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Abstract 

 Shell structures, especially cylindrical shells, are widely used in aerospace and naval 
architectural industries. Submarine hulls and aircraft bodies can be idealized as cylindrical shell 
structures. The study of vibrations of cylindrical shells is an important aspect in the successful 
applications of the cylindrical shells.  
 The free vibration characteristics of a submarine hull have an important influence on the 
noise signature of the submarine. That makes the free vibration problem of the submarine hull a 
particular interest for the submarine community. The natural frequencies of cylindrical shells are 
clustered in a very narrow band and they are thus more prone to becoming involved in resonant 
vibrations. The determination and control of these frequencies is significant to manage the 
acoustic signature of the submarine. 
 This thesis focuses on the free vibration characteristics of stiffened and unstiffened 
cylindrical shells. The analysis is carried out mainly in two parts. First, the unstiffened 
cylindrical shell is modeled and the free vibration problem is analyzed as the shell thickness 
decreases. Then the cylindrical shell is stiffened with ring stiffeners and the free vibration 
problem of the stiffened cylindrical shell is studied. 
 The vibration modes of the unstiffened cylindrical shell are studied for four shells with 
different thicknesses. Initial tensile and compressive membrane stresses are applied separately to 
the shells to study the effect of the initial stresses on the free vibration modes. 
 The vibration modes of the stiffened cylindrical shell are studied in two steps. First, the 
influence of the positions of two ring stiffeners on the fundamental frequencies is studied; 
second, the free vibration modes of the stiffened cylindrical shell are studied. Two cylindrical 
shells with different thicknesses are used and they are stiffened with different numbers of ring 
stiffeners, which are uniformly distributed along the longitudinal axis of the shell.   
 The results are compared with available analytical results and finite element solutions of 
similar problems from the literature. 
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Nomenclature 

A area  �   the strain-displacement matrix �� , ���  the linear and nonlinear strain-displacement matrices, respectively 

bf width of the flange of the T cross-section �  stress-strain material matrix 

� bending rigidity of the shell,  � = 	
�������� 
E Young’s modulus ����   linear strain increment in the Lagrangian formulation ��  vector of body forces (force/unit volume) ���  �
� component of the body force vector ���  vector of surface tractions (force/unit area) 

����   �
� component of the surface traction vector �   the displacement interpolation matrix ��  the surface interpolation matrix 

hw height of the web of the T cross-section 

IT, IR moment of inertia of T cross-section and rectangular cross-section, respectively �  the stiffness matrix � �
 , �! �
   the linear strain incremental and the nonlinear strain incremental stiffness 
matrices, respectively 

L half of the length of the cylindrical shell "#  distance between two ring stiffeners $  the mass matrix 

m the number of longitudinal “half” waves %�   &
� component of the unit normal vector to the surface of the body 

n the number of circumferential “full” waves '  the load vector 

R radius of the hemisphere and the cylinder 
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'(  vector of the concentrated loads )  the total surface area of the body )*  the surface area of the body on which the forces are applied )+  the surface area of the body on which the displacements are prescribed )���
   components of the Piola-Kirchhoff stresses 

t thickness of the shell, hull thickness of the submarine 

tf, tw thickness of the flange and web of the T cross-section, respectively ,, ,-  vector of the displacements ,�.  vector of the prescribed displacements on )+ /�   �
� component of the displacement vector /0�  �
� component of the virtual displacement vector; the overbar denotes the virtual 
quantities 1, 2, 3  displacement components in X, Y, Z directions, respectively 2  volume of the body 

z coordinate measured in the longitudinal direction from the center of the cylinder 

 

Greek symbols 

4  when used in front of any quantity it states that the quantity is virtual  
(e.g. 4/�: components of virtual displacements) 5  strain tensor 6�� , 7��  components of the strain tensor 6���
   components of the Green-Lagrange strains 8���   nonlinear strain increment in the Lagrangian formulation 

ν Poisson’s ratio  9   the mass density :  stress tensor :;  tensor of given initial stresses <��  components of the stress tensor =  the matrix which contains the mode shapes (eigenvectors) 
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>  the mode shape vector in the frequency analysis (eigenvector) ?@  the matrix which contains the eigenvalues (square of the frequencies) A, A  natural frequency, eigenvalue of the frequency equation, respectively 

 

Notation 

B  matrices are represented as boldface letters. BC  T-letter at the right superscript denotes the transpose of the matrix. D��  components of the B matrix. Right subscripts denote the components  

where �, & = E, F, G HI 1,2,3 

D��,�  = MNOPM#P   . Comma notation states the derivatives. 

D��  = D�� + D + DRR where � = 1,2,3. Repeating indices for the components means 
summation over the range of that component. D���
    A is measured at time t referring to the initial configuration which is at time 0. 

The left superscript denotes the time at which the quantity is measured and the left 
subscript denotes the time of the configuration at which the measurement is 
referred to.  

D�,��
   = M NOSM #PT  
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1. Introduction 

 Shell structures are widely used structural components in engineering designs. Basically, 

a shell structure is a three-dimensional structure which is thin in one direction and long in the 

other two directions. Because of this geometric aspect, they are thin, light and they span over 

large areas. Although they are thin, they can carry applied loads effectively by means of their 

curvatures. They are commonly used in construction of large roofs in civil engineering, in the 

bodies of cars in the automobile industry, in the airplane bodies and rockets in aeronautical 

engineering and finally in ship/submarine hulls in naval architecture. The objective of the design 

is to make the shell as thin as possible in order to have a light and low cost, but a functional 

structure. However, shells can be extremely sensitive to imperfections and changes in the 

thickness and boundary conditions. 

 A special type of shells is the cylindrical shell. Cylindrical shells are found in many 

applications in the aerospace and naval construction industries. They are often used as load- 

bearing structures for aircrafts, rockets, submarines and missile bodies. Of course, the cylindrical 

shells used in those designs are stiffened to achieve better strength, stiffness and buckling 

characteristics. The study of vibrations of cylindrical shells is an important aspect in the 

successful applications of cylindrical shells. 

 A submarine hull can basically be idealized as a ring-stiffened cylindrical shell for the 

purposes of vibration analysis. The free vibration characteristics of a submarine hull have an 

important influence on the noise signature of the submarine. That makes the free vibration 

problem of the submarine hull a particular interest for the submarine community. Determination 

of the natural frequencies and the corresponding mode shapes of the submarine is an important 

problem for the acoustic signature management of the submarine. The acoustic signature is 

strongly influenced by hull vibrations, particularly at low to medium frequencies. On the other 

hand, the lower frequencies are also sensitive to a variation in external pressure or the thickness 

of the hull. The determination of these low frequencies is significant to manage the acoustic 

signature of the submarine [1]. 

 The natural frequencies of the cylindrical shells are clustered in a very narrow band and 

they are thus more prone to becoming involved in resonant vibrations. To control the amplitudes 
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of these vibrations, it is necessary to know the distribution of the natural frequencies, since this 

allows us to design the cylindrical shell structures from the viewpoint of optimum vibration 

control [2]. 

 The objective of this thesis is to study the free vibration characteristics of cylindrical 

shells with different thicknesses. The analysis is carried out mainly in two parts. First, the 

unstiffened cylindrical shell is modeled and the free vibration problem is analyzed. Then the 

cylindrical shell is stiffened with ring stiffeners and the free vibration problem of the stiffened 

cylindrical shell is studied. The results are compared with the available analytical results and the 

finite element solutions of similar problems from the literature. 

 A brief explanation on the finite element formulation regarding the subjects covered in 

this thesis is presented in Chapter 2. The process of the finite element analysis is summarized 

and the finite element equations for the static and the free vibration analyses are derived. 

Descriptions of the elements used in the finite element model are also presented. 

 Chapter 3 includes information on the finite element model analyzed. The geometry and 

the material properties are presented. Mesh density and element type study explains how the 

finite element model is meshed.  

 The study on the free vibration characteristics of the unstiffened cylindrical shells is 

presented in Chapter 4. The variation of the frequencies and of the corresponding mode shapes is 

studied as the thickness of the shell decreases. Initial tensile and compressive membrane stresses 

are applied on the cylindrical shell and the effect of the initial stresses on the free vibration 

modes is investigated. The effect of the initial stresses on the rigid body modes of the cylindrical 

shell is an important conclusion of this study. Chapelle and Bathe [3] have discussed the same 

problem for the clamped cylindrical shell. The results obtained in this thesis are consistent with 

the results of the study presented in [3]. The analytical solution of the free vibration problem of 

an unstiffened, unstressed cylindrical shell is obtained and compared with the finite element 

solution. The finite element solution is quite consistent with the analytical solution of the 

problem. 
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 The study of the free vibration characteristics of the ring-stiffened cylindrical shells is 

presented in Chapter 5. The variation of the fundamental frequencies with the positions of the 

ring stiffeners and the variation of the frequencies with the number of uniformly distributed ring 

stiffeners are studied in two parts. To analyze the effect of the positions of the ring stiffeners, the 

cylindrical shell is stiffened with two ring stiffeners and the positions of the ring stiffeners are 

changed in turn. The results are compared with the study of Loy and Lam [4]. That comparison 

gives an insight on how the assumptions made through the analysis affect the results. The 

variation of the frequencies with the number of uniformly distributed ring stiffeners is studied 

next. The effect of the ring stiffeners on the vibration modes is investigated. The analytical 

solution of the free vibration problem of the ring-stiffened cylindrical shell is solved for the 

cylindrical shell stiffened with three stiffeners. The finite element solution is compared with the 

analytical solution for the cylindrical shell stiffened with three stiffeners. 

 Finally in Appendix A, the solution of the free vibration problem of a truss element is 

presented. The objective of this presentation is to give an insight on the effect of the initial 

stresses on the rigid body modes of the structures. The reason to choose the truss element is to 

study the problem in the simplest way possible and use the results to understand the response of 

more complex structures such as the one studied in Chapter 4. The results warrant important 

conclusions on the effect of the initial stresses on the rigid body modes of structures.  

 All finite element solutions presented in this thesis are obtained using ADINA. 
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2. Finite Element Formulation 

2.1 The Process of the Finite Element Analysis 

 In the finite element analysis, the solution of the mathematical model of a physical 

structure is numerically obtained using finite element procedures [3]. The physical problem 

consists of an actual structure or phenomenon with known material properties, subjected to 

certain loading and boundary conditions. The mathematical model of this physical problem is 

established using some assumptions. The finite element analysis solves this mathematical model 

and allows the analyst to predict the response of the structure without building the structure. 

Since the finite element analysis deals only with the mathematical model of the physical 

structure, it is very important to use a mathematical model that represents the physical structure 

adequately. It is obvious that the finite element analysis can predict only what is considered in 

the mathematical model. We cannot expect any more information from the solution than what is 

contained in the mathematical model. Hence, it is crucial for the analyst to use an appropriate 

mathematical model. The choice of the mathematical model determines the insight into the 

physical problem that we can obtain by the analysis [5]. 

 Solution of the mathematical model by the finite element analysis should be interpreted 

by the analyst. According to the results, refinements in the mathematical model may be made 

and that will lead to additional finite element solutions. The choice of the mathematical model is 

an important part of the analysis. The mathematical model should be reliable and effective in 

predicting the solution. An effective mathematical model is the one which yields the required 

solution to a sufficient accuracy and at least cost. A mathematical model is reliable, if the 

required solution is known to be predicted within a selected level of accuracy measured on the 

response of the very comprehensive mathematical model [5]. 

 The interpretation of the results of the finite element solution may lead the analyst to 

make a refinement on the mathematical model. That is, the higher-order mathematical models 

should be considered in the analysis. For example, a beam structure may first be analyzed using 

Bernoulli beam theory, then Timoshenko beam theory, then two-dimensional plane stress theory, 
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and finally using a three-dimensional continuum model. Such a sequence of models is referred to 

as a hierarchy of models and the analysis will include ever more complex response effects [5]. 

 The process of the finite element analysis is basically summarized as the choice of the 

appropriate mathematical model, solution of the mathematical model with the finite element 

analysis, and the evaluation of these results. 

2.2 Derivation of the Finite Element Equations 

 The aim of the analyst is to calculate the response of the structure considered in the 

problem. We will consider a body, arbitrarily taken from the universe, to state the problem. The 

governing differential equations for the equilibrium of this body lead us to the principle of virtual 

displacements. The principle of virtual displacements (also known as the principle of virtual 

work) is the basis of the displacement-based finite element solution [5]. 

 The problem should be solved for a general three-dimensional body which is presented in 

Figure 2.1. The body is located in the fixed coordinate system X, Y, Z. The body surface area is 

composed of two areas such that  )+ ∩ )* = 0 and )+ ∪ )* = ). The body is supported on the 

area )+ with prescribed displacements ,�. and is subjected to surface tractions  ��� (forces per 

unit surface area) on the surface area )*. The body is also subjected to externally applied body 

forces �� (forces per unit volume) and concentrated loads  '( at certain points. 

 The solution of the problem should give us the displacements and the corresponding 

strains and stresses. The displacements of the body are measured in the fixed coordinate system 

presented in Figure 2.1 and defined as 

 ,�E, F, G� = X1 2 3YC 
(2.1)  

The strains corresponding to  , are 

 5 = X6ZZ 6[[ 6\\ 7Z[ 7[\ 7\ZYC 
(2.2)  

where 
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 6ZZ = ]1]E ;    6[[ = ]2]F ;     6__ = ]3]G  

7Z[ = ]1]F + ]2]E ;    7[\ = ]2]G + ]3]F ;    7\Z = ]3]E + ]1]G 

(2.3)  

The stresses corresponding to  5 are 

 : = X<ZZ <[[ <\\ <Z[ <[\ <\ZYC 
(2.4)  

where the stress is defined as 

 : = �5 + :; (2.5)  

In (2.5)  � is the stress strain material matrix and  :; denotes given initial stresses. 

 

 

 In summary, we have a problem to analyze with the given geometry of the body, the 

applied loads, the boundary conditions, the material stress-strain law and the initial stresses in the 

X, U Y, V 

Z, W 

V j 

Uj 

Wj 

n 

f  B 

f  Sf 

j 

Su 

Sf 

Nodal point j 

Finite element m 

x y 

z 

Local coordinate system for 
the finite element element m 

Figure 2.1: General three-dimensional body. 
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body.  The expected result is the response of the body. That is, the displacements of the body and 

the corresponding strains and stresses. 

2.2.1 The Principle of Virtual Displacements 

 The principle of virtual displacements is the basis of the finite element formulation. This 

principle states that the equilibrium of the body requires that for any compatible virtual 

displacements imposed on the body in its state of equilibrium, the total internal virtual work is 

equal to the total external virtual work [5]. 

 The derivation of the principle of virtual displacements is presented in details in Chapter 

4 of [5] and the same procedure is adopted in this section. Here, very brief information on the 

derivation is presented to give an insight on the finite element formulation. 

 The analysis of the elastic body described here requires consideration of three 

fundamental principles. These principles, also referred to as the three aspects of solid mechanics 

problems, are equilibrium, compatibility and the stress-strain law [6]. They can be summarized 

as the following: 

• Equilibrium: The equilibrium equations must be satisfied throughout the body. 

• Compatibility: The displacement field must be continuous and satisfy the displacement 

boundary conditions. 

• Stress-strain law: Material properties (constitutive relations) must comply with the 

known behavior of the material considered. 

 The principle of virtual displacements must satisfy the governing equations for the body 

and is derived from those equations. The governing equations of the body are the equilibrium 

equation along with the static and the kinematic boundary conditions [6]. The governing 

differential equations for the body are 

 <�&,& + ��̀ = 0          throughout the body (2.6) 
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with the static (force) boundary conditions 

 <�&%& = ��)�                  on  )� (2.7) 

and the kinematic (displacement) boundary conditions 

 /� = /�)/                      on   )+ (2.8) 

where %� are the components of the unit normal vector to the surface ) of the body. 

Now consider any arbitrarily chosen, continuous displacements /0� satisfying the displacement 

boundary conditions on )+. Those displacements are called the virtual displacements. Multiply 

(2.6) with the virtual displacements and integrate over the body. Therefore we have 

 a �<�&,& + ��̀ �2 /0�b2 = 0 (2.9) 

Since /0� are arbitrary, (2.9) can be satisfied if the quantity in the parenthesis is zero. Hence (2.9) 

is equivalent to (2.6). Performing the integral in (2.9) by integration of parts and using (2.7) and 

(2.8) through the calculation we obtain 

 a <�&6̅�&b22 = a ��̀ /0�b22 + a ��)�/0�)�b)�)� + d /0�%ef�%
%  (2.10) 

as the principle of virtual displacements in tensor notation for the three-dimensional body. In 

(2.10), the term " ∑ /0�ie(�ii " represents the summation of the corresponding components of n 

concentrated forces. The left-hand side of (2.10) is the internal virtual work and the right-hand 

side is the external virtual work.  In matrix notation the principle of virtual displacements is 

expressed as 
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 a 50j:b22 = a ,kj�`b22 + a ,k)�j�)�b)�)� + d ,k%j'f%%  (2.11) 

 It is important to note that, when the principle of virtual displacements is satisfied all 

three fundamental requirements of mechanics are satisfied [5]: 

• Equilibrium is satisfied because (2.10) is derived from the governing equilibrium 

equations (2.6-2.8) of the body. 

• Compatibility holds because the displacement field is continuous and satisfies the 

displacement boundary conditions. 

• Stress-strain law holds because the stresses in (2.10) are calculated using constitutive 

equations from the strains. 

2.2.2 The Finite Element Equations 

 Now that the principle of virtual displacements has been presented, we can derive the 

governing finite element equations. In the finite element analysis, the body is approximated as an 

assemblage of discrete finite elements. Those elements are interconnected at nodal points on the 

element boundaries. The displacements measured in the local coordinate system of each element 

are assumed to be a function of the displacements at the nodes of the element. Therefore, for 

each element, first the displacements at the nodes are calculated and then those displacements are 

interpolated to obtain the displacement within the element. For element m we have 

 l�m� = ��m��n, o, p�,-  
(2.12)  

where  ��m� is the displacement interpolation matrix, the superscript m denotes element m and ,-  

is a vector of global displacement components at all nodal points. So ,-  is a vector of dimension 

3N where N is the total number of the nodes of the element. 
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 ,- = X1� 2� 3� … 1� 2� 3�YC 
(2.13)  

The displacement interpolation matrix is evaluated particularly for the element type and the 

evaluation depends on the geometry and the number of the nodes of the element. 

 From the displacement assumption in (2.12) corresponding strains are obtained as 

 5�m��n, o, p� = ��m��n, o, p�,- 
(2.14)  

where ��r� is the strain-displacement matrix. The rows of ��r� are obtained by using the 

relations in (2.3) and differentiating the rows of ��m�. 
 The stresses in the element are obtained by using the element strains and the element 

initial stresses. The stresses are defined as 

 :�m� = ��m�5�m� + :;�m� (2.15)  

where ��r� is the elasticity matrix of the element m and :;�r� are the given element initial 

stresses. 

 In the finite element analysis, the body is assumed as an assemblage of discrete finite 

elements. To derive the governing finite elements equations for the body, let’s rewrite (2.11) as a 

sum of integrations over the volumes and areas of all finite elements: 

 d a 50�m�C:�m�b2�m�s�t�m
= d a lk�m�C���m�b2�m�s�t�m + d a lk��t�u ���t�b)�m�

�v�t�,…,�w�t�m + d lkiu'(ii  
(2.16) 
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where  )1�r�, … , )x�r� denotes the element surfaces that are part of the body surface  ). We need to 

obtain the virtual displacements and strains in finite element formulation to be used in (2.16). 

The relations given in (2.12) and (2.14) are for the element displacements and strains. However, 

the same relations hold for the virtual displacements and strains. Using those relations we have 

 lk�m� = ��m��n, o, p�,-k;              50�m��n, o, p� = ��m��n, o, p�,-k  
(2.17)  

Substituting (2.12, 2.14, 2.15 and 2.17) in (2.16) we obtain 

 ,-kC yd a ��m�C��m���m�b2�m�s�t�m z ,-
= ,-kC {|d a ��m�C���m�b2�m�s�t�m } + ~d a ���m�C���t�b)�m�

�v�t�,…,�w�t�m �
− |d a ��m�C:;�m�b2�m�s�t�m } + '( � 

(2.18) 

where the surface interpolation matrices �)�r� are obtained from the displacement interpolation 

matrices (2.12) by substituting the appropriate element surface coordinates and 'f  is a vector of 

concentrated loads applied to the nodes of the element assemblage. 

 In order to obtain the equations for the unknown nodal point displacements, the principle 

of virtual displacement (2.18) is applied N times by imposing unit virtual displacements in turn 

for all components of ,-k . Therefore we obtain 

 �, = ' 
(2.19)  

where  � is the stiffness matrix and 
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 ' = '� + '� − '� + '( 
(2.20)  

From now on, for simplicity ,-  will be replaced by ,. Using the relation between (2.18) and 

(2.19), the stiffness matrix of the element assemblage is 

 � = d ��m�
m = d a ��m�C��m���m�b2�m�s�t�m  (2.21)  

The load vector  ' includes the effect of the element body forces, 

 '� = d '��m�
m = d a ��m�C���m�b2�m�s�t�m  (2.22)  

the effect of the element surface forces 

 '� = d '��m�
m = d a ���m�C���t�b)�m�

�v�t�,…,�w�t�m  (2.23)  

the effect of the element initial stresses 

 '� = d '��m�
m = d a ��m�C:;�m�b2�m�s�t�m  (2.24)  

and the nodal concentrated loads  '(. 

 Equation (2.19) states the static equilibrium of the element assemblage. For the solution 

of the dynamic problems, inertia forces need to be considered in the equilibrium equations. The 

element inertia forces can be included as part of the body forces. So the effect of the total body 

forces is 
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 '� = d a ��m�C����m� − 9�m���m�,� �b2�m�s�t�m  (2.25)  

where  ���m� no longer includes inertia forces, ,�  is a vector of the nodal point accelerations and  9�r� is the mass density of element m. The nodal point accelerations are the second time derivatives 

of  , and are approximated in the same way as the displacements. For the dynamic equilibrium 

we have 

 $,� ��� + �,��� = '��� 
(2.26)  

where the mass matrix of the structure is defined as 

 $ = d $�m�
m = d a 9�m���m�C��m�b2�m�s�t�m  (2.27)  

2.2.3 The Finite Element Formulation of the Free Vibration Problem 

 The free vibration problem of structures is a dynamic problem and the dynamic 

equilibrium equation (2.26) should be considered to derive the solution. The free vibration term 

states that there are no externally applied loads on the structure and the structure is vibrating 

freely. Hence the load vector  ' is zero in (2.26). The equilibrium equation of the body under 

free vibration conditions is 

 $,� + �, = � 
(2.28)  

The solution to (2.28) can be postulated in the form 

 , = > �in �A�� (2.29)  

Substituting (2.29) in (2.28) we obtain the eigenproblem from which the frequencies and the 

corresponding mode shapes can be determined. 
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 �> = A$> (2.30)  

where A is the frequency of the free vibration and  > is the corresponding mode shape vector. 

The eigenproblem in (2.30) yields n eigensolutions. The solution contains an eigenvalue which is 

the square of the frequency of the free vibration (radians/sec) and an eigenvector which is the 

corresponding mode shape. The following two new matrices are defined to store the n 

eigensolutions: 

 = = X>�, >, … … , >iY;         ?@ = {A�A ⋱ Ai
� (2.31)  

Using the matrices in (2.31), we can write n solutions to (2.30) as 

 �= = $=?@ (2.32)  

The solution to (2.32) gives the natural frequencies and the corresponding mode shapes of the 

structure. 

2.3 Element Descriptions and Assumptions 

 Free vibrations of stiffened and unstiffened cylindrical shells are studied in this thesis. In 

the finite element model, the shell surface is modeled with 9-node shell elements and the ring 

stiffeners are modeled with 3-node iso-beam elements. Shell elements are attached to beam 

elements using rigid links to model the stiffened cylindrical shell. The details regarding the 

modeling process are presented in relevant sections.  In this section, brief descriptions of the 

elements are presented. 

2.3.1 Iso-beam Elements 

 Iso-beam elements are used to model the ring stiffeners in the stiffened cylindrical shell 

model. General consideration for the iso-beam elements are listed in the following [7]: 

• The iso-beam elements can be employed as plane stress 2-D beam with three degrees of 

freedom per node, plane strain 2-D beam with three degrees of freedom per node, 
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axisymmetric shell with three degrees of freedom per node and general 3-D beam with 

six degrees of freedom per node. 

• The cross-sectional areas of each of these elements are assumed to be rectangular. The 

two-dimensional and three-dimensional beam elements can only be assigned a cross-

section with constant area. The axisymmetric shell element can be assigned a varying 

thickness. 

• The elements can be employed with 2, 3 or 4 nodes. The 3 and 4-node elements can be 

curved, but it should be noted that the element nodes must initially lie in one plane 

(which defines the r-s plane). The iso-beams elements are presented in Figure 2.2. 

 

Figure 2.2: Iso-beam elements [7]. 

 The iso-beam elements are primarily used to model curved beams, stiffeners to shells, 

beams in large displacements and axisymmetric shells under axisymmetric loading. Since iso-

beam elements are able to model curved beams, they are chosen to model the ring stiffeners in 

this study. 

 The formulation of the iso-beam elements is derived using the principle of virtual 

displacements and a detailed derivation can be found in Chapter 5 of [5]. The curved beam 

elements are formulated as the straight beams. However, as a result of the displacement-based 

formulation, the beam element displays shear and membrane locking which causes the element 

to be very stiff and useless. So a mixed interpolation is used to overcome the shear and 

membrane locking effects and obtain efficient beam elements. 

 The basic kinematic assumption in the formulation of the element is that plane sections 

which are originally orthogonal to the centerline axis remain plane under deformation but not 

(a) 2-node iso-beam                     (b) 3-node iso-beam                       (c) 4-node iso-beam 
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necessarily orthogonal to this axis. This assumption is also referred as the Timoshenko beam 

theory [8]. A schematic representation of the kinematic assumption is presented in Figure 2.3 

which is taken from [5]. 

 

Figure 2.3: Beam deformation assumptions [5]. 

2.3.2 Shells Elements 

 Shell elements are used to model the surface of the cylindrical shell in the finite element 

model. The shell element is a 4 to 32-node isoparametric element that can be employed to model 

thick and thin general shell structures [7]. 

 There are two basic assumptions in the formulation of the shell elements. The state of 

stress in the shell corresponds to plane stress conditions. That is, the stress in the direction 

normal to the midsurface is zero. The kinematic assumption is that plane sections originally 

orthogonal to the midsurface remain plane under deformation but not necessarily orthogonal to 

the midsurface. This assumption is similar to that of the beam, and is referred to as the Reissner-

Mindlin plate theory [8]. Figure 2.4 presents the kinematic assumption on a flat shell. 

 Either 5 or 6 degrees of freedom can be assigned at a shell midsurface node. When 5 

degrees of freedom are specified, the rotational degree of freedom around the vector which is 

normal to the midsurface is neglected. In general, it is appropriate to specify 5 degrees of 

freedom except for the following cases in which 6 degrees of freedom should be used: 



35 
 

 

• Shell elements intersecting at an angle. 

• Coupling of shell elements with other types of structural elements such as isoparametric 

beams (e.g., in the modeling of stiffened shells using shell and beam elements). 

• Coupling of rigid links to the shell midsurface nodes. 

• Imposing specific boundary conditions. 

 The formulation of the shell elements are derived using the principle of virtual 

displacements and a detailed derivation can be found in Chapter 5 of [5]. The approach is similar 

to that of the beam element. The plate element formulation is generalized to obtain the shell 

formulation in a similar way as the formulation of straight beam element is generalized to obtain 

the curved beam element. As in the case of the formulation of the beam elements, using 

displacement-based interpolations causes the element locking phenomenon to arise. The 

displacement-based elements are too stiff because the interpolation functions used are not able to 

represent zero (or very small) shearing and membrane strains. If the element cannot represent 

zero strains, but the physical situation corresponds to zero (or very small) strains, then the 

element becomes very stiff as its thickness decreases. 

 The mixed interpolation is used to overcome the element locking problem; we use the 

MITC (Mixed Interpolation of Tensorial Components) shell elements. For a detailed derivation 

and discussion of the MITC shell elements refer to [9-12] and Chapter 5 of [5]. In ADINA, 

Deformed configuration of 
the fiber 

Original configuration of  
the fiber 

x, u 

z, w 

y, v 

t 

βx 

βy 

Figure 2.4: Shell deformation assumptions [5]. 
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MITC elements are used to model shells. The types of shell elements are listed in Table 2.1 and 

some example illustrations are shown in Figure 2.5. 

Table 2.1: Types of shell elements available in ADINA [7]. 

 Number of nodes 
Single layer with 

midsurface nodes only 

Quadrilateral elements 

4-node MITC4 

8- node MITC8 

9- node MITC9 

16- node MITC16 

Triangular elements 
3- node MITC3 

6- node MITC6 

 

 

 

Figure 2.5: Shell elements [7] 

2.3.3 Rigid Links 

 Rigid links are used to model the stiffened cylindrical shells in this thesis. The iso-beam 

elements are attached to the shell elements using rigid links in ADINA. A rigid link establishes 

constraint equations between the degrees of freedom of two nodes. Those nodes are called the 

master node and the slave node. The degrees of freedom of the master node are independent 

while the degrees of freedom of the slave node are dependent on those of the master node [8]. As 

the nodes displace, the slave node is constrained to translate and rotate such that the distance 

between the master node and the slave node remains constant, and that the rotations at the slave 

node are the same as the corresponding rotations at the master node. Usage of the rigid links in 

the finite element model is presented in Section 5.2.       

(a) MITC4                          (b) MITC6                     (c) MITC9                           (d) MITC16         
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3. Finite Element Model of the Cylindrical Shell 

3.1 Geometry of the Cylindrical Shell 

 This thesis focuses on the free vibration analysis of stiffened and unstiffened cylindrical 

shells. “The cylindrical shell” term refers to a cylindrical shell which has hemispherical end 

closures at both ends. The dimension parameters of the hemispherical end closures and the 

cylindrical shell are presented separately in Figure 3.1. 

 

 

 The hemispheres and the cylindrical shell have the same thickness and together compose 

the structure analyzed in this study. Figure 3.2 shows the cylindrical shell modeled in ADINA1. 

                                                 
1 In Figure 3.2, the model is presented with an arbitrary mesh to represent the outline of the model. 

R 

X 

Y 

Z 

L 

L 

t 

R 

(a) Hemispherical end 

closure 

(b) Cylindrical shell 

Figure 3.1: The dimension parameters of the cylindrical shell and the hemispherical end closures. 
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Figure 3.2: The cylindrical shell model. 

 The purpose of analyzing the cylindrical shell with hemispherical end closures is to relate 

the model to a submarine. Of course, many different types of submarines are being used by 

navies around the world. Using a very basic analogy, we can assume the shape of the submarine 

hull as a cylinder closed at both ends. Since the model dimensions are not the main concern of 

this study, approximate dimensions of a conventional submarine are adopted. Approximate 

ranges for the dimensions of a conventional submarine are listed in Table 3.1. 

Table 3.1: The dimensions of the conventional submarines. 

 Dimension range [m] 

Length (2L) 50 ~ 60 

Width (2R) 6 ~ 7 

Hull thickness (t) 18x10-3 ~ 30x10-3 

Using the ranges given in Table 3.1, we obtain some geometric ratios to use as a reference for 

our model. The geometric ratios of the conventional submarines are 

 �e =� 10�;    e� =� 10�� 
(3.1)  

The geometric ratios in (3.1) are used as reference to model the cylindrical shell in the finite 

element analysis. However, in the studies carried out here, the thickness of the cylindrical shell is 
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changed to study the free vibration behavior of the cylindrical shell. But the cylindrical shell with 

t/R=10-2 is considered as the model which is closest to the reality. For this comparison only the 

geometry of the models is considered. The dimensions of the cylindrical shells used in the 

analyses are listed in Table 3.2. 

Table 3.2: The dimensions of the cylindrical shells. 

 Dimension [m] 

Length (2L) 20 

Width (2R) 2 

Hull thickness 10-1, 10-2, 10-3 and 10-5 

 The thickness of the shell is decreased up to 10-5 m. in the study of free vibrations of 

cylindrical shells. Since shells are very sensitive to thickness changes it is important to study the 

behavior of cylindrical shells, especially for smaller thicknesses. The advances in material 

science and technology are expected to result in stronger materials. In the last two decades 

carbon nanotubes have been an important area of research. Theoretical studies suggest that 

carbon nanotubes can have a Young’s modulus as high as 1 TPa and yield strength close to 50 

GPa. With those mechanical properties carbon nanotubes are thought of as ideal candidates for 

structural applications. Many studies have been carried out to develop carbon nanotube-based 

composites for applications in the aerospace industry, especially by NASA [13]. Structural 

applications of those carbon nanotube-based composites in the industry may result in very thin 

shell structures such as in submarines, airplanes and rockets. In the future we may need to 

analyze thinner shells compared to those designed now. 

3.2 Material Properties of the Finite Element Model 

 The cylindrical shell model used in the finite element analysis is related to the model of 

conventional submarines. High-strength alloyed steel, particularly HY-80, is the main material 

for submarines. So the material properties of HY-80 steel are used in the finite element model. 

The material properties used in the model are listed in Table 3.3. 
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Table 3.3: The material properties of the model. 

Material Properties Values 

Young’s modulus (E) 205 GPa 

Poisson’s ratio (ν) 0.28 

The mass density (ρ) 7,870 kg/m3 

 

3.3 Mesh Density and Element Type Study 

 Meshing is an important part of finite element analysis. In the process of analysis special 

attention should be given to mesh the model in the best way possible. The same model can be 

meshed using various element sizes and types. The aim is to find the most appropriate and 

efficient element type and size to do the analysis. Finding the most appropriate and efficient 

mesh is highly dependent on the computational resources, because as the mesh gets finer more 

computational resources are needed for the analysis. So the computational capability of the 

computer which the analyst is using is one of the main factors in order to determine the mesh 

density and element type. Also the formulation of the element type is an important factor to 

select that element type to mesh the model. Considering the type of the analysis and the physical 

model, an element type which will be able to represent the physical model best should be chosen. 

The formulation of the element type and the selection of the right elements for the analysis is a 

wide subject and detailed discussions can be found in [5] and [7].  

 The mesh density and element type study is performed using 4-node and 9-node shell 

elements on four different unstiffened-unstressed cylindrical shells, each having different 

thicknesses. The shells are meshed with 4-node and 9-node shell elements separately. The 

variation of the fundamental frequency with element size “h” is studied. The element size is 

decreased and the mesh is finer at each step. The element size is the length of the longest side of 

one element. At every step, the fundamental frequency is calculated and the variation of the 

fundamental frequency with the element size is studied for each model. The performances of the 

4-node and 9-node shell elements are also compared. 
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 The computational resources play a significant role to choose the mesh density and 

element type. The cost of the computation is directly related to the number of elements and 

nodes of the model. In order to have an idea of how those quantities vary by the element size, 

Table 3.4 is presented. 

Table 3.4: The number of elements and nodes for different element sizes. 

Element Size (h) Element Type Number of elements Number of nodes 

0.5 
4-node shell 624 613 

9-node shell 624 2,466 

0.4 
4-node shell 928 914 

9-node shell 928 3,650 

0.3 
4-node shell 1,659 1,640 

9-node shell 1,659 6,554 

0.2 
4-node shell 3,608 3,577 

9-node shell 3,608 14,302 

0.15 
4-node shell 6,426 6,386 

9-node shell 6,426 25,538 

0.12 
4-node shell 10,050 9,998 

9-node shell 10,050 39,986 

0.1 
4-node shell 14,552 14,491 

9-node shell 14,552 57,958 

0.08 
4-node shell 22,752 22,611 

9-node shell 22,752 90,438 

0.06 
4-node shell 40,425 40,130 

9-node shell 40,425 160,514 

 The shell elements are studied in [9-12] and [14]. The recommended elements for the 

analysis of shells are 4-node, 9-node and 16-node shell elements. In this study 4-node and 9-node 

shell elements are compared according to their performances in calculating the fundamental 

frequencies of our models. As presented in Table 3.4 element size is decreased up to 0.06. The 

model which is meshed with this element size has 40,425 elements, 40,130 nodes when 4-node 

shell elements are used and 160,514 nodes when 9-node shell elements are used. Although those 

numbers give insight into how large the computational resources should be, the cost of 

computation is highly dependent on the computers used by the analyst. To study the effect of the 
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computational resources on the analysis, the same model is analyzed by two different computers, 

a workstation and a laptop. Technical details of the computers are listed in Table 3.5., and the 

solution times are listed in Table 3.6. The laptop is used throughout the study and the 

workstation is used to compare the computation time. The laptop solved the largest model 

(h=0.06 and 9-node) in 22 minutes, while the workstation solved the same model in 102 seconds. 

That clearly shows the importance of the computational resources in the finite element analysis. 

The amount of time that the laptop took to solve the largest model is too long for the analysis of 

this problem and that clearly shows the limits of the computational resource of the author. So this 

element size was chosen to be the smallest one to mesh the model in the mesh density study. 

However, the following results show that 9-node shell elements converge rapidly and there was 

no need to use such small elements. 

Table 3.5: Technical details of the computers. 

 Processor RAM 

Laptop 
1 X 2.93 GHz 

Intel Core i7-740QM Processor 

4 GB – 1066 MHz 

DDR3 SD RAM 

Workstation 
6 X 3.46 GHz 

Intel Core i7-990X Processor 

24 GB – 1333 MHz 

DDR3 SD RAM 

 

Table 3.6: Solution times for two computers. 

 

Time [sec] 

h=0.5 h=0.1 h=0.06 

4-node 9-node 4-node 9-node 4-node 9-node 

Laptop 0.46 1.84 13.57 75.95 45.16 1,421.44 

Workstation 0.31 1.09 7.07 31.29 21.55 102.13 
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Figure 3.3: Mesh density study. 

 As presented in Figure 3.3, 9-node shell element converges very quickly while 4-node 

shell element requires a very fine mesh to reach convergence. For the cylindrical shell with 

t/R=10-1 4-node shell elements converge when the element sizes are smaller than 0.1. But for the 

other cylindrical shells, 4-node shell element requires a very fine mesh to converge. In Figure 3.3 

it is seen that the 9-node shell element converges to a frequency and keeps getting the same 

results for the element sizes smaller than 0.1. So considering the computational resources and 

efficiency issues of the shell elements 9-node shell elements are used to analyze the cylindrical 
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shells in this thesis. Detailed results of the mesh density study are presented in the following 

tables. 

Table 3.7: The results of the mesh density study for the shell with t/R=10-1. 

Element 
Size 

Element 
Type 

Fundamental freq. 
(Hz) Element Type Fundamental freq. 

(Hz) 
0.5 4-node shell 25.08 9-node shell 25.28 

0.4 4-node shell 25.21 9-node shell 25.29 

0.3 4-node shell 25.21 9-node shell 25.29 

0.2 4-node shell 25.26 9-node shell 25.29 

0.15 4-node shell 25.28 9-node shell 25.29 

0.12 4-node shell 25.28 9-node shell 25.29 

0.1 4-node shell 25.29 9-node shell 25.29 

0.08 4-node shell 25.29 9-node shell 25.29 

0.06 4-node shell 25.29 9-node shell 25.29 
 

Table 3.8: The results of the mesh density study for the shell with t/R=10-2. 

Element 
Size 

Element 
Type 

Fundamental freq. 
(Hz) Element Type 

Fundamental freq. 
(Hz) 

0.5 4-node shell 8.44 9-node shell 7.74 

0.4 4-node shell 8.19 9-node shell 7.73 

0.3 4-node shell 7.987 9-node shell 7.73 

0.2 4-node shell 7.845 9-node shell 7.728 

0.15 4-node shell 7.791 9-node shell 7.728 

0.12 4-node shell 7.769 9-node shell 7.728 

0.1 4-node shell 7.756 9-node shell 7.728 

0.08 4-node shell 7.745 9-node shell 7.728 

0.06 4-node shell 7.738 9-node shell 7.728 
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Table 3.9: The results of the mesh density study for the shell with t/R=10-3. 

Element 
Size 

Element 
Type 

Fundamental freq. 
(Hz) Element Type Fundamental freq. 

(Hz) 
0.5 4-node shell 3.312 9-node shell 2.74 

0.4 4-node shell 3.08 9-node shell 2.72 

0.3 4-node shell 2.915 9-node shell 2.716 

0.2 4-node shell 2.801 9-node shell 2.712 

0.15 4-node shell 2.76 9-node shell 2.711 

0.12 4-node shell 2.742 9-node shell 2.71 

0.1 4-node shell 2.732 9-node shell 2.71 

0.08 4-node shell 2.724 9-node shell 2.71 

0.06 4-node shell 2.718 9-node shell 2.71 

 

Table 3.10: The results of the mesh density study for the shell with t/R=10-5. 

Element 
Size 

Element 
Type 

Fundamental freq. 
(Hz) Element Type Fundamental freq. 

(Hz) 
0.5 4-node shell 1.25 9-node shell 0.41 

0.4 4-node shell 0.91 9-node shell 0.3566 

0.3 4-node shell 0.6061 9-node shell 0.3456 

0.2 4-node shell 0.4372 9-node shell 0.3195 

0.15 4-node shell 0.373 9-node shell 0.3123 

0.12 4-node shell 0.3486 9-node shell 0.3105 

0.1 4-node shell 0.3353 9-node shell 0.3098 

0.08 4-node shell 0.3254 9-node shell 0.3098 

0.06 4-node shell 0.3182 9-node shell 0.3098 
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4. Free Vibrations of the Unstiffened Cylindrical Shell 

4.1 An Introduction on the Study of the Unstiffened Cylindrical Shell 

 In this section of the thesis, the unstiffened cylindrical shell is analyzed. This study 

consists of two parts: Free vibrations of the unstiffened cylindrical shells without initial stress 

conditions and free vibrations of unstiffened cylindrical shells with initial stress conditions. Free 

vibration characteristics of unstiffened cylindrical shells, the correlation between the thickness 

change and the frequency variation, and the effect of initial stress on the free vibration modes of 

unstiffened cylindrical shells are studied. 

 The study is carried out by analyzing four unstiffened cylindrical shells, each having 

different thicknesses. Their thickness parameters are t/R=10-1, t/R=10-2, t/R=10-3 and t/R=10-5. 

The cylindrical shell with t/R=10-2 is a very similar model to a real submarine considering the 

dimensions. In the first part of this section, the models are analyzed without applying initial 

stresses to them. The vibration modes and the variation of the frequencies with the thickness 

change are studied. In the second part, initial compressive and tensile membrane stresses are 

applied separately on the cylindrical shells and the effect of the initial stresses on the free 

vibration modes is studied. 

4.2 Results of the Finite Element Solution for the Unstiffened Cylindrical Shells 

 The unstiffened cylindrical shells are analyzed. The characteristics of free vibrations of 

unstiffened cylindrical shells, variation of the frequencies with the thickness change and the 

effect of initial membrane stresses on the unstiffened cylindrical shells are studied. The results 

show that changing the thickness significantly influences the free vibration modes of the 

cylindrical shells. The frequencies of the cylindrical shell increase as the shell gets thicker. The 

change of the frequencies with the change of the thickness gives important information about 

bending and membrane behavior of the cylindrical shells. 

 Initially applied membrane stresses affect the vibration modes of the cylindrical shell 

significantly. Tensile stresses increase the frequencies of the cylindrical shells while the 

compressive stresses decrease the frequencies. It is known that there is a correlation between the 



 

frequency behavior and the buckling behavior of cylindrical shells 

initially applied compressive stresses reduce the stiffness of the cylindrical shell and the

frequencies approach zero. An important result of this study is that initially applied membrane 

stresses restrict the rigid body 

unstressed cylindrical shell has six rigid body modes

those rigid body modes. But when initial tensile stresses are applied on the cylindrical shell, 

although it still has six rigid body modes, 

frequencies are very small but not zero.

following sections. 

4.2.1 Free vibration characteristics of the uns

 Four cylindrical shells, each of them having different thicknesses, are analyzed to study 

the free vibration modes of unstiffened cylindrical shells. First twenty six modes (including rigid 
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modes are affected with the change in the thickness of the shell.

 Results show that the cylindrical shell has multiple frequencies because of the symmetry. 
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Figure 4.1: 
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frequency behavior and the buckling behavior of cylindrical shells [1]. This study sho

initially applied compressive stresses reduce the stiffness of the cylindrical shell and the

frequencies approach zero. An important result of this study is that initially applied membrane 

stresses restrict the rigid body rotations of the unstiffened cylindrical shells. The unstiffened

cylindrical shell has six rigid body modes and six zero frequencies corresponding to 

But when initial tensile stresses are applied on the cylindrical shell, 

although it still has six rigid body modes, its three rigid body rotations are restricted and their 

frequencies are very small but not zero. Detailed information on the study is presented in the 

Free vibration characteristics of the unstiffened cylindrical shells

Four cylindrical shells, each of them having different thicknesses, are analyzed to study 

the free vibration modes of unstiffened cylindrical shells. First twenty six modes (including rigid 

body modes) of the shells are calculated. The aim of the study is to see how

modes are affected with the change in the thickness of the shell. 

Results show that the cylindrical shell has multiple frequencies because of the symmetry. 

1 the frequencies of the four cylindrical shells are presented. 
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But when initial tensile stresses are applied on the cylindrical shell, 
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ted. The aim of the study is to see how the free vibration 

Results show that the cylindrical shell has multiple frequencies because of the symmetry. 

r cylindrical shells are presented. The multiple 

 

The frequencies of the unstressed cylindrical shells. 
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 Two consecutive modes have the same frequencies. The only exception is that, Mode 15 

of the cylindrical shell with t/R=10-1 has a unique frequency. This mode corresponds to a 

torsional mode and it doesn’t have a multiple frequency as it is seen in the other modes. In the 

other modes, two consecutive frequencies are equal and the mode shapes are rigid body 

rotations. This rotation can be seen in Figure 4.2. 

 

 

Figure 4.2: Rigid body rotation between two consecutive modes. 

 The mode shapes of the cylindrical shells are highly dependent on the thickness.  

Detailed information regarding the wave numbers and frequencies can be found in Table 4.1. For 

the thickest cylindrical shell (t/R=10-1), the number of circumferential full waves (n) remains 

constant and the number of longitudinal half waves (m)  increases consecutively with the mode 

number. Contrary to the mode shape pattern of the thickest cylindrical shell, the other three 

cylindrical shells have fewer longitudinal half waves than the circumferential full waves. The 

number of circumferential waves changes with the mode number while the number of 

longitudinal waves usually remains constant and small compared to the circumferential waves. 

Only exception is in the modes 23 and 24 of the cylindrical shell with t/R=10-2. In those modes, 

the number of longitudinal waves is bigger than the number of circumferential waves. Those 

modes are an exception and thinner cylindrical shells have more circumferential waves than 

longitudinal waves. As the shell gets thinner it makes more circumferential waves and fewer 

longitudinal waves. 
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Table 4.1: Frequencies of the cylindrical shell with different thicknesses. 

 

 The variation of the frequencies with the mode number is not the same for all 

cylindrical shells considered in this study. As the shell thickness increases, the discrepancy 

between consecutive frequencies gets bigger. In Figure 4.1 it is seen that the slope of the line for 

the thickest shell is the highest. As the shell gets thinner the slope decreases. That can be 

explained by studying the effect of the thickness in the analytical expression for the frequencies 

of the cylindrical shells. The analytical expression is presented in Section 4.3.1.  In the analytical 

expression for the frequency (4.1), the thickness is a multiplier of the wave numbers. Changing 

the mode means changing the wave numbers in the solution. Since we have the same material 

properties and the geometry except the thickness, only variables are the wave numbers and the 

thickness in the formula. Considering that the thickness is the multiplier of the wave number, it is 

concluded that there is a relation between the thickness and the discrepancy between the 

Freq.(Hz) n m Freq.(Hz) n m Freq.(Hz) n m Freq.(Hz) n m

7 25.29 7.728 2 1 2.71 3 1 0.3098 9 1

8 25.29 7.728 2 1 2.71 3 1 0.3098 9 1

9 63.98 17.21 2 2 3.742 4 1 0.3109 10 1

10 63.98 17.21 2 2 3.742 4 1 0.3109 10 1

11 65.7 2 1 18.69 3 1 4.093 2 1 0.3351 11 1

12 65.7 2 1 18.69 3 1 4.093 2 1 0.3351 11 1

13 68.48 2 2 20.29 3 2 5.804 5 1 0.3398 8 1

14 68.48 2 2 20.29 3 2 5.804 5 1 0.3398 8 1

15 74.75 25.27 5.825 4 2 0.3756 12 1

16 76.75 2 3 25.27 5.825 4 2 0.3756 12 1

17 76.75 2 3 25.74 3 3 6.509 5 2 0.4106 7 1

18 92.96 2 4 25.74 3 3 6.509 5 2 0.4106 7 1

19 92.96 2 4 35.3 2 3 8.049 3 2 0.4279 13 1

20 113.1 35.3 2 3 8.049 3 2 0.4279 13 1

21 113.1 35.72 4 1 8.457 6 1 0.4894 14 1

22 115.8 2 5 35.72 4 1 8.457 6 1 0.4894 14 1

23 115.8 2 5 35.98 3 4 8.719 6 2 0.5379 6 1

24 115.8 0 0 35.98 3 4 8.719 6 2 0.5379 6 1

25 144.6 2 6 36.14 4 2 8.892 5 3 0.5584 15 1

26 144.6 2 6 36.14 4 2 8.892 5 3 0.5584 15 1

n: number of circumferential waves.
m: number of longitudinal half waves.

Bending Mode

Bending Mode

t/R=1e-3 t/R=1e-5

Bending Mode

Bending Mode

Torsional Mode Bending Mode

Bending Mode

Mode 
Number

Bending Mode

t/R=1e-1

Bending Mode

t/R=1e-2
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frequencies of two consecutive modes. So as the shell gets thicker, the differences between the 

frequencies of the same cylindrical shell increases. 

 In bending and torsional modes, the cylindrical shells are bent or twisted as a whole 

structure. That is, they don’t make any waves in both directions and they deform globally. 

Results show that the bending and torsional modes occur at higher frequencies. The cylindrical 

shells with t/R=10-1 and t/R=10-2 have bending modes and only the cylindrical shell with  

t/R=10-1 has a torsional mode. The thinner cylindrical shells have neither bending nor torsional 

modes since their lowest twenty six frequencies are not high enough. Some examples of bending 

and torsional modes seen in this study are presented in Figure 4.3. 

 

 

Figure 4.3: Bending and torsional modes for the cylindrical shells. 

 The correlation between the thickness change and the frequency variation is an 

interesting subject to study on. Artioli et al. [15] focus on the asymptotic behavior of the lowest 

frequency, as the thickness approaches zero. The authors consider the free vibration problem of 

thin shells of revolution of constant type of geometry. They compared the theoretical results with 
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two different numerical discretization procedures they carried out in the study. It is concluded 

that the numerical results are in agreement with the theoretical results. An important outcome of 

this study which is related to this thesis is that for parabolic fully clamped shell of revolution, the 

first eigenfrequency behaves like square root of the thickness. That means that the frequency can 

be scaled with square root of the thickness. The term “parabolic” shell defines a shell which has 

zero Gaussian curvature (e.g. cylindrical shells, conical shells)[3]. The cylindrical shell studied 

in this thesis is a parabolic shell. 

  Chapelle and Bathe [3] have considered a cylindrical shell with both ends clamped as 

an example for the asymptotic considerations in dynamic analysis. The authors have solved the 

problem for four different shell thicknesses using ADINA. The study presented in [3] is similar 

to the study carried out in this thesis for the unstiffened cylindrical shells. Ref. [3] is an 

important reference to verify the observations made in this thesis. 

  In order to study the correlation between the thickness change and the frequency 

variation, first the similarity between the cylindrical shell considered here and the models 

considered in [3,15] should be reviewed. The cylindrical part of our model (excluding the 

hemispheres) is a parabolic shell. The cylindrical shell has hemispherical end closures at both 

ends. It is expected that the end closures restrict the displacements in the radial direction at both 

ends. As a result of this constraint at the ends, the cylindrical shell can be thought as a cylindrical 

shell with simply supported or clamped boundary conditions at the ends. It is not very important 

to strictly determine if the assumption should be made for simply supported or clamped 

boundary conditions because the effect of the boundary conditions decreases as L/R for the 

cylindrical shell increases [1]. So our model can be related to the models considered in [3,15].  

  The unstiffened cylindrical shells studied in this thesis can be considered as membrane 

dominated and it is expected that their lower frequencies scale as √t. Results of the analyses 

carried out here show that the frequencies are changing approximately by the order of square 

root of the thickness change. The variation of the fundamental frequencies of the cylindrical 

shells with t/R=10-3 and t/R=10-5 will be studied as an example. The cylindrical shell with 

t/R=10-3 is 100 times thicker than the cylindrical shell with t/R=10-5. The fundamental frequency 

of the cylindrical shell with t/R=10-3 (2.71 Hz) is approximately 10 times of the fundamental 
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frequency of the cylindrical shell with t/R=10-5 (0.31 Hz). So the ratio between the fundamental 

frequencies is approximately 10, which is equal to the square root of the ratio between the 

thicknesses. Detailed results are listed in the Table 4.1. The results show that the discussion for 

the change of the frequencies with the change of the thickness is valid for the cylindrical shells 

studied in this thesis. Especially in the lower modes scaling of the frequencies with √t is more 

closely present. It is concluded that the unstiffened cylindrical shells studied in this thesis is 

mostly membrane dominated and good results are obtained in this section. The results obtained 

in this study are also consistent with the discussions made in Ref. [3,15]. 

4.3 Comparison of the Finite Element Solution with the Analytical Solution 

 In this chapter, the free vibration problem of the unstiffened cylindrical shell is first 

solved using finite element procedures in ADINA. To be able to verify the results of the finite 

element solution and to address the differences between the analytical and finite element solution 

for this problem, in the next sections two solutions will be compared. 

4.3.1 The analytical solution for the free vibration problem of the unstiffened 

cylindrical shells 

 The analytical solution of the free vibration problem of the cylindrical shell is presented in 

[16]. The authors start with the differential equations of motion for a freely vibrating cylindrical 

shell in the framework of Donnell-Mushtari-Vlasov theory. They assume that the cylinder is 

simply supported and postulate a form of the solution which is satisfying the boundary 

conditions. Using the displacement components of the postulated solution in the differential 

equations of motion for the cylindrical shell leads to an eigenvalue problem. The solution of this 

eigenvalue problem gives the natural frequencies and the numbers of circumferential and 

longitudinal waves. So the solution gives the natural frequency and the corresponding mode 

shape. Details and the step by step solution of the problem is presented in [16]. The equation for 

the natural frequencies of the unstiffened cylindrical shell is 

 A = �9e�1 − �� �1 − ���� + ��� + %��% + �� + %�  (4.1)  



 

where n is the number circumfe� = m ��
�   and  � � 
�

� �� . 

4.3.2 Comparing the finite element solution with the analytical solution

 In this chapter of the thesis free vibration problems of four unstiffened 

are solved in ADINA. To compare the results of the finite element solution with the analytical 

solution, two of them are analyzed

the shells with t/R=10-2 and t/R=10

cylindrical shell is making one longitudinal half wave are calculated for increasing number of 

circumferential full waves. The change of those partic

circumferential full waves is plotted to compare the results. The plots for both models are s

in Figure 4.4. 

Figure 4.4: Variation of the frequencies with the number of circumferential waves (m=1).

 Figure 4.4 shows that the variations of the frequencies with the number of circumferential 

waves for both solutions. The results

slight differences in the frequencies but it can be concluded that good resu

finite element solution. The discrepancy of the frequencies result

assumptions made in both solutions. The finite element solution calculates lower frequencies for 

both cylindrical shells than the analyt

stiffer than the finite element model. Since the geometry and the material properties of both 

models are the same, the boundary conditions should be studied to explain why the frequencies 
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are slightly different. In Section 4.3.1 it is noted that the postulated solution satisfies the simply 

supported boundary conditions. That is, the cylindrical shell is simply supported at both ends. 

The simply supported boundary condition restricts the axial and lateral deflections at the ends. In 

the finite element model the cylindrical shell is closed with hemispheres at both ends. The 

cylindrical shell is free to move in the axial direction but the lateral deflections are somewhat 

restricted with the end closures. So the movements of the finite element model at the ends are not 

restricted as rigidly as in the model of the analytical solution. As a result, the frequencies of the 

finite element solution are lower than those of the analytical solution. Although there are 

discrepancies in the frequencies, it can be concluded that the assumption for the boundary 

conditions in the analytical solution is successful for the model considered in this thesis. 

Comparison of the results verifies that good results are obtained in the finite element analysis. 

4.4 Free Vibrations of the Pre-stressed Cylindrical Shell 

 In the preceding sections free vibrations of unstiffened cylindrical shell with different 

thicknesses are studied. Throughout this study linear analysis conditions are considered. In large 

deformation analysis membrane stresses can be present and those stresses highly affect the 

dynamic behavior. In this section, the effect of the initial membrane stresses on the free vibration 

characteristic of the unstiffened cylindrical shell is studied. The shell geometry, the boundary 

conditions and the material properties are all the same as before. The only difference is that the 

cylindrical shells are pre-stressed. An initial hoop stress of 2.44x107 Pa and an initial 

longitudinal stress of 1.22x107 Pa are applied to all four cylindrical shells with different 

thicknesses. In order to satisfy stress continuity between the cylindrical part and the 

hemispherical part of the model an initial stress of 1.22x107 Pa is applied to the hemispherical 

shells which are located at both ends. The stresses are applied in both compressive and tensile 

states in separate analyses. These initial tensile stresses resemble the stress state in a pressure 

vessel with an internal applied pressure of � = 2.44 × 10���/e� while the initial compressive 

stresses resemble the stress state in a submarine with an external applied pressure of the same 

value. 

 The tensile stress is applied to four cylindrical shells with different thicknesses and the 

first 16 frequencies and mode shapes (including rigid body modes) are calculated in ADINA. 



 

The variation of the frequencies with

are listed in Table 4.2.  It is obvious that the initial t

the cylindrical shell. The amount of the increase is very small for the thickest shell while the 

frequencies of the thinner shells increas

increase more compared to those in

tensile stress can be observed better in the lower modes. The following observations are made for 

the tensile pre-stressed cylindrical shell:

• For the thickest cylindrical shell

The maximum increase is less than 2%. The mode shapes are exactly the same as the mode 

shapes of the unstressed cylindrical

Figure 4.5: Frequencies of the pre
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The variation of the frequencies with the mode numbers is presented in Figure 

2.  It is obvious that the initial tensile stress is increasing the frequencies of 

the cylindrical shell. The amount of the increase is very small for the thickest shell while the 

frequencies of the thinner shells increase significantly. The frequencies in the lower modes 

those in the higher modes of the same model. The effect of the initial 

tensile stress can be observed better in the lower modes. The following observations are made for 

stressed cylindrical shell: 

thickest cylindrical shell (t/R=10-1), there is a slight increase in the frequencies. 

The maximum increase is less than 2%. The mode shapes are exactly the same as the mode 

cylindrical shell. 

Frequencies of the pre-stressed cylindrical shells (tensile stress).

mode numbers is presented in Figure 4.5 and the results 

ensile stress is increasing the frequencies of 

the cylindrical shell. The amount of the increase is very small for the thickest shell while the 

significantly. The frequencies in the lower modes 

the same model. The effect of the initial 

tensile stress can be observed better in the lower modes. The following observations are made for 

, there is a slight increase in the frequencies. 

The maximum increase is less than 2%. The mode shapes are exactly the same as the mode 

 

ensile stress). 
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Table 4.2: Frequencies of the pre-stressed cylindrical shell with different thicknesses (tensile stress). 

 

• For the cylindrical shell with t/R=10-2, the frequencies increase considerably compared 

to those of the unstressed cylindrical shell. The lowest two frequencies increase by 84% while 

the others increase approximately by 30-40%. The effect of the initial tensile stress is much 

higher for the lowest frequencies. Although the frequencies change significantly, the mode 

shapes are very similar to those of the unstressed cylindrical shell. But for the pre-stressed 

cylindrical shell the bending mode occurs in modes 11 and 12 instead of modes 15 and 16 as for 

the unstressed shell. 

• For the cylindrical shell with t/R=10-3, the increase in the frequencies are significant. 

The frequencies increase by 350-400% and the mode shapes change drastically. The mode shape 

pattern becomes very similar to that of the thicker cylindrical shells. The number of the 

circumferential waves decreases. After initial tensile stress is applied on the thin cylindrical 

shell, it makes fewer circumferential waves like the thick cylindrical shell. Unlike the unstressed 

cylindrical shell of the same geometry, a bending mode occurs in modes 15 and 16 when initial 

tensile stress is applied. 

• For the cylindrical shell with t/R=10-5, the results are very similar to those of the pre-

stressed cylindrical shell with t/R=10-3 in terms of the frequencies and mode shapes. These two 

Freq.(Hz) n m Freq.(Hz) n m Freq.(Hz) n m Freq.(Hz) n m

1

2

3

4 1.366 1.366 1.366 1.366

5 1.366 1.366 1.366 1.366

6 8.856 8.867 8.867 8.867

7 25.43 14.22 2 1 12.61 2 1 12.6 2 1

8 25.43 14.22 2 1 12.61 2 1 12.6 2 1

9 64.08 21 2 2 19.91 2 2 19.9 2 2

10 64.08 21 2 2 19.91 2 2 19.9 2 2

11 66.82 2 1 25.4 22.62 3 1 22.54 3 1

12 66.82 2 1 25.4 22.62 3 1 22.54 3 1

13 69.57 2 2 29.23 3 1 23.91 3 2 23.83 3 2

14 69.57 2 2 29.23 3 1 23.91 3 2 23.83 3 2

15 75.28 30.32 3 2 25.4 25.4

16 77.72 2 3 30.32 3 2 25.4 25.4

R. B. Rotations R. B. Rotations

t/R=1e-5

Bending Mode

Mode 
Number

t/R=1e-1 t/R=1e-2

R. B. Rotations R. B. Rotations

Torsional Mode

n: number of circumferential waves.
m: number of longitudinal half waves.

Bending Mode

Bending Mode

Bending Mode

Bending Mode

Bending Mode

Bending Mode

Bending Mode

Bending Mode

Bending Mode

Rigid body motions.

t/R=1e-3

Rigid body motions. Rigid body motions. Rigid body motions.
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thin shells become very stiff under tensile pre-stress conditions compared to the unstressed 

cylindrical shells of the same thicknesses. As a result of this stiffening effect they start to act like 

thicker shells. That is, their mode shape patterns become very similar to the mode shape patterns 

of the thicker shells. 

• The asymptotic behavior of the pre-stressed cylindrical shell (as its thickness is 

reduced) is different than that of the unstressed cylindrical shell. Because of the stiffening effect 

resulting from initial membrane stresses, the lowest frequencies of the pre-stressed cylindrical 

shell converge to a thickness invariant value for the lowest frequency. In our particular solution 

the lowest frequencies of the two thinnest shells converged to the value of 12.60 Hz. However in 

Section 4.2.1 it is discussed that, for the unstressed cylindrical shell the lowest frequency scaled 

approximately as √t. Figure 4.5 shows that the higher frequencies of the cylindrical shells with 

t/R=10-3 and t/R=10-5 are also very similar. 

• An interesting observation is that the initially applied membrane stresses restrict the 

rigid body rotations of the cylindrical shells. The unstressed cylindrical shell has six rigid body 

modes and the lowest six frequencies are zero as expected since the model is free in space. The 

4th, 5th and 6th frequencies of the pre-stressed cylindrical shell are nonzero unlike those of the 

unstressed cylindrical shell, although the pre-stressed shell still has the rigid body modes. Those 

nonzero frequencies are very small and correspond to rigid body rotations. This is an effect of 

the initial tensile membrane stress. It is noticed that the frequencies are very small and this is due 

to the initial loading not being deformation dependent. In the formulation of the stiffness matrix, 

the effect of the initial stresses enters the nonlinear stiffness matrix and the nonlinear stiffness 

matrix is independent of rotation. As a result, the initial membrane stresses restrict the rigid body 

rotations and we see very small frequencies in the corresponding modes. A detailed explanation 

of this formulation is presented in [5]. An example problem on the free vibrations of a truss 

element is demonstrated in Appendix A in order to explain the effect of the initial stress on the 

rigid body modes. 

 In summary, initially applied tensile membrane stresses make the cylindrical shell stiffer 

compared to the unstressed cylindrical shell. The frequencies of the pre-stressed cylindrical shell 

are higher than those of the unstressed cylindrical shell and the mode shapes of the two thinnest 

shells change significantly. 
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 The initial compressive stress is also applied on the cylindrical shells with four different 

thicknesses. The geometry, the material conditions and the amount of the stress is all as before. 

Only difference is that the initially applied membrane stresses are compressive in this part of the 

study. Considering the results of the tensile pre-stressed cylindrical shell, it is expected that the 

frequencies decrease when the initial compressive stress is applied on the shell. 

 The initial compressive stress is applied to four of the cylindrical shells. For the two 

thinnest shells (t/R=10-3, t/R=10-5), the solution process is stopped in ADINA since the 

frequencies approach zero. So the first 16 frequencies and mode shapes (including rigid body 

modes) of the two thickest cylindrical shells (t/R=10-1, t/R=10-2) are calculated. The results are 

listed in Table 4.3 and the following observations are made: 

• For the cylindrical shell with t/R=10-1, there is a slight decrease in the frequencies. The 

maximum decrease is less than 2%. The mode shapes are exactly the same as the mode shapes of 

the unstressed cylindrical shell. 

• For the cylindrical shell with t/R=10-2, the frequencies decreased significantly 

compared to the unstressed cylindrical shell. The lowest twelve frequencies approach zero. First 

six modes are not rigid body motions but their frequencies are nearly zero and the shell is 

affected significantly by the initial compressive stress. From 6th to 12th modes are rigid body 

modes and the corresponding frequencies are approximately zero. The shell is significantly 

affected by the initial compressive stress and its frequencies decrease drastically.  

 In this study, the initial compressive membrane stress resembles the stress state in a 

submarine with an external applied pressure of  � = 2.44 × 10���/e�. Norwood [1] discussed 

the influence of the ring stiffeners, boundary conditions, end closures, external pressure loading 

and added mass of the surrounding fluid on the vibrational modes of the cylindrical shell with a 

review of the available literature. The author has noted that an increase in the external 

hydrostatic pressure acting on the cylindrical shell decreases the frequencies [1]. As the external 

hydrostatic pressure approaches the buckling pressure of the cylindrical shell, the frequencies 

approach zero. This is an important correlation between the frequency behavior and the buckling 

behavior of the cylindrical shell. The purpose of this section of the thesis is to study the effect of 

initial stress on the frequencies of cylindrical shell. So only a constant compressive stress is 
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applied to the cylindrical shells. For further study the variation of the frequencies of the same 

cylindrical shell with the variation of the compressive stresses could be studied.  

Table 4.3: Frequencies of the compressive pre-stressed cylindrical shell with different thicknesses. 

 

  

  

Freq.(Hz) n m Freq.(Hz) n m

1 1.59E-06 1.59E-06 3 1

2 1.59E-06 1.59E-06 3 1

3 1.59E-06 1.59E-06 3 2

4 1.74E-04 1.59E-06 3 2

5 1.97E-04 1.59E-06 2 1

6 3.01E-04 1.59E-06 2 1

7 25.16 1.59E-06

8 25.16 1.59E-06

9 63.87 1.59E-06

10 63.87 1.59E-06

11 64.66 2 1 1.59E-06

12 64.66 2 1 1.59E-06

13 67.46 2 2 12.31 2 2

14 67.46 2 2 12.31 2 2

15 74.22 12.34 3 3

16 74.78 2 3 12.34 3 3

n: number of circumferential waves.
m: number of longitudinal half waves.

Torsional Mode

Rigid body motions.

Rigid body motions.

Rigid body motions.

Rigid body motions.

Rigid body motions.

Rigid body motions.

Rigid body motions.

Rigid body motions.

Bending Mode

Bending Mode

Bending Mode

Mode 
Number

t/R=1e-1 t/R=1e-2

Rigid body motions.

Rigid body motions.

Rigid body motions.

Rigid body motions.

Bending Mode
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5. Free Vibrations of the Stiffened Cylindrical Shell 

5.1 An Introduction on the Study of the Stiffened Cylindrical Shell 

  In this section of study, frequencies and mode shapes of stiffened cylindrical shells are 

analyzed. This study consists of two parts: variation of the frequencies with the positions of the 

ring stiffeners and variation of the frequencies with the number of uniformly distributed ring 

stiffeners. Two of the cylindrical shells used in previous section of the research are used. These 

are the “thick” cylindrical shell with t/R=10-2 and the “thin” cylindrical shell with t/R=10-3. Ring 

stiffeners are used to stiffen the shells. 

 Free vibrations of stiffened and unstiffened cylindrical shells are studied by many 

researchers. Among those [1,4] are used as references in the process of this study. In [4] a study 

on the vibration of thin cylindrical shells with ring supports is presented. In the study, Sanders’ 

shell theory is used and the governing equations for vibrations are obtained using an energy 

functional with the Ritz method. The authors have validated the analysis by comparing the 

results with those available in the literature.  Loy and Lam [4] focus on the influence of the 

position of the ring stiffener and boundary conditions on ring-stiffened cylindrical shells with 

different thicknesses and lengths. In [4] it is concluded that a ring stiffener has significant 

influence on the frequencies, and the extent of this influence depends on the position of the ring 

stiffener and the boundary conditions of the cylindrical shell. 

 In [1] the modal behavior of the ring-stiffened cylindrical shells is reviewed. In the study, 

the effect of the ring stiffeners, boundary conditions, end closures, external pressure loading and 

added mass of the surrounding fluid are discussed. The author reviews the available literature 

and discusses the influence of those factors on the vibrational modes of the cylindrical shell. In 

[1] it is concluded that the free vibrational modes of the cylindrical shells are affected by ring 

stiffeners, boundary conditions, end closures, external pressure loading and added mass of the 

surrounding fluid. The external pressure and surrounding mass of water reduces the frequencies 

while the ring stiffeners increase the frequencies when compared to unstiffened cylindrical 

shells. The effect of boundary conditions and end closures are related to the types of conditions 

used in the model. 
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 In this study, first uniformly distributed ring stiffeners are added to the cylindrical shells. 

According to the results, when the shell displaces into circumferential waves, the frequencies 

increase with the number of stiffeners. But frequencies of the cylindrical shell with one stiffener 

at the center are higher than those of the cylindrical shell with two stiffeners at both ends of the 

cylinder. This result shows that the positions of the ring stiffeners are as important as their 

number. Then, to study the variation of the frequencies with the position of the ring stiffeners, 

just two stiffeners are added to the shells and the positions of the ring stiffeners are changed at 

every step. The study on the variation of the frequencies with the position of the ring stiffeners 

gives insight to understand and interpret the results of the uniformly-stiffened cylindrical shells. 

5.2 The Finite Element Model of the Ring-Stiffened Cylindrical Shell 

 The dimensions used for the “thick” cylindrical shell (t/R=10-2) are very similar to those 

of a real submarine. When modeling ring stiffeners, the dimensions are adopted from the ring 

stiffeners used in the construction of the same type of submarines from which the dimensions are 

adopted to model the “thick” cylindrical shell. The stiffeners of the real model have T cross-

sections. To model curved beams in ADINA, a rectangular cross section which has the same 

moment of inertia (I) as the T cross-section is defined and used. The calculation of the equivalent 

dimensions for the rectangular cross section is presented in Appendix B. 

 In the finite element model, the surface of the cylinder is meshed with the 9-node shell 

elements. A detailed study on choosing the proper element type and mesh density is presented in 

Section 3.3. To model the stiffened cylindrical shell, ring stiffeners are added to the model and 

they are modeled as curved beams and meshed with the 3-node iso-beam elements. Figure 5.1 

shows a stiffened cylindrical shell. The ring stiffeners are attached to the inside surface of the 

cylinder. To be able to show the ring stiffeners in the figure, the cylindrical shell is cut through a 

plane which is positioned at x=0. 



62 
 

 

 

  Iso-beam elements are attached to shell elements using rigid links to model the stiffened 

cylindrical shell. Figure 5.2 presents a cross-section of a single shell and beam connection. The 

schematic shows where the nodes are positioned and how the rigid link is used to connect shell 

and beam elements. Detailed picture of the ring stiffeners and the rigid links in the finite element 

model is presented in Figure 5.3. 

 

Mid-surface of the shell 
element 

Neutral axis of the beam 
element 

Nodes of the shell element 

Nodes of the beam element 

Rigid link 
Master node 

Slave node 

Ring stiffeners 

Cutting plane 

Shell surface 

Figure 5.1: The stiffened cylindrical shell. 

Figure 5.2: The schematic of the connection between shell and beam elements. 
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5.3 Results of the Finite Element Solution for the Stiffened Cylindrical Shells 

 The ring-stiffened cylindrical shells are analyzed. Results show that frequencies increase 

with the number of stiffeners when the cylindrical shell makes circumferential waves. If the 

cylindrical shell does not undergo any circumferential waves, which corresponds to its bending 

modes, the frequencies of the cylindrical shells with different thicknesses are very close and 

decrease slightly when more ring stiffeners are added. 

 An interesting result is that the positions of the ring stiffeners are as important as their 

number when contributing to the stiffness of whole structure. All detailed results are presented in 

the tables in Appendix C. 

5.3.1 Variation of the Fundamental Frequencies with the Positions of the Ring 

Stiffeners 

 In general, adding ring stiffeners to the cylindrical shell increases the stiffness and 

increases the frequencies of the cylindrical shell. So the cylindrical shell with more ring 

stiffeners has higher frequencies than the one with fewer ring stiffeners. An exception is that one 

Ring stiffener 
 (Iso-beam elements) 

Rigid links 

Surface of the 
cylindrical shell          
(9-node shell elements) 

Figure 5.3: A detailed representation of the ring stiffeners and the rigid links. 



 

stiffener positioned at the center of the cylinder is contributing more t

stiffeners positioned at both ends of the cylinder. Detailed results are presented in Figure 

listed in the tables in Appendix

Figure 5.4: The frequencies of thick cylindrical shell (t/R=10

 The positions of the ring stiffeners have a big role in the contribution of the stiffeners to 

stiffness. In [4] it is shown that the frequency of the cylindrical shell varies with the position of 

the ring stiffener. In order to study this phenomenon, two stiffeners are positioned at different 

distances from the center of the cylinder in 

compared. When presenting the results, distance from the center of 

longitudinal direction is scaled with the half length of the cylinder and absolute value of this ratio 

is taken to be able to represent both directions. The distances and the reference coordinate system 

are presented in Figure 5.5. 
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stiffener positioned at the center of the cylinder is contributing more to the stiffness than two 

stiffeners positioned at both ends of the cylinder. Detailed results are presented in Figure 

the tables in Appendix C.  

The frequencies of thick cylindrical shell (t/R=10-2) at different positions of
stiffeners. 

The positions of the ring stiffeners have a big role in the contribution of the stiffeners to 

it is shown that the frequency of the cylindrical shell varies with the position of 

he ring stiffener. In order to study this phenomenon, two stiffeners are positioned at different 

distances from the center of the cylinder in the longitudinal direction and the results are 

compared. When presenting the results, distance from the center of 

direction is scaled with the half length of the cylinder and absolute value of this ratio 

is taken to be able to represent both directions. The distances and the reference coordinate system 

Figure 5.5: Positions of the ring stiffeners. 
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they converge to the frequency of the cylindrical shell with one stiffener positioned at the center.

 For the thick cylindrical
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cylindrical shell and the cylindrical shell with two stiffeners positioned at both ends are nearly 
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frequency increase than two stiffeners positioned at bot

of the ring stiffeners on frequency 
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which is z/L=0.3 for the problem considered here. As the ring stiffeners are positioned closer to 

center than the critical distance, fundamental frequencies start to decrease and converge to the 

fundamental frequency of the cylindrical shell with one stiffener positioned 

when two stiffeners are positioned at the center without any gap between them, the frequency of 

the cylindrical shell is approximately equal to the frequency of the cylindrical shell with one 
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the ring stiffeners for thick and thin cylindrical shells are presented in Figure 
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For both cylindrical shells, it is seen that the frequencies increase as the stiffeners get 

closer to the center of the cylinder (z=0) up to a critical distance. At the critical distance 

frequencies reach their maximum values. After the critical distance they start to decrease and 

requency of the cylindrical shell with one stiffener positioned at the center.

For the thick cylindrical shell, two stiffeners positioned at both ends make a very little 

contribution to the frequency increase. Figure 5.4 shows that the frequencies of the 

cylindrical shell and the cylindrical shell with two stiffeners positioned at both ends are nearly 

the same. And also one stiffener positioned at the center makes more contribution to the 

than two stiffeners positioned at both ends. This is an effect of the positions 

of the ring stiffeners on frequency increase. The fundamental frequency of the cylindrical shell 

increases as the stiffeners get closer to the center. It keeps increasing up to a critical distance 

for the problem considered here. As the ring stiffeners are positioned closer to 

center than the critical distance, fundamental frequencies start to decrease and converge to the 

fundamental frequency of the cylindrical shell with one stiffener positioned 

when two stiffeners are positioned at the center without any gap between them, the frequency of 

the cylindrical shell is approximately equal to the frequency of the cylindrical shell with one 

stiffener positioned at the center. Variations of the fundamental frequencies with the positions of 

the ring stiffeners for thick and thin cylindrical shells are presented in Figure 

 

Variation of the fundamental frequencies with the positions of the ri

frequencies increase as the stiffeners get 

closer to the center of the cylinder (z=0) up to a critical distance. At the critical distance 

frequencies reach their maximum values. After the critical distance they start to decrease and 

requency of the cylindrical shell with one stiffener positioned at the center. 

positioned at both ends make a very little 

4 shows that the frequencies of the unstiffened 

cylindrical shell and the cylindrical shell with two stiffeners positioned at both ends are nearly 

the same. And also one stiffener positioned at the center makes more contribution to the 

h ends. This is an effect of the positions 

. The fundamental frequency of the cylindrical shell 

up to a critical distance 

for the problem considered here. As the ring stiffeners are positioned closer to 

center than the critical distance, fundamental frequencies start to decrease and converge to the 

fundamental frequency of the cylindrical shell with one stiffener positioned at the center. Finally 

when two stiffeners are positioned at the center without any gap between them, the frequency of 

the cylindrical shell is approximately equal to the frequency of the cylindrical shell with one 

tions of the fundamental frequencies with the positions of 

the ring stiffeners for thick and thin cylindrical shells are presented in Figure 5.6. 

 

Variation of the fundamental frequencies with the positions of the ring stiffeners. 
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 The higher modes of the shell have similar but not exactly the same pattern of increase as 

the fundamental frequency. Figure 5.4 shows that the frequencies are increasing significantly 

between two consecutive modes and these increases are not always happening at the same mode 

for different models. As a result of these differences between models, the highest frequency 

could be obtained at a different position of the ring support. That makes the variation of the 

frequencies in higher modes different than the variation of the fundamental frequencies. 

 For the thin cylindrical shell, two ring stiffeners positioned at both ends of the cylindrical 

shell make more contribution to the stiffness than they do for the thick cylindrical shell. But we 

can see in Figure 5.7 that the contribution of two ring stiffeners positioned at both ends is still 

less than the contribution of one ring stiffener positioned at the center. For the thick cylindrical 

shell, it is observed that the stiffeners at both ends render nearly no contribution to the stiffness 

but the same stiffeners contributed more when they were attached to the thin cylindrical shell. 

The reason of this difference in behavior between the thick and thin cylindrical shells is the 

effect of the ring stiffeners to the stiffness of the cylindrical shells. The same geometry of ring 

stiffeners is used for both cylindrical shells and the ring stiffener modeled here is stiffer for the 

thin shell compared to the thick shell. That is, the bending rigidity of the ring stiffener in its 

plane is much more rigid compared to the bending rigidity of the shell. So when the ring 

stiffeners are positioned at both ends of the thin cylindrical shell, they don’t deform with the 

shell. So this is like changing the boundary conditions of a cylindrical shell from simply 

supported to clamped and it is known that different boundary conditions result in different 

frequencies for the same geometry of a cylindrical shell [1,4]. So in the case of the thin 

cylindrical shell the ring stiffeners positioned at both ends increase the frequencies more than the 

case for the thick cylindrical shell. However the variation pattern of the fundamental frequencies 

with the position of the stiffeners is similar to that of the thick cylindrical shell and presented in  

Figure 5.6. 



 

Figure 5.7: The frequencies of the
stiffeners. 

5.3.2 Comparison of the study with the literature

 It is important to compare the results of the study with an analysis from the literature in 

order to verify that good results are obtained in this part of the thesis.

free vibration problems of stiffened shells presents considerable difficulties and it is hard to find 

a general solution that can be applied to all boundary conditions and shell geometries. Among 

many studies, ref. [4] is chosen because of its simila

presented in this study are compared

qualitative behavior of the results.

shells with a ring support. The ring support is arbitrarily placed and it

stiffeners imposed zero lateral deflection on the model. The governing equations are derived 

using an energy functional with the Ritz method. The results are obtained by solving the 

governing equations. A part of the study which is about the influence of the position of the ring 

stiffener is related to the study carried out in this thesis. In this part

fundamental frequency with the position of the ring stiffener for the cylindrical shell with 

different boundary conditions is studied. In Figure 

shell are presented. The dimensions of the cylin

solution process it is assumed that the fundamental frequencies are obtained at the mode shape

which the cylindrical shell makes one circumferential full wave and one longitudinal half wave
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the thin cylindrical shell (t/R=10-3) at different positions of the ring 

the study with the literature 

compare the results of the study with an analysis from the literature in 

verify that good results are obtained in this part of the thesis. The analytical solution of 

ffened shells presents considerable difficulties and it is hard to find 

a general solution that can be applied to all boundary conditions and shell geometries. Among 

is chosen because of its similarity to the study carried on here. T

are compared with the results presented in [4] considering mostly the 

qualitative behavior of the results.  Loy and Lam [4] have studied the frequencies of cylindrical 

ring support. The ring support is arbitrarily placed and it is assumed that the ring 

zero lateral deflection on the model. The governing equations are derived 

energy functional with the Ritz method. The results are obtained by solving the 

governing equations. A part of the study which is about the influence of the position of the ring 

stiffener is related to the study carried out in this thesis. In this part

fundamental frequency with the position of the ring stiffener for the cylindrical shell with 

different boundary conditions is studied. In Figure 5.8 dimension parameters of the cy

shell are presented. The dimensions of the cylindrical shell are t/R=0.01 and L/R=20. In the 

solution process it is assumed that the fundamental frequencies are obtained at the mode shape

which the cylindrical shell makes one circumferential full wave and one longitudinal half wave

 

) at different positions of the ring 

compare the results of the study with an analysis from the literature in 

The analytical solution of 

ffened shells presents considerable difficulties and it is hard to find 

a general solution that can be applied to all boundary conditions and shell geometries. Among 

rity to the study carried on here. The results 

considering mostly the 

have studied the frequencies of cylindrical 

is assumed that the ring 

zero lateral deflection on the model. The governing equations are derived 

energy functional with the Ritz method. The results are obtained by solving the 

governing equations. A part of the study which is about the influence of the position of the ring 

stiffener is related to the study carried out in this thesis. In this part, the variation of the 

fundamental frequency with the position of the ring stiffener for the cylindrical shell with 

dimension parameters of the cylindrical 

drical shell are t/R=0.01 and L/R=20. In the 

solution process it is assumed that the fundamental frequencies are obtained at the mode shape in 

which the cylindrical shell makes one circumferential full wave and one longitudinal half wave. 
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Figure 5.8: The dimension parameters of the cylindrical shell [4]. 

 In [4] the variation of the fundamental frequency with the position of the ring stiffener is 

studied by using one ring stiffener in the model. In this thesis, two ring stiffeners are used to 

study the variation of the fundamental frequency. Those stiffeners are positioned symmetric to 

each other. The reason to model the problem in this way in finite element analysis was to be able 

to have a similarity in the geometry and boundary conditions between the analytical solution and 

the finite element solution. So the finite element model can be thought of as two similar 

cylinders which are connected at the symmetry plane at z=0. Because of this symmetry, one half 

of the cylindrical shell will be considered when comparing the results of the finite element 

solution with the analytical solution. The symmetry and similarities lead us to a new cylindrical 

shell which is obtained by cutting the model considered in this thesis at the symmetry plane and 

considering one half. In this section, the “half” cylindrical shell will refer to the half of the 

cylindrical shell modeled in the finite element analysis and the “half” cylindrical shell is 

presented in Figure 5.9. It is shown that the “half” cylindrical shell is closed with a hemisphere at 

one end and free at the other. In order to have a similarity with the model used in the analytical 

solution, these conditions can be thought of as if it is clamped-free at two ends. Of course these 

conditions are not fully satisfying clamped-free boundary conditions. The results will be 

compared and interpreted by keeping in mind that there are differences between the two models. 

t 
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Figure 5.9: The “half” cylindrical shell. 

 Here it is important to note the differences in the geometry of the model and the 

assumptions made in the solution process. The differences between the two models should help 

to explain the differences in the results. The analytical solution [4] is obtained by assuming that 

the ring stiffeners are imposing zero lateral deflection and the boundary conditions are clamped-

free at two ends of the cylinder. But in the finite element model the ring stiffeners are deforming 

with the shell so they are not imposing zero lateral defections. As mentioned above the boundary 

conditions are similar but not the same. The effect of the hemisphere can be considered as a 

clamp but it is obvious that the end closed with the hemisphere is not as stiff as a clamped end. 

At the symmetry plane the “half” cylindrical shell is free to move in the lateral direction but 

restricted in the axial direction. This effect can be approximated as a free end. In the analytical 

solution the dimensions of the cylindrical shell are t/R=0.01 and L/R=20. Since we are 

considering the “half” cylindrical shell, the dimensions of the finite element model are t/R=0.01 

and L/R=10. So we have the same thickness but the “half” cylindrical shell is shorter than the 

model used in the analytical solution. 

End closed with 

hemisphere 

Free end 

Symmetry plane 

Ring stiffener 



 

Figure 5.10: Variation of the fundamental frequency with the position of the ring stiffeners.

 The results of the analytical solution 

Figure 5.10. The variation of the fundamental frequency with the position of the ring stiffener is 

qualitatively similar for both 

stiffeners get closer to the free ends of the cylinders (which is the centre of the cylindrical shell 

in the finite element analysis). The fundamental frequencies are reaching their maximum 

at a distance that is approximately one

distance the fundamental frequencies are decreasing and converging to a value. Although the 

variation of the fundamental frequency is qualitatively si

that the fundamental frequencies are di

at z/L=0.5. This distance is half of the distance between clamped and free ends. In the region 

where the ring stiffener is closer to the clamped end, the results are similar but the fundamental 

frequencies of the finite element solution are higher. Since the “half” cylindrical shell is shorter 

than the cylindrical shell used in the analytical solution

the finite element solution. It is known that the frequencies 

shorter [4]. In the region where the ring stiffener is closer to the free end, there is a sig

difference in the results. Results of the analytical solution are significantly higher than results of 

the finite element solution. Although we have a shorter cylindrical shell in

model and it is expected to have higher frequenc

ring stiffener overcomes the effect of the length difference. It is assumed that the ring stiffener 
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of the fundamental frequency with the position of the ring stiffeners.

The results of the analytical solution [4] and the finite element analysis are plotted in 

variation of the fundamental frequency with the position of the ring stiffener is 

qualitatively similar for both solutions. The fundamental frequencies are 

stiffeners get closer to the free ends of the cylinders (which is the centre of the cylindrical shell 

in the finite element analysis). The fundamental frequencies are reaching their maximum 

at a distance that is approximately one-third of the length from the free end. Beyond

distance the fundamental frequencies are decreasing and converging to a value. Although the 

variation of the fundamental frequency is qualitatively similar for both solutions, it is observed 

that the fundamental frequencies are different. In Figure 5.10, two curves intersect approximately 

5. This distance is half of the distance between clamped and free ends. In the region 

ner is closer to the clamped end, the results are similar but the fundamental 

frequencies of the finite element solution are higher. Since the “half” cylindrical shell is shorter 

than the cylindrical shell used in the analytical solution, it is normal to have higher frequencies in 

the finite element solution. It is known that the frequencies increase as the cylindrical shell gets 

. In the region where the ring stiffener is closer to the free end, there is a sig

difference in the results. Results of the analytical solution are significantly higher than results of 

the finite element solution. Although we have a shorter cylindrical shell in

model and it is expected to have higher frequencies for this model, in this region the effect of the 

ring stiffener overcomes the effect of the length difference. It is assumed that the ring stiffener 

 

of the fundamental frequency with the position of the ring stiffeners. 

and the finite element analysis are plotted in 

variation of the fundamental frequency with the position of the ring stiffener is 

solutions. The fundamental frequencies are increasing as the ring 

stiffeners get closer to the free ends of the cylinders (which is the centre of the cylindrical shell 

in the finite element analysis). The fundamental frequencies are reaching their maximum values 

third of the length from the free end. Beyond the critical 

distance the fundamental frequencies are decreasing and converging to a value. Although the 

milar for both solutions, it is observed 

intersect approximately 

5. This distance is half of the distance between clamped and free ends. In the region 

ner is closer to the clamped end, the results are similar but the fundamental 

frequencies of the finite element solution are higher. Since the “half” cylindrical shell is shorter 

ave higher frequencies in 

as the cylindrical shell gets 

. In the region where the ring stiffener is closer to the free end, there is a significant 

difference in the results. Results of the analytical solution are significantly higher than results of 

the finite element solution. Although we have a shorter cylindrical shell in the finite element 

ies for this model, in this region the effect of the 

ring stiffener overcomes the effect of the length difference. It is assumed that the ring stiffener 
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imposes zero lateral deflection in the analytical solution and deforms with the shell in the finite 

element analysis. It can be said that the ring stiffener used in the analytical solution is stiffer than 

the one used in the finite element analysis. So the contribution of the ring stiffener is different for 

the two models. This effect cannot be observed in the region where the ring stiffener was closer 

to the clamped end because the lateral deflection of the cylindrical shell is already restricted by 

the clamped boundary condition.  Figure 5.9 shows that the lateral deflection of the cylindrical 

shell is increasing with the distance measured from the clamped end. As the ring stiffener gets 

closer to the free end, the lateral deflection of the cylindrical shell increases and the fact that the 

ring stiffener is not stiff enough in the finite element model becomes important. So the 

fundamental frequencies of the analytical solution are higher and that can clearly be seen in 

Figure 5.10. 

5.4 Variation of the Frequencies with the Number of Uniformly Distributed Ring 

Stiffeners 

 There is a increase in the frequencies as the stiffeners are added. However, in bending 

modes there is a very small decrease in the frequencies. The reason is that in bending modes the 

cylindrical shell makes no circumferential waves and it bends globally. So there is very little 

bending in the circumferential direction and the stiffeners are not contributing to the stiffness. 

But they are adding to the inertia of the cylindrical shell and that lowers the frequencies in 

bending modes [1]. Figures 5.11 and 5.12 present the frequency variation with mode numbers for 

the cylindrical shells with different numbers of ring stiffeners. It is also seen in the figures that 

after the bending modes, the frequencies are increasing immediately. The increase is proportional 

to the number of ring stiffeners. This means that after the bending mode, the cylindrical shell 

makes circumferential waves and as a result of this bending, the ring stiffeners start to contribute 

to the stiffness. So the frequencies increase much more after the bending mode if the cylindrical 

shell has more ring stiffeners. 



 

Figure 5.11: The frequencies of the thick cylindrical shell (t/R=10

Figure 5.12: 

 In some modes, the cylindrical shell makes the same number of waves in both directions, 

and they have different frequencies and mode shapes in those modes. The modes in which this 

phenomenon is observed have an even number of circumferential waves. The difference of the

mode shapes is that the parts of the cylindrical shell corresponding to the half wave in the 

longitudinal direction are rotated 
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The frequencies of the thick cylindrical shell (t/R=10

 The frequencies of the thin cylindrical shell (t/R=10

the cylindrical shell makes the same number of waves in both directions, 

and they have different frequencies and mode shapes in those modes. The modes in which this 

phenomenon is observed have an even number of circumferential waves. The difference of the

mode shapes is that the parts of the cylindrical shell corresponding to the half wave in the 

longitudinal direction are rotated relative to each other. This rotation is around

 

The frequencies of the thick cylindrical shell (t/R=10-2). 

 

shell (t/R=10-3). 

the cylindrical shell makes the same number of waves in both directions, 

and they have different frequencies and mode shapes in those modes. The modes in which this 

phenomenon is observed have an even number of circumferential waves. The difference of the 

mode shapes is that the parts of the cylindrical shell corresponding to the half wave in the 

to each other. This rotation is around the longitudinal 
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direction and an example can be seen in Figure 5.13. In Figure 5.13, mode 12 of the thick 

cylindrical shell with three ring stiffeners is presented. In mode 12, the thick cylindrical shell has 

two longitudinal half waves and three circumferential full waves. Two longitudinal half waves 

are making a continuous full sine wave in the longitudinal direction. 

 

Figure 5.13: Mode 12 of the thick cylindrical shell (t/R=10-2). 

Mode 13 of the same shape has the same number of waves but the half parts are not rotated and 

two half sine waves are repeated in the longitudinal direction. The frequency of this mode is 

higher than the frequency of mode 12. Mode 13 is presented in Figure 5.14. Here, the thick 

cylindrical shell with three ring stiffeners is presented as an example and its outline is shown in 

Figure 5.15. Results for the cylindrical shells analyzed in this study show that if two modes have 

the same number of waves, the one with rotation has a lower frequency. The rotation allows the 

structure to deform so that it makes a continuous full sine wave in the longitudinal direction. It is 

thought that having this mode shape is easier for the cylindrical shell since it is an easier way to 

deform in the longitudinal direction. So this mode shape has a lower frequency than the one in 

which the shell makes repeated half sine waves.  

 

Figure 5.14: Mode 13 of the thick cylindrical shell (t/R=10-2). 



74 
 

 

 

Figure 5.15: Positions of the ring stiffeners for the cylindrical shell with three stiffeners. 

 For the thick cylindrical shell, the mode shape is always consistent with the mode shape 

of a single ring stiffener considering the circumferential direction (n=2, 3...). The vibration 

modes of the ring-stiffened cylindrical shell are very similar to those of the unstiffened 

cylindrical shell for the lower modes. The ring stiffeners deform consistently with the 

corresponding mode shape of the cylindrical shell. However, different vibration modes are 

observed in the higher modes. Especially beyond mode 11, adding ring stiffeners affects the 

vibration modes of the thick cylindrical shell. 

 The fundamental modes of the thick cylindrical shell with five and more ring stiffeners 

are bending modes. That causes the fundamental frequencies to converge. When bending modes 

exist, the ring stiffeners don’t increase the frequencies of the cylindrical shell. The results of the 

cylindrical shells with five and more stiffeners show that the frequencies converge approximately 

to 25 Hz. Also the last two modes of the cylindrical shell with nine and eleven stiffeners are 

bending modes and the frequencies converge approximately to 62 Hz. 

 In Figure 5.11, it is seen that the frequencies of the unstiffened cylindrical shell, the 

cylindrical shells with one stiffener and three stiffeners are very close. Despite the existence of 

two extra stiffeners, there is no significant increase in the frequencies of the cylindrical shell with 

three stiffeners compared with the cylindrical shell with one stiffener. That can be explained by 

the effect of the positions of the stiffeners on the frequencies. This subject is discussed in   

Section 5.3.1. It is known that the contribution of the ring stiffeners positioned at both ends is 

very limited. In the design of the cylindrical shell with three ring stiffeners there are two ring 
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stiffeners at both ends and there is a ring stiffener at the center of the cylinder in the longitudinal 

direction. Also for the shell with one stiffener, the ring stiffener is positioned at the center of the 

cylinder in the longitudinal direction. Positions of the stiffeners can be seen in Figure 5.15. The 

contribution of the ring stiffeners positioned at both ends is very limited and a bigger part of the 

extra stiffness comes from the ring stiffeners positioned at the center. As a result, considering the 

contribution to the stiffness, the effects of one stiffener and three stiffeners positioned as in 

Figure 5.15 are approximately the same. Since only one stiffener is contributing to the stiffness 

of the whole structure, the frequency increase is lower than that of the other designs which are 

the cylindrical shells with five and more stiffeners.  

 For the thin cylindrical shell, the ring stiffeners don’t deform and they act like constraints 

at their positions. Since the stiffeners are constraining the shell, it makes longitudinal half waves 

between them. So globally, the thin cylindrical shell makes “a-1” longitudinal half waves where 

“a” is the number of ring stiffeners used. We know that the thin unstiffened cylindrical shell 

makes one longitudinal half wave. As a result of adding ring stiffeners, both the number of 

longitudinal half waves and of the circumferential full waves increases. 

 Contrary to the case of the thick cylindrical shell the contribution of the ring stiffeners is 

approximately constant for the thin cylindrical shell. Since the ring stiffeners are very stiff for the 

thin cylindrical shell, they dramatically change the mode shapes of the shell. So every ring 

stiffener contributes to the stiffness of the whole structure and they increase the frequencies. In 

Figure 5.12, we can see that the increase is approximately constant since two ring stiffeners are 

added to the previous design at every step. Frequencies of the cylindrical shell with one stiffener 

and three stiffeners are increased less than those of the other designs. The increase is small 

because two of the three stiffeners are positioned at both ends of the cylindrical shell and their 

contribution to the stiffness is still small compared to those of the stiffeners which are positioned 

closer to center of the cylindrical shell in the longitudinal direction. But the frequencies of the 

cylindrical shells with one and three stiffeners are not very close to each other as we observed in 

the case of the thick cylindrical shell. For the thin cylindrical shell, the ring stiffeners positioned 

at both ends affect the mode shapes contrary the case of the thick cylindrical shell. This effect 

can be thought of as changing the boundary conditions of a cylindrical shell from simply 

supported to clamped and it is known that different boundary conditions result in different 
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frequencies for the same geometry of a cylindrical shell [1,4]. So in the case of the thin 

cylindrical shell it is observed that the frequency increase is more than that observed for the thick 

shell when the ring stiffeners are positioned at the ends of the cylinder. 

 The positions of the stiffeners have a big role in the frequency increase. The cylindrical 

shell with three stiffeners can be though of as it consisted of cylindrical shells with one stiffener 

and two stiffeners positioned at both ends, respectively. Keeping that in mind, superposition of 

two designs gives us an approximate result to find the frequencies of the cylindrical shell with 

three stiffeners. First, the effect of the ring stiffeners at their particular positions is found. That is, 

the differences of the frequencies of those cylindrical shells and the unstiffened cylindrical shell 

are calculated. Then the differences for the cylindrical shell with one stiffener and two stiffeners 

are added to each other. The results in Table 5.1 shows that the sum of the frequency increase for 

two separate designs considered here gives an approximate value for the frequency increase of 

the cylindrical shell with three stiffeners.  

Table 5.1: The effect of the ring stiffeners to the frequency increase. 

 

5.5 Comparison of the Results with the Analytical Solution 

 The analytical solution for the free vibration of unstiffened cylindrical shell is presented 

in Section 4.3.1. In Sections 5.3 and 5.4, the cylindrical shell is stiffened with ring stiffeners and 

the problem is solved using finite element analysis in ADINA. In Section 5.3.2, the results of the 

No Stiffener (f0) 1 Stiffener (f1)2 Stiffeners (f2)3 Stiffeners (f3) f1-f0 f2-f0 f3-f0 (f1-f0)+(f2-f0) f3-f0

7 2.714 5.84 4.316 7.3616 3.126 1.602 4.6476 4.728 4.6476

8 2.714 5.84 4.316 7.3616 3.126 1.602 4.6476 4.728 4.6476

9 3.753 6.521 4.402 7.642 2.768 0.649 3.889 3.417 3.889

10 3.753 6.521 4.402 7.642 2.768 0.649 3.889 3.417 3.889

11 4.093 7.424 5.781 8.648 3.331 1.688 4.555 5.019 4.555

12 4.093 7.424 5.781 8.648 3.331 1.688 4.555 5.019 4.555

13 5.831 7.947 5.979 9.048 2.116 0.148 3.217 2.264 3.217

14 5.831 7.947 5.979 9.048 2.116 0.148 3.217 2.264 3.217

15 5.838 8.062 7.3 9.624 2.224 1.462 3.786 3.686 3.786

16 5.838 8.062 7.3 9.624 2.224 1.462 3.786 3.686 3.786

Frequencies (Hz)Mode
Number

Differences in the freq. Comparison
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variation of the fundamental frequencies with the position of the ring stiffeners are compared 

with the results of the analytical solution. In this section the purpose is to compare the finite 

element solution with the analytical solution to have insight into how two solutions differ and 

how the assumptions made through the analysis affect the solution. 

5.5.1 The analytical solution of the free vibration problem of ring-stiffened 

cylindrical shells 

 The analytical solution of the free vibrations of stiffened cylindrical shells presents many 

difficulties. That leads researchers to solve this problem by approximate methods. The method of 

an approximate analysis is presented in [16] in detail. The free vibration problem of ring 

stiffened cylindrical shells is approximated in two ways. The ratio between the flexural stiffness 

of the ring stiffener in its own plane and the shell itself is used as a reference to choose the 

appropriate method to solve the problem [16]. If the shell stiffness multiplied by the distance 

between the ring stiffeners (D. "n) is significantly less than the flexural stiffness of the ring 

stiffener (E.Ir), then the natural frequencies can be found using (4.1). That is, if the flexural 

stiffness of the ring stiffener is significantly more than the stiffness of the shell, then the part 

between two stiffeners can be isolated and the problem will be solved for this part. In that case 

the following equation should be used to solve the free vibration problem. 

 A = �9e�1 − �� �1 − ���� + ��� + %��% + �� + %�  (5.1)  

where n is the number of circumferential half waves, m is the number of longitudinal full waves, � = m ����  and � = 
�� ��.  

If the shell stiffness multiplied by the distance between the ring stiffeners (D. "n) is significantly 

larger than the flexural stiffness of the ring stiffener (E.Ir), then the stiffness of the ring stiffeners 

can be uniformly distributed over the shell. The cylindrical shell will be considered structurally 

orthotropic, which means that it has different flexural stiffness in the longitudinal and the 

circumferential directions [16]. So the flexural stiffness of the ring stiffeners will be added to the 
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flexural stiffness of the shell in the circumferential direction. The natural frequencies of the 

structurally orthotropic cylindrical shell can be calculated by the following equation. 

 A = 1
9 � e

����� Q �� Q ��� "#⁄ �e �� Q %��¡
�� Q %� Q %  (5.2)  

where n is the number of circumferential half waves, m is the number of longitudinal full waves, 

� � m ��
��  , � � 
�

� ��. (5.2) is valid if the material properties of the ring stiffener is the same as 

or differs slightly from the material properties of the shell. For structures having ring stiffeners 

with material properties which are different from the shell material properties, (5.2) must be 

defined again. Detailed information about that kind of formulation is presented in [16]. 

5.5.2 Comparing the Finite element solution with the analytical solution 

 In Section 5.4, the cylindrical shells with t/R=10-2 and t/R=10-3 are stiffened with 

uniformly distributed ring stiffeners. The natural frequencies of the stiffened cylindrical shells 

are calculated by finite element analysis. In this part, the finite element solution will be 

compared with the analytical solution which is mentioned in Section 5.5.1. The comparison is 

carried out for the “thin” cylindrical shell (t/R=10-3) which is stiffened with three ring stiffeners. 

The model is presented in Figure 5.16. 

 

Figure 5.16: The “thin” cylindrical shell with three stiffeners. 

"# � 10r 

R= 1m 



 

 As mentioned in Section 

should be compared in order to choose the appropriate frequency equation to solve the problem. 

Using the dimensions and the material properties of the “thin” cylindrical shell and the ring 

stiffener we obtain the following:

 �. "# � ��R
12�1 �

�. �� � �. ¢£��R12 ¤ � 210

It is obvious that for the “thin” cylindrical shell, 

be concluded that (5.1) is valid to solve this problem. The frequencies of the “thin” cylindrical 

shell with three stiffeners are calculated using 

half wave. The results of the analytical and finite element solutions are plot

expected, the analytical solution is qualitatively similar to the solution of the unstiffened 

cylindrical shell. Since one part of the cylinder between the stiffeners is considered in the 

analytical solution, it is normal to have sim

shell. 

Figure 5.17: The comparison of the results for the “thin” cylindrical shell with three stiffeners.
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As mentioned in Section 5.5.1, first the ratio between the values of (D

should be compared in order to choose the appropriate frequency equation to solve the problem. 

Using the dimensions and the material properties of the “thin” cylindrical shell and the ring 

stiffener we obtain the following: 

R
� � �� . "# � 210 � 10¥. �1 � 10�R�R

12�1 � 0.3� . 10 � 192.3

210 � 10¥. ¢6.42 � 10�R. �16 � 10��R
12 ¤ � 4.6

It is obvious that for the “thin” cylindrical shell, (D."#) is significantly less than 

1) is valid to solve this problem. The frequencies of the “thin” cylindrical 

shell with three stiffeners are calculated using (5.1), assuming that the shell has one longitudinal 

half wave. The results of the analytical and finite element solutions are plot

expected, the analytical solution is qualitatively similar to the solution of the unstiffened 

cylindrical shell. Since one part of the cylinder between the stiffeners is considered in the 

analytical solution, it is normal to have similar results to those of the unstiffened cylindrical 

The comparison of the results for the “thin” cylindrical shell with three stiffeners.

he ratio between the values of (D."#) and (E.Ir) 

should be compared in order to choose the appropriate frequency equation to solve the problem. 

Using the dimensions and the material properties of the “thin” cylindrical shell and the ring 

3 

� 10¨ 

(5.3)  

is significantly less than (E.Ir). So it can 

1) is valid to solve this problem. The frequencies of the “thin” cylindrical 

1), assuming that the shell has one longitudinal 

half wave. The results of the analytical and finite element solutions are plotted in Figure 5.17. As 

expected, the analytical solution is qualitatively similar to the solution of the unstiffened 

cylindrical shell. Since one part of the cylinder between the stiffeners is considered in the 

the unstiffened cylindrical 

 

The comparison of the results for the “thin” cylindrical shell with three stiffeners. 
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Another important outcome of this assumption is that the analytical solution cannot predict all of 

the frequencies which arise for the same number of waves in both directions. The cylindrical 

shell can have different frequencies for the same number of circumferential and longitudinal 

waves. Since the analytical solution isolates one part of the cylindrical shell, the frequencies 

arising from the interaction of the shell parts, whose boundaries are defined by the ring 

stiffeners, cannot be calculated. In Figure 5.17, the finite element solution has multiple 

frequencies for one particular number of circumferential waves while the analytical solution has 

only one for the same number of circumferential waves. Aside from having multiple frequencies 

for the same number of circumferential waves, the interaction of the shell parts also increases the 

frequencies. Since the analytical solution assumes that the isolated part of the cylinder is simply 

supported at both ends, the frequencies are lower than the frequencies of the finite element 

solution. But it is important to note that beyond six circumferential waves, the two solutions are 

becoming similar. When the stiffened cylindrical shell makes many circumferential waves, it is 

hard for it to deflect laterally at the positions of the stiffeners. Then the cylindrical shell acts 

more like it is simply supported at the positions of the stiffeners. So the finite element solution 

converges to the analytical solution as the number of circumferential waves increases. 

5.6 Conclusions for the Study on the Stiffened Cylindrical Shells 

 The frequencies and the mode shapes of stiffened cylindrical shells are analyzed. The 

change of the frequencies with the positions of the ring stiffeners and the change of the 

frequencies with the number of uniformly distributed ring stiffeners are studied in two separate 

sections. 

 The studies show that the ring stiffeners have an important influence on the frequencies 

and the mode shapes of the cylindrical shells. The frequencies increase with the number of 

stiffeners when the cylindrical shell takes on circumferential waves. If the shell does not deflect 

into circumferential waves, which is the case in bending modes, the frequencies decrease slightly 

when more ring stiffeners are added. Study on the variation of the frequencies with the position 

of the ring stiffeners showed the importance of the position of the ring stiffeners for the 

contribution to the stiffness.  
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 The effect of the ring stiffeners on the thick and thin cylindrical shells was different 

because the same ring stiffeners are used for both shells. The ring stiffeners were stiff for the thin 

cylindrical shell so they changed the mode shapes dramatically.  
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6. Concluding Remarks 

6.1 Conclusions 

 A study on the free vibrations of the cylindrical shell structures is presented. This thesis 

focuses on the free vibration characteristics of the stiffened and unstiffened cylindrical shells. 

The vibration modes of the unstiffened cylindrical shell are analyzed as the shell thickness 

decreases under unstressed and pre-stressed conditions.  The vibration modes of the unstiffened 

cylindrical shell are highly affected with the change in the thickness. Especially, the lowest 

frequency changes approximately by the order of the square root of the thickness change. This 

can be considered a good result since the unstiffened cylindrical shells studied in this thesis can 

be considered membrane dominated and it is expected that their lower frequencies be scaled with 

√t. The mode shapes of the cylindrical shell are also affected. As the shell gets thinner, the 

number of the circumferential waves increases while the number of the longitudinal waves 

decreases. The initial membrane stresses also change the free vibration modes of the unstiffened 

cylindrical shell. The tensile stresses make the shell stiffer while the compressive stresses make 

it softer compared to the unstressed condition. The thin cylindrical shells are more sensitive to 

the initial stresses than the thick cylindrical shells. An interesting observation is that the initial 

tensile stresses affect the rigid body rotations and increase the corresponding frequencies which 

are zero in the unstressed case. The finite element solution is compared with the available 

analytical solutions from the literature and verified. 

 The vibration modes of the stiffened cylindrical shell are studied in two parts. In the first 

part, the influence of the positions of the ring stiffeners on the fundamental frequencies is studied 

with a cylindrical shell with two stiffeners. Changing the positions of the ring stiffeners along the 

longitudinal axis of the cylindrical shell affects the fundamental frequencies. As the ring 

stiffeners are further away from the end closures of the cylindrical shell, the fundamental 

frequencies increase. In the second part, the free vibration modes of the stiffened cylindrical shell 

are studied. Two cylindrical shells with different thicknesses are stiffened with different numbers 

of ring stiffeners which are uniformly distributed along the longitudinal axis of the shell. Adding 

ring stiffeners increases the frequencies of the cylindrical shell in the vibration modes in which 

the shell is making circumferential waves. The results are compared with the analytical solutions 
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and the studies from the literature. Although there were differences in the solutions because of 

the assumptions made in the analyses, it is seen that the results are qualitatively consistent. 

6.2 Recommendations for Further Study 

 Shell structures, especially cylindrical shells, are widely used in the aerospace and naval 

architecture industries. Submarine/ship hulls, aircraft/rocket bodies and missiles can be basically 

idealized as cylindrical shell structures. Those structures can be stiffened with ring stiffeners or 

stringers according to their area of usage. For example, submarine hulls are mostly ring stiffened 

while aircraft bodies are stringer stiffened. The choice of the type of stiffener mostly depends on 

the externally applied loads on the structure. This thesis focused on the free vibrations of the 

cylindrical shell inspired by the submarine design. Considering the wide usage of cylindrical 

shells in the industry, further research would be useful to make improvements in the designs of 

those structures. Some recommendations on further study are the following: 

• In this thesis the cylindrical shell is studied with constant material properties. The 

effect of the material properties on the free vibration modes can be investigated. Also 

considering the aerospace industry, composite material can be used in the model. 

• The effect of the initial stresses is studied only for the unstiffened cylindrical shell. 

Especially for the stiffened cylindrical shell, the effect of the initial stresses should be studied. 

For the naval construction industry, the effect of the increasing compressive stresses on the 

vibration modes can be studied. The correlation between the natural frequencies and the buckling 

mode of the cylindrical shell could be an interesting field of study. 

• In this thesis the cylindrical shells are stiffened with ring stiffeners. In reality, both 

ring and stringer stiffeners are used to stiffen the cylindrical shells. The cylindrical shell could be 

stiffened with both type of stiffeners and pre-stressed in the longitudinal and the circumferential 

directions separately. The role of the stiffeners on the resistance to different kinds of loads could 

be studied. 

• Recent studies in carbon nanotube-based composites give a hint about how thinner 

shell structures may be constructed in the future. In this thesis the thickness of the cylindrical 

shell is decreased up to 10-5 m. The free vibration behavior of thinner shells could be a useful 

and necessary study for the future.     
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Appendix A – A Study on the Free Vibrations of a Truss Element 

 In Section 4.4 initial tensile stress is applied on the unstiffened cylindrical shell. The 

results show that the tensile stress affects the rigid body modes of the cylindrical shell. The 

lowest six frequencies of the unstressed cylindrical shell are zero. However, when initial tensile 

stress is applied on the shell, the lowest three frequencies remain zero but the 4th, 5th and 6th 

frequencies of the pre-stressed shell are nonzero. The initial tensile membrane stresses restrict 

the rigid body rotations of the cylindrical shell. In this section, solution of the free vibration 

problem of a truss element will be demonstrated in order to study the effect of the initial tensile 

stress on rigid body modes. 

A.1 Formulation of the Finite Element Nonlinear Analysis 

 The free vibration problem of a pre-stressed truss element is a nonlinear problem. So we 

need to use nonlinear finite element formulation in order to solve the problem. Detailed 

discussion of the nonlinear finite element formulation can be found in Chapter 6 of [5].This 

appendix mostly focuses on the solution of the free vibration problem of a truss element rather 

than the formulation. So only a brief explanation is given on the equations needed to understand 

the formulation. 

 Here we are dealing with a free vibration problem without damping. So the dynamic 

equilibrium equation should be used to calculate the frequencies and the mode shapes of the 

truss. The dynamic equilibrium equation without damping is 

 $,� + �, = '��� (A.1)  

Since we want to solve the free vibration problem, we consider that there is no externally applied 

load. For the vibration analysis, the solution to (A.1) can be postulated in the form 

 , = © �in �A�� (A.2)  
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Substituting (A.2) in (A.1) we get the eigenproblem from which the frequencies and the 

corresponding mode shapes can be determined. 

 �> = A$> (A.3)  

where � the stiffness matrix, $ is the mass matrix, A is the frequency of the free vibration and  > is the corresponding mode shape vector. The eigenproblem in (A.3) yields n eigensolutions. 

The solution contains an eigenvalue which is the square of the frequency of the free vibration 

(radians/sec) and an eigenvector which is the corresponding mode shape. The following two new 

matrices are defined to store the n eigensolutions: 

 = = X>�, >, … … , >iY;          ?@ = {A�A ⋱ Ai
� (A.4)  

Using the matrices in (A.4), we can write n solutions to (A.3) as 

 �= = $=?@ (A.5)  

 To solve the eigenproblem in (A.5), first we need to evaluate the stiffness and mass matrices for 

the truss element. 

 In the nonlinear analysis of the structures, the Lagrangian formulation is adopted and an 

incremental formulation is employed to solve the problem [5]. In the Lagrangian incremental 

analysis approach, the equilibrium of the body at time t using the principle of virtual 

displacements is expressed as 

 a <��4 ���b 2 = ℛ



sS  (A.6)  

where     <�&�  : Cartesian components of the Cauchy stress tensor; 

4
��� = � �M«+OMS#P + M«+PMS#O ¡: Components of strain tensor corresponding to virtual displacements; 



86 
 

4/� : Components of virtual displacement vector imposed on configuration at time t; 

2
 : Volume at t; 

ℛ�  : The external virtual work. 

 In (A.6), the left-hand side is the internal virtual work and the right-hand side is the 

external virtual work. This is the basic equation to be solved in the nonlinear analysis. For an 

effective analysis of the nonlinear problems, appropriate stress and strain measures need to be 

employed [5]. So the principle of virtual displacements is expressed in terms of the second Piola-

Kirchhoff stresses and the Green-Lagrange strains.  

The second Piola-Kirchhoff stresses are defined as2 

 )���
 = 9�9
 n�,m <mi n�,i 
�

�  (A.7)  

where   9� , 9
  : the mass density at time 0 and t, respectively; 

n&,% �0  : Components of the deformation gradient [5]. 

The Green-Lagrange strains are defined as 

 6���
 = 12 � /�,��
 + /�,��
 + /¬,��
 . /¬,���
  
(A.8)  

where /�,&0� = M +OSM +PT  and /�
  is the component of the displacement vector at time t. 

  In nonlinear analysis, the constitutive relations are nonlinear and the body can undergo 

large displacements and strains. As a result, an incremental solution must be improved. The total 

Lagrangian formulation is used to develop a governing linearized equation [5]. In this solution 

                                                 
2 Here the notation D���
  is used to explain that A is measured at time t referring to the initial configuration which is 
at time 0. 
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scheme all variables are referred to the initial configuration at time 0. In the total Lagrangian 

formulation, (A.6) is expressed as 

 a )��4 6��b 2��
�
sT = ℛ
  (A.9)  

In order to obtain the governing linearized equations the incremental decompositions of stresses 

and strains should be substituted in (A.9). The incremental decompositions of stresses and strains 

can be defined as 

 )��
®¯
 = )��
 + )��  

6���
®¯
 = 6���
 + 6��� ;  6��� = ���� + 8���  

(A.10)  

In (A.10) the incremental strain is defined as sum of the linear strain increment and the nonlinear 

strain increment. The linear and nonlinear strain increments are 

 ���� = 12 � /�,�� + /�,�� + /¬,��
 . /¬,�� + /¬,�� . /¬,��
 � 
8��� = 12 /¬,�� . /¬,��  

(A.11)  

respectively. Considering (A.9) at time t+∆t and substituting (A.10) and (A.11) in (A.9), we 

obtain the linearized equations of motion about the state at time t in the total Lagrangian 

formulation. 

 a f���°�sT ��°� 4 ���� b 2� + a )���
sT 4 8��� b 2� = ℛ
®¯
 − a )���
sT 4 ���� b 2�  (A.12)  
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In (A.12), f���°�  is the incremental stress-strain tensor at time t referred to the configuration at 

time 0 and the remaining terms are discussed in the preceding paragraphs of this chapter. 

 In the beginning of this chapter, the eigenvalue problem for the free vibration analysis 

was presented. Now considering the nonlinear effects (A.3) becomes 

 � � �
 + �! �
 �> = A$> (A.13) 

where � �
 , �! �
  are the linear strain incremental and the nonlinear strain incremental stiffness 

matrices, respectively. They compose the total stiffness matrix. The definition of the mass matrix 

and the relation between the integrals in (A.12) and the matrices in (A.13) are in the following: 

 ± f���°�sT ��°� 4 ���� b 2�            � �
 l² = �± ��
 �CsT �� ��
 � b 2� �l² 

± )���
sT 4 8��� b 2�                        �! �
 l² = �± ��
 ��CsT ³�
 ��
 ��b 2� �l² 

                                                       $ = ± 9� �CsT �b 2�  

(A.14) 

where �0� � , �0� ´� are the linear and nonlinear strain-displacement transformation matrices 

respectively, � is the displacement interpolation matrix and l² is the vector of virtual nodal 

displacements. 

A.2 Free Vibration Problem of a Truss Element 

 In Section A.1, the finite element nonlinear analysis and the free vibration analysis are 

summarized and the necessary equations are presented. Now we consider a truss element with 

two nodes and solve the free vibration problem of it. The two node truss element is shown in 

Figure A.1. 
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The truss element is straight and aligned with 0x1-axis at time 0. The total Lagrangian 

formulation will be used to solve the problem. Since the truss is a one dimensional structure the 

formulation is somewhat simpler than we obtained in the Section A.1. Considering large strain 

and displacement conditions, first the linear and nonlinear strain increments given in (A.11) 

should be expressed for our problem. For the truss element we have 
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Figure A.1: Two node truss element. 
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 ���� = 12 µ /�,�� + /�,�� + /¬,��
 . /¬,�� + /¬,�� . /¬,��
 ¶;    · = 1, 2, 3 

���� = ]/�] n�� + ] /�
] n�� . ]/�] n�� + ] /
] n�� . ]/] n�� + ] /R
] n�� . ]/R] n��  

(A.15)  

 8��� = 12 y¢ ]/�] n�� ¤ + ¢ ]/] n�� ¤ + ¢ ]/R] n�� ¤z (A.16)  

Because of the simplicity of the truss geometry here the displacements and the differentials will 

be obtained by the geometrical relations. Hence we have 

 ]/�] n�� = 1�� X−1 0 0 1 0 0YX/�� /� /R� /� / /RYC 

]/] n�� = 1�� X0 −1 0 0 1 0YX/�� /� /R� /� / /RYC 

]/R] n�� = 1�� X0 0 −1 0 0 1YX/�� /� /R� /� / /RYC 

] /�
] n�� = �
 cos » cos ¼�� − 1;      ] /
] n�� = �
 cos » sin ¼�� ;       
] /R
] n�� = �
 cos ¼ sin »��  

 

 

(A.17)  
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Using (A.17) in (A.15), we therefore have 

 ���� = 1�� ½X−1 0 0 1 0 0Y + ¢ �
 cos ¼ cos »�� − 1¤ X−1 0 0 1 0 0Y
+ ¢ �
 ¾H� » ��% ¼�� ¤ X0 −1 0 0 1 0Y

+ ¢ �
 cos ¼ sin »�� ¤ X0 0 −1 0 0 1Y¿
ÀÁÁ
ÁÁÁ
Â/��/�/R�/�//RÃÄÄ

ÄÄÄ
Å
 

(A.18) 

 

���� = �

µ �� ¶ X− cos ¼ cos » − ¾H� » ��% ¼ − cos ¼ sin » cos ¼ cos » ¾H� » ��% ¼ cos ¼ sin »Y

ÀÁÁ
ÁÁÁ
Â/��/�/R�/�//RÃÄÄ

ÄÄÄ
Å
 

(A.19) 

From (A.19) we obtain 

 ���
 = �

µ �� ¶ X− cos ¼ cos » − ¾H� » ��% ¼ − cos ¼ sin » cos ¼ cos » ¾H� » ��% ¼ cos ¼ sin »Y (A.20)  

Using the same approach, the nonlinear strain displacement matrix will be obtained. From the 

relation given in (A.14) the nonlinear strain displacement matrix is 

 ����
 = 1�� y−1    0    0   0 −1    0   0    0 −1    1 0 00 1 00 0 1z (A.21)  

Now that the linear and nonlinear strain displacement matrices have been obtained, the stiffness 

matrices can be composed substituting (A.20, A.21) in (A.14). The stiffness matrices are 
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 ���
 = f����� µ �
 ¶
µ �� ¶R D� … 

ÀÁÁ
ÁÁÁ
Â¾¼. ¾» ¾¼. ¾». �» ¾¼. ¾». �» −¾¼. ¾» −¾». ¾¼. �» −¾¼. ¾». �¼¾». �¼ ¾¼. ¾». �¼. �» −¾». ¾¼. �» −¾». �¼ −¾». ¾¼. �». �¼¾¼. �» −¾¼. ¾». �¼ −¾». ¾¼. �». �¼ −¾¼. �»¾¼. ¾» ¾». ¾¼. �¼ ¾¼. ¾». �»)orr��I�¾ ¾». �¼ ¾». ¾¼. �». �¼¾¼. �» ÃÄÄ

ÄÄÄ
Å
 

(A.22)  

 

����
 = Æ
�

ÀÁÁ
ÁÁÂ
   1    0    0 −1    0    0   0    1    0    0 −1    0   0    0    1    0    0 −1−1    0    0    1    0    0   0 −1    0    0    1    0   0    0 −1    0    0    1ÃÄÄ

ÄÄÅ (A.23)  

where c(α)=cos(α), s(α)=sin(α) and f����� = � (Young’s modulus). So we obtain the total 

stiffness matrix adding (A.22) to (A.23). It is important to note that the linear strain stiffness 

matrix in (A.22) is dependent of the angles θ and φ, while the nonlinear strain stiffness matrix in 

(A.23) is independent of the angles. The linear strain stiffness matrix accounts for the additional 

straining of the element and it is dependent of the position of the element at time t. The nonlinear 

strain stiffness matrix accounts for the effect of the internal stresses/forces which already exist. 

We also need to compose the mass matrix to complete the matrices to be used in the free 

vibration equation. The displacement interpolation matrix and the mass matrix for the two node 

truss element is 

 

� =
ÀÁÁ
ÁÁÁ
ÁÂ¢1 − n�� �� ¤ 0 0 n�� �� 0 0

0 ¢1 − n�� �� ¤ 0 0 n�� �� 0
0 0 ¢1 − n�� �� ¤ 0 0 n�� �� ÃÄÄ

ÄÄÄ
ÄÅ
 

(A.24)  
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$ = 9� D�

ÀÁÁ
ÁÁÁ
ÁÂ �� 3⁄ 0 0 �� 6⁄ 0 00 �� 3⁄ 0 0 �� 6⁄ 00 0 �� 3⁄ 0 0 �� 6⁄�� 6⁄ 0 0 �� 3⁄ 0 00 �� 6⁄ 0 0 �� 3⁄ 00 0 �� 6⁄ 0 0 �� 3⁄ ÃÄÄ

ÄÄÄ
ÄÅ
 

(A.25)  

To solve the problem the following geometry and material properties are considered. 

• Young’s modulus, E=210 GPa; 

• The mass density, 0ρ=7,870 kg/m3; 

• Length of the truss at time 0, 0L=3 m.; length of the truss at time t, 0L=3.01 m.; 

• The cross-sectional area of the truss, 0A=0.001 m2; 

• The angles at time t, φ=π/3 and θ=π/6; 

• The tensile force applied on the truss, P= 1x106 N. 

Using the given values for the geometry and material properties and substituting (A.22, A. 23) 

and (A.25) in (A.13), we obtain the eigenvalue problem for the free vibration of the truss 

element. (A.13) is solved for = and ?@ under unstressed and pre-stressed conditions of the truss 

element3. The solution for the unstressed truss element is 

 

?ÇÈÉÊ =
ÀÁÁ
ÁÁÂ

0 0 0 0 0 2.91 × 10�ÃÄÄ
ÄÄÅ 

=ÇÈÉÊ =
ÀÁÁ
ÁÁÂ
−0.2130 −0.2567    0.1046 −0.0063    0.1337 −0.1712−0.0895    0.1993    0.3088    0.0193 −0.1272 −0.0989   0.2400 −0.0551 −0.0284    0.1197 −0.0756 −0.2966   0.3081    0.0159    0.1398 −0.1590 −0.0098    0.1712   0.1012 −0.0248 −0.0812    0.2093    0.3136    0.0989−0.1245 −0.1377    0.0812    0.1445 −0.1397    0.2966ÃÄÄ

ÄÄÅ 
(A.26)  

 

                                                 
3 The term unstressed expresses that the applied stress tP is zero and the term pre-stressed expresses that the applied 
stress tP is nonzero. 
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The solution for the pre-stressed truss element is 

 

?ÉÊÎÉ =
ÀÁÁ
ÁÁÂ

0 0 0 1.69 × 10¨ 1.69 × 10¨ 2.91 × 10�ÃÄÄ
ÄÄÅ 

=ÉÊÎÉ =
ÀÁÁ
ÁÁÂ

   0.0611    0.1962 −0.0110    0.2314    0.2102 −0.1712−0.0690    0.0106 −0.1936    0.1873 −0.2867 −0.0989   0.1840 −0.0611 −0.0689 −0.1960 −0.0258 −0.2966   0.0611    0.1962 −0.0110 −0.2314 −0.2102    0.1712 −0.0690    0.0106 −0.1936 −0.1873    0.2867    0.0989    0.1840 −0.0611 −0.689    0.1960    0.0258    0.2966ÃÄÄ
ÄÄÅ 

(A.27)  

 The results show that the unstressed truss has five zero frequencies and only one nonzero 

frequency. That means that the unstressed truss element has five rigid body modes. The rigid 

body modes can also be observed in the eigenvector matrix presented in (A.26). Furthermore the 

pre-stressed truss element has three zero and three nonzero frequencies which expresses that the 

pre-stressed truss element has three rigid body modes. It is clear that applying stress on the truss 

element reduces the number of rigid body modes for deformation-independent loading. Studying 

the mode shapes of the unstressed and pre-stressed truss elements show that the rigid body 

rotations are restricted when the stress is applied. 

 The nonlinear formulation and the free vibration problem presented for the truss element 

is an important insight to conceptually understand the free vibration analysis of the pre-stressed 

cylindrical shell presented in Section 4.4. The pre-stressed cylindrical shell has the rigid body 

modes but its frequencies corresponding to rigid body rotations are very small, because of the 

effect of the initial loading which is assumed deformation independent. The truss example is 

presented to express the effect of the deformation independent loading on the frequencies and 

rigid body modes. 
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Appendix B - Calculating the Moment of Inertia of Beam Cross 

Sections 

 In Chapter 5, ring stiffeners are used to stiffen the cylindrical shell. The ring stiffeners are 

modeled as curved beams in the finite element analysis. In ADINA, iso-beam elements are used 

to model the curved beams and the iso-beam elements have rectangular cross-sections. The 

cylindrical shell model considered in this thesis can be related to a submarine. So the dimensions 

of the model are chosen by studying the dimensions of submarines. The stiffeners used in the 

submarines have T cross sections. Since the iso-beam elements have rectangular cross-sections 

we have to calculate the dimensions of the rectangular cross-section to have equivalent rigidity to 

that of the T cross-section. The dimensions of the T cross-section are listed in Table B.1 and 

shown in Figure B.1. Figure B.1.a presents the T cross-section and Figure B.1.b presents the 

rectangular cross-section. 

Table B.1: The dimensions of the beam with T cross-section. 

Segment of the T cross-section Dimensions4 

Flange width (bf) 5.t 

Flange thickness (tf) 0.375× t 
Web height (hw) 16.t 

Web thickness (tw) 0.375× t 
 To find the equivalent dimensions for the beam with rectangular cross-section so that its 

moment of inertia is equal to that of the beam with T cross section, the moment of inertia of the 

beam with T cross section (IT) should be evaluated. In this study the moments of inertia of the 

beams will be calculated about their neutral axes. The coordinate system and the variables to be 

used are presented in Figure B.2.  

                                                 
4 Here dimensions are presented proportional to the thickness of the shell (t) used in the model. 
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 First we need to calculate the position of the neutral axis (z0) of the beam with T cross 

section from vanishing of the first moment of inertia [6]: 

z 

z0 

y 

Neutral axis of the 

T cross-section 

Af 

Aw 

zw 

Neutral axis of the web 

Neutral axis of the flange 

zf 

bf 

tw 

hw 

tf 

Flange 

Web 

heq 

beq 

(a) T cross-section (b) Rectangular cross-section 

Figure B.1: The cross sections of the beams used as ring stiffeners. 

Figure B.2:  The coordinate system and the neutral axis of the cross section. 
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 a �p − p��bDN = 0;         a �pÏ − p��NÐ bDÏ + a µp* − p�¶N� bD* = 0 (B.1)  

where pÏ, p* are the distances of the neutral axes of the web and the flange from z-axis and DÏ, D* are the areas of the web and the flange, respectively. We therefore have 

 a �pÏ − p���Ð
� �ÏbpÏ + a µp* − p�¶�Ð+��

�Ð £*bp* = 0 

¢�ÏℎÏ2 − ℎÏ�Ïp�¤ + ¢£*µ2ℎÏ�* + �*¶2 − £*�*p�¤ = 0 

p� = �ÏℎÏ + £*µ2ℎÏ�* + �*¶2�ℎÏ�Ï + £*�Ï�   
(B.2)  

Since  �* ≪ £* , ℎÏ , the higher order term of �* is dropped out. Hence we have the expression 

 p� = �ÏℎÏ + 2£*ℎÏ�*2�ℎÏ�Ï + £*�Ï� 
(B.3)  

for the position of the neutral axis for the beam with T cross-section. Now the moment of inertia 

can be evaluated. The moment of inertia of a cross-sectional area is defined as [6] 

 � = a �p − p0�2bDD  
(B.4)  

For the beam with T cross-section, using (B.4) we have 

 �j = a �pÓ − p0�2DÓ bDÓ + a µp� − p0¶2D� bD� (B.5)  
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Substituting (B.3) in (B.5) and performing the integrals we obtain 

 �C = �ÏℎÏR3 − �ÏℎÏR + £*�*ℎÏ4 �1 + £*�*ℎÏ�Ï¡  (B.6)  

To have flexibility through calculations between the real model and the finite element model, the 

moment of inertia (B.6) will be defined in terms of the shell thickness (t). Using the relations 

listed in Table B.1, the moment of inertia of the beam with T cross-section is defined as 

 �C = 219.4 × �� 
(B.7)  

We want to have a beam with rectangular cross section which has the same moment of inertia as 

that of the beam with T cross-section. The moment of inertia for the rectangular cross section is 

[6] 

 �� = £ℎR12  
(B.8)  

where b is the width and h is the height of the beam. So from (B.7) and (B.8) we obtain 

 �C = ��;         £ÔÕℎÔÕR12 = 219.4 × �� 
(B.9)  

Using the same relation given in Table B.1 for the height of the beam, the dimensions of the 

beam with rectangular cross-section in terms if the shell thickness are obtained as 

 ℎÔÕ = 16 × � 

£ÔÕ = 0.642 × � 

(B.10)  
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As mentioned in Chapter 5, the cylindrical shell with t =10-2 is considered to model the ring 

stiffeners. So the dimensions of the cross-section of the iso-beam which is modeling the ring 

stiffeners are 

 ℎÔÕ = 16.10� r 

£ÔÕ = 0.642 × 10� r 

(B.11)  

 Now that the equivalent dimensions of the rectangular cross-section have been calculated 

considering the rigidity, it is important to note that the mass of the stiffeners should also be 

adjusted since we are using different dimensions in our model. The difference in the dimensions 

results in a difference in the volume of the stiffeners, and of course considering the same density 

in both models, we obtain different masses. The mass of a single stiffener with T cross-section is 

 ÖC = 9µDÏ + D*¶2×e (B.12)  

The mass of a single stiffener with rectangular cross-section is 

 Ö� = 9£ÔÕℎÔÕ2×e (B.13)  

The mass of the cylindrical shell is 

 Ö� = ÖØÙ��iÚÔ� + 2Ö�Ôm�°Û�Ô�Ô = 9��2×e2� + 4×e� (B.14)  

Substituting the numerical values in (B.12-B.14) we obtain 

 ÖC = 38.9 ·Ü;  Ö� = 50.7 ·Ü;   Ö� = 10,878 ·Ü (B.15)  
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Total masses of the two models are 

 Ö

Ý�� = �. Ö� + Ö�;   Ö

Ý�C = �. ÖC + Ö� (B.16)  

where  Ö�H��"e , Ö�H��"j  are the total masses of the whole structures stiffened with rectangular and T 

cross-sectioned stiffeners, respectively and � is the number of stiffeners used in the structure. 

Here the error is defined as 

 ��%� = Ö

Ý�� − Ö

Ý�CÖ

Ý�� . 100 (B.17)  

Now using (B.16) and (B.17), for the cylindrical shell with only one stiffener we have 

 ���%� = 10,928.7 − 10,916.910,928.7 . 100 = 0.1% (B.18)  

and for the cylindrical shell with 11 stiffeners we have 

 ����%� = 11,435.7 − 11,305.911,435.7 . 100 = 1.1% 
(B.19)  

 In (B.19) the error coming from the difference in the masses for the cylindrical shell with 

11 stiffeners is calculated as 1.1%. This is the biggest error for our models because in this thesis 

the cylindrical shells are stiffened with 11 stiffeners at most. And the error is even smaller for 

other models analyzed. So it is concluded that this error can be ignored, and mass densities are 

not adjusted. 
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Appendix C - Detailed Results of the Free Vibration Modes of the 

Stiffened Cylindrical Shell 

 In the following, detailed results are presented for the analyses on free vibration modes of 

the stiffened cylindrical shell. 

C.1 Results for the variation of the frequencies with the position of the ring 

stiffeners 

  In the tables “n” is the number of circumferential full waves and “m” is the number of 

longitudinal half waves. The parameter defining the position of the ring stiffener (z/L) is 

presented in Figure 5.5. Some values of m are represented by two numbers which one of them is 

in parentheses. The number in parentheses represents very small half waves between two 

stiffeners. This distinction is used because those half waves were considerably small when 

compared to other half waves existing in the same mode shape. And they usually occurred when 

two stiffeners got very close to each other or to the ends of the cylinder. 

Table C.1: The frequencies of the cylindrical shells with 1 stiffener and 2 stiffeners at z/L=0. 

 

Freq. (Hz) n m Freq. (Hz) n m Freq. (Hz) n m Freq. (Hz) n m

1

2

3

4

5

6

7 17.21 2 2 5.84 4 2 17.21 2 2 5.859 4 2

8 17.21 2 2 5.84 4 2 17.21 2 2 5.859 4 2

9 17.36 2 1 6.52 5 2 19.79 2 1 6.535 5 2

10 17.36 2 1 6.52 5 2 19.79 2 1 6.535 5 2

11 20.29 3 2 7.424 5 2 20.29 3 2 7.424 5 2

12 20.29 3 2 7.424 5 2 20.29 3 2 7.424 5 2

13 22.15 3 2 7.947 4 2 22.2 3 2 7.948 4 2

14 22.15 3 2 7.947 4 2 22.2 3 2 7.948 4 2

15 25.19 8.057 3 2 25.12 8.059 3 2

16 25.19 8.057 3 2 25.12 8.059 3 2

2 Stiffeners (z/L=0)
t/R=1e-2 t/R=1e-3

Rigid body motions. Rigid body motions.

Bending Mode

Bending Mode

Mode 
Number

1 Stiffener
t/R=1e-2 t/R=1e-3

Rigid body motions. Rigid body motions.

Bending Mode

Bending Mode
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Table C.2: The frequencies of the cylindrical shells with 2 stiffeners at z/L=0.2 and z/L=0.25. 

 

Table C.3: The frequencies of the cylindrical shells with 2 stiffeners at z/L=0.3 and z/L=0.4. 

 

 

Freq. (Hz) n m Freq. (Hz) n m Freq. (Hz) n m Freq. (Hz) n m

1

2

3

4

5

6

7 21.79 2 2 8.127 5 3 23.44 2 1 8.47 5 2(+1)

8 21.79 2 2 8.127 5 3 23.44 2 1 8.47 5 2(+1)

9 22.68 2 1 8.598 5 2(+2) 23.52 2 2 9.104 5 2(+2)

10 22.68 2 1 8.598 5 2(+2) 23.52 2 2 9.104 5 2(+2)

11 23.76 3 2(+1) 9.373 4 2(+1) 24.54 3 2(+1) 9.539 6 2(+1)

12 23.76 3 2(+1) 9.373 4 2(+1) 24.54 3 2(+1) 9.539 6 2(+1)

13 24.42 3 2(+1) 9.388 6 2(+1) 25.17 9.833 6 2(+2)

14 24.42 3 2(+1) 9.388 6 2(+1) 25.17 9.833 6 2(+2)

15 25.16 9.598 6 2(+2) 25.55 3 2(+2) 10.03 4 2(+1)

16 25.16 9.598 6 2(+2) 25.55 3 2(+2) 10.03 4 2(+1)

2 Stiffeners (z/L=0.25)
t/R=1e-2 t/R=1e-3

Rigid body motions. Rigid body motions.

Bending Mode

Bending Mode

Mode 
Number

2 Stiffeners (z/L=0.2)
t/R=1e-2 t/R=1e-3

Rigid body motions. Rigid body motions.

Bending Mode

Bending Mode

Freq. (Hz) n m Freq. (Hz) n m Freq. (Hz) n m Freq. (Hz) n m

1

2

3

4

5

6

7 23.75 2 1 8.879 5 3 21.74 2 1 8.583 5 3

8 23.75 2 1 8.879 5 3 21.74 2 1 8.583 5 3

9 25.19 9.692 6 3 24.96 3 3 9.59 6 3

10 25.19 9.692 6 3 24.96 3 3 9.59 6 3

11 25.3 2 2 9.734 5 2(+2) 25.23 10.3 4 3

12 25.3 2 2 9.734 5 2(+2) 25.23 10.3 4 3

13 25.34 3 3 10.14 6 2(+2) 28.74 2 2 11.03 6 4

14 25.34 3 3 10.14 6 2(+2) 28.74 2 2 11.03 6 4

15 26.95 3 2(+2) 10.65 4 3 30.83 3 2(+2) 11.46 5 4

16 26.95 3 2(+2) 10.65 4 3 30.83 3 2(+2) 11.46 5 4

2 Stiffeners (z/L=0.4)
t/R=1e-2 t/R=1e-3

Rigid body motions. Rigid body motions.

Bending Mode

Bending Mode

Mode 
Number

2 Stiffeners (z/L=0.3)
t/R=1e-2 t/R=1e-3

Rigid body motions. Rigid body motions.

Bending Mode

Bending Mode
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Table C.4: The frequencies of the cylindrical shells with 2 stiffeners at z/L=0.5 and z/L=1. 

 

C.2 Results for the variation of the frequencies with the number of uniformly 

distributed ring stiffeners 

In the tables “n” is the number of circumferential full waves and “m” is the number of 

longitudinal half waves. 

Table C.5: The frequencies of the unstiffened and stiffened cylindrical shells (3 stiffeners). 

 

Freq. (Hz) n m Freq. (Hz) n m Freq. (Hz) n m Freq. (Hz) n m

1

2

3

4

5

6

7 18.2 2 1 7.52 5 3 7.965 2 1 4.316 4 1

8 18.2 2 1 7.52 5 3 7.965 2 1 4.316 4 1

9 22.48 3 1(+2) 8.188 4 3 17.65 2 2 4.4 3 1

10 22.48 3 1(+2) 8.188 4 3 17.65 2 2 4.4 3 1

11 25.26 9.12 6 3 18.88 3 1 5.77 2 1

12 25.26 9.12 6 3 18.88 3 1 5.77 2 1

13 30.87 2 2 11.91 7 3 21.09 3 2 5.979 5 1

14 30.87 2 2 11.91 7 3 21.09 3 2 5.979 5 1

15 35.71 3 4 12 6 4 25.01 7.3 5 2

16 35.71 3 4 12 6 4 25.01 7.3 5 2

2 Stiffeners (z/L=1)
t/R=1e-2 t/R=1e-3

Rigid body motions. Rigid body motions.

Bending Mode

Bending Mode

Mode 
Number

2 Stiffeners (z/L=0.5)
t/R=1e-2 t/R=1e-3

Rigid body motions. Rigid body motions.

Bending Mode

Bending Mode

Freq. (Hz) n m Freq. (Hz) n m Freq. (Hz) n m Freq. (Hz) n m

1

2

3

4

5

6

7 7.728 2 1 2.714 3 1 17.64 2 1 7.309 5 2

8 7.728 2 1 2.714 3 1 17.64 2 1 7.309 5 2

9 17.21 2 2 3.753 4 1 17.66 2 2 7.642 4 2

10 17.21 2 2 3.753 4 1 17.66 2 2 7.642 4 2

11 18.72 3 1 4.093 2 1 21.09 3 2 8.648 5 2

12 18.72 3 1 4.093 2 1 21.09 3 2 8.648 5 2

13 20.32 3 2 5.831 5 1 23.32 3 2 9.048 6 2

14 20.32 3 2 5.831 5 1 23.32 3 2 9.048 6 2

15 25.27 5.838 4 2 24.94 9.624 6 2

16 25.27 5.838 4 2 24.94 9.624 6 2

3 Stiffeners
t/R=1e-2 t/R=1e-3

Rigid body motions. Rigid body motions.

Bending Mode

Bending Mode

Mode 
Number

Unstiffened
t/R=1e-2 t/R=1e-3

Rigid body motions. Rigid body motions.

Bending Mode

Bending Mode
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Table C.6: The frequencies of the stiffened cylindrical shells with 5 and 7 stiffeners. 

 

Table C.7: The frequencies of the stiffened cylindrical shells with 9 and 11 stiffeners. 

 

  

Freq. (Hz) n m Freq. (Hz) n m Freq. (Hz) n m Freq. (Hz) n m

1

2

3

4

5

6

7 24.93 13.07 6 4 24.88 19.38 7 6

8 24.93 13.07 6 4 24.88 19.38 7 6

9 27.58 2 1 13.87 7 4 33.68 2 1 19.59 8 6

10 27.58 2 1 13.87 7 4 33.68 2 1 19.59 8 6

11 31.21 2 2 15.04 7 4 37.01 2 2 20.71 8 6

12 31.21 2 2 15.04 7 4 37.01 2 2 20.71 8 6

13 38.03 3 4 15.1 5 4 47.86 2 3 21.17 7 6

14 38.03 3 4 15.1 5 4 47.86 2 3 21.17 7 6

15 40.9 3 4 15.14 6 4 56.87 4 6 21.84 9 6

16 40.9 3 4 15.14 6 4 56.87 4 6 21.84 9 6

7 Stiffeners
t/R=1e-2 t/R=1e-3

Rigid body motions. Rigid body motions.

Bending Mode

Bending Mode

Mode 
Number

5 Stiffeners
t/R=1e-2 t/R=1e-3

Rigid body motions. Rigid body motions.

Bending Mode

Bending Mode

Freq. (Hz) n m Freq. (Hz) n m Freq. (Hz) n m Freq. (Hz) n m

1

2

3

4

5

6

7 24.81 21.36 24.74 20.89

8 24.81 21.36 24.74 20.89

9 38.61 2 1 25.74 8 8 42.85 2 1 32.04 9 10

10 38.61 2 1 25.74 8 8 42.85 2 1 32.04 9 10

11 41.64 2 2 25.77 9 8 45.66 2 2 32.21 10 10

12 41.64 2 2 25.77 9 8 45.66 2 2 32.21 10 10

13 51.61 2 3 26.72 9 8 54.91 2 3 32.99 10 10

14 51.61 2 3 26.72 9 8 54.91 2 3 32.99 10 10

15 62.74 27.16 8 8 62.55 33.15 9 10

16 62.74 27.16 8 8 62.55 33.15 9 10

11 Stiffeners
t/R=1e-2 t/R=1e-3

Rigid body motions. Rigid body motions.

Bending Mode

Bending Mode

Bending Mode

Bending Mode

Bending Mode

Bending Mode

Mode 
Number

9 Stiffeners
t/R=1e-2 t/R=1e-3

Rigid body motions. Rigid body motions.

Bending Mode

Bending Mode

Bending Mode

Bending Mode

Bending Mode

Bending Mode
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