Estimation of Cardiovascular Indices
by Analysis of the Arterial Blood Pressure Signal

by MASSgg&-_:_USETTS INSTITUTE
Tatsuya Arai ECHNOLOGY
AUG '
Master of Science 22 201
The University of Tokyo, 2005 LIBRARIES
)

Submitted to the Department of Aeronautics and Astronautics ‘
in Partial Fulfillment of the Requirements for the Degree of ARCHIVES
Doctor of Philosophy at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 2011

e

Flune o]
© 2011 j\{assachusetts Instltute of Technology All rights reserved.

Department of Aeronautics and Astronautics

/ 7{\/\/ May 11, 2011
Certified by .. . y ..................................................................
\/ \)7‘/ [ Laurence R. Young

Apollo Program Professor of Astronautics and
Professor of Health Sciences and Technology
Committee Chair

- 1 A s
Certifiedby........ [P D e e e et e
Richard J. Cohen
Whitaker Professor in Biomedical Engineering
Thesis Supervisor

L///——\ n A 1 up
Certifiedby .......... U U 0 N P
Roger G. Mark
Distinguished Professor in Health Sciences and Technology and
/ Electrical Engineering and Computer Science
/ Vs

Eytan H. Modiano
Associate Professor of Aeronautics and Astronautics
Chair, Graduate Program Committee







Estimation of Cardiovascular Indices
by Analysis of the Arterial Blood Pressure Signal

by
Tatsuya Arai

Submitted to the Department of Aeronautics and Astronautics
on May 11, 2011, in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

Abstract |

This thesis introduces novel mathematical algorithms that track changes in stroke volume (SV), cardiac
output (CO), and total peripheral resistance (TPR) by analysis of the arterial blood pressure (ABP) signal.
The algorithms incorporate cardiovascular physiology within the framework of a generalized Windkessel
model, which is a widely accepted cardiovascular model. Algorithms to identify end systole were also
developed and implemented in the new and existing SV, CO, and TPR estimation algorithms.

The algorithms were validated by applying them to previously recorded Yorkshire swine data sets that
include directly measured aortic blood flow (ABF), SV, CO, as well as central and peripheral ABP.
Among the algorithms using the end systole identification algorithms, Parabolic Method, Modified Herd’s
Method, Kouchoukos Correction Method, and Corrected Impedance Method achieved low root
normalized mean squared errors (RNMSEs).

This thesis also introduces and validates a novel algorithm to reconstruct instantancous ABF
waveforms from the ABP signal. The algorithm utilizes an auto-regressive with exogenous input (ARX)
model to describe the filter between ABF and ABP. Because ABF (the exogenous input to the peripheral
circulation) is approximately zero during diastole, the diastolic ABP waveforms can be regarded as
auto-regressive (AR). By the AR analysis of multiple diastolic ABP waveforms, the AR parameters are
obtained. The AR parameters were applied to the ABP waveforms (both systolic and diastolic) to compute
beat-to-beat ABF waveforms. The errors of skewness and kurtosis of the estimated ABF waveforms were
statistically smaller than those estimated by the standard Windkessel model. The estimated ABF
waveforms were further processed to estimate SV, CO, and TPR. The algorithm achieved RNMSEs of
15.3, 19.6, and 21.8% in SV estimation; 12.7, 15.2, and 15.8% in CO estimation; and 14.3, 20.9, and
19.4 % in TPR estimation derived from central, femoral, and radial ABP, respectively.
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1. Introduction

1.1. Background

The cardiovascular system is the primary mechanism within the body for maintaining homeostasis by
delivering oxygen and nutrition, as well as removing wastes. As the average life expectancy lengthens,
age-induced cardiovascular risk is a major concern. Cardiovascular monitoring during clinical, surgical,
and research procedures is an important aspect of modern medicine, serving the function of monitoring
and maintaining the blood flow and pressure in the major organs such as the brain, the heart itself, and the

lungs (Fig. 1.1).

Fig. 1.1 Schematic diagram of the parallel and series arrangement of the vessels composing the circulatory system.
The capillary beds are represented by thin lines connecting the arteries (red) with the veins (blue). The
crescent-shaped thickenings proximal to the capillary beds represent the arterioles (resistance vessels). (Redrawn
from Green, H. D.: In Glasser, Ol, editor: Medical Physics, vol. 1, Chicago, 1944, Year Book Medical Publishers,
Inc.) Figure by MIT OCW, obtained from the lecture notes of 6.522 Quantitative Physiology II, MIT.



Over the last 100 years, researchers have developed techniques for minimally- or non-invasive

cardiovascular monitoring. This concept dates back many centuries to a time when legendary doctors

diagnosed patients by feeling their arterial pulses [1]. In modern medicine, the concept is augmented by

mathematical modeling as well as signal recording and processing techniques. Such techniques include

cardiovascular system identification (CSI) [2-6], which describes cardiovascular physiology as nesting

transfer functions relating cardiovascular variables. The complexity of the cardiovascular models that

have been developed varies from a one-to-one relationship of the cardiovascular readings [7-30] to more

complicated multi-variable models [2, 4-6, 31-33].

In emergency and clinical care, the major cardiovascular indices to be monitored are:
Arterial blood pressure (ABP; Fig. 1.2b-d)
ABP is the periodic fluctuation caused by the heart beat and occurs at the same frequency as the heart
beat [1]. ABP is usually monitored clinically by means of a radial artery catheter; it may also be
monitored non-invasively by using a finger-tip plethysmograph or radial artery tonometer.
Stroke volume (SV)
SV is the volume of blood ejected by the ventricles during each cardiac cycle [34]. In this thesis, SV
represents a beat-to-beat bolus of blood ejected from the left ventricle. Increases in left ventricular
relaxation and contraction lead to increased SV.
Cardiac output (CO)
CO is the average volume of blood pumped into the aorta by the heart per unit time [34]. CO is a key
hemodynamic parameter to be monitored and assessed in patients. CO can also be an indicator of the
exercise level as well as an early indicator of hemorrhage. CO is a flow rate [L/min] determined as a

function of SV and heart rate (HR):

CO = SV - HR | (1.1)

13



4. Total peripheral resistance (TPR)
TPR is the sum of arterial vascular resistances, mostly of arterioles. The smooth muscle tone
modulates the diameters of the vessels to increase or decrease the resistance and controls
systemic/local blood pressure and flow. In this thesis, the measured TPR represents the value
calculated by the measured CO and mean arterial pressure (MAP) using Ohm’s law as described in
Eq. (2.1).

5. Aortic blood flow (ABF; Fig. 1.2a)
ABF is the instantanecous blood flow in the aorta. The waveforms can be characterized by systole
(forward flow into the aorta from the left ventricle through the aortic valve), negative flow due to the
negative pressure generated by the prompt aortic valve closure, and diastole (approximately zero
flow, with aortic valve closed, as shown in Fig. 1.3). By integrating the beat-to-beat systolic ABF

over time, one can obtain the SV. Time-averaging of SV values yields the CO.

Currently, hemodynamic monitoring of patients in critical care settings depends heavily on the
monitoring of ABP. ABP is usually monitored clinically by means of a radial artery catheter. However,
ABP is a late indicator of hemodynamic decompensation. For example, Fig. 1.4 shows a hemorrhage
study by Barcroft et al [35] demonstrating that during the hemorrhage caused by venesection, the CO
continued to decrease while the blood pressure was maintained until the subject fainted. Multiple
physiologic feedback systems maintain ABP until the patient is on the verge of hemodynamic collapse.
CO and SV monitoring enables earlier identification of hemodynamic decompensation, but CO and SV

are difficult to measure and monitor.
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Fig. 1.2. Typical ABF and ABP waveforms simultaneously recorded in swine.
CAP, FAP, and RAP represent central, femoral, and radial arterial blood pressure, respectively.
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Fig. 1.4. Fainting episode induced by venesection.
In this instance, there is a slight further reduction in cardiac output during the fainting episode, but the total
peripheral resistance undergoes a much more profound decrease (1944 Barcroft et al., [35].)
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The most accurate method for measuring SV and CO involves the surgical placement of a blood flow
probe around the aorta. The drawback of the flow probe is that this method requires a highly invasive
thoracotomy procedure [20]. For the monitoring of CO, thermodilution [36] is a commonly used method.
Thermodilution involves injecting cold saline through a central venous catheter into right atrium and
measuring the temperature change in the pulmonary artery (Fig. 1.6). CO is then calculated using the
Stewart-Hamilton equation [37]. However, thermodilution requires a pulmonary artery catheterization,
which is associated with cardiovascular risks such as carotid artery puncture (when accessing an
intrajugular vein), cardiac arrhythmia, bleeding, embolism, clotting, and infection [38, 39]. Moreover,
thermodilution cannot continuously measure SV on a beat-to-beat basis, and its accuracy is limited. For
example, Boreto et al. compared a continuous thermodilution method with an ultrasonic flow probe and
reported a 0.36 L/min bias and a 1.96 L/min standard deviation (SD) [40]. Therefore, many studies have
been devoted to developing minimally- or non-invasive methods to monitor the cardiovascular indices

(SV, CO, and TPR).

Fig. 1.5. Ultrasonic flow probe.
Developed by Transonic Systems. Image obtained from http://www.emkabiotech.com/ on March 4, 2011.



Fig. 1.6. Schematic drawing of the thermodilution catheter position during measurement.
The injection catheter is in the superior vena cava (SVC). The thermometers are placed 1 to 2 cm from the tip and in
the main branch of the pulmonary artery (PA). RA, RV, and IVC represent the right atrium, right ventricle, and
inferior vena cava, respectively. Image and caption obtained from Ganz et al. [36].
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Arterial pulse has been used by researchers to estimate the cardiovascular indices because the arterial
pulse is readily accessible in general. In particular, analyses of arterial pressure waveforms (rather than
directly measurable simple mean, systolic, and diastolic pressure) have been conducted over the last few
decades to extract essential information that can be a better indicator of cardiovascular indices than
directly measurable ABP values. Along the line of such pulse contour analyses, this thesis aims to
develop novel algorithms to estimate SV, CO, TPR, and ABF by analyzing ABP waveforms and to

compare the performance of these algorithms with that of existing methods.

1.2. Previous Methods

This section describes an overview of minimally- or non-invasive cardiovascular index estimation.

1.2.1. Pulse Contour Methods

Pulse contour methods (PCMs) have been extensively studied [4, 10-32] over the last 100 years as a
means of estimating cardiovascular indices from the continuous mathematical analysis of peripheral ABP
waveforms. PCMs, in general, utilize characteristic points or portions of ABP waveforms. Researchers
have selected, processed, and combined several characteristic points or continuous portions of ABP
waveforms to formulate SV, CO, and TPR estimation methods.

One of the major challenges in developing PCMs is determining how to handle ABP distortion. As
arterial pulsation propagates from the aorta to the peripheral arterial tree, it experiences a tapered elastic
network, bifurcation, and reflection from the peripheral arterial lines. These perturbations cause ABP
waveform distortion (Fig. 1.7). The systolic peak values (systolic blood pressure, SBP) become higher in
the peripheral arteries than the central artery. This notion was confirmed by the analysis of central and
peripheral (femoral and radial) ABP waveforms recorded from swine (Fig. 1.8). The characteristic values
(MAP, end-diastolic pressure or DBP, and SBP) in the peripheral (femoral and radial) and central ABP

recorded from six Yorkshire swine data sets were compared. The vertical axes of Fig. 1.8 represent the
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pressure value changes defined as

Peripheral — Central <100
Central (1.2)

where Central and Peripheral represent the central and peripheral ABP values, respectively. For instance,
the leftmost bar in Fig. 1.8a shows the change of central MAP and peripheral MAP:

MAP

peripheral ~

MAP central
x100

MAPcenrral ( 1.2a )

As can be seen, SBP values tend to increase more compared to DBP and MAP values.

(6]
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Fig. 1.7. Arterial blood pressure curves recorded simultaneously in a wombat.
The top and bottom waveforms correspond to the proximal aorta (top) and peripheral arteries (below). From
“Arterial Pulse” by O’Rouke et al. [1].

To overcome the influence of waveform distortion, researchers have taken unique approaches. Herd ez
al. and Parlikar ef al. utilized ABP descriptors that are insensitive to distortion. Specifically, DBP and
MAP are used in their model to calculate CO. The advantage of the method is that it does not use the

systolic ABP that is subject to the distortion of ABP as it propagates through the arterial tree. Mukkamala
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et al. took an approach inspired by transmission line theory, which predicts that the confounding effects of
wave reflections diminish over an increasing time scale. The wave reflections significantly corrupt
peripheral ABP waveforms over short time scales (high frequencies) without complicating them over

longer time scales (low frequencies) [41]. Further details of the existing methods are introduced in

Chapter 2.
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(b) Radial vs. Central ABP
Fig. 1.8. Insensitivity of MAP and DBP to distortion.
As ABP waveforms propagate from central to peripheral (femoral and radial) arteries, the waveforms get distorted.

MAP and DBP values do not change between central and peripheral arteries, whereas SBP values increase. The bars
represent the mean, and black lines represent the standard error from the mean.

1.2.2. Alternative Methods

Although not explored in this thesis, there are other non-invasive or minimally invasive CO and SV

estimation methods.
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Impedance Cardiography

One of the commercially available methods other than the PCMs is bio-impedance or impedance
cardiography [34, 35]. This method involves the passing of a low-amperage (< 4 mA), high-frequency (50
— 100 Hz) current through the limb, thorax, or forehead to the limb using a pair of electrodes (Fig. 1.9). A
second pair of electrodes is also placed to the aforementioned locations to measure the impedance Z and
its derivative dZ/dt. These variables are used with a conversion factor to calculate the stroke volume and
cardiac output. It is difficult to determine what regions or organs contribute to the impedance change
recorded from the thoracic surface [42]. Although it shows remarkably good correlation with other
cardiac output measurement systems if applied to a select relatively healthy population, the results in

hospitalized patients are not satisfactory [43].

It
.
|

Figures obtained from Critchley, 1998 [44]. The thorax-limb configuration of the current injection and sensing
electrodes is shown on the left. The graphs on the right illustrate the measured ECG (top), impedance (middle), and
the first derivative of impedance (bottom).

Fig. 1.9. Impedance Cardiography.
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Fick’s principle

By analyzing airway gas measurement (carbon dioxide, CO,), Fick’s principle can be used to estimate
cardiac output:
vco,

CO=
CvCO, - CaCoO,

(13)
where I/"CO2 is the CO, excreted by the lungs and CaCO; and CvCO; are the arterial and venous CO,
contents, respectively. The CO, contents in the blood are estimated from end-tidal CO,. Although the
mixed venous blood contents including CvCO, are difficult to measure, one can obtain CO by using a

re-breathing technique [45]. Assuming that CO does not change between time 1 and time 2,

O vco,, _ vco,,
v, CO, —Ca,CO, Cv,CO, —Ca,CO,

(14)
where subscripts 1 and 2 indicate values at time 1 and 2 respectively. Utilizing the algebra: X = 4/B =

C/D = (4-C)/(B-D),

O VCo,, -VCo,,
~ (cv,co, - Ca,C0,)-(Cv,C0, - Ca,CO,)
vco,, -vco,,
(Cv,CO, - Cv,C0,)-(Ca,CO, - Ca,CO,)
_ vco,, -vco,,
" Ca,CO, - Ca,CO,

(1L5)

assuming that the mixed venous CO, content does not change during a brief change in effective
ventilation (Cv;C0O,=Cv,CO,). Thus, one can obtain CO by measuring the end-tidal CO, and arterial CO,
contents. The effects of unknown ventilation/perfusion inequality in patients may explain why the
performance of this method shows a lack of agreement with results obtained by the thermodilution

method [46].
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1.3. Specific Aims

The primary goal of this thesis was to develop novel algorithms to continuously monitor SV, CO, TPR,

and ABF waveforms by the analysis of ABP waveforms. The specific aims are two-fold:

Aim 1. Develop novel algorithms to estimate SV, CO, and TPR by the analysis of ABP waveforms
and compare the results with those of existing methods.

Using modeling techniques based on cardiovascular physiology and the Windkessel Model, several SV,
CO, and TPR estimation methods were developed. The estimation results were comprehensively

compared with those of the existing methods.

Aim 2. Develop a novel algorithm to estimate the aortic blood flow waveform by the analysis of
arterial blood pressure waveforms.

The second aim was to develop a novel algorithm to estimate instantancous ABF waveforms. In addition
to the traditional ABP analysis, ABF analysis would enable further cardiovascular assessment such as

evaluation of the left ventricular contractility.

1.4. Thesis Organization

In this chapter, an overview of the monitoring of cardiovascular indices was introduced, and the
specific aims of the thesis were described. Chapter 2 introduces existing cardiovascular modeling
techniques. The chapter covers a variety of major methods including empirical and theoretical models.

Chapter 3 is dedicated to the introduction of novel algorithms developed to estimate SV, CO, TPR by
the analysis of ABP waveforms. The algorithms incorporate mathematical models based on the

Windkessel model and cardiovascular physiology.
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Chapter 4 introduces a novel algorithm to estimate instantancous ABF by the analysis of ABP. An
auto-regressive model with exogenous input is adopted to describe the relationship between ABF and
ABP.

Chapter 5 provides details of the pre-processing of the ABP data sets. The methods to identify end
systole, peak systole, and end diastole on a beat-to-beat basis are described, as end systole time stamps are
not available in general from ABP signals. In particular, Section 5.4 introduces a series of methods to
identify end systole that could advance the new and existing cardiovascular index estimation algorithms.

The estimation results of the existing and novel methods are reported and summarized in Chapter 6.
Root normalized mean square errors (RNMSEs) and Bland-Altman’s plots [47] are used for the
comparison of CO, SV, and TPR estimation performance. For the reconstruction of ABF waveforms,
standard deviation, skewness, and kurtosis were also used to quantitatively evaluate the shapes of the
estimated waveforms compared to the measured waveforms.

Chapter 7 discusses the SV, CO, and TPR estimation results as well as a series of sensitivity studies
for the ABF estimation algorithm. The contributions of the present work and suggestion for future work
are summarized in Chapter 8.

Appendix A describes the derivation of the Hybrid Model, one of the novel algorithms developed in
this thesis work (introduced in Section 3.5). Appendix B shows conference posters describing the new

algorithms to estimate cardiovascular indices.
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2. Previous Work

The aim of pulse contour analysis is to extract essential hemodynamic information (e.g., ABF, SV, CO,
and TPR) from the peripheral data (i.e., peripheral ABP). Researchers have developed several models and
algorithms to estimate SV, CO, and TPR by the analysis of central and/or peripheral ABP waveforms.
Their approaches can be categorized into two groups: empirical (data-driven) and model-based
(theoretical cardiovascular physiology).

Empirical models utilize characteristic cardiovascular descriptors such as HR, area under the ABP
curves, pulse pressure (PP), and MAP to find linear or non-linear coefficients for the descriptors to
construct a SV estimation formula. In finding coefficients, measured CO data (mostly recorded from the
thermodilution method) are used to calibrate the models. Other than selecting the physiological
descriptors (i.c., HR, PP, MAP), the model can be highly data-driven, and cardiovascular physiology in
terms of the relationship between descriptors is not necessarily taken into account. Thus, these models
may work for a nominal cardiovascular system in the healthy population but not for people who are
de-conditioned and have premature ABP beats and/or heart failure.

On the other hand, model-based approaches adopt cardiovascular physiology and mechanical
principles in modeling, and in many cases, simplify the arterial system to obtain SV, CO, and/or TPR.
Therefore, model-based approaches are expected to work for off-nominal conditioned cardiovascular
systems as well as deconditioned systems. Nonetheless, any method has to make assumptions in
processing ABP data. One cannot model the entire cardiovascular system in complete detail from the
observation of ABP signals. One has to assume, for example, that ABP reflection is negligible, ABP
waveform distortion in peripheral arterial branches is not considerably large, or that the MAP is
approximately equal in central and peripheral ABP signals. Note that what differentiates one PCM from
another is its assumptions in modeling the relevant cardiovascular physiology.

Before introducing the existing PCMs and discussing their pros and cons, the first two sections
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describe the most widely accepted common-ground frameworks of each PCM: Ohm’s Law as used in
electrical circuits and the Windkessel model named after the German fire extinguisher that involves a

buffering system.

2.1. Ohm’s Law in the Cardiovascular System

The steady-state pressure and flow relationship in the cardiovascular system can be described as the

Ohm’s law of an electrical circuit:

P=F-TPR or MAP =CO-TPR (21)

where P is the MAP, and F— is the mean flow or CO.

2.2. Windkessel Model

“Windkessel” literally means “air chamber” or “elastic reservoir” in German. The vessels can be
modeled as elastic tubes that store blood volume, build up pressure in systole, and recoil and discharge
blood flow during diastole in each cardiac cycle. In quantifying the clastic reservoir, the mathematical
foundation was developed by Otto Frank [48]. The two-parameter Windkessel model (Fig. 2.1) is the
widely accepted electrical circuit (RC circuit) analog of the cardiovascular system [8, 10, 20, 49-52). The
elements (battery, capacitor, and resistor) represent the heart, aortic or arterial compliance (C,), and total
peripheral resistance (TPR) or systemic resistance, respectively. The current and voltage are equivalent to
blood flow and blood pressure, respectively. The current source provides a train of impulses. The voltage
then shows exponential decay curves that mimic diastolic ABP waveforms. The characteristic time

constant 7 can be described as the product of arterial compliance (C,) and TPR.
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Fig. 2.1. Two-parameter Windkessel model.
Systole is modeled as an impulse ejection of blood from the flow source (the heart) into the RC circuit representing
the vasculature. The resistance, capacitance, and voltage are represented by total peripheral resistance (TPR), arterial
compliance (Ca), and arterial blood pressure (ABP), respectively. The equations describe the time constant (z) of the
exponential decay of the ABP waveform and Ohm’s law. The figure was obtained from Mukkamala ef al. [20].

The principal equation of the two-parameter Windkessel model is:

F _dp P
C d 7 (22)

a
The impulse response of the system is ideally an exponential decay with the characteristic time constant 7.

Ohm’s law and the Windkessel model have provided researchers with a fundamental framework with
which to model the cardiovascular system that involves ABP, TPR, CO, SV, and ABF. For instance,
Bourgeois et al. [9] was one of the first researchers to analyze the exponential decay constant of the
diastolic ABP waveforms to obtain . This method worked for applications related to the estimation of
central ABP (CAP). SV and CO were also successfully estimated using these methods in applications
related to the analysis of the CAP waveform in both dogs and humans [9, 13, 27]. However, such
exponential decay curves are generally not apparent in peripheral ABP waveforms. To overcome this
problem, further models have been developed by researchers to analyze the pulse contour of ABP and
extract characteristic descriptors within the ABP waveforms.

The following sections describe existing PCMs that analyze peripheral ABP to estimate proportional

CO, TPR, and SV.
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2.3. Windkessel SV
As mentioned in section 2.2, the two-parameter Windkessel model

F dP+P
C d T

a (22)
has been widely used by researchers to model the cardiovascular physiology as an electrical circuit
equivalent. By fitting the diastolic ABP signal to an exponential decay curve, one can obtain the
characteristic time constant 7.

The integral of the proportional ABF (F/Ca) in time provides a proportional SV estimate:

iE—d J-(dP P)

1
1

=P, -P +— [ Pdt

T3 (23)

where 1 and 2 are the start and end points of the integral, respectively. The time average of the SV

estimate is the CO estimate. In this thesis, end diastole of the preceding beat and the current end systole

are the points 1 and 2, respectively.
Some of the following methods use this Windkessel model SV with different assumptions for P, P,

and 7.

2.4. Pulse Pressure

This method takes the capacitor equation into account.

AQ=C-AV

:>SV=C0APP (24)

Pulse pressure (PP), i.e., the difference between SBP and DBP of the preceding beat is regarded as a

proportional SV [12]. Because it is easy to find SBP and DBP in ABP signals by using devices such as a
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sphygmomanometer, this method is widely used as an estimation method to track changes in SV.
The drawback of t his method is that SBP values can be distorted as ABP waveforms propagate from
the aorta through the arterial tree to the peripheral ABP measurement locations, as can be seen in Fig. 1.8.

In the meantime, DBP stays relatively constant. Thus, the proportional SV could be overestimated.

2.5. Liljestrand-Zander’s Method

Liljestrand and Zander [17] modeled the arterial compliance C, as a function of pressure. As ABP
rises, C, decreases, as shown in Fig. 2.2. The figure also shows two different operating pressures. Both
have equal PP while SBP and DBP are different, and when the mean of SBP and DBP is high, C, becomes
small. Therefore, by considering the inversely proportional relationship between ABP and C,, C, can be

described approximately as

1
C, € ———
SBP + DBP (25)

Then, the proportional SV can be obtained by:

SBP - DBP

SV =C, x PP «
SBP + DBP (26)

AV a

I

]
1
1
'
)
)
1
1
'
'
'
]
b
L

SBP DBP SBP DBP

> AP

Fig. 2.2. Qualitative illustration of a pressure-volume curve.
The slope of the solid line (pressure-volume curve) represents arterial compliance C,. The dotted line shows SBP
and DBP under different operating pressures.
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This method was reported to have resulted in the best CO estimation (reference method:

thermodilution) when applied to the data sets recorded from ICU patients [53].

2.6. Herd’s Pulse Pressure

This method was developed by Herd [14] ef al. and re-discovered by Sun [53] and Parlikar [23].
Instead of SBP, MAP is used in the pulse pressure method. Both MAP and DBP are robust against

distortion, and this method provides reasonably robust SV estimation.

SV o (MAP - DBP) (27)

The drawback of Herd’s method becomes apparent when the diastolic interval becomes longer than
regular beats (e.g., asystole); regardless of the systolic pulsation, as diastole continues, the current MAP
value continues decreasing. Consequently, the estimated proportional SV ends up in underestimating the

SV. To overcome this problem, a new method is introduced in section 3.2.

2.7. Beat-to-Beat Averaged Model

Parlikar et al. [23] developed a new beat-to-beat CO estimation method based on the Windkessel

model.

Mdt=£1-/—

C, c

;—-'——'I\)

a

2
=P2—Pl+lj1>dt
T (28)
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CO SV -HR
s 4 =

C, C,
_sr 1

c, T

a

1 13
=—(P2——Pl +-—IPdtj
T T
_PB-R  M4P
T T

where F represents ABF, P is ABP, Ca is arterial compliance, subscripts 1 and 2 indicate the onset of
diastole and an arbitrary time point after the end systole of the beat, respectively. To obtain 7, instead of

diastolic exponential curve fitting, they utilized the pulse pressure method (2.7):
SV =2(MAP - DBP)-C,

_ co_ 2(MAP — DBP)
¢ T (29)

The coefficient 2 in front of (MAP-DBP) was empirically found by Parlikar et al. [23] to provide the
lowest CO estimation errors. Thus, from (2.8) and (2.9), one can obtain 7 by solving

MaP _ 2(MAP - DBP)-(P, - P))
T T (2.10)

or by using multiple beats to solve the following equation:

2(MAP, - DBP)- (P, - F), |
[ MAP, | T,
Pl Z(MAPiH ~ DBP:‘+1)_ (Pz - P )i+1
: 7 Ti+1
4 .
-MAP’""N— 2(M41)1+N _DB});+N)_(P2 —Pl)i+N
- Lo . (2.11)

The obtained 7 was used in (2.8) to calculate the proportional CO.
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2.8. Systolic Area

One intuitive way to estimate SV, the time integral of instantaneous blood flow, is the integration of

the ABP signal [27, 50].

tES

SV « IP(t)dt
b (212)

where #*? and ¢*° are the time stamps for the end-diastole of the preceding beat and current end systole,
respectively, and P is the ABP signal. This model can be re-described as the integral of the instantaneous
aortic blood flow in the Windkessel model with a constant TPR and equal preceding and current end

diastolic pressures. A variant of the method subtracts DBP from the ABP signal:

SV o« [(P(t)- DBP)dt
(213)

ABP [mmHg]

v

Time [s]

Fig. 2.3. Systolic Area under the ABP curve.
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2.9. Corrected Impedance

Wesseling et al. [29] developed a SV estimation method based on the Systolic Area method. They

obtained impedance as a function of MAP and HR.

IES
SV « (163 + HR~0.48- MAP) [ (P(t)- DBP )dt
120 (2.14)

The coefficients in the impedance (scaling factor) were empirically obtained from healthy male
subjects in their 20s. Thus, this method can be described as 2 model-based method (systolic area) scaled

by empirical coefficients.

2.10. Systolic Area with a Kouchoukos Correction
Kouchoukos ef al. developed a different algorithm based on the Systolic Area method:

SV o (1 + %S—T}S(P(t)- DBP)dt

D /P ( 2.15 )
where T is the beat interval, and Tp and Ty are diastolic and systolic durations, respectively [15]. The
correction factor 1+ T¢/Tp comes from the work by Warner et al. [28]. The correction factor takes into

account the run-off aortic flow into the arterial tree bed during systole.

2.11. AC Power

This method calculates

SV \[% [ (P(t)-M4P)’ dt

where T is the beat interval [53].

(2.16 )
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2.12.Auto-Regressive and Moving-Average Model

Mukkamala ef al. [20] introduced system identification techniques into the cardiovascular parameter
estimation. They modeled the impulse response of the cardiovascular system as an exponential decay
curve with the characteristic time constant 7. In the model, the current ABP signal can be described by the
preceding ABP signals with weighting coefficients, and the arterial pulse. The arterial pulse was

approximated as the PP values.

Pli]= Y aljJPli~ j1+ 3. HkIPPLi~ K

(2.17)
Pl | [ Pi-1 Pli-2] - Pli-p] Tafl]
Pi+1]|_| Pl Pli-1 - Pli-p+1] | a2]
| P[i+N]| |Pli-1+N] Pli-2+N] - Pli-p+N]|a[p]]
PP[i—1] PP[i-2] -  PPli-q] 4[]
| PP PP[i-11 -+ PPli—g+1] || 5[2]
| PP[i-1+N] PP[i-2+N] --- PP[i—q+N1]| blq|]
(2.18)

where a and b are auto-regressive (AR) and moving-average (MA) weighting coefficients (parameters),
and p and g are the parameter lengths. N is the number of data points in six minutes (sampling rate: 90
Hz). An interval of six minutes was selected by Mukkamala et al. Note that P represents the ABP signal
and PP is a train of intermittent PP spikes at the onset of systole (Fig. 2.4). By utilizing the minimum
description length (MDL) technique [54], Mukkamala et al. found that p and g were smaller than 20 for

an ABP recorded at 90 Hz.

35



— AC éTPR

COochL.P
—

255 26 265 27 275

t=TPR-AC
1000(
:'c—g‘
E 500
0
(&)
s 25
=110
Tl
g 90
4 g
70

245 25

2556 26 265 27 275

Time [s]

Fig. 2.4. The auto-regressive and moving average model
CO is modeled as a train of PP aligned at the onset of systoles. Obtained from Mukkamala ef al. (2006) [20].

The impulse response of the system 4/n] can be obtained from the AR and MA parameters:

M= 3. aljPn 1+ 3 bKIOTn ~ A]

(2.19)

1

o}

0.6}

o4t

02} P;,.h
L
0 1000 2000

3000 4000 6000

Fig. 2.5. Impulse response in ARMA model

A typical impulse response is shown in Fig. 2.5. The characteristic time constant 7 is obtained by the

decaying slope. The proportional time constant

estimate:

7 and MAP are used to calculate a proportional CO
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_ MAP « MAP
TPR T (2.20)

Cco

2.13. Summary

In this chapter, several cardiovascular indices estimation methods were introduced. If the
cardiovascular system to monitor is ideally compliant with their assumptions, i.c., central ABP, no
reflection from the peripheral circulation, no distortion, no large perturbation in ABP signals, and no
external disturbance such as respiration, all the methods should work and provide low-error SV and CO
estimates. However, that is not the case for measurements taken in clinical, surgery, and research settings.

The current challenge is to develop a robust model that is insensitive to disturbances external to the
model in the way it processes, removes, or filters the recorded ABP signals. In the following chapters,

other novel algorithms to estimate CO, SV, and ABF are introduced and validated.
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3. Estimation of Stroke Volume and Cardiac Output

This chapter introduces new algorithms to continuously estimate SV, CO, and TPR. The algorithms
are based on quantitative cardiovascular physiology. Each method utilizes a different assumption in

calculating the characteristic time constantz.

3.1. Minimum Variance Method

The ideal two-parameter Windkessel model is

F(t) _ap(t)  P()
C dt T (22)

a

where 7 is the characteristic time constant. Let 8 be the inverse of 7 for convenience:

1
A=z (3.1)
The integral of the beat is taken to obtain the proportional stroke volume of the beat:
SV_{F0),
¢, .G
t( dP(t) )
= [ 2+ gr(r) |a
I e
t
= P()- P(t,)+ B[ Ple)dt
b (3.2)

where 1 is the time of the end diastole of the preceding beat. SV is given by integrating systolic ABF; the
integral of diastolic ABF (#5<t<7) does not contribute to SV (Fig. 3.1). Therefore, the left item of (3.2)

should be the same for all ¢ that satisfy ts<¢<T. Therefore,
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Fig. 3.1. Typical ABF waveform and its integral from the onset of systole to time .
With ¢ in diastole, the integral of ABF(#) (i.e., SV) does not change because ABF () is approximately zero during

diastole.

t5+AL

Plty)- Plty)+ 8] POt = Pltg = a0)- P(L,)+ 8 | PO

tp+T

= P(T)-P(i,)+ B [ P(e)ds
e (33)

where Af represents the time increment. Thus, one can find the § that provides the least variation of
proportional stroke volume.
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(]

where E [X] represents the expected value of X and i is the beat number. In this case, the expected value is
the mean of X over the single beat T. The optimal value of A would satisfy Eq. (3.3) and provide the least

variance in (3.4). The following steps provide an analytical solution for 8.

The expected value of X is defined as

£lx)= Lo -
-
E[[SC’:) } o0 Ptu)wjp(t)dz}
=—'j”[ PO-,)+ 5] UK ] -
i
o S]] -
L 0=t .

The variance is defined as
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- V[iVj |
-]

__"]” (P()- P(t,)+ BI(E) )Zdt—[ "’fb») P(t, )+ pI(t ))dtJ

(3.8)
where
1()= [ P()ar’
p (39)
to describe ¥ as
tD+T tp+T
=— j (P(t)-P(t,)+ pI(2) )zdt—( j (P()- P(z, )+ ﬂ](t))dt]
(3.10)
To find B that minimizes the variance 7,
ov_ o 177
ot |PO-r)e p6) a
a 1 /tD+T 2
| Tlet0-rtu)e
\ o
=0 (3.11)

Further process the equation to obtain an analytical solution:
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0= ;_(p t)- Pt )+ BI()) dt

1

__i[ [(P()- P, )+ﬂl(t))df]

T? op

Thus,

-+
~

[ )-

D.+ (P(s)-P(t, )+ BI(2)) 1(¢)dt

et o lot0-t |

D.tzp(’)_ Pty )+ BI(t))- 1(2)at
tDJtzP(t) —P(t,)+ Bl (t))dzf)tbj+ T] ()t
\ ;

Sort the equation in terms of S,

firt)- i 605 i

-4 fortr-re Ju)m—[ fit ]

Thus,

ﬂ”jz(z)zdt-g{”jz(z)dt] -

—L(tpjf T(P(t - P(z, )dzf}tbj+ Tl(t)dt
- j(P(t )- 1(r)dt
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(3.14)
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Therefore, the analytical solution of 7 (inverse of §) is given by

1
T=—

B
IDJT TI 2dt - —(tpf TI(t)dt]
(tpf ZP(I - P(t, )dt]t jt ; )at _ f ( P(t)—P(t,))- 1(t)dt

Ttpf TI(t)zdt {tT 1:7 t)dt]
[tbf 2P(t )’ JTTI )dt—Tt f zP(t )= P(¢,))- I(¢)dt

(3.16)

The value of T is used in (3.2) to calculate the proportional SV, and the time average of SV values over six
minutes gives CO. In obtaining £, multiple beats (M = 17) were used to obtain a stable value of 8 and the

value of f was applied to the central beat in the 17-beat moving window.
tpmtTm tpm+T,
ZT [1,() de-Y [ [1, (t)dt}
M [ omtTn . tp+T, DtD wtT
Z{ [(P.(2) ] [1(e)de - ZT [P, ()= P, (,))- 1, (t)at

T =

p,m Dom tp,m

(3.16a)

where m is the beat number.

3.2. Modified Herd’s Method

This method stems from the notion that MAP and DBP are insensitive to distortion (Fig. 1.8 and [14]).

The hypothesis was that the pulse pressure method to estimate SV based on the Windkessel model [18]:
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sV = SBP — DBP
C (3.17)

can be improved by introducing MAP instead of SBP that is sensitive to distortion (Herd’s work):

SV _ pap-DBP
C (3.18)

The disadvantage of the method is that MAP takes a diastolic interval into consideration. Suppose the
diastolic duration was extended after the aortic valve closure. For this beat, DBP remains almost the same
as the preceding beats, but MAP becomes lower than the preceding beats. As a result, the algorithm

underestimates the proportional SV using (3.18).

A A

Pp

v

|-
>

Fig. 3.2. Beats with a normal and abnormal diastolic interval.
An increased diastolic interval lowers the calculated MAP of the beat, and its stroke volume would be
underestimated using Herd’s method.

In this section, a modified Herd’s method is proposed. MAP is regarded as a mean pressure value over the
systolic interval.

v

o= [ P(¢)t - DBP

a Systole ( 3.19 )
This method requires the identification of end systole. In validating the method, a series of methods to

identify end systole (section 5.4) are used.

3.3. Parabolic Aortic Blood Flow Model

This model approximates the Windkessel aortic blood flow as a parabolic flow curve:
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F = At(T —t) (3.20)

where 4 is a scaling factor, 7 is the time stamp of the end systole of the current beat, and ¢ is time. SV of

the beat is an integral of the flow from end diastole to end systole:

Ts
SV = [ F(t)dt

1
= 4| (T, —t)dt

_ATS3

3
T (321)
The ABP can be described as a sum of static (Ppexp(-#/7), decaying end diastole from the preceding beat)

and dynamic (decaying external input, i.c., ABF) components:

t t—t'

P(f)= per+ij (e

a0
= Pe” “L j e’ (T, —t'}y'dr
aS 0
=e_ﬂ,{Po+6SV( 2)} 6SV{ +(Zs_+ 22}_TSZ_23}
ﬂﬂ CIS\B \B B B B (3m)
where
=l
7 (323)

Taking the average of both items in (3.22) over the systolic interval T,
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Therefore, the proportional SV (Q/Ca) can be calculated as

T, -
l—jP@kﬁ—l_er

[l
—_ | —_
O'—'—-ua

ol

ﬂ

PO
SV 5 Ts % Y
_}/ ~
C, l-e7 (1 2 1 2
6 '—2-+—3+—'——'—-3—
/4 ro oy 6y vy
where
}’EIBTS

Here, by introducing Ohm’s law:

MAP =CO-TPR

- co--*
C

a
a beat-to-beat CO can be calculated as

co=5"
T

where T is the beat interval. Plugging (3.26) and (3.27) into (2.1),
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MAP _Srz
C

1
C, Tp
SV Iy

C. Ty (3.28)

Using multiple beats to in obtain stable value of 7,

jf;fﬁﬁP@)ﬁ
e

=7

(3.29)

Therefore, by plugging (3.26) and (3.29) into (3.25), one can obtain proportional SV. The proportional

CO can be also calculated time-averaging the SV values.

3.4. Pressure Ratio Method
As can be seen in the Minimum Variance Method (Section 3.1), the Pressure Ratio Method takes into

account the two-parameter Windkessel model and the fact that aortic blood flow is approximately zero

during diastole. Starting from the Windkessel model:

SV pl)- Pley)+ ] PN
C, . (3.2)

Now, select two different ends of the integral: end systole /° and end diastole *°. Because the flow
integral from end diastole 7, of the preceding beat to the end systole 7 should be the same as that from

end diastole of the preceding beat #5 to the current end diastole 72,
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Therefore, one can calculate T (inverse of ) and proportional SV by

1 PI - PSI,
ﬂ PES PED

and the proportional SV of the beat can be calculated as

SVi tjf F(t) PES

ED
4 a

Furthermore, using multiple beats to obtain a stable value of f=1/7,

th

(7
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where

___J'F(t)dt_PED pEP
C

PES _ PED

- PSI,

PI - PSI, '

pES _ pEp

+-——i . pJ

PI, - PSI,

RﬁD)+ﬂ-PSliﬂ

)+ B-PIY, = PP — B + B PIY,
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iy N
pSI) = | P(t)dt =Y PSI,
+ED i=1

and
5 N .
PIY = j P(t)dt = (ZT,.)P
,iE_ll> i=1

Therefore, one can calculate t (inverse of §) by

N N
1 [ZT,.]P - > PSI,
—_ i=1 i=l

T=—=

B i(P'ES —Ple)— (PiD _E)ED)

1
i=1

The obtained £ is used to calculate SV from (3.30).

3.5. Hybrid Model

(3.31a)

(3.32a)

(3.33a)

This algorithm utilizes end-diastolic blood pressure (end-DBP) values, beat-MAP (MAP; - MAP of a

single beat), inter-beat interval (73), and the time interval from the onset of SBP to peak SBP (7;) in the

peripheral ABP waveform. These variables are selected for the CO and SV estimations because they are

known to be relatively insensitive descriptors to the distortion of the ABP waveform in the arterial tree [1].

This notion was confirmed by analyzing the previously recorded Yorkshire swine data sets (Fig. 1.8). This

new algorithm takes an approach to reconstruct ideal or theoretical Windkessel ABP waveforms by using

the aforementioned descriptors.
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3.5.1. Basic Model (Model 1)

Pressure (mmHg)

Fig. 3.3. Waveform of the measured femoral ABP and the theoretical Windkessel model ABP.
Each systolic peak time (7}%) in the Windkessel ABP (gray) is aligned to that of the measured ABP (black). On a
beat-to-beat basis, the Windkessel time constant (r) is computed so that the beat-MAPs of the measured and

calculated Windkessel waveforms are equal.

The new algorithm estimates SV using the end-DBP immediately preceding the current beat (PP), the
end-DBP at the end of the current beat (P;.,”), MAP,, T;, and TS, In the two-parameter Windkessel model,
proportional SV can be obtained from these variables as SV(i)/C,.

Fig. 3.3 illustrates the measured ABP and the theoretical Windkessel model ABP. Although C,
declines with age [55], C, is nearly constant on the time scale of months over a wide pressure range [45,
46]; thus, C, was assumed to be constant throughout this relatively short experimental period. For each
cardiac cycle, the two end-DBP values (P, P;. ) were obtained.

Then, the theoretical Windkessel ABP waveform was generated using the following equations:

D
[ )
P(t)=P"ex - for t” <t<t’
& (335)
') sv(i t-t")
P(t) = PiD €Xp| — + () CXp| ——— for ¢° <t<t,”
T, C T,
i a i (336)

50



where 1;” and ¢ are time stamps of the end of diastole (onset of systole) and the peak systolic point of the
i" ABP waveform, respectively. P? is the end-DBP immediately preceding the i beat of the measured
ABP. T and T; are the intervals from the onset of systole to the peak systolic point and inter-beat interval
of the i ABP waveform (onset of systole to onset of next systole), respectively. SV(i) is the SV of the i*
beat. The step in the theoretical ABP waveform is aligned to the peak of the measured systolic ABP. The
Windkessel time constant (7) is adjusted so that for each beat, the MAP of the measured ABP equaled the
MAP of the Windkessel ABP.
Taking the average of the ABP over the i beat using the above equations (3.35, 3.36), the MAP can

be expressed in terms of T}, P, P;.,>, SV(i) , ., and C, as follows:

t, .o SV@E) _ b
Pt)dt=—P" +—+-P,
T. A z() T(z C i+l )

1

i a (3.37)
As shown in Fig. 3.3, the i"-beat PP of the ideal Windkessel ABP from (3.35, 3.36) can be calculated by

subtracting the two ABP values at 7;°, yielding:

. T —T-S T.S
6 _p,» exp(_(' ' )J_Pi” exp[‘l_J
C T, T,

a ; i (3.38)
Substituting (3.38) into (3.37),
T, » (T.-T%) b T’
MAF, =—{F,, (exp —/——= |-D+E (1-exp -/ |}
T G G (3.39)

Equation (3.39) can be numerically solved for t,. SV{(i)/C, thus may be estimated from the values of
PP, Pi.;°, MAP, T, and T’. The value of the peak systolic blood pressure, which is more prone to
distortion than end-DBP, is not used.

The new method can estimate 7 on a beat-by-beat basis. In actual implementation, the median value of ¢
is calculated after applying (3.39) over a 20-second moving window; this median value is regarded as the
T of the beat in the middle of the 20-second moving window. The SV of each beat is calculated by shifting

the 20-second moving window on a beat-to-beat basis. The 20-second window was empirically found by the
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authors to provide the smallest estimation errors over a wide range of physiological conditions.

7 equals the product of TPR and C,,. C, is assumed to be constant. TPR varies with changes in vasomotor
tone, which generally occur slowly on a time scale not faster than 20 seconds. However, SV which
depends on other factors (such as changes in filling pressure, filling time, and contractility) can vary on a
beat-by-beat basis (e.g., consider a premature ventricular beat). Thus, estimating the tau parameter as the
median of a 20-second window reduces the noise in this estimation without compromising our ability to

estimate beat-to-beat changes in SV.

3.5.2. Reduced Parameter Models (Model 2 and 3)
Models 2 and 3

Model 1 is a five-parameter model:

SV,,,opl(i)E%@=f(MAe,e",P 1,;)

i+l

a (3.40)
Here, SV, is proportional to SV with a proportionality constant of 1/C,.
In addition to Model I, four- and three-parameter versions of the model were introduced. In Model 2,
T is set to zero and the step in the theoretical ABP is set to coincide with the end of diastole/onset of
systole.
SV, mali)= f(MAP,P” ,P,.T) (341)

Model 3 is the same as Model 2 except that it is assumed that PP =P, °:

sv,.(i)= r(mar, P°,T) | (342)

Each model is illustrated in Fig. 3.4.
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3.5.3. Hybrid Model

Of the five measured parameters, there are three dimensionless variables (7, T;, PP/ MAP; and P;.;”/
MAP;) that characterize the ABP waveform. Thus, combining the three models for estimating SV,
should span the space covered by the three dimensionless parameters. Thus, one can think of the three
proportional estimates of SV generated by the models as a generalized vector of estimates that span the
parameter space. A hybrid model can be used to combine the three estimates of S¥,, to form a specific
estimate of SV,

One hybrid model for .estimating the SV of the i® beat SV; is given by:

sv,=c,sv,_ (i)- SV pop2 @) (Vs )
i a™~ " propl SVpropl (l) SVP'OPI (l) (3.43)

Note that the equation estimates SV; in terms of geometrically weighted estimates of SV, from
Models 1-3 using exponents a, and a,. For example, if a,=0 and a,=1, then SV=C,SV; and (3.42) is
adopted. The coefficients allow non-discrete switching between the three models. By taking the natural
logarithm of (3.43), the equation becomes linear

t,7)=D()+ 3t )+ a X, () + a,X,. G, ) (3.44)
where i is the beat number, j is the subject number, y=In(SV)), D(G)=In(Cy), y1=In(SVprop1), X1= IN(SVyprop/
SVprop1), and Xo=In(SV pop3/ SV prop1). Linear regression and least mean square error analysis yield arterial
compliances C,(j), a;, and a,. The parameters a; and a; are common among all the subjects, and each
compliance C,(j) is unique to the subject .

Redefine y —y; as ¥:

Y(i:j)zD(j)+alX1(i:j)+azXz(i:j) (3.45)

Define
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E= ZL:%){Y(I',]‘)— D(j)_ale (i,j)—a2X2(i,j)}2

J=1 i=1
where N(j) is the number of beats recorded from animal/subject j.

To minimize E with a’s,

o =22§){Y(i, 7= D)=, 1) - 0, X, G ) X G ) =0

0%, 6.)= 3 S DX, 6 )+ S S S X, 6 )X )

j=1 i=1 Jj=1 i=1 k=1 Jj=t i=l

or

-—iD])i z] ’HhZiX (z X(l] +a22i sz(z ])

j= j=l i=l j=1 =1
L N(J)

>3 Y6 )X, 6 7)

e
L NU)

=ZDJ)Z_1;X LJ +alZZX (’ J)Xz(l +“222X ’J)X (l J)

j=1 j=1 =l j=1 =l

Also, change the D’s to minimize £

N(j)

=42&@n )-a,X,(i,n)- a, X, (i,n)}

=0
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(347)
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(3.49)

(3.50)
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N(n N(n) N(n) N(n)
= fY(i,n)= iY(i,n)-kal i:X,(i,n)+a2 in(i,n)
i=1 i=1 i=l i=1

(3.52)
Therefore,
szl £Y11+a1£X zl+a2£X i,1)
i=1
N(L) ) ) N(z)
YzL zl +a, L +a2 Xz(i,L)
P (3.53)
Combining them, the following matrix can be obtained:
P \ ( N, 0 %?Xl(i,l) %X (@A)
fy(i,l) Q) )
= : N, - 0 X,(,2) ix (i.2) D,
NE) . = =l :
Y(i»L) 0 o 0 M) :
. _§=1 = 0 .- N, i)Xl(i,L) th(i,L) D,
ZiY(i,j)Xl(i,j) N(L) LN '§=1 L N '§=l a4
I fx @ - - ¥ 3066 DIx66) |
Y i,j . i,j i=1 j=l i=l j=1 i=1
S sz(i,l) e ﬁX ZﬁX (@)%, (. ) ZiX WD A))
(3.54)

The parameters a; and a4, are common among all the animals, and each compliance C,(j) is unique to the
animal j.
Although (3.45) is a first-order equation, it is possible to generalize the hybrid model by introducing

X; and X raised to higher powers. Equation (3.45) can be generalized as

M=l g=0 (3.55)
where Mp.x is the model order and ,C, is the binomial coefficient, while a,, are the parameters to be

found by the linear regression analysis. For the derivation and implementation of (3.55), see Appendix A.
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Once the parameters are obtained, SV is calculated as

SV = exp(y) (3.56)

CO is calculated by averaging SV over the six-minute window that overlaps every three minutes.

100 100
95 1 95 1
o 90 1 o 90
E 85. : PiD E 85' ]
5 80 T~ 5 80
17 17}
£ 75 f : £ 75 E
70 1 L T‘ R g 70 L Tz .
As : r . — &S : . . —
0 P tf 06 t,.° 0 t 0.6 r,.°
Time (s) Time (s)
(a) Model 2 (b) Model 3

Fig. 3.4. Model 2 and 3 of the Hybrid Model.

3.5.4. Implementation

The algorithms were implemented in the following steps. First, all the characteristic points in the ABF
and ABP waveforms were labeled using a labeling algorithm described in Chapter 5. The ABF
characteristic points are the onset of systole, peak systole, the first dip after the peak of systole (valve
closure point), and end of diastole. The ABP characteristic points are the onset of systole, peak systole,
onset of diastole mapped from the ABF characteristic point, and end of diastole. Secondly, reference CO
and SV were calculated from the measured aortic blood flow by the flow probe. The following sections
describe the implementation of each method.

End-DBP (PP), time interval (7), time to systolic peak (7%), and MAP were defined by the analysis of
femoral and radial ABP and applied to (3.39) to obtain the Windkessel time constant (t). The median
values of 7 and 7° over a 20-second moving window were used to minimize the error due to outliers. The
values of © were applied to (3.40 - 3.42) to estimate the proportional SV (SV,rps, SVprop2, and SVp3) 00 2
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beat-to-beat basis in each model. The measured SV and S¥,np1, SV prop2, S¥props Were used to calculate the
C., of each animal subject and the parameters a,y, in (3.54) using linear regression and least mean square
error analysis. The obtained parameters ay, and C, were applied to (3.55), and the final SV was estimated.
To compare with other CO estimation methods, the beat-to-beat SV estimates were averaged every six
minutes. The order M, in (3.55) was determined by a minimum description length (MDL) criterion [54,
56].

In the implementation above, all the SV data were used as pilot data to obtain parameters using (3.54).
Another way to calculate parameters is to use half of the SV values in the data sets as pilot data to obtain

parameters and apply the parameters to the latter half of the data. These results are also reported in

Chapter 6.
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4. Estimation of Aortic Blood Flow Waveforms

Aortic blood flow (ABF) is the instantaneous blood flow in the aorta and one of the most important
cardiovascular indices. Currently, ABF is not clinically available in general. The availability of ABF will
be clinically useful to: (1) calculate SV and CO by beat-to-beat integration of the ABF waveform and
time-averaging, respectively; (2) evaluate contractile function of the left ventricle during normal and
abnormal beats; and (4) adjust the timing delay of bi-ventricular pacing. In particular, SV and CO are
direct indicators of hemodynamic abnormality and are useful in clinical and surgical settings.

The most accurate method to continuously measure ABF is an ultrasonic flow probe surgically placed
around the aortic root. The drawback of the flow probe is again that it involves a highly invasive
open-chest surgical procedure [20]. Non-invasive methods include echocardiography that require skilled
technician to hold the probe at the correct angle on the patient’s body. Thus, long-term continuous
measurement is not feasible. PCM is also a promising approach for continuous, non-invasive or
minimally invasive ABF monitoring because ABP is accessible, and it is easy to implement in the
existing continuous ABP measurement systems.

In this chapter, a new algorithm to estimate ABF waveforms by the analysis of ABP is introduced
and validated. The arterial tree is modeled as a system with ABF input and ABP output. The key step of
the procedure is to obtain a set of auto-regressive parameters and impulse responses from ABP to ABF by
the analysis of the diastolic ABP waveforms; because ABF input to the peripheral circulation is
approximately zero during diastole [57], diastolic ABP waveform analysis provides auto-regressive
parameters of the model. The parameters are obtained on a beat-to-beat basis and are applied to each ABP

waveform to estimate the ABF waveform.
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4.1. Algorithm

4.1.1. Model Description
Over a short time interval, the cardiovascular system can be described as a time-invariant system with

an input of ABF (F/n/) and output of ABP (P[n]), as illustrated in Fig. 4.1.

ABF [L/min] ABP [mmHg]

m— | ARX |m——p

j

Fig. 4.1. Auto-regressive model with exogenous input.

The ABP value P/n] in the interval can be described in an auto-regressive exogenous (ARX) model:

Pln]=Y"alj1Pln - j1+ oF|n] )
j=1 4.1

where a/j] are weighting coefficients, L is the parameter length, and « is a scaling factor (i.e., coefficient

for the exogenous input F/n]). The ARX model can be re-described as

aF[n]=P[n]—Za[j]P[n—j]

(42)
As shown in Fig. 1.3, there is no input to the system during diastole:
L
0=Pln]- > aljlPln - j]
j=1 (43)

Therefore, the weighting coefficients a/j] are auto-regressive (AR) parameters. The AR parameters a/j]

can be obtained by solving the matrix equation (least square error method) derived from multiple beats:
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Blal 7 [ Bl-1] - Rn-I]

Rl +1] Bln] -+ Blr-L-1]
Rn+ -] | | Rln+N,=2] -~ Rln-L+N 1] Z[[;]]
20t B = ) ey ey I
Boln+1] Rlnl -~ Rln-z-1] |@]

_Pl7[”+N17_1]_ _E7[”+Nl7_2] R7[”"L+Nl7_1]_ (44)

where P[n] are the ABP values in the i beat and N; is the number of diastolic samples in the i" beat (/< i
<M) where M is the number of the beats in the moving window. An M = /7 moving window size was
empirically found to be optimal and adopted Typical a/j/ are shown in Fig. 4.2(a).

The scaling factor a can be obtained by the following procedure. By taking the average of both sides
of (4.2):

[l — ia[j]) -MAP

Jj=1

o=
Cco (45)

where MAP is the mean arterial pressure. Ohm’s law gives
MAP=CO-TPR (46)
The characteristic time constant of the system can be described by the product of C, and TPR:
7=C,xTPR (4.7)
where 7 can be obtained by investigating the exponentially decaying curve of the impulse response of the

system A/nJ/shown in Fig. 4.2(b):

)= al Wl — 7]+ oln]

= (48)
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Fig. 4.2. Typical AR parameters and impulse response of the ARX model.
Obtained from radial ABP data in Swine #4.

The equations (4.5) — (4.7) can re-describe the scaling factor o as

(49)
Therefore, the instantaneous ABF can be calculated as
C L
Fln]= : Pln]- 2 alj1Pln - j]
r.(l—Za[j]] =
J=l (4.10)

Assuming C, is constant, the proportional ABF can be obtained as
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F;alc [n] = #

a

[P[n]—Za[j]P[n—j]]

r-{l—Za[j]J

(4.11)

In the following subsection, the method for obtaining the AR parameter length L is presented.

4.1.2. Criterion for Selecting AR Parameter Length

In obtaining the proportional instantaneous flow F[n] in equation (4.11), the determination of the AR
parameter length L (i.e., model order) is the key step because L influences all the other parameters; L
determines the size of the matrix equation (4.4) and the length of a/j]. The values of a/fj] determine the
shape of the impulse response (i.¢., time constant 7) as well as the summation of Za/j/. Finally, the scaling
factor a is determined by 7 and a/j/, which both depend on L. The author attempted a fixed length or fixed
ratio of L/RRinterval. However, the fixed L or fixed ratio of L/RRinterval failed to provide reasonable
ABF waveforms as well as consistent scaling factors. An adaptive algorithm to update L was needed.

As mentioned earlier, L determines the other parameter values in (4.11). Different L values provide
different sets of parameter values. Fig. 4.3 shows the parameter values Za/j/, t, and o as evaluation
functions of L. For each model order L, equation (4.4) was solved to obtain a/j/ and consequently the
other parameters. As can be seen, there are local minima and maxima in each graph. The L value that
provides local minima/maxima of the evaluation function could be the correct AR parameter length. In
addition, the proportional ABF (within a scaling factor of C,) was also calculated by (4.11) for each L and
was investigated in the following evaluation functions:

e Smoothness of calculated systolic ABF
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Smoothness = Z( F.lil1-F, mk[z—l])

systole

where F 1is a normalized instantaneous blood flow waveform.

¢ Flatness of calculated diastolic ABF (errors in the diastolic ABF signal)

L-In(N,) l
MDL =1+ n Z calc[l]2

diastole

F [T
AIC:di;le ! .1+L/Nd

where Ny is the total length of diastolic durations within the 17-beat moving window.

e Standard deviation of diastolic ABF signal
e Standard deviation of systolic ABF signal

e Area of negative values in the calculated ABF
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Fig. 4.3. ABF determination parameters as functions of AR parameter length L.



Among these evaluation functions, 2a/j] provided the best SV estimation and ABF waveforms (reported
in the following section, Table 6.9). Therefore, an AR parameter length L/i] of the i® beat that minimized
Zafj] was adopted.

The author also found that the changes in L (defined as Lfi] — Lfi-1]) occur mostly within five
samples (~ 20 [msec]) as shown in Fig. 4.4. Therefore, the numerical search for L was limited to within
Lfi-1]-5<L[i]< Lfi-1]+5 (at 250-Hz sampling frequency) to speed up computation time. The initial L

value was arbitrarily set as 75 samples (=300 [msec]).

i - Lji-1] Lfi] - Lfi-1] L] - Li-1]

(a) Using Central ABP (b) Using Femoral ABP (c) Using Radial ABP

Fig. 4.4. Histogram of the difference of the selected AR parameter lengths.
The difference is defined as L[i] — L[i-1]. The standard deviations are 4.8, 5.2, and 5.7, and over 92.9, 93.8, and
92.7% of the data reside within £5 samples, respectively.

The integrals of F/n] were calculated on a beat-to-beat basis to obtain SV estimates, and the time
averages of SV were calculated to obtain CO estimates.

The onset of diastole in each beat was identified by using the measured ABF, and the diastolic
duration N was given in each ABF estimation procedure. In practical settings, there would be cases where
one cannot identify onsets of diastoles. To investigate such cases, sensitivity analyses were conducted to

test the impact of error in determining the onset of diastole (section 7.2.2).
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4.2. Conditioning of Arterial Blood Pressure Data

For the sake of easing the parameter computation, the raw ABP data were horizontally and vertically
scaled (Fig. 4.5(b), Fig. 4.6) so that all the beats in the 17-beat window had the same systolic and diastolic
ABP values, RR interval, and diastolic duration as those of the middle beat in the window (i.e., ninth beat).
Note that this data conditioning was done solely for parameter acquisition. Once AR parameters were
obtained, they were applied to the raw ABP waveforms. Then, only the estimated ninth ABF waveform in
the window was adopted. This procedure was applied to the moving 17-beat window throughout the ABP

data.

R mmwwaprg 111 11TITITLE

H RERRRA AR

(a) Fluctuating original diastolic ABP waveforms that are difficult to filter into zero flow

W{WWWWQW\‘ o "’M Qri inf Immﬂ"n r

(b) Modified diastolic ABP waveforms that are stable and easy to filter into zero flow

Fig. 4.5. Ilustration of original (a) and modified (b) ABP waveforms.

= Original
— Modified

R

Fig. 4.6 Original and modified femoral ABP waveforms in Swine #5.
The original beat-to-beat instantaneous ABP waveforms (gray) are scaled horizontally and vertically so that all the
SBP, DBP, PP and RR intervals of the beats in the window are equal (black).

Time [sec]

The conditioning of the data to synthesize the systolic and diastolic ABP within the moving window

was a key necessary process. Ideally, the system does not receive any perturbation other than ABF and
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ABP and is not time-invariant within the moving window. Then, one can use a long window to include all
the modes excited within the window to conduct system identification. However, without conditioning,
one often observes divergence in the impulse response, and estimated ABF before scaling had noisy
waveforms. The cause of the instability was varying ABP data that incur computational challenges in
obtaining the AR parameters. For example, beat-to-beat MAP values are, in general cases, rapidly
changing on a beat-to-beat basis due to respiration or a physiological feedback system in response to
vaso-active drugs; thus, the range of diastolic ABP values varies from one beat to another within a
window. Such time-variant data force the algorithm (4.4) to find a compromised single set of AR
parameters that can filter multiple diastolic ABP waveforms to reduce the diastolic signal amplitude down
to zero. Also, if the length of the RR interval and diastolic duration vary among 17 beats in the window, it
is difficult to find a single AR parameter length L that satisfies all beats. Thus, the data-conditioning was
conducted to relax the computational challenge in AR parameter acquisition. Although the beats in the
moving window are rescaled horizontally (resampling) and vertically (rescaling) for the aforementioned
purpose, this procedure was only used to obtain AR parameters of the window. The AR parameters were
applied to the original ABP waveforms to obtain ABF. Therefore, the physiological changes occurring

within a shorter interval than the window size (e.g., respiration) can be seen in the estimated ABF.

4.3. Model Validation

4.3.1. Validation Steps

The algorithm was implemented in the following steps. First, all the characteristic points in the ABF
and ABP waveforms were labeled using a labeling algorithm described in Chapter 5. The ABF
characteristic points are the onset of systole, peak systole, and the first dip after the peak of systole (valve
closure point). The ABP characteristic points are the onset of systole, peak of systole, onset of diastole

mapped from the ABF characteristic point, and end of diastole.
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For determining the AR parameter order L, Za/j], smoothness of systolic F,., and negative area of
Feac are used and compared. Because MDL, AIC, and other evaluation functions provided high SV errors
as well as unreasonable ABF waveforms during initial investigations, only 2a/j/, smoothness of systolic

F.a, and negative area of F,c are reported.

4.3.2. Error Criteria

SV, CO, TPR waveform analysis

The estimation errors are defined in this thesis as RNMSEs:

N (Measr—Est)2
Meas
N—N, (4.15)

RNMSE =100y

where MEAS and EST are measured and estimated values, N is the number of data points, and Ny is the
number of free parameters.

For statistical analysis, one-way ANOVA was conducted to find statistical significance among the SV,
CO, and TPR estimation methods in conjunction with the end systole identification methods. If a
significance difference(s) was found, Scheffé's test was conducted. Statistical significance was defined as

p <0.05.

ABF waveform analysis

All the signal processing and analyses were conducted by MATLAB R2009a (The Mathworks Inc.,
Natick, MA). The standard deviation (SD), skewness, and kurtosis of the estimated systolic ABF
waveforms were compared to those of the measured waveforms on a beat-to-beat basis. Take the SD
comparison, for example. First, SD values of the measured and estimated systolic ABF were calculated on
a beat-to-beat basis (steps shown in Fig. 6.47). Then, the differences of each SD (SDgrmeas - SDusrcaic)
were calculated and plotted on a histogram. In the same manner, the differences (errors) of the skewness

and kurtosis of the calculated ABF waveforms were investigated as well. The skewness (s) and kurtosis
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(k) were given by

_E(F-p)
o’ (4.16)

k= E(FS - Au)4
c* (4.17)

| | |
(a) Positively skewed (b) Negatively skewed (c) Leptokurtic +)  (d) Playkurtic (-)

Fig. 4.7. Skewness and Kurtosis.
Example waveforms of positive and negative skewness (a-b) and positive and negative kurtosis (c-d).

where Fg is the ABF (measured or estimated); ¢ and o are the mean and standard deviation of Fi,
respectively; and E/.] represents the expected value. Positive s values represent early peaks and elongated
tails at the right, and positive & values represent sharp peaks compared to a normal distribution (Fig. 4.7).
The skewness and kurtosis errors were defined as the difference between the measured and estimated

values. The error of the algorithm was compared with the error of the standard Windkessel model that

provides ABF as
F dP P
_—
C, at = (22)

where 7 was adopted from an exponential decay fitted to a diastolic ABP waveform.

SV, CO, and TPR analysis

For comparison, C, in each animal was calculated by

mean (m eas )

C, =
mean(estimated ) (4.18)

where meas and estimated are the measured and estimated proportional SV, CO, or TPR (proportional 1),
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for instance. Although C, declines with age [55], C, is nearly constant on the time scale of months over a
wide pressure range [45, 46]; thus, C, was assumed to be constant (mean measured CO divided by mean
estimated CO) throughout the experimental period in each animal (blind compliance), and the

proportional SV, CO, and 7t estimates were scaled by the constant to compare results with the measured

SV, CO, and TPR.
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5. Labeling Characteristic Points

In preparation for developing novel PCMs, this chapter describes an algorithm to label characteristic
points in ABF and ABP data. The characteristic points of interest are: onset of systole (end of diastole),
peak systole, and onset of diastole (end of systole). The following sections describe a step-by-step
procedure to identify these points in ABF and ABP data. In summary, peak systoles are first identified.
Secondly, an evaluation function is introduced to identify the onset of systole between two peak systoles.
Thirdly, another evaluation function is introduced to identify the onset of diastole between two peak

systoles.

5.1. Identification of Peak Systole

Peak systole is an inter-beat local maximum. The challenge is that there can be multiple peaks in a
single beat (as shown in Fig. 5.1 in gray). Because there can be two peaks in ABP waveforms and the
baseline can change in a short period of time by respiration, for instance, sometimes a simple threshold is
not enough to detect peaks. To extract only the peak systole among the peaks in a single beat, convolution

of a Gaussian distribution (5.1) with the original ABP data is introduced:

e ]

where the standard deviation of the distribution is arbitrarily set initially. The Gaussian distribution (Fig.

(51)

5.2) is then convoluted with the ABF or ABP data. The outcome is shown in Fig. 5.1 (black). Note that the
output curve (convolution of the Gaussian and ABP) has a single peak in each beat. The second peak near
the dicrotic notch is smeared out in the output curve and is not counted as a peak. The key of this method
is to set a right standard deviation (wide enough) so that one can extract the single beat and identify only

one local maximum. The time stamp of the local maximum in the convolution outcome in a single beat is
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now mapped onto the original ABF/ABP waveform. Then, the local maximum around the point is

regarded as the systolic peak of the beat (Fig. 5.3).

120 = = = = L
—— ABP
—— Convolution
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Fig. 5.1. Radial ABP data recorded from Yorkshire swine.
Recorded from Swine #7. The baseline changed over a short interval.
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Fig. 5.2. Gaussian distribution (normalized).
The width is set to the median R-R interval of the preceding beats. The interval is updated on a beat-to-beat basis.
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Fig. 5.3. Labeling systolic peaks

5.2. Identification of End Diastole

The challenge in detecting end diastole (i.e., onset of systole) is that the local minimum right before a
peak systole is not necessarily an end diastole. Examples are shown in Fig. 5.4b. For a robust detection

algorithm, the following evaluation function was introduced.

mirroredL = (x[i] - x[i - d )~ |x[i] - xli + d] (52)

Equation (5.2) detects a waveform in the shape of a mirrored “L”. The function mirroredL becomes large
when the point x/i/ is the bending point (or elbow) of the mirrored “L”. Fig. 5.4 shows examples of ABP
waveforms x/i] and corresponding mirroredL[i] in normal and abnormal beats. The local maximum of
mirroredL between two peak systoles was regarded as an end diastole. Note that the mapped black circles
in the ABP waveforms are more robust indicators of the onsets of diastoles than the inter-beat local

minima (arrows.)
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Fig. 5.4. Normal and abnormal radial ABP data recorded from Yorkshire swine.
Recorded from Swine #5. The corresponding mirrored L is shown below each ABP. The peaks in the mirrored L
(black circles) are mapped onto the ABP waveform. Note that the mapped black circles in the ABP waveforms
correspond to the end-diastoles for both normal and abnormal beats. The mirrored L is a more robust indicator of
onsets of diastoles than the inter-beat local minima (arrows).

5.3. Renewal of Gaussian Convolution Based on RR interval

The standard deviation of the normal distribution for convolution is updated based on the preceding
RR interval (inverse of HR) for the next ten-second moving window.

For the validation of the algorithms described in the following sections, the aforementioned steps
were repeated to label all the characteristic points in the ABF, central ABP (CAP), femoral ABP (FAP),

and radial ABP (RAP) signals.

5.4. Identification of End Diastole

A number of methods introduced and validated in the following chapters utilize end systole (onset of
diastole). For practical applications in clinical settings, ABF is not available. Therefore, an estimation

method for the determination of diastolic onset in each beat is needed. Several estimation methods are
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introduced here.

5.4.1. Exponential Model
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Fig. 5.5. A current systolic interval as a function of a preceding RR interval.

The duration of systole (Sys) can be described as a function of the preceding RR interval [58].
Using six Yorkshire swine data sets that include measured (true) systolic durations and RR intervals on a

beat-to-beat basis, the relation between Sys and RR was found as
(53)

measured ))
i-1

Sys, = 436(1 - exp(- 0.0057 RR

where i is the beat number, and the diastolic duration Dig; can be described as
Dia, = RR["*"* — Sys.

= RR“' — 436(1 - exp(~ 0.0057 RR7"s*"= )) (54)

Using the Yorkshire swine data sets (>60,000 beats), the calculated diastolic duration Dig was compared
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measured

with the measured diastolic duration Dig

5.4.2. Partial Pulse Pressure
An end diastole always comes after a systolic peak. At the end systole, the pressure value is equal or

lower than SBP. When the pressure drops from SBP to 0% pulse pressure (PP),

PES=PD+a(PS—PD) (55)

90% PP Pulse Pressure
40% PP (PP)

N

-

f \ Time

End systole defined End systole defined
at 90% PP at 40% PP

1
|
i

= —— - |----
]

v

Fig. 5.6. End systole defined by means of the partial pulse pressure.

As examples, end systoles identified by the 40% PP and 90% PP are shown in Fig. 5.6. The time

stamp of Pgs can be regarded as the time of an estimated end systole.

76



6. Results

The aforementioned SV, CO, TPR, and ABF estimation methods as well as existing methods were

applied to the previously recorded Yorkshire swine data sets [20]. The summary of the data is shown on

Table 6.1.
Length CO sV Femoral MAP Radial MAP HR
ANIMAL (min) (L/min) (mL) (mmHg) (mmtig) (bpm)
1 113 36 +- 10 284 +/- 58 63 +- 19 61 +- 19 129 +/- 29
2 97 32 +- 06 250 +- 50 83 +- 21 73 +H- 20 135 +/- 38
3 88 40 +- 07 317 +- 7.1 8 +- 16 87 +- 15 133 +/- 32
4 106 32 +- 06 252 +/- 43 89 +- 19 79 +- 18 129 +/- 34
5 90 33 +- 05 267 +/- 64 80 +- 21 85 +- 19 130 +- 32
6 68 34 +- 12 285 +/- 8.1 72 +H- 19 75 +- 20 130 +/- 26
MEAN 94 3.5 +- 08 275 +- 67 79 +- 21 76 +- 21 131 +- 32

Table 6.1. Summary of cardiovascular parameters of the six swine data sets.
Wide physiological ranges (mean + SD) of cardiac output (CO), stroke volume (SV), femoral and radial mean
arterial blood pressure (MAP), and heart rate (HR) were obtained in the six swine data sets.

Each section of this Chapter contains the RNMSE and plots of the measured and estimated indices, as
well as the Bland-Altman plot [47]. It plots difference of two groups against the mean of two groups. The
plots aid in the visualization of the agreement of the two groups; for a good agreement, there should not
be any trend, and the majority of the plots should stay within £1.96 SD, which is drawn as dotted
horizontal lines.

Some of the SV, CO, TPR, and ABF estimation methods require the use of end-systole timestamps.
Because this information is not available in clinical care, the following methods are used: (1) true end
systole obtained from the measured ABF, (2) end systole estimated from the RR interval of the preceding
beat (exponential model, described in Section 5.4.1), and (3) partial pressure as end systole (described in
Section 5.4.2).

To validate the algorithm described in the following chapters and sections, previously reported [20]
data from six Yorkshire swine (30-34 kg) recorded under a protocol approved by the MIT Committee on

Animal Care were processed and analyzed offline. Table 6.2 summarizes the physiological ranges of the
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data sets. Aortic blood flow was recorded using an ultrasonic flow probe (T206 with A-series probes,
Transonic Systems, Ithaca, NY) placed around the aortic root. Radial and femoral ABP were measured
using a micromanometer-tipped catheter (SPC350, Millar Instruments, Houston, TX) and an external
fluid-filled pressure transducer (TSD104A, Biopac Systems, Santa Barbara, CA). Aortic blood flow, ECG,
and blood pressures were recorded using an A/D conversion system (MP150WSW, Biopac Systems) at a

sampling rate of 250 Hz. For more details, please refer to Mukkamala ef al. [20].

6.1. End Systole Estimation

Using the exponential model (5.4), the mean error of the diastolic duration was 6.56 %, and the
standard deviation from the mean was 5.86 %. The formula (5.4) was used to determine the diastolic
duration in each beat in the algorithms reported in the following sections. Also, the partial pressure
method (5.5) was investigated. Table 6.2 summarizes the errors of diastolic intervals estimated by the

partial PP method. 60%, 50%, and 50% PP would be good indicators of end systoles for CAP, FAP, and

RAP, respectively.
CAP FAP RAP
40% PP 17.1 £ 11.6 59 £ 8.0 6.0 £ 142
50% PP 10.1 £ 9.0 33 £ 55 -14 £ 125
60% PP 1.8 + 6.9 74 + 4.1 -10.8 + 6.8
70% PP 47 £ 4.3 -10.0 = 3.9 -13.8 = 7.1
80% PP -82 + 3.5 -12.8 + 3.9 -17.1 + 82
90% PP -11.3 + 3.8 -163 + 43 -23.8 = 113
100% PP -29.0 + 21.1 319 £ 169 -36.4 £ 17.1

Table 6.2. Summary of diastolic interval errors + standard deviation (SD).
In the following sections, the true end systole, end systole estimated by the exponential model, and

partial PP method are used to identify end systoles and calculate ABF, SV, CO, and TPR.
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6.2. SV, CO, and TPR Estimation

6.2.1. Windkessel Model

The Windkessel method achieved 23.7% (CAP), 18.8% (FAP), and 37.7% (RAP) RNMSEs in SV

estimation.
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Fig. 6.1. SV estimation by the Windkessel model.
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Using CAP, FAP, and RAP waveforms, the Windkessel method achieved 17.0, 16.6, and 44.8%

RNMSE:s in CO estimation, respectively.
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Fig. 6.2. CO estimation by the Windkessel model.
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Using CAP, FAP, and RAP waveforms, the Windkessel method achieved 21.3, 17.3, and 36.4%

RNMSE:s in TPR estimation, respectively.
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Fig. 6.3. TPR estimation by the Windkessel model.
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6.2.2. Pulse Pressure
The Pulse Pressure method achieved 20.5% (CAP), 20.7% (FAP), and 22.0% (RAP) RNMSEs in SV

estimation.
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Fig. 6.4. SV estimation by the Pulse Pressure method.
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Using CAP, FAP, and RAP waveforms, the Pulse Pressure method achieved 20.1, 22.7, and 11.5%

RNMSEs in CO estimation, respectively.
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Fig. 6.5. CO estimation by the Pulse Pressure method.
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Using CAP, FAP, and RAP waveforms, the Pulse Pressure method achieved 44.4, 38.4, and 22.0%

RNMSE:s in TPR estimation, respectively.
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Fig. 6.6. TPR estimation by the Pulse Pressure method.
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6.2.3. Liljestrand-Zander’s Method

Using CAP, FAP, and RAP waveforms, the Liljestrand-Zander’s method achieved 34.9, 31.2, and

34.2% RNMSEs in SV estimation, respectively.
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Fig. 6.7. SV estimation by Liljestrand-Zander’s method.
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Using CAP, FAP, and RAP waveforms, Liljestrand-Zander’s method achieved 29.7, 24.5, and 29.7%

RNMSE:s in CO estimation, respectively.
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Fig. 6.8. CO estimation by Liljestrand-Zander’s method.
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Using CAP, FAP, and RAP waveforms, Liljestrand-Zander’s method achieved 29.9, 26.7, and 31.1%

RNMSEs in TPR estimation, respectively.
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Fig. 6.9. TPR estimation by Liljestrand-Zander’s method.
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6.2.4. Herd’s Pulse Pressure
Using CAP, FAP, and RAP waveforms, Herd’s Pulse Pressure method achieved 14.9, 17.2, and 18.6%

RNMSE:s in SV estimation, respectively.
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Fig. 6.10. SV estimation by Herd’s method.
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Using CAP, FAP, and RAP waveforms, Herd’s Pulse Pressure method achieved 21.1, 21.0, and 18.7%

RNMSEs in CO estimation, respectively.
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Fig. 6.11. CO estimation by Herd’s method.
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Using CAP, FAP, and RAP waveforms, Herd’s Pulse Pressure method achieved 23.0, 22.7, and 21.5%

RNMSEs in TPR estimation, respectively.
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Fig. 6.12. TPR estimation by Herd’s method.
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6.2.5. Beat-to-Beat Averaged Method

Using CAP, FAP, and RAP waveforms, the Beat-to-Beat Averaged method achieved 18.7, 20.7, and

20.9% RNMSEs in SV estimation, respectively.
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Fig. 6.13. SV estimation by the Beat-to-Beat Averaged method.
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Using CAP, FAP, and RAP waveforms, the Beat-to-Beat Averaged method achieved 17.0, 16.6, and

13.7% RNMSEs in CO estimation, respectively.
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Fig. 6.14. CO estimation by the Beat-to-Beat Averaged method.
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Using CAP, FAP, and RAP waveforms, the Beat-to-Beat Averaged method achieved 16.5, 16.5, and

16.0% RNMSEs in TPR estimation, respectively.
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Fig. 6.15. TPR estimation by the Beat-to-Beat Averaged method.
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6.2.6. Systolic Area

Using CAP, FAP, and RAP waveforms, the Systolic Area method achieved 16.5% (exponential model
for end systole), 21.6% (50% PP for end systole), and 19.1% (60% PP for end systole) RNMSEs in SV

estimation, respectively.
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Fig. 6.16. SV estimation by the Systolic Area method.
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Using CAP, FAP, and RAP waveforms, the Systolic Area method achieved 14.3% (exponential model
for end systole), 19.1% (50% PP for end systole), and 13.5% (true end systole) RNMSEs in CO

estimation, respectively.
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Fig. 6.17. CO estimation by the Systolic Area method.

95



Using CAP, FAP, and RAP waveforms, the Systolic Area method achieved 16.5% (true end systole),

20.7% (true end systole), and 13.5% (true end systole) RNMSEs in TPR estimation, respectively.
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Fig. 6.18. TPR estimation by the Systolic Area method.
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6.2.7. Corrected Impedance

Using CAP, FAP, and RAP waveforms, the Corrected Impedance method achieved 13.9% (70% PP for
end systole), 16.4% (40% PP for end systole), and 14.9% (70% PP for end systole) RNMSEs in SV

estimation, respectively.
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Fig. 6.19. SV estimation by the Corrected Impedance method.
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Using CAP, FAP, and RAP waveforms, the Corrected Impedance method achieved 12.7% (70% PP for

end systole), 13.6% (50% PP for end systole), and 10.5% (true end systole) RNMSEs in CO estimation,

respectively.

_ 2
r4 oo
‘ g0 - TR e
8 o’ '3 Pe o
‘%-1_ --------- -.-o-‘--.-o--..
Q .
1 '2 T T 1
0 20 40 60 80 100 120 140 0 2 4 6
Beats (calc + meas)/2

(d) BA Plot, R*=0.0685

0 2 4 6
Beats (calc + meas)/2
(b) Using FAP (¢) BA Plot, R*=0.0025
1 4 .o

i
i
calc - meas
(=]
L
L]
..0 *
o &
O,
‘e
l. 3
(d
*

B -1 -
0 T T T T T T 1 2 ; . s
0 20 40 60 30 100 120 140 0 2 4
Beats (calc + meas)/2
(c) Using RAP (f) BA Plot, R%=0.1662

Fig. 6.20. CO estimation by the Corrected Impedance method.
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Using CAP, FAP, and RAP waveforms, the Corrected Impedance method achieved 13.7% (70% PP for

end systole), 13.8% (40% PP for end systole), and 10.6% (true end systole) RNMSEs in TPR estimation,

respectively.
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Fig. 6.21. TPR estimation by the Corrected Impedance method.
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6.2.8. Systolic Area with Kouchoukos Correction

Using CAP, FAP, and RAP waveforms, the Kouchoukos Correction method achieved 14.8%

(exponential model for end systole), 19.7% (50% PP for end systole), and 13.1% (exponential model for

end systole) RNMSEs in SV estimation, respectively.
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Fig. 6.22. SV estimation by the Kouchoukos method.
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Using CAP, FAP, and RAP waveforms, the Kouchoukos Correction method achieved 12.2%
(exponential model for end systole), 16.9% (50% PP for end systole), and 11.5% (exponential model for

end systole) RNMSEs in CO estimation, respectively.
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Fig. 6.23. CO estimation by the Kouchoukos method.
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Using CAP, FAP, and RAP waveforms, the Kouchoukos Correction method achieved 15.2%
(exponential model for end systole), 18.4% (true end systole), and 11.3% (exponential model for end

systole) RNMSESs in TPR estimation, respectively.
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Fig. 6.24. TPR estimation by the Kouchoukos method.
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6.2.9. AC Power

Using CAP, FAP, and RAP waveforms, the AC Power method achieved 20.6, 20.8, and 22.1%

RNMSEs in SV estimation, respectively.
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Fig. 6.25. SV estimation by the AC Power method.
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Using CAP, FAP, and RAP waveforms, the AC Power method achieved 17.1, 18.1, and 18.8%

RNMSE:s in CO estimation, respectively.
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Fig. 6.26. CO estimation by the AC Power method.
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Using CAP, FAP, and RAP waveforms, the AC Power method achieved 18.2, 18.2, and 16.2%

RNMSEs in TPR estimation, respectively.
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Fig. 6.27. TPR estimation by the AC Power method.
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6.2.10. ARMA Model

Using CAP, FAP, and RAP waveforms, the ARMA method achieved 20.2, 17.4, and 16.5% RNMSEs

in CO estimation, respectively.
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Fig. 6.28. CO estimation by the ARMA method.
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Using CAP, FAP, and RAP waveforms, the ARMA method achieved 16.5, 19.4, and 17.9% RNMSEs

in TPR estimation, respectively.
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Fig. 6.29. TPR estimation by the ARMA method.
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6.2.11. Minimum Variance Method

Using CAP, FAP, and RAP waveforms, the Minimum Variance method achieved 21.0, 27.2, and

22.6% RINMSEs in SV estimation, respectively.
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Fig. 6.30. SV estimation by the Minimum Variance method.
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Using CAP, FAP, and RAP waveforms, the Minimum Variance method achieved 15.5, 23.6, and

19.8% RNMSEs in CO estimation, respectively.
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Fig. 6.31. CO estimation by the Minimum Variance method.
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Using CAP, FAP, and RAP waveforms, the Minimum Variance method achieved 23.1, 21.3, and

18.7% RNMSEs in TPR estimation, respectively.
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Fig. 6.32. TPR estimation by the Minimum Variance method.
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6.2.12. Modified Herd’s Method
Using CAP, FAP, and RAP waveforms, the Modified Herd’s method achieved 14.8% (exponential
model for end systole), 18.9% (exponential model for end systole), and 14.8% (exponential model for end

systole) RNMSEs in SV estimation, respectively.
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Fig. 6.33. SV estimation by the Modified Herd’s method.
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Using CAP, FAP, and RAP waveforms, the Modified Herd’s method achieved 12.7% (exponential
model for end systole), 17.1% (exponential model for end systole), and 13.0% (exponential model for end

systole) RNMSEs in CO estimation, respectively.
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Fig. 6.34. CO estimation by the Modified Herd method.
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Using CAP, FAP, and RAP waveforms, the Modified Herd’s method achieved 16.1% (exponential
model for end systole), 17.1% (exponential model for end systole), and 13.7% (exponential model for end

systole) RNMSEs in TPR estimation, respectively.
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Fig. 6.35. TPR estimation by the Modified Herd method.
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6.2.13. Parabolic ABF Model
Using CAP, FAP, and RAP waveforms, the Parabolic ABF method achieved 18.3% (50% PP for end

systole), 19.9% (40% PP for end systole), and 19.1% (100% PP for end systole) RNMSEs in SV

estimation, respectively.
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Fig. 6.36. SV estimation by the Parabolic ABF method.
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Using CAP, FAP, and RAP waveforms, the Parabolic ABF method achieved 13.5% (40% PP for end

systole), 15.7% (40% PP for end systole), and 15.0% (70% PP for end systole) RNMSEs in SV estimation,

respectively.
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Fig. 6.37. CO estimation by the Parabolic ABF method.
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Using CAP, FAP, and RAP waveforms, the Parabolic ABF method achieved 16.2% (80% PP for end

systole), 16.4% (40% PP for end systole), and 13.9% (100% PP for end systole) RNMSEs in TPR

estimation, respectively.
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Fig. 6.38. TPR estimation by the Parabolic ABF method.



6.2.14. Pressure Ratio Method
Using CAP, FAP, and RAP waveforms, the Parabolic ABF method achieved 17.4% (90% PP for end

systole), 19.6% (40% PP for end systole), and 21.5% (70% PP for end systole) RNMSEs in SV estimation,

respectively.
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Fig. 6.39. SV estimation by the Pressure Ratio method.
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Using CAP, FAP, and RAP waveforms, the Parabolic ABF method achieved 13.9% (90% PP for end
systole), 16.1% (40% PP for end systole), and 17.5% (50% PP for end systole) RNMSEs in CO

estimation, respectively.
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Fig. 6.40. CO estimation by the Pressure Ratio method.
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Using CAP, FAP, and RAP waveforms, the Parabolic ABF method achieved 17.9% (80% PP for end
systole), 17.0% (exponential model for end systole), and 15.2% (70% PP for end systole) RNMSEs in

TPR estimation, respectively.
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Fig. 6.41. TPR estimation by the Pressure Ratio method.
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6.2.15. Hybrid Method Results

This section describes the results of CO and SV estimation using the Hybrid algorithm.

Using Whole Data as Pilot Data with Common Parameter Sets

Using the MDL criterion, the order was set to 8 for the analysis of central and femoral ABP, and the
order was set to 9 for the analysis of radial ABP. Over a wide physiological range achieved by
administering phenylephrine (vasoconstrictor), nitroglycerin (vasodilator), dobutamine (beta agonist), and
esmolol (beta blocker), the new method achieved RNMSLEs of 15.6% in CO and 16.3% in SV derived
from central ABP; 12.7% in CO and 16.5% in SV derived from femoral ABP; and 10.1% in CO and
14.5% in SV derived from radial ABP.

The overall trend of the measured and estimated CO and SV showed strong agreement (Fig. 6.42).
The correlation coefficient (R) between the measured CO (SV) and estimated CO (SV) from femoral
ABP was 0.945 (0.914). For CO (SV) derived from radial ABP, the correlation coefficient was 0.970
(0.909).

Bland-Altman analysis [34, 35] of the CO and SV estimates was conducted. Bland-Altman analysis
involves plotting the estimation errors (difference between estimated and measured values) versus the
averages of the estimated and measured values. The analysis showed that 97.6 and 93.8% of the CO and
SV estimation errors derived from femoral ABP were within 1.96 SD from the mean (R = 0.073 and 0.37
for CO and SV plots, respectively), and 97.6 and 94.3% of the CO and SV estimation errors derived from
femoral ABP were within 1.96 SD from the mean (R>=0.073 and 0.13 for CO and SV plots, respectively).
This indicates that the distributions of the estimation errors have tails of approximately equal weight as
for a normal distribution. The low R values indicate that there is no apparent trend (Fig. 6.43) of the

estimation errors with the averages.
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Fig. 6.42. Agreement of the measured and estimated cardiac output and stroke volume.
Estimates from central (a-b), femoral (c-d), and radial (e-f) arterial blood pressure in the six Yorkshire swine data
sets. The black and gray lines represent measured and estimated values, respectively. A wide physiological range
was achieved by administering phenylephrine (vasoconstrictor), nitroglycerin (vasodilator), dobutamine (beta
agonist), and esmolol (beta blocker).
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Fig. 6.43. Bland-Altman plots of the CO and SV estimates using the new method.
Over 94% of both CO and SV estimates by the Hybrid method are within 1.96 SD from the mean, respectively. The
dotted lines represent 1.96 SD from the mean. Ymeas and Yest are natural logarithms of the measured and estimated

SV.
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Using Half of the Data as Pilot Data with Common Parameter Sets
Using a common parameter set for all the animals, the algorithm achieved SV (CO) errors of 17.3%
(16.3%) using central (8% order), 16.5% (12.7%) using femoral (6® order), and 14.5% (10.1%) using

radial ABP (5" order).

Using Half of the Data as Pilot Data Applied to the Other Half of the Data
In using (3.55) to obtain the parameters, the first half of each data set was used. The parameters were
applied to half of the data sets. The algorithm achieved SV (CO) errors of 20.0% (19.4%) using central

(5™ order), 18.3% (15.3%) using femoral (6 order), and 17.7% (15.3%) using radial ABP (5" order).

Common single parameter set
Pilot Data Common single parameter set | obtained by the first half of the data
selected. Applied to all data. and applied to the latter half of the
data.
12.6 (10.0) 8th
All 21.2 (18.7) 8th N/A
13.2 (10.4) 9th
17.3 (16.3), 7th 20.0 (19.4), 5th
Half 16.5 (12.7), 6th 18.3 (15.3), 6th
14.5 (10.1), 5th 17.7 (15.3), 5th

Table 6.3. RNMSLEs of SV (CO) estimation by the Hybrid algorithm.
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6.3. Summary of the SV, CO, and TPR Estimation

The estimation methods that require only one calibration (arterial compliance C,), as described in the
previous chapters, were compared. In the following tables, PR=Pressure Ratio Method (3.34);
SM=Modified Herd’s Method (Systolic MAP — end DBP, eq.3.19); CI=Corrected Impedance (2.14);
Kou=Kouchoukos Correction (2.15); Wind=Windkessel model (2.3); Psa=Area under the curve with
end-diastolic ABP value subtracted (2.13); Psa2=Area under the systolic curve (2.12); Par=Parabolic ABF
model (3.25); AC=AC Power (2.16); Hyb=Hybrid Method (3.55); MV=Minimum Variance Method (3.2);
PP=Pulse Pressure (2.4); PP2=Herd’s Pulse Pressure (2.7); BBA=Beat-to-Beat Averaged Model (2.9);
ARMA=ARMA model (2.20); Lilj=Liljestrand-Zander’s Method (2.6); and Const=CO, SV, and TPR set
constant. The single asterisks represent the novel methods developed in this thesis.

The double asterisks (Hybrid Method) signify that the method was calibrated using measured SV.
Therefore, it should not be directly compared with the other methods that require only one parameter for
calibration (arterial compliance Ca). The details of the Hybrid results are reported in section 6.2.15.

For the ARX model, the ABF waveform estimation results are further reported in section 6.4.

Table 6.4 summarizes the SV estimation results (RNMSEs) using different estimation methods
(columns) and end systole detection methods (rows). Using CAP, the Corrected Impedance Method with
end systole at 70% PP resulted in the SV RNMSE of 13.9%, as low as the Kouchoukos Correction
Method (14.8% with end systoles from the exponential model), the modified Herd’s Method (14.8% with
end systoles from the exponential model). For FAP, the Corrected Impedance Method with end systole at
40% resulted in the SV RNMSE of 16.4%. For RAP, the Kouchoukos Correction Method with end systole
calculated from the preceding RR interval resulted in the SV RNMSE of 13.1%.

Table 6.5 summarizes the CO estimation results (RNMSEs) using different estimation methods
(columns) and end systole detection methods (rows). Using CAP, the Parabolic Method with end systoles
from 40% PP achieved 13.5% RNMSE, as low as Kouchoukos (12.0% with end systoles by the

exponential model), the modified Herd’s Method (12.7% with end systoles by the exponential model),
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Pressure Ratio Method (13.8% with end systoles of 90% PP), and Kouchoukos (12.0% with end systoles
from the exponential model). For FAP, the Parabolic Method with end systoles from 40% PP achieved
15.7% RNMSE, as low as the Corrected Impedance Method (13.6% with end systole at 40%), Pressure
Ratio Method (15.9% with end systoles from 40% PP) For RAP, the Kouchoukos Correction Method with
true end systole resulted in the CO RNMSE of 11.6%, as low as the Corrected Impedance Method (10.5%
with true end systoles), modified Herd’s Method (13.1% with end systoles from the exponential model),
Area under the curve method (13.6% with true end systoles). The Hybrid Method achieved low RNMSE
of 10.1% in CO estimation using RAP. The details of the Hybrid results are reported in section 6.2.15.
Table 6.6 summarizes the TPR estimation results (RNMSEs) using different estimation methods
(columns) and end systole detection methods (rows). The TPR values were calculated by the measured
MAP and calculated proportional CO using (2.1). Using CAP, the Parabolic Method with end systoles
from 90% PP achieved 15.3% RNMSE, as low as Corrected Impedance Method (13.7% with end systole
from 70% PP). For FAP, the Corrected Impedance Method with end systole at 40% PP resulted in the
lowest TPR RNMSE of 13.8%. For RAP, the Corrected Impedance Method with true end systole resulted
in the lowest TPR RNMSE of 10.6%, as low as Kouchoukos (11.3% with end systoles from the
exponential model), Pressure Ratio Method (15.4% with end systoles from 70% PP), Area under the
curve method (13.4% with true end systoles), and Parabolic Method (13.9% with end systoles from 100%

PP).
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PR* SM* CI Kou Wind Psa Psa2 Par* AC Hyb** MV* PP PP2 BBA ARMA Lilj Const
true 270 159 147 168 237 167 233 205 206 191 21.0 205 149 187 N/A 349 306

'§ fRR) 27.0 148 152 148 182 165 240 199 NA NA NA NA NA NA NA NA NA
—2 g 40%PP 19 196 170 376 187 257 356 186 NA NA NA NA NA NA NA NA NA
% & S50%PP 186 19.1 158 333 184 244 341 183 NA NA NA NA NA NA NA NA NA
- .g 60%PP 184 188 145 266 202 217 304 197 NA NA NA NA NA NA NA NA NA
g% 70%PP 180 18.8 139 228 188 200 285 206 NA NA NA NA NA NA NA NA NA
3 80%PP 175 18.8 145 234 180 206 288 213 NA NA NA NA NA NA NA NA NA

9%PP 174 186 166 268 176 234 312 242 NA NA NA NA NA NA NA NA NA
100PP 174 183 189 29.8 176 260 333 252 N/A NA NA NA NA NA NA NA NA

(a) Using CAP

PR* SM* CI  Kou Wind Psa Psa2 Par* AC Hyb* MV* PP PP2 BBA ARMA Lilj Cons

e 221 199 179 21.6 188 224 254 215 208 174 272 207 17.2 207 NA 312 306
fRR) 217 189 184 206 194 226 263 21.0 NA NA NA NA NA NA NA NA NA
40%PP 196 21.6 164 213 194 219 248 199 NA NA NA NA NA NA NA NA NA
50%PP 198 21.4 166 197 203 216 238 204 NA NA NA NA NA NA NA NA NA
60%PP 19.8 21.3 172 214 196 225 249 208 NA NA NA NA NA NA NA NA NA
70%PP 198 21.4 178 230 202 235 259 21.0 NA NA NA NA NA NA NA NA NA
80%PP 19.7 214 183 245 200 246 271 211 NA NA NA NA NA NA NA NA NA
%0%PP 196 21.3 189 259 199 256 283 210 NA NA NA NA NA NA NA NA NA
100%PP  19.7 21.2 193 26.6 199 262 289 208 NA NA NA NA NA NA NA NA NA

(b) Using FAP

End systole
detection methods

PR* SM* CI Kou Wind Psa Psa2 Par* AC Hyb** MV* PP PP2 BBA ARMA Lilj Const
tue 425 169 160 13.6 377 145 2211 206 221 146 226 220 186 209 N/A 342 30.6

'§ fRR) 430 148 164 131 383 148 233 199 NA NA NA NA NA NA NA NA NA
% g 40%PP 208 19.0 198 336 245 218 332 223 NA NA NA NA NA NA NA NA NA
® 8§ S0%PP 210 186 179 297 247 211 327 206 NA NA NA NA NA NA NA NA NA
- .g 60%PP 217 18.0 157 23.0 257 191 297 200 NA NA NA NA NA NA NA NA NA
S % 70%PP 215 18.0 149 253 336 209 314 196 NA NA NA NA NA NA NA NA NA

3 80%PP 218 178 154 280 320 232 332 196 NA NA NA NA NA NA NA NA NA

90%PP 230 182 175 295 327 250 347 197 NA NA NA NA NA NA NA NA NA
100%PP 229 18.3 198 32.0 331 272 363 191 NA NA NA NA NA NA NA NA NA

(c) Using RAP

Table 6.4. RNMSEs in SV estimation using the new and existing estimation methods.

Central (a), femoral (b), and radial (c¢) ABP waveforms were used. f(RR) represents the exponential model of the
current systolic duration as a function of the preceding RR interval. N% PP (N=40~100) represents the N% Pulse
Pressure method to define an end systole of the beat. PR=Pressure Ratio Method (3.34); SM=Modified Herd’s
method (Systolic MAP — end DBP, eq.3.19); CI=Corrected Impedance (2.14); Kou=Kouchoukos Correction (2.15);
Wind=Windkessel model (2.3); Psa=Area under the curve with end-diastolic ABP value subtracted (2.13);
Psa2=Area under the systolic curve (2.12); Par=Parabolic ABF model (3.25); AC=AC Power (2.16); Hyb=Hybrid
Method (3.55); MV=Minimum Variance Method (3.2); PP=Pulse Pressure (2.4); PP2=Herd’s Pulse Pressure (2.7);
BBA=Beat-to-Beat Averaged Model (2.9); ARMA=ARMA model (2.20); Lilj=Liljestrand-Zander’s Method (2.6);
and Const=CO, SV, and TPR set constant.
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PR* SM* (I Kou Wind Psa Psa2 Par* AC Hyb** MV* PP PP2 BBA ARMA Lilj Const
, e 236 136 128 141 170 147 212 159 172 163 155 201 211 170 202 297 227
¥ fRR) 237 127 127 120 272 140 216 164 NA NA NA NA NA NA NA NA NA
% ﬁ 40%PP 161 166 145 342 294 234 332 135 NA NA NA NA NA NA NA NA NA
":;i 8§ S50%PP 159 162 138 314 322 227 325 141 NA NA NA NA NA NA NA NA NA
28 %P 153 160 130 256 291 204 292 150 NA NA NA NA NA NA NA NA NA
8% 70%PP 146 161 124 215 295 186 27.1 152 NA NA NA NA NA NA NA NA NA
g 80%PP 140 161 130 221 279 192 274 154 NA NA NA NA NA NA NA NA NA
o0%PP 138 159 149 253 28.1 217 295 181 ‘NA NA NA NA NA NA NA NA NA
100%PP 139 155 167 27.8 283 240 314 184 NA NA NA NA NA NA NA NA NA
(a) Using CAP
PR* SM* (I Kou Wind Psa Psa2 Par* AC Hyb** MV* PP PP2 BBA ARMA Lij Const
. tuwe 178 172 151 184 166 201 244 169 180 13.6 236 227 21.0 166 174 245 227
® fRR) 167 163 154 180 224 203 252 174 NA NA NA NA NA NA NA NA NA
249 4P 159 190 133 203 279 200 250 157 NA NA NA NA NA NA NA NA NA
§ 5 50%PP 162 189 135 168 281 191 228 161 NA NA NA NA NA NA NA NA NA
,3 .g 60%PP 163 18.8 14.0 184 279 199 237 165 NA NA NA NA NA NA NA NA NA
ST 70®P 164 189 146 200 279 209 248 167 NA NA NA NA NA NA NA NA NA
B S0%WPP 164 189 152 216 265 220 259 168 NA NA NA NA NA NA NA NA NA
9%0%PP 164 189 157 23.0 264 230 271 169 NA NA NA NA NA NA NA NA NA
100%PP 164 188 159 236 259 235 277 171 NA NA NA NA NA NA NA NA NA
(b) Using FAP

PR* SM* (I Kou Wind Psa Psa2 Par* AC Hyb** MV* PP PP2 BBA ARMA Lij Const

- true 359 148 105 11.6 448 13.6 214 160 189 10.1 199 11.5 187 13.7 165 297 227
2 fRR) 367 13.1 110 116 328 138 225 164 NA NA NA NA NA NA NA NA NA
29 %P 180 168 129 333 304 212 335 174 NA NA NA NA NA NA NA NA NA
@8 S%WPP 177 165 123 291 293 206 327 158 NA NA NA NA NA NA NA NA NA
-3 .S 60%PP 182 16,0 110 222 272 183 294 151 NA NA NA NA NA NA NA NA NA
rf\ g 70%PP 179 160 125 247 298 203 314 150 NA NA NA NA NA NA NA NA NA
5 8s0%PP 182 159 148 278 274 228 335 150 NA NA NA NA NA NA NA NA NA
o0%PP 196 162 189 298 264 247 359 156 NA NA NA NA NA NA NA NA NA
10%PP 197 163 213 327 278 273 379 151 NA NA NA NA NA NA NA NA NA

(c) Using RAP

Table 6.5. RNMSEs in CO estimation using the new and existing estimation methods.
Central (a), femoral (b), and radial (c) ABP waveforms were used. f(RR) represents the exponential model of the
current systolic duration as a function of the preceding RR interval. N% PP (N=40~100) represents the N% Pulse
Pressure method to define an end systole of the beat. PR=Pressure Ratio Method (3.34); SM=Modified Herd’s
method (Systolic MAP — end DBP, €q.3.19); CI=Corrected Impedance (2.14); Kou=Kouchoukos Correction (2.15);
Wind=Windkessel model (2.3); Psa=Area under the curve with end-diastolic ABP value subtracted (2.13);
Psa2=Area under the systolic curve (2.12); Par=Parabolic ABF model (3.25); AC=AC Power (2.16); Hyb=Hybrid
Method (3.55); MV=Minimum Variance Method (3.2); PP=Pulse Pressure (2.4); PP2=Herd’s Pulse Pressure (2.7);
BBA=Beat-to-Beat Averaged Model (2.9); ARMA=ARMA model (2.20); Lilj=Liljestrand-Zander’s Method (2.6);
and Const=CO, SV, and TPR set constant.
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PR* SM* CI Kou Wind Psa Psa2 Par* AC Hyb** MV* PP PP2 BBA ARMA Lilj Const
. e 376 168 137 150 213 162 233 178 181 328 233 444 230 165 225 299 44.0
2 fRR) 391 160 147 148 287 164 231 187 NA NA NA NA NA NA NA NA NA
—i': g 40%PP 237 17.2 186 451 366 280 411 200 NA NA NA NA NA NA NA NA NA
% 8 so%PP 215 173 173 371 359 262 382 192 NA NA NA NA NA NA NA NA NA
-: .S 60%PP 188 17.4 147 284 332 226 338 177 NA NA NA NA NA NA NA NA NA
= g 70%PP 179 17.4 134 247 320 208 328 17.0 NA NA NA NA NA NA NA NA NA
g 80%PP 176 174 136 260 320 217 347 162 NA NA NA NA NA NA NA NA NA
9%0%PP 178 17.3 158 313 326 256 390 179 NA NA NA NA NA NA NA NA NA
100%PP 182 17.1 187 359 327 292 425 182 NA NA NA NA NA NA NA NA NA
(a) Using CAP
PR* SM* CI Kou Wind Psa Psa2 Par* AC Hyb** MV* PP PP2 BBA ARMA Lilj Const
w e 170 179 146 182 173 206 250 173 18.0 304 212 384 227 165 194 267 440
2 fRR) 169 168 155 183 230 213 252 179 NA NA NA NA NA NA NA NA NA
% 'g 40%PP 168 19.1 136 199 289 209 251 164 NA NA NA NA NA NA NA NA NA
¥ 8§ S0%PP 170 19.0 135 188 278 206 248 170 NA NA NA NA NA NA NA NA NA
- & 6P 170 19.0 140 208 278 216 264 170 NA NA NA NA NA NA NA NA NA
S8 T0%pP 170 191 145 229 279 228 281 171 NA NA NA NA NA NA NA N/A NA
§ 80%PP 17.0 19.1 152 253 277 242 300 171 NA NA NA NA NA NA NA NA NA
90%PP 169 19.1 159 27.7 274 260 322 171 NA NA NA NA NA NA NA NA NA
100%PP 169 19.1 164 28.8 273 269 333 174 NA NA NA NA NA NA NA NA NA
(b) Using FAP
PR* SM* CI Kou Wind Psa Psa2 Par* AC Hyb** MV* PP PP2 BBA ARMA Lilj Const
. tue 668 151 106 114 364 134 217 161 163 307 189 220 215 160 179 311 440
2 fRR) 565 138 112 113 327 13.7 225 166 NA NA NA NA NA NA NA NA NA
% § 40%PP 169 156 131 353 339 220 357 175 NA NA NA NA NA NA NA NA NA
g B 50%PP 159 153 124 308 314 212 348 153 NA NA NA NA NA NA NA NA NA
- & ewPP 159 149 108 236 289 188 315 147 NA NA NA NA NA NA NA NA NA
55 7w%P 154 149 121 262 287 208 336 146 NA NA NA NA NA NA NA NA NA
3 %P 154 148 143 290 287 232 357 144 NA NA NA NA NA NA NA NA NA
0%PP 166 150 184 31.1 271 254 371 142 NA NA NA NA NA NA NA NA NA
100%PP 168 150 216 34.0 270 28.0 385 139 NA NA NA NA NA NA NA NA NA

(c) Using RAP

Table 6.6. RNMSEs in TPR estimation using the new and existing estimation methods.

Central (a), femoral (b), and radial (c) ABP waveforms were used. f(RR) represents the exponential model of the
current systolic duration as a function of the preceding RR interval. N% PP (N=40~100) represents the N% Pulse
Pressure method to define an end systole of the beat. PR=Pressure Ratio Method (3.34); SM=Modified Herd’s
method (Systolic MAP — end DBP, €q.3.19); CI=Corrected Impedance (2.14); Kou=Kouchoukos Correction (2.15);
Wind=Windkessel model (2.3); Psa=Area under the curve with end-diastolic ABP value subtracted (2.13);
Psa2=Area under the systolic curve (2.12); Par=Parabolic ABF model (3.25); AC=AC Power (2.16); Hyb=Hybrid
Method (3.55); MV=Minimum Variance Method (3.2); PP=Pulse Pressure (2.4); PP2=Herd’s Pulse Pressure (2.7);
BBA=Beat-to-Beat Averaged Model (2.9); ARMA=ARMA model (2.20); Lilj=Liljestrand-Zander’s Method (2.6);
and Const=CO, SV, and TPR set constant.
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6.4. ABF Estimation

6.4.1. Comparison with the Windkessel model

Over 68,000 beats were processed and analyzed for ABF and SV, and over 110 six-minute windows
were analyzed for CO. Fig. 6.44a-b shows examples of the estimated ABF waveforms from CAP
waveforms (Fig. 6.44c). The estimated ABF follows the trend of the measured as well as the beat-to-beat
systolic waveforms, compared to the ABF estimated by the Windkessel model (Fig. 6.44d). Fig. 6.45 and
Fig. 6.46 show the similar results using FAP and RAP, respectively.

For the quantitative comparison, Table 6.7 summarizes the correlation between the skewness
(kurtosis) of the measured and estimated ABF. Using the central, femoral, and radial ABP, the skewness
(kurtosis) of the ABF estimated by the algorithm achieved correlation coefficients of 0.78 (0.72), 0.67
(0.63), and 0.69 (0.71). The ABF waveforms estimated by the algorithm had smaller errors in SD,
skewness, and kurtosis than the results of the Windkessel model with the exception of kurtosis in FAP and
RAP utilization (Fig. 6.48(b), Fig. 6.49). With constant C, in each animal, the algorithm achieved errors
of 15.3% (12.7%) in SV (CO) derived from CAP, 19.6% (15.2%) from FAP, and 21.8% (15.8%) from
RAP (Table 6.8, Fig. 6.50). For TPR estimation, the algorithm achieved 14.3, 20.9, and 19.4% RNMSEs
using CAP, FAP, and RAP, respectively. For determining AR parameter length L, 2a/j] was found to

provide the best results (Table 6.9).
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Fig. 6.44. Measured ABF and estimated ABF by the Windkessel model using CAP (applied to Swine #8 data).
The computed (black) ABF follows the trend of the measured (gray) ABF. The beat-to-beat ABF waveforms present
similar skewness and kurtosis to the measured ABF (b) as opposed to the ABF estimated by the Windkessel model

(d).

131



——Measured 454 — Computed from FAP
15 v-------- —Computed from FAP o
) T o S s =
10 ol A0 A E
L '-i’E'. e it
g RIS ASTASA
i (AT Rt T SEES—Ss————
-5 4 T 1 30 T T T
225 250 275 26 165 27 2275
Time [sec] Tire [sec]
(a) Measured and estimated ABF by ARX (b) Measured and estimated ABF by ARX
- Measured
L — Corrputed from FAP
TR oo s s Y s s s
% E 30 e e e — = = —
15 1
g =
oy a 01
3 -15 1
-30 T T
2255 226 2265 227 2275 226 226.5 227 2275
Time [sec] Time [sec]
(c) Measured FAP (d) Measured and estimated ABF by Windkessel

Fig. 6.45. Measured ABF and estimated ABF by the Windkessel model using FAP (applied to Swine #8 data).
The computed ABF (black) follows the trend of the measured (gray) ABF. The beat-to-beat ABF waveforms present
similar skewness and kurtosis to the measured ABF (b) as opposed to the ABF estimated by the Windkessel model

(d).
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Fig. 6.46. Measured ABF and estimated ABF by the Windkessel model using RAP (applied to Swine #8 data).
The computed ABF (black) follows the trend of the measured ABF (gray). The beat-to-beat ABF waveforms present
similar skewness and kurtosis to the measured ABF (b) as opposed to the ABF estimated by the Windkessel model

(d).

Skewness Kurtosis
ANIMAL Central Femoral Radial Central Femoral Radial
0.59 0.75 0.08 0.67 0.70 0.42
0.87 055 0.83 0.75 0.34 0.59
0.82 0.73 0.74 0.85 0.81 0.82
0.70 0.81 0.93 0.55 0.36 0.64
0.95 0.79 0.93 0.93 0.81 0.93
0.88 0.76 0.38 0.76 027 0.09

All 0.78 0.67 0.69 0.72 0.63 0.71

O G0~ N A

Table 6.7. Correlation coefficients of skewness and kurtosis of measured and estimated ABF.
The algorithm achieved RNMSEs of approximately 20% in SV and 16% in six-minute CO with constant compliance
C, in each animal.
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Central Femoral Radial

A% 15.3 19.6 21.8
60) 12.7 15.2 17.6
TPR 14.3 20.9 19.4

Table 6.8. SV, CO, and TPR estimation results by the ARX method.
The arterial compliances Ca were assumed to be constant within each animal.

Central Femoral Radial

a[i] 15.3 19.6 21.8
Negative Area 31.0 20.9 32.3
Smoothness 18.9 20.0 19.4

Table 6.9. Results of SV estimations using different evaluation functions to determine L.

Measured ABF Waveforms

Histogram of SD difference (SD errors)

25000 ==~ - —=—=mmmm e mmmmm e

BOPOD <= = e e e e
Normalize the systolic waveform and

calculate SD on a beat-by-beat basis

15000 == =i = s

Subtract SD sprmeas 10000 4 - - ~—-=----

from SDABFcak: 5000 - -~ —— 1

0 T
-0.02  -0.01

2255 226 2265 227 2275
Time [sec]

Calculated ABF waveforms
Fig. 6.47. Calculation process of SD differences
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Fig. 6.48. Histograms of the SD errors by the ARX algorithm and the Windkessel model.

The value above each histogram indicates the mean of the histogram. The algorithm had smaller SD errors than the
Windkessel model (* P<0.05). The true duration of diastole in each beat is given.
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Fig. 6.49. Histograms of the skewness and kurtosis errors by the ARX algorithm and the Windkessel model.
The value above each histogram indicates the mean of the histogram. The ARX algorithm (white) had smaller errors
than the Windkessel (black) model (* P<0.05). The true duration of diastole in each beat was used in the algorithm.
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Fig. 6.50. Agreement of the measured and estimated stroke volume and cardiac output from central, femoral, and

radial arterial blood pressure using the ARX method.

Ca was set at a constant in each animal. The gray and black lines represent measured and estimated values,

respectively.
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6.4.2. Comparison with Standard Waveforms

The previous section demonstrated that the ARX method could reconstruct ABF waveforms more
accurately than the traditional Windkessel model.

To further validate the ARX method in the ability to track beat-to-beat changes in the ABF waveforms,
this section compares the results of the ARX method with cases where the ABF waveforms are assumed
to be uniform. Suppose you analyze the first beat of each swine experiment and obtain the ABF waveform
(first beat waveform). Then assume the rest of the ABF waveforms do not basically change. One can
calculate the SD, skewness, and kurtosis errors of the ABF waveforms by comparing them with the
measured ABF waveforms. If the errors of the ARX method are smaller than those of the first beat
waveform, it proves that the ARX method tracks beat-to-beat changes in the ABF morphology.

In addition to the first beat ABF waveforms (Fig. 6.51a-f), a median waveform of the ABF recorded
all the six swine experiments (Fig. 6.51g) is also compared. In calculating the median waveform, the
magnitude and width of each systolic ABF were normalized before taking the median of all the systolic
ABF waveform.

Note that the first beat ABF waveforms and the median ABF waveforms are horizontally scaled in

each beat so that they have the true systolic durations for fair comparisons of SD, skewness, and kurtosis.
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Fig. 6.51. Standard systolic ABF waveforms.

Fig. 6.52 and Fig. 6.53 show the histogram of SD, skewness and kurtosis errors of ABF waveforms by
the ARX method and the standard waveforms (first beat in each animal). The ARX method achieved
significantly smaller errors and variances than the standard waveform method. Fig. 6.54 and Fig. 6.55
show the case of standard waveforms obtained by all of the beats. Also in this case, the ARX method
achieved significantly smaller errors and variances except the skewness of ABF waveforms using RAP.
These results demonstrate that the ARX method is able to track beat-to-beat changes in the ABF

waveforms better than fixed standard waveforms.
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(a) SD difference of the first-beat ABF (black) and estimated ABF (white) by the ARX model using CAP.
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(b) SD difference of the first-beat ABF (black) and estimated ABF (white) by the ARX model using FAP.
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(c) SD difference of the first-beat ABF (black) and estimated ABF (white) by the ARX model using RAP.
Fig. 6.52. Histograms of the SD errors by the ARX algorithm and the first beat in each animal.

The value above each histogram indicates the mean + standard deviation (SD). The ARX algorithm (white) had
smaller errors and SD than the fixed ABF (black) (* P<0.05).
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Fig. 6.53. Histograms of the skewness and kurtosis errors by the ARX algorithm and the first beat in each animal.
The value above each histogram indicates the mean + standard deviation (SD). The ARX algorithm (white) had
smaller errors in SD than the fixed ABF (black) (* P<0.05).
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(a) SD difference of standard ABF (black) and ARX ABF (white) from the measured ABF, using CAP.
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(c) SD difference of standard ABF (black) and ARX ABF (white) from the measured ABF, using RAP.
Fig. 6.54. Histograms of the SD errors by the ARX algorithm and the median of all the true ABF waveforms.

The value above each histogram indicates the mean =+ standard deviation (SD). The ARX algorithm (white) had
smaller errors than those of the Windkessel model (* P<0.05).
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Fig. 6.55. Histograms of the skewness and kurtosis errors of the ARX algorithm and the median of all the true ABF
waveforms.

The value above each histogram indicates the mean + standard deviation. The ARX algorithm (white) had smaller
errors than those of the Windkessel model (* P<0.05).
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6.4.3. Exponential Model for End Systole Detection
This section reports the result of the ARX method using the exponential model (section 5.4.1) to
identify end-systoles on a beat-to-beat basis.

Central Femoral Radial

SV 20.0 22.9 25.9
Cco 18.5 25:1 22:7
TPR 14.1 14.8 16.7

Table 6.10. SV and CO estimation results by the ARX method with the estimated diastolic intervals.
The Ca in each animal was assumed to be constant.
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Fig. 6.56. Histograms of the waveform errors using ARX with true and estimated intervals.
The ARX model (white) resulted in statistically lower errors (* P<0.05) than the Windkessel model (black).
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The ARX method, with the estimated diastolic interval determined by (5.4), resulted in 20.0, 22.9, and
26.0% SV estimation errors using CAP, FAP, and RAP, respectively - increased errors from those with
the true end systoles. The SD, skewness, and kurtosis of the calculated ABF waveforms were statistically
closer to the measured ABF waveforms than the Windkessel model, as shown in Fig. 6.56.

As previously mentioned, the error of diastolic interval estimation was 6.56%. In this thesis, the
possible inaccuracy of determining diastolic intervals in practical settings was assumed to be within a
10% envelope. In the following Chapter, further sensitivity analyses are conducted for prolonged and

shortened diastolic intervals by 10% from the true diastolic intervals.

6.5. Summary

Fig. 6.57a shows the summary of the SV estimation results by the methods with the end systole
identification methods. CAP signal was used. For each SV estimation method, the best end systole
identification method is reported. One-way ANOVA test showed statistical significance among the
methods, and the adjusted pair-wise comparison (Scheffé's test) was conducted. Asterisks show the
significant difference (p<0.05) from the lowest error of each comparison. The Corrected Impedance
Method with 70% Partial Pulse Pressure as an indicator of end systole resulted in the smallest error
among the other methods. In a similar manner, Fig. 6.57b and Fig. 6.57c show the summary of CO and
TPR estimation, respectively. The errors of the best methods (Kouchoukos with Exponential model for
CO and Corrected Impedance with 70 % PP for TPR) were not statistically significant from the other top

nine methods. Similar results were seen in using FAP (Fig. 6.58) and RAP (Fig. 6.59).
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Fig. 6.57. Summary of SV, CO, and TPR estimation using CAP.
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Fig. 6.58. Summary of SV, CO, and TPR estimation using FAP.
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Fig. 6.59. Summary of SV, CO, and TPR estimation using RAP.
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7. Discussion

7.1. CO, SV, and TPR estimation

In this thesis, new SV, CO, and TPR estimation methods based on cardiovascular physiology were
introduced and validated. In addition, estimation methods for end-systole were also introduced and
validated. Furthermore, a thorough comparison of the new methods with the existing estimation methods
was conducted by processing the Yorkshire swine data sets. The end-systole identification method
advanced the new and existing SV, CO, and TPR estimation methods that utilizes end systole information
(Fig. 6.57 — Fig. 6.59). Overall, the Bland-Altman plots showed that the methods reported in this thesis
did not show strong trends (i.e., the estimation performance does not change as the true CO, SV, or TPR
values change). The following methods showed 0.25+ correlation coefficients (i.e., the estimation
performance changes as the true CO, SV, or TPR values change):

e  Windkessel model for SV and CO

e Liljestrand-Zander’s method for CO and TPR

e Herd’s method for TPR

e Systolic Area method for SV

e Kouchoukos Correction for SV using FAP

e AC Power method for CO using RAP

e Minimum Variance method for CO

e Modified Herd’s method for CO using RAP

e Parabolic method for CO using CAP and RAP

e Pressure Ratio method for CO using FAP and RAP

e Hybrid method for SV using CAP
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As shown in Fig. 6.57 — Fig. 6.59, the Modified Herd’s Method, Corrected Impedance Method,
Kouchoukos’s Correction Method, and Parabolic Method achieved low RNMSEs by using the
Exponential or Partial Pulse Pressure Model as indicators of end systole. The end systole identification
algorithm turned the existing algorithms into new methods that achieved lower RNMSEs than the original
methods.

Wesseling’s Corrected Impedance Method is a highly empirical model. The systolic area under the
ABP curve above DBP was scaled by an empirically-found scaling factor that is a function of HR and
MAP. Although they obtained the scaling factor formula from healthy male subjects in their twenties, the
method achieved low RNMSEs, which may indicate the similarity of the human and swine cardiovascular
systems in terms of applicability of the Windkessel model.

Kouchoukos Correction Method includes a simple correction factor (Ts/Tp) to model run-off blood
flow during systole that escapes into the arterial tree without contributing to the ABP signal. Although the
correction factor is empirical, it achieved lower RNMSEs than several theoretical model-based methods.

It should be noted that this empirical method would not work so well on the given data sets when
applied to the monitoring of de-conditioned hearts.

Liljestrand-Zander’s method, although it was reported to have the highest agreement with the
thermodilution CO in the ICU patient data sets [53], did not result in the best method. This could be
attributed to the nature of the ICU data sets. Because ABP is maintained during surgeries, one cannot
expect as much cardiovascular perturbation in the ABP signals as animal experiments in which
vaso-active drugs are used to provide a wide range of cardiovascular indices. Liljestrand-Zander’s method
divides the PP by the mean of SBP and DBP, which is approximately proportional to MAP. Thus,
Liljestrand-Zander’s method averages PP by MAP to provide relatively normalized estimates and results
in high agreement with the stable ICU thermodilution CO measurements.

Among the methods compared, the Hybrid method is unique in that it requires high-order parameter
calibration. Therefore, it should not be directly compared with the other methods that require only one
parameter calibration (arterial compliance C,). The Hybrid algorithm uses beat-MAP and end-DBP, rather
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than SBP, values because beat-MAP and end-DBP values are relatively insensitive to distortion of the
ABP waveform.

The key feature of the new method is that the three dimensionless variables (77/7;, P/MAP,, and
P;.;°/MAP)) used to calculate SV were converted into three proportional SV estimates (S¥propts SV prop2,
and SV,p3) using three variants of the Windkessel model (3.40 — 3.42). The logarithm of the three SV
estimates were weighted by parameters obtained from linear regression and least mean square error
analysis, and integrated into a single SV value by (3.43).

The new method achieved a RNMSLE of 12.7% in CO and 16.5% in SV derived from femoral ABP,
and 10.1% in CO and 14.5% in SV derived from radial ABP (Fig. 6.42).

The Bland-Altman test, which was employed to compare CO (SV) values calculated using our new
methods and measured by the ultrasonic blood flow probe, demonstrated that the estimated CO and SV
were within 1.96 standard deviations of the direct measurements of these quantities (Fig. 6.43). The high
correlation between the measured and calculated CO and SV demonstrates agreement of the new method
with the invasive ultrasonic flow probe measurement method.

The analysis demonstrates that our new method for estimating SV and CO performs favorably
compared to other PCMs. The algorithm presented in this paper analyzes the shape of individual beats as
does all of the other PCMs except for the ARMA [20] method, which analyzes beat-to-beat variability in
ABP waveforms.

A limitation of the current methods, along with all PCMs, is that SV and CO are all estimated only to
within a proportionality constant. An independent calibration is required if absolute measures are

needed.

7.2. ABF Estimation

7.2.1. Overview

A novel algorithm using the ARX model to continuously estimate ABF by the analysis of peripheral
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ABP waveforms was developed and validated. As opposed to the existing PCMs that also analyze ABP to
calculate CO and SV, the ARX method reconstructs more fundamental information, i.e., instantaneous
ABEF, that is used to calculate CO and SV. The method estimates ABF within a proportionality constant of
C. and does not require demographical data, as opposed to the existing methods.

The algorithm utilizes the notion that the input to the arterial system is zero during diastole [57]. In the ABF
estimation routine, 17 diastolic ABP waveforms were used in the lefi-hand item of (4.4) to obtain the AR
parameters. The AR parameters were integrated into the ARX model (Fig. 4.1) and applied to the entire ABP
waveform to obtain the ABF waveform. Note that the AR parameters were also used to obtain the
characteristic time constant 7 (Fig. 4.2b) as well as the scaling factor a (4.5) to properly scale the estimated
ABF (4.10).

The conditioning of the data to synthesize the systolic and diastolic ABP within the moving window
was a key necessary process. Without conditioning, divergences in the impulse responses were observed,
and the estimated ABF resulted in high errors in SD, skewness, and kurtosis. The cause of the estimated
impulse response instability was varying ABP data that incur computational challenges in obtaining the
AR parameters. For example, if beat-to-beat MAP values are rapidly changing on a beat-to-beat basis due
to respiration or a physiological feedback system in response to vasoactive drugs, a range of diastolic
ABP values vary from one beat to another within a window. Such data force the algorithm (4.4) to find a
compromised single set of AR parameters that can reduce multiple diastolic ABP signal amplitudes down
to approximately zero. Also, if the length of the RR interval and diastolic duration vary among 17 beats in
the window, it is difficult to find a single AR parameter length L that satisfies all beats. Thus, the
data-conditioning was conducted to relax the computational challenge in AR parameter acquisition.
Although the beats in the moving window are rescaled horizontally (resampling) and vertically (rescaling)
for the aforementioned purpose, this procedure was only used to obtain an AR parameter set. The AR
parameters were applied to the original ABP waveforms to obtain ABF. Therefore, the physiological
changes occurring in a shorter interval than the window size (e.g., respiration) can be seen in the
estimated ABF (Fig. 7.1).
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Fig. 7.1. Cyclic patterns of the measured and estimated ABF signals.

The cyclic magnitude change due to respiration (~17 breaths per minute) observed in the measured ABF (gray) is
also apparent in the estimated ABF waveform (black).
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The 17-beat moving window size was empirically chosen; if the window is too short, one cannot
excite enough modes to identify the system. On the other hand, if the window is too long, one cannot
assume time-invariance of the pertinent cardiovascular system (e.g., baroreflex feedback that changes
TPR, characteristic time constant, and impulse response).

For determining AR parameter length L, the minimum Xa/j] was selected as an evaluation function
because it gave afj] that converged to an impulse response A/n]. The search space for L was limited to
RR-interval > L > 20 samples (at a 250 Hz-sampling frequency), empirically found by authors that
provides reasonable ABF waveforms. In cases where there were multiple local minima of Za [j] in the
search space, the minimum with the shortest L was adopted.

The algorithm achieved 15.2-21.8% SV, 12.7-15.8% CO, and 14.3-20.9% TPR RNMSEs (Table 6.8,
Fig. 6.50), respectively. Furthermore, the measured ABF and the estimated ABF by the algorithm showed
small errors and reasonable correlations in skewness and kurtosis. In particular, the algorithm applied to
animals #6 and #8 resulted in an overall high correlation (Table 6.7). The low correlation of skewness
(animal #4, radial) and kurtosis (animal #9, femoral and radial) are partially due to the small ranges of the
variables. The ABF estimated by the algorithm provided matching SD, skewness and kurtosis with the
measured ABF waveforms, as shown in Fig. 6.48 and Fig. 6.49. Regarding the Windkessel results, the left
shift of the skewness error histogram (Fig. 6.49a-c) represents an earlier peak of the estimated ABF
waveforms than the measured ABF waveforms, and the left shift of the kurtosis histogram (Fig. 6.49 d-f) |
means that pointier waveforms (leptokurtic) were achieved than the measured ABF waveforms. Both of
the characteristics are present in the Windkessel ABF waveforms shown in Fig. 6.44d, Fig. 6.45d, and
Fig. 6.46d.

The classical Windkessel model assumes exponential decay during diastole. That model can be
described as a low-order (first-order) AR model. The present algorithm, on the other hand, obtains
higher-order AR parameters (Fig. 4.2(a)) from diastolic ABP waveforms. The advantage of the present
algorithm is that it may take into account the possible distortion involved in the diastolic ABP waveforms.
Therefore, when applied to the systolic ABP, the filter created by the algorithm may compensate for the
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distortion and could reconstruct systolic ABF waveforms. The distortion property varies from artery to
artery, as well as from subject to subject. The algorithm could obtain individual parameters unique to each
arterial line of each subject on a beat-to-beat basis.

The algorithm is easy to implement in the existing continuous ABP measuring medical systems. The
ABF waveform, CO, and SV estimated by the analysis of ABP waveforms will improve the ABP-only

monitoring and enable multi-modal evaluation in clinical and surgical settings.

7.2.2. Sensitivity Analysis Regarding the Onset of Diastole

In the results of the ABF estimation, the diastolic interval in each beat was given by the measured
ABF waveforms. In practical settings, a possible method to detect the onsets of diastole would be the use
of the dicrotic notch in ABP waveforms. However, the dicrotic notch does not always exist in ABP
waveforms. Furthermore, due to the ABP waveform distortion, a systolic interval in an ABF signal does
not necessarily match the time interval from systolic onset to the dicrotic notch in an ABP signal.

In this section, the sensitivity analyses of the ARX method on the onset of diastole is conducted over
the Yorkshire swine data sets. Each scenario adopts a different formula for identifying the onset of
diastole. The first two methods introduced in this section are empirical models. Secondly, a method to
identify onsets of diastoles by using heart sounds is addressed to conclude that the heart sound could
identify the onset of diastole with an accuracy of 10%. Thirdly, the true diastolic duration was
lengthened/shortened by 10% to further investigate the impact of the errors in identifying the onset of

diastoles.
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Fig. 7.2. Increased and decreased diastolic interval.

Based on the discussion of the use of heart sounds, further sensitivity analysis is conducted here.
Fixing the end-diastolic point, the true diastolic intervals were increased and decreased by 10% (Fig. 7.2).
With these offsets of diastolic onset, the ARX method was tested, and CO, SV, ABF skewness, and

kurtosis were obtained.

Increased diastolic interval

Table 7.1 shows the RNMSE:s in the case of an increased diastolic interval; i.e., the onsets of diastoles
were identified earlier than the actual onsets. Portions of the ABP waveforms at the ends of systoles were
regarded as the beginning of diastole, causing higher errors (Table 7.1). The ABF waveforms still resulted

in smaller errors of skewness and kurtosis than the Windkessel model.

Calibration Methods Central Femoral Radial

SV with Constant Ca 19.2 25.7 234
CO with Constant Ca 13.2 19.2 19.5

Table 7.1. SV and CO estimation results with the identified diastolic intervals increased by 10%.
The Ca in each animal was assumed to be constant.
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Fig. 7.3. Histograms of the standard deviation, skewness, and kurtosis errors of ABF waveforms with a +10%
diastolic interval offset.

The duration of diastole in each beat was increased by 10% so that the onset of diastole comes earlier
than the actual onset. The value above each histogram indicates the mean of the histogram. The ARX
algorithm (white) had smaller errors than the Windkessel (black) model (* P<0.05).
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Decreased diastolic interval

Table 7.2 and Fig. 7.4 show the RNMSE:s in the case of a decreased diastolic interval; i.e., the onsets
of diastoles were identified later than the actual onsets. Higher RNMSEs yet better ABF waveforms are
common with increased diastolic interval results.

Calibration Methods Central Femoral Radial

SV with Constant Ca 25.8 24.3 27.3
CO with Constant Ca 16.1 19.6 23.6

Table 7.2. SV and CO estimation results with the identified diastolic interval decreased by 10%.
The Ca in each animal was assumed to be constant.
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Fig. 7.4. Histograms of the standard deviation, skewness, and kurtosis errors of ABF waveforms with a -10%
diastolic interval offset.

The duration of diastole in each beat was decreased by 10% so that the onset of diastole comes earlier
than the actual onset. The value above each histogram indicates the mean of the histogram. The ARX
algorithm (white) had smaller errors than the Windkessel (black) model (* P<0.05).
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7.2.3. Summary

RRR)
(a) Using CAP (b) Using FAP {(c) Using RAP

Fig. 7.5. Sensitivity of the new algorithm to the error of the identified diastolic interval.
In using the ARX method, the true diastolic onset provides the lowest CO and SV errors among the estimated
diastolic onset as a function of preceding RR intervals, 10% prolonged, and 10% shortened diastolic intervals.

To test the sensitivity of the algorithm to the offset of diastolic onset, the time stamp of the onset of
diastole was offset from the actual location so that the diastolic interval was £10% of the actual interval.
With the diastolic intervals increased by 10%, the SV (CO) estimation errors increased by 20.3 (3.9)%,
23.7 (26.3)%, and 9.8 (23.4)% using CAP, FAP, and RAP, respectively. With diastolic intervals decreased
by 10%, the errors increased by 68.8 (26.9)%, 23.9 (29.2)%, and 29.5 (7.8)%, respectively (Fig. 7.5). For
both the £10% cases, skewness and kurtosis errors remained as small as the reported errors in Fig. 6.49.
The increases in SV errors were larger for the -10% diastolic intervals. This could be attributed to the loss
of information-rich, varying ABP signals at the beginning of diastole. Especially when the diastolic ABP
is relatively flat, a decaying curve at the beginning of diastole is particularly useful in obtaining correct
AR parameters.

The classical Windkessel model assumes exponential decay during diastole. That model can be
described as a low-order (first-order) AR model. The Windkessel model resulted in an earlier systolic
peak (also indicated by the right shift of the skewness histogram, Fig. 6.49a-c in black) and a pointy peak
(also indicated by the left shift of the kurtosis histogram, Fig. 6.49d-f in black) of the estimated ABF
waveforms. The ARX algorithm, on the other hand, obtains higher-order AR parameters (Fig. 4.2a) from
diastolic ABP waveforms. The advantage of the ARX algorithm is that it may take into account the

possible distortion involved in the diastolic ABP waveforms as a result of propagation through the arterial
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tree. Therefore, when applied to the systolic ABP, the filter created by the algorithm may compensate for
the distortion and could reconstruct systolic ABF waveforms. The distortion property varies from artery to
artery, as well as from subject to subject. The algorithm might be able to obtain individual parameters

unique to each arterial line of each subject on a beat-to-beat basis.
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8. Conclusions and Future Work

8.1. Summary

In Chapter 1, an overview of cardiovascular monitoring and the need for minimally- or non-invasive
SV, CO, and TPR monitoring by the analysis of ABP were introduced. Chapter 2 introduced a
comprehensive list of existing algorithms that estimate proportional SV, CO, and TPR. The new
algorithms were introduced in Chapter 3. The algorithms were developed by taking cardiovascular
physiology into consideration. Furthermore, new algorithms to identify end systole were developed and
validated (Section 5.4). The end systole identification algorithms advanced the performance of the
previous SV, CO, and TPR estimation algorithms as well as the new algorithms. The SV, CO, and TPR
estimation algorithms in conjunction with the end systole identification methods were validated (Chapter
6) by using the previously recorded Yorkshire swine data sets (Table 6.1). These algorithms involve the
use of instantaneous ABF recorded directly from the aorta, CAP, FAP, and RAP. As summarized in Table
6.4 — Table 6.6, the Pressure Ratio method, modified Herd’s method, Corrected Impedance method,
Kouchoukos Correction method, and Parabolic method achieved low RNMSEs. The end systole
identification algorithms turned existing algorithms into new algorithms, to achieve low RNMSEs. These
methods should be tested on cardiovascular data sets recorded from human subjects to evaluate their
estimation performance in clinical use.

This thesis also introduced a novel algorithm to estimate instantaneous ABF in Chapter 4. The method
adopts ARX modeling technique, with the instantaneous ABF as the exogenous input to be estimated by
the algorithm. Because the exogenous input to the system is zero during diastole, the ARX model
becomes the AR model during diastole. By the analysis of diastolic ABP, the AR parameters were
acquired, and the system impulse responses were calculated. The impulse response and AR parameters

were used to develop a filter to process ABF to reconstruct and scale instantaneous ABF. The ARX
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algorithm achieved RNMSEs of 15.3, 19.6, and 21.8% in SV estimation; 12.7, 15.2, and 15.8% in CO

estimation; and 14.3, 20.9, and 19.4% in TPR estimation derived from CAP, FAP, and RAP, respectively

(Table 6.8, Fig. 6.50 in Chapter 6). The results demonstrated that the algorithm can reconstruct ABF

waveforms from ABP waveforms more accurately than the Windkessel model.

8.2. Contributions

The contributions of this thesis are four-fold:

Development and validation of new SV, CO, TPR estimation methods:

A series of novel algorithms for proportional SV, CO, and TPR estimation were introduced and
validated. The implementation of cardiovascular physiology in a mathematical form was described.
The algorithms have the potential to accurately estimate the cardiovascular indices for de-conditioned
cardiovascular systems.

Development of end systole identification methods:

Using the exponential model and partial pulse pressure model, new identification methods for end
systole were developed. The methods could advance the newly developed and existing SV, CO, and
TPR estimation methods.

Comprehensive comparison of the existing and new methods:

The new and existing estimation methods for SV, CO, and TPR were combined with the newly
developed methods to identify end systoles and applied to common data sets (Yorkshire swine). This
is the first comprehensive comparison of the methods reported in [23] and [53]. Among the methods,
the newly developed Parabolic ABF model, Pressure Ratio method, modified Herd’s method as well
as existing Corrected Impedance Kouchoukos Correction methods with the end systole identification
methods were reported to achieve low errors for the swine data sets recorded from the nominal
cardiovascular system with perturbations given by vasoactive drugs.

Development and validation of the new ABF estimation method:
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Using the ARX model, a novel algorithm to reconstruct instantaneous ABF on a beat-to-beat basis by
analysis of the ABP signal was developed and validated. The quantitative analyses of the
reconstructed waveforms demonstrated that the ARX model reliably estimates instantaneous ABF

waveforms as well as SV, CO, and TPR.

8.3. Suggestions for Further Research

Building on the contributions listed above, suggestions for future research directions are outlined

below.

The use of heart sounds for the identification of diastole onset

In this thesis, sensitivity analyses were conducted to investigate the impact of errors in identifying end
systole. Also, an exponential model using the preceding RR interval and Partial Pressure model were also
introduced as end-systole determination methods. An alternative method for identifying end systoles
would be the S1 and S2 heart sounds that indicate the opening and closing of the aortic valve, respectively.
By analyzing the heart sounds, it would be possible to map systolic/diastolic intervals from the heart

sound record to corresponding ABP.

Heart failure models

The algorithm was validated using Yorkshire swine data sets whose wide physiological range was
achieved by the use of vasoactive drugs. The next step would be to apply and validate the algorithm with
abnormal beats, such as premature beats, and heart failure models. The algorithms should be tested to
estimate CO and SV, as well as to reconstruct abnormal ABF and evaluate contractility of the left
ventricle. While the empirical methods (Corrected Impedance, for example) would not work for these

abnormal heart conditions, some of the model-based (cardiovascular physiology-based) methods would
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work better than empirical methods.

Animal heart failure models have been developed and used for the validation of heart transplantation,
left ventricular assist devices, artificial hearts, and so forth [59]. Major methods to induce heart failure
are: (1) pacing-induced (chronic, easy to control [60]), (2) ischemia-induced or coronary

ligation/occlusion (could be fatal and difficult to control [61]), and (3) pharmacological [61-63].

Bi-ventricular pacing study

For patients with a severe myocardial infarction, bi-ventricular pacing that stimulates both left and
right ventricles is an option to maintain CO (Fig. 8.1). Currently, central ABP analysis (maximizing dP/d)
and/or short-term echocardiography in the ICU are used to optimize the atrioventricular (A-V) and left
and right ventricular pacing delays [64, 65]. However, the optimum delay changes and real-time adaptive
cardiac resynchronization are neceded. The ARX algorithm can be used to process peripheral ABP
waveforms to reconstruct ABF, and such instantaneous ABF waveform information can be used to

optimize A-V delay and maximize CO and SV in real time.

Fig. 8.1. Bi-ventricular pacing.
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Long-term monitoring of cardiovascular indices in space

Cardiovascular alterations in space are a major concern. The techniques presented in this thesis to
monitor changes in SV, CO, and TPR can be used for health monitoring in aerospace missions to detect
deconditioning of the cardiovascular system, predict the magnitude of orthostatic stress upon return to
Earth [50], and evaluate countermeasures against such deconditioning. The algorithms developed in this
thesis could be implemented into the existing blood pressure monitoring system in clinical, research, and

spaceflight settings including the Integrated Cardiovascular Investigation onboard the International Space

Station (Fig. 8.2).
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Fig. 8.2. Schematic drawing of the Integrated Cardiovascular Investigation in the Columbus Laboratory onboard the
International Space Station.

Image obtained from http://www.nasa.gov/mission_pages/station/research/experiments/Integrated Cardiovascular.html
on April 26, 2011. © NASA.
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Appendix A: Derivation of High-Order Hybrid Model

A.1. Quadratic Model

A quadratic model

wi, )= D)+ yo i 1)+ a X, ) + a, X, G, )
+b, X, (’ )+2b12XX(’ )+b22X (’ J) (A1)

can be described by redefining y - y0 as Y:

Y(i,j)z D(j)"'ale (iaj)+azX2 (i,j)
+b11X12(i=j)+ 2b12X1X2(i,j)+b22X22(i,j) (A2)

Define the error as
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Combining the equations in (A.16),
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In the same manner as the quadratic (second-order) model, the matrix equation for the general Muar
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can be derived by considering the patterns in the matrix elements:
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where syn represents symmetric elements, and the [L x L] matix block element in (A.19) is defined as
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The YXPP vector of the left item of (A.19) is
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B.1. The 59th International Astronautical Congress

September 29 — October 3, 2008 in Glasgow, Scotland. Supported by the Japan Aerospace Exploration

Agency (JAXA) Student Program.

TOTAL PERIPHERAL RESISTANCE USING PERIPHERAL ARTERIAL BLOOD

A NOVEL ALGORITHM TO CONTINUOUSLY MONITOR CHANGE OF i ! I =
PRESSURE VALUES FOR PREDICTION OF ORTHOSTATIC INTOLERANCE

Tatsuya Arai’, Kichang Lee” and Richard J. Cohen?
"Aeronautics and Astronautics, *Harvard-MIT Dwman of Health Sciences and Technology
Massachusetts Institute of Technology, Cambridge, MA, USA

ABP: Arterial Blood Pressure [nmHg]  AC: Aortic Compliance [sec x L/min / mmHg]  CO: Cardiac Output [L/min]
HR: Heart Rate [beat per minute]  PP: Pulse Pressure [mmHg] SV: Stroke Volume [mL] TPR: Total Peripheral Resistance [mmHg/(L/min)]

s N\ 7 \
Post-flight Orthostatic Hypotension Estimation of Total Pﬂiphoml Resistance (TPR)
and Vascular Resistance " . SV = PP x AC

T e CO =SV x HR
MAP = CO x TPR
m.u.‘:..":'E:S'..
» | PR= —MAP
WIndltuulCluui' T ACxPPxHR
(widely occepted lumped model)
1-6 Adoptation Low vascular  High vascular Volrage [V] = Blood Prewsure BF Resistance(R) = Total Peripharal Resistoncs (TPR)
ﬂul‘ Shift to -6 resistance resistance Corrent (i) = Cardioc Output [CO) Capecitor [C} = Aortic Compliance (AC)
(Re-distribution) 16 y :-mplﬂh Blood Volume (Q, V)

( AY 4 - N
Problem in TPR Estimation from Hypothesis o S
Blood Pressure !(&:_

End diastolic pressure, beat
l___ *|| duration, time from the onsetto ———
ABP Waveform propagates from / the peak of systole, and mean arterial pressure
a central to peripheral tapered arterial tree are relatively insensitive to distortion.
k- TPR estimation can be improved by using this
Woaveform distortion, especially in systole information.

. \ >

( 3 " \
Algorithm Curve-fitting | [ Method and Results

) - 20
? ‘Pf Measured BP = 15
. £
5 " 'E 10
3 pr Windkessel BP s
™ Time Constant T= I'FI x AC 0
IR nmc[sl * PP2 efines puise provame mn MAP - Diaviolc ALP
A« B et Py = (P2 e T aguacy e 4=V (7 AT ¢ 5 T=—oTF
Equal mean arterial pressure of measured and | A W ad a4 ]
Windkessel 87 . f N w){ A 4"" 'ﬂ 4 "% W
" D AQ, o Eo 7 0 i 3 T '
MAP, = j'mr:dr L 1) i
, 7
Stroke volume ond pulse pressure: . ’ —
80 _p o T po ST Conclusion and Future Work
AC
Numerically solve: L 4 A4 4 The new method had statistically lower error
5 in TPR estimation than other methods.
map, =% (e, o T TVE ), prg T 7y
T, The new method has the potential for clinical opplications.
for time constant T of the beat. ki ” Owd &V P
oy " re work includ: a timati is an
Proportional TPR (within a scaling factor of AC) application to prediction of post-fight orthestatic | hvmnliﬂﬂ
is obtained to monitor the change of TPR. using pre-flight ABP waveform.
. J J

173



B.2. The 18th IAA Humans in Space Symposium

April 11-15, 2011 in Houston, Texas. Supported by the MIT Graduate Student Council (GSC) T ravel

Fund Grant.

Estimation of Aortic Blood Flow
by Analysis of Peripheral Arterial Blood Pressure

T. Arai', K. Lee’
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I Background

Continuous monitoring of cardiovascular parameters is needed to study the effect of
space flight on cardiovascular function and to develop improved methods of monitoring
the health of astronauts. In particular, aortic blood flow (ABF), the instantaneous blood
flow in the aorta, is one of the most essential cardiovascular p: ; by analyzi
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« Perturbation
Vaso-active drugs (e.g. phenylephrine) administered
to achieve a wide physiological range:

Ultrasonic flow probe

the ABF waveforms, one can calculate cardiac output {CO) and stroke volume (SV.)
In spite of its importance, ABF is not available clinically except during short-term echo-
cardiographic recordings because of the difficulty in acquiring the ABF signal in an accurate
and continuous manner. In contrast, arterial blood pressure (ABP) can be readily obtained
invasively or noninvasively.

of this research was to develop and validate a novel algorithm to reconstruct
ABF waveforms from ABP waveforms. Availability of continuous ABF would enable multi-
modal assessment of cardiovascular function.

I Algorithm  Auto-Regressive with Exogenous input (ARX) Model

We have developed and validated a novel time-domain algorithm to reconstruct the
continuous ABF signal from the peripheral ABP signal.
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* Measurement
Reference ABF measured by a surgically implanted aortic flow probe
(T206 with A-series probes, Transonic Systems, Ithaca, NY)
Peripheral ABP measured by a 23- or 25-gauge angio-catheter placed into the femoral and radial
artery, attached to an external pressure transducer (TSD1044, Biopac Systems, Santa Barbara, CA)

I Results

® First successful reconstruction of ABF waveforms from peripheral ABP

15 eased Meaured
—— ARX ing femorsl ABP 0 — Windheviel uaing femoral ABP
T 10 I
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2 5 =
w
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1 ]
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* Smaller waveform error (standard deviation, skewness, and kurtosis)
than the traditional Windkessel model
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* P<0.05

-2

A 0 1 2 2
Skewness Error using FAP
® Stroke volume error: 19.6% using femoral ABP, 21.8% using radial ABP
® Cardiac output error: 15.2% using femoral ABP, 17.6% using radial ABP

I Future Work

» Application to non-invasive ABP data recorded from astronauts
Long-term monitoring of the cardiovascular function
Easy to implement in cardiovascular monitoring systems

« Adaptive cardiac resynchronization therapy (CRT)
Reconstruction of ABF waveforms in premature beats as well as optimization
of pacing parameters during bi-ventricular pacing for patients with advanced
heart failure

-1 0 1
Skewness Error using RAP
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