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Abstract

The numerical calculation of integrals is central to mansnpater
graphics algorithms such as Monte-Carlo Ray Tracing. Weavsho
that such methods can be studied using Fourier analysis eNcah
error is shown to correspond to aliasing and the link betweep-
erties of the sampling pattern and the integrand is studiéd.ap-
proach also permits the unified study of image aliasing amdemnu
ical integration, by considering a multidimensional domaihere
some dimensions are integrated while others are sampled.

Keywords:  Numerical Analysis, Integration, Fourier, Monte-
Carlo, Aliasing, Rendering, Ray Tracing

1 Introduction

Sampling is at the heart of two central issues in computeptgra
ics: image antialiasing and Monte-Carlo integration. Theyinti-
mately related, and it has been clear that antialiasindvegsome
numerical integration since we usually can only point-skntpe
image function. However, to a few exception, there has bigtha |
connection between aliasing and Monte-Carlo integration.

In this text, we argue that Fourier analysis is a powerful too
understand numerical integration techniques such as Moat®
estimators. Fourier analysis can characterize both tegiahd and
the sampling pattern, as well as their interaction. Founnedysis is
also the tool of choice to study aliasing, a critical issueamputer
graphics where numerical integration is needed for eachl px
generate a discrete 2D images thafeus not only from integration
noise at each pixel, but also from 2D aliasing across pixels.

The present text focuses on theoretical insights. It has iveek
in progress for way too long, and | have decided to publish the
current state as a tech report. The list of open issueslibsii and,
in particular, includes importance sampling and the caysece of
estimators when the sampling rate is increased.

We hope that the combination of the present perspective en nu
merical integration and recent frequency analysis of ligdnisport
and other rendering#cts, e.g. [Ramamoorthi and Hanrahan 2001;
Durand et al. 2005; Egan et al. 2009; Soler et al. 2009; Egah et
2011a; Egan et al. 2011b]

in the sampling rate we derived there, which comes from thised
Shannon sampling theorem derived in the present document.

1.1 Overview

We express Monte-Carlo and numerical integration in terhssge

nal processing, where a sampling step is followed by a suiromat
step. Sampling potentially results in aliasing, which tessia error.
Precisely, we show that numerical error is the aliasing atDK.
Said diferently, it is the sum of the frequency-by-frequency prod-
uct of the integrand spectrum and the sampling pattern ispact
(the dot product between the two spectra). A final expresision
that error corresponds to the correlation between theriateband
the sampling pattern.

This allows us to study how flerent types of integrands and
sampling patterns interact. In particular, we derive asegisam-
pling theorem that states that a function can be perfectggiated
if it is sampled at at least its maximum frequency. This iscda
of two compared to Nyquist and Shannon.

We then study the multidimensional case involved in image sy
thesis, where each pixel is both a sample of a continuougitumc
and the result of a numerical integration across dimensank as
time (for motion blur), lens (depth of field), or incominguithina-
tion. We show that the Fourier analysis of the higher-dirieered
case (2D xy times time, times lens, etc.) allows us to exprefis
antialiasing issues and numerical integration error. higaar, it
shows how error due to numerical integration might resustinc-
tured artifacts when sampling is poorly chosen, such as skeofi
the same random sequence for all pixels.

1.2 Related Work

The two most related papers are Cook’s stochastic samlB&6]
where he studies thefect of non-uniform sampling and compares
blue noise and jittering, and Mitchell’s spectrally optimampling
[1991]. In particular, Mitchell’s work studies numericaitégra-
tion using Fourier analysis, but we feel that the signal pssing

The insights in this document have been used to derive some Perspective is sometimes hidden below the surface and wetsee

of the sampling rate in work on the Fourier analysis of motsur
[Egan et al. 2009]. The careful reader will have noticed &oiaaf 2

emphasize it in this document.

Ouellette and Fiume [2001] look at numerical integrationl an
compare various estimators for 1D integrals, specificaltye con-
text of linear light source. They characterize the spectafirthe
sampling patterns but do not use it directly for error analys

Fourier analysis has been applied to the numerical computa-
tion of integrals of periodic functions, [Gautschi 1997p81Boyd
2011] p457. Usually restricted to the trapezoid rule andanfatll
signal processingliasing perspective. It has also been shown that
the numerical error predicted by various schemes such pezoa
or Simpson can be extremely conservative for periodic fongt
and that considering functions in terms of their Fouriefesecan
be used to derive better error bounds for periodic functj@veide-
man 2002].



2 Basic Monte-Carlo Integration
(1D, uniform sampling)

We first study the simple case of a 1D integral and show that it
can be expressed in terms of signal processing and thatoemme-

sponds to aliasing.
1
I:f f(x) dx
0

We seek to evaluate
This is, by definition, the DC of the Fourier transformfof

1)

| = f(0) 2

A numerical scheme such as a Monte-Carlo estimator With

uniform samples is:
NTN § (%) 3)

where thex; are random samples distributed uniformly across the
domain. In this document, we focus on one instance of théginat
tor (for a given set oN samples) while the Monte-Carlo literature
usually considers the randgpnocess where thex; are random vari-
ables. In our case, the can come from a random sequence gener-
ator, but might also correspond to other numerical schemnas as
trapezoids or Simpson.

A more general integrator has weights for each samples,hwhic
can come from importance sampling or other derivations sisch
polynomial approximations in the case of Simpson.

|N:Zwif(xa) 4)

The weights often sum to 1, but not always. For example, impor
tance sampling exists both in a normalized or unnormalipeh f

2.1 Sampling theory

We separate the numerical scheme into two steps, samplishg an
summation. Similar to sampling theory, we define the samgplin

function
S = > wio(x~x) (5)

wheresd is the Dirac characteristic function. That 8,s non-zero
only at thex, and integrates to 1 if the; sum to 1. If thex are
regularly distributed, we get the traditional Dirac traged in uni-
form sampling. For Monte-Carlo integration, theare randomly
distributed ands is Poisson noise.

Estimators are usually expressed as a discrete sum ovex.the
However, now that we have sampled the integrand, we candeEmsi
that the estimator is a continuous integral:

In= fS(x)f(x)dx (6)
That is, we firssample the functionf and we then take the integral,
which corresponds to the DC of the sampled integrand.

We then express this succession of sampling and integrition
the Fourier domain. Sampling is a multiplication in the palpand
therefore a convolution in the Fourier domain

Sf=S8Sef )
This convolution generates well-known aliasirfteets. IfS is the
regular sampling impulse train, th&is also a regular impulse train
and we obtain the traditional replicas bfin the Fourier domain.
If S is a Poisson distribution of samples, its Fourier spectras h
energy at all frequencies, and theeet of aliasing is more “diuse.”

We can now express Monte-Carlo integration or any other
sampling-based numerical scheme by noting that Equatisrittei
DC of the sampled integrand:

Iv=($ef)(0) ®

In summary:

Monte-Carlo integration can be seen in the Fourier domain as
a convolution by the spectrum of the sampling pattern followed
by the extraction of the DC (value at frequency 0).

Primal Dual (Fourier)

integrand f

sampling pattern S

Sampled function Sf

Figure 1. Fourier pipeline for Monte-Carlo integration.

Dot product perspective We expand the convolution integral
and express equation 8 as:

Iy = f S(w)f(-w) dw )
and becausé is real we can replacé(-w) by the conjugate of :

Iy = f S(w) f*(w) dw (10)

The numerical estimation of the integral of f using a sam-
pling pattern S isthedot product between their spectra.

This is not surprising since it is also a dot product in thenali
and the Fourier transform is simply an orthonormal chandmsefs,
which preserve dot products.

As an extreme case of this formula, consider the originagral,
which can be expressed as the sampling by a constant function
That is, the sampled function is the integrand multiplied3§y) =
1. In this case, the Fourier transform $fis a Dirac and is zero
everywhere else, leading to an error of 0.

2.2 Error analysis

We study numerical error due to a given sampling pat&r@om-
pared to the true integral in Eq. 2, the onlyfdience is the convo-
lution by the sampling pattern. We first consider the commemsec
where the spectrum &has a DC compone®(0) = 1, because the
w; some to 1. This means that the error in Monte-Carlo integmati
is due to the other parts of the spectrunsof

Theerror in Monte-Carlointegration can beexpressed inthe
Fourier domain asthe aliasing caused by the sampling pattern
at theDC.



In—1=f(0)-(5e f)(0) (11)

In the dot product perspective, we first consider samplirtg pa
terns that sum to one. In this case, the DC teinx(0) in equation
10 is the exact integral. This means tleator isthe dot product
between the spectrum of f and the spectrum of S wheretheDC
isreplaced by zero.

Expressed dierently, error is the correlation between the
sampling pattern and the integrand spectra.

If the sampling pattern does not sum to one, which can hap-
pen with importance samplinghe error has an additional term,
which isthe trueintegral multiplied by the difference between
the DC of the sampling pattern and one.

2.3 Regular sampling (Trapezoid):
revised Nyquist criterion

When thex; are regularly distributed over the domain, we obtain
Trape20|d integration The spectruns is also a Dirac comb, and
we are in the presence of traditional aliasing where theiralg
spectrum is regularly replicated. This means that the ratem
error is due to the frequency content at the sampling rateitand
multiples. For example, if the function to be integrated isirze
wave at the sampling frequency, we get a systematic biasibeca
f(x%) is the same value for ak.

However that if the integrand is band-limited and the sangpli
rate of our estimator satisfies the Nyquist criterion, tiegration
is exact. Not surprising, but always good to know.

Better still if we are undetwice the Nyquist limit, the integral
is still correct because aliasing occurs but does fiecathe DC.

A
| ~ |~

Blue-noise samping

Figure2: The aliasing due to different sampling patterns.

An integral can be numerically estimated exactly if the in-
tegrand is regularly sampled at a rate that is higher than its
maximum frequency (half the Nyquist rate).

A similar result is known in the numerical integration laéure
where the integration of trigopnometric polynomials is $taij e.g.
[Gautschi 1997] p. 155, but is usually not expressed in tesfns
sampling rate and aliasing in signal processing.

2.4 Poisson sampling and Monte-Carlo integration

Poisson sampling In basic Monte-Carlo integration, the are
purely random and independent. This means $hiat Poisson and
its spectrun®s is flat (except at the DC) and the phasge) is ran-
dom.

1Regular sampling is also what you obtain with Quasi-MonzekTin-
tegration with the Halton sequence for a power of two numibeamples.

This sampling pattern is the most agnostic of all: it creat&ss-
ing or all frequencies, all frequencies equally contribigteerror.
As a result, it's very general and makes no assumption onrée f
quency content of the integrand. However, if the integraasllbss
energy in the high frequencies, it can be wasteful.

Review of MC convergence and variance By construction,
the contributionf(x;) of a sample of a Monte-Carlo estimator has
the variance of the integranfl Recall that when multiplying a
function by a scalar, the variance gets multiplied by thease|of
the scalar:o?(kf) = k®c?(f). When adding two functions, their
variances are added together as well as their covariarfi¢é:+g) =
a?(f) + a?(g) + cov(f, g). In basic Monte-Carlo integration, the
are iid, which means that the their covariance and that of (kg

is zero. As aresult, since we atitterms and multiply by AN, we
obtain

(12)

1 1
2 N — 2
o (—N E f(X,)) =N (f)
Since the error (standard deviation) is the square rooteo¥aini-

ance, we obtain the/.VN convergence of Monte-Carlo integration.

Variance and power spectrum Recall that the variance of a
function is the integral of its power spectrum minus the DC:

E(f2) - E(f)?
ffz(x)dx—DC(f)z

a3(f) (13)

(14)

and according to Parseval's theorem, we haf/éz(x)dx =
[ f2(w) dw, therefore

o-z(f):flﬂz(w)dw—DC(f) (15)

That is, the variance is the integral of the power spectrucepixat
the DC. This is already providing an insight about the linkamen
Fourier analysis and Monte-Carlo integration.

Fourier analysis of MC convergence We have seen that the
error is the dot product between the sampling spectrum anihth
tegrand spectrum (minus the DC). This means that the sqearad

is
B0~ )] = E ( [swf) dw)z]

We expand the square and the expected value integral ndte tha
all the cross term vanish becauSés randor. This gives

(16)

E[(I — In)?] = f E [éz(w)fz(—w)] dw (17)

and we can take thé terms out because the expected value is with
respect td:

E[(1 - In)3] = f f2(-w)E[$%(w)] dw (18)

Since the expected power spectrunsas flat (random samples),
we obtain the variance multiplied by a constant that reprasthe
power spectrum o8. Below we derive that this constant ig\NL

2.4.1 Simpler derivation

The power spectrum of a Poisson process is known to be awdifac
in the center and aflat spectrum for a Poisson process at fate

2| probably miss the-w terms, which probably result in real value.



Worst case analysis when all phases interfere negatively with
integrand spectrum and you get the sum of the absolute vafues
and the L1 norm of the spectrum of the integrand (minus the ®C a
usual).

2.5 Study of different sampling patterns

Non-uniform weights For a fixed DC, the energy (variance) of
a sampling pattern is bounded from below by the energy of éite p
terns where all weights are equal. Therefore the power spact
of all sampling patterns is higher than that of the one wittiarm
weights (Parseval). This suggest that, without additidmewl-
edge, the best strategy is to have all samples have the saigte.we

Simpson The Simpson estimator is an extension of trapezoid
that integrates second-order polynomials exactly. Howewe
show that its frequency properties are not ideal.

The compound Simpson scheme is:

HE 3iN (FO)+ f(1)+ " 4f[(2i - Dh] + 2f(2ih))+O(h’) (19)

This corresponds to a sampling pattern that hfisidint weights
for the various Diracs.

The Fourier transform is just a shifted version of that of g
ular Dirac comb. This is in line with experiments that showfeat
Trapezoidal methods often do better than Simpson’s sch€muez{
Uribe and Neugebauer 2002].

Blue Noise A blue noise sampling pattern has no low frequency
(see Figure). As a results, the aliasing is restricted tditge fre-
guencies. This pattern is great when the integrand has tesgye

in the high frequencies.

2.6 Error as afunction of the integrand

Recall that the error of an integrator is the integral of tiegfiency-
by-frequency product of the spectrum of the integrand aati @h
the sampling patterns. This means that if we know that somdda
of frequency have more energy in the integrand, the samplatg
tern should seek to have less energy there.

Natural signals are known to have audspectrum. The lower
energy in the high frequencies means that aliasing therd sause
as much numerical error for integrators. This means thatngbkag
pattern that exhibits blue-noise properties

Similarly, uniform sampling improves better thap N when
the integrand has a falibin the spectrum because it has no energy
before the period of the sampling pattern.

3 Multi-dimensional case and dependent
integrals

In computer graphics, Monte-Carlo estimators are usuaityused

to compute a single integral but to compute the values of ar2D a
ray of pixels. The accuracy of each integral is not the ondyés
and the visual noise introduced is paramount for image tyu&lor
example, it is well known that using the same random sequnce
all pixels in an image results in structured error that igemely
objectionable. How can we study thffext of the sampling strate-
gies on image quality? We show below that it can be easilyietud
using multidimensional Fourier analysis.

3.1 2D Fourier version

We consider a simplified case where we have a 1D scanline elspix
and each pixel comes from a 1D integral, for example the rateg
tion of a linear light source or integration over time for mootblur.

We call the scanline dimensionand the other oneé One version
of the problem is

I(x) = f f(x, tyw(t) dt (20)
wherew(t) is the weight over time (e.g. a hat corresponding to
shutter time). A version with antialiasing is

I(x):fff@é’(x,t)w(t)dt

where( is a prefilter. For antialiasing, we need to first samipénd
then perform a Monte-Carlo integration of the prefilter cantion
(supersampling). The motion blur integral can also be ssea a
convolution. For simplicity, we can note w'(x,t) the conutibn
kernel corresponding to both motion blur and antialiasing.

In practice, we first samplé through supersampling, and per-
form the convolutions on this sampled version.

(21)

Is(x) = [(fS) e W](x) (22)

Note that we started with a 2D integrahcénd eventually slice it
intoa 1D imaqe. InAthe Fourier domain, the multiplicatioctmes
a convolutionS ® f, the convolution a multiplication bW, and
slicing is an integral oveg.

5w = [ [(F &S] (@ wn) oy (23)

Sampling creates the usual replicas. The convolution by the
prefilteyexposure kills high frequencies but the replicas inside tha
window remain.

What is the error for a given spatial frequengy? It is the inte-
gral overw; of the aliases for that spatial frequency.

Note that negative interference can happen and reduce the ef
fect of aliasing. This is similar to the 1D case where the Di@nte
received the integral of the aliases.

Mitchell’s spectrally optimal sampling This integration over
wy made Mitchell [1991] advocate sampling patterns that agoid
cylinder of low spatial frequencies. However, note thatyathle
aliases inside the (soft) window defined Wycontribute to the er-
ror. It is not diferent from traditional aliasing. This is why we
respectfully disagree with his conclusions. The sampliatigom
should just push frequency content outside the bandwidtthef
antialiasingshutter exposure filter.

The problem in Mitchell's argument is that he considers thexs
trum of the integrand without thefect of sampling and looks at the
effect of convolution and integration over that spectrum. Hewe
sampling and these operations do not commute and one hastto st
with sampling to derive the correct spectra. This error ipssing
because the previous section of his paper does contain thecto
derivation of the sampled spectrum.

L2 error We can compute the L2 error over the image. According
to Parseval, we can compute it directly in the Fourier domain

I =1sll (24)

f (10 - 1s(0)2 dx
[ (w9 - iswo) do

2
f [ f ((§’®f)v@’)(wx,wt)dwt] dwy (26)

The first integral is on values while the second one is on squar
As a result, the total L2 error is smaller than by the variaofcine
aliases.

(25)



Interlude How does this relate to our simple 1D case where R , R, H , P. 2001. A signal-processing

Monte-Carlo integration extracted the DC? Why do the higher framework for inverse rendering. I@omputer Graphics Pro-
matter now? This is because they are cross frequencieshriibe ceedings, Annual Conference Series, ACM SIGGRAPH, 117—
and space, and they have dfeet on the spatial frequencies of the 128.
final image.

Maybe we can look at it another way. At eactthe imagevalue S ,C..S K., D F.H N, S ,F. X
is the DC of S restricted tomultiplied by f, convolved byw'. This 2009. Fourier depth of fieldA\CM Trans. Graph. 28, 2.

restriction ofS to x corresponds to an integral of the spectrm
Furthermore, the DC gives us the value in the primal, but vee ar
interested in the spectrum of the resulting image.

W ,J. A. C. 2002. Numerical integration of periodic func-
tions: A few examples.The American Mathematical Monthly
109, 1 (Jan.), 21-36.

4 Discussion

Fourier analysis considers an infinite support, whereasté4@arlo
integration is usually studied on a [01] interval. In pautar, we
observe that many quadrature schemes spend much resaugces (
samples) around the extremities. This is for example the wéth
Gaussian quadrature, where the density of samples is hagbend
0 and 1, and their weight is correspondingly smaller, roygialr-
responding to importance sampling with higher importaricthe
boundaries.

In Fourier analysis, if we window the domain or periodize the
function, we might also gter from extraneous frequencies due to
the lack of continuity at the boundary.
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Figure 3: Fourier-domain interpretation of supersampled image

synthesis with mation blur.






