 4.3. Then Q2 (t), the number in system

at time t in Q2. satisfies
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Theorem 14. For all x > 0, and 1 > 0,

n

P((Q2 (t) - n)+ > X) 2 P(Z > n) sup P(A(s) - Ni(s) > x).
o~sst

If in addition Q2(t) converges weakly to a steady-state distribution Q(oo) as t -+ oo,

then for all x > 0,

n

P ((Q(oo) - n)+ > x) > P(Z > n) sup P(A(t) - Ni(t) > x).
t>O

Comparing with Theorem 13, we see that our upper and lower bounds exhibit a

certain duality, marked by the order of the P and sup operators.

We will prove Theorem 14 by coupling Q2 to both an associated FCFS M//GIoo

queue Q,1 and a certain family of FCFS G//In queues { Qs, s > 0}. For each s > 0,

our coupling ensures that Qs(t), the number in system at time I in Qs, provides a

lower bound for Q2 (t) for all t > s, and that the set of remaining processing times

(at time s) of those jobs in Q' at time s is a random thinning of the set of remaining

processing times (at time s) of those jobs in Q, at time s. We note that some of the

ideas involved in the proof of our lower bound have appeared in the literature before

(see [99], [97], [112]).

We now construct Q, and {Q', s > 0}. We assign Q, the same initial conditions

as Q2 (although in Q, all initial jobs begin processing at time 0). We let Q. and

Q2 have the same arrival process, and for each arrival, we let the processing time

assigned to this arrival to Q. equal the processing time assigned to this arrival to

Q2.

We now describe the initial conditions and arrival process for Q' in terms of an

appropriate thinning of the initial conditions and arrival process of Q., where the

nature of this thinning depends on Q,(s), the number in system at time s in Q,.
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If Q.(s) < n, then the initial conditions of Q8 are to have zero jobs in system, and

the arrival process to Q' is to have zero arrivals on [0, oc). If Q.(s) > n, then we

select a size-n subset Cs of jobs u.a.r. from all subsets of the jobs being processed

in Q, at time s. Let CO denote those jobs in C' which were initially in Q, at time

0. Then the initial conditions of Qs are as follows. For each job J E CG, there is

a corresponding job J' initially in Q', where the initial processing time of J' in Q-
equals the initial processing time of J in Q,. There are no other initial jobs in Q2.
The arrival process to Q on (0, s] is as follows. For each job J that arrives to Q"

(and thus to Q2) on (0, s], say at time T, there is a corresponding arrival J' to Q' at

time -r iff J E Cs \ C8. In this case, the processing time assigned to J' in Q' equals

the processing time assigned to J in Q,. There are no other arrivals to Q' on (0, s].

We let Q', Q,, and Q2 have the same arrival process on (s. oo), and for each arrival,

we let the processing time assigned to this arrival to Q5 equal the processing time

assigned to this arrival to Q.(and thus Q2).
We claim that our coupling of Q, to Q2 and construction of Qs ensure that Q8

and Q2 satisfy the conditions of Lemma 26. Indeed, for each job initially in QS, there

is a distinct corresponding job initially in Q2 with the same initial processing time.

Also, for each job that arrives to Q2, there is a distinct corresponding job that arrives

to Q2 at the same time with the same processing time. Thus w.p.1 QS(t), the number

in system at time t in Q', satisfies

Q2(t) > Q'(t) for all s, t > 0. (4.5)

We now complete the proof of Theorem 14.

Proof of Theorem, 14. Since Q, is initialized with its stationary distribution (see

[101]), it follows from the basic properties of the M/GI/oc queue (see [101]) that

P(Q.(s) > n) = IP(Z 2 n), and conditional on the event {Q.(s) > n}, the set of



remaining processing times (at time s) of those jobs being processed in Q, at time

s are drawn i.i.d. distributed as R(S). Thus conditional on the event {Q.(s) > n},

one has that |C"| = n, and the set of remaining processing times (at time s, in Q.)

of those jobs belonging to C' is drawn i.i.d. distributed as R(S).

By construction the number of jobs initially in Q' at time 0 plus the number of

jobs that arrive to Q5 on (0, s] is at most n. Thus all jobs initially in Q' at time 0

and all jobs that arrive to Qi on (0, s] begin processing immediately in Q', as if Qi

were an infinite-server queue. It follows from our construction that conditional on

the event {Q,(s) > n}, the set of remaining processing times (at time s) of the n

jobs in Q' at time s equals the set of remaining processing times (at time s, in Q.)

of those jobs belonging to C', and are thus drawn i.i.d. distributed as R(S).

Let us fix some s, t s.t. 0 < s < t. Recall that V/ denotes the length of the jth

renewal interval in process Ni(t), j 2 1, i 1 . n. It follows from our construction

that conditional on the event {Q.(s) > n}, we may set the remaining processing time

(at time s) of the job on server i in Q' at time s equal to V/1. We can also set the

processing time of the jth job assigned to server i in Q' (after time s) equal to V/; 1.

Under this coupling the total number of jobs that depart from server i in Q' during

[s, t] is at most Ni (t - s), and therefore the total number of departures from Q' during

[s, ti is at most E I Ni(t - s), independent of the arrival process to Q, on [s, t]. By

the memoryless and stationary increments properties of the Poisson process, we may

let the arrival process to Q8 on [s, t) equal A(v)o<s< t_. Combining the above, we find

that for all x > 0, P(Q'(t) - n > x) > P(Z > n)P(A(t - s) - E I Ni(t - s) > x).

Observing that s was general, we may then take the supremum of the above bound

over all s E [0, t], and combine with (4.5) to complete the proof of the theorem. The

corresponding steady-state result then follows from the fact that monotonic sequences

have limits and the definition of weak convergence. D
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4.5 Proof of Tightness Result

In this section, we prove Theorem 11. We note that it follows almost immediately

from Theorem 13 and well-known tightness results from the literature (see [7] Theo-

rem 14.6, [113] Theorem 7.2.3) that for any fixed T 0, {n2(Q(t)-n)',+<,n >

is tight in the space D[0, T] under the J1 topology (see Subsection 4.6.1 for details).

The challenge is that when analyzing {n- (Q"(oo) - n)+, n > 1}, one does not have

the luxury of bounded time intervals. In particular, to apply Theorem 13, we must

show tightness of a supremum taken over an infinite time horizon. For this reason,

most standard weak convergence type results and arguments from the literature (see

[113]) break down, and cannot immediately be applied. Instead, we will relate the

supremum appearing in the r.h.s. of Theorem 13 to the steady-state waiting time

in an appropriate G/D/1 queue with stationary (as opposed to i.i.d.) inter-arrival

times. We will then apply known results from the literature, in particular [100], to

show that under the H-W scaling this sequence of steady-state waiting times, prop-

erly normalized, is tight.

Suppose that assumptions H-W and To hold. Let A,(t) - A(At). In light of

Theorem 13, it suffices to prove that {ni supto (An(t) - " NI(t)), n > 1} is

tight. Let AO(t) denote an ordinary renewal process with renewal distribution 24A,

independent of {N.(t), i 1. }. Note that we may construct A, (t) and AO(t) on

the same probability space so that A,(t) < 1 + A' (t) for all t > 0. It thus suffices to

demonstrate the tightness of {n-i supo>0 (A (t) - " N ,(t)), > 1}.

Let {A1 ,i ;> 1} denote a countably infinite sequence of r.v.s drawn i.i.d. dis-

tributed as A, independent of {Ni(t), i - 1,... , n}. Note that since A(t)-> , Ni(t)

only increases at jumps of AO(t), we may construct A'(t), J" Ni(t), and {A1, I > 1}
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on the same probability space so that

n n k

n-~ sup (AOn(t) - NA(t)) = n-2 sup (k - Ni(A>-1 A')). (4.6)
_20 k>0

We now show that

n k

{n-i sup (k - Ni(A-'E A')), n > 1} (4.7)
k>O i= j

is tight, which (by the above) will imply Theorem 11. Fortunately, the tightness of

such sequences of suprema has already been addressed in the literature, in the context

of steady-state waiting times in a G/G/i queue, with stationary inter-arrival times, in

heavy-traffic. In particular, note that for Al > 1, suposk<I (k-E"=1 Ni(A- 1 EZ _ Aj))

corresponds to the waiting time of the (M + 1)st arrival to a G/D/1 queue, initially

empty, with all processing times equal to 1, and the kth inter-arrival time equal to

n M-k M-k+1

Ni (A- 1  A,A-' E A ), k < M.
i=1 j=1 j=1

Recall that K=" N (t)the has the same distribution (on the process level) as

j=1 Ni(t - s, t)0 <<t (see [27]), and {Ai, I > 1} are i.i.d. It follows that for all

Al > 1 suposk N (k - EnI N,(A-, E _ AJ)) also has the same distribution as the

waiting time of the (Al + 1)st arrival to a G/D/1 queue, initially empty, with all

processing times equal to 1, and the kth inter-arrival time equal to

n k-1 k

3 N~I(A A , A >A), k > 1.
i I j=1 j=1
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For this queueing model, in which the sequence of inter-arrival times is stationary,

one can ask whether there is a meaningful notion of steady-state waiting time, whose

distribution would naturally coincide with that of

n k n k

lim sup (k - Ni(A- A)) = sup (k - Ni(A- A)).
M-+ooo<k<M j=1 k>o i=1

Furthermore, should one examine a sequence of such queues in heavy traffic, one

can ask whether the corresponding sequence of steady-state waiting times, properly

normalized, is tight.

Note that as (4.7) is such a sequence, we are left to answer exactly this question.

Fortunately, sufficient conditions for tightness of such a sequence are given in [100].
In particular, as we will show, it follows from the results of [1001 (in the notation of

[100]) that

Theorem 15. Suppose that for all sufficiently large n, {1,,i ; 1} is a stationary,

countably infinite sequence of r.v. Let a,, E[(,, 1 ], and Wn,k ,. . Further

assume that a,, < 0, lim,,o a, = 0, and there exist C 1 , C 2 < oo and c > 0 s.t. for all

sufficiently large n,

(i) 1E[ (I,k - kan|12 +r] < C 1 k+' for all k > 1:

(ii) 1P( maxj=1,...,k(W,, - ian) > x) < C2 k+2§(2+c) for all k > 1 and x > 0.

Then {|a,,I supk 0 Wn,k,'n > 1} is tight.

Proof. The proof follows from Theorem 1 of [100], and is deferred to the appendix. l

To verify that the assumptions of Theorem 15 hold for

n k

{n-_ sup (k - N(A' Aj)), n> 1}
k> 0 =1 j=1
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we will rely on a technical result from [7], which gives a bound on the supremum of a

general random walk in terms of bounds on its increments. In particular, it is shown

in [7] Theorem 10.2 that

Lemma 27. Suppose k < oo, X 1, X2..., Xk is a sequence of general (possibly

dependent and not identically distributed) random variables, Si > 2_1 X, and

kMk - maxj<k |Sj|. Further suppose that there exist real numbers a > !, / > 0,

and a sequence of non-negative numbers u1 , u2 ,. . ,uk s.t. for all 0 K i < j < k and

x > 0,

P(ISj - SI > x) < X-4( 3 u)2a.
i<l<j

Then there exists a finite constant K,,, depending only on a and 0, s. t. for all x > 0,

P(Mk > x) < K'x- 4'( >3 u1)2a.
0<l<k

We will also use frequently the inequality

(xI + X2)r < 2'- 1.r + 2' 1 xr for all r > 1 and x 1 , x 2 > 0, (4.8)

'A

which follows from the convexity of f(x) = xr, r > 1.

Before proceeding with the proof of Theorem 11, we establish two more auxiliary

results. The first bounds the moments of the sum of n i.i.d. zero-mean r.v. in terms

of the moments of the individual r.v.s. and n, and is proven in [114].

Lemma 28. For all r > 2, there exists Cr < oo (depending only on r) s.t. for all

r.v. X satisfying E[X] = 0 and E[|X|r] < o, if {Xj. i > 1} is an i.i.d. sequence of

r.v.s distributed as X, then for all k > 1.

k

E[| Xil ] C< ,=1 ~ ~ j]
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Second, we prove a bound for the central moments of a pooled equilibrium renewal

process.

Lemma 29. Let X denote any non-negative r.v. s.t. E[X] = p - (0,oc), and

E[X'] < oc for some r > 2. Let {Ze(t),i > 1} denote a set of i.i.d. equilibrium re-

newal processes with renewal distribution X. Then there exists CX,r < 00 (depending

only on X and r) s.t. for all n > 1 and t > 0,

E[| Ze(t) - pntlr] <Cx,(1+ (nt)I). (4.9)
i-=l

Proof. The proof is deferred to the appendix.

With the above bounds at our disposal, we now complete the proof of Theorem

11.

Proof of Theorem 11. In the notation of Theorem 15, let

n k-1 k
(n~ A -[ N(A-1 EA', A-' A'),

i=1 j=1 j=1

n k

'n.k = k - ZN (-1 A').
i=1 j=1

That {(n,2, i > 1} is a stationary, countably infinite sequence of r.v. follows from the

stationary increments property of the equilibrium renewal process. Since

E[U-1 Ni(t)] = ntp for all t > 0. it follows that a,, = E[(n,1 1 - - <0.
j= n Bg~

and lim , (in = 0. Thus we need only verify assumptions (i) and (ii) of Theorem

15. Since E[A2 +'], E[S 2 +] < 00 for some c > 0 by the To assumptions, we may fix



some r > 2 s.t. E[Ar],E[Sr] < o. Note that E[IWk - kanir] equals

E[ Ni(A- A') - k

n

< E[

< 2'-1E[I>

k

Ni (A-' 1: A')
j=1

n k

Ni (An 1-WA E
=1 j=1

k

j=1

k

nj1
A ]ki An

k

1) - Ajr]
4 j=1

k

+2 -E [l A. - ir
j=1

(4.10)

(4.11)by (4.8).

We now bound (4.10). By Lemmas 28 - 29, there exist Cs,,, Cr < oc independent of

n and k s.t. E[ Ni (A-' 1 A) - p 1"- E Aj'] is at most

A') 2] by Lemma 29

Cs,r + Cs.r( 7-Y E([ (A -
Aj=1

Cs,r + CS.r(A ) (25 1E[ A -P-
j=1

< CSr + 2 - CS,r ( () 2E [ Y(A) - pl)Ir] + (ky-j
j=1

since E[X] E1[X2 ] for any non-negative r.v. X

Cs~r + 25 Csr (y)A (Crk"E[A - p I']) + (kp1))

by Lemma 28.

f C'ka (4.12)

for some finite constant C' independent of n and k, since E[|A - p-l]< oo, and
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limn"" g = 1.

We now bound (4.11).

k k

E (p A - 'j] = ($)'p'E (| (A' - p-')
j=1 j=

(Cr( )rrE[IA - pf] k2 by Lemma 28

< C"k2, (4.13)

for some finite constant C", independent of n and k. Using (4.12) to bound (4.10)

and (4.13) to bound (4.11), it follows that assumption (i) of Theorem 15 holds for

the finite constant C1 1 2 '(C' + C'). We now apply Lemma 27 to show that

assumption (ii) holds as well. In the notation of Lemma 27, let S, W- , - ian for

i > 0, and Anf,k = maxi<k lW, - ian for k > 0. Then for all n, 0 < i <j and 7 > 0,

P(ISnj - Snij > x) = P(IS 2,njIl > x) by stationary increments

= P(IVnV72  - (j - i)an > x)

C1 (j -- i)"x-r by Markov's inequality

< ((C1 + 1)(j -)X.

Thus for all n and k > 1, we may apply Lemma 27 (in the notation of Lemma 27)

with # A , , and u, A (C1 + 1) for 1 < I < k, to find that there exists a

constant K, < oc (depending only on r) s-t. for all x > 0,

P( max (W,i - ian) > x) Kr(C1 + 1)2k2x-r. (4.14)

It follows that assumption (ii) of Theorem 15 holds as well, with (in the notation of

Theorem 15) C2 A Kr(C1 + 1) , c r - 2. Combining the above, we find that all
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assumptions of Theorem 15 hold, and thus we may apply Theorem 15 to find that

B n k
sup (k - Ni(A1E A)), n > 1

n2- B k>O i=1 j=1

is tight. Combining with (4.6) completes the proof of Theorem 11. O

4.6 Proof of Large Deviations Results

In this section, we complete the proofs of our main results. We proceed by combining

our upper and lower bounds with several known weak convergence results for (pooled)

renewal processes and the suprema of Gaussian processes. Recall that a Gaussian

process on R is a stochastic process Z(t);>o s.t. for any finite set of times tI,. . . , tk,

the vector (Z(ti)... Z(tk)) has a Gaussian distribution. A Gaussian process Z(t) is

known to be uniquely determined by its mean function E[Z(t)] and covariance function

E[Z(s)Z(t)], and refer the reader to [35],[55],[2],77], and the references therein for

details on existence, continuity, etc.

4.6.1 Preliminary weak convergence results

In this subsection we review several weak convergence results for renewal processes,

and apply them to A,(t) and Z= Ni(t). For an excellent review of weak convergence.,

and the associated spaces (e.g. D[O, T]) and topologies/metrics (e.g. uniform, J1), the

reader is referred to [113]. Let A(t) denote the w.p.1 continuous Gaussian process s.t.

E[A(t)] = 0, E[A(s)A(t)] = pjc min(s, t), namely A(t) is a driftless Brownian motion.

Then it follows from the well-known Functional Central Limit Theorem (FCLT) for

renewal processes (see [7] Theorem 14.6) that

Theorem 16. For any T E [0. oc), the sequence of processes
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{An (An(t) - Anyt)O<t< T, n 1} converges weakly to A(t)ogt T in the space D[0, T]

under the J1 topology.

We now give a weak convergence result for En Ni(t), which is stated in [113]

(see Theorem 7.2.3) and formally proven in [110] (see Theorem 2).

Theorem 17. There exists a w.p.1 continuous Gaussian process D(t) s.t.

Ef[D(t)] =0, E[D(s)D(t)] = E[ (Ni(s) - ts) (N 1 (t) - pt) ] for all s, t > 0. Furthermore,

for any T E [0, oc), the sequence of processes {n-2( E" Ni(t) - nyt)o<,<T, n > 1}

converges weakly to D(t)o0t<T in the space D[0, T| under the J1 topology.

We note that the To assumptions (i) and (iii), which guarantee that E[S 2 +] < 00

and lim sup 0O x 1P(S < x) < oc, ensure that the technical conditions required to ap-

ply [113] Theorem 7.2.3, namely that E[S2 ] < oc and lim sup 4 o x1 (P(S < x)-P(S

0)) < oc, hold.

It follows from Theorems 16 - 17 that

Lemma 30. For any fixed T > 0, {n- (An(t) - E" Ni(t))e , n 2 1} converges

weakly to (A(t) - D(t) - Bpt)O<I in the space D[O, T under the J1 topology.

Proof. Note that n- (A, (t) - E' Ni(t))< equals

_ ( n

Ann- (A,(t) - Anyt)An - ( Ni(t) - nyit)n-2 - Bpt)
i=1 O<t<T

The lemma then follows from Theorems 16 - 17. D

We note that a process very similar to (A(t) - D(t) - Bpt)O<t<T was studied in

[110] as the weak limit of a sequence of queues with superposition arrival processes.

The continuity of the supremum map in the space D[0, T] under the J, topology (see

[113] Theorem 13.4.1), combined with Lemma 30, implies that



Corollary 4. For any fixed T > 0, {n-2 SUPO<t<T (A,(t) - 7N(t)),n > 1}

converges weakly to the r.v. SUPO<t<T (A(t) - D(t) - Bpt).

4.6.2 Preliminary large deviation results

Before proceeding with the remaining proofs, we will need to establish some results

from the theory of large deviations of Gaussian processes and their suprema. We

note that the relationship between the suprema of Gaussian processes and queueing

systems is well known (see [36]). We will rely heavily on the following theorem, proven

in Section 3.1 of [36].

Theorem 18. Suppose Z(t) is a Gaussian process with stationary increments s.t.

E[Z(t)] = 0 for all t > 0, and limt_, 0 t 1 E[Z(t)] a' > 0. Then for any c > 0,

lim x-- log P(sup(Z(t) - ct) > x) ) 2c
x -+oo DO ;>o ) 2c

It is also implicit from [36] (although we include a short proof) that

Theorem 19. Under the same assumptions as Theorem. 18, for any c > 0,

lim X-(I log sup P(Z(t) - ct > X) = 2-

Proof. That lim supxa, x-1 log sup o P(Z(t) - ct > x) < -- L follows iminedi-

ately from Theorem 18 and the fact that supt>o P(Z(t) - ct > x) < P (supt>o (Z(t)-

ct) > x .

Letting t - , we find that

sup P (Z(t) - ct > x) ;> P(Z(-X) - x > x). (4.15)
t>O c
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Let G denote a normally distributed r.v. with mean 0 and variance 1. Then since

Z(1) is normally distributed with mean zero, it follows from (4.15) that

suip P (Z (t) - ct > x) > P G > 2xE i2 [,Z2(X)] .(4.16)
toc /

We use the following identity from [1] Equation 7.1.13. Namely, for all y > 0,

P(G > y) > (y + (y2 + 4) (-)- exp(--).
7F 2

Thus
y2

IP(G > y) > exp(-- y) for all sufficiently large y. (4.17)

By assumption, limt, t-'E[Z2 (t)] = 2 > 0, and thus lim2, 2xE- [Z 2 ]
It thus follows from (4.16) and (4.17) that for all sufficiently large x,

X' log sup P(Z(t) - ct > x) > -2xE-1[Z2(±)] - 2E- [Z2-

Since linx ()-1E[Z 2()] U2 , it follows that lim inf 1 +. x- log sup I (Z(t)-

ct > x)) > - ', concluding the proof of the theorem.

In light of Theorem 18, Theorem 19 can be interpreted as saying that such a pro-

cess is 'most likelv to exceed a given value x at a particular time (roughly (), and

much less likely to exceed that value at any other time (see the discussion in [36]).

We note that the duality of Theorems 18 - 19 coincides with the duality exhibited by

our upper and lower bounds (Theorems 13 - 14) - a relationship that we will exploit

to prove our large deviation results.

We are now in a position to apply Theorems 18 - 19 to A(t) - D(t).
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Corollary 5.

(i) lim", 0 x-1 log P ( supt O (A(t) - D(t) - Byt) > x -2B(ci + ciS 1 ;

(ii) limx"' x-1 log (supt>o P (A(t) - D(t) - Byt > x)) -2B(c2 + cS) 1 .

Proof. That A(t) - D(t) is a zero-mean Gaussian process with stationary increments

follows from definitions, the independence of A(t) and D(t), and the fact that both

A(t) and N1 (t) have stationary increments. Note that

E[(A(t) - D(1)) 2] = pc2t + E[(N 1 (t) - pt) 2]. (4.18)

We claim that limt, t-1E[(N 1 (t)-pt)2 ] = pci. Indeed, let Gs denote a normally

distributed r.v. with mean 0 and variance pc2. It follows from the well-known Ceii-

tral Limit Theorem for renewal processes (see [93] Theorem 3.3.5), and the fact that

h(z) A z2 is a continuous function, that the sequence of r.v.s { t-2 (Ni(t) -pt)), t >

1} converges weakly to G2. Recall that E[S 2+<] < oc for some E > 0 by the To as-

sumptions. Thus it follows from Lemma 29 that the sequence of r.v.s { (t 1 (N1 (t) -

pt) , t > 1} is uniformly integrable. It follows that limt,, t- 1E[(N1(t) - pt) 2]

2, uniformintegrability plus weak convergence implies convergence of mo-
IICS, since inerbliy wanipiso

ments.

Combining with (4.18), we find that limjs, t-'E[(A(t) -D(t)) 2] = p (c +c ) > 0

by the To assumptions. It follows that A(t) - D(t) satisfies the conditions needed to

apply Theorems 18 - 19, from which the corollary follows. D
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4.6.3 Proof of Theorem 12

Before completing the proofs of our main results, it will be useful to prove a strength-

ening of Theorem 11. Namely,

Lemma 31. For all x > 0,

lim lim sup Pn
T--oo u

sup
t>T

n
(A,(t)-ZNi (t)) >

Proof. Since E[A 2+,], E[S 2+] < 00 for some c > 0 by the To assumptions, we may fix

some r > 2 s.t. E[Ar], E[S' < oo. Note that since x > 0, P (n-2 supt T (An(t) -

is at most IP (n supt>T (An(t) - 0). By a simple

union bound, P (n supt>T (An(t) - Z?1 N (t)) >

P n-(An(T) - N2(T)) > -

/ / n
+P sup n- (An(t) -Z NJ(t))

W t>T ( i

We now bound (4.20), which equals

-n (An(T)

E" Ni(t)) >

0) is at most

(4.20)

-ZNi(T)))

B p
n~ 2 N, - npT) - BpT >

An(T) - AnpTj + I Ni(T) - npTI > nI2 pT by the tri. ineq.

< 2 (E |An(T) - ApT|'] + E (| Ni(T) - npT|i] n-5 2 pT ~(4 22)

by M\arkov's inequality and (4.8).

W.l.o.g. assuming nT > AnT > 1, it follows from Lemma 29 (applied with n 1),
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x) = 0. (4.19)

B> - P 21)
2 T)

( n-I ( An (T) - Ap-T ) -

< P |



and the fact that A,(T) has the same distribution as A(AT), that there exists CA,, -

supt>1 t- 2E [|A(t)-p|]<00st

E[IA,(T) - A,\npT|'] < CA,,,r(AnT); < C A,r(nT)12. (4.23)

Since nT > 1 by assumption, it follows from Lemma 29 that there exist Cs,, < oo s.t.

n

(4.24)
E 1Ni(T) - npT|r] < Cs,,(nT)1 .

It follows from (4.23) and (4.24) that (4.22) is at most

2r-(CA,r + Cs,,Bp) rT-
2

Thus we find that

lim lim sup
T-+ oo 71-

P r (An(T) - 2 1 (T)) > - pT = 0.

We now bound (4.21), which equals P n sUpt.o (A,(t) - E" Ni(t))

stationary increments. But as our proof of Theorem 11 demonstrates tightness of

{n su p t>o (An(t) - E= N(t)), n > 1}, it follows that

lim lim sup P n-(ri sup (A,(t1)
T-+-oo unooc \ t>O

Using (4.26) to bound (4.21), we find that

lim lim sup P sup
T-*oc n-+oo t>T

- (n

n~~~~~i 2(,(t i ()-O
(A, (T)-Z

(4.25)

> BpT)

BT)
-ZNi(t)) > (4.26)

Ni (T)) ) > pT = 0.

(4.27)



Combining (4.25) and (4.27) completes the proof. l

We now complete the proof of Theorem 12.

Proof. We first prove the upper bound. By Lemma 31, for any x > 0, we may

construct a strictly increasing sequence of integers {T2,k-1, k > 1} s.t. for all k > 1,

I
lim sup P n-i

n-+oc
sup (A, (t)

t T _1
- Ni (t))

It follows that for all x > 0 and k > 1,

limsup Pnsup(An(t)

un-oo \ t>0

< lim sup P n-
n o- \

sup
ODt<Tx k

-ZNi(t)) >

(An(t) -Ni (t)) >

By the Portmanteau Theorem (see [7]), a sequence of r.v.s {Xn} converges weakly to

the r.v. X0, iff for all closed subsets C of R, lim sup,,o P(Xn E C) < P(Xoo E C)

iff for all open subsets 0 of R, P(Xoo E 0) lim infano P(Xn E 0). It follows from

(4.28) and Corollary 4 that for all x > 0 and k > 1,

lim sup P n

< P sup
\n - t* T

2 sup
t>o

(A,,(t) - E N2(t)) >

(.A(t) - D(t) - Bpt) >

Note that the sequence of events sup
&Ot<T..k--

(A(t) - D(t) - Bpt) > x,

122

> X < k-1

(4.28)

x + k- 1 .

(4.29)

k > 1 is

x) + k-1.



monotone in k. It follows that

(A(t) - D(t) - Bytd) > X) =P sup (A(t) - D(t)
\t>0

- Bpt) > X .

It then follows from (4.29), by letting k -+ 00, that for all x > 0,

/ n

lim sup P n sup (A,(t) - Ni(t))
n-+o tO

From Theorem 13 and (4.30) we have

> x < P (sup (A(t)
t>0

- D(t) - Bpt) >

(4.30)

lim sup X- 'log
x-*oo

< limsupx- logP
x-+oo

- lim sup (I
xdoo x

lim sup P (Qn(oo)n-4oo

sup (A(t) - D(t) - E
t>o

- 1)- log P sup (A(
(t>0

= -2B(c2 + c2)- by Corollary 5.(i),

which completes the proof of the upper bound.

We now complete the proof of Theorem 12 by demonstrating that if A is an

exponentially distributed r.v., then

lim inf x-log (lim inf
X-*00 

fl*O

> -2B(c2 + C2)~I

Let Zu, denote a Poisson r.v. with mean A. It follows from Theorem 14 that for all
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lim P sup
k---oo (0< t<T 1 -

> x - I)

- 1)

(4.31)

- n)+

t) - D(t) - Byt) > x

2 > XP ( Q"(oo) - n)+n



x > 0, liminfno P ((Qn(oo) - n)+n-2 > x)

> n) lim inf su P(An (t) - (4.32)Ni(t) > x

Recall that G is a normally distributed r.v. with mean 0 and variance 1. Thus by

the Central Limit Theorem,

(4.33)lim P(Z, > n) = P(G > B).

Note that for any fixed t, A(t) - D(t) - Byt is a non-degenerate Gaussian r.v., and

every x E R is a continuity point of the distribution of any non-degenerate Gaussian

r.v. It follows from Lemma 30 and the definition of weak convergence that for any

fixed t > 0 and all x > 0,

n

lim P(An (t) - (t N(t) > x) = IP(A(t) - D(t) - Bpt > x).
i=1

Thus for any fixed x > 0 and s ;> 0,

lim inf sup P(An(t) - N1(t) > x)
n-- co t>o

> lim inf P(An(s) - Z Ni(s) > x)
fl--400

P(A(s) - D(s) - Bis > x). (4.34)

By fixing x > 0 and taking the supremurn over all s > 0 in (4.34), we find that for

all x > 0,

lim inf sup P(An(t) -
n-o00 ;>

Ni(t) > x) > sup P(A(t) - D(t) - Bpt > x).
t>0
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is at least

lim inf P(Z,



Combining (4.32), (4.33), and (4.35), we find that the l.h.s. of (4.32) is at least

P(G > B) sup P(A(t) - D(t) - Bpt > x). (4.36)
t>o

(4.31) then follows from (4.36) and Corollary 5.ii. Combining (4.31) with the first

part of Theorem 12, which we have already proven, completes the proof. O1

4.7 Application to Reed's Weak Limit

In [91], J. Reed resolved the long-standing open question, originally posed in [52], of

the tightness and weak convergence for the queue length of the transient GI/GI/n

queue in the H-W regime, for a restricted class of initial conditions. However, the as-

sociated weak limit is only described implicitly, as the solution to a certain stochastic

convolution equation (see [91]). Prior to this thesis, very little was understood about

this limiting process.

In this section we derive the first non-trivial bounds for the weak limit of the tran-

sient GI/GI/n queue in the H-W regime. Let Q' denote the FCFS G/GIl/n queue

with inter-arrival times drawn i.i.d. distributed as AA,. processing times drawn

i.i.d. distributed as S, and the following initial conditions. For i 1,. . . , n, there is a

single job initially being processed on server i, and the set of initial processing times

of these n initial jobs is drawn i.i.d. distributed as R(S); there are zero jobs waiting

in queue, and the first inter-arrival time is distributed as R(AAl'), independent of

the initial processing times of those jobs initially in system. Let Qi(t) denote the

unique strong solution to the stochastic convolution equation given in [91] Equation

1.1. Then letting Qi(t) denote the number in system at time t in Q, it is proven in

[91] that

Theorem 20. For all T E (0, oc). the sequence of stochastic processes {n 2(Q(t) -
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n)+<<xn > 1} converges weakly to Q1(t)o<t<T in the space D[0,T] under the J1

topology.

We now apply Theorem 13 to derive the first non-trivial bounds for Q1 (t), proving

that

Theorem 21. For all x > 0 and t > 0,

P(Q 1 (t) > x) <P ( sup (A(s) - D(s) - Bys) >
O<s<t

Proof. Note that we may let the arrival process to Q" be An(t). Thus by Theorem

13, for all x > 0 and t > 0,

I
< liminf P n

n --oo (

< limsup P ni 2
n -+-oo

sup (An(s)
O<s<t

Ni(s)) > x
-n

n

sup (An(s) -ZNi(s)) >
O<s<t

< P( sup (A(s) - D(s) - Bps) >
O<s<t

(4.37)

by the Portmanteau Theorem. Again applying the Portmanteau Theorem, it follows

from Theorem 20 that for all x > 0,

- n)+> X ). (4.38)

Combining (4.37) and (4.38) completes the proof.

Theorem 21 implies that Qi (t) is distributionally bounded over time, and thus in

a sense stable. In particular, for all t > 0, Qi(t) is stochastically dominated by the

r.v. supt0 (A(t) - D(t) - BiL). Prior to this thesis, the tightness of Q1 (t) as t -- 0

was not known.

X).

lim inf P n- 2 (Q" (t) - n)+ >n- oo

P($1 (t) > x) < lim inf P n-2 (Q()



4.8 Conclusion and Open Questions

In this chapter, we studied the FCFS GI/GI/N queue in the Halfin-Whitt regime. We

proved that under minor technical conditions the associated sequence of steady-state

queue length distributions, normalized by n, is tight. We derived an upper bound

for the large deviation exponent of the limiting steady-state queue length matching

that conjectured in [43], and proved a matching lower bound for the case of Poisson

arrivals. We also derived the first non-trivial bounds for the stochastic process stud-

ied in [91].

Our main proof technique was the derivation of new and simple bounds for the

FCFS GJ/GI/n queue. Our bounds are of a structural nature, hold for all n and

all times t > 0, and have intuitive closed-form representations as the suprema of

certain natural processes which converge weakly to Gaussian processes. Our upper

and lower bounds also exhibit a certain duality relationship, and exemplify a general

methodology which may be useful for analyzing a variety of queueing systems.

This work leaves many interesting directions for future research. One pressing

question is whether or not {n-1 (Q"(oC) - n)+, n1 > 1} has a unique weak limit. Sim-

ilarly, although Corollary 21 shows that the process Q1 (t) is distributionally bounded

over time, it is unknown whether Qi(t) has a well-defined steady-state distribution.

Furthermore, should {n-2 (Q" (oo) - n) +, 1} have a unique weak limit and Q1(t)

have a well-defined steady-state, must the two coincide? We note that similar ques-

tions (on the order of fluid, as opposed to diffusion, scaling) were investigated in [61],

where the authors also handle systems with abandonments.

It is an open challenge to extend our techniques to more general models. For

example, it would be interesting to generalize our lower bounds to non-Poisson ar-

rival processes, as was done in [43) for the special case of processing times with

finite support. It would also be interesting to generalize our bounds to systems with
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abandonments (Gl/GIl/n + GI). This setting is practically important, as the main

application of the H-W regime has been to the study of call-centers, for which cus-

tomer abandonments are an important modeling component [3]. For some interesting

steps along these lines the reader is referred to the recent paper [28].

4.9 Appendix

4.9.1 Proof of Theorem 15

It is proven in [100] Theorem 1 (given in the notation of [100]) that

Theorem 22. Suppose that for all sufficiently large n. {(",, i > 1} is a stationary,

countably infinite sequence of r.v. Let a, , E[(,, 1], and Wn,k = Z= 1 Cn,j. Further

assume that an < 0, limnio an = 0, and there exist C1, C2 < oc and e > 0 s.t. for all

sufficiently large n.

(i) E[|Wfk - kan|2+<I < C1k 1+5 for all k > 1;

(ii) P(maxi=1,...,k(Wn,i - ian) > x) < C2E[IWz,k- kan I2+e IX-(2+c) for all k > 1 and

x > 0;

(iii) P(lilk_,. Wok = -- oo) 1.

Then {Ia| Isupk>O Wnk, n > 1} is tight.

With Theorem 22 in hand, we now complete the proof of Theorem 15.

Proof of Theorem 15. The proof follows almost exactly as the proof of Theorem 22

given in [100), and we now explicitly comment on precisely where the proof must

be changed superficially so as to carry through under the slightly different set of

assumptions of Theorem 15. First off, nowhere in the proof of Theorem 22 given in



[100] is assumption (iii) of Theorem 22 used, and thus that assumption is extraneous

and may be removed. The only other difference between the set of assumptions

for Theorem 22 and the set of assumptions for Theorem 15 is that assumption (ii) of

Theorem 22 is replaced by assumption (ii) of Theorem 15. We now show that Theorem

22 holds under this change in assumptions. As in [100], let x(an, k) x + 2k anI.

Then the only place where assumption (ii) of Theorem 22 is used is between Equations

5 and 6, where this assumption is required to demonstrate that

P(W,2k- 2kan> ±x(an, k)) + P( max (Z (,j+2k - ian) > -x(an M)9)
2 iO,..2 jl2

< (1 + C2)C12 2+<2k(1+ )(x(an, k)) (+ 4.40)

We now prove that assumption (ii) of Theorem 15 is sufficient to derive (4.40). In

particular, the first summand of (4.39) is at most

E[jWn,2 k - 2 1anI2 +<] ( x(a, k))- 2 E+ by Markov's inequality

2+ k1+10 k)\-( 2+)
< C12 2+<2k(+)(x(a2, > by assumption (i) of Theorem 15.(4.41)

By the stationarity of { i ;> 1}, the second summand of (4.39) equals

P( max (W,, - ian) > -x(an, k))
i=o,...,2k 2

2+ kl+ ) -2+,)
< C2222+)(x(a,, k))+ by assumption (ii) of Theorem 15.4.42)

Since we may w.l.o.g. take C1,I C 2 > 1, it follows that C1 + C2 < (1+ C 2 )C 1 , and thus

(4.40) follows from (4.41) and (4.42). The theorem follows from the proof of Theorem

22 given in [100]. LI
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4.9.2 Proof of Lemma 29

We note that the special case r = 2 is treated in [110]. Before proceeding with

the proof of Lemma 29, it will be useful to prove three auxiliary results. The first

treats the special case n = 1, > > 1 for ordinary (as opposed to equilibrium) renewal

processes, and is proven in Theorem 1 of [21].

Theorem 23. Suppose Z(t) is an ordinary renewal process with renewal distribu-

tion X s.t. E[X] = p-1 E (0,oo), and E[X'] < oo for some r > 2. Then

supt>1 t-1IE[IZ(t) - pt|r] < oo.

Second, we prove a lemma treating the special case n = 1, t > 1 for equilibrium

renewal processes.

Lemma 32. Under the same definitions and assumptions as Lemma 29, for each

r > 2, there exists C.x.r < oc (depending only on X and r) s.t. for all t > 1.

E[IZ[(t) - pt|r] < Cxt2.

Proof. Let Xe denote the first renewal interval in Ze (t), and fxe its density function,

whose existence is guaranteed by (4.1). Observe that we may construct Zf(t) and

an ordinary renewal process Z(t) (also with renewal distribution X) on the same

probability space so that for all t > 0. Zf(t) I(X < t) + Z((t - XC)+), with Z(t)

independent of X'. Thus

ZCtt) - p-I ZW - XC)+) - p(t - X) + I(Xe < t) - p(t - (t - XC)+

Fixing some t > 1, it follows that E[IZ(t) - pt|'] is at most

2- 1E[\Z((t - XC)+) - p(t- Xe)+r] (4.43)

+2rlE[|1(Xc < t) - p(t - (t - Xc)+)Ir] by the tri. ineq. and (4.814.44)

130



We now bound the term E[IZ((t - Xe)+) -(t - Xe)+ I'] appearing in (4.43), which

equals

J [Z(t-s)-p-(t-s)|r].fxe(,s)ds+ t E [|Z(t-s)-p-(t-s)|']fx-e(s)ds. (4.45)

Let C', A sup> t~5E[IZ(t) - pt|r]. Theorem 23 implies that the first summand of

(4.45) is at most

(C's,(t - s) I) fxe(s)ds it-1
(C'st! )fxe (s)ds

= C'>,tjP(Xe < t - 1).

Since t - s < 1 implies IZ(t - s) - p,(t - s)jr < IZ(1) + pr, the second summand of

(4.45) is at most E [IZ(1) + pIr]P(Xe c [t - 1, t]). Combining our bounds for (4.45),

we find that (4.43) is at most

(4.46)

We now bound (4.44), which is at most

22r-2 (1 + E [p(

= 22r-2 1 + pr(

(t - Xe)+) r]

f S'fxe (s)ds +

It follows from (4.1) and M\arkov's inequality that for all s > 0, fxe (s) = pP(X >

s) < pE[X']s-r. Thus the term t srfxe (s)ds + Atoo tr fxe (s)ds appearing in (4.47) is

I t-1

by (4.8)

tfxe (s) ds) (4.47)

2'-IE [|Z(1) + p|,'] + 2r-1C' t 1.



at most

s'(pE[X']s~')ds + tr (pE[X]s-r)ds = pE[Xr] ds + tr s-'ds
0 t 0 Jt

= piE[Xr] (t + tr(r - 1)-tlr

= iE[X](1 +(r -1)-)t. (4.48)

Using (4.46) to bound (4.43) and (4.48) to bound (4.47) and (4.44), we find that

E[|Ze(t) - pt|r] is at most

2r-1E[IZ(1) + p'r] + 22Ct + 22r-2 + 22 r-21 r+1E[Xr)(1 + (r - 1)- 1 )t. (4.49)

Noting that E[fZ(1) + p|r] < oo since any renewal process, evaluated at any fixed

time, has finite moments of all orders (see [86 p. 155), E[Xr] < oc by assumption,

and t < t2 since t > 1 and 2 > 1 the lemma follows from (4.49). D

Third, we prove a lemma which will be useful in handling the case t < 2. We

note that in this auxiliary lemma, the upper bound is of the form (nt), as opposed

to (nt)2.

Lemma 33. Under the same definitions and assumptions as Lemma 29. there exists

Cxr < oo (depending only on X and r) s.t. for all n > 1. and t E [0, 2].

n

E (| Ze(t) - pnt| < Cx,(1 + (nt)r). (4.50)
i=1

Proof. Note that the l.h.s. of (4.50) is at most

nn

E [1 Z (t) + pnltIr] < 2r1 (IE[( Z (t))] + (Int)') by (4.8). (4.51)
i=1 i
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We now bound the term E[( Et- Zi(t))'] appearing in (4.51). Let {Z 2 (t)} denote

a countably infinite sequence of i.i.d. ordinary renewal processes with renewal dis-

tribution X. Let us fix some I E [0, 2] and n > 1, and let {Bi} denote a countably

infinite sequence of i.i.d. Bernoulli r.v. s.t P(B, = 1) = p - P(R(X) < t). Note that

we may construct {Zc(t)}, {Zi(t)}, {Bi} on the same probability space so that w.p.1

Ze(t) < Bj(1 + Zi(t)) for all i > 1, with {Zi(t)}, {Bi} mutually independent. Letting

Al E Bi, it follows that

n , A \Fri

E [(E Zie(t)) ] <E [ E (1+ Zi(t)) ]. (4.52)
i=1i=1

Let Z+ denote the set of non-negative integers. Note that for any positive integer k,

E [ (1 + Z-() ] E (1 + Z,(t))j]
i=11 ji . E Z+i=

ji+ .+jp,=Fri

k

13 E [(I + Zi(t))j] (4.53)

ji+...+jkjfrl

For any setting of {ji, i = 1, .. ., k} in the r.h.s. of (4.53), at most [r] of the ji

are strictly positive, and each ji is at most [ri. It follows that the term [J E[(1+

Zi(t)) ] appearing in the r.h.s. of (4.53) is at most (E [(i+Z 1 (t)) Fr] 1) , irregardless

of the particular setting of {jiI = 1..k}. As there are a total of kirl distinct

feasible configurations for {ji, i 1, . . , k} in the r.h.s. of (4.53), combining the
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above we find that for any non-negative integer k,

E[ (I + Zdit)) [r] rI k (lE (1 + Z1(t)) ]ri

< k Fri E[(1 + Z1(2)) ] since t < 2. (4.54)

Since any renewal process, evaluated at any fixed time, has finite moments of all orders

(see [86] p. 155), it follows that C1, Fri ( E[(1 + Zi(2))l] is a finite constant

depending only on X and Fri. Combining (4.52) and (4.54) with the independence

of M and { Zi (t) }, it follows from a simple conditioning argument that

n

E [( Ze(t)) r]< CI C i ,E [M Fi] (4.55)
i=1

We now bound the term E [Al Fri] appearing in (4.55). Noting that Ml is a binomial dis-

tribution with parameters n and p, it follows from [92] Equation 3.3 that there exist fi-

nite constants COri, CI Fri, C2, .. ., Cr,[r, independent of n and p, s.t. E [AIl] -

SCk,F,1pk1 H=(n - j). Further noting that J'(n - j) < nk for all k ;>0

it follows that E[A'l] 5E |C rip). Letting C =1 maxi=o,...rr|Cia l, it

follows from (4.55) that

n Fri

i- (t Fi-0CE[( Zit)]5C C (np)'
i=1 i=o

< C[r] C2 I ([r] + 1)(1 + np) . (4.56)

Recall that for any non-negative r.v. Y, one has that E[Yr] < E[Yfr]T . Thus letting
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S it follows from (4.56) that

n

E (Z(t))] (4.57)

Furthermore, it follows from (4.1) that p = t fo IP(X > y)dy < pt. Combining with

(4.57), we find that

(4.58)

Plugging (4.58) back into (4.51), it follows that the l.h.s. of (4.50) is at most

2 (Cr(1 + /t) + + 1)(1 + ptnt)r.

Noting that (1+prnt)r < 2'(1+(Ipt)r) by (4.8), and 1+(pnt)r < (1+p)r (1+(nt)r),

completes the proof.

With the above auxiliary results in hand, we now complete the proof of Lemma

29.

Proof of Lemma 29. We proceed by a case analysis. First, suppose t < . Then we

also have t < 2, and by Lemma 33 there exists C, < oc s.t. the l.h.s. of (4.9) is at

most

C,(1 + (n)") < C1,7(1+ 2r)
2

since t < - implies nt < 2.
n

Letting Al1 Cl,(1 + 2), it follows that the 1.h.s. of (4.9) is at most M1 <

Al1 (1 + (nt) i), completing the proof for the case t < j

Second, suppose t E [j, 2]. Let ni(t) ± LntJ. Noting that t ; implies ni(t) > 0.
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in this case we may define n2 (t) = [j. Then the l.h.s. of (4.9) equals

n1 (t) n2 (t)

E41 [| >3 (ZM-1)n(t)T(L) - pt) +
m=1 1=1

(zi(t) - pt) I']
1=n1 (t)n 2 (t)+1

n i (t) n2(t)

2- 1IE [ Y>3 (Z(m 1)n2(t)+l(t) - pt)|n]
m=1 l=1

+2'-E[ )7 (Zf (t) - Pt)|Ir]

l=n1 (t)n2(t)+1

(4.59)

by the tri. ineq. and (4.8)(4.60)

We now bound (4.59). By Lemma 28, there exists Cr < 00 s.t. (4.59) is at most

n 2 (t)

2r- C,(n1(t))i E[| > (Z (t) - pt)|r]
i=1

+ (n 2 (t)t) )) by Lemma 33, since t < 2. (4.61)

We now bound the term tn 2 (t) appearing in (4.61). In particular,

t'n2 (t) nt)

S nt
- n Imt

nt
K t- (4.62)

But since t 2 imples nt > 2, and g(z) -_ is a decreasing function of z on (1, 00),

it follows from (4.62) that

tn 2 (t) < 2.

Since ni(t) < nt, it thus follows from (4.61) that (4.59) is at most

21-1C,C (1 + 2')(nt)2.
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We now bound (4.60). Note that the sum n(t)n 2 (t)+ Z(t) - t) appearing in

(4.60) is taken over n - ni(t)n2 (t) terms. Furthermore,

n - ni(t)n2 (t) =n - ni(t)[ ' ]
ni(t)

< n-n(t)(ni ) 1)

- ni(t).

As n1 (t) < nt, it thus follows from Lemma 28 that (4.60) is at most

2rlC(t) E[|Zi(t) - pt|r] < 2r-1Cr(nt)11E[(Ze(t) + pt)r]

K 2,lC,(nt)IE [(Zl(2) + 2p)'] since t < '.4.64)

Using (4.63) to bound (4.59) and (4.64) to bound (4.60) shows that the 1.h.s. of (4.9)

is at most

2C 2(1 2)(nt) + 2 C,.(nt) E [ (ZC(2) + 2p)] (4.65)

Let M 2 A 2r-CCr(1 + 2r) + 2'-1CrE[(Ze(2) + 2p)r]. It follows from (4.65) that

the 1.h.s. of (4.9) is at most M2 (rnt)i M 2 (1 + (nt)2), completing the proof for the

case t [, 2].

Finally, suppose t > 2. In this case, it follows from Lemma 28 that the l.h.s.

of (4.9) is at most Crn2E[IZ[(t) - pt|r]. Let C!,, A sup 2 t- E[IZC(t) - pt|'.

Then it follows from Lemma 32 that C2,, < oc, and the 1.h.s. of (4.9) is at most

CrC',2(nt). Letting M 3 A CrClr, it follows that the 1.h.s. of (4.9) is at most

A 3 (nt)2 < 1 3 (1 + (nt)1), completing the proof for the case t > 2.
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As this treats all cases, we can complete the proof of the lemma by letting

M14 = max (Ml1 , MA2, MI3 ), and noting that for all n > 1 and t > 0, the 1.h.s. of

(4.9) is at most M4(1 + (nt)2). I
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Chapter 5

Probability of Delay for the

Steady-state GI/GI/n Queue in

the Halfin-Whitt Regime

5.1 Introduction and Literature Review

Recall from Sections 1.3 and 4.1 that the H-W regime was formally introduced by

Halfin and Whitt [52], who studied the GI/M/n system (for large n) when the traffic

intensity scales like 1 - Bn-2 for some strictly positive B. As described in [52],[45],

an important motivation for the H-W regime are applications in which the system

designer wishes some non-trivial fraction of all jobs to have to wait for service, where

this fraction should be bounded away from both zero and unity even as the system

increases in size. Furthermore, this steady-state probability of delay often appears

in objective functions used to capture the quality-efficiency trade-off in the H-W

regime [10],[76]. The steady-state probability of delay for exponentially distributed

processing times was computed explicitly by Halfin and Whitt in [52], and an explicit
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formula is also known for the case of deterministic processing times [60]. Gamarnik

and Momcilovic give an implicit description (in terms of a certain Markov chain)

of the steady-state probability of delay for the case of processing times with finite

support, and prove that this probability lies strictly in (0, 1), in [43]. However, it

seems that essentially nothing was known about this important quantity for more

general processing time distributions prior to this thesis. Furthermore, other than

for the special cases of deterministic [60] or exponentially distributed [52] processing

times, it seems that little was known about the qualitative behavior and scaling of

this probability, beyond its lying strictly in (0, 1) for the case of processing times with

finite support [43].

Another question of interest in the analysis of parallel server queues in the H-W

regime is large deviations behavior, i.e. the probability of certain rare events. Recall

that we proved several results along these lines in Chapter 4, and that this quantity

had been studied previously be several authors [43],[52],[60]. However, other than

for the special case of exponentially distributed [52] and deterministic [60] processing

times, all of these results had been about the probability of seeing an exceptionally

large number in system, as opposed to seeing an exceptionally small number in sys-

tem, i.e. an exceptionally large number of idle servers.

In this chapter we prove the first qualitative results about the steady-state prob-

ability of delay for generally distributed processing times. In particular, under very

minor technical conditions, we derive bounds on this probability as B --+ oc and

B -* 0 for fixed inter-arrival and processing time distributions. As we will see, it

follows from known results for the case of exponentially distributed inter-arrival or

processing times that our bounds are, in a sense, tight. We also revisit the question

of large deviations for the steady-state GI/GI/n queue in the H-W regime, but now

examine the probability that the steady-state number of idle servers exceeds some

large value x, deriving bounds on this probability as x -+ oc, which are again tight
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in an appropriate sense.

As in Chapter 4, our main proof technique is the derivation of new and simple

bounds for the FCFS GI/GI/n queue. Our bounds are of a structural nature, hold

for all n and all times t > 0, and have intuitive closed-form representations as the

suprema of certain natural processes which converge weakly to Gaussian processes.

5.1.1 Outline of chapter

The rest of the chapter proceeds as follows. In Section 5.2, we present our main

results. In Section 5.3, we establish our general-purpose upper bounds for the queue

length in a properly initialized FCFS GI/GI/n queue. In Section 5.4, we prove an

asymptotic version of our upper bound in the H-W regime. In Section 5.5, we prove

our bounds on the steady-state probability of delay as B -+ oc. In Section 5.6, we

prove our bounds on the steady-state probability of delay as B -+ 0. In Section 5.7, we

prove our bounds on the large deviations behavior of the steady-state number of idle

servers. In Section 5.8, we compare to previous results from the literature, which show

that our bounds are tight in an appropriate sense. In Section 5.9 we summarize our

main results and comment on directions for future research. We include a technical

appendix in Section 5.10.

5.2 Main Results

As in Chapter 4, An,B n - Bn2, and Q is the First-Come-First-Serve (FCFS)

GI/G/n queue with inter-arrival times drawn i.i.d. distributed as AA-.1 and pro-

cessing times drawn i.i.d. distributed as S (initial conditions will be specified later).

Suppose that E[A] = pA < oE[S] =s < oo, and P(A = 0) = P(S = 0) = 0.

Recall that a2 and o, denote the variances of A and S. respectively. and c 2 and

141



c' denote the squared coefficients of variation (s.c.v.) of A and S, respectively. All

processes should be assumed right-continuous with left limits (r.c.l.l.) unless stated

otherwise. All empty summations should be evaluated as zero, and all empty prod-

ucts should be evaluated as one.

Recall that in Section 4.2 we defined two sets of assumptions, the H-W assump-

tions and the To assumptions, for A and S. The H-W assumptions ensured that

{Q, n > 1} was in the H-W regime. The To assumptions were a set of additional

minor technical conditions. In this chapter, we will again refer to these assumptions,

and refer the reader to Section 4.2 for details. For clarity of exposition, statements

of (in)equality w.p.1 are not distinguished from statements of (in)equality.

5.2.1 Main results

We now state our main results. We begin by stating our bound on the steady-state

probability of delay as B -* o.

Theorem 24. For any fixed A and S which satisfy the H - W and To assumptions.

lim sup B 2 log lim sup P(Q' (oc) > n) < 0.
B-+oon- oo

In words, Theorem 24 states that there exists e > 0, depending only on A and S,

s.t. the limiting steady-state probability of delay is bounded from above by exp ( -
e1B 2) as B - oc. We now give our bounds on the steady-state probability of delay

as B -- 0.

Theorem 25. For any fixed A and S which satisfy the H - WV and To assumptions.

s.t. in addition E[S3] < oc and ci > 0.

lim inf B-' lim inf P(Q" (oc) < n) > 0.
B-+O n o B
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In words, Theorem 24 states that there exists c > 0, depending only on A and S,

s.t. the limiting steady-state probability that a job does not have to wait for service,

i.e. no delay, is bounded from below by eB as B -+ 0. Equivalently, the limiting

steady-state probability of delay is bounded from above by 1 - eB as B -* 0. We

note that this result is somewhat surprising, since in light of Theorem 24, one might

expect this probability to scale as B 2 as B -* 0, since 1 - exp(-eB2 ) behaves like

cB 2 as B - 0.

We now state our bounds on the large deviations behavior for the number of idle

servers.

Theorem 26. For any fixed A and S which satisfy the H - W and To assumptions,

s.t. in addition c2 > 0, and any fixed B > 0,

lim inf x-2 (liminflPj(Q"(oo) - n)n-2 < -X > -00.

In words, Theorem 26 states that there exists c > 0, depending only on A, S, and

B, s.t. the tail of the limiting steady-state number of idle servers is bounded from

below by exp ( - ex2) as x - oo.

In Section 5.8, we will show that our results give the correct scaling for the case

of exponentially distributed inter-arrival or processing times. We note that our re-

sults can not be derived using naive infinite-server lower bounds, as in all cases our

inequalities point in the other direction. Also, as in Chapter 4, our results translate

into bounds for any weak limit of the sequence {(Q"(oo) - n)+ n }.

5.3 Upper Bound

In this section, we prove general upper bounds for the FCFS Gl/GI/n queue, when

properly initialized. The bounds are valid for all finite n, and work in both the
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transient and steady-state (when it exists) regimes. Although we will later customize

these bounds to the H-W regime to prove our main results, we note that the bounds

are in no way limited to that regime. Recall that for a non-negative r.v. X with finite

mean E[X] > 0, R(X) denotes a r.v. distributed as the residual life distribution of X;

see (4.1) for details. Recall that associated with a non-negative r.v. X, an equilibrium

renewal process with renewal distribution X is a counting process in which the first

inter-event time is distributed as R(X), and all subsequent inter-event times are drawn

i.i.d. distributed as X; an ordinary renewal process with renewal distribution X is

a counting process in which all inter-event times are drawn i.i.d. distributed as X.

As in Chapter 4, let {Ni(t), i = 1, ... , n} denote a set of n i.i.d. equilibrium renewal

processes with renewal distribution S. Let A(t) denote an independent equilibrium

renewal process with renewal distribution A. For s E R+, let V (s) denote the

remaining time (at time s) until the first renewal to occur after time s in process

Ni(t). i = 1,...,n. Let Vii(s) denote the length of the (Ni(s)+ j)th renewal interval

in process Ni(t), j > 2, i = 1,..., n. Namely, V4(s) is the length of the (j - 1)th

renewal interval to be initiated in process Ni(t) after time s. Similarly, let Ul(s)

denote the remaining time (at time s) until the first renewal to occur after time s

in process A(t), and Uj(s) denote the length of the (A(s) + j)th renewal interval in

process A(t), j 2 2. For x E R+, let Ax(t) A A(x, x + t), dAx(t) A A'(t) - Ax(t-),

and Ax(s, t) A Ax(t) - Ax(s). Let N[(t) A Ni(x, x + t), dN[(t) A Nf(t) -NNx(t

N7 (s, t) Ni (t) - Nf (s), i = 1, . n. For z E Z+ s.t. z < n, let T 0 - 0, and

let {Tffk, k > 1} denote the sequence of event times in the pooled renewal process

Ax(t) + E , Nf (t). For y E R+, let

z

#(x, y, z) sup (A(y -s,y) - E Ni(y -s,y)).
O<s<y
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Let Vi A V(0), and UiA U(0), i1, ...,n, j 1.

For v (E R+, and r E Z+ s.t. r < n, let QV denote the FCFS GI/GI/rI queue

with inter-arrival times drawn i.i.d. distributed as A, processing times drawn i.i.d.

distributed as S, and the following initial conditions. For i .,.. ,rq, there is a

single job initially being processed on server i, with initial processing time V'('v).

There are <(0, u, n) jobs waiting in queue, and the first inter-arrival time is U1 (v).

We let Q'(t) denote the number in system in QV at time t. We also let Q A QO, and

Q(t) A QO(t). We now establish an upper bound for Q(t).

Theorem 27. For all t x > 0, P(Q(t) > x) is at most

inf P max 1 + sup (A(s) - N (s)),
6E[Ot] Os<
E[O.n]

sup (A(s) - N(s)) + >3Ni(6)
6<sti l +1

+ E (NJ(6) = 0) > x - r;1

i-11+1

If in addition Q(t) converges weakly to a steady-state distribution Q(oo) as t -+ 00,

then for all x > 0. P(Q(oo) > x) is at most

inf P max 1 + sup (A(t) - N (t))6>0 06t<6
rIe[0,n]

sup (A(t) -> N(t)) + N, (6)
t>6 i=

+ I N(6) = 0) > x
w ine+1

Recall that in Chapter 4 we examined a modified queueing system in which all
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servers were kept busy at all times by adding artificial arrivals whenever a server

would otherwise go idle. We will prove Theorem 27 by analyzing a different modified

queueing system, in which all servers are kept busy on some fixed time interval [0, t -o]

by adding artificial arrivals, at the end of that time interval servers q+1, ... , n break

down and cease functioning, and for the remaining time the remaining functional

servers 1,..., i are again kept busy by adding artificial arrivals. By simultaneously

altering the number of servers and keeping all servers busy, we will be able to derive

non-trivial bounds for both the steady-state probability of delay, and the probability

of there being many idle servers. We note that the upper bound of Chapter 4, namely

Theorem 13, can be recovered as a special case of Theorem 27, modulo an additional

"± 1" which appears in the statement of Theorem 27. Indeed, by setting 6 = 0 and

n, no servers break down during the time horizon [0, t], and all n servers are

kept busy on the entire time horizon [0, t), which is exactly the bounding system of

Chapter 4.

We begin by defining two auxiliary processes Al, (t) and Q" (t), where A" (t)

will become the arrival process to QV and we will later prove that Q",(t) equals

the number in system in QV at time t. Whenever there is no ambiguity, we use

the notations Tk, Q, A(t), and Q(t) as shorthand for Tr", Q,",, A (t), and Q(t)

respectively. We note that to prove Theorem 27, we must allow our servers to be

initialized at a general time o in the corresponding renewal processes, to capture the

dependencies between the remaining processing times of the jobs in service at time 7

(equivalently t - 6) and the number of jobs waiting in queue at time Y.

We now define the processes A(t) and Q(t) on [0, 'y) inductively over {Tk., k > 0}.

Let A(ro) T 0, Q(To) T 1 + >(0, v, n). Now suppose that for some k > 0, we have

defined A(t) and Q(t) for all t < rA, and Tk+1 K -y. We now define these processes

for t E (rk,Tk+1). For t E (rkTk+1), let A(t) A(Tk), and Q(t) A Q(Tk). Note

that dAv(Tk+1) + EZ7I dN[(Tk+1) = 1, since R(X) and R(A) are continuous r.v.s,
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P(A = 0) = P(S = 0) = 0, and A(t), {Ni(t), i = 1, ... , r} are mutually independent

and have stationary increments. We define

A(k)+1

A(Tk+i) A(Tk-) + 1

A(Tk)

Similarly, we define

Q(r) +1

Q(Tk+1) A Q(rk)

Q(Tk)-1

if dAv(Tk+1) - 1;

if E'= dN'(rk+1) = 1 and Q(rk) < r/;

otherwise (i.e. E7 dN'(Tk+1) 1 and Q(Tk) > r);

if dAv(rk+1) - 1;

if Ei dN,"(rk+1) = 1 and Q(rk) < -r;

otherwise (i.e. E", dN'(-rk+1) = 1 and Q(Tk) > rq);

Also, for k = A"(-y) + Ez N,"(y), namely the largest index s.t. rk < -y, we let

A(t) = A(Tk) for t E (rk,)y, and Q(t) - Q(Tk) for t E (Tk,]. Combining the above

completes our inductive definition of A(t) and Q(t) on [0, y], since limk_,ac Tk = 00.

We now define A(t) on (y,oo). For all t > y, dA(t) = dAv(t), namely the events in

the two processes coincide. It follows from our construction that both A(t) and Q(t)

are well-defined and r.c.l.l. on [0, -y), and A(t) is well-defined and r.c.l.l. on [0, oo).

We now construct the FCFS GIG1J/ queue Q using the auxiliary process 4(t),

and define Q(t) on ['y, oc). Q is defined to be the FCFS G/GJ/; queue with arrival

process A(t) and processing time distribution S, where the jth job assigned to server

i (after time 0) is assigned processing time VXK+ 1(v) for j > 1, , - 1., and jobs

are always assigned to the available server of least index. The initial conditions for

Q are s.t. for i 1, ... , r/, there is a single job initially being processed on server

i with initial processing time V/1(v), and there are #(0, v, n) jobs waiting in queue.

For t > -y, we define Q(t) to be the number in system in Q at time t. Note that on
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[-y, oc), Q operates like a 'normal' FCFS GJ/GI/rI queue.

We now analyze Q. The system is nearly identical to the bounding system consid-

ered in Chapter 4, the only change being that here we allow for more general initial

conditions, and restrict our analysis to the interval [0, 'J. The following lemma is

essentially identical to Chapter 4, Lemma 25. The proof follows nearly identically to

the proof of Lemma 25, and we refer the reader to Chapter 4, Section 4.3, Lemma 25

for details.

Lemma 34. For i = 1,...,. q, exactly one job departs from server i at each time

t E {z -1V i(v), j > 1} O,-y], and there are no other departures from server i on

[0, 'x]. Also, no server ever idles in Q on [0, -y], Q(t) equals the number in system in

Q at time t for all t < -, and for all k s.t. TFk <,

Q('rk) - r = nmax (0. Q(k-1) - 'q + dAv(rk) - dN,"(Tk . (5.1)

Note that it follows from Lemma 34 and our definition of Q(t) on [7, oc) that Q(t)
is r.c.l.l. on [0, oo), and

Corollary 6. Q(t) equals the number in system. in Q at time t for all t > 0.

We now 'unfold' recursion (5.1) to derive a simple one-dimensional random walk

representation for Q(t), t < 7. It follows from (5.1) and a straightforward induction

on {Tk, k > 0} that for all k s.t. Tk < y, Q(-rk) - ry equals

max m1ax (A"(rk- Tk) - >N'(k-, r Tk)),Q(0) - 1 + Av(T) - > N'(Tk.
(j [7-]i-I i=i
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As all jumps in Q(t) on [0, ] occur at times t E {-k, k > 1}, and are of size 1,

max (A"(Tk-j,k)- N,(Tk--j,Tk)) < 1+ max (Av (Tk-j,Tk)--ZN'(Tk-, Tk)).
jG[0,k-1] jE[O,k]

It follows that

Corollary 7. If Q(O) = rq, then

Q (-Y) -- r; =(V, -Y, r/).

In general,

Q(-Y) - r; max 1 + 4(v, y, rI), 0(0, v, n) + AV(-y) - NT(-)).

Before proceeding, it will be useful to prove a general comparison result for G/G/n

queues, which is very similar to Lemma 26 from Chapter 4. The key difference is that

here we allow for both general initial conditions and differing numbers of servers.

Recall that for an event {E}, J({E}) denotes the indicator function of {E}. Then

Lemma 35. Let Q' denote a FCFS GG/n' queue, and Q2 denote a FCFS GGn 2

queue, both with, finite, strictly positive inter-arrival and processing times,. s.t. n1 >

n2 . Let Q'(t) denote the number in system at time t in Q', and L' A Q'(0) - ni,

i {1, 2}. Fork {1,... , Li}, let T, equal zero, and S, denote the initial processing

time of the kth job initially waiting in queue in 9'. i E {1, 2}. For k > Li, let Tk1

denote the arrival time of the (k - C')th arrival (after time 0) to Q'. and S'. the

processing time assigned to that job, i G {1, 24. Further suppose that

(i) L' = L2 > 0, and we denote this common value by L. Also, S - S2 for

k E {1, .. L. That is,. the kth job initially waiting in queue in Q2 is assigned
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the same processing time as the kth job initially waiting in queue in Q1, k =

1,..., L. In addition, we let W denote the initial processing time of the job

initially being processed on server i in Q1, i E {1, ... , n1 }.

(ii) For each job J initially being processed in Q on a server whose index belongs

to the set {1, ... ,n2 }, there is a distinct corresponding job J' initially being

processed in Q2, s.t. the initial processing time of J in Q' equals the initial

processing time of J' in Q2.

(iii) {Tk, k > 1} is a subsequence of {Tk, k > 1}.

(iv) For all k > £, the job that arrives to Q2 at time Tk is assigned processing time

Si, the same processing time assigned to the job which arrives to Q1 at that

time.

Then for all t > 0.

Q1(t) < Q2(t) + ( I(Wi > t).
i=n2+1

Proof. Let Za(t) denote the number of jobs initially being processed in Q1, on servers

with index i < n 2, which are still in Q1 at time t. Let ZJ(t) denote the number of

jobs initially being processed in Q1, on servers with index i > n2 , which are still in

Q1 at time t. Let Z 2 (t) denote the number of jobs initially being processed in Q2 ,

which are still in Q2 at time t. Note that by (ii), ZI(t) = Z 2 (t) for all t > 0, and we

denote this common value by Z(t). Also, for all t > 0,

n]

Zb(1 = ( I(Wi > 0) (5.2)
i=n 2

+1

For k E {1 . }, let D' denote the time at which the kth job initially waiting in

queue in Q' departs from Q", i E { 1, 2}. For k > L. let D" denote the time at which
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the job that arrives to Qi at time Tk' departs from Qi, i E {1, 2}. We now prove by

induction that for k > 1, D 2> D', from which the lemma follows. Observe that for

all k > 1,

k-I

DI inf{t t > T, Z(t) + Z1(t) + EjI(D > t) < n' - 1} + S
j=i

k-i

=infft : t > Tl, Z(t) +( I(D > t) < n' - Z6 (t) - 1}+ Sk'
j=i
k-I

inf{t : t > Tk, Z(t) + E I(D) > t) < n2 -1}+ S (5.3)
j=1

since Z (t) < n' - n 2 for all t > 0, by (5.2).

Also,
k-1

D ; > inf{t : t > T,7 Z(t) + I(D > t) < n12 - 1}+S , (5.4)

j=1

where the inequality in (5.4) arises since the job that arrives to Q2 at time T. may have

to wait for additional jobs, which arrive at a time belonging to {T, k > 1} \ {Tk, k >

1}.

For the base case k = 1, note that D' < inf{t : t > T1, Z(t) < n2 _ 1} + Sl by

(5.3), while D 2> inf{t : t > T, 7Z(t) < n2 - 1} + S' by (5.4).

Now assume the induction is true for all j < k. Then for all t > 0 , I(D2 >

t) > E_ 1 I(D > t). Thus

k

infIt : t > T +1, Z(t) + E I( D) > t) < n2 - 1} + SI+1
j=I

k

Sinf{t :t ;> T,+1,Z(t) + I(D >t) 5 n2 - 1} + S+1

j=1



It then follows from (5.3) and (5.4) that D' < D , completing the induction. EO

We now complete the proof of Theorem 27.

Proof of Theorem 27. Let us fix some -y, T E R+ s.t. -y <T, and q E Z+ s.t. J < n.

We begin by constructing Q and Q'. on the same probability space. Note that Q
and QG, have the same initial conditions. Namely, for i = 1, . . . , n, there is a single

job initially being processed on server i with initial processing time V, there are 0

jobs waiting in queue, and the time until the first arrival is U'. We let A(t) be the

arrival process to Q. Let {tk, k ;> 1} denote the ordered sequence of event times in

A(t). It follows from the construction of A',(t) that {tk, k > 1} is a subsequence of

the set of event times in AO,(t). We let the processing time assigned to the arrival

to Q, at time tk equal the processing time assigned to the arrival to Q at time tk,

k > 1. It follows that Q and QG satisfy the conditions of Lemma 35, and it follows

from Corollary 6 that for all x > 0.

P (Q (T) > X) < P (T() > X). (5.5)

It follows from Lemma 34 that at time y, server i of Q0, is processing a job with

remaining processing time (at time -y) V77 Qy), i = 1. n. It follows from Corollary 7

that at time -, there are #(0, -', n) jobs waiting in queue in Q", Also, the remaining

time (at time -y) until the next arrival to Q0 is U1 (-y). Thus by construction, the

state of Q0 at time 7 (if viewed as a Markov chain (see [4])) is identical to the state of

Qn at time 0. It then follows from our construction, the Markov chain interpretation

of the GI/Cl/n queue (see [4]), and Corollary 6 that. we may construct QO and Q

on the same probability space s.t. Q,(y + s) = Q (s) for all s > 0. Thus for all
x>0'

X > 0,

P (T() > X) = P (Q'y(r - 7)> X). (5.6)
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We now construct Q^ and 0 on the same probability space Q. Suppose w.l.o.g. that

A(t), {Ni(t), i = 1, .. . n}, and all associated auxiliary r.v.s

(e.g. A-(t), {N (t), i = 1, ... ,n}, { (-y), i = 1... , n, j > 1}, #(0, y, n)) have been

constructed on Q. Note that for i < r/, the initial processing time of the job initially

being processed on server i is Vl (-y) in both Q3 and Q^. Also, in both systems there

are 0(0, y, n) jobs initially waiting in queue, and we assign corresponding initial jobs

waiting in queue the same processing time. We let AY(t) be the arrival process to both

systems, and assign the same processing time to corresponding arrivals. It follows

that on Q, QY and Q- satisfy the conditions of Lemma 35, and

n

Q'(T - -Y) < Q (T - Y) + I (V1K(-J) > T - Y). (5.7)

Note that on Q, all inter-arrival times for jobs arriving to Q (except the first), and all

processing times assigned to jobs not initially being processed in Q , are independent

of {Q(}), i = 1. n}, and thus independent of n I(V1(?) > r-). Also note

that although our construction ensures that the arrival processes and assignment of

processing times in both Q3 and Q coincide, we have not yet specified any particular

construction for these arrival processes and processing times on Q.

We now construct QL' on the same probability space Q. and simultaneously

give an explicit construction for the arrival process and assignment of processing

times to jobs for Q on Q. Note that the initial conditions, arrival process, and

assignment of processing times to jobs for QL' are all deterministic functions of

A(t), {Ni(t), i = 1. n}, and the associated auxiliary r.v.s. It follows that

and the associated process Q 1 (t), have already been implicitly constructed on Q.

Note that by construction, Q and Q'- have the same initial conditions, and thus

the same number #(0, y, n) of jobs initially waiting in queue. We assign corresponding
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initial jobs waiting in queue the same processing time, as dictated by the assignment of

processing times to jobs in Q ,. Namely, if the kth job initially waiting in queue in

Qa is the jth job assigned to server i in Qk ,it receives processing time V+(y).

We let A7(t) be the arrival process to Q . It follows from the construction of AY(t)

that the sequence of arrival times to is a subsequence of the set of arrival times to

Q^Y , and we assign the same processing time to corresponding arrivals. Namely,

if the corresponding arrival in Q)' is the jth job assigned to server i in

it receives processing time V/+1(7). It follows that on the probability space Q, Q7

and Q_,- satisfy the conditions of Lemma 35, and it thus follows from (5.7) and

Corollary 6 that

n

Q - ') <Q'1(r -y) + IV )> 'r - y). (5.8)

Combining (5.5) - (5.8) with Corollary 7, and observing that 7, T, q were general, we

find that for all t, x > 0 P(Q(t) > x) is at most

inf P max 1 + 4(7, t - 9)
yE [Ot]
7JE [O,nJ

+ I(V() > t - 7) > x - r.
i-1+1I-
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From definitions,

7

sup (A (t- s, t)- N(t-st));0<s<t--

#(0, y, n) = sup (A(- - s -y) - n

A-T (t - 7)-[ Nl (t - 7)=A (7, t)
i=1=1

I(V/(y) > t - y) = I(Ni(y, t) = 0).
i=7+1i=7+1

It follows from elementary renewal theory (see [27]) that the joint distribution of

'7 n

(-y, t - -y, ), #(0, y, n), A (t -)- N'(t - Y), E I (V1 (-y) >
i=1 i17+1

t - -Y)

is the same as that of

sup (A(s)
0<s<t-y

- N3(s)), sup (A'-"(s) - Ni -(s)),
0<s<-y

A(t - 7 )-
i= 1

N,(t - -7 I(NI(t-'y)
i=71+1

Combining the above with (5.9), and letting 6 A t - 7, completes the proof of the

first part of the theorem.

We now prove the corresponding steady-state result. Note that for all 6 < t,

n n

sup (A(s) - Ni(s)) < sup (A(s) - Ni(s)).
6<s<t 5 >6
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i=1

0(-Y, t - -Y, n) =



It follows that for any fixed values of r/ and x, P(Q(t) > x) is at most

1 n n

inf P max 1 + sup (A(s) - Ni(s)), sup (A(s) - Ni(s)) + E Ni (6) 5.10)
6E[0,t] 06sgo s;o= =71+1

+ 1(Ni(6) = 0) > x - r
i=77+1

Since (5.10) is monotone decreasing in t, the corresponding limit exists as t -+ o,

completing the proof. 11

5.4 Asymptotic Bound in the Halfin-Whitt Regime

In this section, we use Theorem 27 to bound the FCFS G/GIl/n queue in the H-W

regime, by proving an asymptotic analogue of Theorem 27. Suppose that the H-W

and To assumptions hold. Recall that a Gaussian process on R is a stochastic process

Z(t)t> s.t. for any finite set of times ti,.., tk, the vector (Z(t 1 ),... , Z(tk)) has a

Gaussian distribution. A Gaussian process Z(t) is known to be uniquely determined

by its mean function E[Z(t)] and covariance function E[Z(s)Z(t)], and refer the reader

to [35],[55],[2],[77], and the references therein for details on existence, continuity, etc.

It is proven in [110] Theorem 2 that there exists a continuous Gaussian process D(t)

s.t. E[D(t)) = 0,E[D(s)D(t)] = E[(NI(s) - Is) (N 1 (t) - pt)] for all s, t > 0. Let A(t)

denote the continuous Gaussian process s.t. E[A(t)] = 0, E[A(s)A(t)] ic iin7(s, t),

namely A(t) is a driftless Brownian motion. Let Z(t) A A(t) - D(t), where A(t) and

D(t) are independent. Then our main asymptotic upper bound is that

Theorem 28. For all B > 0 and x (E R . limsup,,,, P (Q"(oo) - n)n-2 > x is
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at most

inf P (max (sup (Z(t) + (rq - B) pt) , sup (Z(t) - Byit) + mip)
6>0 O<t<6 >
'N>o

> x + P(R(X) < o.

Let An (t) denote an equilibrium renewal process with renewal distribution AA-

independent of {Ni(t),i = 1,...,n}, Z(t) A(t) - Zi Ni(t), and ZB(s,t) ±

ZB(t) -Z(s). Also, we define f,(x) [n - xnij. Then it follows from Theorem 27

that for all x E R, P ((Q((oo) - n)n-i > x is at most the infimum, taken over all

6 > 0 and q E [0,n ], of the probability of the event

max 1+ sup (ZB(t)+ Ni(t)),supZ7(t)+ Ni (6).11)
O 6 i=fn(nI)+1 i~ n)t>6

n

+ I(N,(6) =0) > f,(-X) - fn(7)}
i-fn(rj)+1

Before completing the proof of Theorem 28, we establish some preliminary weak

convergence results to aid in the analysis of (5.11).

5.4.1 Preliminary weak convergence results

For an excellent review of weak convergence, and the associated spaces (e.g. D[0, T])

and topologies/metrics (e.g. uniform, J1), the reader is referred to [113]. We now

review several results from Chapter 4. It is proven in Chapter 4, Lemma 16 that

Theorem 29. For any B > 0 and T e [0, oc), the sequence of processes

{n Z'(t)o<t<T,'n ;> 1} converges weakly to (Z(t) - Bpt)Oc in the space D[0,T]

under the J1 topology.
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The behavior of n-Z (t) over unbounded time intervals is also addressed in

Chapter 4. In particular, Chapter 4, Equations 4.25 - 4.26 establish that

Theorem 30. For all B > 0, lim lim sup P n-2Z (T)
T-o n >

lim lim sup P ni sup ZB(t) >
T-+o unO, t>o

> pT -= 0; and
2

T = 0.

We now combine Theorems 29 - 30 to establish that

Corollary 8. For any fixed B > 0, 6 > 0, and e > 0, there exists T E (6, oo),

depending only on B, 6, and e, s.t.

lim sup P sup Zj (t)
n-+oo t>T

> suP Z' (t) <e.
t26

Proof. It follows from the monotonicity of the supremum operator and a union bound

that the L.h.s. of (8) is at most

limsupP (n- Z(T)>

+limsupPn 2Z'( 6)
n-+co B

p5jT +limsu)
B>

;--pT .8

'Pn 2supZ'(T,T+t)> B pT
t>o 8

The corollary then follows from the stationary increments property of Zn(t), Theorem

29, and Theorem 30. F]

It is proven in [110] Theorem 2 that

Theorem 31. For any T E [0. oc), the sequence of processes

{n-i (Z Ni(t ) - npt)O<<T, n > 1} converges weakly to 'D(t)ost<T in the space

D [0, Tj under the J1 topology.

Note that

Jim na ( - fn (r/)) =-/, and lim n- (fn(-X) - fn(q)) = x +r/.
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It follows from Theorem 31 and (5.12) that

Corollary 9. For all q > 0 and T E [0, oc), the sequence of processes

{n- ( (n)+1 Ni(t) - (n - fn(ri)) pt }
/ <t<T l

stant process 0 in the space D[0, T| under the J1 topology.

nverges weakly to the con-

Finally, we establish the convergence of several additional sequences.

Lemma 36. The sequence of r.v.s {In-2( )_ N (6),n > 1} converges weakly

to the constant inp6 , and the sequence of r.v.s {n-2 Z I(N(6) - 0),n > 1}

converges weakly to the constant rjP(R(X) > 6).

Proof. Both convergences follow from the strong law of large numbers. D

5.4.2 Proof of Theorem 28

We now complete the proof of Theorem 28

Proof of Theorem 28. Note that it suffices to demonstrate that for each fixed B > 0

and 6, j > 0, the lim supco of the probability of event (5.11) is at most

max sup (Z(t)+(rj-B)pt)
0<t<6

sup (Z(t)-Byt) + r/p6)
t>6

> x+rP(R(X) < 6))

(5.13)

Let us fix some B > 0 and 6, r > 0. Applying Corollary 8 and a union bound, and

multiplying (5.11) through by n-2, it thus suffices to demonstrate that

I
Pn nI max 11+ sup

o<t<6
(Zno(t) + N,(t)), (5.14)

i-fn (?)+1I

I (f(-x) - f(0)) > 0)
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is at most (5.13). For any fixed T, it follows from Theorem 29, Corollary 9, Lemma 36,

and the continuity of the supremum map in the space D[0, T] under the J1 topology

(see [113] Theorem 13.4.1) that

2nn max 11± sup (Z4s(t) + Ni),suZ ()+{n
m a x ( i = In6 6)t< T

n

~nr)1
Ni(6) ),n; 1}

converges weakly to max ( sup (Z(t) + (rj - B)pt) , sup (Z(t) - Bpt) + ypo .

That (5.14) is at most (5.13) then follows from Lemma 36, (5.12), and the Portman-

teau Theorem (see [7]), which states that a sequence of r.v.s {Xn} converges weakly

to the r.v. X, iff for all closed subsets C of R, lim supo P(X, E C) P(Xo E C)

iff for all open subsets 0 of R, IP(Xo E 0) lim infuo P(X, E 0). D

5.5 Proof of Bound for Probability of Delay as B -+

00

In this section we complete the proof of Theorem 24. We

additional results from Chapter 4.

Lemma 37. limuo E[ t2 Z(t) - p(c +ci). Also, the

is a.s. finite.

Proof. The first part of the lemma follows from the proof

5. The second part of the lemma follows from the proof of

specifically the discussion after Equation (30).

begin by recalling some

r.oV. supt>0 (z (t) - :4p1t)

of Chapter 4, Corollary

Chapter 4, Theorem 12,

l

We now prove a modified variant of Theorem 28, which has the interpretation of

setting 6 = oc, rj = - in Theorem 28.
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Corollary 10. For all B > 0 and v E R , limsup, IP((QA(oo) - n)n- > X) is

at most

P sup (Z(t) -- pt) > x + -P.
t>o 2 2

Proof. It follows from setting j = Ep in Theorem 28, combined with the monotonicity

of the supremum operator and a union bound, that for all B > 0 and x E R

lim suPnoP(Q P(oo) - n)n-2 > X) is at most

inf P sup (Z(t) - -Pt > X + -- pp(R(X) < 6) (5.15)
6;>0 t>O 2 2

+P sup (Z(t) - BIt) > -- 16)). (5.16)
t;>6 2

Let Z(s, t) = Z(t) - Z(s). Then it follows from the fact that Z(t) has stationary

increments and a union bound that (5.16) is at most

P Z () ;> -p6 +P(sup(Z(t) - Byt) > -po (5.17)
4 i;>o 4

It follows from Lemma 37 that for any c > 0, there exists 6, < oo s.t. for all 6 > 6,,

(5.17) is at most e. The corollary then follows from (5.15) and the continuity of

probability measures, since P(R(X) < 6) -+ 1 as 6 -- oc. 1

Finally, we state a well-known result from the theory of Gaussian processes (see

[2] Inequality 2.4) which will be critical to our proof.

Lemma 38. Let X(t) denote any centered, continuous Gaussian process. and T any

bounded interval oA supE E[X 2 (t)], and suppose o < oC. Then for
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all E > 0, there exists Me, depending only on X(t),T, and c, s.t. for all x > Me,

IP(sup X(t) > x) <_ exp
t ET (2o?)-

We now complete the proof of Theorem 24

Proof of Theorem 24. It follows from Corollary 10 and a union bound that for all

B > 0, lim suPn, P (Q(oo) Sn) is at most

B
2 p)

P sup (Z(t) -
k=0 kstsk+1

Note that for any fixed k > 0, P ( supkst<k+1 (Z(t) - Bpt)

B pk) + sup (Z(t)
4 ksisk+1 (

B
- -pt)2

B
- (Z(k) - -pk)

2

It then follows from the stationary increments property of Z(t) and a union bound

that (5.18) is at most

B
> -p(k + 1)J

4/

p-u(k + 1)1.
4

0, and pi(k + 1)> B -k, (5.19) is at most

ZP k 2Z(k) > pki2)
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(5.18)

P ((Z(k)

> B equals

B k
4

B
2

SP Z(k)
k=O

Since Z(0)

+EP sup Z(t) >
k=0 0<t<1

(5.19)

(5.20)

(5.21)

- () x2



It follows from Lemma 37 that c suPk>1E[ k-2Z(k) < oc is a finite, strictly

positive constant depending only on A and S. Let G denote a normally distributed

r.v. with mean 0 and variance 1. Note that for all x > 1,

P(G > x) = (27r) 2 fexp(-2 )dy

< (27r<) y exp(- )dy = (27r)-' ex (- )

Combining the above, we find that for all B > 4cP-1, (5.19) is at most

exp -p

k=1

P 2 B 2k'
32c

exp - 1B2

1 - exp B2
(5.22)

We now bound (5.20). Let c2 AsupE[01 E{Z 2(t)], and note that trivially c2 < oo. It

follows from Lemma 38 that there exists Bo < oc, depending only on A and S, s.t.

B > BO implies that for all k > 1,

P( sup Z(t) > +-k)
O<t<1 4

B
< exp ( - (4c2) 1 (-pk) 2).

4

It follows that (5.20) is at most

2  )
exp ( - B2k2)

Oc

< E exp
k=1

2

B 2k)
64C2

exp ( - P B 2)

1-exp ( - P2 B 2 )

Using (5.22) to bound (5.19) and (5.23) to bound (5.20) completes the proof.

(5.23)
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5.6 Proof of Bound for Probability of Delay as B -+

0

In this section we complete the proof of Theorem 25. We proceed by carefully ana-

lyzing the covariance structure of Z(t), so that we may apply known results from the

theory of Gaussian processes, in particular the well-known Slepian's lemma (see [49])

for comparing the suprema of multivariate Gaussian r.v.s., to prove our main results.

5.6.1 Slepian's lemma

We now formally state a particular variant of Slepian's lemma, proven in [49] Theorem

1.1.

Theorem 32. For k > 1. let (X..., Xk), (Y,..., Y) denote two zero-mean multi-

variate Gaussian r.v.s. each in Rk. Further suppose that E[X|] =E [ 2 ,i 1.k.

and E[XiXj] > E[YiYj] for all i,j E {1,. . ., k}. Then for all vectors (z1 ,, z) E Rk,

IP( n {Xi < zi}) > P( n {Yi < zi}).
i=1,...,k i=1,...,k

We now restate Theorem 32 for continuous Gaussian processes over an interval,

which follows from Theorem 32, continuity, and the separability of R (see [82]).

Corollary 11. Let T A [t, t2 ] denote any closed interval of R+. Let X(t) and Y(t)

denote any two continuous zero-mean Gaussian processes s.t. E[X 2 (t)] = E[y 2 (t)]

for all t E T, and E[X(s)X(t)] > E[Y(s)Y(t)] for all s, t E T. Let g(t) denote any

function which is continuous on T. Then

P (sup (X(t) - g(t)) 0 ;> P (suP (Y(t) - g(t)) < 0).
tET tET
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We also state another variant of Theorem 32 for Gaussian processes, which will

be useful in our analysis.

Corollary 12. Let T A [t1 t2] T2 A [t2,ts] denote any closed intervals of R+ which

intersect at exactly one point. Let X(t) denote any continuous zero-mean Gaussian

processes s.t. E[X(s)X(t)| > 0 for all s,t > 0. Let g(t) denote any function which is

continuous on T' U T 2. Then

P( sup (X(t)-g(t)) < 0 > P( sup (X(t)-g(t)) < 0 P sup (x(t)-g(t)) 0
ETI UT 2  tEiT' t

Proof. Consider some set ti, ... , tk of times belonging to the interval T, and a set

tk+1,... , t2k of times belonging to the interval T2 . Let (Yi.. . , Y2k) E R2k denote

the zero-mean multivariate Gaussian r.v. s.t. E[Y[ 2 ] = E[X 2 (t,)].i - 1,...,2k,

E[YiY] = E[X(ti)X(tj)],1 i < < k, E[YjY] E[X(tj)X(tj)], k + 1 i j 2k,

and E[Y=Y = 0 otherwise (i.e. i E {1,... , k}, j E {k + 1. 2k}). That such a

multivariate Gaussian exists follows from the fact that (Y,...,Yk) is distributed

as (X(ti), . . ., X(t,)), (11, - --, Y2k) is distributed as (X(tk+1),. . ., X (t2k,)) and

(Y,... Yk) is independent of (Yk+1,..., Y2k). Then we may apply Theorem 32 to

find that

P( i x(ti) < g(ti )} > P( f Yi < g(ti)}
i=1,...,2k i=1...,2k

= P( n {Yi < g(ti)})P( n {Yi < g(ti)}).
i=1,...,.k i=k+1,...,2k

The corollary then follows by continuity and separability, by letting {t1 , i = 1 . . . 2k}

become dense in T' U T2

165



5.6.2 Properties of Brownian motion, the Ornstein-Uhlenbeck

process, and the three-dimensional Bessel process.

In this subsection we review several properties of Brownian motion, the Ornstein-

Uhlenbeck process, and the three-dimensional Bessel process. For a r.v. X, let V[X]

denote the variance of X. For r.v.s X, Y, let V[X, Y] = E[XY] - E[X]E[Y] denote

the covariance of X and Y.

Brownian motion

For b > 0, let L3b(t) denote a Brownian motion initialized to b; namely, the continuous

Gaussian process s.t. E[Bb(t)] = b, V[B (s), Bb(t)) = s for all 0 < s < t. We now

state several basic properties of Brownian motion, and refer the reader to [8] for

details. Recall that G is a normally distributed r.v. with mean 0 and variance 1.

For a stochastic process Z(t), let T denote the first hitting time of Z(t) to a, where

r = Xo if no such time exists.

Theorem 33. Brownian motion has the following properties.

(i) For all t > 0, lP(supo<, 8<t 0 (s) > x) = 21P(G > xt-).

(ii) For all C1, , C2>o30 < r3- C+C2

(iii) For all c, x > 0, P (supto (B0 (t) - ct) > x = exp(-2cx).

We also mention one other relevant result, namely an interesting independence

that arises when studying functions of Brownian motion and its supremum. Let ei

denote an exponentially distributed r.v. with mean 1, namely P(ei > x) = exp(-x)

for all x > 0. Let {Bj(t), b E Ri ;> 11 denote a collection of independent Brownian

motions, with B(t) initialized to b. Then it follows from the main result of [96] (see

also [117]) that
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Theorem 34. For all t > 0 supo<B<, B?(s)(sup< 8 <t B3(s) - BO(t)) has the same

distribution as Le1 , and is independent of B0(t).

Ornstein-Uhlenbeck process

For any p > 0, let UP(t) denote the centered stationary Ornstein-Uhlenbeck (0-U)

process whose correlations decay exponentially (over time) at rate p. Namely UP(t) is

the continuous Gaussian process s.t. E[UP(t)] - 0, V[UP(s),UP(t)) = exp ( - p(t - s))

for all 0 < s < t. For a review of the basic properties of O-U processes (e.g. existence,

continuity), we refer the reader to [34]. A law of the iterated logarithm is known to

hold for the O-U process, and we now state a particular variant, which follows from

a more general result for continuous, stationary, Gaussian processes proven in [78].

Theorem 35. For any fixed p, ( > 0, one may construct UP(t) on the same probability

space as an a.s. finite r.v. Z. whose distribution depends only on p and e, s.t.

jUP(t)| < Z + (1 + E) (2 log(t + 1)) 2 for all t > 0.

Three-dimensional Bessel process

For any b > 0, let Sb(t) denote the three-dimensional Bessel process initialized to b.

We now formally define Sb(t) as the solution to a certain stochastic integral equation.

The stochastic integral equation

X = b2 + 3t + 2 fIX d B, (5.24)

has a unique strong solution Xb2 (t), which is non-negative; we refer the reader to

the survey paper [48] for details. Then Sb(t), the three-dimensional Bessel process

initialized to b, is defined as (Xb 2 (t)) 2. Then it is well-known that SO(t), namely the

three-dimensional Bessel process initialized to 0, is distributed as ( B(t)2) 2
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namely the radial distance process of a three-dimensional Brownian motion. An

elegant construction for Sb(t) is given in [115], where it is shown that for b > 0, Sb(t)

is distributed as the 'gluing together' of two Brownian motions initialized to b, and

a three-dimensional Bessel process initialized to 0. Let {Ub, b > 0} denote a set of

independent uniformly distributed r.v.s, where Ub has the uniform distribution on

[0, b]. Let {Sb(t), b > 0} denote a set of independent three-dimensional processes,

where S6(t) is initialized to b. Suppose {B(t),b E R, i > 1}, {Ub,b > 0}, and

{S(t) , b > 0} are mutually independent. Then it is proven in [115] Theorem 3.1 that

Theorem 36. For b > 0, define

LB(t) 0 < t < Tb

X(t) I 3(b rUb +<

t) Ub < b
1 21 2

Then the distribution of the process X(t) is identical to the distribution of the process
Sb(t).

It is also proven in [115] that for 0 < b < c < oc, many additional distributional

relationships hold between the process B'(t) conditioned to hit c before 0, i.e. the

event {r7b < Tb}, and the process Sb(t); we refer the reader to [115] for details. A

particularly relevant result, proven in [115] and restated in [84] Proposotion 1.1, is

that

Theorem 37. For any fixed 0 < b < c < oo, the conditional distribution of the r.v.

Tb given {TIb < rb}
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is identical to the distribution of the r.v.

Also, the conditional distribution of the process

Bb(t)o<tsTC given {r0b < Tib}

is identical to the distribution of the process

Sb(t)o<t<TcS.

A law of the iterated logarithm is known to hold for the three-dimensional Bessel

process, and we now state a particular variant, which follows from [53] Theorem 2

and continuity.

Theorem 38. For any b, e > 0. one may construct Sb(t) on the same probability

space as an a.s. finite r.v. Z. whose distribution depends only on b and e, s.t.

SI(t) > t2- - Z for all t > 0.

The hitting times of Sb(t) are well-studied [67],[47),[83],[16],[15]. A relevant result,

whose proof we include for completeness, is that

Theorem 39. For all b.c > 0. there exists T,6 6 (0, oc). depending only on b and e.

s.t. M > T implies

P(r <A M 2)

Proof. The proof is deferred to the appendix.
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5.6.3 Renewal theory

We now review some results from renewal theory, which will be necessary in analyzing

the covariance structure of Z(t), since E[D(s)D(t)] = E[(Ni(s) - ps) (NI (t) - pt)].

Let Ne(t) denote an equilibrium renewal process with renewal distribution S, and

N 0 (t) denote an ordinary renewal process with renewal distribution S. Let C1 / S,

C2 A $93 E[ 3 ] + 4(E[S2J)2, and C3 = /pE{S2]. Also, let f(t) = V[Ne(t)] - Cit.

Then

Lemma 39. f (0) = 0, and supo If (t)I < C2. f (t) is Lipschitz, namely If (t + h) -

f(t)I < C3 h for all t, h > 0. Also. E [(Ne(s) - ps) (Ne(t) - pt)] C1 s + -(f(s) +

f(t) - f(t - s)) for all s, t >0.

Proof. That f(0) = 0 is trivial. That supto If(t)I C2 follows from [29] Equation

1.15. We now prove that If(t + h) - f(t)| I C3 h for all t, h > 0. Noting that E[NO(t)]

is monotone and bounded on compact sets and thus integrable, it follows from [29]
Equation 1.4 that

f (t) = 2p ((E[N"(s)] + 1 - ps) - (1 + c2) ds. (5.25)

It is proven in [73] that for all s > 0, one has 0 < E[N (s)] + 1 - ps < p 2E[S 2], and

it follows that

(E[NO(s)] + 1 - ps) 2 (1 + c2) p2E[S2

Combining with (5.25) completes the proof.

170



We now prove the final assertion of the lemma. E[(Ne(s) - ps)(Ne(t) - pt)] equals

E[Ne(s)Ne(t)] - p 2 st

- e (t) - Ne(s)) 2] - E[(Ne(S)) 2 ] - E[I(Ne(t))2) _ 2 st

1

- -(V[Ne(t)] + V[Ne(s)] - V[Ne(t - s)]) by stationary increments,
2

and the assertion then follows from definitions, completing the proof of the lemma. D

We conclude this subsection by showing that the covariance of the number of

renewals at different times of an equilibrium renewal process is always non-negative.

Lemma 40. E[Ne(s)Ne(t)] - p 2st > 0 for all s, t > 0.

Proof. The proof is deferred to the appendix. El

5.6.4 Bounding the covariance of Z(t)

In this subsection, we compare the covariance of Z(t) to that of a combination of a

Brownian motion and an O-U process. Let e = exp(l), and co A (2(e - 2)) -. It can

be easily verified that exp(-co) < 1. Let C4 A pc' +C1, and M A (c 4 +C2 +ca) . Let
2 A c4( -1-exp(-<o))

Ul"(t) denote a realization of the process UA' (t), independent of {Bb(t), b E R, i > 1}.

Let us define a new Gaussian process 1WV(s) on [Al, oc). Note that AIC 4 + f(s) > 0

for all s > 0 by the construction of M. We define

1 Al
W(s) " C(1 - )L3 0 (s) + (MC 4 + f(s))21 UM (s), s > Al +1.

s

That V(t) is a Gaussian process follows from the fact that sums of Gaussian processes

are Gaussian processes, and a Gaussian process multiplied by a deterministic function

of time is a Gaussian process. That W(t) is continuous follows from the continuity
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of B?(t) and Ulm'(t), combined with the fact that f(s) is Lipschitz by Lemma 39. We

now prove that

Theorem 40. For all s > M+1 and t > s. V[W(s)] = V[Z(s)], and V[Z(s), Z(t)] >

V[W(s), W(t)].

Proof. The proof is deferred to the appendix. L]

We conclude this subsection by showing that, in addition to Theorem 40, Z(t)

satisfies

Theorem 41. V[Z(s), Z(t)] > 0 for all s, t > 0.

Proof. Note that

V[Z(s), Z(t)] = V[A(s),A(t)]+V[D(s),D(t)]

= pcAs + E[N'(s)N'(t)] - > 0 by Lemma 40.

5.6.5 Proof of Theorem 25

In this subsection, we complete the proof of Theorem 25. It will first be useful to

restate Theorem 28 as a lower bound on the probability that (Q(oo) - n)n- < x,

which follows immediately from Theorem 28 by taking complements.

Corollary 13. For

at least

all B > 0 and x E R , lim infoc P (Qn(oo)

sup P max ( sup (Z(t) + (j - B)pt)
6>0 \o<t<s
?/>O

sup (Z(t) - Byut) + rlt6p
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We now conclude the proof of Theorem 25.

Proof of Theorem 25. Suppose B < 1. Recall that C4 - p(c 2 + ci), and M =

8(C4 +C 2 +C 3 ) and thus C4 and M are both finite, strictly positive constants depend-
Cexp(-co))

ing only on the distributions of A and S. Since E[S2] < oc implies E{R(S)] < 00,

A
we may define 60 = 2M + 1 + 2E[R(S)], and note that 6o is a finite, strictly positive

constant depending only on the distributions of A and S. Since D(t) is continuous,

supost 60 D(t) is a.s. finite. Thus we may select a constant go E (1, oo), depending

only on the distribution of S, s.t. IP (supo~tso 'D(t) < 4) o . It follows from

Theorem 41 and Corollary 12 that

IP (max( sup (Z(t)+(rlo-B)pt) , sup (Z(t)-Bpt) + r/op6o roIP(R(X) < so)
\ost<6o t>60

(5.26)

> P sup (Z(t) + (qo - B)pt) < qoP(R(X) < o) (5.27)
O<t<60

x P (sup (Z(t) - Byt) + r/opo < qoP(R(X) < So) . (5.28)
t>60

We now bound (5.27). Note that since D(t) has the same distribution as -D(t), it

follows from the independence of A(t) and D(t), and the fact that by construction 60

is at least the median of R(S), that (5.27) is at least

sup (A(t) + (io - B)pt) < 1 rj0 (5.29)
o<t<60 4

1' ~ 1N
x P sup 'D(t) < -r7o (5.30)

0<t<60 /

It is a straightforward exercise to dlemonstrate that (5.29) is some strictly positive
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probability ci, depending only on the distributions of A and S. By the construction

of ryo, (5.30) is at least 1. Combining the above, we find that (5.27) is at least

1
-E (5.31)

2

We now bound (5.28). Since Corollary 5.1 of Chapter 4 implies that supt>o (Z(t) -

Byt) is a.s. finite, it follows from Theorem 40, Corollary 11, and the fact that

6o > M + 1 that (5.28) is at least

P (sup (Cj (1 - AL) B (t) + (MC4 + f(t)) aU1
1 (t) - Byt) -m0po). (5.32)

Note that supt> I (M C 4 +f(t)) | I - (M1C4+ C2) by Lemma 39. Thus it follows from

Theorem 35 and the independence of B0(t) and Ui^(t) that we may construct an a.s.

finite r.v. Z 1, whose distribution depends only on A and S, on the same probability

space as BO(t), s.t. Z 1 and BO(t) are independent, and (5.32) is at least

IP sup (C (1- i-) B(t) + Z1 + 2 log' (t + 1) - Byt _ -7opo . (5.33)
t>60 C

It is easily verified that 2log2(t + 1) < t1 + 8 for all t > 0. Since Z1 is a.s. finite,

it thus follows from (5.33) that there exists a finite constant H1 E (1, oo), depending

only on the distributions of A and S, s.t. (5.32), and thus (5.28), is at least

su C (1 - B(t) + t- Bpt) < -(ipopo+H1) . (5.34)

Let fi(t) - C(1 - ) Note that the event {fi(t)B3(t) + t - Bpt > -(71opoo +

H1 )} is equivalent to the event {BO(t) + t0 (fi(t)) - Bpt(fi(t)) 1 > +
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1 1
H 1)(fi(t))}. Since t > 2M implies <C fi(t) < C , it follows that for t > 60,

the event

{37(t) + tI (fi(t)) Byt (fi(t))' > -(qopoo + H1)(fi

implies the event

{BI(t)+t(C ) - Byt(C > -(lopo+ Hi)( C41}.22

Let C5 A 2(op6o + H1 + 1)(1 + C4 2+ p C4), and note that C5 is a finite constant

depending only on the distributions of A and S. Combining the above with (5.34), it

follows that (5.28) is at least

P sup (B (t) + C - CBt) -Cs . (5.35)
2 (t;>60 \

By Theorem 38, i.e. the law of the iterated logarithm for the three-dimensional Bessel

process, there exists an a.s. finite non-negative r.v. Z 2 , whose distribution depends

only on the distributions of A and S, s.t. Si (t) > ti - Z 2 for all t > 0. Let C6 denote

the median of Z 2 , and note that 06 is a finite non-negative constant depending only

on the distributions of A and S. Let H2 ' Cs(1+ 0o) + C6 + C - 1, and note that

H2 is a finite non-negative constant depending only on the distributions of A and S.

Then (5.35) is at least

2 P(B1 (6o) < -H 2 )P sup (B(t)+Cs(t+6o)4 - C 'B(t+6o) < H2 - C5). (5.36)
2 ( ;>o \

Let (2 A (P(B0(o) < -12), and note that C2 c (0, 1) depends only on the distri-

butions of A and S. Then since (x + y)" < x" + y' for all x, y > 0, and 60 > 0, it
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follows from (5.36) that (5.28) is at least

E2P sup B 0(t) + Cat6 - Cii Bt < H2 -01+o ) . (5.37)
(t>O (I)-2-C( 

1

Since BO(t) has the same distribution as -B?(t), note that (5.37) equals

C2P (n B(t) - C5t-I + CiBt) (C6 + C53). (5.38)

Let C = - (C 6 + C5s), and note that C7 is a finite, negative constant which depends

only on the distributions of A and S. We now bound (5.38) from below by conditioning

on an appropriate event related to hitting times, and then applying Theorem 37, i.e.

the relationship between Brownian motion with appropriately conditioned hitting

times and the three-dimensional Bessel process. It follows from Theorem 39, applied

with b = 1 and c = that there exist absolute finite constants 6, T > 0 s.t. for all8'

X > T, one has

PN(rB < 6x 2B 1) 1

Let H 3 - T 5 + 23Cs3 2, and H4 ± (2C2) , and note that both H3 and H4 are

finite, strictly positive constants depending only on the distributions of A and S, s.t.

P r] B < 4B < . Note that (5.38), and thus (5.28), is at least

C2P r 3B < r (5.39)

X P f3 H 4B , inf B(t) -Ct + C- Bt > C7(5.40)

n (4t r 33BB-in B L1(t) - Cot'+ CiBt >-C7 I < '3B
>H3B 

1
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By construction, t > H4 B- 2 implies Ct0 < j0-Bt.
follows that (5.40) is at least

> H4B 2 , inf
O<tK H3B

-
1

Ct- + C'Bt) 2 C7 , (5.41)

(1
B (t) + -C BtI

2 /

It then follows from a union bound that (5.40) is at least

Ct-1 + C-1Bt) C7,

(B' (t) + IC-1Bt

We now bound (5.42). It follows from the strong Markov property of Brownian

motion, and the fact that C0'B(t + rH3 ) > C Bt, that (5.42) is at least

P (H3B-1

inf
O<t<T

3
B

+ B (t) +2I C-Bt >C7 ) (5.44)

C5t6 +05 1)Bt >- C7H3B

We now bound (5.45). It follows from Theorem 37 that (5.45) equals

inf
O<t< 

3

SI

S(t) - Cti + C-1Bt) C) ) (5.46)

177

inf
t>T H3B

>0 CH 3 B

IP inf
O<t<TH

3

B
1

inf
-PT H> B

HIl11 '~

(5.42)

0 TH3B-I
- C 7B-I

< Ti i.-2 H 3 B (5.43)

We now bound (5.40).

BI(i (t )

P r3B
A (B (t) -

< TFO .(5.45)Bi(8tt) -



which is at least

P rnf S1(t)- Cot1+CiBt C). (5.47)

By Theorem 38, i.e. the law of the iterated logarithm for the three-dimensional Bessel

process, and the definition of C6, it follows that (5.47) is at least

-P inf ti -Cot4 + Co-Bt > C6+ C7). (5.48)
2 t>o

Since by construction t8 > C6 + C7 + C5 t0 for all t > 0, it follows that (5.45) is at

least !. We now bound (5.44). Since B(t) has the same distribution as -B(t), it

follows from Theorem 33.iii that (5.44) equals

P(sup (B(t)--C-1Bt 113B
- 1 -C7 =1-exp(-HC0 +BC 7 C- 1 ). (5.49)

t>0 2

Combining our bounds for (5.44) and (5.45) with the fact that by construction exp

113C5-1 + BC7 C-1) < 1, it follows that (5.42) is at least I. We now bound (5.43). It2 4.

follows from Theorem 37 that (5.43) equals

-P r <H 4 B~), (5.50)

which by construction is at least - Combining our bounds for (5.42) and (5.43), it

follows that (5.40) is at least j. It follows from Theorem 33.ii and the symmetries of

Brownian motion that (5.39) equals 2H 3 
1B. Combining our bounds for (5.40) and

(5.39). it follows that (5.28) is at least jE2H7 B. Combining with (5.31), our bound

for (5.27), it follows that (5.26) is at least ne 1 C2H1B. Since C1 , E2 , and H-) are all

strictly positive constants depending only on the distributions of A and S, and not

B, this concludes the proof of the theorem. l
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5.7 Proof of Large Deviations Result

In this section we complete the proof of Theorem 26.

Proof of Theorem 26. Let us fix some B > 0, and x < -1. Note that it follows from

the proof of Theorem 12 given in Chapter 4 that supt>0 (D(t) - jpt) is a.s. finite.

Thus we may select a constant c E (8, oo), depending only on the distribution of S,

s.t.

P (sup (D(t)
t >0

(5.51)

Let 60 = 2(1 + (16p)-')E[R(S)). Then P(R(X) 60) Q j, and it follows from

Corollary 13, with 6 = 6 o and r = clxi, that

lim inf P (QB -1 n)n 12

is at least

max sup (A(t)
\0O<t<60

- D(t) + (clx| - B)pt),

sup (A(t) - D(t )
t >60

- Byt) + clxit6o) <

2 IP max

sup
t>6o

sup
0<t<6o

(A(t) + (clx| -

A(t) - Bt + c1xIpoo)
2

-I-)t) + sup (-D(t) -
2 0<t<60

B N
+ sup ( - D(t) - Bpt)

t>60 2

(A(t) + (clxi - - )pt) + sup ( - D(t) -
2 i;>0

B B
sup (A(t) - --pt + clxI~p6o) + sup ( - D(t) - -t))
t>o 2 t>0 2J
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P (

(5.52)

- 1)|x|)

P max

B
-it),
2

2 (

sup
0<t<6o

-1)|x|)

B
pIt),2

(S2 -1)|x|).

B C 1-1-to < - > -.
2 - 8) - 2



which is at least

B
- D(t) - pt)

2

sup (A(t) -
t>60

+ max sup (A(t) +
0 6t<6o

Pt + clxp6o))
2

4

since c > 4 implies j -1 > . It follows from (5.53), a union bound, and the definition2 4

of c that (5.52) is at least

B(A(t) + (clx I - B)pt)
2

B
sup (A(t) - - pt+cjxnp60 )(
t>60 2

Although an exact analysis of expression (5.54) follows from well-known results about

Brownian motion (see e.g. [98),[8],[11]), a simpler analysis suffices for our purposes,

which we include for completeness. Note that (5.54) is at least

sup
0<t<o 

(A(t) + clxlpt) , sup (A(t) -
t>60

BN
-- Pt + cIxIp60)I
2

Also, since clxIpt < clxpoo on [0, 6o, the event

0<t<(16p)-1

sup (A(t)
(16p)- I <o \

A(t) < 1, A ((16p)- 1 ) < -2cjxjp6 0 - 2,

A ((16t)~1 )) < 1}.

implies the event

sup
0<1 <6

0
(A(t) + clxlpt) _
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P sup(
2t>0

B
(clxi )Pt)

2 (5.53)

1 (
-P max sup

0<t< 6

-P max . (5.55)

(5.56)

(5.57)

( 5.54)

1, A(60) < -cjxjp60 .



Note that the probability of the event

{ sup A(t) < 1,A((161p) 1) < -2clxp6o - 1
o<t<(16p)- I

is at least the probability of the event

{{ sup A(t) sup A(t)-A((16p-)-') < 1, A((16p)-1) < -2clxJ[poo-1.
\ o<t<(16p)-1 / \ o<t<(16p)-1

It thus follows from Theorem 34 and the strong Markov property of Brownian motion

that the probability of event (5.56), and thus (5.57), is at least

P I(16p)ei < 1)P(A((16p) ) < -2clxzpo - 1 P sup A(t) < 1. (5.58)

It is straightforward to demonstrate that there exists a finite strictly positive constant

ci, depending only on the distributions of A and S, s.t. (5.58) is at least exp(-ciz 2 ).

Note that by the strong Markov property of Brownian motion, conditional on event

(5.57), the probability of the event

sup (A(t) - BPt) < 1I
t>o

which is just some finite strictly positive constant c2 , depending only on B and

the distributions of A and S. Combining the above, we find that (5.55) is at least

Ic 2 exp(-cix 2 ) for all x < -1, completing the proof.
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5.8 Comparison to Other Bounds From the Liter-

ature

In this section we compare our results to known results for the GI/Al/n and Ml/GI/n

queues, showing that our main results are tight, in an appropriate sense. Recall that

C denotes a standard normal r.v. We also define a(B) _ limco P(Qn (oo) > n), i.e.

the limiting steady-state probability of delay, when this limit exists.

5.8.1 GI/M/n queue

In [52], Halfin and Whitt proved that

Theorem 42. If Qn is a GI /M/n queue, then

a(B) = (1
2B

+ (27) 2 1 + P(G <
1+c C

2B
CA

e 2B
exp (2 ( + C2)

1+A )- (5.59)

lIm IP(Q"B(oo) > n + xni) = a (B) exp(- 2 2Bx
nno 1+ca

(5.60)

lim P(Qn (oo) <
71 ---cxO

1 P(G < B - 37)
n - = (1 - a(B)) (C B )12- 3l} &]P(G <~ B)

It follows from Theorem 42 and elementary asymptotics that

Corollary 14. If Q'3 is a GI/Al/n queue, then

liiu B log a(B) = -2(1 + cA) 2 > - oc
B->oo

lim B- 1(1 - a(B)) = (27r) I(1 +c
B-+O
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and

lim x- 2 log lim P Q(oo)-) < -x - < 0.

Thus in this case, we conclude that all of our main results correctly capture the

correct qualitative scaling of the relevant quantities. Namely, the limiting steady-

state probability of delay scales like exp ( - E1B 2) as B -* oc for some ei > 0; the

limiting steady-state probability that a job does not have to wait for service scales

like E2B as B -+ 0 for some 62 > 0; and the tail of the limiting steady-state number

of idle servers scales like exp ( - 63X2) as x - 00 for some C3 > 0.

5.8.2 M/GI/n queue

Suppose that Qn3 is an MI/f/n queue. Let Z,,B denote a Poisson r.v. with mean

An,B. Then it follows from a naive infinite-server lower bound, and the well-known

properties of the steady-state infinite server queue (see [101]), that for all x E R+.

P(QnB(oo) < n - xn2) < P(ZUB < n - xnt). It follows from the Central Limit

Theorem that for all x E R+,

limn1 P(Zn,B n - x n2) = P(G < B - x).
n--*oc

It follows that

lim inf B- 2 log lim iif P(Qn (oo) > n) > -- > -oo,

and

lim sup x 2 log lim sup P - nn- < -X < - < 0,

showing that in this setting Theorem 24 and Theorem 26 are again tight in the same

sense as before. Interestingly, the infinite server lower-bound does not seem to yield
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any information about the tightness of Theorem 25, since P(Za <; n) > j for all

B > o.

We note that the results of [601 for the case of deterministic processing times yield

similar confirmation of our results, but we do not pursue that here.

5.9 Conclusion and Open Questions

In this chapter, we derived the first qualitative insights into the steady-state prob-

ability of delay in the H-W regime for generally distributed processing times. In

particular, we derived bounds for the asymptotics of how the steady-state probability

of delay scales as B -+ 0 and B -+ oc, and found these bounds to be tight, in an

appropriate sense, by comparing to known results for special cases. We also revisited

the question of large deviations for the steady-state number of idle servers, and proved

that this r.v. has a Gaussian-like tail.

Our main proof technique was the derivation of new and simple bounds for the

FCFS GI/GI/n queue. Our bounds are of a structural nature, hold for all n and all

times t > 0, and have intuitive closed-form representations as the suprema of certain

natural processes which converge weakly to Gaussian processes. Our bounds built on

the techniques of Chapter 4, by allowing one to simultaneously keep all servers busy

and alter the number of servers.

This work leaves many interesting directions for future research. In particular,

it would be very interesting to derive better bounds for the steady-state probability

of delay. Furthermore, it is an open challenge to identify the exact scaling behavior

of the probability of delay, as B -> oc and B -- 0, for processing times which are

neither Markovian [52] nor deterministic [60].
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5.10 Appendix

5.10.1 Proof of Theorem 41

In this subsection we complete the proof of Theorem 41.

Proof of Theorem 41. Let {Xk, k 2 1} denote the ordered sequence of renewal inter-

vals in process Ne(t). Then from definitions,

E[Ne(s)Ne(t)j - p1
2 st = Z(E I(j1 X, < s)I(Z X t)< - 1

2st.

Note that for j < i, one has that

E[I(Z Xk
k=1

j

< s)I(> Xk _ t)|
k=1

Alternatively, suppose j ;> i + 1.

= E[I(ZXk s)|
k=1

> E[I(( X< s)]E[I(ZXk <t)].
k=1 k=1

(5.63)

(5.64)

Let Y' ± _ Xx, Y 2 A Zk~i+1 Xk, and

Y32 t Y'. Then Y' and Y2 are independent, Y 2 and Y3 are independent, and

E[I(Z> 1 Xk K s<5)](ZL Xk < t)] equals

E[I(Yl < s)I(Yl + Y 2 < t)]

= E[I(Y 3 > t - s)I(Y3 > Y 2)]

E[I(Y 2 > t - s)I(Y 3 > Y 2) + (y 2 < t )(y 3
- s)]. (5.65)

Let Y, Y3 denote two r.v.s, each distributed as Ya, where Yf, Y3, Y 2 are mutually
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independent. Then (5.65) equals

E[I(Y 2 > t - S)I(y3 y 2) + 1(y 2 < t - s)I(Y| - s)]

E4[(Y2 > t - S)I(Y 3 > Y 2)I(Y 3 > t - s)]

+E{I(Y 2 < t - s)I(YQ Y 2 );(y 3  t - s)]

E[I(Y Y 2)I(y 3 > t _

= E[I(Y + Y 2 < t)]IE[I(Y <s)].
-(

= E [I(( ,Xk < s)]E [I(( Xk < t)].

Combining (5.62) - (5.66), we find that

IE[N'(s)N'(t)] - p2 st ;> ( (7 E [1((
i=1 j=1 k=1

E[(I((Xk
i=1 k=1

Xk < s)]E[I
(3

<s)]E(I (
j=1 k=

= IE[N(s)]E [Ne(t)] - p2st = 0,

completing the proof.

5.10.2 Proof of Theorem 39

In this subsection we complete the proof of Theorem 39.

Proof of Theorem 39. It follows from Theorem 36 that Ub, B'(t), Bb(t), So(t), and

Sb(t) can be constructed on the same probability space s.t.

sup Sb(t)l < Sup 1Ib(t)I +
0<t<(A,1 2

(Kt<T("b

sup
0 t-b +T Ub

|Bb(t)I + sup So(t) + b. (5.67)
O<t<EAM

2
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Xk -t) -p2st



Since r <_ - r, and Tb < r it follows from (5.67) and a union bound that
1 12 2

IP( sup |S(t)| > M)
O<t<EM 2

is at most

P( 0 + r > M 2 ) + P( sup |Bb(t)I > ) (5.68)
1 2 0<t<EM12 3

+p( sup IB(t) > M) + P( sup S?(t) + b > Al)
0<t<(M 2  3 0<t<EM2  3

Since L 1(t) and B2(t) have the same distribution, it follows from (5.68), the triangle

inequality, a union bound, and the fact that b < M that P(supO<t<CM2 |Sb(t)| > M)

is at most

2P(r > 2 (5.69)

+ 21P( sup |B3(t)l > ) (5.70)
0<t<eM,2 6

+ P( sup SO(t) > ). (5.71)
0<t<EM 2  6

We now bound (5.69). It follows from the symmetries of Brownian motion that Tb

has the same distribution as ro. Recall that G is a normally distributed r.v. with

mean 0 and variance 1, and let fG(x) denote the density function of G. It follows
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from Theorem 33.i and a union bound that (5.69) is at most

21P(rbo > "M2) = 2P( sup
0<t<-tM2-- 2

- 2 1-P(G

jb( M
2)-2

=4 (
JO

130(t) < b)

|> b(dM2)-')

fG(xIdx

(27)~l b( M2- since fG(x) < (27r)^ for all x. (5.72)
2

Similarly, by the symmetries of Brownian motion, (5.70) is at most

sup 130(t) > Al)
<M A2 6

8P(G > 6( 2

< 8exp ( I- I--) by a Chernoff bound.

Since S'(t) has the same distribution as (B(t)) 2 ,and (
E1 ilB(t)|, it follows from a union bound that (5.71) is at most

3P( sup |L3B(t)| > )
0<t<<2 18

< 6P( sup
0<1<<112

Bo"(t) > )
18

M 
2= 12P(G > -8(M2)-!)

1 1 1

K 12exp( --- 2-) by

by Lemma 33.i

a Chernoff bound. (5.74)

The theorem then follows from (5.72),(5.73), and (5.74). 1

5.10.3 Proof of Theorem 40

In this subsection we complete the proof of Theorem 40. Let us fix some s > Al + 1

and t > s. We begin by establishing several technical preliminaries.
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Lemma 41.

(ii2) (1 + fs (<- (Ms + s - Mf

(iii (MC4 + f (S)) I (MC4 + f (t)) 1 < MC4 + f (S) + 12(t - S).-

(iv) (MC4 + f(s)) 2 (MC 4 + f(t)) 2 MC 4 + C2.

(v) V[Z(s), Z(t)] ;> C 4S + f(s) - C3 (t - s).

(vi) V [Z(s), Z(t)] > C 4s - 3C2.

Proof. (i) follows from the fact that

(1 - )(
t = (s-M)( t

S

= (s- M)(1 + st ) A

< (s - M)(1 + (t - s)M
2 (s -s- M

-s -M+ (t-s)MI
2t

(ii) follows from the fact that

M 1 1

(1 - )!(1- - )2
Al i

<S 2

Al s since
2

(x + 1)< 1 +
- 2
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(iii) follows from the fact that

(MC 4 + f(s))2 (MC4+ f(t))2 (MC4 + f(s)) (1 + fCt - f(S)

(MC4 + f(s))

(MC4 + f(s)) (i

2 (M4 + f(s))

+ 2(MC4 + f(s))

MC 4 +f(s)+ -(t - s).
2

(iv) follows from the definition of C2. (v) follows from the fact that

V[Z(s), Z(t)] - V[A(s), A(t)] + V[D(s), D(t)]

= C4 s±+ (f(s)+f(t)-f(t-s)) by Lemma 39

if(t) - f(s)I + if(t - s)|
by the triangle inequality

> C4 s + f (s) - C3 (t - s).

(vi) follows from the fact that

V[Z(s), Z(t)] - C4s+ -(f(s) + f(t) - f(t - s))

> C4s - 3C2.

Lemma 42. For all y E [0, co], one has exp(-y) < 1 - i. For all y > Eo.

- e-Y > 1 - exp(-co)>0.
2 - 2 (C)>

one has

Proof. It follows from a simple Taylor-series expansion that I exp(y) - (1 + y) <

(e - 2)y 2 for all y E [-1, 1). Noting that I(e - 2)y 2 l < 1lyl if ly| < co completes the

proof. E
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We now complete the proof of Theorem 40.

Proof of Theorem 40. First, note that

V[W(s)) = V[MC4 (+ ) UM (s)]- )!l31(S) + V[(M0 4 +f(s))1
Al

- 4(1- )s+M04 +f(,S)
S

=V[Z(s)].

In general,

V[C (1 - ) B(s), C (1 - ) B60(t)]
t

+V[(M3C 4 + f (s)) 2 Uv (s), (MC4 + f(t)) UIA'(t)}

M i M 
= C4(1 2 (1 t 3 2s+ + t

+ (3104 + f (S)) 21 (MOC4 + f (t))

We now treat two cases. First, suppose t - s < coM-1.

(5.76)

exp ( - M(t - s)).(5.77)

Then (5.76) is at most

C4(s - M + t) by (i), ad (5.77) is at most

(3C14 + f(s) + C3-(t - s)) exp ( - M(t - s)) by (iii)

< (MC4 + f(s) + 2 (t - s))(1 - (t - s)) by Lemma 42
22

C3 124 Mf(s)
S1 4 + f (s) + 2(t - s) - 2(t - s) (t - s)

2 2 2

< MC4 + f(s) + ( + 2 - g2C

191

V{W(s) W(01)1

(5.75)

M310
- 4 (t - s)

(5.78)



Combining the above, we find that

V[W(s), W(t)]
MC4

C4s - MC4 + 2t (t s) + MC4 + f(s)

03 MC 2 M 2C4+(2 + 2 2 )(t-s)

03 MO2
< C4s+f(s)+( + 2

MC4
2t

< C4s + f(s) + (2M(C 4 + C2 + C3) -

M 2C4
2

04 M2

2/

(5.79)

t-s)

(t - s)(5.80)

It follows from (v) and (5.80) that V[Z(s), Z(t)] - V[W(s), W(t)] is at least

C4M2 - 2M(C
4 + C2(2 + 3) - C3 (t - s)

> M(C4 ( - exp(-co))M -4(C4+C2+ C 3) (t - s) > 0, (5.81)

by the definition of M1. Alternatively, suppose t - s ;> coM- 1 . Then (5.76) is at most

C4 (s - ) by (ii), and (5.77) is at most (MC 4 + C2) exp(-Eo) by (iv). Combining

the above, we find that

< C 4 (s - 2 ) + (MC 4 + C2) exp(-co)

= C 4 s + AC4 ((1 + ) exp(-co) -
A10 4

Thus by (vi), V{Z(s), Z(t)] - V[W(s), W(t)] is at least

1 02 302
2C4 (1 + MC 4 exp( MC4) - 3C

SAC 4 - exp(-co) - ( exp(-co)

AC14 (I - exp(-co) - 8(C4+ C + C)
2 AC

+ 2)M

> 0 . (5.83)
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V [W(s),I W(0)]



by the definition of M. Combining (5.75), (5.81), and (5.83) completes the proof. l
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