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Abstract
This thesis introduces novel mathematical algorithms that track changes in stroke volume (SV), cardiac

output (CO), and total peripheral resistance (TPR) by analysis of the arterial blood pressure (ABP) signal.

The algorithms incorporate cardiovascular physiology within the framework of a generalized Windkessel

model, which is a widely accepted cardiovascular model. Algorithms to identify end systole were also

developed and implemented in the new and existing SV, CO, and TPR estimation algorithms.

The algorithms were validated by applying them to previously recorded Yorkshire swine data sets that

include directly measured aortic blood flow (ABF), SV, CO, as well as central and peripheral ABP.

Among the algorithms using the end systole identification algorithms, Parabolic Method, Modified Herd's

Method, Kouchoukos Correction Method, and Corrected Impedance Method achieved low root

normalized mean squared errors (RNMSEs).

This thesis also introduces and validates a novel algorithm to reconstruct instantaneous ABF

waveforms from the ABP signal. The algorithm utilizes an auto-regressive with exogenous input (ARX)

model to describe the filter between ABF and ABP. Because ABF (the exogenous input to the peripheral

circulation) is approximately zero during diastole, the diastolic ABP waveforms can be regarded as

auto-regressive (AR). By the AR analysis of multiple diastolic ABP waveforms, the AR parameters are

obtained. The AR parameters were applied to the ABP waveforms (both systolic and diastolic) to compute

beat-to-beat ABF waveforms. The errors of skewness and kurtosis of the estimated ABF waveforms were

statistically smaller than those estimated by the standard Windkessel model. The estimated ABF

waveforms were further processed to estimate SV, CO, and TPR. The algorithm achieved RNMSEs of

15.3, 19.6, and 21.8% in SV estimation; 12.7, 15.2, and 15.8% in CO estimation; and 14.3, 20.9, and

19.4 % in TPR estimation derived from central, femoral, and radial ABP, respectively.

Thesis supervisor: Richard J. Cohen
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1. Introduction

1.1. Background

The cardiovascular system is the primary mechanism within the body for maintaining homeostasis by

delivering oxygen and nutrition, as well as removing wastes. As the average life expectancy lengthens,

age-induced cardiovascular risk is a major concern. Cardiovascular monitoring during clinical, surgical,

and research procedures is an important aspect of modem medicine, serving the function of monitoring

and maintaining the blood flow and pressure in the major organs such as the brain, the heart itself, and the

lungs (Fig. 1.1).

Langsia

Right Ventricle LOVnrd

Pielvic Ogn

Fig. 1.1 Schematic diagram of the parallel and series arrangement of the vessels composing the circulatory system.
The capillary beds are represented by thin lines connecting the arteries (red) with the veins (blue). The
crescent-shaped thickenings proximal to the capillary beds represent the arterioles (resistance vessels). (Redrawn
from Green, H. D.: In Glasser, 01, editor: Medical Physics, vol. 1, Chicago, 1944, Year Book Medical Publishers,
Inc.) Figure by MIT OCW, obtained from the lecture notes of 6.522 Quantitative Physiology II, MIT.



Over the last 100 years, researchers have developed techniques for minimally- or non-invasive

cardiovascular monitoring. This concept dates back many centuries to a time when legendary doctors

diagnosed patients by feeling their arterial pulses [1]. In modem medicine, the concept is augmented by

mathematical modeling as well as signal recording and processing techniques. Such techniques include

cardiovascular system identification (CSI) [2-6], which describes cardiovascular physiology as nesting

transfer functions relating cardiovascular variables. The complexity of the cardiovascular models that

have been developed varies from a one-to-one relationship of the cardiovascular readings [7-30] to more

complicated multi-variable models [2, 4-6, 31-33].

In emergency and clinical care, the major cardiovascular indices to be monitored are:

1. Arterial blood pressure (ABP; Fig. 1.2b-d)

ABP is the periodic fluctuation caused by the heart beat and occurs at the same frequency as the heart

beat [1]. ABP is usually monitored clinically by means of a radial artery catheter; it may also be

monitored non-invasively by using a finger-tip plethysmograph or radial artery tonometer.

2. Stroke volume (SV)

SV is the volume of blood ejected by the ventricles during each cardiac cycle [34]. In this thesis, SV

represents a beat-to-beat bolus of blood ejected from the left ventricle. Increases in left ventricular

relaxation and contraction lead to increased SV.

3. Cardiac output (CO)

CO is the average volume of blood pumped into the aorta by the heart per unit time [34]. CO is a key

hemodynamic parameter to be monitored and assessed in patients. CO can also be an indicator of the

exercise level as well as an early indicator of hemorrhage. CO is a flow rate [L/min] determined as a

function of SV and heart rate (HR):

CO = SV -HR (1.1)



4. Total peripheral resistance (TPR)

TPR is the sum of arterial vascular resistances, mostly of arterioles. The smooth muscle tone

modulates the diameters of the vessels to increase or decrease the resistance and controls

systemic/local blood pressure and flow. In this thesis, the measured TPR represents the value

calculated by the measured CO and mean arterial pressure (MAP) using Ohm's law as described in

Eq. (2.1).

5. Aortic blood flow (ABF; Fig. 1.2a)

ABF is the instantaneous blood flow in the aorta. The waveforms can be characterized by systole

(forward flow into the aorta from the left ventricle through the aortic valve), negative flow due to the

negative pressure generated by the prompt aortic valve closure, and diastole (approximately zero

flow, with aortic valve closed, as shown in Fig. 1.3). By integrating the beat-to-beat systolic ABF

over time, one can obtain the SV. Time-averaging of SV values yields the CO.

Currently, hemodynamic monitoring of patients in critical care settings depends heavily on the

monitoring of ABP. ABP is usually monitored clinically by means of a radial artery catheter. However,

ABP is a late indicator of hemodynamic decompensation. For example, Fig. 1.4 shows a hemorrhage

study by Barcroft et al [35] demonstrating that during the hemorrhage caused by venesection, the CO

continued to decrease while the blood pressure was maintained until the subject fainted. Multiple

physiologic feedback systems maintain ABP until the patient is on the verge of hemodynamic collapse.

CO and SV monitoring enables earlier identification of hemodynamic decompensation, but CO and SV

are difficult to measure and monitor.



(a) Aortic blood flow (ABF)

(b) Central arterial pressure (CAP)

IUU -

75

(b) Femoral arterial pressure (FAP)
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(d) Radial arterial pressure (RAP)

Fig. 1.2. Typical ABF and ABP waveforms simultaneously recorded in swine.
CAP, FAP, and RAP represent central, femoral, and radial arterial blood pressure, respectively.
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Fig. 1.3. Illustration of cardiac cycle.
Systolic contraction of the left ventricle generates positive blood flow that opens the aortic valve and rushes into the
aorta. During diastole, the aortic valve is closed and there is no flow into the aorta.

it

E.

C~)

8
Tune (min)

so I

Fig. 1.4. Fainting episode induced by venesection.
In this instance, there is a slight further reduction in cardiac output during the fainting episode, but the total
peripheral resistance undergoes a much more profound decrease (1944 Barcroft et al., [35].)
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The most accurate method for measuring SV and CO involves the surgical placement of a blood flow

probe around the aorta. The drawback of the flow probe is that this method requires a highly invasive

thoracotomy procedure [20]. For the monitoring of CO, thermodilution [36] is a commonly used method.

Thermodilution involves injecting cold saline through a central venous catheter into right atrium and

measuring the temperature change in the pulmonary artery (Fig. 1.6). CO is then calculated using the

Stewart-Hamilton equation [37]. However, thermodilution requires a pulmonary artery catheterization,

which is associated with cardiovascular risks such as carotid artery puncture (when accessing an

intrajugular vein), cardiac arrhythmia, bleeding, embolism, clotting, and infection [38, 39]. Moreover,

thermodilution cannot continuously measure SV on a beat-to-beat basis, and its accuracy is limited. For

example, Boreto et al. compared a continuous thermodilution method with an ultrasonic flow probe and

reported a 0.36 L/min bias and a 1.96 L/min standard deviation (SD) [40]. Therefore, many studies have

been devoted to developing minimally- or non-invasive methods to monitor the cardiovascular indices

(SV, CO, and TPR).

Fig. 1.5. Ultrasonic flow probe.
Developed by Transonic Systems. Image obtained from http://www.emkabiotech.com/ on March 4, 2011.



Fig. 1.6. Schematic drawing of the thermodilution catheter position during measurement.
The injection catheter is in the superior vena cava (SVC). The thermometers are placed 1 to 2 cm from the tip and in
the main branch of the pulmonary artery (PA). RA, RV, and IVC represent the right atrium, right ventricle, and
inferior vena cava, respectively. Image and caption obtained from Ganz et al. [36].



Arterial pulse has been used by researchers to estimate the cardiovascular indices because the arterial

pulse is readily accessible in general. In particular, analyses of arterial pressure waveforms (rather than

directly measurable simple mean, systolic, and diastolic pressure) have been conducted over the last few

decades to extract essential information that can be a better indicator of cardiovascular indices than

directly measurable ABP values. Along the line of such pulse contour analyses, this thesis aims to

develop novel algorithms to estimate SV, CO, TPR, and ABF by analyzing ABP waveforms and to

compare the performance of these algorithms with that of existing methods.

1.2. Previous Methods

This section describes an overview of minimally- or non-invasive cardiovascular index estimation.

1.2.1. Pulse Contour Methods

Pulse contour methods (PCMs) have been extensively studied [4, 10-32] over the last 100 years as a

means of estimating cardiovascular indices from the continuous mathematical analysis of peripheral ABP

waveforms. PCMs, in general, utilize characteristic points or portions of ABP waveforms. Researchers

have selected, processed, and combined several characteristic points or continuous portions of ABP

waveforms to formulate SV, CO, and TPR estimation methods.

One of the major challenges in developing PCMs is determining how to handle ABP distortion. As

arterial pulsation propagates from the aorta to the peripheral arterial tree, it experiences a tapered elastic

network, bifurcation, and reflection from the peripheral arterial lines. These perturbations cause ABP

waveform distortion (Fig. 1.7). The systolic peak values (systolic blood pressure, SBP) become higher in

the peripheral arteries than the central artery. This notion was confirmed by the analysis of central and

peripheral (femoral and radial) ABP waveforms recorded from swine (Fig. 1.8). The characteristic values

(MAP, end-diastolic pressure or DBP, and SBP) in the peripheral (femoral and radial) and central ABP

recorded from six Yorkshire swine data sets were compared. The vertical axes of Fig. 1.8 represent the



pressure value changes defined as

Peripheral - Central X 100
Central (1.2 )

where Central and Perpheral represent the central and peripheral ABP values, respectively. For instance,

the leftmost bar in Fig. 1.8a shows the change of central MAP and peripheral MAP:

MAPeripheral -AAPntraX

MAPenr ( 1.2a)

As can be seen, SBP values tend to increase more compared to DBP and MAP values.
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Fig. 1.7. Arterial blood pressure curves recorded simultaneously in a wombat.
The top and bottom waveforms correspond to the proximal aorta (top) and peripheral arteries (below). From
"Arterial Pulse" by O'Rouke et al. [1].

To overcome the influence of waveform distortion, researchers have taken unique approaches. Herd et

al. and Parlikar et al. utilized ABP descriptors that are insensitive to distortion. Specifically, DBP and

MAP are used in their model to calculate CO. The advantage of the method is that it does not use the

systolic ABP that is subject to the distortion of ABP as it propagates through the arterial tree. Mukkamala



et al. took an approach inspired by transmission line theory, which predicts that the confounding effects of

wave reflections diminish over an increasing time scale. The wave reflections significantly corrupt

peripheral ABP waveforms over short time scales (high frequencies) without complicating them over

longer time scales (low frequencies) [411. Further details of the existing methods are introduced in

Chapter 2.

15 *

10

(a) Femoral vs. Central ABP

-5

(b) Radial vs. Central ABP

Fig. 1.8. Insensitivity of MAP and DBP to distortion.
As ABP waveforms propagate from central to peripheral (femoral and radial) arteries, the waveforms get distorted.
MAP and DBP values do not change between central and peripheral arteries, whereas SBP values increase. The bars
represent the mean, and black lines represent the standard error from the mean.

1.2.2. Alternative Methods

Although not explored in this thesis, there are other non-invasive or minimally invasive CO and SV

estimation methods.



Impedance Cardiography

One of the commercially available methods other than the PCMs is bio-impedance or impedance

cardiography [34, 35]. This method involves the passing of a low-amperage (< 4 mA), high-frequency (50

- 100 Hz) current through the limb, thorax, or forehead to the limb using a pair of electrodes (Fig. 1.9). A

second pair of electrodes is also placed to the aforementioned locations to measure the impedance Z and

its derivative dZ/dt. These variables are used with a conversion factor to calculate the stroke volume and

cardiac output. It is difficult to determine what regions or organs contribute to the impedance change

recorded from the thoracic surface [42]. Although it shows remarkably good correlation with other

cardiac output measurement systems if applied to a select relatively healthy population, the results in

hospitalized patients are not satisfactory [43].
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Fig. 1.9. Impedance Cardiography.

Figures obtained from Critchley, 1998 [44]. The thorax-limb configuration of the current injection and sensing
electrodes is shown on the left. The graphs on the right illustrate the measured ECG (top), impedance (middle), and
the first derivative of impedance (bottom).



Fick's principle

By analyzing airway gas measurement (carbon dioxide, C0 2), Fick's principle can be used to estimate

cardiac output:

CO = VCO 2

CvCO2 -CaCO 2  (1.3 )

where VCO 2 is the CO2 excreted by the lungs and CaCO2 and CvCO2 are the arterial and venous CO 2

contents, respectively. The CO 2 contents in the blood are estimated from end-tidal CO2. Although the

mixed venous blood contents including CvCO 2 are difficult to measure, one can obtain CO by using a

re-breathing technique [45]. Assuming that CO does not change between time 1 and time 2,

CO = 2,1 2,2

Cv1CO 2 - CaCO2  Cv2CO 2 - Ca2CO2  (1.4 )

where subscripts I and 2 indicate values at time I and 2 respectively. Utilizing the algebra: X= A/B =

C/D = (A-C)/(B-D),

CO= VC 2,1 -VC02,2
(CV1C02 -Ca1CO2 )-(Cv2CO2 -Ca2CO2)

VCO2,1 - VC02,2

(CV1C02 - Cv2CO2 )-(Ca1CO2 -Ca2CO2)
VCO2,1 - VC02,2

Ca2CO2 -Ca 1C02  (1.5 )

assuming that the mixed venous CO 2 content does not change during a brief change in effective

ventilation (Cv 1 CO 2=Cv2 CO 2). Thus, one can obtain CO by measuring the end-tidal CO 2 and arterial CO 2

contents. The effects of unknown ventilation/perfusion inequality in patients may explain why the

performance of this method shows a lack of agreement with results obtained by the thermodilution

method [46].



1.3. Specific Aims

The primary goal of this thesis was to develop novel algorithms to continuously monitor SV, CO, TPR,

and ABF waveforms by the analysis of ABP waveforms. The specific aims are two-fold:

Aim 1. Develop novel algorithms to estimate SV, CO, and TPR by the analysis of ABP waveforms

and compare the results with those of existing methods.

Using modeling techniques based on cardiovascular physiology and the Windkessel Model, several SV,

CO, and TPR estimation methods were developed. The estimation results were comprehensively

compared with those of the existing methods.

Aim 2. Develop a novel algorithm to estimate the aortic blood flow waveform by the analysis of

arterial blood pressure waveforms.

The second aim was to develop a novel algorithm to estimate instantaneous ABF waveforms. In addition

to the traditional ABP analysis, ABF analysis would enable further cardiovascular assessment such as

evaluation of the left ventricular contractility.

1.4. Thesis Organization

In this chapter, an overview of the monitoring of cardiovascular indices was introduced, and the

specific aims of the thesis were described. Chapter 2 introduces existing cardiovascular modeling

techniques. The chapter covers a variety of major methods including empirical and theoretical models.

Chapter 3 is dedicated to the introduction of novel algorithms developed to estimate SV, CO, TPR by

the analysis of ABP waveforms. The algorithms incorporate mathematical models based on the

Windkessel model and cardiovascular physiology.



Chapter 4 introduces a novel algorithm to estimate instantaneous ABF by the analysis of ABP. An

auto-regressive model with exogenous input is adopted to describe the relationship between ABF and

ABP.

Chapter 5 provides details of the pre-processing of the ABP data sets. The methods to identify end

systole, peak systole, and end diastole on a beat-to-beat basis are described, as end systole time stamps are

not available in general from ABP signals. In particular, Section 5.4 introduces a series of methods to

identify end systole that could advance the new and existing cardiovascular index estimation algorithms.

The estimation results of the existing and novel methods are reported and summarized in Chapter 6.

Root normalized mean square errors (RNMSEs) and Bland-Altman's plots [47] are used for the

comparison of CO, SV, and TPR estimation performance. For the reconstruction of ABF waveforms,

standard deviation, skewness, and kurtosis were also used to quantitatively evaluate the shapes of the

estimated waveforms compared to the measured waveforms.

Chapter 7 discusses the SV, CO, and TPR estimation results as well as a series of sensitivity studies

for the ABF estimation algorithm. The contributions of the present work and suggestion for future work

are summarized in Chapter 8.

Appendix A describes the derivation of the Hybrid Model, one of the novel algorithms developed in

this thesis work (introduced in Section 3.5). Appendix B shows conference posters describing the new

algorithms to estimate cardiovascular indices.



2. Previous Work

The aim of pulse contour analysis is to extract essential hemodynamic information (e.g., ABF, SV, CO,

and TPR) from the peripheral data (i.e., peripheral ABP). Researchers have developed several models and

algorithms to estimate SV, CO, and TPR by the analysis of central and/or peripheral ABP waveforms.

Their approaches can be categorized into two groups: empirical (data-driven) and model-based

(theoretical cardiovascular physiology).

Empirical models utilize characteristic cardiovascular descriptors such as HR, area under the ABP

curves, pulse pressure (PP), and MAP to find linear or non-linear coefficients for the descriptors to

construct a SV estimation formula. In finding coefficients, measured CO data (mostly recorded from the

thermodilution method) are used to calibrate the models. Other than selecting the physiological

descriptors (i.e., HR, PP, MAP), the model can be highly data-driven, and cardiovascular physiology in

terms of the relationship between descriptors is not necessarily taken into account. Thus, these models

may work for a nominal cardiovascular system in the healthy population but not for people who are

de-conditioned and have premature ABP beats and/or heart failure.

On the other hand, model-based approaches adopt cardiovascular physiology and mechanical

principles in modeling, and in many cases, simplify the arterial system to obtain SV, CO, and/or TPR.

Therefore, model-based approaches are expected to work for off-nominal conditioned cardiovascular

systems as well as deconditioned systems. Nonetheless, any method has to make assumptions in

processing ABP data. One cannot model the entire cardiovascular system in complete detail from the

observation of ABP signals. One has to assume, for example, that ABP reflection is negligible, ABP

waveform distortion in peripheral arterial branches is not considerably large, or that the MAP is

approximately equal in central and peripheral ABP signals. Note that what differentiates one PCM from

another is its assumptions in modeling the relevant cardiovascular physiology.

Before introducing the existing PCMs and discussing their pros and cons, the first two sections



describe the most widely accepted common-ground frameworks of each PCM: Ohm's Law as used in

electrical circuits and the Windkessel model named after the German fire extinguisher that involves a

buffering system.

2.1. Ohm's Law in the Cardiovascular System

The steady-state pressure and flow relationship in the cardiovascular system can be described as the

Ohm's law of an electrical circuit:

P =F-TPR or MAP =CO-TPR (2.1)

where P is the MAP, and F is the mean flow or CO.

2.2. Windkessel Model

"Windkessel" literally means "air chamber" or "elastic reservoir" in German. The vessels can be

modeled as elastic tubes that store blood volume, build up pressure in systole, and recoil and discharge

blood flow during diastole in each cardiac cycle. In quantifying the elastic reservoir, the mathematical

foundation was developed by Otto Frank [48]. The two-parameter Windkessel model (Fig. 2.1) is the

widely accepted electrical circuit (RC circuit) analog of the cardiovascular system [8, 10, 20, 49-52]. The

elements (battery, capacitor, and resistor) represent the heart, aortic or arterial compliance (C), and total

peripheral resistance (TPR) or systemic resistance, respectively. The current and voltage are equivalent to

blood flow and blood pressure, respectively. The current source provides a train of impulses. The voltage

then shows exponential decay curves that mimic diastolic ABP waveforms. The characteristic time

constant r can be described as the product of arterial compliance (Ca) and TPR.
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Fig. 2.1. Two-parameter Windkessel model.
Systole is modeled as an impulse ejection of blood from the flow source (the heart) into the RC circuit representing
the vasculature. The resistance, capacitance, and voltage are represented by total peripheral resistance (TPR), arterial

compliance (Ca), and arterial blood pressure (ABP), respectively. The equations describe the time constant (r) of the

exponential decay of the ABP waveform and Ohm's law. The figure was obtained from Mukkamala et al. [20].

The principal equation of the two-parameter Windkessel model is:

F dP P

Ca dt r (2.2)

The impulse response of the system is ideally an exponential decay with the characteristic time constant r.

Ohm's law and the Windkessel model have provided researchers with a fundamental framework with

which to model the cardiovascular system that involves ABP, TPR, CO, SV, and ABF. For instance,

Bourgeois et al. [9] was one of the first researchers to analyze the exponential decay constant of the

diastolic ABP waveforms to obtain r. This method worked for applications related to the estimation of

central ABP (CAP). SV and CO were also successfully estimated using these methods in applications

related to the analysis of the CAP waveform in both dogs and humans [9, 13, 27]. However, such

exponential decay curves are generally not apparent in peripheral ABP waveforms. To overcome this

problem, further models have been developed by researchers to analyze the pulse contour of ABP and

extract characteristic descriptors within the ABP waveforms.

The following sections describe existing PCMs that analyze peripheral ABP to estimate proportional

CO, TPR, and SV.



2.3. Windkessel SV

As mentioned in section 2.2, the two-parameter Windkessel model

F dP P

Ca dt r 2.2)

has been widely used by researchers to model the cardiovascular physiology as an electrical circuit

equivalent. By fitting the diastolic ABP signal to an exponential decay curve, one can obtain the

characteristic time constant r.

The integral of the proportional ABF (F/Ca) in time provides a proportional SV estimate:

2 F 2 dP P

C f dt r
1 ~ ~ 2

= P2 - 1 +- Pdt
(2.3)

where 1 and 2 are the start and end points of the integral, respectively. The time average of the SV

estimate is the CO estimate. In this thesis, end diastole of the preceding beat and the current end systole

are the points I and 2, respectively.

Some of the following methods use this Windkessel model SV with different assumptions for P,, P2,

and r.

2.4. Pulse Pressure

This method takes the capacitor equation into account.

AQ=C-AV

-> SV = Ca 'APP 2.4)

Pulse pressure (PP), i.e., the difference between SBP and DBP of the preceding beat is regarded as a

proportional SV [12]. Because it is easy to find SBP and DBP in ABP signals by using devices such as a



sphygmomanometer, this method is widely used as an estimation method to track changes in SV.

The drawback of t his method is that SBP values can be distorted as ABP waveforms propagate from

the aorta through the arterial tree to the peripheral ABP measurement locations, as can be seen in Fig. 1.8.

In the meantime, DBP stays relatively constant. Thus, the proportional SV could be overestimated.

2.5. Liljestrand-Zander's Method

Liljestrand and Zander [17] modeled the arterial compliance Ca as a function of pressure. As ABP

rises, Ca decreases, as shown in Fig. 2.2. The figure also shows two different operating pressures. Both

have equal PP while SBP and DBP are different, and when the mean of SBP and DBP is high, Ca becomes

small. Therefore, by considering the inversely proportional relationship between ABP and Ca, Ca can be

described approximately as

C 0C
SBP + DBP (2.5)

Then, the proportional SV can be obtained by:

SBP - DBP

"PSBP+DBP (2.6)
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Fig. 2.2. Qualitative illustration of a pressure-volume curve.

The slope of the solid line (pressure-volume curve) represents arterial compliance Ca. The dotted line shows SBP
and DBP under different operating pressures.



This method was reported to have resulted in the best CO estimation (reference method:

thermodilution) when applied to the data sets recorded from ICU patients [53].

2.6. Herd's Pulse Pressure

This method was developed by Herd [14] et al. and re-discovered by Sun [53] and Parlikar [23].

Instead of SBP, MAP is used in the pulse pressure method. Both MAP and DBP are robust against

distortion, and this method provides reasonably robust SV estimation.

SV oc (MAP - DBP) (2.7)

The drawback of Herd's method becomes apparent when the diastolic interval becomes longer than

regular beats (e.g., asystole); regardless of the systolic pulsation, as diastole continues, the current MAP

value continues decreasing. Consequently, the estimated proportional SV ends up in underestimating the

SV. To overcome this problem, a new method is introduced in section 3.2.

2.7. Beat-to-Beat Averaged Model

Parlikar et al. [23] developed a new beat-to-beat CO estimation method based on the Windkessel

model.

2 s
2 F(t) t SV

Ca Ca

= P2 - P1 + Pdt
( 2.8)



CO SV -HR

Ca Ca

SV 1
Ca T

=- P2 - P1 +- Pdt
T ( T

P2 - P 1 + MAP
T T

where F represents ABF, P is ABP, Ca is arterial compliance, subscripts I and 2 indicate the onset of

diastole and an arbitrary time point after the end systole of the beat, respectively. To obtain r, instead of

diastolic exponential curve fitting, they utilized the pulse pressure method (2.7):

SV = 2(MAP - DBP) -C,

CO 2(MAP - DBP)

Ca T (2.9)

The coefficient 2 in front of (MAP-DBP) was empirically found by Parlikar et al. [23] to provide the

lowest CO estimation errors. Thus, from (2.8) and (2.9), one can obtain r by solving

MAP _ 2(MAP - DBP) -(P2 - P1)

T (2.10)

or by using multiple

MAP

MAP +1

MAPi+N _

1

beats to solve the following equation:

2(MAP, - DBP)- (P2 - P1),

T
2(MAP,+, - DBP+, ) -(P2 - P11

= T

2(MAPi+N -DBPi+N 2 i+N

Ti+N

The obtained r was used in (2.8) to calculate the proportional CO.

(2.11 )



2.8. Systolic Area

One intuitive way to estimate SV, the time integral of instantaneous blood flow, is the integration of

the ABP signal [27, 50].

tES

SV c JP(t)dt
I ED (.2

where tED and tES are the time stamps for the end-diastole of the preceding beat and current end systole,

respectively, and P is the ABP signal. This model can be re-described as the integral of the instantaneous

aortic blood flow in the Windkessel model with a constant TPR and equal preceding and current end

diastolic pressures. A variant of the method subtracts DBP from the ABP signal:

t ES

SV oc (P(t - DBP)dt
tED (2.13

Time [s]

Fig. 2.3. Systolic Area under the ABP curve.



2.9. Corrected Impedance

Wesseling et al. [29] developed a SV estimation method based on the Systolic Area method. They

obtained impedance as a function of MAP and HR.

tES

SV oc (163 + HR -0.48 -MAP) (P(t) - DBP)dt
I ED (2.14)

The coefficients in the impedance (scaling factor) were empirically obtained from healthy male

subjects in their 20s. Thus, this method can be described as a model-based method (systolic area) scaled

by empirical coefficients.

2.10. Systolic Area with a Kouchoukos Correction

Kouchoukos et al. developed a different algorithm based on the Systolic Area method:

t ES

SVoc 1+ Ts J(P(t)-DBP)dt
T ftED (2.15)

where T is the beat interval, and TD and Ts are diastolic and systolic durations, respectively [15]. The

correction factor 1+ T/TD comes from the work by Warner et al. [28]. The correction factor takes into

account the run-off aortic flow into the arterial tree bed during systole.

2.11. AC Power

This method calculates

SV oc TIJ(P(t)-MAP)2dt
T T  (2.16 )

where T is the beat interval [53].



2.12.Auto-Regressive and Moving-Average Model

Mukkamala et al. [20] introduced system identification techniques into the cardiovascular parameter

estimation. They modeled the impulse response of the cardiovascular system as an exponential decay

curve with the characteristic time constant r. In the model, the current ABP signal can be described by the

preceding ABP signals with weighting coefficients, and the arterial pulse. The arterial pulse was

approximated as the PP values.

P

Pi] = a[j]P[i - j ]+
j=1

b
Sb~k ]PP~i - k ]

k=1 (2.17)

P[i] 1
P[i+1][P[i+N]_P[i-1]

P[i][P[i-1+N]
PP[i-1]

+ PP[i]

_PP[i-1+N]

P[i-2] ---

P[i-1] --

P[i-2+N] ---

PP[i-2]

PP[i-1]

PP[i-2+N]

P[i-p] a[1]

P[i-p+1] a[2]

P[i-p+N]_ a[p]
--- PP[i-q] ~ b[l]
--- PP[i-q+1] b[2]

--- PP[i-q+N]b[q]J

(2.18)

where a and b are auto-regressive (AR) and moving-average (MA) weighting coefficients (parameters),

and p and q are the parameter lengths. N is the number of data points in six minutes (sampling rate: 90

Hz). An interval of six minutes was selected by Mukkamala et al. Note that P represents the ABP signal

and PP is a train of intermittent PP spikes at the onset of systole (Fig. 2.4). By utilizing the minimum

description length (MDL) technique [54], Mukkamala et al. found that p and q were smaller than 20 for

an ABP recorded at 90 Hz.
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Fig. 2.4. The auto-regressive and moving average model
CO is modeled as a train of PP aligned at the onset of systoles. Obtained from Mukkamala et al. (2006) [20].

The impulse response of the system h[nj can be obtained from the AR and MA parameters:

p1 p2

h[n] = I a[j]h[n - j] + Zb[k]3[n - k]
j=1 k=1 (2.19)
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Fig. 2.5. Impulse response in ARMA model

A typical impulse response is shown in Fig. 2.5. The characteristic time constant r is obtained by the

decaying slope. The proportional time constant r and MAP are used to calculate a proportional CO

estimate:

occMAPCO o--.



MAP MAP

TPR (2.20)

2.13. Summary

In this chapter, several cardiovascular indices estimation methods were introduced. If the

cardiovascular system to monitor is ideally compliant with their assumptions, i.e., central ABP, no

reflection from the peripheral circulation, no distortion, no large perturbation in ABP signals, and no

external disturbance such as respiration, all the methods should work and provide low-error SV and CO

estimates. However, that is not the case for measurements taken in clinical, surgery, and research settings.

The current challenge is to develop a robust model that is insensitive to disturbances external to the

model in the way it processes, removes, or filters the recorded ABP signals. In the following chapters,

other novel algorithms to estimate CO, SV, and ABF are introduced and validated.



3. Estimation of Stroke Volume and Cardiac Output

This chapter introduces new algorithms to continuously estimate SV, CO, and TPR. The algorithms

are based on quantitative cardiovascular physiology. Each method utilizes a different assumption in

calculating the characteristic time constantz-.

3.1. Minimum Variance Method

The ideal two-parameter Windkessel model is

F(t) dP(t) P(t)
Ca dt r (2.2)

where r is the characteristic time constant. Let/I be the inverse of r for convenience:

__1

(3.1)

The integral of the beat is taken to obtain the proportional stroke volume of the beat:

SV jF(t) t

Ca fD a-td

= dP(t ) +/8P(t) dt

tD

= P(t)- P(tD)± +Jf Pdt
tD (3.2)

where tD is the time of the end diastole of the preceding beat. SV is given by integrating systolic ABF; the

integral of diastolic ABF (ts<t<T) does not contribute to SV (Fig. 3.1). Therefore, the left item of (3.2)

should be the same for all t that satisfy ts<t<T. Therefore,
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Fig. 3.1. Typical ABF waveform and its integral from the onset of systole to time t.
With t in diastole, the integral of ABF(t) (i.e., SV) does not change because ABF(t) is approximately zero during
diastole.

P(ts3- P(tD)±JPtSt=Pt ± )PtD)±3J(i
$D tD

= P(T)-- P(tD)± ---------

i ( 3.3 )

where At represents the time increment. Thus, one can find the fi that provides the least variation of
proportional stroke volume.



SV SVj SVi
Var f D = E[( a) - E a

where E [X represents the expected value of X and i is the beat number. In this case, the expected value is

the mean of X over the single beat T. The optimal value of pi would satisfy Eq. (3.3) and provide the least

variance in (3.4). The following steps provide an analytical solution for .

The expected value of Xis defined as

1tD +T
tDWE[X]=' (X)dt

T tD ( 3.5 )

Therefore,

E S = E Pt 3- P(tD )+ fPOt

=t tD+ t dt)2t
= Ef -P)-P(tD + 8 P(t)dt

tD tD (3.6)

and

E a E P(t)- P(tOD )+ P(t')dt'

tD+T t

= f P(t)- P(tD )+ P P(t')dt' dt
tD t. (3.7)

The variance is defined as



V Var(~j

= aSv 2.jiy]

StD +T

tD

D
PQtD 'RJt 2 dt - 1 t 3- P~'tD1 81)d]

where

I(t)= JP(t')dt'
ti,

to describe V as

)- P(tD )± fl(t))2dt _
tD+T

1\D P(tD)+IBI(t))dt
(3.10)

To find that minimizes the variance V,

tD+ D ) + p1(t))2 dt

a-±T f r (P Wt  P (tD ) + fi-J(Ot))t
T +tD

=0

Further process the equation to obtain an analytical solution:

(3.8)

V =-
D +T

f(P(t
tD

( 3.9 )

av

(3.11 )
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+T
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Thus,

tD D tD

J(PW- P(tD ) + NOt))1tdt = T f D
tD t

Sort the equation in terms of p,
t,+T tD+T

J(P(t)- P(tD ))-I(tOdt+ f I(t)2dt
tD tD

T

LtD+T
P(t -

tD

)tD+T

P(tD ))dt I t
) tD

)dt
D+T 

2

+ I (tdt
in t

Thus,

tD +T

'6 J I(t)2 dt -
tD

StD+T 

2

tD )
tD +T

) tD

tD+T

-t - P(tD - 5dt
tD

(3.12)

t') t+T

P(tD )+ fIJ(t))dt JI(t dt
tD (3.13)

(3.14)

= -

-315 )



Therefore, the analytical solution of r (inverse ofp) is given by
__1

tD+T lID+T 2

f I(t)2 dt - I(t)dt

D
t
D +T D +T

T f(P(t) - P(tD ))dt fI(t)dt - (P(t) - P(tD )) -(t)dt
\tD 1D tD

tD+T tD+T 2

T JI(t)2 dt - T(t)dt
tD tD

1D tD+T tD+T

(PTt)- P(tD ))dt (tdt - T (P(t - P(tD dt
iD ) ID tD (3.16)

The value oft is used in (3.2) to calculate the proportional SV, and the time average of SV values over six

minutes gives CO. In obtaining pl, multiple beats (M = 17) were used to obtain a stable value of 8 and the

value of fp was applied to the central beat in the 17-beat moving window.

M tD,m m+Tm M 2

Z T fI,,(t)
2 dt - : f I,,,(tdt

m=1 tD mM tD

M (tD,m+Tn )tD+Tm M tD,m +T

Z f {P,,m W - P,,,(tD ))dt Iftidt -E f ,, (P,,( W - P,,,(tD Im W, d
M D=1 D,m D,m m=1 D I,m

(3.16a)

where m is the beat number.

3.2. Modified Herd's Method

This method stems from the notion that MAP and DBP are insensitive to distortion (Fig. 1.8 and [14]).

The hypothesis was that the pulse pressure method to estimate SV based on the Windkessel model [18]:



SV Bs=SBP-DBP
C (3.17)

can be improved by introducing MAP instead of SBP that is sensitive to distortion (Herd's work):

sv= MAP - DBP
C (3.18)

The disadvantage of the method is that MAP takes a diastolic interval into consideration. Suppose the

diastolic duration was extended after the aortic valve closure. For this beat, DBP remains almost the same

as the preceding beats, but MAP becomes lower than the preceding beats. As a result, the algorithm

underestimates the proportional SV using (3.18).

. MAP
MAP

Fig. 3.2. Beats with a normal and abnormal diastolic interval.
An increased diastolic interval lowers the calculated MAP of the beat, and its stroke volume would be
underestimated using Herd's method.

In this section, a modified Herd's method is proposed. MAP is regarded as a mean pressure value over the

systolic interval.

SV
C

= fP(t4t - DBP

a Systole (3.19)

This method requires the identification of end systole. In validating the method, a series of methods to

identify end systole (section 5.4) are used.

3.3. Parabolic Aortic Blood Flow Model

This model approximates the Windkessel aortic blood flow as a parabolic flow curve:

M



F = At(T -t) ( 3.20 )

where A is a scaling factor, T, is the time stamp of the end systole of the current beat, and t is time. SV of

the beat is an integral of the flow from end diastole to end systole:

Ts

SV = fF(t)dt
0

Ts

= A t(Ts -t)dt
0

AT 3

__ S
6

6SV

Ts 3 (3.21)

The ABP can be described as a sum of static (Poexp(-t/r), decaying end diastole from the preceding beat)

and dynamic (decaying external input, i.e., ABF) components:

FS
+V

2
p3

6SV

CaTs
+ rs

()6

where

Taking the average of both items in (3.22) over the systolic interval T s,

t
P(t)j = Poe

- P e-,

t t-t'

+ f e F(t'dt'
Ca 0

+ 6SVe-6' t s-t''t3~

a'S 0

=e P + 3
C T3

2+_ t
p2

T 2
p2 p3J

(3.22)

(3.23)
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Therefore, the proportional SV (Q/Ca) can be calculated as

SV _
C"a

1 P(tdt - Pl
Ts 0 7 0

6 11 - 1 +2 1 2

t 7 Y2 Ys) 6y 7Y 3

where

Y ~PTs

Here, by introducing Ohm's law:

MAP = CO -TPR

( 2.1 )

a beat-to-beat CO can be calculated as

Co= S-
T

where T is the beat interval. Plugging (3.26) and (3.27) into (2.1),

(3.24)

(3.25)

(3.26)

(3.27)



MAP = -

Ca T

SV I

SV Ts

Ca Ty (3.28)

Using multiple beats to in obtain stable value of ,

f P(t)dt = z T

1 P(t)dt
=> Ei 0

rzSV T
Ca (3.29)

Therefore, by plugging (3.26) and (3.29) into (3.25), one can obtain proportional SV. The proportional

CO can be also calculated time-averaging the SV values.

3.4. Pressure Ratio Method

As can be seen in the Minimum Variance Method (Section 3.1), the Pressure Ratio Method takes into

account the two-parameter Windkessel model and the fact that aortic blood flow is approximately zero

during diastole. Starting from the Windkessel model:

SP(t) - P(tD )+ JP(tdt
Ca tD (3.2)

Now, select two different ends of the integral: end systole ES and end diastole t". Because the flow

integral from end diastole tD of the preceding beat to the end systole tES should be the same as that from

end diastole of the preceding beat tD to the current end diastole tED,



t F(t)d

= dt
-ED Ca

ED=tjf F(t) dt

I ED Ca
L-I

tES

PES pED +

pED pED fi.pj
I - i

(3.30)

tE

PI JP(t)dt
ED

ti-I

Therefore, one can calculate t (inverse of B) and proportional SV by

1
7. = -j~. =

PI, - PSIi

PES - PED

and the proportional SV of the beat can be calculated as

Svi

Ca

F (t) dt
~,Ca

P ES - pED

= P -ES PED .PSI
PI, - PSI,

pED _ pED
i i_~

ES - pED

+ PI - pPi - PSI (3.34)

Furthermore, using multiple beats to obtain a stable value of //r,

N SV

m- Ca

N

E (P ES

N
= D -( PE ) f.pN =pED _ pED +'.pN

(3.30a)

where

SV
Ca

where

PSI JP(t)dt
ED

tL-I

and

(3.31)

(3.32)

(3.33)

tD F(t) 
dt

i- Ca

PED PSIN



ES
tL+N N

PSIN J P(t)dt = > PSI,
(3.3 1a)

and

ti+N (N
PijN _ P(t)dt I P

E ID k iJ)
(3.32a)

Therefore, one can calculate r (inverse of ) by

N N

Ii 1P - PSI,

ES _ED (PED _ ED)

i=1 (3.33a)

The obtained fl is used to calculate SV from (3.30).

3.5. Hybrid Model

This algorithm utilizes end-diastolic blood pressure (end-DBP) values, beat-MAP (MAP; - MAP of a

single beat), inter-beat interval (T), and the time interval from the onset of SBP to peak SBP (Ti) in the

peripheral ABP waveform. These variables are selected for the CO and SV estimations because they are

known to be relatively insensitive descriptors to the distortion of the ABP waveform in the arterial tree [1].

This notion was confirmed by analyzing the previously recorded Yorkshire swine data sets (Fig. 1.8). This

new algorithm takes an approach to reconstruct ideal or theoretical Windkessel ABP waveforms by using

the aforementioned descriptors.



3.5.1. Basic Model (Model 1)

100

95 - i beat

'IB 90 - Model

85 - p1 D ()i1D

Ca Measured
75 -

70 - - -- T.

65
0 tD S 0.6 gi+1D0i+1

Time (s)

Fig. 3.3. Waveform of the measured femoral ABP and the theoretical Windkessel model ABP.
Each systolic peak time (Ts) in the Windkessel ABP (gray) is aligned to that of the measured ABP (black). On a
beat-to-beat basis, the Windkessel time constant (r) is computed so that the beat-MAPs of the measured and
calculated Windkessel waveforms are equal.

The new algorithm estimates SV using the end-DBP immediately preceding the current beat (PIP), the

end-DBP at the end of the current beat (P;4f'), MAP;, T1, and Ts. In the two-parameter Windkessel model,

proportional SV can be obtained from these variables as SV(i)/Ca.

Fig. 3.3 illustrates the measured ABP and the theoretical Windkessel model ABP. Although C,

declines with age [55], C, is nearly constant on the time scale of months over a wide pressure range [45,

46]; thus, Ca was assumed to be constant throughout this relatively short experimental period. For each

cardiac cycle, the two end-DBP values (PD, P,+f) were obtained.

Then, the theoretical Windkessel ABP waveform was generated using the following equations:

P(t) = pD exP - ( tD) for t.D < t

P ) r)( (3.35)

D i SV(i)' (t -ti )

p(t) = p, ex + eXP - frt"a
i x i a i /o ~ t < t + ( 3 .3 6 )



where t;D and t2s are time stamps of the end of diastole (onset of systole) and the peak systolic point of the

i'h ABP waveform, respectively. PiD is the end-DBP immediately preceding the i'h beat of the measured

ABP. Tis and T are the intervals from the onset of systole to the peak systolic point and inter-beat interval

of the i'h ABP waveform (onset of systole to onset of next systole), respectively. SV(i) is the SV of the 1h

beat. The step in the theoretical ABP waveform is aligned to the peak of the measured systolic ABP. The

Windkessel time constant (r) is adjusted so that for each beat, the MAP of the measured ABP equaled the

MAP of the Windkessel ABP.

Taking the average of the ABP over the i'h beat using the above equations (3.35, 3.36), the MAP can

be expressed in terms of Ti, pP pif D, SV(i) , r,, and Ca as follows:

1 ' D r. D SV(i) D
MAP = P t)dt =C-(PD D

(3.37)

As shown in Fig. 3.3, the i'h-beat PP of the ideal Windkessel ABP from (3.35, 3.36) can be calculated by

subtracting the two ABP values at Tis, yielding:

SV(i) = D expr(T -T S) D)( s{- (3.38)

Substituting (3.38) into (3.37),

. D (T -T S j-)±pD - expr- Tr'MAP = -'{f &DI(exp I ) + PDI
MAE =i T ) (3.39)

Equation (3.39) can be numerically solved for t,. SV(i)/Ca thus may be estimated from the values of

piD, pi+1 D, MAPi, Ti, and Tis. The value of the peak systolic blood pressure, which is more prone to

distortion than end-DBP, is not used.

The new method can estimate r on a beat-by-beat basis. In actual implementation, the median value of r

is calculated after applying (3.39) over a 20-second moving window; this median value is regarded as the

- of the beat in the middle of the 20-second moving window. The SV of each beat is calculated by shifting

the 20-second moving window on a beat-to-beat basis. The 20-second window was empirically found by the

51



authors to provide the smallest estimation errors over a wide range of physiological conditions.

r equals the product of TPR and Ca,. C, is assumed to be constant. TPR varies with changes in vasomotor

tone, which generally occur slowly on a time scale not faster than 20 seconds. However, SV which

depends on other factors (such as changes in filling pressure, filling time, and contractility) can vary on a

beat-by-beat basis (e.g., consider a premature ventricular beat). Thus, estimating the tau parameter as the

median of a 20-second window reduces the noise in this estimation without compromising our ability to

estimate beat-to-beat changes in SV.

3.5.2. Reduced Parameter Models (Model 2 and 3)

Models 2 and 3

Model 1 is a five-parameter model:

SV,,.(i)=SV(i) = f(MAFpP{ PD S

Ca (3.40)

Here, SVprp is proportional to SV with a proportionality constant of 1/C.

In addition to Model 1, four- and three-parameter versions of the model were introduced. In Model 2,

Tis is set to zero and the step in the theoretical ABP is set to coincide with the end of diastole/onset of

systole.

=f (MAF|,FD5' D

Sprop2 (0) (3.41P

Model 3 is the same as Model 2 except that it is assumed that piD =Pi+ D

SVprop3 (i = f A Z Z) (3.42)

Each model is illustrated in Fig. 3.4.



3.5.3. Hybrid Model

Of the five measured parameters, there are three dimensionless variables (Tis/ T, PD/ MAPi, and Pi+,D/

MAP;) that characterize the ABP waveform. Thus, combining the three models for estimating SV,,,p

should span the space covered by the three dimensionless parameters. Thus, one can think of the three

proportional estimates of SV generated by the models as a generalized vector of estimates that span the

parameter space. A hybrid model can be used to combine the three estimates of SV,,, to form a specific

estimate of SVp,,p.

One hybrid model for estimating the SV of the i* beat SVi is given by:

I SV (,),a (SV (i),, a,
SV =C SV (i- ,2prop3

" SVp (i)) SVro (i)) (343)

Note that the equation estimates SV; in terms of geometrically weighted estimates of SVp,, from

Models 1-3 using exponents ai and a2. For example, if a1=0 and a2=1, then SV=CSV and (3.42) is

adopted. The coefficients allow non-discrete switching between the three models. By taking the natural

logarithm of (3.43), the equation becomes linear

y(i, j) = D(j) + y, (i, j) + aX (i, j) + a2 X 2 (i, ) (3.44)

where i is the beat numberj is the subject number, y=ln(SV), Dj)=ln(C), yi=ln(SVpp), X= In(SVpp 2/

SV,, 1), and X 2 =ln(SVpop3/SVopi). Linear regression and least mean square error analysis yield arterial

compliances Ca(j), a,, and a2. The parameters a, and a2 are common among all the subjects, and each

compliance CaOj) is unique to the subjectj.

Redefine y - y, as Y:

Y(i, j) = D(j) + a1 X1 (i, j) + a2 X 2 (i, j) (3.45)

Define



E(i, j)= Y(i, j)-D(j)- ajX,(i, j)- a2 X 2 (i, )

and

D(j)- a1XI(i, j)- a2X 2(i, j) 2EL Nj)
E = l (o,)-

j=1 i=1

where N(j) is the number of beats recorded from animal/subjectj.

To minimize E with a's,

aE L N(j)

aa = ( {Y(i, j) - D(j)- aX, (i, j) - a 2 X 2 (i, )(- X (i, j)) = 0
a, j=1 i=1

L N(j) L N(j)

-> ZY(i, j)Xm(i, j) = z E D(j)X(i, j
j=1 i=1 j=1 i=1

2 L N(j)

)+ k a Z X(i, j)X(3.4 j
k=1 j=1 i=1

Y(i,j)Xi (i, )
j=1 i=1

L Nj)

=: D(j)J X, (i, j)
j=1 i=1

L N(j)

E EY(i, j)X 2(i, )
j=1 i=1

L N(j)

= D(j)X 2(i,j)
j=1 i=1

L Nj)

+aizXi
j=1 i=1

L N(j)

+a I ZXi(,j)X 2 (i,j)+
j=1 i=1

L Nj)

a2 E :X2(i, j)XI(i, j)
j=1 i=1

L N(j)

a2 YZX2i(ijX2(" A
j=1 i=1

Also, change the D's to minimize E

aE =
aDn

N(j)

-2Z{Y(i, n) -D(n) - aX,(i.n) -a 2X 2 (i,n)}

(3.51 )

(3.46)

(3.47)

(3.48)

(3.50)

( 3.49 )

(i'j)x1(i'j)+

= 0



=> ZY(i,n) = Y(in)+a ± Xi(i,n)+a2 ZX 2 (in)
i=1 i=1 i=1 i=1 (3.52)

Therefore,

ZY(i,1) = Y(i,1)+ a X (i,1)+a X2 (i,1)
i=1 i=1 i=1 i=1

N QNL) N (L) NL))

Y(i,L)= Y(i,1)+ a, EX,(i,L)+ a2  X 2 (i, L)
i i=1 =1 (3.53)

Combining them, the following matrix can be obtained:

N NI -- -. 0 X(i,1) YX 2(,1)

N2 0X (i,2) X2(i,2) D'00(
jY(i,L) 0 '' . N1

L 0 0 ... NL X(i,L) X 2 (i,L) DL

YN(j) Xx j))LA2, L
Y(IN(L) L a

X2i,1) --- --- X2 (i,L) ZX (ij)X2(ij) t X2(ij(Ij)a

i=1 i=1 j=1 i=1 j=1 i=1

(3.54)

The parameters a, and a2 are common among all the animals, and each compliance Ca() is unique to the

animalj.

Although (3.45) is a first-order equation, it is possible to generalize the hybrid model by introducing

X, and X 2 raised to higher powers. Equation (3.45) can be generalized as

M max M

y(i, j)= D(j)+ yo (i, j)+ ZC, -q ayq- (Ii, j)"-- (X20, j))
M=1 q=0 (3.55)

where Mmax is the model order and mCq is the binomial coefficient, while aMq are the parameters to be

found by the linear regression analysis. For the derivation and implementation of (3.55), see Appendix A.



Once the parameters are obtained, SV is calculated as

SV = exp(y) (3.56)

CO is calculated by averaging SV over the six-minute window that overlaps every three minutes.

100 - 100

n i beat 
i 1h beat95- 95

o 90 -Model 90el

85 p D 85 D

80 - Measured 80
75 75

70 - T 70T

0.6 D Sti+D D1 +1D
Time (s) Time (s)

(a) Model 2 (b) Model 3

Fig. 3.4. Model 2 and 3 of the Hybrid Model.

3.5.4. Implementation

The algorithms were implemented in the following steps. First, all the characteristic points in the ABF

and ABP waveforms were labeled using a labeling algorithm described in Chapter 5. The ABF

characteristic points are the onset of systole, peak systole, the first dip after the peak of systole (valve

closure point), and end of diastole. The ABP characteristic points are the onset of systole, peak systole,

onset of diastole mapped from the ABF characteristic point, and end of diastole. Secondly, reference CO

and SV were calculated from the measured aortic blood flow by the flow probe. The following sections

describe the implementation of each method.

End-DBP (PD), time interval (T), time to systolic peak (7), and MAP were defined by the analysis of

femoral and radial ABP and applied to (3.39) to obtain the Windkessel time constant (c). The median

values of t and 7i over a 20-second moving window were used to minimize the error due to outliers. The

values of t were applied to (3.40 - 3.42) to estimate the proportional SV (SVppl, SV 2, and SVp 3) on a

56



beat-to-beat basis in each model. The measured SV and SV,,,, SV,,o2, SVp were used to calculate the

Ca of each animal subject and the parameters am, in (3.54) using linear regression and least mean square

error analysis. The obtained parameters aM, and Ca were applied to (3.55), and the final SV was estimated.

To compare with other CO estimation methods, the beat-to-beat SV estimates were averaged every six

minutes. The order M.x in (3.55) was determined by a minimum description length (MDL) criterion [54,

56].

In the implementation above, all the SV data were used as pilot data to obtain parameters using (3.54).

Another way to calculate parameters is to use half of the SV values in the data sets as pilot data to obtain

parameters and apply the parameters to the latter half of the data. These results are also reported in

Chapter 6.



4. Estimation of Aortic Blood Flow Waveforms

Aortic blood flow (ABF) is the instantaneous blood flow in the aorta and one of the most important

cardiovascular indices. Currently, ABF is not clinically available in general. The availability of ABF will

be clinically useful to: (1) calculate SV and CO by beat-to-beat integration of the ABF waveform and

time-averaging, respectively; (2) evaluate contractile function of the left ventricle during normal and

abnormal beats; and (4) adjust the timing delay of bi-ventricular pacing. In particular, SV and CO are

direct indicators of hemodynamic abnormality and are useful in clinical and surgical settings.

The most accurate method to continuously measure ABF is an ultrasonic flow probe surgically placed

around the aortic root. The drawback of the flow probe is again that it involves a highly invasive

open-chest surgical procedure [20]. Non-invasive methods include echocardiography that require skilled

technician to hold the probe at the correct angle on the patient's body. Thus, long-term continuous

measurement is not feasible. PCM is also a promising approach for continuous, non-invasive or

minimally invasive ABF monitoring because ABP is accessible, and it is easy to implement in the

existing continuous ABP measurement systems.

In this chapter, a new algorithm to estimate ABF waveforms by the analysis of ABP is introduced

and validated. The arterial tree is modeled as a system with ABF input and ABP output. The key step of

the procedure is to obtain a set of auto-regressive parameters and impulse responses from ABP to ABF by

the analysis of the diastolic ABP waveforms; because ABF input to the peripheral circulation is

approximately zero during diastole [57], diastolic ABP waveform analysis provides auto-regressive

parameters of the model. The parameters are obtained on a beat-to-beat basis and are applied to each ABP

waveform to estimate the ABF waveform.



4.1. Algorithm

4.1.1. Model Description

Over a short time interval, the cardiovascular system can be described as a time-invariant system with

an input of ABF (F[n]) and output of ABP (P[n]), as illustrated in Fig. 4.1.

ABF [L/min] ABP [mmHg]

""""> ARX mamm

Fig. 4.1. Auto-regressive model with exogenous input.

The ABP value P[n] in the interval can be described in an auto-regressive exogenous (ARX) model:

L

P[n] = a[ ]P[n - j] + aF[n]
1=1 (4.1)

where afl are weighting coefficients, L is the parameter length, and a is a scaling factor (i.e., coefficient

for the exogenous input F[n]). The ARX model can be re-described as

L
aF[n] = P[n] - L a[j]P[n - j]

=1 (4.2)

As shown in Fig. 1.3, there is no input to the system during diastole:

L
0 = P[n]- Z a[j)Pn - j]

j=1 (4.3)

Therefore, the weighting coefficients a9] are auto-regressive (AR) parameters. The AR parameters aD]

can be obtained by solving the matrix equation (least square error method) derived from multiple beats:



] n]

[n + 1]

P4n+N1 -1]

I%,[n]

,7 [n + 

P1 [n + N17 -1]

Pl[n-1]

P[n]

P[n+N, -2]

I17 [n- 1]
pI7[n]

I17[n +N 17 -2]

--- PI[n-L]

... P [n - L -1]

... PEn-L+N-1]

-- Pn - 1]

--- 17[n-L+Nl7 -1]

where P[n] are the ABP values in the i' beat and N is the number of diastolic samples in the i'h beat (1< i

<M) where M is the number of the beats in the moving window. An M = 17 moving window size was

empirically found to be optimal and adopted Typical afj] are shown in Fig. 4.2(a).

The scaling factor a can be obtained by the following procedure. By taking the average of both sides

of (4.2):

rI- La[j] MAP (j=145

CO( 4.5)

where MAP is the mean arterial pressure. Ohm's law gives

MAP=CO-TPR

The characteristic time constant of the system can be described by the product of Ca and TPR:

r = Ca x TPR ( 4.7 )

where r can be obtained by investigating the exponentially decaying curve of the impulse response of the

system h[n]shown in Fig. 4.2(b):

L
h[n]= Lajh[n -j]+ [n]

j=1 (4.8)

( 4.6 )

a[l]
a[2]

-a[L]J

( 4.4 )
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Fig. 4.2. Typical AR parameters and impulse response of the ARX model.
Obtained from radial ABP data in Swine #4.

The equations (4.5) - (4.7) can re-describe the scaling factor a as

a = - a[j]
Ca ( =1

Therefore, the instantaneous ABF can be calculated as

F[n]= C P[n] - L a[j]P[n- j]
I - 1 - a[j] n

Assuming Ca is constant, the proportional ABF can be obtained as

( 4.9 )

(4.10)



Fcaic[f] F[n]

Ca

L

P[n] - a[j]P[n - j]
j=1

Lr- 1-9a[j]
=1 (4.11)

In the following subsection, the method for obtaining the AR parameter length L is presented.

4.1.2. Criterion for Selecting AR Parameter Length

In obtaining the proportional instantaneous flow F[n] in equation (4.11), the determination of the AR

parameter length L (i.e., model order) is the key step because L influences all the other parameters; L

determines the size of the matrix equation (4.4) and the length of aUf]. The values of af] determine the

shape of the impulse response (i.e., time constant r) as well as the summation ofafjf]. Finally, the scaling

factor a is determined by r and afj], which both depend on L. The author attempted a fixed length or fixed

ratio of L/RRinterval. However, the fixed L or fixed ratio of L/RRinterval failed to provide reasonable

ABF waveforms as well as consistent scaling factors. An adaptive algorithm to update L was needed.

As mentioned earlier, L determines the other parameter values in (4.11). Different L values provide

different sets of parameter values. Fig. 4.3 shows the parameter values 2aUj], r, and a as evaluation

functions of L. For each model order L, equation (4.4) was solved to obtain af] and consequently the

other parameters. As can be seen, there are local minima and maxima in each graph. The L value that

provides local minima/maxima of the evaluation function could be the correct AR parameter length. In

addition, the proportional ABF (within a scaling factor of Ca) was also calculated by (4.11) for each L and

was investigated in the following evaluation functions:

. Smoothness of calculated systolic ABF



Smoothness = ZE(, Ii] -5, I,[-1])
systole (4.12)

where F is a normalized instantaneous blood flow waveform.

* Flatness of calculated diastolic ABF (errors in the diastolic ABF signal)

MDL = 1 n+ d - ) Fac[i]2

Nd diastole (4.13)

AIC = diastole 1+ L/Nd
Nd 1- LINd (4.14)

where Nd is the total length of diastolic durations within the 17-beat moving window.

* Standard deviation of diastolic ABF signal

* Standard deviation of systolic ABF signal

" Area of negative values in the calculated ABF
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Among these evaluation functions, Zaj] provided the best SV estimation and ABF waveforms (reported

in the following section, Table 6.9). Therefore, an AR parameter length L[i] of the i* beat that minimized

ajf] was adopted.

The author also found that the changes in L (defined as L[i] - L[i-JJ) occur mostly within five

samples (- 20 [msec]) as shown in Fig. 4.4. Therefore, the numerical search for L was limited to within

L[i-1J-5<L[i]< L[i-1]+5 (at 250-Hz sampling frequency) to speed up computation time. The initial L

value was arbitrarily set as 75 samples (=300 [msec]).

60000 60000 60000

50000 50000 50000-

40000 40000 40000

30000 - - - - 30000 30000 -

20000 - 20000 20000

10000 10000 10000 --
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Qi1 - 4W-1] 1- Qi- 1] 4il - W-1]I

(a) Using Central ABP (b) Using Femoral ABP (c) Using Radial ABP

Fig. 4.4. Histogram of the difference of the selected AR parameter lengths.
The difference is defined as L[i] - L[i-1]. The standard deviations are 4.8, 5.2, and 5.7, and over 92.9, 93.8, and
92.7% of the data reside within ±5 samples, respectively.

The integrals of F[n] were calculated on a beat-to-beat basis to obtain SV estimates, and the time

averages of SV were calculated to obtain CO estimates.

The onset of diastole in each beat was identified by using the measured ABF, and the diastolic

duration N was given in each ABF estimation procedure. In practical settings, there would be cases where

one cannot identify onsets of diastoles. To investigate such cases, sensitivity analyses were conducted to

test the impact of error in determining the onset of diastole (section 7.2.2).



4.2. Conditioning of Arterial Blood Pressure Data

For the sake of easing the parameter computation, the raw ABP data were horizontally and vertically

scaled (Fig. 4.5(b), Fig. 4.6) so that all the beats in the 17-beat window had the same systolic and diastolic

ABP values, RR interval, and diastolic duration as those of the middle beat in the window (i.e., ninth beat).

Note that this data conditioning was done solely for parameter acquisition. Once AR parameters were

obtained, they were applied to the raw ABP waveforms. Then, only the estimated ninth ABF waveform in

the window was adopted. This procedure was applied to the moving 17-beat window throughout the ABP

data.

[1, -a,,-a,... -a,]T

(a) Fluctuating original diastolic ABP waveforms that are difficult to filter into zero flow

1 [1, -a,, ... -a, JT

(b) Modified diastolic ABP waveforms that are stable and easy to filter into zero flow

Fig. 4.5. Illustration of original (a) and modified (b) ABP waveforms.
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Fig. 4.6 Original and modified femoral ABP waveforms in Swine #5.
The original beat-to-beat instantaneous ABP waveforms (gray) are scaled horizontally and vertically so that all the
SBP, DBP, PP and RR intervals of the beats in the window are equal (black).

The conditioning of the data to synthesize the systolic and diastolic ABP within the moving window

was a key necessary process. Ideally, the system does not receive any perturbation other than ABF and



ABP and is not time-invariant within the moving window. Then, one can use a long window to include all

the modes excited within the window to conduct system identification. However, without conditioning,

one often observes divergence in the impulse response, and estimated ABF before scaling had noisy

waveforms. The cause of the instability was varying ABP data that incur computational challenges in

obtaining the AR parameters. For example, beat-to-beat MAP values are, in general cases, rapidly

changing on a beat-to-beat basis due to respiration or a physiological feedback system in response to

vaso-active drugs; thus, the range of diastolic ABP values varies from one beat to another within a

window. Such time-variant data force the algorithm (4.4) to find a compromised single set of AR

parameters that can filter multiple diastolic ABP waveforms to reduce the diastolic signal amplitude down

to zero. Also, if the length of the RR interval and diastolic duration vary among 17 beats in the window, it

is difficult to find a single AR parameter length L that satisfies all beats. Thus, the data-conditioning was

conducted to relax the computational challenge in AR parameter acquisition. Although the beats in the

moving window are rescaled horizontally (resampling) and vertically (rescaling) for the aforementioned

purpose, this procedure was only used to obtain AR parameters of the window. The AR parameters were

applied to the original ABP waveforms to obtain ABF. Therefore, the physiological changes occurring

within a shorter interval than the window size (e.g., respiration) can be seen in the estimated ABF.

4.3. Model Validation

4.3.1. Validation Steps

The algorithm was implemented in the following steps. First, all the characteristic points in the ABF

and ABP waveforms were labeled using a labeling algorithm described in Chapter 5. The ABF

characteristic points are the onset of systole, peak systole, and the first dip after the peak of systole (valve

closure point). The ABP characteristic points are the onset of systole, peak of systole, onset of diastole

mapped from the ABF characteristic point, and end of diastole.



For determining the AR parameter order L, Zafj], smoothness of systolic Fa,, and negative area of

Fcaic are used and compared. Because MDL, AIC, and other evaluation functions provided high SV errors

as well as unreasonable ABF waveforms during initial investigations, only Zafj], smoothness of systolic

Fcaic, and negative area of Fcaic are reported.

4.3.2. Error Criteria

SV CO, TPR waveform analysis

The estimation errors are defined in this thesis as RNMSEs:

N Meas -Est )2

RNMSE = 100 "=1 Meas
N-Nf (4.15)

where MEAS and EST are measured and estimated values, N is the number of data points, and Nf is the

number of free parameters.

For statistical analysis, one-way ANOVA was conducted to find statistical significance among the SV,

CO, and TPR estimation methods in conjunction with the end systole identification methods. If a

significance difference(s) was found, Scheff's test was conducted. Statistical significance was defined as

p < 0.05.

ABF waveform analysis

All the signal processing and analyses were conducted by MATLAB R2009a (The Mathworks Inc.,

Natick, MA). The standard deviation (SD), skewness, and kurtosis of the estimated systolic ABF

waveforms were compared to those of the measured waveforms on a beat-to-beat basis. Take the SD

comparison, for example. First, SD values of the measured and estimated systolic ABF were calculated on

a beat-to-beat basis (steps shown in Fig. 6.47). Then, the differences of each SD (SDABFmeas - SDABFcalc)

were calculated and plotted on a histogram. In the same manner, the differences (errors) of the skewness

and kurtosis of the calculated ABF waveforms were investigated as well. The skewness (s) and kurtosis



(k) were given by

E(Fs -

(4.16)

k E(Fs - P4

0 4 (4.17)

(a) Positively skewed (b) Negatively skewed (c) Leptokurtic (+) (d) Playkurtic (-)

Fig. 4.7. Skewness and Kurtosis.
Example waveforms of positive and negative skewness (a-b) and positive and negative kurtosis (c-d).

where Fs is the ABF (measured or estimated); p and o- are the mean and standard deviation of Fs,

respectively; and E[.j represents the expected value. Positive s values represent early peaks and elongated

tails at the right, and positive k values represent sharp peaks compared to a normal distribution (Fig. 4.7).

The skewness and kurtosis errors were defined as the difference between the measured and estimated

values. The error of the algorithm was compared with the error of the standard Windkessel model that

provides ABF as

F dP P

Ca dt z (2.2)

where r was adopted from an exponential decay fitted to a diastolic ABP waveform.

SV CO, and TPR analysis

For comparison, Ca in each animal was calculated by

Ca = mean(meas)
mean(estimated) (4.18)

where meas and estimated are the measured and estimated proportional SV, CO, or TPR (proportional t),



for instance. Although Ca declines with age [55], Ca is nearly constant on the time scale of months over a

wide pressure range [45, 46]; thus, Ca was assumed to be constant (mean measured CO divided by mean

estimated CO) throughout the experimental period in each animal (blind compliance), and the

proportional SV, CO, and r estimates were scaled by the constant to compare results with the measured

SV, CO, and TPR.



5. Labeling Characteristic Points

In preparation for developing novel PCMs, this chapter describes an algorithm to label characteristic

points in ABF and ABP data. The characteristic points of interest are: onset of systole (end of diastole),

peak systole, and onset of diastole (end of systole). The following sections describe a step-by-step

procedure to identify these points in ABF and ABP data. In summary, peak systoles are first identified.

Secondly, an evaluation function is introduced to identify the onset of systole between two peak systoles.

Thirdly, another evaluation function is introduced to identify the onset of diastole between two peak

systoles.

5.1. Identification of Peak Systole

Peak systole is an inter-beat local maximum. The challenge is that there can be multiple peaks in a

single beat (as shown in Fig. 5.1 in gray). Because there can be two peaks in ABP waveforms and the

baseline can change in a short period of time by respiration, for instance, sometimes a simple threshold is

not enough to detect peaks. To extract only the peak systole among the peaks in a single beat, convolution

of a Gaussian distribution (5.1) with the original ABP data is introduced:

f(x)= v exp -XY
-,2 2 2-U ( 5.1)

where the standard deviation of the distribution is arbitrarily set initially. The Gaussian distribution (Fig.

5.2) is then convoluted with the ABF or ABP data. The outcome is shown in Fig. 5.1 (black). Note that the

output curve (convolution of the Gaussian and ABP) has a single peak in each beat. The second peak near

the dicrotic notch is smeared out in the output curve and is not counted as a peak. The key of this method

is to set a right standard deviation (wide enough) so that one can extract the single beat and identify only

one local maximum. The time stamp of the local maximum in the convolution outcome in a single beat is
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now mapped onto the original ABF/ABP waveform. Then, the local maximum around the point is

regarded as the systolic peak of the beat (Fig. 5.3).

120

90

100 110
Tine [see]

120

Fig. 5.1. Radial ABP data recorded from Yorkshire swine.
Recorded from Swine #7. The baseline changed over a short interval.
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Fig. 5.2. Gaussian distribution (normalized).
The width is set to the median R-R interval of the preceding beats. The interval is updated on a beat-to-beat basis.
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Fig. 5.3. Labeling systolic peaks

5.2. Identification of End Diastole

The challenge in detecting end diastole (i.e., onset of systole) is that the local minimum right before a

peak systole is not necessarily an end diastole. Examples are shown in Fig. 5.4b. For a robust detection

algorithm, the following evaluation function was introduced.

mirroredL = (x[i] -x[i-d ]) - x[i] - x[i ( 5.2 )

Equation (5.2) detects a waveform in the shape of a mirrored "L". The function mirroredL becomes large

when the point x[i] is the bending point (or elbow) of the mirrored "L". Fig. 5.4 shows examples of ABP

waveforms x[i] and corresponding mirroredL[i] in normal and abnormal beats. The local maximum of

mirroredL between two peak systoles was regarded as an end diastole. Note that the mapped black circles

in the ABP waveforms are more robust indicators of the onsets of diastoles than the inter-beat local

minima (arrows.)
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Fig. 5.4. Normal and abnormal radial ABP data recorded from Yorkshire swine.
Recorded from Swine #5. The corresponding mirrored L is shown below each ABP. The peaks in the mirrored L
(black circles) are mapped onto the ABP waveform. Note that the mapped black circles in the ABP waveforms
correspond to the end-diastoles for both normal and abnormal beats. The mirrored L is a more robust indicator of
onsets of diastoles than the inter-beat local minima (arrows).

5.3. Renewal of Gaussian Convolution Based on RR interval

The standard deviation of the normal distribution for convolution is updated based on the preceding

RR interval (inverse of HR) for the next ten-second moving window.

For the validation of the algorithms described in the following sections, the aforementioned steps

were repeated to label all the characteristic points in the ABF, central ABP (CAP), femoral ABP (FAP),

and radial ABP (RAP) signals.

5.4. Identification of End Diastole

A number of methods introduced and validated in the following chapters utilize end systole (onset of

diastole). For practical applications in clinical settings, ABF is not available. Therefore, an estimation

method for the determination of diastolic onset in each beat is needed. Several estimation methods are

------------------------------------------------------------------ .--



introduced here.

5.4.1. Exponential Model
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0 200 400
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Fig. 5.5. A current systolic interval as a function of a preceding RR interval.

The duration of systole (Sys) can be described as a function of the preceding RR interval [58].

Using six Yorkshire swine data sets that include measured (true) systolic durations and RR intervals on a

beat-to-beat basis, the relation between Sys and RR was found as

Sys, = 436(1 - exp(- 0.0057RR,""r')) (5.3 )

where i is the beat number, and the diastolic duration Dia; can be described as

Dia, = R'mesured - SYS

= RR'measured - 436(1 - exp(- 0.0057RR"'aured) (5.4)

Using the Yorkshire swine data sets (>60,000 beats), the calculated diastolic duration Dia was compared

600 800



with the measured diastolic duration Diameasurd

5.4.2. Partial Pulse Pressure

An end diastole always comes after a systolic peak. At the end systole, the pressure value is equal or

lower than SBP. When the pressure drops from SBP to a% pulse pressure (PP),

ES D \S ~~D ( 5.5 )

f k90% PP Pulse Pressure
40% PP (PP)

- I

Time

End systole defined End systole defined
at 90% PP at 40% PP

Fig. 5.6. End systole defined by means of the partial pulse pressure.

As examples, end systoles identified by the 40% PP and 90% PP are shown in Fig. 5.6. The time

stamp of PES can be regarded as the time of an estimated end systole.



6. Results

The aforementioned SV, CO, TPR, and ABF estimation methods as well as existing methods were

applied to the previously recorded Yorkshire swine data sets [20]. The summary of the data is shown on

Table 6.1.

Length CO SV Femoml MAP Radial MAP HR
ANIMAL (min) (Umin) (mL) (mmHg) (mmHg) (bpm)

1 113 3.6 +/- 1.0 28.4 +/- 5.8 63 +/- 19 61 +/- 19 129 +/- 29

2 97 3.2 +/- 0.6 25.0 +/- 5.0 83 +/- 21 73 +/- 20 135 +/- 38
3 88 4.0 +/- 0.7 31.7 +/- 7.1 83 +/- 16 87 +/- 15 133 +/- 32

4 106 3.2 +/- 0.6 25.2 +/- 43 89 +/- 19 79 +/- 18 129 +/- 34

5 90 3.3 +/- 0.5 26.7 +/- 6.4 80 +/- 21 85 +/- 19 130 +/- 32
6 68 3.4 +/- 1.2 28.5 +/- 8.1 72 +/- 19 75 +/- 20 130 +/- 26

MEAN 94 3.5 +/- 0.8 27.5 +/- 6.7 79 +/- 21 76 +/- 21 131 +/- 32

Table 6.1. Summary of cardiovascular parameters of the six swine data sets.
Wide physiological ranges (mean ± SD) of cardiac output (CO), stroke volume (SV), femoral and radial mean
arterial blood pressure (MAP), and heart rate (HR) were obtained in the six swine data sets.

Each section of this Chapter contains the RNMSE and plots of the measured and estimated indices, as

well as the Bland-Altman plot [47]. It plots difference of two groups against the mean of two groups. The

plots aid in the visualization of the agreement of the two groups; for a good agreement, there should not

be any trend, and the majority of the plots should stay within ±1.96 SD, which is drawn as dotted

horizontal lines.

Some of the SV, CO, TPR, and ABF estimation methods require the use of end-systole timestamps.

Because this information is not available in clinical care, the following methods are used: (1) true end

systole obtained from the measured ABF, (2) end systole estimated from the RR interval of the preceding

beat (exponential model, described in Section 5.4.1), and (3) partial pressure as end systole (described in

Section 5.4.2).

To validate the algorithm described in the following chapters and sections, previously reported [20]

data from six Yorkshire swine (30-34 kg) recorded under a protocol approved by the MIT Committee on

Animal Care were processed and analyzed offline. Table 6.2 summarizes the physiological ranges of the
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data sets. Aortic blood flow was recorded using an ultrasonic flow probe (T206 with A-series probes,

Transonic Systems, Ithaca, NY) placed around the aortic root. Radial and femoral ABP were measured

using a micromanometer-tipped catheter (SPC350, Millar Instruments, Houston, TX) and an external

fluid-filled pressure transducer (TSD104A, Biopac Systems, Santa Barbara, CA). Aortic blood flow, ECG,

and blood pressures were recorded using an A/D conversion system (MP 1 50WSW, Biopac Systems) at a

sampling rate of 250 Hz. For more details, please refer to Mukkamala et al. [20].

6.1. End Systole Estimation

Using the exponential model (5.4), the mean error of the diastolic duration was 6.56 %, and the

standard deviation from the mean was 5.86 %. The formula (5.4) was used to determine the diastolic

duration in each beat in the algorithms reported in the following sections. Also, the partial pressure

method (5.5) was investigated. Table 6.2 summarizes the errors of diastolic intervals estimated by the

partial PP method. 60%, 50%, and 50% PP would be good indicators of end systoles for CAP, FAP, and

RAP, respectively.

CAP FAP RAP
40% PP 17.1 ± 11.6 5.9 ± 8.0 6.0 14.2
50% PP 10.1 ± 9.0 -3.3 ± 5.5 -1.4 12.5
60% PP 1.8 ± 6.9 -7.4 ± 4.1 -10.8 6.8
70% PP -4.7 ± 4.3 -10.0 ± 3.9 -13.8 7.1
80% PP -8.2 ± 3.5 -12.8 ± 3.9 -17.1 8.2
90% PP -11.3 ± 3.8 -16.3 ± 4.3 -23.8 11.3
1000/ PP -29.0 ± 21.1 -31.9 ± 16.9 -36.4 17.1

Table 6.2. Summary of diastolic interval errors ± standard deviation (SD).

In the following sections, the true end systole, end systole estimated by the exponential model, and

partial PP method are used to identify end systoles and calculate ABF, SV, CO, and TPR.



6.2. SV, CO, and TPR Estimation

6.2.1. Windkessel Model

The Windkessel method achieved 23.7% (CAP), 18.8% (FAP), and 37.7% (RAP) RNMSEs in SV

estimation.
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60
50

40

~30
> 20

10

0



Using CAP, FAP, and RAP waveforms, the Windkessel method achieved 17.0, 16.6, and 44.8%

RNMSEs in CO estimation, respectively.
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Using CAP, FAP, and RAP waveforms, the Windkessel method achieved 21.3, 17.3, and 36.4%

RNMSEs in TPR estimation, respectively.
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6.2.2. Pulse Pressure

The Pulse Pressure method achieved 20.5% (CAP), 20.7% (FAP), and 22.0% (RAP) RNMSEs in SV

estimation.
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Using CAP, FAP, and RAP waveforms, the Pulse Pressure method achieved 20.1, 22.7, and 11.5%

RNMSEs in CO estimation, respectively.
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Fig. 6.5. CO estimation by the Pulse Pressure method.
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Using CAP, FAP, and RAP waveforms, the Pulse Pressure method achieved 44.4, 38.4, and 22.0%

RNMSEs in TPR estimation, respectively.

30 -

20 -

10 -

0-

-10 -

-20 -

-30 -

--------- ,----

Measured
-Estimted

I I I I I-

0 20 40 60 80
Beats

100 120 140

(a) Using CAP

- Measred
- stiniited

0 20 40 60 80
Beats

100 120 140

(calc + meas)/2

(d) BA Plot, R2=0.1581

30-20-
10 --
0

-10
-20
-30

(b) Using FAP

- Measured
-Estimited

4--- -- ----

(e) BA Plot, R2-0.0793

30 -

20 -

10 -

0-
-10 -

-20 -
-30 -

0 20 40 60 80
Beats

100 120 140 20
(calc + meas)/2

(c) Using RAP (f) BA Plot, R2=0.1544
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6.2.3. Liljestrand-Zander's Method

Using CAP, FAP, and RAP waveforms, the Liljestrand-Zander's method achieved 34.9, 31.2, and

34.2% RNMSEs in SV estimation, respectively.
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Fig. 6.7. SV estimation by Liljestrand-Zander's method.
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Using CAP, FAP, and RAP waveforms, Liljestrand-Zander's method achieved 29.7, 24.5, and 29.7%

RNMSEs in CO estimation, respectively.
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Using CAP, FAP, and RAP waveforms, Liljestrand-Zander's method achieved 29.9, 26.7, and 31.1%

RNMSEs in TPR estimation, respectively.
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6.2.4. Herd's Pulse Pressure

Using CAP, FAP, and RAP waveforms, Herd's Pulse Pressure method achieved 14.9, 17.2, and 18.6%

RNMSEs in SV estimation, respectively.
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Using CAP, FAP, and RAP waveforms, Herd's Pulse Pressure method achieved 21.1, 21.0, and 18.7%

RNMSEs in CO estimation, respectively.
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Using CAP, FAP, and RAP waveforms, Herd's Pulse Pressure method achieved 23.0, 22.7, and 21.5%

RNMSEs in TPR estimation, respectively.
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6.2.5. Beat-to-Beat Averaged Method

Using CAP, FAP, and RAP waveforms, the Beat-to-Beat Averaged method achieved 18.7, 20.7, and

20.9% RNMSEs in SV estimation, respectively.
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Fig. 6.13. SV estimation by the Beat-to-Beat Averaged method.
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Using CAP, FAP, and RAP waveforms, the Beat-to-Beat Averaged method achieved 17.0, 16.6, and

13.7% RNMSEs in CO estimation, respectively.
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6-

5-

-3

0 2
U 1I

0-

6-
5-

4

E13J -

0

0-

- - - Estinated-



Using CAP, FAP, and RAP waveforms, the Beat-to-Beat Averaged method achieved 16.5, 16.5, and

16.0% RNMSEs in TPR estimation, respectively.
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6.2.6. Systolic Area

Using CAP, FAP, and RAP waveforms, the Systolic Area method achieved 16.5% (exponential model

for end systole), 21.6% (50% PP for end systole), and 19.1% (60% PP for end systole) RNMSEs in SV

estimation, respectively.
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Using CAP, FAP, and RAP waveforms, the Systolic Area method achieved 14.3% (exponential model

for end systole), 19.1% (50% PP for end systole), and 13.5% (true end systole) RNMSEs in CO

estimation, respectively.
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Using CAP, FAP, and RAP waveforms, the Systolic Area method achieved 16.5% (true end systole),

20.7% (true end systole), and 13.5% (true end systole) RNMSEs in TPR estimation, respectively.
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6.2.7. Corrected Impedance

Using CAP, FAP, and RAP waveforms, the Corrected Impedance method achieved 13.9% (70% PP for

end systole), 16.4% (40% PP for end systole), and 14.9% (70% PP for end systole) RNMSEs in SV

estimation, respectively.
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Fig. 6.19. SV estimation by the Corrected Impedance method.



Using CAP, FAP, and RAP waveforms, the Corrected Impedance method achieved 12.7% (70% PP for

end systole), 13.6% (50% PP for end systole), and 10.5% (true end systole) RNMSEs in CO estimation,

respectively.
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Using CAP, FAP, and RAP waveforms, the Corrected Impedance method achieved 13.7% (70% PP for

end systole), 13.8% (40% PP for end systole), and 10.6% (true end systole) RNMSEs in TPR estimation,

respectively.
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Fig. 6.21. TPR estimation by the Corrected Impedance method.
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6.2.8. Systolic Area with Kouchoukos Correction

Using CAP, FAP, and RAP waveforms, the Kouchoukos Correction method achieved 14.8%

(exponential model for end systole), 19.7% (50% PP for end systole), and 13.1% (exponential model for

end systole) RNMSEs in SV estimation, respectively.
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Using CAP, FAP, and RAP waveforms, the Kouchoukos Correction method achieved 12.2%

(exponential model for end systole), 16.9% (50% PP for end systole), and 11.5% (exponential model for

end systole) RNMSEs in CO estimation, respectively.
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Fig. 6.23. CO estimation by the Kouchoukos method.
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Using CAP, FAP, and RAP waveforms, the Kouchoukos Correction method achieved 15.2%

(exponential model for end systole), 18.4% (true end systole), and 11.3% (exponential model for end

systole) RNMSEs in TPR estimation, respectively.
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Fig. 6.24. TPR estimation by the Kouchoukos method.
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6.2.9. AC Power

Using CAP, FAP, and RAP waveforms, the AC Power method achieved 20.6, 20.8, and 22.1%

RNMSEs in SV estimation, respectively.
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Fig. 6.25. SV estimation by the AC Power method.
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Using CAP, FAP, and RAP waveforms, the AC Power method achieved 17.1, 18.1, and 18.8%

RNMSEs in CO estimation, respectively.
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Fig. 6.26. CO estimation by the AC Power method.
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Using CAP, FAP, and RAP waveforms, the AC Power method achieved 18.2, 18.2, and 16.2%

RNMSEs in TPR estimation, respectively.
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Fig. 6.27. TPR estimation by the AC Power method.
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6.2.10. ARMA Model

Using CAP, FAP, and RAP waveforms, the ARMA method achieved 20.2, 17.4, and 16.5% RNMSEs

in CO estimation, respectively.
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Fig. 6.28. CO estimation by the ARMA method.
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Using CAP, FAP, and RAP waveforms, the ARMA method achieved 16.5, 19.4, and 17.9% RNMSEs

in TPR estimation, respectively.
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Fig. 6.29. TPR estimation by the ARMA method.
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6.2.11. Minimum Variance Method

Using CAP, FAP, and RAP waveforms, the Minimum Variance method achieved 21.0, 27.2, and

22.6% RNMSEs in SV estimation, respectively.
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Fig. 6.30. SV estimation by the Minimum Variance method.
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Using CAP, FAP, and RAP waveforms, the Minimum Variance method achieved 15.5, 23.6, and

19.8% RNMSEs in CO estimation, respectively.
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Fig. 6.31. CO estimation by the Minimum Variance method.
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Using CAP, FAP, and RAP waveforms, the Minimum Variance method achieved 23.1, 21.3, and

18.7% RNMSEs in TPR estimation, respectively.
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Fig. 6.32. TPR estimation by the Minimum Variance method.
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6.2.12. Modified Herd's Method

Using CAP, FAP, and RAP waveforms, the Modified Herd's method achieved 14.8% (exponential

model for end systole), 18.9% (exponential model for end systole), and 14.8% (exponential model for end

systole) RNMSEs in SV estimation, respectively.
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Fig. 6.33. SV estimation by the Modified Herd's method.
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Using CAP, FAP, and RAP waveforms, the Modified Herd's method achieved 12.7% (exponential

model for end systole), 17.1% (exponential model for end systole), and 13.0% (exponential model for end

systole) RNMSEs in CO estimation, respectively.
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Fig. 6.34. CO estimation by the Modified Herd method.
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Using CAP, FAP, and RAP waveforms, the Modified Herd's method achieved 16.1% (exponential

model for end systole), 17.1% (exponential model for end systole), and 13.7% (exponential model for end

systole) RNMSEs in TPR estimation, respectively.
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Fig. 6.35. TPR estimation by the Modified Herd method.
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6.2.13. Parabolic ABF Model

Using CAP, FAP, and RAP waveforms, the Parabolic ABF method achieved 18.3% (50% PP for end

systole), 19.9% (40% PP for end systole), and 19.1% (100% PP for end systole) RNMSEs in SV

estimation, respectively.
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Fig. 6.36. SV estimation by the Parabolic ABF method.
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Using CAP, FAP, and RAP waveforms, the Parabolic ABF method achieved 13.5% (40% PP for end

systole), 15.7% (40% PP for end systole), and 15.0% (70% PP for end systole) RNMSEs in SV estimation,

respectively.
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Fig. 6.37. CO estimation by the Parabolic ABF method.
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Using CAP, FAP, and RAP waveforms, the Parabolic ABF method achieved 16.2% (80% PP for end

systole), 16.4% (40% PP for end systole), and 13.9% (100% PP for end systole) RNMSEs in TPR

estimation, respectively.
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Fig. 6.38. TPR estimation by the Parabolic ABF method.
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6.2.14. Pressure Ratio Method

Using CAP, FAP, and RAP waveforms, the Parabolic ABF method achieved 17.4% (90% PP for end

systole), 19.6% (40% PP for end systole), and 21.5% (70% PP for end systole) RNMSEs in SV estimation,

respectively.
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Fig. 6.39. SV estimation by the Pressure Ratio method.
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Using CAP, FAP, and RAP waveforms, the Parabolic ABF method achieved 13.9% (90% PP for end

systole), 16.1% (40% PP for end systole), and 17.5% (50% PP for end systole) RNMSEs in CO

estimation, respectively.

_Measured
..- Estinted

- -si~

0-2 40 0-8

0 20 40 60 80
Beats

(a) Using CAP

100 120 140

* .- . * * - *

0 2 4 6
(calc + meas)/2

(d) BA Plot, R2 = 0.1162

-- Meued
-- - -Estinated

0 20 40 60 80
Bats

(b) Using FAP

0

-2
100 120 140

Measured
- -stinated-

0 20 40 60 80
Beats

100 120 140

(c) Using RAP

----------- ..

0 2 4 6
(calc + meas)/2

(e) BA Plot, R2 = 0.2851

..... ..
0 2 4 6

(calc + meas)/2

(f) BA Plot, R2 = 0.4796

Fig. 6.40. CO estimation by the Pressure Ratio method.
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Using CAP, FAP, and RAP waveforms, the Parabolic ABF method achieved 17.9% (80% PP for end

systole), 17.0% (exponential model for end systole), and 15.2% (70% PP for end systole) RNMSEs in

TPR estimation, respectively.
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Fig. 6.41. TPR estimation by the Pressure Ratio method.
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6.2.15. Hybrid Method Results

This section describes the results of CO and SV estimation using the Hybrid algorithm.

Using Whole Data as Pilot Data with Common Parameter Sets

Using the MDL criterion, the order was set to 8 for the analysis of central and femoral ABP, and the

order was set to 9 for the analysis of radial ABP. Over a wide physiological range achieved by

administering phenylephrine (vasoconstrictor), nitroglycerin (vasodilator), dobutamine (beta agonist), and

esmolol (beta blocker), the new method achieved RNMSLEs of 15.6% in CO and 16.3% in SV derived

from central ABP; 12.7% in CO and 16.5% in SV derived from femoral ABP; and 10.1% in CO and

14.5% in SV derived from radial ABP.

The overall trend of the measured and estimated CO and SV showed strong agreement (Fig. 6.42).

The correlation coefficient (R) between the measured CO (SV) and estimated CO (SV) from femoral

ABP was 0.945 (0.914). For CO (SV) derived from radial ABP, the correlation coefficient was 0.970

(0.909).

Bland-Altman analysis [34, 35] of the CO and SV estimates was conducted. Bland-Altman analysis

involves plotting the estimation errors (difference between estimated and measured values) versus the

averages of the estimated and measured values. The analysis showed that 97.6 and 93.8% of the CO and

SV estimation errors derived from femoral ABP were within 1.96 SD from the mean (R= 0.073 and 0.37

for CO and SV plots, respectively), and 97.6 and 94.3% of the CO and SV estimation errors derived from

femoral ABP were within 1.96 SD from the mean (R2=0.073 and 0.13 for CO and SV plots, respectively).

This indicates that the distributions of the estimation errors have tails of approximately equal weight as

for a normal distribution. The low R values indicate that there is no apparent trend (Fig. 6.43) of the

estimation errors with the averages.
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(b) Measured SV (black line) and estimated SV (gray line) from central ABP (R =0.889).
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(c) Measured CO (black circles) and estimated CO (white circles) from femoral ABP (R = 0.945).
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(d) Measured SV (black line) and estimated SV (gray line) from femoral ABP (R = 0.914).
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(e) Measured CO (black circles) and estimated CO (white triangles) from radial ABP (R = 0.970).
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(f) Measured SV (black line) and estimated SV (gray line) from radial ABP (R = 0.909).

Fig. 6.42. Agreement of the measured and estimated cardiac output and stroke volume.
Estimates from central (a-b), femoral (c-d), and radial (e-f) arterial blood pressure in the six Yorkshire swine data
sets. The black and gray lines represent measured and estimated values, respectively. A wide physiological range
was achieved by administering phenylephrine (vasoconstrictor), nitroglycerin (vasodilator), dobutamine (beta
agonist), and esmolol (beta blocker).
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(a) CO estimation from central ABP (R2 = 0.149).
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(b) SV estimation from central ABP (R2 =0.260).
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(c) CO estimation from femoral ABP (R2 = 0.047). (d) SV estimation from femoral ABP (R2 = 0.124).
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(e) CO estimation from radial ABP (R2 = 0.020).

(Yest + Ymeas)/2

(f) SV estimation from radial ABP (R2 = 0.009).

Fig. 6.43. Bland-Altman plots of the CO and SV estimates using the new method.
Over 94% of both CO and SV estimates by the Hybrid method are within 1.96 SD from the mean, respectively. The
dotted lines represent 1.96 SD from the mean. Ymeas and Yest are natural logarithms of the measured and estimated
SV.

123



Using Half of the Data as Pilot Data with Common Parameter Sets

Using a common parameter set for all the animals, the algorithm achieved SV (CO) errors of 17.3%

(16.3%) using central (8h order), 16.5% (12.7%) using femoral (6* order), and 14.5% (10.1%) using

radial ABP (5h order).

Using Half of the Data as Pilot Data Applied to the Other Half ofthe Data

In using (3.55) to obtain the parameters, the first half of each data set was used. The parameters were

applied to half of the data sets. The algorithm achieved SV (CO) errors of 20.0% (19.4%) using central

(5t" order), 18.3% (15.3%) using femoral (6* order), and 17.7% (15.3%) using radial ABP (5t order).

Common single parameter set

Pilot Data Common single parameter set obtained by the first half of the data
selected. Applied to all data. and applied to the latter half of the

data.
12.6 (10.0) 8th

All 21.2 (18.7) 8th N/A
13.2 (10.4) 9th
17.3 (16.3), 7th 20.0 (19.4), 5th

Half 16.5 (12.7), 6th 18.3 (15.3), 6th
14.5 (10.1), 5th 17.7 (15.3), 5th

Table 6.3. RNMSLEs of SV (CO) estimation by the Hybrid algorithm.
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6.3. Summary of the SV, CO, and TPR Estimation

The estimation methods that require only one calibration (arterial compliance Ca), as described in the

previous chapters, were compared. In the following tables, PR=Pressure Ratio Method (3.34);

SM=Modified Herd's Method (Systolic MAP - end DBP, eq.3.19); CI=Corrected Impedance (2.14);

Kou=Kouchoukos Correction (2.15); Wind=Windkessel model (2.3); Psa=Area under the curve with

end-diastolic ABP value subtracted (2.13); Psa2=Area under the systolic curve (2.12); Par=Parabolic ABF

model (3.25); AC=AC Power (2.16); Hyb=Hybrid Method (3.55); MV=Minimum Variance Method (3.2);

PP=Pulse Pressure (2.4); PP2=Herd's Pulse Pressure (2.7); BBA=Beat-to-Beat Averaged Model (2.9);

ARMA=ARMA model (2.20); Lilj=Liljestrand-Zander's Method (2.6); and Const=CO, SV, and TPR set

constant. The single asterisks represent the novel methods developed in this thesis.

The double asterisks (Hybrid Method) signify that the method was calibrated using measured SV.

Therefore, it should not be directly compared with the other methods that require only one parameter for

calibration (arterial compliance Ca). The details of the Hybrid results are reported in section 6.2.15.

For the ARX model, the ABF waveform estimation results are further reported in section 6.4.

Table 6.4 summarizes the SV estimation results (RNMSEs) using different estimation methods

(columns) and end systole detection methods (rows). Using CAP, the Corrected Impedance Method with

end systole at 70% PP resulted in the SV RNMSE of 13.9%, as low as the Kouchoukos Correction

Method (14.8% with end systoles from the exponential model), the modified Herd's Method (14.8% with

end systoles from the exponential model). For FAP, the Corrected Impedance Method with end systole at

40% resulted in the SV RNMSE of 16.4%. For RAP, the Kouchoukos Correction Method with end systole

calculated from the preceding RR interval resulted in the SV RNMSE of 13.1%.

Table 6.5 summarizes the CO estimation results (RNMSEs) using different estimation methods

(columns) and end systole detection methods (rows). Using CAP, the Parabolic Method with end systoles

from 40% PP achieved 13.5% RNMSE, as low as Kouchoukos (12.0% with end systoles by the

exponential model), the modified Herd's Method (12.7% with end systoles by the exponential model),
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Pressure Ratio Method (13.8% with end systoles of 90% PP), and Kouchoukos (12.0% with end systoles

from the exponential model). For FAP, the Parabolic Method with end systoles from 40% PP achieved

15.7% RNMSE, as low as the Corrected Impedance Method (13.6% with end systole at 40%), Pressure

Ratio Method (15.9% with end systoles from 40% PP) For RAP, the Kouchoukos Correction Method with

true end systole resulted in the CO RNMSE of 11.6%, as low as the Corrected Impedance Method (10.5%

with true end systoles), modified Herd's Method (13.1% with end systoles from the exponential model),

Area under the curve method (13.6% with true end systoles). The Hybrid Method achieved low RNMSE

of 10.1% in CO estimation using RAP. The details of the Hybrid results are reported in section 6.2.15.

Table 6.6 summarizes the TPR estimation results (RNMSEs) using different estimation methods

(columns) and end systole detection methods (rows). The TPR values were calculated by the measured

MAP and calculated proportional CO using (2.1). Using CAP, the Parabolic Method with end systoles

from 90% PP achieved 15.3% RNMSE, as low as Corrected Impedance Method (13.7% with end systole

from 70% PP). For FAP, the Corrected Impedance Method with end systole at 40% PP resulted in the

lowest TPR RNMSE of 13.8%. For RAP, the Corrected Impedance Method with true end systole resulted

in the lowest TPR RNMSE of 10.6%, as low as Kouchoukos (11.3% with end systoles from the

exponential model), Pressure Ratio Method (15.4% with end systoles from 70% PP), Area under the

curve method (13.4% with true end systoles), and Parabolic Method (13.9% with end systoles from 100%

PP).
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PR* SM* CI Kou Wind Psa Psa2 Par* AC Hyb** MV* PP PP2 BBA ARMA Lilj Const
true 27.0 15.9 14.7 16.8 23.7 16.7 23.3 20.5 20.6 19.1 21.0 20.5 14.9 18.7 N/A 34.9 30.6
f(RR) 27.0 14.8 15.2 14.8 18.2 16.5 24.0 19.9 N/A N/A N/A N/A N/A N/A N/A N/A N/A

-2 40%PP 19.1 19.6 17.0 37.6 18.7 25.7 35.6 18.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A
E 50%PP 18.6 19.1 15.8 33.3 18.4 24.4 34.1 18.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A

60/cPP 18.4 18.8 14.5 26.6 20.2 21.7 30.4 19.7 N/A N/A N/A N/A N/A N/A N/A N/A N/A
700/PP 18.0 18.8 13.9 22.8 18.8 20.0 28.5 20.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A

0 800/PP 17.5 18.8 14.5 23.4 18.0 20.6 28.8 21.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A
90%PP 17.4 18.6 16.6 26.8 17.6 23.4 31.2 24.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A
100/PP 17.4 18.3 18.9 29.8 17.6 26.0 33.3 25.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A

(a) Using CAP

PR* SM* CI Kou Wind Psa Psa2 Par* AC Hyb** MV* PP PP2 BBA ARMA Lilj Const
true 22.1 19.9 17.9 21.6 18.8 22.4 25.4 21.5 20.8 17.4 27.2 20.7 17.2 20.7 N/A 31.2 30.6

0 f(RR) 21.7 18.9 18.4 20.6 19.4 22.6 26.3 21.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A
0 40/oPP 19.6 21.6 16.4 21.3 19.4 21.9 24.8 19.9 N/A N/A N/A N/A N/A N/A N/A N/A N/A

E 50%PP 19.8 21.4 16.6 19.7 20.3 21.6 23.8 20.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A
60%PP 19.8 21.3 17.2 21.4 19.6 22.5 24.9 20.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A
70%PP 19.8 21.4 17.8 23.0 20.2 23.5 25.9 21.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A
800/PP 19.7 21.4 18.3 24.5 20.0 24.6 27.1 21.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A
900/PP 19.6 21.3 18.9 25.9 19.9 25.6 28.3 21.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A
1000/PP 19.7 21.2 19.3 26.6 19.9 26.2 28.9 20.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A

(b) Using FAP

PR* SM* CI Kou Wind Psa Psa2 Par* AC Hyb** MV* PP PP2 BBA ARMA ilj Const
true 42.5 16.9 16.0 13.6 37.7 14.5 22.1 20.6 22.1 14.6 22.6 22.0 18.6 20.9 N/A 34.2 30.6

3 f(RR) 43.0 14.8 16.4 13.1 38.3 14.8 23.3 19.9 N/A N/A N/A N/A N/A N/A N/A N/A N/A
400/PP 20.8 19.0 19.8 33.6 24.5 21.8 33.2 22.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A

0 50%PP 21.0 18.6 17.9 29.7 24.7 21.1 32.7 20.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A

E 600/PP 21.7 18.0 15.7 23.0 25.7 19.1 29.7 20.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A
t 700/PP 21.5 18.0 14.9 25.3 33.6 20.9 31.4 19.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A

800/oPP 21.8 17.8 15.4 28.0 32.0 23.2 33.2 19.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A
90%PP 23.0 18.2 17.5 29.5 32.7 25.0 34.7 19.7 N/A N/A N/A N/A N/A N/A N/A N/A N/A
1000/PP 22.9 18.3 19.8 32.0 33.1 27.2 36.3 19.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A

(c) Using RAP

Table 6.4. RNMSEs in SV estimation using the new and existing estimation methods.
Central (a), femoral (b), and radial (c) ABP waveforms were used. f(RR) represents the exponential model of the
current systolic duration as a function of the preceding RR interval. N% PP (N=40-100) represents the N% Pulse
Pressure method to define an end systole of the beat. PR=Pressure Ratio Method (3.34); SM=Modified Herd's
method (Systolic MAP - end DBP, eq.3.19); CI=Corrected Impedance (2.14); Kou=Kouchoukos Correction (2.15);
Wind=Windkessel model (2.3); Psa=Area under the curve with end-diastolic ABP value subtracted (2.13);
Psa2=Area under the systolic curve (2.12); Par=Parabolic ABF model (3.25); AC=AC Power (2.16); Hyb=Hybrid
Method (3.55); MV=Minimum Variance Method (3.2); PP=Pulse Pressure (2.4); PP2=Herd's Pulse Pressure (2.7);
BBA=Beat-to-Beat Averaged Model (2.9); ARMA=ARMA model (2.20); Lilj=Liljestrand-Zander's Method (2.6);
and Const=CO, SV, and TPR set constant.
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PR* SM* CI Kou Wind Psa Psa2 Par* AC Hyb** MV* PP PP2 BBA ARMA Lilj Const
true 23.6 13.6 12.8 14.1 17.0 14.7 21.2 15.9 17.2 16.3 15.5 20.1 21.1 17.0 20.2 29.7 22.7

0 f(RR) 23.7 12.7 12.7 12.0 27.2 14.0 21.6 16.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A
1 40/PP 16.1 16.6 14.5 34.2 29.4 23.4 33.2 13.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A

0Oa)
0 500/oPP 15.9 16.2 13.8 31.4 32.2 22.7 32.5 14.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A

60%PP 15.3 16.0 13.0 25.6 29.1 20.4 29.2 15.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A
700/PP 14.6 16.1 12.4 21.5 29.5 18.6 27.1 15.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A
80%PP 14.0 16.1 13.0 22.1 27.9 19.2 27.4 15.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A
900/cPP 13.8 15.9 14.9 25.3 28.1 21.7 29.5 18.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A
100/PP 13.9 15.5 16.7 27.8 28.3 24.0 31.4 18.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A

(a) Using CAP

PR* SM* CI Kou Wind Psa Psa2 Par* AC Hyb** MV* PP PP2 BBA ARMA Lilj Const
true 17.8 17.2 15.1 18.4 16.6 20.1 24.4 16.9 18.0 13.6 23.6 22.7 21.0 16.6 17.4 24.5 22.7

0 f(RR) 16.7 16.3 15.4 18.0 22.4 20.3 25.2 17.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A
0 40/PP 15.9 19.0 13.3 20.3 27.9 20.0 25.0 15.7 N/A N/A N/A N/A N/A N/A N/A N/A N/A
F 500/PP 16.2 18.9 13.5 16.8 28.1 19.1 22.8 16.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A

600/PP 16.3 18.8 14.0 18.4 27.9 19.9 23.7 16.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A
700/PP 16.4 18.9 14.6 20.0 27.9 20.9 24.8 16.7 N/A N/A N/A N/A N/A N/A N/A N/A N/A
80%PP 16.4 18.9 15.2 21.6 26.5 22.0 25.9 16.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A
90%PP 16.4 18.9 15.7 23.0 26.4 23.0 27.1 16.9 N/A N/A N/A N/A N/A N/A N/A N/A N/A
100%PP 16.4 18.8 15.9 23.6 25.9 23.5 27.7 17.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A

(b) Using FAP

PR* SM* CI Kou Wind Psa Psa2 Par* AC Hyb** MV* PP PP2 BBA ARMA Lilj Const
true 35.9 14.8 10.5 11.6 44.8 13.6 21.4 16.0 18.9 10.1 19.9 11.5 18.7 13.7 16.5 29.7 22.7

f f(RR) 36.7 13.1 11.0 11.6 32.8 13.8 22.5 16.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A
- 40/PP 18.0 16.8 12.9 33.3 30.4 21.2 33.5 17.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A

S 50%PP 17.7 16.5 12.3 29.1 29.3 20.6 32.7 15.8 N/A N/A N/A N/A N/A N/A N/A N/A N/A
60%PP 18.2 16.0 11.0 22.2 27.2 18.3 29.4 15.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A
70%PP 179 16.0 12.5 24.7 29.8 20.3 31.4 15.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Q 80%PP 18.2 15.9 14.8 27.8 27.4 22.8 33.5 15.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A
90%PP 19.6 16.2 18.9 29.8 26.4 24.7 35.9 15.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A
100/oPP 19.7 16.3 21.3 32.7 27.8 27.3 37.9 15.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A

(c) Using RAP

Table 6.5. RNMSEs in CO estimation using the new and existing estimation methods.
Central (a), femoral (b), and radial (c) ABP waveforms were used. f(RR) represents the exponential model of the
current systolic duration as a function of the preceding RR interval. N% PP (N=40-100) represents the N% Pulse
Pressure method to define an end systole of the beat. PR=Pressure Ratio Method (3.34); SM=Modified Herd's
method (Systolic MAP - end DBP, eq.3.19); CI=Corrected Impedance (2.14); Kou=Kouchoukos Correction (2.15);
Wind=Windkessel model (2.3); Psa=Area under the curve with end-diastolic ABP value subtracted (2.13);
Psa2=Area under the systolic curve (2.12); Par=Parabolic ABF model (3.25); AC=AC Power (2.16); Hyb=Hybrid
Method (3.55); MV=Minimum Variance Method (3.2); PP=Pulse Pressure (2.4); PP2=Herd's Pulse Pressure (2.7);
BBA=Beat-to-Beat Averaged Model (2.9); ARMA=ARMA model (2.20); Lij=Liljestrand-Zander's Method (2.6);
and Const=CO, SV, and TPR set constant.
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PR* SM* CI Kou Wind Psa Psa2 Par* AC Hyb** MV* PP PP2 BBA ARMA Lilj Const
true 37.6

0 f(RR) 39.1
. 40/PP 23.70 a)
i 50/oPP 21.5

600/PP 18.8
700/PP 17.9
80%PP 17.6
900/PP 17.8
1000/oPP 18.2

16.8 13.7 15.0 21.3 16.2 23.3 17.8 18.1 32.8 23.3 44.4 23.0 16.5 22.5 29.9 44.0
16.0 14.7 14.8 28.7 16.4 23.1 18.7 N/A N/A N/A N/A N/A N/A N/A N/A N/A
17.2 18.6 45.1 36.6 28.0 41.1 20.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A
17.3 17.3 37.1 35.9 26.2 38.2 19.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A
17.4 14.7 28.4 33.2 22.6 33.8 17.7 N/A N/A N/A N/A N/A N/A N/A N/A N/A
17.4 13.4 24.7 32.0 20.8 32.8 17.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A
17.4 13.6 26.0 32.0 21.7 34.7 16.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A
17.3 15.8 31.3 32.6 25.6 39.0 17.9 N/A N/A N/A N/A N/A N/A N/A N/A N/A
17.1 18.7 35.9 32.7 29.2 42.5 18.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A

(a) Using CAP

PR* SM* CI Kou Wind Psa Psa2 Par* AC Hyb** MV* PP PP2 BBA ARMA Lilj Const
true 17.0

f(RR) 16.9
. 40%IPP 16.80 )
E 500/oPP 17.0

600/PP 17.0
700/PP 17.0
80
0/PP 17.0

900/PP 16.9
100/PP 16.9

17.9 14.6
16.8 15.5
19.1 13.6
19.0 13.5
19.0 14.0
19.1 14.5
19.1 15.2
19.1 15.9
19.1 16.4

18.2 17.3 20.6 25.0 17.3 18.0 30.4 21.2 38.4 22.7 16.5 19.4 26.7 44.0
18.3 23.0 21.3 25.2 17.9 N/A N/A N/A N/A N/A N/A N/A N/A N/A
19.9 28.9 20.9 25.1 16.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A
18.8 27.8 20.6 24.8 17.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A
20.8 27.8 21.6 26.4 17.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A
22.9 27.9 22.8 28.1 17.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A
25.3 27.7 24.2 30.0 17.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A
27.7 27.4 26.0 32.2 17.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A
28.8 27.3 26.9 33.3 17.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A

(b) Using FAP

PR* SM* CI Kou Wind Psa Psa2 Par* AC Hyb** MV* PP PP2 BBA ARMA Lilj Const
true 66.8 15.1 10.6 11.4 36.4 13.4 21.7 16.1 16.3 30.7 18.9 22.0 21.5 16.0 17.9 31.1 44.0

% f(RR) 56.5 13.8 11.2 11.3 32.7 13.7 22.5 16.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A
- 400%,PP 169 15.6 13.1 35.3 33.9 22.0 35.7 17.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A
W 50/aPP 159 15.3 12.4 30.8 31.4 21.2 34.8 15.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A
S60%PP 159 14.9 10.8 23.6 28.9 18.8 31.5 14.7 N/A N/A N/A N/A N/A N/A N/A N/A N/A

700/PP 15.4 14.9 12.1 26.2 28.7 20.8 33.6 14.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A
0 80%PP 15.4 14.8 143 29.0 28.7 23.2 35.7 14.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A

90/cPP 16.6 15.0 18.4 31.1 27.1 25.4 37.1 14.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A
1000/PP 16.8 15.0 21.6 34.0 27.0 28.0 38.5 13.9 N/A N/A N/A N/A N/A N/A N/A N/A N/A

(c) Using RAP

Table 6.6. RNMSEs in TPR estimation using the new and existing estimation methods.
Central (a), femoral (b), and radial (c) ABP waveforms were used. f(RR) represents the exponential model of the
current systolic duration as a function of the preceding RR interval. N% PP (N=40-100) represents the N% Pulse
Pressure method to define an end systole of the beat. PR=Pressure Ratio Method (3.34); SM=Modified Herd's
method (Systolic MAP - end DBP, eq.3.19); CI=Corrected Impedance (2.14); Kou=Kouchoukos Correction (2.15);
Wind=Windkessel model (2.3); Psa=Area under the curve with end-diastolic ABP value subtracted (2.13);
Psa2=Area under the systolic curve (2.12); Par=Parabolic ABF model (3.25); AC=AC Power (2.16); Hyb=Hybrid
Method (3.55); MV=Minimum Variance Method (3.2); PP=Pulse Pressure (2.4); PP2=Herd's Pulse Pressure (2.7);
BBA=Beat-to-Beat Averaged Model (2.9); ARMA=ARMA model (2.20); Lilj=Liljestrand-Zander's Method (2.6);
and Const=CO, SV, and TPR set constant.
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6.4. ABF Estimation

6.4.1. Comparison with the Windkessel model

Over 68,000 beats were processed and analyzed for ABF and SV, and over 110 six-minute windows

were analyzed for CO. Fig. 6.44a-b shows examples of the estimated ABF waveforms from CAP

waveforms (Fig. 6.44c). The estimated ABF follows the trend of the measured as well as the beat-to-beat

systolic waveforms, compared to the ABF estimated by the Windkessel model (Fig. 6.44d). Fig. 6.45 and

Fig. 6.46 show the similar results using FAP and RAP, respectively.

For the quantitative comparison, Table 6.7 summarizes the correlation between the skewness

(kurtosis) of the measured and estimated ABF. Using the central, femoral, and radial ABP, the skewness

(kurtosis) of the ABF estimated by the algorithm achieved correlation coefficients of 0.78 (0.72), 0.67

(0.63), and 0.69 (0.71). The ABF waveforms estimated by the algorithm had smaller errors in SD,

skewness, and kurtosis than the results of the Windkessel model with the exception of kurtosis in FAP and

RAP utilization (Fig. 6.48(b), Fig. 6.49). With constant C, in each animal, the algorithm achieved errors

of 15.3% (12.7%) in SV (CO) derived from CAP, 19.6% (15.2%) from FAP, and 21.8% (15.8%) from

RAP (Table 6.8, Fig. 6.50). For TPR estimation, the algorithm achieved 14.3, 20.9, and 19.4% RNMSEs

using CAP, FAP, and RAP, respectively. For determining AR parameter length L, La[f] was found to

provide the best results (Table 6.9).
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Fig. 6.44. Measured ABF and estimated ABF by the Windkessel model using CAP (applied to Swine #8 data).
The computed (black) ABF follows the trend of the measured (gray) ABF. The beat-to-beat ABF waveforms present
similar skewness and kurtosis to the measured ABF (b) as opposed to the ABF estimated by the Windkessel model
(d).
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Fig. 6.45. Measured ABF and estimated ABF by the Windkessel model using FAP (applied to Swine #8 data).
The computed ABF (black) follows the trend of the measured (gray) ABF. The beat-to-beat ABF waveforms present
similar skewness and kurtosis to the measured ABF (b) as opposed to the ABF estimated by the Windkessel model
(d).
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Fig. 6.46. Measured ABF and estimated ABF by the Windkessel model using RAP (applied to Swine #8 data).
The computed ABF (black) follows the trend of the measured ABF (gray). The beat-to-beat ABF waveforms present
similar skewness and kurtosis to the measured ABF (b) as opposed to the ABF estimated by the Windkessel model
(d).

Skewness Kurtosis
ANIMAL Central Femoral Radial Central Femoral Radial

4 0.59 0.75 0.08 0.67 0.70 0.42

5 0.87 0.55 0.83 0.75 0.34 0.59
6 0.82 0.73 0.74 0.85 0.81 0.82
7 0.70 0.81 0.93 0.55 0.36 0.64
8 0.95 0.79 0.93 0.93 0.81 0.93
9 0.88 0.76 0.38 0.76 0.27 0.09

All 0.78 0.67 0.69 0.72 0.63 0.71

Table 6.7. Correlation coefficients of skewness and kurtosis of measured and estimated ABE.
The algorithm achieved RNMSEs of approximately 20% in SV and 16% in six-minute CO with constant compliance
Ca in each animal.
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Central Femoral Radial

SV 15.3 19.6 21.8
CO 12.7 15.2 17.6
TPR 14.3 20.9 19.4

Table 6.8. SV, CO, and TPR estimation results by the ARX method.
The arterial compliances Ca were assumed to be constant within each animal.

Central Femoral Radial
aj] 15.3 19.6 21.8

Negative Area 31.0 20.9 32.3
Smoothness 18.9 20.0 19.4

Table 6.9. Results of SV estimations using different evaluation functions to determine L.

Measured ABF Waveforms

50 -- - -- - - - - - - - - - - - - - - -

Normalize the systolic waveform and
calculate SD on a beat-by-beat basis

Subtract SDABFma
from SDAFcale

15 - - - -Computed from FAP

Histogram of SD difference (SD errors)
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Calculated ABF waveforms

Fig. 6.47. Calculation process of SD differences
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Fig. 6.48. Histograms of the SD errors by the ARX algorithm and the Windkessel model.
The value above each histogram indicates the mean of the histogram. The algorithm had smaller SD errors than the
Windkessel model (* P<0.05). The true duration of diastole in each beat is given.
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Fig. 6.49. Histograms of the skewness and kurtosis errors by the ARX algorithm and the Windkessel model.
The value above each histogram indicates the mean of the histogram. The ARX algorithm (white) had smaller errors
than the Windkessel (black) model (* P<0.05). The true duration of diastole in each beat was used in the algorithm.
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Fig. 6.50. Agreement of the measured and estimated stroke volume and cardiac output from central, femoral, and
radial arterial blood pressure using the ARX method.
Ca was set at a constant in each animal. The gray and black lines represent measured and estimated values,
respectively.
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6.4.2. Comparison with Standard Waveforms

The previous section demonstrated that the ARX method could reconstruct ABF waveforms more

accurately than the traditional Windkessel model.

To further validate the ARX method in the ability to track beat-to-beat changes in the ABF waveforms,

this section compares the results of the ARX method with cases where the ABF waveforms are assumed

to be uniform. Suppose you analyze the first beat of each swine experiment and obtain the ABF waveform

(first beat waveform). Then assume the rest of the ABF waveforms do not basically change. One can

calculate the SD, skewness, and kurtosis errors of the ABF waveforms by comparing them with the

measured ABF waveforms. If the errors of the ARX method are smaller than those of the first beat

waveform, it proves that the ARX method tracks beat-to-beat changes in the ABF morphology.

In addition to the first beat ABF waveforms (Fig. 6.5 1a-f), a median waveform of the ABF recorded

all the six swine experiments (Fig. 6..51g) is also compared. In calculating the median waveform, the

magnitude and width of each systolic ABF were normalized before taking the median of all the systolic

ABF waveform.

Note that the first beat ABF waveforms and the median ABF waveforms are horizontally scaled in

each beat so that they have the true systolic durations for fair comparisons of SD, skewness, and kurtosis.
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Fig. 6.51. Standard systolic ABF waveforms.

Fig. 6.52 and Fig. 6.53 show the histogram of SD, skewness and kurtosis errors of ABF waveforms by

the ARX method and the standard waveforms (first beat in each animal). The ARX method achieved

significantly smaller errors and variances than the standard waveform method. Fig. 6.54 and Fig. 6.55

show the case of standard waveforms obtained by all of the beats. Also in this case, the ARX method

achieved significantly smaller errors and variances except the skewness of ABF waveforms using RAP.

These results demonstrate that the ARX method is able to track beat-to-beat changes in the ABF

waveforms better than fixed standard waveforms.
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Fig. 6.52. Histograms of the SD errors by the ARX algorithm and the first beat in each animal.
The value above each histogram indicates the mean ± standard deviation (SD). The ARX algorithm (white) had
smaller errors and SD than the fixed ABF (black) (* P<0.05).
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Fig. 6.53. Histograms of the skewness and kurtosis errors by the ARX algorithm and the first beat in each animal.
The value above each histogram indicates the mean E standard deviation (SD). The ARX algorithm (white) had
smaller errors in SD than the fixed ABF (black) (* P<0.05).
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Fig. 6.54. Histograms of the SD errors by the ARX algorithm and the median of all the true ABF waveforms.
The value above each histogram indicates the mean ± standard deviation (SD). The ARX algorithm (white) had
smaller errors than those of the Windkessel model (* P<0.05).
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Fig. 6.55. Histograms of the skewness and kurtosis errors of the ARX algorithm and the median of all the true ABF
waveforms.
The value above each histogram indicates the mean ± standard deviation. The ARX algorithm (white) had smaller
errors than those of the Windkessel model (* P<0.05).
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6.4.3. Exponential Model for End Systole Detection

This section reports the result of the ARX method using the exponential model (section 5.4.1) to

identify end-systoles on a beat-to-beat basis.

Central Femoral Radial
SV 20.0 22.9 25.9
CO 18.5 25.1 22.7
TPR 14.1 14.8 16.7

Table 6.10. SV and CO estimation results by the ARX method with the estimated diastolic intervals.
The Ca in each animal was assumed to be constant.
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Fig. 6.56. Histograms of the waveform errors using ARX with true and estimated intervals.
The ARX model (white) resulted in statistically lower errors (* P<0.05) than the Windkessel model (black).
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The ARX method, with the estimated diastolic interval determined by (5.4), resulted in 20.0, 22.9, and

26.0% SV estimation errors using CAP, FAP, and RAP, respectively - increased errors from those with

the true end systoles. The SD, skewness, and kurtosis of the calculated ABF waveforms were statistically

closer to the measured ABF waveforms than the Windkessel model, as shown in Fig. 6.56.

As previously mentioned, the error of diastolic interval estimation was 6.56%. In this thesis, the

possible inaccuracy of determining diastolic intervals in practical settings was assumed to be within a

10% envelope. In the following Chapter, further sensitivity analyses are conducted for prolonged and

shortened diastolic intervals by 10% from the true diastolic intervals.

6.5. Summary

Fig. 6.57a shows the summary of the SV estimation results by the methods with the end systole

identification methods. CAP signal was used. For each SV estimation method, the best end systole

identification method is reported. One-way ANOVA test showed statistical significance among the

methods, and the adjusted pair-wise comparison (Scheffe's test) was conducted. Asterisks show the

significant difference (p<0.05) from the lowest error of each comparison. The Corrected Impedance

Method with 70% Partial Pulse Pressure as an indicator of end systole resulted in the smallest error

among the other methods. In a similar manner, Fig. 6.57b and Fig. 6.57c show the summary of CO and

TPR estimation, respectively. The errors of the best methods (Kouchoukos with Exponential model for

CO and Corrected Impedance with 70 % PP for TPR) were not statistically significant from the other top

nine methods. Similar results were seen in using FAP (Fig. 6.58) and RAP (Fig. 6.59).
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7. Discussion

7.1. CO, SV, and TPR estimation

In this thesis, new SV, CO, and TPR estimation methods based on cardiovascular physiology were

introduced and validated. In addition, estimation methods for end-systole were also introduced and

validated. Furthermore, a thorough comparison of the new methods with the existing estimation methods

was conducted by processing the Yorkshire swine data sets. The end-systole identification method

advanced the new and existing SV, CO, and TPR estimation methods that utilizes end systole information

(Fig. 6.57 - Fig. 6.59). Overall, the Bland-Altman plots showed that the methods reported in this thesis

did not show strong trends (i.e., the estimation performance does not change as the true CO, SV, or TPR

values change). The following methods showed 0.25+ correlation coefficients (i.e., the estimation

performance changes as the true CO, SV, or TPR values change):

" Windkessel model for SV and CO

" Liljestrand-Zander's method for CO and TPR

" Herd's method for TPR

e Systolic Area method for SV

" Kouchoukos Correction for SV using FAP

" AC Power method for CO using RAP

" Minimum Variance method for CO

" Modified Herd's method for CO using RAP

* Parabolic method for CO using CAP and RAP

" Pressure Ratio method for CO using FAP and RAP

* Hybrid method for SV using CAP
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As shown in Fig. 6.57 - Fig. 6.59, the Modified Herd's Method, Corrected Impedance Method,

Kouchoukos's Correction Method, and Parabolic Method achieved low RNMSEs by using the

Exponential or Partial Pulse Pressure Model as indicators of end systole. The end systole identification

algorithm turned the existing algorithms into new methods that achieved lower RNMSEs than the original

methods.

Wesseling's Corrected Impedance Method is a highly empirical model. The systolic area under the

ABP curve above DBP was scaled by an empirically-found scaling factor that is a function of HR and

MAP. Although they obtained the scaling factor formula from healthy male subjects in their twenties, the

method achieved low RNMSEs, which may indicate the similarity of the human and swine cardiovascular

systems in terms of applicability of the Windkessel model.

Kouchoukos Correction Method includes a simple correction factor (Ts/TD) to model run-off blood

flow during systole that escapes into the arterial tree without contributing to the ABP signal. Although the

correction factor is empirical, it achieved lower RNMSEs than several theoretical model-based methods.

It should be noted that this empirical method would not work so well on the given data sets when

applied to the monitoring of de-conditioned hearts.

Liljestrand-Zander's method, although it was reported to have the highest agreement with the

thermodilution CO in the ICU patient data sets [53], did not result in the best method. This could be

attributed to the nature of the ICU data sets. Because ABP is maintained during surgeries, one cannot

expect as much cardiovascular perturbation in the ABP signals as animal experiments in which

vaso-active drugs are used to provide a wide range of cardiovascular indices. Liljestrand-Zander's method

divides the PP by the mean of SBP and DBP, which is approximately proportional to MAP. Thus,

Liljestrand-Zander's method averages PP by MAP to provide relatively normalized estimates and results

in high agreement with the stable ICU thermodilution CO measurements.

Among the methods compared, the Hybrid method is unique in that it requires high-order parameter

calibration. Therefore, it should not be directly compared with the other methods that require only one

parameter calibration (arterial compliance Ca). The Hybrid algorithm uses beat-MAP and end-DBP, rather
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than SBP, values because beat-MAP and end-DBP values are relatively insensitive to distortion of the

ABP waveform.

The key feature of the new method is that the three dimensionless variables (Tis/Ti, P;D/MAPi, and

P. 1 D/1MP) used to calculate SV were converted into three proportional SV estimates (SVp,,p, SVp 2 ,

and SVp 3) using three variants of the Windkessel model (3.40 - 3.42). The logarithm of the three SV

estimates were weighted by parameters obtained from linear regression and least mean square error

analysis, and integrated into a single SV value by (3.43).

The new method achieved a RNMSLE of 12.7% in CO and 16.5% in SV derived from femoral ABP,

and 10.1% in CO and 14.5% in SV derived from radial ABP (Fig. 6.42).

The Bland-Altman test, which was employed to compare CO (SV) values calculated using our new

methods and measured by the ultrasonic blood flow probe, demonstrated that the estimated CO and SV

were within 1.96 standard deviations of the direct measurements of these quantities (Fig. 6.43). The high

correlation between the measured and calculated CO and SV demonstrates agreement of the new method

with the invasive ultrasonic flow probe measurement method.

The analysis demonstrates that our new method for estimating SV and CO performs favorably

compared to other PCMs. The algorithm presented in this paper analyzes the shape of individual beats as

does all of the other PCMs except for the ARMA [20] method, which analyzes beat-to-beat variability in

ABP waveforms.

A limitation of the current methods, along with all PCMs, is that SV and CO are all estimated only to

within a proportionality constant. An independent calibration is required if absolute measures are

needed.

7.2. ABF Estimation

7.2.1. Overview

A novel algorithm using the ARX model to continuously estimate ABF by the analysis of peripheral
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ABP waveforms was developed and validated. As opposed to the existing PCMs that also analyze ABP to

calculate CO and SV, the ARX method reconstructs more fundamental information, i.e., instantaneous

ABF, that is used to calculate CO and SV. The method estimates ABF within a proportionality constant of

C, and does not require demographical data, as opposed to the existing methods.

The algorithm utilizes the notion that the input to the arterial system is zero during diastole [57]. In the ABF

estimation routine, 17 diastolic ABP waveforms were used in the left-hand item of (4.4) to obtain the AR

parameters. The AR parameters were integrated into the ARX model (Fig. 4.1) and applied to the entire ABP

waveform to obtain the ABF waveform. Note that the AR parameters were also used to obtain the

characteristic time constant r (Fig. 4.2b) as well as the scaling factor a (4.5) to properly scale the estimated

ABF (4.10).

The conditioning of the data to synthesize the systolic and diastolic ABP within the moving window

was a key necessary process. Without conditioning, divergences in the impulse responses were observed,

and the estimated ABF resulted in high errors in SD, skewness, and kurtosis. The cause of the estimated

impulse response instability was varying ABP data that incur computational challenges in obtaining the

AR parameters. For example, if beat-to-beat MAP values are rapidly changing on a beat-to-beat basis due

to respiration or a physiological feedback system in response to vasoactive drugs, a range of diastolic

ABP values vary from one beat to another within a window. Such data force the algorithm (4.4) to find a

compromised single set of AR parameters that can reduce multiple diastolic ABP signal amplitudes down

to approximately zero. Also, if the length of the RR interval and diastolic duration vary among 17 beats in

the window, it is difficult to find a single AR parameter length L that satisfies all beats. Thus, the

data-conditioning was conducted to relax the computational challenge in AR parameter acquisition.

Although the beats in the moving window are rescaled horizontally (resampling) and vertically (rescaling)

for the aforementioned purpose, this procedure was only used to obtain an AR parameter set. The AR

parameters were applied to the original ABP waveforms to obtain ABE. Therefore, the physiological

changes occurring in a shorter interval than the window size (e.g., respiration) can be seen in the

estimated ABF (Fig. 7.1).
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Fig. 7.1. Cyclic patterns of the measured and estimated ABF signals.
The cyclic magnitude change due to respiration (~17 breaths per minute) observed in the measured ABF (gray) is
also apparent in the estimated ABF waveform (black).
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The 17-beat moving window size was empirically chosen; if the window is too short, one cannot

excite enough modes to identify the system. On the other hand, if the window is too long, one cannot

assume time-invariance of the pertinent cardiovascular system (e.g., baroreflex feedback that changes

TPR, characteristic time constant, and impulse response).

For determining AR parameter length L, the minimum Zafj] was selected as an evaluation function

because it gave af] that converged to an impulse response h[n]. The search space for L was limited to

RR-interval > L > 20 samples (at a 250 Hz-sampling frequency), empirically found by authors that

provides reasonable ABF waveforms. In cases where there were multiple local minima of Ea [jf in the

search space, the minimum with the shortest L was adopted.

The algorithm achieved 15.2-21.8% SV, 12.7-15.8% CO, and 14.3-20.9% TPR RNMSEs (Table 6.8,

Fig. 6.50), respectively. Furthermore, the measured ABF and the estimated ABF by the algorithm showed

small errors and reasonable correlations in skewness and kurtosis. In particular, the algorithm applied to

animals #6 and #8 resulted in an overall high correlation (Table 6.7). The low correlation of skewness

(animal #4, radial) and kurtosis (animal #9, femoral and radial) are partially due to the small ranges of the

variables. The ABF estimated by the algorithm provided matching SD, skewness and kurtosis with the

measured ABF waveforms, as shown in Fig. 6.48 and Fig. 6.49. Regarding the Windkessel results, the left

shift of the skewness error histogram (Fig. 6.49a-c) represents an earlier peak of the estimated ABF

waveforms than the measured ABF waveforms, and the left shift of the kurtosis histogram (Fig. 6.49 d-f)

means that pointier waveforms (leptokurtic) were achieved than the measured ABF waveforms. Both of

the characteristics are present in the Windkessel ABF waveforms shown in Fig. 6.44d, Fig. 6.45d, and

Fig. 6.46d.

The classical Windkessel model assumes exponential decay during diastole. That model can be

described as a low-order (first-order) AR model. The present algorithm, on the other hand, obtains

higher-order AR parameters (Fig. 4.2(a)) from diastolic ABP waveforms. The advantage of the present

algorithm is that it may take into account the possible distortion involved in the diastolic ABP waveforms.

Therefore, when applied to the systolic ABP, the filter created by the algorithm may compensate for the
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distortion and could reconstruct systolic ABF waveforms. The distortion property varies from artery to

artery, as well as from subject to subject. The algorithm could obtain individual parameters unique to each

arterial line of each subject on a beat-to-beat basis.

The algorithm is easy to implement in the existing continuous ABP measuring medical systems. The

ABF waveform, CO, and SV estimated by the analysis of ABP waveforms will improve the ABP-only

monitoring and enable multi-modal evaluation in clinical and surgical settings.

7.2.2. Sensitivity Analysis Regarding the Onset of Diastole

In the results of the ABF estimation, the diastolic interval in each beat was given by the measured

ABF waveforms. In practical settings, a possible method to detect the onsets of diastole would be the use

of the dicrotic notch in ABP waveforms. However, the dicrotic notch does not always exist in ABP

waveforms. Furthermore, due to the ABP waveform distortion, a systolic interval in an ABF signal does

not necessarily match the time interval from systolic onset to the dicrotic notch in an ABP signal.

In this section, the sensitivity analyses of the ARX method on the onset of diastole is conducted over

the Yorkshire swine data sets. Each scenario adopts a different formula for identifying the onset of

diastole. The first two methods introduced in this section are empirical models. Secondly, a method to

identify onsets of diastoles by using heart sounds is addressed to conclude that the heart sound could

identify the onset of diastole with an accuracy of 10%. Thirdly, the true diastolic duration was

lengthened/shortened by 10% to further investigate the impact of the errors in identifying the onset of

diastoles.
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Fig. 7.2. Increased and decreased diastolic interval.

Based on the discussion of the use of heart sounds, further sensitivity analysis is conducted here.

Fixing the end-diastolic point, the true diastolic intervals were increased and decreased by 10% (Fig. 7.2).

With these offsets of diastolic onset, the ARX method was tested, and CO, SV, ABF skewness, and

kurtosis were obtained.

Increased diastolic interval

Table 7.1 shows the RNMSEs in the case of an increased diastolic interval; i.e., the onsets of diastoles

were identified earlier than the actual onsets. Portions of the ABP waveforms at the ends of systoles were

regarded as the beginning of diastole, causing higher errors (Table 7.1). The ABF waveforms still resulted

in smaller errors of skewness and kurtosis than the Windkessel model.

Calibration Methods Central Femoral Radial

SV with Constant Ca 19.2 25.7 23.4
CO with Constant Ca 13.2 19.2 19.5

Table 7.1. SV and CO estimation results with the identified diastolic intervals increased by 10%.
The Ca in each animal was assumed to be constant.
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Fig. 7.3. Histograms of the standard deviation, skewness, and kurtosis errors of ABF waveforms with a +10%
diastolic interval offset.
The duration of diastole in each beat was increased by 10% so that the onset of diastole comes earlier
than the actual onset. The value above each histogram indicates the mean of the histogram. The ARX
algorithm (white) had smaller errors than the Windkessel (black) model (* P<0.05).
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Decreased diastolic interval

Table 7.2 and Fig. 7.4 show the RNMSEs in the case of a decreased diastolic interval; i.e., the onsets

of diastoles were identified later than the actual onsets. Higher RNMSEs yet better ABF waveforms are

common with increased diastolic interval results.

Calibration Methods Central Femoral

SV with Constant Ca 25.8 24.3 27.3
CO with Constant Ca 16.1 19.6 23.6

Table 7.2. SV and CO estimation results with the identified diastolic interval decreased by 10%.
The Ca in each animal was assumed to be constant.
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Fig. 7.4. Histograms of the standard deviation, skewness, and kurtosis errors of ABF waveforms with a -10%
diastolic interval offset.
The duration of diastole in each beat was decreased by 10% so that the onset of diastole comes earlier
than the actual onset. The value above each histogram indicates the mean of the histogram. The ARX
algorithm (white) had smaller errors than the Windkessel (black) model (* P<0.05).
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7.2.3. Summary
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Fig. 7.5. Sensitivity of the new algorithm to the error of the identified diastolic interval.
In using the ARX method, the true diastolic onset provides the lowest CO and SV errors among the estimated
diastolic onset as a function of preceding RR intervals, 10% prolonged, and 10% shortened diastolic intervals.

To test the sensitivity of the algorithm to the offset of diastolic onset, the time stamp of the onset of

diastole was offset from the actual location so that the diastolic interval was L10% of the actual interval.

With the diastolic intervals increased by 10%, the SV (CO) estimation errors increased by 20.3 (3.9)%,

23.7 (26.3)%, and 9.8 (23.4)% using CAP, FAP, and RAP, respectively. With diastolic intervals decreased

by 10%, the errors increased by 68.8 (26.9)%, 23.9 (29.2)%, and 29.5 (7.8)%, respectively (Fig. 7.5). For

both the +10% cases, skewness and kurtosis errors remained as small as the reported errors in Fig. 6.49.

The increases in SV errors were larger for the -10% diastolic intervals. This could be attributed to the loss

of information-rich, varying ABP signals at the beginning of diastole. Especially when the diastolic ABP

is relatively flat, a decaying curve at the beginning of diastole is particularly useful in obtaining correct

AR parameters.

The classical Windkessel model assumes exponential decay during diastole. That model can be

described as a low-order (first-order) AR model. The Windkessel model resulted in an earlier systolic

peak (also indicated by the right shift of the skewness histogram, Fig. 6.49a-c in black) and a pointy peak

(also indicated by the left shift of the kurtosis histogram, Fig. 6.49d-f in black) of the estimated ABF

waveforms. The ARX algorithm, on the other hand, obtains higher-order AR parameters (Fig. 4.2a) from

diastolic ABP waveforms. The advantage of the ARX algorithm is that it may take into account the

possible distortion involved in the diastolic ABP waveforms as a result of propagation through the arterial
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tree. Therefore, when applied to the systolic ABP, the filter created by the algorithm may compensate for

the distortion and could reconstruct systolic ABF waveforms. The distortion property varies from artery to

artery, as well as from subject to subject. The algorithm might be able to obtain individual parameters

unique to each arterial line of each subject on a beat-to-beat basis.
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8. Conclusions and Future Work

8.1. Summary

In Chapter 1, an overview of cardiovascular monitoring and the need for minimally- or non-invasive

SV, CO, and TPR monitoring by the analysis of ABP were introduced. Chapter 2 introduced a

comprehensive list of existing algorithms that estimate proportional SV, CO, and TPR. The new

algorithms were introduced in Chapter 3. The algorithms were developed by taking cardiovascular

physiology into consideration. Furthermore, new algorithms to identify end systole were developed and

validated (Section 5.4). The end systole identification algorithms advanced the performance of the

previous SV, CO, and TPR estimation algorithms as well as the new algorithms. The SV, CO, and TPR

estimation algorithms in conjunction with the end systole identification methods were validated (Chapter

6) by using the previously recorded Yorkshire swine data sets (Table 6.1). These algorithms involve the

use of instantaneous ABF recorded directly from the aorta, CAP, FAP, and RAP. As summarized in Table

6.4 - Table 6.6, the Pressure Ratio method, modified Herd's method, Corrected Impedance method,

Kouchoukos Correction method, and Parabolic method achieved low RNMSEs. The end systole

identification algorithms turned existing algorithms into new algorithms, to achieve low RNMSEs. These

methods should be tested on cardiovascular data sets recorded from human subjects to evaluate their

estimation performance in clinical use.

This thesis also introduced a novel algorithm to estimate instantaneous ABF in Chapter 4. The method

adopts ARX modeling technique, with the instantaneous ABF as the exogenous input to be estimated by

the algorithm. Because the exogenous input to the system is zero during diastole, the ARX model

becomes the AR model during diastole. By the analysis of diastolic ABP, the AR parameters were

acquired, and the system impulse responses were calculated. The impulse response and AR parameters

were used to develop a filter to process ABF to reconstruct and scale instantaneous ABF. The ARX
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algorithm achieved RNMSEs of 15.3, 19.6, and 21.8% in SV estimation; 12.7, 15.2, and 15.8% in CO

estimation; and 14.3, 20.9, and 19.4% in TPR estimation derived from CAP, FAP, and RAP, respectively

(Table 6.8, Fig. 6.50 in Chapter 6). The results demonstrated that the algorithm can reconstruct ABF

waveforms from ABP waveforms more accurately than the Windkessel model.

8.2. Contributions

The contributions of this thesis are four-fold:

e Development and validation of new SV, CO, TPR estimation methods:

A series of novel algorithms for proportional SV, CO, and TPR estimation were introduced and

validated. The implementation of cardiovascular physiology in a mathematical form was described.

The algorithms have the potential to accurately estimate the cardiovascular indices for de-conditioned

cardiovascular systems.

" Development of end systole identification methods:

Using the exponential model and partial pulse pressure model, new identification methods for end

systole were developed. The methods could advance the newly developed and existing SV, CO, and

TPR estimation methods.

" Comprehensive comparison of the existing and new methods:

The new and existing estimation methods for SV, CO, and TPR were combined with the newly

developed methods to identify end systoles and applied to common data sets (Yorkshire swine). This

is the first comprehensive comparison of the methods reported in [23] and [53]. Among the methods,

the newly developed Parabolic ABF model, Pressure Ratio method, modified Herd's method as well

as existing Corrected Impedance Kouchoukos Correction methods with the end systole identification

methods were reported to achieve low errors for the swine data sets recorded from the nominal

cardiovascular system with perturbations given by vasoactive drugs.

* Development and validation of the new ABF estimation method:



Using the ARX model, a novel algorithm to reconstruct instantaneous ABF on a beat-to-beat basis by

analysis of the ABP signal was developed and validated. The quantitative analyses of the

reconstructed waveforms demonstrated that the ARX model reliably estimates instantaneous ABF

waveforms as well as SV, CO, and TPR.

8.3. Suggestions for Further Research

Building on the contributions listed above, suggestions for future research directions are outlined

below.

The use of heart sounds for the identification of diastole onset

In this thesis, sensitivity analyses were conducted to investigate the impact of errors in identifying end

systole. Also, an exponential model using the preceding RR interval and Partial Pressure model were also

introduced as end-systole determination methods. An alternative method for identifying end systoles

would be the S I and S2 heart sounds that indicate the opening and closing of the aortic valve, respectively.

By analyzing the heart sounds, it would be possible to map systolic/diastolic intervals from the heart

sound record to corresponding ABP.

Heart failure models

The algorithm was validated using Yorkshire swine data sets whose wide physiological range was

achieved by the use of vasoactive drugs. The next step would be to apply and validate the algorithm with

abnormal beats, such as premature beats, and heart failure models. The algorithms should be tested to

estimate CO and SV, as well as to reconstruct abnormal ABF and evaluate contractility of the left

ventricle. While the empirical methods (Corrected Impedance, for example) would not work for these

abnormal heart conditions, some of the model-based (cardiovascular physiology-based) methods would
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work better than empirical methods.

Animal heart failure models have been developed and used for the validation of heart transplantation,

left ventricular assist devices, artificial hearts, and so forth [59]. Major methods to induce heart failure

are: (1) pacing-induced (chronic, easy to control [60]), (2) ischemia-induced or coronary

ligation/occlusion (could be fatal and difficult to control [61]), and (3) pharmacological [61-63].

Bi-ventricular pacing study

For patients with a severe myocardial infarction, bi-ventricular pacing that stimulates both left and

right ventricles is an option to maintain CO (Fig. 8.1). Currently, central ABP analysis (maximizing dP/dt)

and/or short-term echocardiography in the ICU are used to optimize the atrioventricular (A-V) and left

and right ventricular pacing delays [64, 65]. However, the optimum delay changes and real-time adaptive

cardiac resynchronization are needed. The ARX algorithm can be used to process peripheral ABP

waveforms to reconstruct ABF, and such instantaneous ABF waveform information can be used to

optimize A-V delay and maximize CO and SV in real time.

Fig. 8.1. Bi-ventricular pacing.
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Long-term monitoring of cardiovascular indices in space

Cardiovascular alterations in space are a major concern. The techniques presented in this thesis to

monitor changes in SV, CO, and TPR can be used for health monitoring in aerospace missions to detect

deconditioning of the cardiovascular system, predict the magnitude of orthostatic stress upon return to

Earth [50], and evaluate countermeasures against such deconditioning. The algorithms developed in this

thesis could be implemented into the existing blood pressure monitoring system in clinical, research, and

spaceflight settings including the Integrated Cardiovascular Investigation onboard the International Space

Station (Fig. 8.2).
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Monitor Cable
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Card Secures
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Ultrasound Ga the FSD
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Fig. 8.2. Schematic drawing of the Integrated Cardiovascular Investigation in the Columbus Laboratory onboard the
International Space Station.
Image obtained from http://www.nasa.gov/missionpages/station/research/experiments/Integrated Cardiovascular.html
on April 26, 2011. C NASA.
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Appendix A: Derivation of High-Order Hybrid Model

A.1. Quadratic Model

A quadratic model

y(i, j) = D(j) + yo (i, j) + aX, (i, j) + a 2X 2 (i, j)

+ b X (i, j)+ 2bl2XIX 2 (i, j)+ b22 X (i, j)

can be described by redefining y - yO as Y:

Y(i, j) = D(j)+ aX, (i, j)+ a 2 X 2 (, j)

+ b1 X 2(i, j)+2bl2XX 2(i,j)+b22X 2 
2(i, j)

Define the error as

E(i, j) Y(i, j)- D(j)- aiX (i, j)- a2 X 2  (i A

-lx b 2 (i, j) -2bI2XIX2(, j) - b22X2 (i, j)

(A.1)

(A.2)

(A.3)

and the total error as

L N(j)

E - 2 {Y(i, j)- D(j)- a1X,(i,j)- a2 X 2 (i,j)- bX 1
2 (i, j)- 2b12XIX 2 (i,j)- b22X 2

2 ,]
j=1 i=1

(A.4)

To minimize E with a's,

8E L N(j)

=21Z{Y(i,j)-
m j=1 i=1

(- X, (i, j))

=0

D(j)- aX, (i, j)- a2X 2 (i,j)-b1 X 2 (i, j) - 2b12X1X 2(i, j) -b22

L N(j) L N(j)

I I Y(i, j)X m (i, j) = I I D(j
j=1 i=1 j=1 i=1

2 L N(j)

)X,,(i, j a +L ak I I X, j Xm,, j)
k=1 j=1 t=1

2 2 2 L N(j)

+ j b, a 1 Xk (I, j)Xk (i, j)X(i, j)X (i, j)
k=1 1=1 k=1 j=1 i=1

(A.6 )
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)XI, = D() X1 (i, j) a X (i, j)X o(i, j) a2 X (i, j)X (i, j)
j=1 1=1 j=1 i=1 I

L N(j) L N(j) L N(j)

+biiZZ Xi3 (i,j)+2b 2 ZZ X1 (i,j)X2(i,j)+b2 E I Xi(i,j)XJ(i,j)
j=1 i=1 j=1 i=1 j=1 i=1

(A.7)

L 0N~j)LN L Nj

j2(i = Da)X2(i,j)+a Xl ilj)X2(ilj)+a2 Z X (,j)
j=1 1=1 j=1 i=1 j=1 i=1

L N(j) L N(j) L N(j)

+ b ZX1(i, j)X 2 (i, j)+2b 2 ZX(i, j)X 2 (i,j)+ b12 2  X(i,j)
j=1 1=1 j=1 i=1 j=1 i=1

(A.8)

To minimize E with b's,

2Z Y(i,j)- D(j)- a1X (i,j)- a2X 2 (i, j)-b 11X 2 (i, j)- 2b 2XlX 2 (i, j)- bX 2 (i, j
j=1 1=1 

2X

-(- X= , j ,, j
=0

(A.9)

L N (j)

E ZY(i,j)Xk,,
j=1 i=1

L N(j)

)X,(ij) = 1 1D(j)Xk(i,j)X,(i,j
j=1 =1

L N(j)

±a2 Z X 2(i,j)Xk(i, j)X(i, )
j=1 i=1

L N(j)

+ b Z E X1 (i, j)Xk(i, j)XI(i,j)
j=1 i=1

L N(j)

±b12  1 XI(")X2 Q,)Xk (",)XI(i
j=1 i=1

L N(j)

)b22L X 2
2( k,)X,(i)

j=1 i=1
(A.10 )

i.e., for k = 1, 2 and l = 1, 2,
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L Y(jj
j= 1 =1

and

Lj

j=1 i=1

aE
abl,

L N(j)

j=l i=1



L N(j) L N(j)

X: 1 Y(i, j)X (i, j)X (i, j) = Z ID(j)X (i,
j=1 i=1 j=1 i=1

L N(j)

+ a2ZZX 2(i, j
j=1 i=1

L N(j)

j=l i=1

L N(j)

Z ZY(i, j)X(i, j)X 2(i,
j=1 i=1

L N(j)

j)Xl(i, j)+ aill Xl(i, j)Xj(i, j)Xj(ij)
j=1 i=1

L N(j)

)X(i,j)X(i, j)+b (i, I 2~j)X(i, j)X(i, j)
j=1 =1

L N(j)
)X2 (ij)X (i, j)X (i, j)2Z X2 (i, j)X (, j)X(i, j)

j= 1 =1

(A.11 )

L N(j) L N(j)

j) = E 1D(j)X(i,j)X 2(i,j)+ aZ X (i, j)X(i, j)X2 (i,j)
j=1 i=1 j=1 i=1

L N(j) L N(j)

+a2 Z X 2 (, )X 1 (, )X 2 ( H +Xb1 Z (i, j)X(i, j)X 2(i, j)
j=1 i=1 j=1 i=1

L N(j)

+ =b1  Xi(i,
j=1 i=1

j (ij)X2(i,j
j=1 i=1

L N(j)

j)X2(i, j)X(i, j)X2 nA2E Xi (ij
j=1 i=1

L NLL) LNj

" a2 L X2 (i,])X 2(i, j)X 2(i,j)+ b1 Z X2 (ij)X 2(,]j)X 2(i,j)
j=1 i=l j=1 i=1

+ b &)X (i, j)X 2 (i, j)X 2 (i,j)X2 (i, j/' 2 X (i, j)X 2 (i, j)X,
j=1 i=1 j=1 i=1

(A.13)

Also, change D's to minimize E

N(n)

Y(i,n)+ al
i=1

N(n) N(n)

1X(i,n)+ a2 EX 2(i,n)

N(n)

+b 1  X(i2 ,n)+
i=1

=0

N(n)

2b 2ZX1(i,n)X2(i,n)+ b22
i=1

N(n)

EX 2
2 (in)

i=1

(A.14)
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L N(j) L N )

)X2(ij)= D(j)X 2(i,j)X2 (i,j)+ aI "Xi (i,j
j=1 i=l j=1 f=1

(A.12)
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ZY(in)=
i=1

aY(i, n) a I (i, n) + a 2  X2(in)
i=1 i=1 i=1

+b X 2

i=1

X1(i, n)X 2 (i, n) + b22 X22(in)(i,n)+ 2b12
(A.15)

Therefore,

Y(i,1)= ,Y(i,1)+ a (i,1) + a2
i=1 i=1

N(1)

E X ('11)

12X (, N(1 il+b X12 (i,1)+ 2b X1 (i,1)X 2(i,1)+ b22 YX 2 (i,)
i=1 i=1 i=1

Y(i, L)= Y(i,L) +a, X1 (iL)
i=1 i=1 i=1

+a2 ±X2 (i,L)+bi±X2(,L)+ 2b2 ~X1(iL)X2(iL)+b2)X22(iL)
i=1 i=1 i=1 i=1

(A.16)

Combining the equations in (A. 16),
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N(1)

Y(i,1)
i=1

N(L)

Y(i,L)
i=1

L N(j)

E E YOi, j)X (0, j)
j=1 i=1
L N(j)

ZE Y*i j)X2(i, A
j=1 i=1
L N(j)

ZZY(i, j)X2 (i, j)
j=1 1=1

L N(j)

EEY(i, j)X1i j) X2( , A
j=1 i=1

L N(j)

ZEY(i, j)X2(,j
j=1 i=1

N(1)

N, 0 X(i,1)
1=1

N(L)

0 0 NL X (i,L)

N(1) N(L) L N(j)

X, X(i,1) ... 2: X, (i, L ) EE(X12

j=1 i=1 j=1 i=1

N(1) N(L) L N(j)

SX 2 (i,1) ... X 2 (i, L) Z XX 2
t==1 J=I

N(1) N(L) L N(j)

X,1)2 (i1) --.. X,1)2 (i,) Z E: XX2

i~i i=1j=1 i=1
N(1) N(L) L NW.,

Z X 002('1).. i10 201 J= X1 X2

N(1) N(L) L N( j)

E X2 (i,1) X2 (i, L) Z XX 2
j=1 ,=1 j=1 i=1

M max M

y(i, j) = D(j)+ yo(i, j)+ M1 E
M=1 q=0

N(1)

SX 2 (i,1)
i=1

N(L)

XX 2 (i,L)

L N(j)

Z ZX 2X1
j=1 i=1

X2 2
j=1 i=1

L MAE EX12 X2
j=1 i=1

L N{W)
Z EXIX2

2

j=1 2=1
L W

E 1 X2|
j=1 i=1

N(1)

SX 1
2 (i,1)

f=1

N(L)

X1
2 (i,L)

1=1
L N(j)

EX ,
j=1 =1

L N(j)

E:X 1
2 X2

j=1 =1
L N{j)

j=1 /=1
L N(j)

J I 2 X 2 X

j=1 i=1

N(1)

X XT(i,1)X 2 (i,1)
1=1

N(L)

X,(i, L)X2 (i, L)

L N(j)

EX 1
2 X 2

j=1 =1
L N(j)

X X 2

L N(j)E E XI X2
j=1 i=1

L N(j)
j=1 i=1
E E X X|

j=1 i=1

A.2. General Model

In the same manner as the quadratic (second-order) model, the matrix equation for the general Mmax"

order hybrid model

M max M

y(i, j) = D(j) + yo (i, j) + J E M Cq -amq - (X1(j, j)"~ - (X2, (' j)

M=1 q=0

can be derived by considering the patterns in the matrix elements:

( A.18)
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2 X2 (i,1)

N(L)

X 2 (i,L)

N(j)

Z XX 22

j =1=

L N(j)

EX2
j=1 i=1

L N~j)

j=1 i=1

L N( j)

E2 |

j=1 i=1

D,

DL

a1
a2
b 1

2b12

b2 2

( A.17)
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Y [L x L )atri, [L x 2],atr,
[YX 2

vector [2 x 2],,,,,

[YXPP]ector syn

[L x qqLatrx

[2 x qq]mat-

[pp x qqmat

[D]vectr

I1 c ]vector

J (A.19)

where syn represents symmetric elements, and the [L x L] mti, block element in (A. 19) is defined as

'N, 0 --- 0

0 N2 :
- .0

0 --- 0 NL; (A.20)

The [L x qq]matj, block in (A. 19) is

(i, L)X 2
0(iL)

N l

X ~qq-2(i,1)X 2
1 (i,1)

SL)q-2(i L)X2 (i, L)
1=1

NO

--- X 1"(i,1)X 2  l)
i=1

--- XO(iL)X2"q- (iL)
i=1 j

where each p-q element is generalized as

N~p

Sx qq-q q-
i=1

The pp x qq block in (A.19) is

2(.j ,x 0 ppI)
X "A*09 2)X 2" (i, )

j=1 i=1

XPP "**qq - 1 (i, j)X 2 l ( i, j)
j=1 i=1

*pp+qq-(, j)XP (Pj)
j=1 i=1

ELXpp- ("i, j. A22 (i, j)
j=1 i=1

E X pp.q,-(pp+2) (" AX2" (,.
j=1 i=1

L '

j=-1 I

-- - L XU"* pq-("*)(i, 
j)X2 q(,j

j=1I i=1

j= 1

(A.23 )

where each p-q element is generalized as

N(j) L

j L2p+q-2

i=1 j=1

(A.24 )
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The YX"P vector of the left item of (A. 19) is

L N(j)

I NY(i, j) X 1(
j=1 i=1

L N(j)

EIY(i, j)X pp-2(i, j)X2 (i, j)
j=1 i=1

L N(j)

E Y(i, j)X'"i j)X2P1 ," A
j=1 i=1 (A.25)

and finally, the pa element of the YX"" vector is

L N(j)

1 :Y(i, j)X,"'i , ) (,j
j=1 i=1 (A.26)



Appendix B: Conference Posters
B.1. The 59th International Astronautical Congress

September 29 - October 3, 2008 in Glasgow, Scotland. Supported by the Japan Aerospace Exploration

Agency (JAXA) Student Program.

ASP; Arterial Blood Pressure [mnMg] AC Aartc Compliance [sec x L/min/ mm/HgJ COw Cardiac Output [L/mn]
HR: Heart Rate (beat per minute] PP, Pulse Pressure [mmHg SV: Stroke Volume [mL TPR: Total Peripheral Resistance [mmHg/(L/min)]
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Estimation of Total Peripheral
SV =PP x AC

He R CO = SV x HR
t MAP = CO x TPR

TPR = MAP
Windkessel Circuit AC x PP x HR

(widely accepted lumped model)
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Hypothesis

End diastolic pressure, beat
duration, time from the onset to
the peak of systole, and mean arterial pressure
are relatively insensitive to distortion.
TPR estimation can be improved by using this
information.

P<.81Method and Results
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for time constant T of the beat.

Proportional TPR (within a scaling factor of AC)
is obtained to monitor the change of TPR.

Conclusion and Future Work

The new method had statistically lower error
in TPR estimation than other methods.

The new method has the potential for clinical applications.

Future work indudes CO and SV estimation analysis and
application to prediction of poet-flight orthostatic hypotension
using pre-flight ASP waveform.

Resistance (TPR)



B.2. The 18th IAA Humans in Space Symposium

April 11-15, 2011 in Houston, Texas. Supported by the MIT Graduate Student Council (GSC) Travel

Fund Grant.

Estimation of Aortic Blood Flow
by Analysis of Peripheral Arterial Blood Pressure AEROASTR

T. Arai" K. Lee' and R. J Cohen'

I Background
Continuous monitoring of cardiovascular parameters is needed to study the effe
space flight on cardiovascular function and to develop improved methods of monk
the alth of astronauts. In particular. aortlc blood flow (ABSF, the instantaneous
flow In the aorta, Is one of the most essential cardiovascular parameters; by anal
the ABF waveforms, one can calculate cardiac output (CO) and stroke volume ISV4
In spite of Its Importance, ABF is not available clinically except during short-term
cardiographic recordings because of the difficulty in acquiring the ABF signal in an acc
and continuous manner. In contrast, arterial blood pressure (AP) can be readily obt
invastvely or noninvasively.
The purpose of this research was to develop and validate a novel algorithm to recom
ABF waveforms from ASP waveform. Avaiability of continuous ABF would enable
modal assessment of cardiovascular function.

I Algorithm Auto-Regressive with Exogenous Input (ARX) A
We have developed and validated a novel time-domain algorithm to reconstruct th
continuous ABF signal from the peripheral ASP signal.

During diastole, F=O
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Solve matrix equation
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I Validation Method Yorkshire swine data sets

e Perturbation Ufra
Vaso-active drugs (e.g. phenylepirine) administered
to achieve a wide physiological range:
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Measurement
Reference ABF measured by a surgically Implanted aortic flow probe

02O6 with A-series probes, iransonic Systems. Ithaca. Myi
kodel peripheral A8P measured by a 23- or 25-auge anglo-catheter placed into the femoral and radial

artery, attached to an external pressure transducer (T5W0O4A, Biopac Systens, Santa Barbara. CA)

Y Results
a First successful reconstruction of ABF waveforms from peripheral ASP
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a Smaller waveform error (standard deviation, skewness, and kurtosis)
than the traditional Wlndkessel model
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Skewness Error using FAP Skewness Error using RAP

a Stroke volume error: 19.6% using femoral ABP, 21.8% using radial ASP
e Cardiac output error: 15.2% using femoral ASP, 17.6% using radial ASP

I Future Work
a Application to non-Invasive ASP data recorded from astronauts

Long-term monitoring of the cardiovascular function
Easy to implement in cardiovascular monitoring systems

a Adaptive cardiac resynchronization therapy (CRT)
Reconstruction of ABF waveforms in premature beats as well as optimization
of pacing parameters during bi-ventricular pacing for patients with advanced
heart failureI
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