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Abstract

Proteins are essential to organisms and play a central role in almost every biological
process. The analysis of the conformational dynamics and mechanics of proteins
using numerical methods, such as normal mode analysis (NMA), provides insight
into their functional mechanisms. However, despite the fact that much effort has
been focused on improving NMA over the last few decades, the analysis of large-scale
protein motions is still infeasible due to computational limitations.

In this work, first, we identify the usefulness and effectiveness of the subspace
iteration (SSI) procedure, otherwise widely used in structural engineering, for the
analysis of proteins. We also develop a novel technique for the selection of iteration
vectors in protein NMA, which significantly increases the effectiveness of the method.
The SSI procedure also lends itself naturally to efficient NMA of multiple neighboring
macromolecular conformations, as demonstrated in a conformational change pathway
analysis of adenylate kinase.

Next, we present a new algorithm to account for the effects of solvent-damping
on slow protein conformational dynamics. The algorithm proves to be an effective
approach to calculating the diffusion coefficients of proteins with various molecular
weights, as well as their Langevin modes and corresponding relaxation times, as
demonstrated for the small molecule crambin.

Finally, the structure of Homo sapiens fascin-1, an actin-binding protein that is
present predominantly in filopodia, is examined and described in detail. Application
of a sequence conservation analysis to the protein indicates highly conserved surface
patches near the putative actin-binding domains of fascin. A novel conformational dy-
namics analysis suggests that these domains are coupled via an allosteric mechanism
that may have important functional implications for F-actin bundling by fascin.
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Introduction

Proteins are essential to organisms and play a central role in almost every biological

process. Based on their functions, proteins can be divided into different classes.

Structural proteins such as F-actin and microtubules are a class of proteins that are

used in the cytoskeleton of cells and are responsible for the cell geometry. Another

class of proteins are enzymes, which are catalysts and accelerate the chemical reactions

occurring within organisms. There are also many other proteins that play roles in

cell adhesion, cell cycle, cell signalling, etc.

The conformational dynamics and mechanics of proteins are of great importance

to many biological functions, ranging from transcription and translation to cell di-

vision and migration. Numerical methods, such as molecular dynamics (MD) and

normal mode analysis (NMA), may give insight into the mechanical properties and

dynamic behavior of proteins. Unlike MD, which needs to perform time-consuming

time-integrations of the full set of governing equations of motion, NMA examines

only harmonic oscillations of the protein around its ground-state conformation. As

a result, NMA can be employed to analyze many protein motions that are currently

inaccessible to MD. For example, NMA has proven successful in analyzing the func-

tional motions associated with large macromolecules, such as myosin [5, 6], kinesin

[5, 7], microtubules [8], and F-actin [9].

Over the last few decades, significant effort has been directed towards further

improving the computational efficiency and accuracy of NMA for analyzing the con-

formational dynamics and mechanics of proteins. For example, one of the main

time-consuming parts of NMA, which has attracted much attention, is solving the

eigenvalue problem associated with the protein model. However, in spite of all the



effort [10, 11], the all-atom NMA of many protein motions, such as conformational

change pathways of large macromolecules, is still almost infeasible due to the lack

of a computationally efficient and robust eigenvalue solver. Additionally, since the

effects of solvent friction on proteins are generally ignored in NMA, the time scales of

protein functional motions cannot be predicted correctly using eigensolutions. Also,

it is expected that the normal modes of proteins are altered substantially when the

effects of solvent-damping are incorporated into NMA [12].

The present work focuses on both developing a computationally efficient and ro-

bust eigenvalue solver and incorporating the solvent-damping effects into NMA. Also,

here NMA along with other computational procedures, such as sequence conservation

analysis, are employed to gain insight into the functional mechanism of Homo sapiens

fascin- 1, an F-actin crosslinking protein.

In Chapter 1, we first review briefly the standard subspace iteration (SSI) method,

a widely used eigenvalue solver in engineering problems [13]. Then, we present a new

algorithm to optimize the number of iteration vectors employed in the method [14].

We subsequently apply the improved method to two proteins to illustrate its use

in protein NMA. A particularly important observation is that with the new variant

of the SSI method CPU time scales linearly with the number of eigenpairs sought

[14], as in the Lanczos method [15]. Additionally, it is demonstrated that the SSI

method is well-suited to the analysis of protein conformational change pathways,

where hundreds of normal mode analyses may be performed in nearby conformations

[16].

In Chapter 2, we first review the Langevin mode analysis developed by Lamm and

Szabo [17] to incorporate the effects of solvent-damping into the standard NMA. Then,

we present a new algorithm that calculates a solvent friction matrix using the finite

element method (FEM) to account for the solvent-damping effects. The algorithm

proves successful in calculating the diffusion coefficients of a sphere and 10 proteins

with various molecular weights, ranging from 7 kDa to 233 kDa. We subsequently

couple the solvent friction matrix and the stiffness and mass matrices calculated using

the FEM [18] to obtain the Langevin modes and corresponding relaxation times of



crambin, a small protein with 46 amino acids. The obtained results are then compared

with those calculated using bead models [19].
In Chapter 3, we first examine the structure of Homo sapiens fascin-1 [20], an

actin-binding protein that is present predominantly in filopodia. The structure re-

veals a novel arrangement of four tandem B-trefoil domains that form a bi-lobed

structure with approximate pseudo 2-fold symmetry. We subsequently apply sequence

conservation analysis to the protein to investigate its structurally and functionally im-

portant regions. The results confirm the importance of the hydrophobic core residues

that stabilize the f-trefoil fold, as well as the interfacial residues that are likely to

stabilize the overall fascin molecule. Additionally, sequence conservation analysis in-

dicates highly conserved surface patches near the putative actin-binding domains of

fascin. Conformational dynamics analysis also suggests these domains to be coupled

via an allosteric mechanism that might have important functional implications for

F-actin crosslinking by fascin.

Finally, we present our conclusions.
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Chapter 1

The subspace iteration method in

protein normal mode analysis

Normal mode analysis (NMA) plays an important role in relating the conformational

dynamics of proteins to their biological function [11]. In classical NMA [21, 22], pro-

tein atomic degrees of freedom are treated explicitly in solving the generalized eigen-

value problem in a biologically relevant conformation, typically for the lowest twenty

to one hundred normal modes that represent the largest conformational fluctuations

of the molecule. In the analysis of conformational transitions, numerous normal mode

analyses may be performed for the same protein in nearby conformations [23].

NMA provides a considerable computational advantage over molecular dynamics

because of the elimination of time-integration and explicit solvent degrees of freedom.

Nevertheless, significant effort has been directed towards further improving the com-

putational efficiency of NMA to enable its application to ever-larger supramolecular

complexes including viral capsids, molecular motors, and the ribosome (Ref. [16]

and references therein). Particular attention has been directed to the development

and application of coarse-grained protein models such as elastic network and related

models [18, 24], whereas somewhat less attention has been paid to the development of

algorithms that improve the computational efficiency of all-atom protein NMA itself.

Such developments are of interest because they preserve the explicit representation

of atomic degrees of freedom and their solvent-mediated interactions as modeled by



implicit solvent force-fields. The explicit representation of atomic interactions is im-

portant to model accurately a number of biological processes, including interactions

between proteins and nucleic acids [25], as well as small molecules in rational drug

design [26]. Additionally, the role of allosteric regulation of binding affinity and catal-

ysis by at-a-distance mutations remains an interesting and open area of research that

may require all-atom modeling to understand fully [27].

The subspace iteration method was originally developed by K. J. Bathe for the

solution of frequencies and mode shapes of macroscopic structures such as buildings

and bridges using finite element analysis (FEA) [28, 29]. In those applications, rela-

tively few frequencies and corresponding mode shapes were sought, such as the lowest

10-20 eigenpairs in models containing a total of 1000-10,000 degrees of freedom. Since

its development, however, the subspace iteration method has been used extensively

in the FEA of considerably larger systems reaching millions of degrees of freedom,

and naturally has attracted significant attention for improvements as a result (see for

example Refs. [30-37]).

The subspace iteration method is a particularly attractive approach to protein

NMA because the procedure (1) is designed specifically for the calculation of the low-

est eigenpairs of large systems; (2) uses previously calculated eigenvectors from nearby

conformations to speed up significantly the solution of eigenpairs in nearby confor-

mations of interest; (3) is computationally robust; and (4) is amenable to parallel-

processing.

The original development of the method was based on the earlier use of the Ritz

method, and relates to the works of Bauer [38] and Rutishauser [39]. Key devel-

opments for its practical use in structural engineering were the specific steps in the

iteration method, the construction of the starting iteration vectors, the use of an

effective number of iteration vectors, the use of error measures, and the Sturm se-

quence check [28]. A convergence analysis of the subspace iteration method is given in

Ref. [40]. The method is also abundantly used in the solution of linearized buckling

problems [13], which is applicable to calculations of the stability of the cytoskele-

tal polymers filamentous actin and microtubules, as well as viral capsids and other



supramolecular assemblies with mechanically related biological function [18].

An additional leading approach to NMA in the structural mechanics community is

the Lanczos method [15], advanced particularly by Paige [41] and others [42]. Initially,

the Lanczos method exhibited instabilities due to loss of orthogonality of the iteration

vectors employed. This shortcoming, however, has been largely overcome, and when

implemented properly the method is highly efficient. A particular asset of the method

is that computational effort scales about linearly (neglecting the effort for the initial

factorization) with the number of eigenpairs sought, a property that is not generally

satisfied by the traditional subspace iteration method. An important property of

both the subspace iteration and Lanczos procedures is that they solve directly for the

eigenpairs sought instead of calculating intermediate matrices first, as if all eigenvalues

were desired. This property contrasts with the approach of the Householder-QR

method [13], for example, which becomes prohibitively expensive computationally

and in memory as the size of coefficient matrices increases. At present, the Lanczos

and subspace iteration methods are the two most widely used techniques for the

solution of large eigenvalue problems in FEA, when coefficient matrices are of order

10,000-10,000,000. For these reasons, any significant improvements to these methods

are of great interest.

Recently, considerable effort has been directed towards using parallel processing

in FEA, in shared-memory and distributed-memory processing modes. Whereas the

Lanczos method can intrinsically (largely) be parallelized only in the factorization of

the stiffness matrix and the forward reduction and back-substitution of the individual

vectors, the subspace iteration method allows in addition the parallel solution of

multiple iteration vectors which can result in a large computational benefit. However,

there is also interest in improving the method in other ways, and in particular, for the

solution of eigenproblems in which relatively many eigenpairs need to be calculated.

As mentioned earlier, a key step in the subspace iteration method is the establish-

ment of effective starting iteration vectors, which implies using an optimal number

of iteration vectors. The objective of the present work is to apply the subspace iter-

ation method to the normal mode analysis of proteins, and to introduce a significant



improvement upon the original implementation regarding the choice of the number of

iteration vectors. In the following sections, we first review briefly the standard sub-

space iteration method and discuss its inherent value for the solution of frequencies

and mode shapes of proteins. We, subsequently, present a new algorithm to estab-

lish an effective number of iteration vectors, illustrating the use of this algorithm in

some applications. A particularly important observation is that computational ef-

fort increases linearly with the number of eigenpairs sought in the solutions obtained

with the improved subspace iteration method, as in the Lanczos method. To focus

on our new development only, and to compare results obtained with the traditional

and improved methods, we employ a basic implementation without parallelization of

the code, running in-core on a single processor workstation. Moreover, we provide

only relative solution times, which are largely independent of the machine used. Al-

though these times thereby represent practically "machine-independent" algorithmic

improvements, actual solution times will naturally depend on the specific machine

employed and will decrease as computational hardware becomes more efficient.

1.1 Methods

1.1.1 The basic subspace iteration method

We consider the generalized eigenvalue problem,

Kp AMp (1.1)

where K and M are symmetric matrices of order n, K is positive definite, and M

is positive semidefinite. We seek the smallest p eigenvalues A,, A2 , ..., A, and corre-

sponding eigenvectors pi, <p2, ... , p with the ordering,

A < A ... < A_ (1.2)

The eigenpairs (Ai, (pi) satisfy,



Kqp = AiMpi; i= 1, ... , p (1.3)

and

(1.4)

(pi TKwpy = Aiotj

where 63 is the Kronecker delta. The basic equations used in the subspace iteration

method are as follows [13]:

Step 1: Establish q starting iteration vectors in X1

Step 2: Iterate with k= 1, 2, 3, ... , until convergence

KXk+1 = MXk (1.5)

- T
Kk+1 = Xk+1 KXk+1

Mk+1 = k+1 MXk+1

Kk+lQk+l = Mk+lQk+1Ak+1 (1-7)

Xk+1 = Xk+lQk+l (1.8)

Step 3: Perform the Sturm sequence check.

Hence, the procedure consists of three distinct solution steps. First, the q starting

iteration vectors in X1 are established, q > p, where X1 is a matrix of dimension

n x q. Second, iteration is performed using Eqs. 1.5-1.8, for k = 1, 2, ... until the

convergence tolerance below is satisfied, where Qk+1 and Ak+1 store the eigenvectors

and eigenvalues corresponding to the subspace matrices Kk+1 and Mk+1. Finally, the

Sturm sequence check is performed.

Let Ai(k) be the approximation for A2 calculated in the (k - I)th iteration, we have

convergence to an accuracy of 2 x s digits in the eigenvalues when for i = 1, ..., p

(see Ref. [13]),



[1 (-k)) 2 - 1/2 < w2s(k)T 
1)

(qj k)) (k)

where q(k) is the vector in the matrix Qk corresponding to Ai(k). The eigenvectors

will only be accurate to s digits and the theoretical convergence rate of the vectors

is Ai/Aq+1. Thus, there is a higher convergence rate for a smaller eigenvalue and

its corresponding eigenvector. Although these convergence rates correspond to the

theoretical values [13, 40], they are usually also observed in actual computations. The

Sturm sequence check is carried out to ensure that the lowest p eigenpairs, that is,

(Ai, pi), i 1, ..., p, have indeed been calculated [13, 28]. If the Sturm sequence check

is not passed, the iteration is continued with a larger number of iteration vectors.

Considering Eqs. 1.5-1.8, it is seen that the method can be programmed efficiently

for parallel computations. The factorization of the coefficient matrix and the forward

reductions and back-substitutions of each individual vector can be parallelized. In

addition, the solution of the q vectors can be distributed to different processors and

also the computation of the subspace matrices Kk+1 and Mk+1 can be parallelized.

An important difference between the coefficient matrices of structural FE as-

semblages and of proteins is that the latter have much larger bandwidths because of

long-range nonbonded electrostatic, and to a lesser extent van der Waals, interactions

that introduce broad coupling between protein atoms. Thus, for a given number of

degrees of freedom, the factorization of the matrix and solution of the vectors in

Eq. 1.5 constitute a much larger computational effort than in standard FE solutions.

Although parallel processing can be very important for this reason, we do not address

this computational issue further in the present work.

Using the earlier equations, it is critical to establish effective starting iteration

vectors for two reasons. First, if the subspace of these vectors contains the exact

eigenvectors, theory states that a single iteration will result in the exact eigenvalues

and vectors sought. Here, we simply use the algorithm of Ref. [28] (also given in

Ref. [13]), to construct the starting iteration vectors. In cases where better starting



vectors are known from an existing solution, such as in conformational change path-

way analyses of proteins where eigensolutions may be performed numerous times for

small changes in protein conformation [23], the algorithm of Ref. [13] is used only for

the first eigensolution. Thereafter, the previous solution from the nearest-neighbor

conformation provides the starting iteration vectors for the next eigensolution. Sec-

ond, an effective value of q needs to be used because the convergence rate to an

eigenvector is given by Ai/Aq+1. If q (> p) is small, a relatively large number of itera-

tions are required to converge. In contrast, if q is large, fewer iterations are required

for convergence, but each iteration is computationally more costly. Thus, use of an

optimal value of q is highly desirable. Calculation of an effective value of q for the

frequency and mode shape solutions of proteins is addressed in the next section.

1.1.2 The algorithm to calculate the number of starting it-

eration vectors

An important observation regarding proteins is that the magnitudes of their eigen-

values increase nearly linearly with increasing wave-number [43, 44], as shown for

T4-lysozyme in Fig. 1-1. This characteristic of proteins may be used to find an effec-

tive value of q for the subspace iteration method.

Assume that we order the iteration vectors in Xk naturally so that they correspond

to increasing eigenvalues, with the first vector corresponding to A1 . Then the last

iteration vector to converge is the pth vector in Xk and its rate of convergence is A .

Additionally, after the ith iteration, the norm of the vector difference between the pth

M-orthonormalized eigenvector and its current approximation (the error vector c) is

given by,

e (current)| = jJ ) (initial) (1.10)

where e (initial) is the initial error vector. To reach s-digits of accuracy in the

eigenvector we need,
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Figure 1-1 - The lowest one hundred eigenvalues (Ai) of T4-lysozyme (Protein Data Bank
ID 3LZM) [1]. (The first six zero eigenvalues correspond to rigid body modes.)
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Aq+1

and, therefore, require 1 iterations for the vector to converge, where 1 is given by,

In (10-/ e (initial)) (1.12)
In (A,/Alq+1)

Next, we use the fact that the eigenvalue magnitudes increase linearly and assume

that for different values of q, the norm of the initial error vector for the pth iteration

vector is the same. Additionally, the first six eigenvalues are zero. This implies that

the K matrix is singular. To use the subspace iteration method, we perform a shift

p on the K matrix to have a positive definite matrix, see Ref. [13]. We use p to be a

very small value, p = -1 x 10-6. Therefore, ' is approximately equal to - .
Aq+1 (q-5-p)

Since p is very small, it can be neglected and ) is approximated as ( -6. Then
Eq. v i(q.e i

Eq. 1.12 gives us directly,



In (10-S/ 1| c(initial)1) (1.13)
In ((p - 6) / (q - 5))

However, an operation count tells that the following number of numerical opera-

tions are needed for 1 iterations with q vectors [13],

in (10-s/ & (initial)||)
TCC = (2nq + 2nq2 + 3ng) (1.14)

In ((p - 6) / (q - 5))

where TCC is the Total Cost of Computation for 1 iterations, n is the order of the K

and M matrices, and m is the half-bandwidth (assumed to be full) of the K matrix.

As the column heights of K vary, an average or effective value for m must be used

[13]. Although we refer to TCC in Eq. 1.14, in reality we only have the total number

of arithmetical operations. As our only purpose is to find an effective value of q for

each p, and we also know that,

C = In (10-'/||E (initial)

where c is an unknown constant, we may use,

TCC = c (2nmq + 2nq2 + 3nq) (1.15)
ln ((p - 6) / (q - 5))

Minimizing this expression with respect to q we find an approximation for the

best q to obtain the p eigenvalues and vectors in the least amount of computational

time. Because a closed-form solution does not exist, we solve for q by iteration. Note

that this analysis does not provide the actual computational effort required (since the

constant c is unknown) but only that the minimum is obtained when using the value

of q given by minimizing TCC in Eq. 1.15.

Fig. 1-2 shows the normalized actual solution time and TCC to calculate the

lowest 100 eigenvalues with six digits of accuracy for T4-lysozyme using different

numbers of iteration vectors. The iteration times are normalized by the maximum

actual iteration time and, since the constant c in Eq. 1.15 is unknown, TCC is scaled

such that the iteration times are equal at the minimum of TCC.
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Figure 1-2 - Normalized actual iteration time and normalized TCC to calculate the first
one hundred eigenvalues for T4-lysozyme (Protein Data Bank ID 3LZM) [1].

As seen in Fig. 1-2, prediction of the relative computational cost of calculating the

lowest eigenvalues with different numbers of iteration vectors by Eq. 1.15 is acceptable.

Next we illustrate the use of the value of q in the normal mode analyses of two proteins.

1.2 Results

1.2.1 Illustrative solutions

In this section we use the subspace iteration method for the calculation of the frequen-

cies and normal modes of two proteins. In each case we use the standard subspace

iteration method as published in Refs. [13, 28] including the algorithm to construct

all starting iteration vectors. We use the standard value q= min {2p, p+8}, referred

to as the traditional subspace iteration method, and this method with the value of

q that minimizes TCC in Eq. 1.15, referred to as the improved subspace iteration

method. We intentionally do not use any other acceleration techniques, such as given

for example in Ref. [30], to identify clearly the improvements achieved solely by use



of the value of q derived earlier.

In each solution we employ the skyline solver of Ref. [13] for Eq. 1.5. Although

we recognize that a sparse solver could lead to significantly improved solution times

[45], we do not expect our fundamental observations regarding the performance of

the method to be affected. We note that the solution times given always include all

operations of the subspace iterations. Additionally, in an effort to present machine-

independent conclusions regarding performance of the algorithms, we present normal-

ized solution times instead of actual solution times, where normalized time is equal

to actual time divided by the maximum solution time measured in each case.

G-actin

The initial structure of ADP-bound G-actin is taken from the work of Otterbein et al.

[2] (Protein Data Bank ID 1J6Z; residue numbers 4-372). The stiffness matrix of order

10,608 for this protein was computed in CHARMM version 34b1 [46] using the implicit

solvation model EEF1 [47]. Steepest descent minimization followed by adopted-basis

Newton-Raphson minimization is performed in the presence of successively reduced

harmonic constraints on backbone atoms to achieve a final root-mean-square (RMS)

energy gradient of 2 x 10-4 kcal with corresponding RMS deviation between the X-
(Mo X A)

ray and energy-minimized structures of 1.4 A (Fig. 1-3). Computations are performed

on an Intel Xeon 5120 with 1.86 GHz and 4 GB RAM in single processor mode.

Considering the eigenvalue problem, different numbers of the lowest eigenvalues

with six digits of accuracy of this protein have been obtained using the traditional and

improved subspace iteration methods. Fig. 1-4 provides normalized solution times

versus the required number of lowest eigenvalues for G-actin, and also provides in

parentheses the number of iteration vectors q used in the improved subspace iteration

method in each case. It is evident that a significant improvement in the subspace

iteration method is achieved by use of the calculated values of q.

As already noted, normalized solution times in Fig. 1-4 are defined as the actual

solution times divided by the maximum solution time encountered in the analysis.

The maximum solution time (13,939 seconds clock-time) in this case is the time



Figure 1-3 - G-actin-ADP. Schematic representation of the energy-minimized molecular
structure analyzed with subdomains colored according to the definition of Kabsch et al. [48],
Subdomain 1 is colored blue, subdomain 2 is colored red, subdomain 3 is colored green, and
subdomain 4 is colored yellow. ADP is shown in van der Waals representation. Figure
rendered using PyMOL [49].

32



subspace iteration

0.7

0.6 -

0.5

zo0.4-

0.1-

0--
10 50 100 150 200 250 300

(20) (124) (244) (358) (467) (573) (676)
Required number of the lowest eigenvalues

(Optimal values of q )

Figure 1-4 - Normalized solution times versus required number of the lowest eigenvalues
with six digits of accuracy for G-actin (Protein Data Bank ID 1J6Z) [2] using the traditional
and improved subspace iteration methods; the value of q used in each case with the improved
subspace iteration method is given in parentheses.



required to compute the lowest 300 eigenpairs with the traditional subspace iteration

method. This solution time is quite large for the reasons mentioned earlier.

Pertussis toxin

The next protein examined is pertussis toxin (chains A-F). Initial coordinates are

taken from the work of Stein et al. [3] (Protein Data Bank ID 1PRT). Like for G-actin,

CHARMM version 34b1 [46] with the implicit solvation model EEF1 [47] is used to

obtain the energy-minimized structure (Fig. 1-5) and calculate the Hessian, which has

dimension of order 26,664. Steepest descent minimization followed by adopted-basis

Newton-Raphson minimization is performed in the presence of successively reduced

harmonic constraints on backbone atoms to achieve a final root-mean-square (RMS)

energy gradient of 3 x 10-4 kcal with corresponding RMS deviation between the
(moixA)

X-ray and energy-minimized structures of 1.6 A. Computations are also performed

on an Intel Xeon 5120 with 1.86 GHz and 4 GB RAM in single processor mode.

Fig. 1-6 shows the measured normalized solution times versus the required number

of the lowest eigenvalues for this molecule, and also gives in parentheses the number

of iteration vectors q used in the improved subspace iteration method in each case.

Again, significant computational savings are achieved when the improved iteration

method is used.

1.2.2 Conformational change pathway analysis of adenylate

kinase

To illustrate the benefit of employing the subspace iteration procedure to analyze

conformational change pathways of proteins, we apply the procedure to the open-

to-closed transition of adenylate kinase (PDBIDs 4AKE [50] and 1AKE [51] for the

open and closed conformers, respectively)(Figs. 1-7-A and 1-7-B). In the absence of

molecular dynamics or other all-atom trajectory, we employ the elastic-based FE

model applied previously to protein NMA to generate the conformational change

pathway [18]. The initial model is defined by the open conformation of the protein.



Figure 1-5 - Pertussis toxin. Schematic representation of the energy-minimized molecular
structure analyzed with subdomains colored according to the definition of Stein et al. [3],
S1 is colored green, S2 is cyan, S3 is purple, S4 is red, and S5 is yellow. Figure rendered
using PyMOL [49].
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Figure 1-6 - Normalized solution times versus required number of the lowest eigenvalues
with six digits of accuracy for one of two molecules from pertussis toxin (Protein Data Bank
ID 1PRT; Chains A-F) [3] using the traditional and improved subspace iteration methods;
the value of q used in each case with the improved subspace iteration method is given in
parentheses.



Following Ref. [18] the molecular volume is defined by the solvent excluded surface

(SES) using MSMS ver. 2.6.1 [52]. This SES is then decimated to a coarsened

surface using the surface simplification algorithm QSLIM [53-55], as implemented in

MeshLab [56]. Finally, the decimated SES is imported into the finite element analysis

program ADINA ver. 8.5 (Watertown, MA), where the molecular volume is meshed

automatically using 3D four-node tetrahedral elements [18]. The protein is assumed

to behave as a linear, isotropic material with homogeneous mass density of 1420 S,

elastic Young's modulus of 4.9 GPa, and Poisson's ratio of 0.3. The mass density is

obtained from the molecular weight and molecular volume of the open conformation.

The Young's modulus is obtained by fitting thermal fluctuations of a-carbon atoms

in the finite element model to those obtained using the Rotation Translation Block

procedure [57, 58] at room temperature in CHARMM, where one block per residue

and the implicit solvation model EEF1 [47] are employed (see Appendix B).

The conformational change pathway of adenylate kinase is generated according to

the procedure of Tama, Miyashita, and Brooks [59]. Starting from the initial, open

conformation, K and M matrices are generated for the FE model using ADINA. The

traditional subspace iteration procedure is then used to calculate the first 100 eigen-

pairs of the model with four digits of accuracy for the eigenvalues. The FE model

interpolation functions are used to interpolate the eigenvectors, pi k, corresponding

to the FE nodal positions to their values, Cik, at the positions of the a-carbons,

where i and k denote the number of the eigenvector and conformation, respectively.

To generate the next conformation, the difference vector between the positions of

the a-carbons in the kth conformation and those of the closed conformation, Ark, is

projected onto the eigenvectors corresponding to the a-carbons, cik - #k Ark . C,

where #k is a parameter between zero and one [23, 59] (see Appendix A). cik is the

contribution of the ith eigenvector to the displacement of the L-carbons in the kth

step. Positions of all non-a-carbon atoms are updated using the FE displacement

interpolation functions in the current conformation. This procedure is repeated until

the root-means-quare-difference (RMSD) between the current positions of c-carbons

and those of the closed conformer is less than or equal to 1 A. In this approach to



B

Figure 1-7 - Conformational change pathway of adenylate kinase. (A) Schematic repre-
sentation of the open conformation of adenylate kinase (Protein Data Bank ID 4AKE [50]).
(B) Schematic representation of the closed conformer of adenylate kinase (Protein Data
Bank ID lAKE [51]). (C) Schematic representation of the open-to-closed transition. The
root-mean-square-difference between the positions of c-carbons in the closed conformer and
that of the red, yellow, green, violet, and blue conformations is 7.14, 5.25, 3.5, 1.75, and 0
A, respectively. Figures rendered using PyMOL [49].



generating the conformational change pathway, the eigenvectors of the current con-

formation are used as the starting vectors for the eigenvalue problem of the next

conformation, excluding the first step, which is also excluded from the solution time

per conformation presented below because it constitutes a small and invariant com-

ponent of the total solution time in each case. An initial conformational change

pathway of 1843 conformations is generated, from which subsets of 1001, 101, 11,

and 1 conformation are chosen with nearly constant differences in RMSD between

x-carbon positions of each successive conformation and the closed conformation (see

Appendix A) (Fig. 1-7-C). Computations are performed on an Intel Xeon E5405 with

2.00 GHz and 16 GB RAM in single processor mode.

The solution time per conformation for the subspace iteration procedure decreases

monotonically with increasing number of conformations employed in the conforma-

tional change pathway (Fig. 1-8). Normalized time is equal to the actual solution

time divided by the maximum solution time measured in the 100 normal mode case.

As an increasing number of conformations is employed, normal mode solutions from

neighboring conformations become increasingly better choices for the starting normal

modes of neighboring conformations, resulting in the observed decrease in solution

time per conformation. This result is true whether 20 or 100 eigenvectors are solved

for (Fig. 1-8), and is additionally expected to be independent of the number of degrees

of freedom in the model. Although it is of interest to understand the detailed solution-

time properties of the subspace iteration procedure in conformational change pathway

analysis (e.g., dependence of solution time per conformation scaling with model size,

number of normal modes computed, etc.), such analysis is reserved for future work.

1.3 Important properties of the subspace iteration

method

In evaluating the effectiveness of any numerical procedure, it is clearly valuable to

make a thorough comparison with existing methods [10, 15, 21]. In the present
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Figure 1-8 - Normalized actual solution time per conformation for the subspace iteration
method versus the number of conformations analyzed in the conformational change pathway
of adenylate kinase using 100 and 20 normal modes.

case, such comparison is unfortunately complicated by a number of factors, including

the requirement that each method employs the same convergence tolerance and is

implemented in the optimal manner. Even then, results would depend on whether

the computation is performed in- or out-of-core, the type of parallel processing used,

the degree of energy-minimization performed in the use of some methods, and so on.

While such a comparison would clearly be of value, it is outside the scope of the

present work. Nevertheless, we would like to point out several important properties

of the subspace iteration procedure, and in particular contrast these properties with

corresponding properties of the Lanczos method.

The subspace iteration procedure converges monotonically and robustly to the

number of frequencies and mode shapes sought. In each subspace iteration, inverse

iteration is performed on a q-dimensional subspace and a Rayleigh-Ritz analysis ex-

tracts the best approximations to the p normal modes sought. Best here refers to

minimization of the Rayleigh quotient on the subspace [13, 40]. As the q-dimensional

subspace is rotated towards the least dominant p-dimensional subspace within each



iteration, the NM approximations become more accurate. If only low accuracy in the

normal modes is needed, only a few subspace iterations may be required.

Solution time in the Lanczos method scales approximately linearly with the num-

ber of eigenpairs computed. The traditional subspace iteration does not typically

display this scaling when many frequencies and mode shapes are calculated (e.g.,

> 20) and a single processor is employed. In the present work, however, we observed

that the subspace iteration method with the improved selection of the number of iter-

ation vectors also resulted in linear scaling of solution time with the number of normal

modes sought. As expected, we additionally observed a significant decrease in compu-

tational time when the NMA was performed on multiple neighboring conformations,

because the method uses normal mode solutions from neighboring conformations to

accelerate subsequent solutions. This is an important property of the subspace iter-

ation procedure that is not a property of methods that start with individual vectors,

such as the Lanczos algorithm. Additional acceleration might be achieved for NMA of

single conformations by exciting principally the dihedral angles to choose starting vec-

tors that span a subspace that is closer to the required least dominant subspace than

the algorithm employed here [13, 28]. In addition, acceleration techniques published

previously could be implemented [30, 35].

A final important computational property of any NMA procedure is the possi-

bility to use parallel processing (with shared and distributed memory), such as im-

plemented for the Lanczos procedure in the publically available program ARPACK

[60]. Although the calculations in the subspace iterations (Eqs. 1.5-1.8) lend them-

selves naturally to parallel processing, the actual benefits achievable in comparison

to the Lanczos procedure, which operates sequentially on individual vectors, remain

to be established. Use of a combination of the basic steps in the subspace iteration

and Lanczos methods, using the best ingredients of each technique and taking into

account parallel processing, would be of interest to reach a more effective method.

Further investigation is required to identify the appropriate next steps to take in this

research direction.



1.4 Concluding remarks

The objective of this chapter was to present the application of the subspace itera-

tion method to the normal mode analysis of proteins and to provide an algorithm

for the calculation of an effective number of iteration vectors. We demonstrated use

of an algorithm to calculate the number of iteration vectors q to find p eigenpairs

that improves the effectiveness of the subspace iteration method significantly for pro-

teins. The algorithm results in computation time scaling linearly with the number

of eigenpairs sought, as demonstrated for G-actin and pertussis toxin. The subspace

iteration method is well suited to protein NMA because relatively small subsets of

the total available normal modes are typically sought and numerous analyses may

be performed for relatively similar conformations in conformational change pathway

analyses [23]. In such cases, the previously calculated eigensolution provides an ex-

cellent set of initial iteration vectors for the subsequent solution, as demonstrated

here for the open-to-closed confornational change of adenylate kinase. The subspace

iteration method is additionally attractive because it is robust, in that it converges

monotonically to the desired eigenvalue solution for any positive semidefinite stiffness

matrix. This is of significant utility in all-atom protein NMA for two reasons. First,

energy minimization to tight tolerance in the energy gradient is time-consuming and

often challenging due to the rugged energy landscape of proteins, and second, energy

minimization often distorts the protein structure such that it deviates significantly

from the experimental crystal structure. For these reasons, and due to its relative com-

putational efficiency, the robust Rotational Translational Blocks procedure [57, 58]

has gained significant popularity. However, this procedure assumes single or larger

blocks of residues to be rigid, in contrast with the present implementation that re-

tains all atomic degrees of freedom. Although the significant reduction in number of

degrees of freedom in the former approach renders its computational efficiency high,

an interesting area of future research concerns the integration of computationally ro-

bust NMA methods with efficient reduced degree-of-freedom approaches that retain

internal residue flexibility, as initially proposed in Ref. [57]. Incorporation of such



procedures into the finite element method would enable simultaneously calculations

of protein mechanical response, as well as NMs.
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Chapter 2

Finite element framework for

Langevin modes of proteins

Protein motions such as conformational changes, folding/unfolding, and ligand asso-

ciation/dissociation generally occur in a physiological solvent, a viscous environment

within cells. Hence, to analyze the true dynamic behavior of a protein, both the pro-

tein and the solvent have to be modeled simultaneously, as in all-atom, explicit-solvent

molecular dynamics [61]. However, in practice, especially for the above-mentioned

long-time and large length-scale motions, the time-integration of the full set of gov-

erning equations of motion performed in the molecular dynamics is infeasible. Hence,

coarse-grained models have been developed to speed up the analysis of the dynamic

behavior of proteins. These models can describe many protein motions which are cur-

rently inaccessible to the standard molecular dynamics. For example, protein folding

and unfolding have been investigated, respectively, using lattice models [62-64] and

steered molecular dynamics [65]. Also, the elastic network model (ENM), a coarse-

grained normal mode analysis (NMA), has been used to analyze the conformational

change pathways of proteins [7, 66-68]. Generally, the effects of solvent friction on

proteins are ignored in these normal mode analyses. Consequently, the frequencies

of proteins calculated from the set of the governing equations of motion in a vacuum

cannot be used to predict the actual time-scales of functional protein motions in a sol-

vent. Also, the normal modes of proteins are altered significantly when incorporating



the effects of solvent-damping into the normal mode analyses [12, 17].

The Langevin mode analysis (LMA) developed based on the Langevin dynamics

formalism by Lamm and Szabo [17] can account for the effects of solvent friction on the

normal modes and corresponding time-scales of proteins. In the Langevin dynamics

formalism [17, 69-71], the effects of solvent friction are implicitly applied to proteins.

In practice, the Langevin dynamics simulations themselves are computationally too

expensive to be used for the dynamic behavior analysis of many large proteins, while

the LMA can be more readily applied to the analysis of the proteins. Recently, the

LMA has been used by Miller et al. to examine the dynamic behavior of myosin in a

solvent [12]. They employed bead models [72-80] to incorporate solvent-damping into

the ENM. In their bead model, one bead was located at the position of every C, [12].

The radii of beads were calibrated to the experimental translational and rotational

diffusion coefficients of proteins to model solvent drag. The coupling of the friction

matrix calculated using the bead model and the stiffness and mass matrices obtained

from the ENM resulted in the Langevin modes of myosin. Due to solvent viscosity,

the Langevin modes of the protein were significantly different from its normal modes

computed in a vacuum. Additionally, the first Langevin modes were shown to be

over-damped [12].

The bead models generally used in the LMA [12, 81] have some problematic aspects

such as bead overlapping [82] and volume corrections for rotation [83] and viscosity

[84]. Also, in these models for the calculation of the hydrodynamic interactions

between pairs of atoms, it is assumed that the intervening space between the pairs

is filled only with a solvent and the presence of other atoms in the space is totally

ignored [81]. Additionally, although solvent friction takes place at the surface of

proteins [19], the bead models used in the LMA assume that the frictional forces

act at the centers of C,. In contrast to the bead models [12, 81], the finite element

method (FEM) can model solvent drag on the protein surface [13]. Additionally, the

FEM encounters none of the above-mentioned problems of the bead models and the

frictional forces acting on the surface converge to the exact solution when the finite

element size is reduced to zero [13].



The solvent friction matrix used in the LMA may be computed by embedding the

protein in a Stokes-fluid that is modeled using the FEM, as is commonly performed

in FE fluid-solid interaction analyses [85, 86]. A unit velocity in each of the three xi-,

x2 -, and x3-directions can be imposed on one node located on the protein surface, and

the resultant forces acting on all the protein surface nodes can be calculated and sub-

stituted for the corresponding column of the friction matrix. To establish the whole

friction matrix, 3M separate FE fluid simulations need to be performed using the

available finite element software programs, which render this approach prohibitively

costly. M is the number of protein surface nodes. However, since the flow around the

protein surface is governed by the Stokes equations, the fluid can be modeled as a

solid. Providing that the solid properties are chosen correctly, the whole friction ma-

trix can be obtained accurately with one finite element solid simulation [13]. Hence,

the computational cost is significantly reduced. The stiffness and mass matrices of

the protein model can be calculated from the elastic-body approximation developed

by M. Bathe [18]. Finally, the Langevin modes of the protein can be obtained using

the friction, stiffness, and mass matrices from the FEM.

In this chapter, we first review the LMA developed by Lamm and Szabo [17] to

incorporate the effects of solvent-damping into the standard NMA. Then, we present

a new algorithm that calculates a solvent friction matrix using the FEM to account

for the solvent-damping effects. The algorithm proves successful in calculating the

diffusion coefficients of a sphere and 10 proteins with various molecular weights, rang-

ing from 7 kDa to 233 kDa. We subsequently couple the solvent friction matrix and

the stiffness and mass matrices calculated using the FEM [18] to obtain the Langevin

modes and corresponding relaxation times of crambin, a small protein with 46 amino

acids. The obtained results are then compared with those calculated using bead

models [19].



2.1 Methods

2.1.1 Langevin mode analysis

Langevin mode analysis has been developed by Lamm and Szabo [17] to incorporate

the effects of solvent-damping into the standard NMA [21]. The basic theory of

Langevin modes is based on the Langevin dynamics formalism given below [81]:

M4 + Z4 + V(q) = f (t) (2.1)

where M is the 3N x 3N diagonal mass matrix, Z is the 3N x 3N friction matrix,

V is the potential energy function, q is the position vector, 4 is the velocity vector,

4 is the acceleration vector, and f(t) is the vector of external stochastic forces as a

function of time that satisfies the following conditions:

(fi(t)) = 0

Kf t)- f (t') = 2Zij6 (t - t') (2.2)

kBT

Here kB is Boltzmann's constant, T is temperature, 6 (t - t') is the Kronecker

delta, fi(t) is component i of f(t) and Zij is the ijth component of the viscous damping

matrix. N is the number of particles in the Langevin dynamics model.

Expanding the potential energy function in a Taylor series around a minimum qo

and neglecting the terms higher than the quadratic order, we can obtain the Langevin

equations governing the linearized protein response as follows [81]:

MR + Zk + Kx = f(t) (2.3)

where the ijth component of the stiffness matrix K is,

K.. = _ (2.4)
a dqiq vxi(9xx

and the displacement vector x is,



(2.5)x = (q - q0 )

Eq. 2.3 can be recast into the following matrix form:

0 I x +
-M-'K -M-1Z C )

0 I x 0

-F -k R(t)

x 0
A +

( 1 R(t)

0

M-if(t)

(2.6)

where I is a 3N x 3N identity matrix, and F, -y, and R(t) are, respectively, obtained

from pre-multiplying the inverse of the mass matrix by the stiffness matrix, the friction

matrix, and the vector of external stochastic forces.

Langevin modes and their corresponding eigenvalues can be obtained by diago-

nalizing the 6N x 6N matrix A [12, 17, 81],

AW = WA (2.7)

Here W is the 6N x 6N matrix containing the Langevin modes as columns and

A is the 6N x 6N diagonal matrix of eigenvalues.

LMA can be performed in the FEM, where N is the number of nodes in a protein

FEM model and the stiffness, mass, and friction matrices are obtained from the FEM

model.

2.1.2 Properties of Langevin modes

A Langevin mode consists of 6N elements, of which the upper half corresponds to

displacements; the lower one, to velocities. As a result, the bottom 3N elements

can be obtained by multiplying the corresponding eigenvalue by the top ones. The



6N x 6N matrix W can be denoted as [81],

L (2.8)

where L is a 3N x 6N matrix containing the upper halves of Langevin modes.

Since A is non-symmetric, L and A are generally complex. Complex eigenvalues

and their corresponding eigenvectors exist in conjugate pairs. Since the matrices

F and -y are non-negative definite, the real components of the eigenvalues are non-

positive. Also, the negative of the inverse of a real component is the relaxation time

corresponding to the eigenvalue [811.

Additionally, the special structure of the non-symmetric matrix A allows us to

factor the matrix into a product of two symmetric matrices [17]:

A(

We can also analytically invert the

equation as follows:

Using Eqs. 2.9 and 2.

The above equation is

be normalized as follows:

10, Eq.

0 I -F 0 (2.9)
I -- y) 0 I

first matrix in the right hand side of the above

-1o

2.7 can be recast into the following form [17]:

(2.10)

W= WA(2.11)
0 I I o a t e

a generalized eigenvalue problem, and the eigenvectors can

(2.12)WT(7 W) = I

Then we can write the inverse of the matrix W as,



W-- = WT ') (2.13)

2.1.3 Calculation of the friction matrix from the FEM

The FEM is a well-established numerical procedure that is widely used in engineering

[13, 87] (see for example Refs. [88, 89]). The method can be used to model the

protein embedded in a Stokes-fluid and consequently calculate the solvent friction

matrix, where the boundary of the protein is assumed to be the solvent-excluded

surface (SES). The SES of a protein (Fig. 2-1-A) is defined as the closest contact

point of a 1.4 A radius solvent-probe rolled over the protein van der Waals surface

[18]. We compute the SES by MSMS ver. 2.6.1 [52]. Subsequently, the surface is

coarsened (Fig. 2-1-B) using the surface simplification algorithm QSLIM [53-55], as

implemented in MeshLab [56]. Then the coarsened SES is imported into the finite

element program ADINA ver. 8.7.1. The space from the SES to the surface of a sphere

with a diameter of approximately 400 times the largest dimension of the protein is

meshed with 8-node hexahedral elements (Figs. 2-1-C and 2-1-D). The element size

changes from the finest (near the SES) to the coarsest (near the sphere surface) level

in eleven layers, while the adjacent layers are glued to each other and the interfacing

surfaces have the same displacements.

The fluid flow around the SES is commonly modeled as an incompressible, steady-

state Stokes flow [19]. Considering a stationary Cartesian reference frame (xi, i=1, 2, 3)

and using index notation, the governing equations of the flow can be written as follows

[13]:

momentum: + fjB = 0 (2.14)

constitutive: ±j = -poij + 2peij (2.15)



C D

Figure 2-1 - Finite element solvent model of crambin (Protein Data Bank ID 2FD7). A
shows the schematic representation of the energy-minimized molecular structure, which is
colored according to its secondary structures; B shows the coarsened SES imported into
ADINA; C shows the spherical volume mesh employed to model the solvent around the
SES (for visual purposes, the size of the SES has been increased); D shows the close-up of
the mesh surrounding the protein (in cross-section).



continuity:

where,

vi = velocity of fluid flow in direction x

rij = components of stress tensor

fiB = components of body force vector

p = pressure

ogj = Kronecker delta

= fluid (laminar) viscosity

1 ( Ovi av\
e = components of velocity strain tensor = +i

2 \8~x3  8x2

The above equations (Eqs. 2.14, 2.15, and 2.16) may be used in the FE fluid analysis

of the solvent model to compute the friction matrix. In that case, velocities at the

nodes on the sphere surface (Fig. 2-1-C) are set to zero. Additionally for one of

the nodes, zero pressure is chosen. Then, a unit velocity in each of the three xi-,

x 2-, and x 3-directions may be applied to one of the nodes located on the protein

surface, while the other velocity degrees of freedom of the protein surface nodes

are set to zero. Subsequently, the resultant forces at the protein surface nodes are

computed and inserted into the corresponding column of the friction matrix. We

need to perform 3M separate FE fluid simulations using the commercial finite element

software programs such as ADINA to calculate the whole friction matrix. This number

of simulations render the calculation of the matrix infeasible. However, since the

governing equations of motion for an incompressible, steady-state Stokes fluid flow

(Eqs. 2.14, 2.15, and 2.16), under some circumstances, can be equivalent to those of

an incompressible, isotropic, linear elastic solid (Eqs. 2.17 and 2.18), the flow around

the SES can be modeled as the static displacement of the incompressible solid [13].

(2.16)Vii = 0



equilibrium: Ox, + f = 0 (2.17)
Oxj

constitutive: rij = -p 6ij + 2GE'i (2.18)

where,

G = shear modulus

E'ij = components of deviatoric strain tensor = (Ott + Oo, 'N _

2 Oxj 8xi 3 xi

ui = displacement of solid in direction xi

The prerequisites for this equivalency to hold are that Poisson's ratio of the solid

has to be chosen close to 0.5 (for example, 0.4999) and its shear modulus needs

to be equal to the fluid viscosity. Additionally, the velocity in the incompressible,

steady-state Stokes fluid flow is equivalent to the displacement in the incompressible

solid.

To compute the friction matrix using the FE solid analysis of the solvent model,

except for a fraction (20%), the nodes on the sphere surface (Fig. 2-1-C) are restrained

in all three directions. This boundary condition approximately simulates zero velocity

and pressure at infinity. Additionally, a unit displacement in each of the three xj-, x 2-,

and x 3-directions is applied to one of the nodes located on the protein surface, while

the other displacement degrees of freedom of the protein surface nodes are set to zero.

Subsequently, the resultant forces that are exerted on the nodes located on the SES

are calculated and substituted for the corresponding column of the friction matrix.

Similarly, the other columns can be calculated. Since the solid is incompressible,

the displacement/pressure formulation must be used in the FEM [13]. Here 8-node

displacement/pressure solid elements (8/1 elements) [13] are used in the FE solid

analysis of the solvent model (Figs. 2-1-C and 2-1-D).

Unlike the calculation of the friction matrix using the FE fluid analysis of the



solvent model, the calculation of the matrix does not require 3M separate FE solid

simulations. Instead, the stiffness matrix of the solvent model can be decomposed

once [13] and used for different boundary conditions and loadings applied to calculate

the friction matrix. Hence, calculating the friction matrix using the FE solid analysis

is substantially faster than calculating that of the FE fluid analysis. The friction

matrix calculated here is a 3M x 3M matrix, Z, that corresponds to the nodes on

the protein surface. Subsequently, the 3N x 3N friction matrix Z corresponding to

all the nodes in the protein model can be obtained from Z, where the components of

Z which do not correspond to the nodes on the SES are zero.

2.1.4 Calculation of the friction matrix from bead models

Bead models [19] can be applied for the calculation of protein diffusion coefficients

[76, 77, 90, 91]. Of the available models, the best results are obtained by use of the

shell model [19]. In this model, the surface of proteins is covered by small beads

and diffusion coefficients are calculated using Oseen or modified-Oseen tensors [75,

92, 93]. Bead models can also be used to analyze protein dynamics in a solvent. A

combination of elastic network and bead models has proven successful in calculating

protein Langevin modes [12].

Here the 3M x 3M friction matrix, Z, is calculated by use of a shell-type model.

In this model, equal-size beads are positioned at the nodes located on the SES (Fig. 2-

1-B) and a matrix T is obtained as follows [12]:

Tj = (67rpo )I when i j
/- r.r j

2 (11 rT\
(87pr) I + j +2 2 - rr when i # j and ri ;> 2a

ri/ rr\ 3 i

= (67rto-) 1 -9r) ±I+ 3 rirT) when i 5 j and rij < 2a
32 o-a 32 ari f

(2.19)

where a is the hydrodynamic radius of the beads, rij is the vector from node i to node



j, and rij is its magnitude. Z is obtained by inverting T. Subsequently, the 3N x 3N

friction matrix Z can be computed from Z.

2.1.5 Calculation of diffusion coefficients from the friction

matrix

A 6 x 6 resistance tensor, E, is usually defined to express the hydrodynamic resistance

of an object [19]. To calculate E, first, we need to partition the 3M x 3M friction

matrix Z into 3 x 3 blocks, Zij. Then E can be obtained using the following equations:

Stt =i5 (2.20)
2 J

6- (2.23)
tr 6rr /

0 - zi

Ui = 0 -xi (2.24)

-yi Xi 0

where tt, Err, and Etr are the 3 x 3 blocks of E, which correspond to translation,

rotation, and translation-rotation coupling, respectively, and xi, yi, and zi are the

coordinates of node i in the stationary Cartesian reference frame (xj, j=1, 2, 3).

A 6 x 6 diffusion matrix, D, can be obtained from E using the generalized Einstein

relationship,

D (D= Dtr=T kBT6E-' (2.25)
Dtr Drr



where D, like E, has been partitioned into 3 x 3 blocks [19].

Translational (Dt) and rotational (Dr) diffusion coefficients can be computed as

follows:

Dt = -Tr (Dt)
3

1
Dr = --Tr (Drr)

3

(2.26)

(2.27)

where the symbol Tr indicates the trace of a tensor. Consequently, translational (ft)

and rotational (f,) friction coefficients can be obtained using the following equations

[19]:

kBT
ft = D

kBT
f = r

(2.28)

(2.29)

The blocks Det and Dtr depend on the origin of the Cartesian system, while Drr

does not vary with the change of origin [94]. However, the diffusion matrix D has to

be calculated at the center of diffusion, D, to best match the experimental diffusion

coefficients [95], where D is a location at which Dtr is symmetric [94]. To calculate

the correct diffusion matrix, we can first compute the matrix at some arbitrary origin,

0, and then transfer the origin to D using rOD, the position vector of D with respect

to 0, and recalculate the matrix [19].

Drryy + Drrzz

= -Drr XY

-DrrX Z

- DrrxVy

Drrxx + Drrzz

- Drryz

- Drr XZ

-Drryz

Drrxx + DrrYY

Dtryz - Dtrzy

Dtrzx - Dtrxz

DtrXY - Dtryx

(2.30)

rOD

XOD

YOD

ZOD



2.1.6 Calculation of the stiffness and mass matrices

Recently, the FEM has proven successful in calculating the lowest normal modes

of proteins [18]. Since the lowest normal modes are determined dominantly by the

shape of proteins [96], the material type used in the current FE models is not of great

importance for obtaining the normal modes. Hence, proteins can be modeled simply

as homogeneous, isotropic, linear elastic continua [18].

To calculate the stiffness and mass matrices of a protein, first, we use the SES

explained above (Fig. 2-1-B) to define the volume of the protein model. Then the

volume is discretized with 3D 4-node tetrahedral elements using the finite element

software program ADINA ver. 8.7.1. Since the stiffness and mass matrices need to

be coupled with the friction matrix, the nodes generated on the protein surface in

this model have to be the same as those of the solvent model used for calculating the

friction matrix (see Section 2.1.3).

Here the mass density of the protein model is defined as the division of the molec-

ular mass by the volume of the model, and Poisson's ratio is set to 0.3 [18]. Knowing

the mass density and Poisson's ratio, we can adjust Young's modulus of the protein

model to fit the FEM oc-carbon atom fluctuation results to the RTB results [18].

Given the protein volume and the material properties, the FEM can use numerical

integrations to calculate the stiffness and mass matrices.

2.2 Results

2.2.1 Diffusion coefficients of a sphere with a radius of 25 A

surrounded by 20 C water

There are analytical solutions for the diffusion coefficients of spheres [19]. Hence, to

examine the accuracy of the FEM in calculating solvent friction matrices, one can

compute the diffusion coefficients of a sphere from the FEM and compare the results

with the analytical solutions. Also, this study can help us better model globular

proteins, which have spherical shapes, within water.



Here we employ the FEM to calculate the diffusion coefficients of a 25-A-radius

sphere located in 20 C water. To this end, first, we need to compute the friction

matrix using the FEM. We embed the sphere with the radius, ri72, of 25 A in an

incompressible, isotropic, linear elastic solid outer sphere with the radius rt. As

explained in Section 2.1.3, Poisson's ratio of the solid material is set to 0.4999 and

its shear modulus, G, is chosen equal to 60.34 Da , which is the viscosity, y, of
(psecxA)

water at 20 C [90]. Considering the dynamic behavior and molecular properties of

proteins, dalton (Da), angstrom (A), and picosecond (psec) are, respectively, chosen

as the mass, length, and time units used in the FEM. The following equations define

the chosen set of non-SI units based on the SI units:

Da = 1.6605 x 10-27 kg

= 10-12 m (2.31)

psec = 10-1 sec

As described before, the intervening space between the inner and outer sphere

surfaces is meshed with 8/1 solid elements [13]. The element size varies from the

finest (near the inner sphere surface) to the coarsest (near the outer sphere surface)

level in several layers, while the adjacent layers are glued to each other (Fig. 2-2).

To simulate the zero velocity and pressure at infinity, except for a fraction, rfree,

the nodes located on the outer sphere surface are restrained in all three directions.

Subsequently, as explained before, the friction matrix and the diffusion coefficients

can be computed by applying different displacements and boundary conditions to

the nodes located on the inner sphere surface. Results show that changing rfree, in

the range of 0.1 to 0.9, has almost no effect on the errors in the calculated diffusion

coefficients (Fig. 2-3). Hence, from here on in the FE models, rfree is set to 0.2.

In this chapter, the error in a calculated diffusion coefficient is defined as follows:

D/r exact - Dt/rcaic
Error = 100 T exact (2.32)

Dt/r

where Dt/rexact is the exact value of the translational (t) or rotational (r) diffusion

coefficient obtained from experiments or analytical solutions, and Dt/rcaic is the cal-
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Figure 2-2 - The mesh between the inner and outer sphere surfaces (in cross-section). A
shows all the layers of mesh used in the FE model, while B and C show only 9 and 2 layers,
respectively, surrounding the inner sphere. Different colors indicate different layers of mesh.
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Figure 2-3 - Error in the calculated translational and rotational diffusion coefficients
of the inner sphere versus the fraction of the nodes on the outer sphere surface that are
unrestrained, rfree. Here r0 st is 400 times ri and the ratio of the radius of the inner sphere,
rin, to the element size near the inner sphere surface, h, is chosen equal to 11.43.

culated value of the diffusion coefficient. The exact values of the translational and

rotational diffusion coefficients of the sphere with the radius of 25 A in 20 C water

obtained from analytical solutions [19] are,

Dr exact kBT 8.57 x 10-3
67rpri, psec

Drexact kBT 1.03 x 10-5
87rpuri3 psec

Additionally, changing the ratio of reUt to rin, from 5 to 400, significantly decreases

the errors in the calculated diffusion coefficients, while the errors remain almost con-

stant for the ratios greater than 400 (Fig. 2-4). Since the ratios greater than 400

substantially increase the cost of computation without a significant decrease in the

errors, we choose the ratio to be 400 for the FE simulations.

Setting rfree to 0.2 and the ratio of rot to r2n to 400, we can check the convergence

of the calculated diffusion coefficients by changing the element sizes. The element



100

10-

0 1
'l

-e-Translational diffusion coeff
4-Rotational diffusion coeffici

-AL

7
100

Tout|Tin

1000

icient
ent

10000

Figure 2-4 - Error in the calculated translational and rotational diffusion coefficients of

the inner sphere versus the ratio of rout to ri2 . Here rfree is set to 0.2 and the ratio of the

radius of the inner sphere, ri2 , to the element size near the inner sphere surface, h, is chosen

equal to 11.43.

sizes of all the layers are defined based on the element size near the inner sphere

surface, h. When we change the ratio of ri, to h from 1.429 to 11.43, the error in

the translational diffusion coefficient reduces from 46.31% to 2.28%, and that of the

translational diffusion coefficient decreases from 29.16% to 0.26% (Fig. 2-5). Although

the cost of computation for the ratio equal to 11.43 is reasonable (the number of

elements used in the FE model is about 100,000), the errors are remarkably small.

We use ratios similar to 11.43 for the FE simulations used for globular proteins.

As seen above, setting Tfree to 0.2, the ratio of ret to ri, to 400, and the ratio

of ri, to h to 11.43, with a reasonable cost of computation, we can obtain accurate

results for the diffusion coefficients of a sphere. Since globular proteins have spherical

shapes, we can choose similar parameters to obtain accurate friction matrices for the

proteins.

i
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Figure 2-5 - Error in the calculated translational and rotational diffusion coefficients of
the inner sphere versus the ratio of ri, to h. Here rfree is set to 0.2 and the ratio of rout to
r2n is chosen equal to 400.

2.2.2 Diffusion coefficients of proteins

We have calculated the rotational and translational diffusion coefficients of 10 different

proteins (Table 2.1) using the FEM. To calculate the coefficients, as explained before,

the SES of the protein is embedded in an incompressible solid sphere with a diameter

of 400 times the largest dimension of the protein. The mechanical properties of

the solid are the same as in the previous section. According to the results in the

previous section, we mesh the whole intervening space between the SES and the

sphere surface with approximately 100,000 8/1 elements and set rfree to 0.2. The

diffusion coefficients are calculated for the hydration layer thicknesses of 0 and 1

(Table 2.2). To compute the SES of a protein with a hydration layer thickness of 1 ,

we need to increase the original van der Waals radii of atoms by 1 A, before creating

the corresponding SES.

After calculating the coefficients for the two different layer thicknesses, we cali-

brate the hydration layer thickness of the protein to the experimental diffusion coef-

ficients of the protein, by performing interpolations and extrapolations on the data



Experimental values of the translational and rotational diffusion coefficients
of 10 different proteins. All the reported diffusion coefficients are obtained from Ref. [77],
except for those of myoglobin and hemoglobin that are obtained from Ref. [12].

Structure Translational Rotational
Srcue diffusion diffusion

Protein name PDB ID weight coffin coffin
(k~a) coefficient coefficient

(kDa) (10-2 x AL) (10-5 x Ip)
psec psec

BPTI (q) 4pti 7 1.29 4.17

Ribonuclease A 1rbx 14 1.07 -

Lysozyme 1931 14 1.09 2.6

Myoglobin 1dwr 18 1.02 1.72

Chymotrypsinogen 2cga 26 0.93 -

#-Lactoglobulin Ibeb 37 0.782 0.75

Hemoglobin 2dn2 65 0.69 0.442

GPD (r) 4gpd 143 0.5

Adolase lado 158 0.445

Nitrogenase MoFe 2min 233 0.4

Table 2.1



Table 2.2 - Calculated values of the translational and rotational diffusion coefficients of
10 different proteins for the hydration layer thicknesses of 0 and 1 A.

Translational Rotational Translational Rotational

. diffusion diffusion diffusion diffusion
coefficient coefficient coefficient coefficient

(10-2 X _A) (10-5 X 1 ) (10-2 XA) (10-5 x 1)
psec psec psec psee

Hydration layer thickness = 0 A Hydration layer thickness =1 A

BPTI (q) 1.49 5.30 1.35 4.03

Ribonuclease A 1.17 2.56 1.08 2.05

Lysozyme 1.17 2.64 1.09 2.12

Myoglobin 1.08 1.87 1.01 1.52

Chymotrypsinogen 0.950 1.44 0.889 1.19

#-Lactoglobulin 0.829 0.926 0.768 0.741

Hemoglobin 0.697 0.524 0.660 0.448

GPD (r) 0.508 0.217 0.483 0.188

Adolase 0.474 0.170 0.454 0.151

Nitrogenase MoFe 0.446 0.147 0.429 0.131



Table 2.3 - Calculated values of the optimal hydration layer thicknesses and the errors in
the translational and rotational diffusion coefficients of 10 different proteins. Errors cannot
be calculated for cases for which there is no experimental data reported in Table 2.1.

Error in the Error in the

. calculated calculated

Protein name Oa l hydratio translational rotational
layer thickness ( diffusion diffusion

coefficient (%) coefficient (%)

BPTI (q) 0.888 5.5 1.2

Ribonuclease A 1.09 0.1

Lysozyme 0.070 6.5 1

Myoglobin 0.447 2.2 1.6

Chymotrypsinogen 0.333 0.3

#-Lactoglobulin 0.954 1.5 0.4

Hemoglobin 1.08 4.6 0.5

GPD (r) 0.334 0.5

Adolase 1.44 0.7

Nitrogenase MoFe 2.69 1.7

given in Tables 2.1 and 2.2. Then the determined optimal thickness is added to the

van der Waals radii of atoms and the diffusion coefficients are recalculated. All the

experimental and calculated diffusion coefficients are given for the viscosity of water

at 20 C, except for the rotational diffusion coefficients of myoglobin and hemoglobin

that are for the viscosity of 1.1cP (equivalent to 66.24 Dx)). As seen, the errors

in the calculated diffusion coefficients are small (Table 2.3). Hence, the FEM can be

used to obtain the friction matrix and the diffusion coefficients of proteins accurately.



2.2.3 Langevin modes of crambin

The initial structure of crambin, a small protein with 46 amino acids, is obtained from

the work of Bang et al. [97] (Protein Data Bank ID 2FD7). In CHARMM version

35b1 [46] using the implicit solvation model EEF1 [47], steepest descent minimization

followed by adopted-basis Newton-Raphson minimization is performed in the presence

of successively reduced harmonic constraints on backbone atoms to achieve a final

root-mean-square (RMS) energy gradient of 4 x 10-4 kcal with corresponding RMS
(moixA)

deviation between the X-ray and energy minimized structures of 1.1 A (Fig. 2-1-A).

Then the SES of the energy-minimized molecular structure is obtained, as ex-

plained before, and imported into ADINA ver. 8.7.1 (Fig. 2-1-B). The SES is em-

bedded in an incompressible solid sphere with Poisson's ratio of 0.4999 and shear

modulus of 54.31 --- D, which is 0.9 times the viscosity of water at 20'C, P20. As

in the previous section, the diameter of the sphere is approximately 400 times the

largest dimension of the protein, the whole intervening space between the SES and

the sphere surface is meshed with approximately 100,000 8/1 elements, and rfree is

set to 0.2. Here we set the hydration layer thickness to zero and calculate the friction

matrix Z using the FE model. The translational and rotational diffusion coefficients

calculated from the Z matrix are, respectively, 1.88 x 10-2 A2 and 8.56 x 10- 1 1

Note that for cases in which we know the experimental diffusion coefficients of a

protein, we can calculate the Z matrix with the optimal hydration layer thickness.

Otherwise, we set the thickness to zero.

For the sake of comparison, we also calculate the Z matrix from a shell-type model,

as explained before. The hydrodynamic radius of beads located at the nodes on the

SES is chosen such that the diffusion coefficients calculated from the shell model

are the closest to those obtained using the FEM. For crambin, the hydrodynamic

radius is found to be 0.4 A. The errors in the translational and rotational diffusion

coefficients calculated from the shell model in comparison with those of the FEM are,

respectively, 1.7 % and 0.1 %. Hence, both of the friction matrices, obtained using

the FEM and the shell model, give almost the same diffusion coefficients.
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Figure 2-6 - Root-mean-square fluctuations of c-carbons of crambin obtained using the
FEM and the RTB procedure.

To obtain the stiffness and mass matrices for crambin, we import the SES of cram-

bin into ADINA ver. 8.7.1 and mesh the protein volume with 3D 4-node tetrahedral

elements, where 2449 nodes are located in the model. The material of the protein is

assumed homogeneous, isotropic, and linear elastic, where the mass density is 1525

mi (equivalent to 0.918 !), Young's modulus is 7.8 GPa (equivalent to 467 )'3A 3  (pseC2 xA

and Poisson's ratio is 0.3. The mass density is obtained from the molecular weight

and molecular volume of the protein. Young's modulus is obtained by fitting root-

mean-square fluctuations of oc-carbon atoms in the FE model to those obtained using

the Rotation Translation Block procedure [57, 58] at room temperature in CHARMM

(Fig. 2-6), where one block per residue and the implicit solvation model EEF1 [47]

are employed.

Having the stiffness and mass matrices using the FEM and the friction matrix

using the FEM or the shell model, we can solve for the Langevin modes of crambin.

Additionally, we can calculate the normal modes of the protein in a vacuum by use of

the stiffness and mass matrices (Eq. 1.1), where the friction matrix is totally neglected.

Each of the calculated Langevin modes and vacuum normal modes contain 6N and 3N



components, respectively, where N is equal to 2449. To compare a vacuum normal

mode with a critically damped or over-damped Langevin mode, first, we take the

upper 3N components of the Langevin mode and renormalize them. Then the dot

product of the normalized vacuum normal mode and the normalized, upper half of

the Langevin mode is calculated as an overlap score between the two modes [12].

The overlap score between the critically damped or over-damped Langevin mode

that correlates most with a vacuum normal mode and the normal mode is the highest

in comparison with all other critically damped or over-damped Langevin modes. To

compare the two sets of critically damped or over-damped Langevin modes obtained

by use of the two friction matrices, we can calculate their highest overlap scores with

the first 10 non-zero vacuum normal modes (Table 2.4). The values of the highest

overlap scores between the Langevin modes and the vacuum normal modes decrease

with the vacuum normal mode number. This observation shows that only the lowest

few vacuum normal modes of crambin can be characterized by individual critically

damped or over-damped Langevin modes. Additionally, the two sets of the relaxation

times corresponding to the first 10 vacuum normal modes obtained using the FEM

and the shell model are in good agreement for vacuum normal modes 1, 2, 3, 5, 6,

and 8, while, unlike the FEM results, the relaxation times calculated using the shell

model for the other vacuum normal modes are substantially small (see also Ref. [12]).

The short relaxation times calculated by the shell model would be expected to be far

higher, since the lowest vacuum normal modes are collective motions of the protein.

At the solvent viscosity of zero, all the Langevin modes of crambin, except for

the 12 zero-eigenvalue modes corresponding to the purely translational and rota-

tional motions of the protein, are under-damped, i.e., the imaginary parts of their

eigenvalues are non-zero. However, as the solvent viscosity increases, the number

of under-damped modes reduces and the Langevin modes become critically damped

and then over-damped (Table 2.5). Additionally, we expect the relaxation times of

the Langevin modes to increase with the solvent viscosity (Fig. 2-7). Note that none

of the relaxation times of the critically damped or over-damped Langevin modes of

crambin calculated here are longer than the relaxation time corresponding to the



Table 2.4 - Highest overlap scores and corresponding critically damped or over-damped
Langevin modes and relaxation times for the 10 lowest non-zero vacuum normal modes of
crambin. The friction matrix Z is calculated using the FEM and the shell model, while the
stiffness and mass matrices are calculated using only the FEM. Here the solvent viscosity
is 0.9 times p20.

The FEM The shell model

Vacuum Highest . Relaxation . Relaxation
Langevmn Highest Langevin tm

normal overlap mode time overlap mode time
mode scores (psec) (psec)

1 0.9066 29 13.61 0.9052 7 14.00

2 0.9598 31 11.46 0.9576 8 11.82

3 0.6885 33 9.95 0.6027 9 9.84

4 0.5194 54 4.70 0.6166 8775 0.03

5 0.5420 35 8.38 0.4891 10 8.50

6 0.5504 41 6.93 0.5078 12 7.25

7 0.3770 520 0.92 0.4905 3841 0.07

8 0.4023 50 5.00 0.4185 15 5.92

9 0.3475 472 1.02 0.5421 3976 0.06

10 0.4946 55 4.56 0.4607 10633 0.02



Table 2.5 - Number of critically damped or over-damped Langevin modes of crambin at
different solvent viscosities. Here the friction matrix Z is calculated using only the FEM.

Number of critically damped or
over-damped Langevin modes

0 12

0.1 1556

0.3 3530

0.5 4966

0.9 6262

1 6438

rotational diffusion coefficient. That is because all of the SES is involved in rota-

tional diffusion while, in a Langevin mode, only part of the protein surface undergoes

significant motion [12].

2.3 Concluding remarks

The solvent friction matrices of proteins need to be calculated and coupled with

the stiffness and mass matrices of the proteins to incorporate the effects of solvent-

damping into protein NMA. Several methods such as the FEM and the RTB procedure

have already proven successful in calculating the stiffness and mass matrices of pro-

teins [18]. However, none of the approaches that are currently used to compute the

friction matrices for the LMA of proteins [12, 81] are expected to capture the true

solvent-damping effects on proteins, due to their problematic aspects and unrealistic

approximations [82-84].

The objective of this chapter was to present an accurate algorithm for calculating

the Langevin modes of proteins. To this end, we employed the well-established FEM

to calculate the solvent friction matrices of proteins. The FEM is well suited to the

calculation of the friction matrices because, using the Stokes equations, it almost



S1-r -Mir= V RkUWuu 1HUMI UILUUC4

-- Vacuum normal mode3
12---

.- 10 - -

1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Solvent viscosity (x120)

Figure 2-7 - Relaxation times of the critically damped or over-damped Langevin modes
of crambin calculated for different solvent viscosities that heavily correlate with non-zero
vacuum normal modes 1-3 of crambin.

models the true solvent drag on the protein surface, where the friction matrix is

expected to converge to the exact solution as the mesh element size goes to zero [13].
Also, since the Stokes equations are employed here, only one FE solid simulation with

the commercial finite element software programs is enough to calculate the whole

friction matrix of a protein, which renders the computational efficiency of the FEM,

for the LMA of proteins, high.

Since there are analytical solutions for the diffusional behavior of a sphere, to

check the accuracy of the algorithm, the FEM was first applied to a sphere and the

solvent friction matrix of the sphere was computed. Results show that the diffu-

sion coefficients calculated from the matrix match well with the analytical solutions.

Hence, since globular proteins have spherical shapes, the FEM is also expected to be

useful in calculating accurate friction matrices for proteins.

The FEM was then employed to calculate the diffusion coefficients of 10 differ-

ent proteins. Here it was shown that the error between the FEM-calculated and

experimental diffusion coefficients of the proteins is small.



Finally, the Langevin modes of crambin were obtained using the FEM. As ex-

pected, all of the relaxation times of the critically damped or over-damped Langevin

modes of crambin calculated using the FEM were longer than the relaxation time cor-

responding to the rotational diffusion coefficient. Additionally, it was demonstrated

that only the first few non-zero vacuum normal modes of crambin could be well-

characterized by individual critically damped or over-damped Langevin modes of the

protein.
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Chapter 3

Structure, evolutionary

conservation, and conformational

dynamics of Homo sapiens

fascin-1, an F-actin crosslinking

protein

The actin cytoskeleton of eukaryotic cells is centrally involved in a range of cellular

functions including migration, endocytosis and division. In each case, the cell uses

a host of accessory proteins to regulate actin dynamics spatiotemporally to achieve

cellular function. In the case of migration, the leading edge of the cell consists pre-

dominantly of two types of protrusive filamentous actin (F-actin) structures: the

dendritic sheetlike lamellipodium [98-102] and dynamic cortical spike-like filopodia

[103-105]. Filopodia consist of compact ordered bundles of unipolar actin filaments

that are nucleated at the leading edge by formins [106, 107] and crosslinked tightly

into highly ordered bundles by the actin-binding protein fascin, which is both highly

conserved evolutionarily and tissue- and cell-type-specific [104, 108]. While fascin

dominates in cortical actin bundles such as filopodia, oocyte microvilli, and the den-



drites of dendritic cells, which play direct roles in cell migration, cell-matrix adhesion,

and cell-cell interactions, fascin is also associated to a lesser extent with cytoplasmic

actin bundles that participate in the maintenance of internal cell architecture [109].

Fascin is additionally known to be upregulated in a number of highly motile cell

phenotypes including invasive cancer cells [110-114].

It is well established that the molecular size and conformational flexibility of actin

crosslinking proteins are highly correlated with the morphological cytoskeletal struc-

tures with which they are associated [115-118]. For example, human filamin is a

relatively large homodimer (approximately 160 nm molecular dimension) consisting

of 24 tandem immunoglobulin repeats that is associated primarily with dendritic

cytoskeletal networks [119], c-actinin is a smaller (35 nim) anti-parallel homodimer

that is associated with both networks and bundles such as the contractile ring in

dividing cells and stress fibers in adherent cells [120, 1211, and the compact ABP fim-

brin (10 nm) [122] (also called plastin) is found nearly exclusively in highly ordered

unipolar actin bundles such as microvilli. The X-ray structures of several of these

and related actin-crosslinking proteins have been determined. They consist of dual

calponin homology actin-binding domains that are suggested to stabilize actin fila-

ments [123-129]. Fimbrin additionally has two N-terminal calcium-binding EF-hand

motifs that confer calcium regulation of its F-actin crosslinking activity in human

isoforms [130, 131].

Homo sapiens fascin-1 also crosslinks actin filaments into compact unipolar bun-

dles, but in a manner that is regulated by phosphorylation of serine 39 by protein

kinase C [132], which inhibits its actin-bundling activity without affecting its localiza-

tion to the filopodial tip complex [104]. H. sapiens fascin-1 is a compact, 55 kDa (493

residues) globular monomer with putative actin-binding domains that differ in pri-

mary sequence. Fascin was originally discovered in extracts from sea urchin eggs [133]

and was later found in other invertebrates as well as vertebrates including Drosophilia

[134], starfish sperm [135], Xenopzus laevis [136], rodents [137] and humans [138]. H.

sapiens fascin-1 is the original vertebrate fascin discovered, whereas retinal and testis

fascins were discovered later and named fascin-2 and fascin-3, respectively [108]. Se-



quence alignment shows no similarity between fascins and other known actin-binding

proteins in humans, but strong similarities within the fascin family itself [139]. Atomic

models for actin-fascin bundles have been proposed on the basis of optical diffraction

studies of negatively stained reconstituted material [140]. These suggest an 11 nm

transverse banding pattern and uniformly polarized actin filaments organized in a

hexagonal array with an interfilament distance of 11.5 nm. Assuming a single fascin

monomer per crosslink, the predicted fascin-actin stoichiometry of 1:4.5 is in good

agreement with experimentally measured ratios [141]. This maximal stoichiometry is

a result of the helical twist of the actin filament that limits crosslinking sites between

pairs of filaments to every fourth or fifth actin monomer. Fascin is additionally sug-

gested to impart unusual mechanical stiffness to actin bundles in cells [104, 142-144]

and reconstituted actin systems [121, 145, 146] as compared with fimbrin, despite sim-

ilar actin-binding affinities and bundle structure [140, 147]. Despite its importance to

cell function, the molecular basis for the unique localization and actin-bundling prop-

erties of fascin are not known. Here, we examine the packing, evolutionary sequence

conservation and conformational flexibility of the 2.9 A resolution crystal structure

of full-length recombinant H. sapiens fascin-1 (PDB ID 1DFC). The results of nor-

mal mode analysis (NMA) of fascin suggest potential functional consequences of its

distinct molecular structure and flexibility in crosslinking F-actin. Mutational and

other experimental studies are needed to test these predictions.

3.1 Results

3.1.1 Overall structure

The two fascin molecules in the asymmetric unit are highly similar, with a root-

mean-square deviation (RMSD) of 0.64 A for 474 C, atom pair equivalences. Fascin

is composed of four tandem repeat 1-trefoil domains (Fig. 3-1) with pseudo 3-fold

symmetry, consisting of 12 6-strands that form the barrel (B) and cap (C) regions in

the sequence: BCCBBCCBBCCB (Fig. 3-2-A). The domains pack to form a distorted



tetrahedron composed of two lobes: domains F1 (residues 8-139) and F2 (residues

140-260) form the first lobe and domains F3 (residues 261-381) and F4 (residues 382-

493) form the second lobe. These two lobes can be superimposed with an RMSD of

2.3 A for 224 C, atom pair equivalences. The two lobes are related by an approximate

2-fold axis (rotation angle 163', screw distance 8.1 A). This axis passes between the

two lobes and is approximately perpendicular to the plane of the image in Fig. 3-

1-A. Despite the similarity of the two fascin lobes, the difference in relative internal

orientations of their domains is 9'. Overall, 6676 A2 of accessible surface area is buried

at domain-domain interfaces, with approximately one-third of this surface area buried

in the interface between domains F1 and F2, one-quarter between domains F3 and

F4, 18% between domains F2 and F4, 11% between domains F1 and F4 and 11%

between domains F2 and F3 (Table C.1).

Within the first lobe, the P-trefoil domains F1 and F2 are related by an approxi-

mate pseudo 2-fold axis (rotation 170', screw 6.2 A) passing between these domains

and lying approximately vertically in the plane of the image in Fig. 3-1-A, with the

C-terminus of the first domain linked directly to the N-terminus of the second. Within

the second lobe, the B-trefoil domains F3 and F4 are also related by an approximate

2-fold axis (rotation 1690 , screw 7.3 A) passing between these domains and lying ap-

proximately vertically in the plane of the image in Fig. 3-1-A. Domains F3 and F4 in

the second lobe are also packed head-to-tail like domains F1 and F2 in the first lobe.

The interface between the domains in each lobe is formed by interactions between

the 5-barrels, with their -hairpin triplets at the extreme ends of the lobes. This

association results in an almost coaxial alignment of the pseudo 3-fold axes of the

two domains within each end-capped 1-barrel lobe (Figs. 3-1-C and 3-1-D), with the

pseudo 3-fold axis lying approximately perpendicularly to the inter-domain dyad.

3.1.2 t-Trefoil domain structure

Each (-trefoil domain consists of 12 @-strands that form three structurally homolo-

gous subunits (green, red and blue in Fig. 3-2-A). These three subunits are related by

a pseudo 3-fold axis and each contains a B P-loop-f motif [148] that forms two pairs
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Figure 3-1 - Overall structure of H. sapiens fascin-1. (A) View I of H. sapiens fascin-1
showing lobe 1, which consists of j-trefoil domains F1 (residues 8-139, yellow) and F2
(residues 140-260, green) and lobe 2, which consists of 3-trefoil domains F3 (residues
261-381, blue) and F4 (residues 382-493, red). The pseudo 2-fold axis is located between
the lobes and is oriented approximately normal to the plane of the image. (B) View of
fascin-1 from the top in comparison with view I in A, obtained by a 900 rotation of fascin
about the X-axis in view . The pseudo 2-fold axis is approximately vertical in the plane of
the image. (C) View of fascin-1 along the pseudo 3-fold axis of lobe 1, obtained by rotation
of fascin-1 in view I by 156' about the X-axis, -119' about the Y-axis, and -156' about
the Z-axis. (D) View of fascin-1 along the pseudo 3-fold axis of lobe 2. This view is obtained
by rotation of fascin-1 in view I by -150' about the X-axis, 125' about the Y-axis, and
-151' about the Z-axis. All structural figures were generated with PyMOL [49].
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C DD f-strand # 1 2 3 4

Ft 13 0 N 22 KY E 32 N 45 E
F2 141 N 3 151 RY H 162 E 176
F3 262 271 R N R 280 293 E
F4 385 R 393 403 413 E
ETl 15 P 27 42 55
L-B 7NR 16 K 25 R 2 41
FGF 2 K 21 H 30 4 E3
H 3N K 12 H 20 33 7 85 N

3-strand # 5 6 7 8

Ft 20 K RD 69 R 79 91 
F2 85R 194 R R H 200 IR 212 ER
F3 304 R 313 K 323 336 E
F4 422 K 431 K 441 451
ETl 72 K 87 P 101 115 E
ILrlB 57 P 67 so Lj 101 N
FGF 53 E 63 Q 73 85 E
H 42 K 51 JK 61 74 EHH

strand # 9 10 11 12

F1 100 R 110 R 
116 

131 K

F2 2 H 229 R 239 253
F3 344 is 362 375
F4 460 K " 46 K 477 490 EY
ETI 126 IY 140 153 R 163
11-1B 109 K§ E 120 4 131 P 145
FGF 94 Y g 107 116 131 P
H 82K K 91 H J 100 112t E

Figure 3-2 -Structure and sequence analyses of the P-trefoil fold. (A) View along the
internal pseudo 3-fold axis of $-trefoil domain F2 of H. sapiens fascin-1, containing 12 P-
strands. The hairpin triplet (P2, P3, P6, 7, P10 and s11) is located proximal and the six-
stranded barrel (strands (1, (4, (5, (8, (9 and s12) distal. (B) Structural superposition of
domains F1 (yellow), F2 (green), F3 (blue) and F4 (red) of fascin-1. (C) Structural super-
position of homologous (-trefoil folds Erythrina caffra trypsin inhibitor (violet), H. sapiens
interleukin-1 (orange), human acidic fibroblast growth factor (brown), Dictyostelium dis-
coideum hisactophilin (black), and domain F1 (yellow) of fascin-1. (D) Structure-based
sequence alignment of 59 homologous (-trefoil folds [148]: the four domains of H. sapi-
ens fascin-1 (F1-F4), E. caffra trypsin inhibitor (ETI), H. sapiens interleukin-1( (IL-1B),
human acidic fibroblast growth factor (FGF), and D. discoideum hisactophilin (H). Stars
denote residues that stabilize the core of the (-trefoil fold. Green denotes hydrophobic and
white denotes hydrophilic residues according to the hydrophobicity table described by Kyte
et al. [149]. Secondary structure assignment is based on Ref. [147]. All multiple sequence
alignment figures were generated using Jalview [150].
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of antiparallel 1-strands. The first and fourth f-strand of every unit coalesce to form

a barrel structure (strands 1, $4, @5, B8, 19 and @12), with the strands inclined

approximately 560 to the barrel axis. Three additional pairs of 1-strands (12, $3,

16, 17, 310 and $11) form three 1-hairpins that cover the barrel from one side, with

the exception of domains F1 and F4 based on the Dictionary of Protein Secondary

Structure (DSSP) [151]. Structural superposition of the 1-trefoil domains of fascin

highlights their structural similarity (Fig. 3-2-B), with pair-wise RMSDs ranging from

1.3-2.2 A (Table C.2).

The B-trefoil fold is present in over 40 distinct proteins deposited at present in

the Protein Data Bank (PDB) [152] according to the structural classification of pro-

teins (SCOP) database [153]. Members of the family include the mammalian cy-

tokines interleukin-loc [154] and interleukin-1 [155], fibroblast growth factor [156],

soybean trypsin inhibitor [157], the lectin B-chains from ricin [158] and abrin [159],

the galactose-specific lectin amaranthin [160], and the actin-binding protein hisac-

tophilin [161]. The B-trefoil domains of fascin exhibit a considerably higher degree

of sequence identity and structural similarity to each other than to other members of

the 1-trefoil family, suggesting evolution of the fascin molecule via multiple gene du-

plication events from an ancestral S-trefoil fold (Fig. C-i-A and Tables C.3 and C.4)

[156].

The core of the 1-trefoil fold is stabilized by hydrophobic interactions between

bulky hydrophobic residues contributed by each 1-strand, extending nearly to the

barrel axis to form a tightly packed hydrophobic core [148]. Residues that stabilize

the core of the 1-trefoil fold are identified from Erythrina caffra trypsin inhibitor

(PDB ID ITIE) [162], H. sapiens interleukin-1 (PDB ID 1I1B) [155], and Bos tau-

rus acidic fibroblast growth factor (PDB ID 1JQZ)1 [163] [148]. Structure-based

multiple sequence alignment of 59 1-trefoil domains obtained from 45 distinct pro-

teins available in the PDB demonstrates high variability at all amino acid positions

other than these stabilizing hydrophobic core residues, which are highly conserved

1H. sapiens acidic fibroblast growth factor is used instead of B. taurus acidic fibroblast growth
factor because structural coordinates for the latter are not currently available in the PDB.



across the B-trefoil domains analyzed (Figs. 3-2-D and C-2-A). Approximately 90%

of the sequence pairs of these 1-trefoil domains are < 28% identical, indicating their

phylogenetic diversity (Fig. C-3-A). Residues responsible for hydrophobic packing in

the -hairpin triplet are mostly Leu, Val and Ile in all 59 B-trefoil domains, where

each B-hairpin donates two residues to stabilize the triplet.

The stabilizing hydrophobic core residues present in the -trefoil fold are also

highly conserved across homologous fascin molecules, although they are somewhat

more variable than among different B-trefoil proteins (30% versus 16% mean con-

servation grades) (Figs. 3-3, 3-4-A, and C-2-A). The conservation grade of the core-

stabilizing hydrophobic residues in fascin and its homologues is reduced to 19% when

residues are classified by their physicochemical properties using a seven-letter alpha-

bet for the entropy-based conservation measure, suggesting that their hydrophobic

nature is functionally more important than their specific amino acid type [164].

It is of interest to compare the single -trefoil domain protein hisactophilin from

the motile slime mold D. discoideum with fascin because it is also an actin-binding

protein [161, 167]. Hisactophilin functions in osmoprotection of D. discoideum, en-

hancing the structural integrity of the cell cortex by crosslinking F-actin to the

plasma membrane in a pH-dependent manner via protonation of its numerous his-

tidine residues [168], which compose 31 out of its 118 amino acids. Interestingly,

while eight analogous positions are occupied by the charged residues His, Arg and

Lys in the first B-trefoil domain of fascin, seven in the second, four in the third, and

three in the fourth, only three of these are His residues: the first domain has two

His residues, the fourth domain has one, and the second and third domains do not

have any. Additionally, the 109 residues in fascin-1 that are at analogous positions

to the histidines in hisactophilin appear to be distributed randomly throughout the

molecule, including 29 interfacial positions between $-trefoil domains (Fig. C-1-B).

Thus, despite the structural and functional similarities of fascin to hisactophilin, reg-

ulation of its actin-binding via pH-dependent protonation of its histidine residues is

unlikely to be present to the same extent as that in hisactophilin, if at all.
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Figure 3-3 - Multiple sequence alignment of homologous fascins. Multiple sequence alignment of a subset of 61 homologous

fascin sequences with NCBI accession codes and percentage sequence identity with H. sapiens fascin-1 provided in parentheses:

H. sapiens fascin-1 (NP_003079; 100%), H. sapiens fascin-2 (NP_036550; 57%), H. sapiens fascin-3 (NP_065102; 28%),
Strongylocentrotus purpuratus fascin (NP-999701; 37%) and D. melanogaster singed (isoform A) (NP_727226; 41%). Green

denotes strictly conserved residues, yellow denotes strong conservation, and colors in between interpolate conservation grade
linearly. A schematic of the fascin sequence is shown at bottom right. Point mutations in D. melanogaster fascin (the singed

gene) that disrupt actin-bundling are S289N (S274 in H. sapiens fascin-1) (blue five-point star) and G409E (G393 in H. sapiens
fascin-1) (green five-point star). S251F (P236 in H. sapiens fascin-1) (solid black circle) restores fascin function in the S289N
mutant [165]. Mutation of S39 (also S39 in H. sapiens fascin-1) (red triangle) to alanine renders in vitro actin-binding by fascin-1

insensitive to regulation by phosphorylation by PKCoc [132, 166]. See the text for details.
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Figure 3-4 - Residues suggested to stabilize the P-trefoil cores and lobes of fascin-1. (A)
Conservation grade and schematic of hydrophobic core residues (spheres) measured across
homologous fascin molecules. Views are along the 3-fold axis of the 1-trefoil domain, where
"top" and "bottom" refer to viewing the domain from its cap and barrel, respectively.
Conservation grades vary from blue to red, denoting highly variable and conserved residue
positions, respectively. (B) Ionic and hydrophobic interactions between 1-trefoil domains
of lobe 1. (C) Ionic and hydrophobic interactions between the 1-trefoil domains of lobe

2. Hydrophobic residues that lose more than 40 A2 of their solvent-accessible surface upon
domain-domain association and residues participating in domain-domain salt bridges are
labeled in B and C.



3.1.3 6-Trefoils associate to form two lobes in fascin

The B-trefoil domains of fascin associate at their exposed bases to form the first (F1

and F2) and second (F3 and F4) lobes of fascin with flanking polar interactions on

the solvent-exposed surface of each lobe (Figs. 3-4-B, 3-4-C, and C-2-B). There is a

single ion pair, D98-R185, between domains F1 and F2 in the first lobe (Fig. 3-4-B),

and another, R343-D450, between domains F3 and F4 in the second lobe (Fig. 3-4-

C) 2 . Two proline residues, P140 and P384, are highly conserved in the fascin family

with respective conservation grades of 11% and 7%. The first induces a bend in the

linker segment between domains 1 and 2 in the first lobe, and the second does the

same in the linker between domains 3 and 4 in the second lobe. In total, 27% of

all interfacial residues between domains F1 and F2 and between F3 and F4 reside

in the first quartile of all residues in the molecule as ranked by conservation grade,

suggesting that their inter-trefoil interactions might be important to the structural

stability of each lobe. A detailed analysis of the relative contributions of electrostatic

and hydrophobic interactions to lobe and fold stability would be of interest, but is

beyond the scope of the present work.

3.1.4 Lobes associate to form the full-length fascin molecule

The full-length fascin molecule is formed by association of the lobes at a skew angle

of approximately 560 (Fig. 3-1). The central region of fascin is stabilized by multiple

polar interactions connecting all four 1-trefoil domains together, where the residues

H139, Q141, S259, R383 and R389 that contribute to these interactions are also

highly conserved in the fascin family with respective conservation grades of 9, 8, 10,

0.5 and 17% (Figs. 3-3, 3-5, and 3-6). In total, 43% of all interfacial residues between

the lobes of fascin reside in the first quartile of residues in the molecule as ranked by

conservation grade, also suggesting their importance to the overall structural stability

of the full-length molecule.

2 These salt bridges are obtained for the oxygen-nitrogen distance cut-off of 3.2 A. Increasing the
cut-off to 4 A results in one (D97-R224) and two (D342-K464 and R344-D420) more salt bridges
between domains F1 and F2 and F3 and F4, respectively (see Section 3.3.2)
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positions in D. melanogaster fascin.
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Figure 3-6 - Close-up view of highly conserved interfacial residues H139, Q141, S259, R383
and R389 in stick representation.

3.1.5 Putative actin-binding sites of fascin

In the absence of any structure of a fascin-F-actin complex, the precise actin-binding

sites of fascin are not known. However, two point mutations in Drosophila melanogaster

fascin (the singed gene) are known to impact bundling: G409E (equivalent to G393

in H. sapiens fascin-1) that leads to partial inactivation of fascin in vivo and S289N

(equivalent to S274 in H. sapiens fascin-1) that inactivates fascin almost completely,

suggesting that one actin-binding domain may be in the region near S274 that is

also highly conserved (14% mean conservation grade) and solvent exposed (Figs. 3-3

and 3-7) [165]. Interestingly, mutation of S251 to phenylalanine (equivalent to P236 in

H. sapiens fascin-1) partially restores the fascin function lost in the S289N mutation

for reasons that are not understood [165].

A second actin-binding site is thought to be in the highly conserved protein ki-

nase Coc (PKCot) substrate domain consisting of residues 29-43 in the first B-trefoil
domain of fascin (Fig. 3-3). It has high sequence similarity to an actin-binding site

of myristoylated alanine-rich C-kinase substrate (MARCKS) FGFKVNASASSLKKK

(residues 29-43 in H. sapiens fascin-1) [108]. Mutation of S39 to alanine renders in

vitro actin-binding by fascin-1 insensitive to regulation by phosphorylation by PKCLX

[132, 166], and is therefore a constitutively active mutant, as shown also in mouse

B16F1 cells [104]. There, the constitutively active mutant fascin leads to a signif-
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icant increase in the number and length of cortical filopodia, whereas the inactive

phosphomimetic fascin mutant S39E is shown to reduce filopodial frequency [104].

The majority of the 123 highly conserved residues of fascin have functional impor-

tance that is rationalized on the basis of either contribution to fold/structural stability

or to actin binding, accounting for 72 residues. Examples include the putative actin-

binding site between residues 29 and 43, hydrophobic core stabilizing residues in the

-trefoil fold, interfacial residues between the lobes and, to a lesser extent, interfacial

residues between B-trefoil domains within each lobe. This is supported by the distri-

bution of conservation grades for each of these sub-sets of residues, which is biased

towards high conservation when compared with all residues in the molecule (Figs. C-4

and C-5-A).

The remaining 51 highly conserved residues consist either of residues that are

highly conserved both across fascin molecules and the p-trefoil fold, suggesting their

functional importance to the fold but not necessarily to the specific biological function

of fascin; glycines, which are likely to confer local flexibility to the molecule; and

residues that are located proximal to the functional sites consisting of residues 29-43,

S274, and P236, discussed above (Figs. 3-7-B and C-5 and Tables C.5 and C.6). The

fact that these latter residues are highly conserved across homologous fascins but not

generally across the (-trefoil fold suggests that they may have functional importance

to the molecule, such as in binding to F-actin or stabilizing the fascin fold.

3.1.6 Conformational dynamics

Analysis of the conformational dynamics of fascin illustrates that end-association of

the (-trefoil domains confers structural integrity within each cylindrical lobe that

is not present across lobes (Fig. C-6). The generalized linear correlation coefficient

(TLMI) calculated for residue pairs using NMA may be used to infer the dynamical

correlation between different regions of the protein (Fig. 3-8). Interestingly, correla-

tions in the motions of domains F1 and F3 are the highest among all pairs of (-trefoil

domains despite the fact that they are not in direct contact (Figs. 3-8-B and C-7 and

Table 3.1). This suggests a potential allosteric coupling between these domains, which
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Figure 3-8 - Dynamically correlated domains of fascin-1. (A) Average-link hierarchical
clustering is used to identify residue clusters that are highly correlated on the basis of
the magnitude of their generalized linear mutual information coefficient. Upper and lower
triangles show inter-residue correlations based on sequence position and after clustering,
respectively. High dynamical correlations are found within individual s-trefoil domains,
as expected, but also between distant domains F1 and F3 (see Table 3.1). (B) View I of
fascin-1 colored according to the five clusters shown in A. Point mutations affecting fascin
function and residues 29 and 43 are indicated. Residue numbers in parentheses indicate
analogous positions in D. melanogaster fascin.

contain the putative actin-binding sites of the molecule. The structural origin of this

long-range coupling is in the tight binding between the -trefoil domains of fascin to

form two (-barrel lobes that interact at an interfacial region that forms a hinge about

which the lobes may bend (Fig. C-6). This lobe-structure is in stark contrast to the

similar-sized crosslinking protein fimbrin, which consists of four calponin homology

domains that each consists of an c-helix bundle [122]. Further analysis of fimbrin is

required to understand potential functional implications of the distinct architectures

of these molecules. Identification of the precise actin-binding sites of fascin via mu-

tagenesis and structural studies are needed to elucidate implications of the observed

structural and dynamical properties of the molecule on its actin-crosslinking function.

3.2 Discussion

The crystal structure of H. sapiens fascin-1 reveals that its (-trefoil domains associate

via internal hydrophobic interactions and external ionic interactions at their bases to



Table 3.1 - Average generalized linear mutual information coefficient and fraction
residues that are in contact (% in parentheses) for the five clusters in fascin-1 shown
Fig. 3-8.

Yellow Red Cyan Green Blue

Yellow - 0.26 (11) 0.29 (11) 0.26 (31) 0.21 (16)

Red - - 0.31 (0) 0.26 (23) 0.27 (9)

Cyan - - - 0.25 (0) 0.27 (13)

Green - - - - 0.17 (0)

Blue - - -

Clusters (1) red-cyan, (2) cyan-green and (3) green-blue have mean generalized
linear correlation coefficients in the 7 3 rd 4 6th and 13 th percentiles, respectively,
excluding intra-domain contributions and contributions from residues in direct
contact (i.e., residues that have at least two heavy atoms within 5 A of one
another [169]).

form cylindrical 5-barrel lobes. NMA indicates that these interactions confer struc-

tural integrity to each cylindrical lobe that is maintained in the full-length molecule.

Conservation analysis confirms the functional importance of the cores of the P-trefoil

domains, which contain bulky hydrophobic residues that are highly conserved across

fascins and the entire 1-trefoil family of proteins, which are otherwise divergent in

sequence and biological function. Indeed, the majority of highly conserved residues in

fascin are suggested either to contribute to its structural stability or to binding to F-

actin. These residues are located in and near the putative actin-binding site between

residues 29 and 43 and the previously identified functional residues S274 and P236,

hydrophobic core-stabilizing residues of the @-trefoil fold, interfacial residues between

the lobes and, to a lesser extent, interfacial residues between 1-trefoil domains within

each lobe (Figs. C-4 and C-5 and Table C.6).

Association of the cylindrical lobes of fascin at their largely polar interface results

in a hinge that facilitates large-scale collective motions of each lobe, whereby the

opposing putative actin-binding domains of fascin are correlated in their dynamical



motions. This distinct molecular design of fascin might have important implications

on its biological function via a lever-like mechanism: action at one end of the molecule

is transmitted in a lever-like fashion to the other end. Indeed, fascin binding to F-

actin at one end (e.g. between F1 and F4) might induce a direct conformational

change at the opposing end of the molecule (between F2 and F3) that could alter

its binding affinity for F-actin, resulting in cooperative binding that could explain its

unique ability to form tightly packed and ordered actin bundles in vitro and in vivo.

Future mutational studies guided, in part, by the results of this work, together with

cryo-EM-based reconstructions of the actin-bound fascin crosslink, will eventually

facilitate a detailed understanding of the molecular basis for the unique structural

and mechanical properties that these ubiquitous and highly conserved actin-binding

proteins confer to actin bundles.

3.3 Computational procedures

3.3.1 Sequence analysis

We used three independent procedures for computing evolutionary sequence conserva-

tion: the conservation surface mapping method (ConSurf) [170, 171], the real-valued

evolutionary trace method (ET) [172], and a simple entropy-based method using a

21 letter alphabet [164]. The correlation coefficient between each of these three con-

servation analysis procedures is greater than 80%. In the absence of any information

regarding the superiority of any one approach, the grades were weighted such that

each contributed equally to the final conservation grade, except for positions that were

missing residues in the original PDB file, for which only the entropy 21-based grade

was used. The "conservation grade" presented in Results is defined as percentage

relative to all residues in the protein. For example, a residue conservation grade of

5% means that 5% of residues in the protein are at least as conserved as this residue,

and 95% are less conserved. Highly conserved residues are defined as residues residing

in the first quartile of residues in the molecule as ranked by conservation grade.



ConSurf was applied on the set of homologous H. sapiens fascin-1 sequences stored

in the ConSurf data bank (ConSurf-DB) [171]. ConSurf-DB stores results of ConSurf

analysis of all structures in the PDB [152]. Conservation grades were computed using

the Rate4Site algorithm [173] on 22 homologous sequences selected by the ConSurf-

DB protocol for H. sapiens fascin-1 [171].

The real-valued ET procedure is a hybrid method that incorporates an entropy

grade into a phylogenetic analysis of a multiple sequence alignment [172]. The phy-

logenetic tree was created using hierarchical clustering based on the unweighted pair

group method with arithmetic mean [174]. The tree was divided into distinct sub-

families using different partitionings, where an entropy grade was calculated for each

position in a subfamily-specific manner [172]. Conservation analysis was performed

on H. sapiens fascin-1 (SwissProt ID Q16658) using 31 sequences extracted from the

HSSP database [175].

In the third conservation analysis procedure, a simple entropy measure with a 21

letter alphabet was used. Sequences with a high degree of homology to H. sapiens

fascin-1 were retrieved from the NCBI [4] using PSI-BLAST [176] with an E-value

cutoff of 10-6 and one iteration. Sequences that differed by more than 5% in length

from the query sequence were removed together with redundant sequences, resulting

in 61 sequences (Table C.7). Sequences were aligned using ClustalX with default

parameters [177]. The entropy of each position in the sequence alignment, Si, was

computed using the standard measure for entropy:

21

Si - p iklog21pik (3.1)
k=1

where Pik is the probability of occurrence of amino acid type k at sequence position i.

The structure-based sequence alignment of 1-trefoil domains was done with STAMP

[178].



3.3.2 Physical property analysis

Interfacial residues between fascin domains are identified by the change in their rela-

tive solvent accessibility upon domain-domain association [179], where relative solvent

accessibility is defined as the ratio of the actual solvent accessibility of the residue to

its solvent accessibility in the extended Gly-x-Gly tripeptide [180]. Interfacial residues

are defined as residues that change their relative solvent accessibility by more than 1%

between the dissociated and associated states [179]. Salt bridges were found using the

VMD 1.8.6 salt bridge plug-in [1811 with default parameters. Increasing the oxygen-

nitrogen distance cut-off of 3.2 A (VMD default value) to 4 A was also considered

[182].

Conformational dynamics of fascin were calculated using NMA [183, 184]. The

crystal structures of chains A and B of fascin (PDB ID 1DFC) were analyzed with

missing loops built using Swiss-PDB viewer [185]. All-atom energy minimization and

subsequent NMA were done with CHARMM version 33al [46] using the implicit sol-

vent force-field EEF1 [47]. Hydrogen atoms and amino acid side chains were first

minimized sequentially with all remaining protein atoms fixed. Repeated rounds of

steepest descent minimization followed by adopted basis Newton-Raphson minimiza-

tion were subsequently done in the presence of successively reduced harmonic con-

straints applied to backbone chain atoms. The final energy-minimized structures of

chains A and B had RMS energy gradients of 4 x 10-4 and 2.5 x 10-4 k', respec-

tively, with RMS coordinate differences between the crystal and energy-minimized

structures of 1.9 A and 1.7 A. The Block Normal Mode method [57, 58] was used

with one residue per block to compute the 207 lowest frequency normal modes. The

mean-square thermal fluctuation of c-carbon atom i is computed as:

!2

k Akmi

where mi is atomic mass, kBT is thermal energy, Ak is the eigenvalue corresponding

to normal mode k, and Yik 2 is the squared magnitude of the projections of the kth

normal mode on the Cartesian components of the displacement vector of the ith atom



[21].

Correlations in atomic fluctuations were computed using the generalized linear

correlation coefficient:

TLMI [Xi, Xj = (I - exp

based on the linear mutual information metric:

'In [xi, xy) = 1 [ln detC(i) + In detC(j) - In detC(ij)] (3.4)

where C(i) = X Txi) and C(ij) = (Xi, xj)T(xi, xj)) are marginal covariances of atom

i and the pair-covariance matrix of atoms i and j, respectively (see Appendix C)

[186]. The results were compared with the more commonly used Pearson correlation

coefficient:

(3.5)

where xi denotes displacement of atom i in Fig. C-8 [187].

2 11in [Xi, x 1]/2
-3 (3.3)

Ci = (XjX)
((xi2) (Xj2))1/2
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Conclusions

This thesis contributes mainly to protein normal mode analysis (NMA) by both de-

veloping a computationally efficient and robust eigenvalue solver and incorporating

the effects of solvent-damping into the analysis. Additionally, it examines compre-

hensively the structure, evolutionary sequence conservation, and conformational flex-

ibility of Homo sapiens fascin-1 and gives insight into its functional mechanism.

In the present work, first, we presented an algorithm to optimize the number of it-

eration vectors used in the subspace iteration (SSI) method, a widely used eigenvalue

solver in engineering problems, for protein NMA. We demonstrated that the algo-

rithm improves substantially the effectiveness of the SSI method for proteins. With

this algorithm, the computational effort scales linearly with the number of eigenpairs

computed, as demonstrated for G-actin and pertussis toxin. The SSI method is well

suited to the analysis of protein conformational change pathways, where numerous

analyses may be performed in nearby conformations, which have relatively similar

eigensolutions. In such cases, the eigensolution calculated for the previous conforma-

tion provides an excellent set of initial iteration vectors for the current solution, as

demonstrated for the open-to-close conformational change of adenylate kinase.

Second, we developed an algorithm to accurately calculate the effects of solvent-

damping on proteins as a solvent friction matrix. In this algorithm, the whole solvent

friction matrix is obtained using only one finite element solid simulation with the

commercial finite element software program ADINA, which renders the algorithm

significantly efficient. The finite element method (FEM) proved successful in calcu-

lating the diffusion coefficients of a sphere and 10 proteins with various molecular

weights. Subsequently, we coupled the friction matrix and the stiffness and mass



matrices of crambin calculated using the FEM to obtain the Langevin modes of the

protein. As expected, all the relaxation times of the critically damped or over-damped

Langevin modes of crambin are longer than the one corresponding to its rotational

diffusion coefficient. It was also demonstrated that only the first few non-zero vacuum

normal modes of crambin can be well-characterized by individual critically damped

or over-damped Langevin modes.

Finally, we examined and described the structure of H. sapiens fascin-1 in de-

tail. The structure is comprised of four tandem P-trefoil domains that associate via

internal hydrophobic and external ionic interactions at their bases to form two B-
barrel lobes. Sequence conservation analysis confirms that the bulky hydrophobic

residues in the cores of B-trefoil domains are responsible for stabilizing the $-trefoil

fold. Additionally, the interfacial residues between lobes and, to a lesser extent, the

interfacial residues between -trefoil domains within each lobe were suggested to play

a central role in stabilizing the overall structure of fascin. An important observation

is that conformational dynamics analysis suggests an allosteric mechanism between

the putative actin-binding domains of fascin, which contain highly conserved surface

patches. Hence, fascin binding to F-actin at one actin-binding domain might cause

a conformational change at the other one that could alter its binding affinity for F-

actin, resulting in cooperative binding that could explain its unique ability to form

tightly packed and ordered actin bundles in vitro and in vivo. The results of this

work can guide future experimental studies to provide a detailed understanding of

the molecular basis for the unique structural and mechanical properties that these

ubiquitous and highly conserved actin-binding proteins confer to actin bundles.



Appendix A

Calculation of the conformational

change pathway of adenylate kinase

The open-to-closed transition of adenylate kinase is calculated using the elastic-based

finite element approach of M. Bathe [18]. For each conformation along the pathway,

starting with the open conformer (PDB ID 4AKE [50]), we calculate the finite element

eigenvectors, <pik, where i and k denote the eigenvector and conformation numbers,

respectively. Finite element eigenvectors for each conformation k are interpolated

to the cx-carbon positions of conformation k using the finite element interpolation

functions hl, where I denotes the element node number. The projection equations

are uigk = E 1 hinUjk, V k = q hivijik, and wijk - X 1 hiw ik. Here Uig k, Vk,

and wijk are the x-, y-, and z-components, respectively, of the a-carbon eigenvectors

Cik corresponding to a-carbon j. Also, 'uii k, vijik, and wjik denote the x-, y-,

and z-components, respectively, of (pik corresponding to node I of the finite element

enclosing a-carbon j [13]. The summations are performed over the q nodes of the

finite element enclosing a-carbon j.

To generate the (k + 1 )th conformation along the trajectory, first, the x-carbon

eigenvectors Cik are multiplied by the coefficients dik (Cik' = dik X Cik) such that

the resultant eigenvectors are normalized ( Cik' = 1, where prime denotes the

normalized set of eigenvectors.). Since Cik are obtained directly from the original pi k

via the FE interpolation functions, pik must also be scaled by dik as pik' = dik x W



In calculating the conformational change pathway, we use the eigenvectors denoted by

primes. However, from here on, primes are dropped for simplicity of notation. Hence,

Cik and <i k will be the normalized c-carbon eigenvectors and their corresponding

FE eigenvectors, respectively.

Next, the difference vector between c-carbon positions in the kth conformation

and those in the closed conformer (PDB ID 1AKE [4]), Ark, is projected onto the

eigenvectors corresponding to the a-carbons in order to calculate the contribution of

each c-carbon eigenvector, ci k, to the displacement of the c-carbons towards their new

positions in the (k + 1 )th conformation. The projection equation is czk - #kArk. Cik

[23, 59], where 3 k is a parameter that is chosen to be between 0 and 1 in order to

maintain an approximately constant step-size (ARMSDk = constant). ARMSDk is

defined as the difference between the kth and (k + 1 )th root-mean-square differences

(RMSD) (ARMSDk = RMSDk - RMSDk+1), where RMSDk refers to the RMSD

between the c-carbon positions in the kth conformation and those in the closed con-

former.

Given cik, new finite element nodal positions can be calculated as Rk+1 = Rk +

i1 cikk, where R is a vector of nodal positions in the kth conformation and n

is the number of eigenvectors used in the conformational change pathway analysis.

Atomic positions are subsequently computed using the FE interpolation functions.

The above procedure is used to calculate an initial conformational change path-

way consisting of 1843 conformations (Fig. A-1), where a total of 2000 conformations

were desired (the appropriate #k that are needed to generate a conformational change

pathway consisting of 2000 conformations are unknown a priori due to the nonlinear

nature of the conformational change pathway). Subsets of 1001, 101, 11, and one con-

formation(s) are subsequently selected from this original set such that the step-size is

approximately constant along the pathway (Fig. A-2). ARMSDk varies considerably

more for the 1001-conformation pathway than for the 101- and 11-conformation path-

ways because of the limited number (1843) of conformations available in the original

conformational change pathway (Fig. A-2).
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11-conformation pathways.
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Appendix B

Calculation of the effective

material properties of adenylate

kinase

The local mass density of adenylate kinase, p = 1420 k, is assumed to be homoge-

neous and equal to its molecular weight (23.6 kDa) divided by the molecular volume

(27,567 A3) [52] of the energy-minimized structure of the open conformer (PDB ID

4AKE [50]). Energy minimization is performed in CHARMM version 33al [46] using

the implicit solvation force-field EEF1 [47]. Steepest descent minimization followed

by adopted-basis Newton-Raphson is performed in the presence of successively re-

duced harmonic constraints on all backbone atoms to achieve a final root-mean-square

(RMS) energy gradient of 4 x 104 kcal with corresponding RMSD between the
(moixk)

X-ray and energy-minimized structures of 2.1 A. Energy minimization is required

by the Rotational Translational Block (RTB) procedure [57, 58], which is used as a

reference to calculate the effective material properties of adenylate kinase.

An effective Young's modulus of adenylate kinase, E= 4.9 GPa, is chosen such that

equilibrium thermal fluctuations of -carbons in the finite element model are equal

to those computed using the RTB procedure, and Poisson's ratio is assumed to be 0.3

[18]. Equilibrium thermal fluctuations of a-carbons are calculated using the FEM by

first computing the eigenvectors corresponding to the finite element nodes, pi, for the
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energy-minimized structure of the open conformer using the commercially available

finite element software program ADINA ver. 8.5 (Watertown, MA), where i denotes

eigenvector number. A total of 46,902 four-node tetrahedral finite elements with linear

interpolation functions are used to discretize the molecular volume of the protein. The

eigenvectors corresponding to the a-carbons, C2, of the energy-minimized structure

of the open conformer are calculated, as described in Appendix A, by projecting the

FE eigenvectors onto the a-carbon positions: u 1 hzu, vE= = 1h

and w21 = Eq hlwijl, where uij, v., and wij are the x-, y-, and z-components,

respectively, of the c-carbon eigenvectors Ci corresponding to c-carbon j; and uiji,

viji, and wiji denote the x-, y-, and z-components, respectively, of pi corresponding

to node I of the finite element enclosing a-carbon j [13]. Here the summations are

performed over the q nodes of the finite element enclosing a-carbon j.
The normalized vector y = Ci is subsequently defined such that y - yj = 6i,

where 6oj is the Kronecker delta. Equilibrium thermal fluctuations of a-carbon o is

then given by (Ar0
2) = E(Arok2) [18], where (Arok2) __ Br) Yok 2 is the mean-

square fluctuation of a-carbon o due to mode k, kBT is thermal energy, and m, is

the mass of amino acid o (here amino acid o is represented by one pseudo-atom at

the position of a-carbon o) [21]. Also, Yok is the magnitude of a vector made of the

three components of Yk corresponding to a-carbon o. The lowest 201 non-rigid-body

normal modes are used to calculate thermal fluctuations of adenylate kinase using the

RTB and FE-based approaches, where every a-carbon atom is considered (Fig. B-1).
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Figure B-1 - Root-mean-square fluctuations of o-carbons obtained using the FEM and
the RTB procedure.
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Chapter 3
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Figure C-1 - Analysis of structural alignments of fascin-1 domains with other f-trefoil fold domains. (A) Sequence
identity and structural similarity of domains of fascin-1 to @-trefoil domains available in the Protein Data Bank (PDB)
[152] (see also Section C.3). Each data point denotes one @-trefoil domain, with fascin-1 domains labeled. Domains
of fascin-1 exhibit higher sequence identity and structural similarity to each other than they do to other B-trefoil
domains. (B) General views of fascin-1 along the pseudo 3-fold axes of the first and second lobes. Fascin-1 residues
analogous to histidines in hisactophilin [161] are represented as spheres. Remaining residues are shown in transparent
cartoon representation. The 31 histidines in hisactophilin have 109 analogous positions in fascin. The 109 residues
are distributed randomly throughout fascin-1 (i.e., interfacial domains, solvent-exposed domains, etc.). All structural
figures were generated with PyMOL [49].
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Figure C-2 - Conservation of residues suggested to stabilize the s-trefoil core and solvent accessible surface
burial upon $-trefoil domain-domain association within each lobe of fascin-1. (A) Conservation of hydrophobic
core residues measured across p-trefoil domains available in the PDB (see also Section C.3). Views are along
the pseudo 3-fold axis of the B-trefoil domain, where "top" and "bottom" refer to viewing the domain from
its cap and barrel, respectively. Conserved hydrophobic residues that stabilize the core of the domain are
drawn as spheres. Remaining residues are shown in transparent cartoon representation. Red denotes highly
conserved and blue denotes highly variable residue positions. Most hydrophobic residues that stabilize the
s-trefoil domain cores in fascin-1 are highly conserved over the set of @-trefoil domains present in the PDB.
This observation implies that these residues are important generally to the stability of the 1-trefoil domain
structure. (B) Solvent accessible surface burial upon 1-trefoil domain-domain association within each lobe of
fascin-1. White and orange denote low (< 1%) and high (> 75%) solvent accessible surface burial, respectively.
Interfacial residues between the 1-trefoil domains of fascin-1 within each lobe are defined as residues that have
a solvent accessible surface burial that is greater than 1%. Hydrophobic residues losing more than 20 A2 of
solvent accessible surface upon domain-domain association and residues participating in domain-domain salt
bridges are labeled.
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Figure C-3 - Distributions of pair-wise sequence identities of 1-trefoil domains and homologous fascins.
Histograms and cumulative distributions of pair-wise sequence identities between (A) 59 1-trefoil domains
available in the PDB and (B) 61 homologous fascins given in Table C.7. Mean values (j ) and standard
deviations (u) are shown. Pair-wise sequence alignments are performed using the Needleman-Wunsch global
alignment algorithm [188] implemented in EMBOSS [189]. Sequence identity is calculated as the total number
of identical residue pairs between the two aligned sequences divided by the length of the shorter sequence. 90%
of p-trefoil domain pairs and 90% of homologous fascin pairs are less than 28% and 78% identical, respectively.
This observation implies significant phylogenetic diversity among these homologous sequences.
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Figure C-4 - Histograms of conservation grades across homologous fascins. Histograms of conservation grades
measured across homologous fascin molecules for (A) residues 29-43, (B) hydrophobic core stabilizing residues,
(C) interfacial residues between lobes, (D) interfacial residues between domains F1 and F2, (E) interfacial
residues between domains F3 and F4, and (F) all fascin-1 residues. Zero denotes maximal conservation and
one indicates maximal variability. Mean values (ii) and standard deviations (-) are shown. Residues 29-43
(a putative actin-binding site), hydrophobic core stabilizing residues, interfacial residues between lobes, and
interfacial residues between domains within each lobe are expected to be conserved due to their importance
to F-actin binding, p-trefoil fold stability, overall fascin-1 stability, and structural integrity of the lobes,
respectively. Residues 29-43, hydrophobic core stabilizing residues, and interfacial residues between lobes are
in general conserved, as expected.
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Figure C-5 - Functional analysis of residues of fascin-1. (A) Histograms of conservation grades for all residues (AR) of
fascin-1, residues with known function (RWKF) that include hydrophobic core stabilizing residues, interfacial residues
and residues 29-43, and residues without known function (RW/OKF) that include all residues of fascin-1 except for
hydrophobic core stabilizing residues, interfacial residues, and residues 29-43. Mean values ([t) and standard deviations
(-) are shown. The distribution of conservation grades for RWKF is biased towards high conservation. This bias is in
contrast to the distribution of conservation grades for RW/OKF, which is biased towards low conservation. 59% and
41% of highly conserved residues across all homologous fascins are comprised of RWKF and RW/OKF, respectively (also
see Tables C.5 and C.6). (B) View I (see Chapter 3) of fascin-1 colored according to conservation grade measured across
homologous fascins. Conservation grade varies from blue to red, denoting highly variable and highly conserved positions,
respectively. Highly conserved RW/OKF are represented as spheres and remaining residues are drawn as a transparent
cartoon. Residues that are highly conserved across fascins but not generally across $-trefoils include residues 23, 25, 27,
and 44, which are located near residues 29-43, a putative actin-binding site (Fig. 3-7-B and Table C.6); residues 274,
283-285, 292, and 360-361, which are located near S274; and residues 149, 151, 154-155, 166, 174, 235, and 251, which
are located near P236 (Fig. 3-7-B). These residues constitute approximately two-fifths of highly conserved RW/OKF,
with another approximately one-third consisting of glycines, mostly located in loops (Table C.6).
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Figure C-6 - The two lowest normal modes of fascin-1. (A) The lowest normal mode is a hinge-like motion
in which the @-barrel lobes twist as rigid bodies relative to each other in a scissor-like motion. The axis
of rotation indicated by the arrow is generated using DynDom [190] with the maximum partition-size that
generates a hinge when analyzing two conformational substates in the direction of the normal mode under
analysis. Hinge-domains are colored red and blue, and hinge-bending residues are colored green. (B) The
second lowest normal mode is a hinge-like motion in which each lobe rolls along its long axis with respect to
the other one as a rigid body.
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Figure C-7 - Correlated dynamical motions of fascin-1. Average-link hierarchical clustering is used to
identify residue clusters that are highly correlated based on the magnitude of their generalized linear mutual
information coefficient. The triangle shows inter-residue correlations after clustering. View I of fascin-1
is colored according to the different clusters shown in the dendrogram. Point mutations affecting fascin-
1 function and residues 29 and 43 are indicated. Residue numbers in parentheses indicate the analogous
positions in D. melanogaster fascin. Fascin-1 is clustered into (A) two, (B) three, and (C) four clusters.
Domains F1 and F3 remain in the same cluster in each partitioning, despite the fact that the domains are
not in direct physical contact. This dynamical coupling suggests a potential allosteric mechanism involving
these two distant domains.
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Figure C-8 - Analysis of correlation coefficients between C, atom thermal fluctuations in fascin-1. (A)
Dynamical correlation matrix for conformational fluctuations of fascin-1. The upper triangle shows the
generalized linear mutual information correlation coefficient and the lower triangle shows the Pearson
correlation coefficient. Strong coupling between distant (see Table C.1) -trefoil domains F1 and F3 is
evident using both measures, although the correlation is more apparent in the mutual information metric.
Histograms of correlation coefficients between all residue pairs (blue) and between distant inter-domain
residue pairs (red) calculated using (B) mutual information and (C) Pearson correlation. Two residues are
defined to be in contact if any of their two heavy atoms are within 5 A of one another [169]. Similarly, a
residue pair is defined to be "distant" if the minimum distance between all of their heavy atoms is greater
than 5 A. Thermal fluctuations of residue pairs that are close spatially and/or in the same @-trefoil domain
are generally more correlated than distant inter-domain residue pairs due to physical contact and structural
integrity of the 1-trefoil fold. Scatter plots between Pearson correlation coefficients (Cij) and generalized
linear correlation coefficients (rLMI) of (D) all residue pairs, (E) distant inter-domain residue pairs, and (F)
close and/or intra-domain residue pairs. Solid lines denote a slope of one. As seen, the generalized linear
correlation coefficient is at least as large as the Pearson correlation coefficient because the latter neglects
non-colinear correlated atomic motions. Warmer colors denote a higher density of points. Notwithstanding,
the two metrics are highly correlated with one another, as shown.
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C.2 Supplementary tables

Table C.1 - Solvent-accessible
interfaces in fascin-1.

surface area (A2) buried between P-trefoil domain-domain

F1 F2 F3 F4

F1 - 2,206 0 702

F2 - - 756 1,225

F3 - - - 1,787

Table C.2 - RMSDs between the pair-wise aligned 1-trefoil domains of fascin-1 (Fl-F4)
given in A for each pair of domains. The number of C, atom pair equivalences is shown in
parentheses.

F1 F2 F3 F4

2.11 1.91 2.23
F1

(115) (119) (110)

1.70 1.79
F2 - -

(114) (104)

1.32
F3 -

(108)
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Table C.3 - Sequence identity between domains of fascin-1 and other (-trefoil domains
available in the PDB.

Standard deviation of
Mean sequence Mean sequence

sequence identities
identity between a sqecidntes identity between a

between a fascin-1
fascin- 1 (3refoil P- trfi oanad fascin- 1 (-trefoil

(-trefoil domain and
domain and other domain and other

other (3-trefoil
(-trefoil domains (%) fascin-1 domains

domains (%)

F1 12 3 17

F2 9 3 16

F3 12 4 19

F4 12 4 22

Table C.4 - Structural similarity between fascin-1 domains and other (-trefoil domains
available in the PDB.

Standard deviation of
Mean RMSD between Mean RMSD between

RMSDs between a
a fascin-1 (3-trefoil f 1a fascin-1 (-trefoil

fascin- 1 (-trefoil
domain and other domain and other

domain and other
(-trefoil domains (A)fascin- domains (A)

( -trefoil domains (A)

F1 2.31 0.40 2.08

F2 2.26 0.30 1.87

F3 2.20 0.35 1.64

F4 2.28 0.33 1.78
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Table C.5 - Residue type, number of residues of specific residue type, fraction of residues of
specific residue type (in parentheses) and residue numbers of the fifty-one highly conserved
residues across homologous fascin molecules that are not included in the set of hydrophobic
core stabilizing residues, interfacial residues, and residues 29-43 (see also Fig. C-5).

Residue Number of
Residue number(s)

type residues

ALA

ARG

ASN

ASP

CYS

GLN

GLU

GLY

HIS

ILE

LEU

LYS

MET

PHE

222, 267, 283, 349, 365, and 480

149 and 151

18, 284, 351, and 360

166, 174, 225, 251, and 412

121

44, and 285

27, 130, 252, and 292

15, 76, 113, 228, 235, 321, 352, 361, 390, 393, 396, 430,

467, and 476

154

6 (11.8%)

2 (3.9%)

4 (7.8%)

5 (9.8%)

1 (2.0%)

2 (3.9%)

4 (7.8%)

14 (27.5%)

1 (2.0%)

0 (0.0%)

3 (5.9%)

0 (0.0%)

0 (0.0%)

0 (0.0%)

Continued on Next Page.
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Table C.5 - Continued

Residue Number of
Residue number(s)

type residues

PRO 0 (0.0%)

SER 3 (5.9%) 64, 146, and 274

THR 1 (2.0%) 25

TRP 0 (0.0%)

TYR 5 (9.8%) 23, 69, 152, 314, and 469

VAL 0 (0.0%)

Table C.6 - Residue type, residue number, and conservation grades across 1-trefoil
domains (CGTD) available in the PDB, conservation grades across homologous fascin
(CGHF) molecules, fraction of corresponding column which is of type "gap" (FCCTG)
in the structure-based sequence alignment of the 59 p-trefoil domains available in the PDB,
and potential functional reason for conservation of the fifty-one highly conserved residues
across homologous fascin molecules that are not included in the set of hydrophobic core
stabilizing residues, interfacial residues, and residues 29-43 (see also Fig. C-5). According
to conservation grade, Asp166 and Asn284 are highly conserved across 59 1-trefoil domains;
however, because their corresponding columns in the structure-based sequence alignment
of the 59 1-trefoil domains consist mostly of gaps (90%), these two residues are considered
as variable across the 59 1-trefoil domains and their corresponding rows in this table are
colored red.

Residue Residue CGTD CGHF FCCTG Potential functional reason for

type number (%) (%) (%) conservation

ALA

ALA

222

267

22.8

13.2

11.2

24.3

1.7

1.7

5-trefoil stability/function

P-trefoil stability/function

Continued on Next Page...
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Table C.6 - Continued

Residue Residue CGTD CGHF FCCTG Potential functional reason for

type number (%) (%) (%) conservation

35.6

21.6

19.3

20.4

45.7

43.4

5.1

20.9

7.7

23.3

23.9

15.2

14.2

ALA

ALA

ALA

ALA

ARG

ARG

ASN

ASN

ASN

ASN

62.1

81.7

18.9

20.7

4.9 21.5

33.5 10.8

5.1

1.7

3.4

3.4

17

283

349

365

480

149

151

89.8

10.2

89.8

27.1

fascin-1 stability/function (near

S274)

f-trefoil stability/function

(-trefoil stability/function

(-trefoil stability/function

fascin-1 stability/function (near

P236)

fascin-1 stability/function (near

P236)

P-trefoil stability/function

fascin-1 stability/ function (near

S274)

unknown

fascin-1 stability/function (near

S274)

fascin-1 stability/function (near

P236)

fascin-1 stability/function (near

P236)

Continued on Next Page...
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Residue Residue CGTD CGHF FCCTG Potential functional reason for

type number (%) (%) (%) conservation

225

251

412

121

27

130

252

292

21.8

40.3

54.7

17.5

100

14.8

15.8

48.1

22.1

14.6

16.4

7.9

4.7

23.5

4.9

1.7

11.9

6.8

3.4

1.7

1.7

1.7

10.3

44 47.5

285

15 51.6

76

113

228

73.5

22.4

55.4

1-trefoil stability/function

fascin-1 stability/function (near

P236)

unknown

1-trefoil stability/function

actin-binding (near residues 29-43)

1-trefoil stability/function

fascin-1 stability/function (near

P236)

fascin-1 stability/function (near

S274)

5.1 actin-binding (near residues 29-43)

22.3

3.7

0.8

18.1

2

1.7

13.6

1.7

1.7

fascin-1 stability/function (near

S274)

flexibility

flexibility

1-trefoil stability/function

flexibility

Continued on Next Page.
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ASP

ASP

ASP

CYS

GLU

GLU

GLU

GLU

GLN

GLN

GLY

GLY

GLY

GLY
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Table C.6 - Continued

Residue Residue CGTD CGHF FCCTG Potential functional reason for

type number (%) (%) (%) conservation

GLY

GLY

GLY

GLY

GLY

GLY

GLY

GLY

GLY

GLY

HIS

LEU

LEU

LEU

235

321

352

361

390

393

396

430

467

476

154

66 28.6

155

202

38.9

34.4

85.2

73.7

55.6

39.3

13.6

43.6

58.6

38.3

56

39.7

57.6

10.2

13.6

1.7

5.7

20.1

1

5.9

21.1

1.2

15.8

8.5

13.6

2.8

21.9

21.3

13.8

2.6

1.7

23.7

1.7

23.7

1.7

1.7

fascin-1 stability/function (near

P236)

flexibility

flexibility

fascin-1 stability/function (near

S274)

(-trefoil stability/function

flexibility

flexibility

flexibility

flexibility

flexibility

fascin-1 stability/function (near

P236)

unknown

fascin-1 stability/function (near

P236)

unknown

Continued on Next Page...
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Table C.6 - Continued

Residue Residue CGTD CGHF FCCTG Potential functional reason for

type number (%) (%) (%) conservation

SER 64 29.2 17.9 0 unknown

SER 146 13.4 11 1.7 -trefoil stability/function

fascin-1 stability/function (near

SER 274 57.4 12.4 1.7 S274)

THR 25 56.2 1.8 1.7 actin-binding (near residues 29-43)

TYR 23 25.1 4.3 1.7 actin-binding (near residues 29-43)

TYR 69 14.6 25 0 1-trefoil stability/function

TYR 152 25.9 15 1.7 unknown

TYR 314 11.5 11.8 0 -trefoil stability/function

TYR 469 32.7 9.9 1.7 unknown

Table C.7 61 sequences homologous to fascin-1 retrieved from the NCBI [4] and used for
calculation of entropy grades.

1) gil115494998|reflNP_001070028.1| hypothetical protein LOC558271 [Danio

rerio] Length=491

2) gil130486462|refINP_001076338.11 hypothetical protein LOC570314 [Danio

rerio] Length=494

3) gi1184186129|reflNP_001116988.11 fascin 2A [Danio rerio] Length=488

Continued on Next Page...
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Table C.7 - Continued

4) gil183986779|reflNP-957064.2| fascin homolog 1-like, actin-bundling protein

[Danio rerio] Length=490

5) gi11263344821reflXP_001363553.1| PREDICTED: similar to molybdenum

cofactor synthesis-step 1 protein [Monodelphis domestica] Length=494

6) gil126308638|reflXP-001370831.11 PREDICTED: similar to retinal fascin

[Monodelphis domestica] Length=491

7) gi11263407731reflXP_001371599.11 PREDICTED: similar to fascin 3 [Mon-

odelphis domestica] Length=500

8) gil78045491|reflNP-001030217.1| fascin homolog 1, actin-bundling protein

[Bos taurus] Length=493

9) gil28603742|reflNP_788806.1| fascin 2 [Bos taurus] Length=492

10) gil164451463|reflNP_001069011.2| fascin homolog 3, actin-bundling pro-

tein, testicular [Bos taurus] Length=498

11) gil88660673|gbIABD48096.1| fascin-1 [Xenopus tropicalis] Length=484

12) gil154147674|reflNP_001093724.11 fascin homolog 2, actin-bundling pro-

tein, retinal [Xenopus tropicalis] Length=492

13) gil1479009991refINP_001081581.11 fascin [Xenopus laevis] Length=484

14) gil50603997|gblAAH77847.1I FSCN1 protein [Xenopus laevis] Length=502

15) gil2498360|splQ91837.1|FASCXENLA RecName: Full=Fascin [Xenopus

laevis] Length=483

16) gil189217818|reflNP-001121350.11 fascin 2 [Xenopus laevis] Length=492

Continued on Next Page...
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Table C.7 - Continued

17) gil4507115|reflNP_003079.11 fascin 1 [Homo sapiens] Length=493

18) gil6912626|reflNP_036550.1| fascin 2 isoform 1 [Homo sapiens] Length=492

19) gil9966791|reflNP_065102.1| fascin 3 [Homo sapiens] Length=498

20) gil739580491reflXP_546998.2| PREDICTED: similar to Fascin (Singed-like

protein) (55 kDa actin bundling protein) (p55) isoform 1 [Canis familiaris]

Length=477

21) gil57099437|reflXP_540481.11 PREDICTED: similar to Fascin 2 (Retinal

fascin) [Canis familiaris] Length=492

22) gil1136803481reflNP_032010.2| fascin homolog 1, actin bundling protein

[Mus musculus] Length=493

23) gil80479179|gblAAI09357.11 Fascin homolog 2, actin-bundling protein, reti-

nal (Strongylocentrotus purpuratus) [Mus musculus] Length=492

24) gil31982710|reflNP-062515.2| fascin 3 [Mus musculus] Length=498

25) gil2010663801refINP_001094276.11 fascin [Rattus norvegicus] Length=493

26) gi1157818957|reflNP_001100542.11 fascin homolog 2, actin-bundling pro-

tein, retinal [Rattus norvegicus] Length=492

27) gil51948446|refINP_001004232.1| fascin homolog 3, actin-bundling protein,

testicular [Rattus norvegicus] Length=498

28) gil167537922|reflXP_001750628.11 predicted protein [Monosiga brevicollis

MX1] Length=489

Continued on Next Page...

125
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29) gil167526499|reflXP-001747583.1| predicted protein [Monosiga brevicollis

MX1 ] Length=499

30) gil475510491reflNP_999701.1| fascin [Strongylocentrotus purpuratus]

Length=496

31) gil109119060|reflXP_001110926.1| PREDICTED: fascin 2 [Macaca mu-

latta] Length=492

32) gil109068075|reflXP_001089987.1| PREDICTED: fascin 3 [Macaca mu-

latta] Length=498

33) gil156394995|reflXP_001636897.11 predicted protein [Nematostella vecten-

sis] Length=488

34) gil47219083|emblCAG00222.11 unnamed protein product [Tetraodon nz-

groviridis] Length=475

35) gil47226056|emb|CAG04430.1| unnamed protein product [Tetraodon ni-

groviridis] Length=490

36) gil226372953|reflNP_001139772.1| fascin homolog 1, actin-bundling protein

[Sus scrofa] Length=493

37) gil113205632|reflNP_001038012.1| fascin 3 [Sus scrofa] Length=498

38) gil194218724|reflXP_001914942.1| PREDICTED: similar to fascin (Singed-

like protein) (55 kDa actin-bundling protein) (p55) [Equus caballus]

Length=478

Continued on Next Page...
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39) gi1194216553|reflXP_001914983.11 PREDICTED: similar to retinal fascin

[Equus caballus] Length=492

40) gi11497061951reflXP_001502608.11 PREDICTED: similar to fascin 3 [Equas

caballus] Length=498

41) gil198423660|reflXP_002129293.1| PREDICTED: similar to Fascin

(Singed-like protein) (55 kDa actin-bundling protein) (p55) [Ciona intestinalis]

Length=487

42) gil91089337|reflXP_972494.1| PREDICTED: similar to fascin [Tribolium

castaneum] Length=518

43) gil195396945|reflXP_002057089.11 GJ16540 [Drosophila virilis]

Length=512

44) gi 194897139 refIXP 001978598.11 GG19678 [Drosophila erecta]

Length=512

45) gil1951324141reflXP_002010638.11 GI21600 [Drosophila mojavensis]

Length=512

46) gil157137463|reflXP_001664000.11 fascin [Aedes aegypti] Length=511

47) gil1954482281reflXP_002071566.11 GK25072 [Drosophila willistoni]

Length=512

48) gil195045719|reflXP_001992025.11 GH24440 [Drosophila grimshawi]

Length=512

Continued on Next Page...

127



Table C.7 - Continued

49) gil24640473|reflNP-727226.1 singed, isoform A [Drosophila melanogaster]

Length=512

50) gil212506942|gblEEB11002.1| protein singed, putative [Pediculus humanus

corporis] Length=514

51) gil156551822|reflXP_001604095.11 PREDICTED: similar to EN-

SANGP00000010187 [Nasonia vitripennis] Length=517

52) gil195356008|reflXP-002044475.1| GM11990 [Drosophila sechellia]

Length=512

53) gil221127727|reflXP-002166129.1| PREDICTED: similar to fascin homolog

1-like, actin-bundling protein [Hydra magnipapillata] Length=486

54) gil221113999 refIXP_002155122.11 PREDICTED: similar to fascin 2 [Hydra

magnipapillata] Length=495

55) gil209571732|gblAC162521.11 fascin 3 (predicted) [Oryctolagus cuniculus]

Length=498

56) gil223718854|gblACN22213.1| fascin 3 (predicted) [Dasypus novemcinctus]

Length=498

57) gi1177771976|gblACB73265.11 fascin homolog 3, actin-bundling protein,

testicular (predicted) [Rhinolophus ferrumequinum) Length=498

58) gil1692460661gblACA51044.11 fascin 3 (predicted) [Callicebus moloch]

Length=498

Continued on Next Page...
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59) gil1959771131gblACG63662.11 fascin 3 (predicted) [Otolemur garnettii]

Length=498

60) gi1167427285|gblABZ80263.11 fascin 3 (predicted) [Callithrix jacchus]

Length=498

61) gil1146157911reflXP_519352.2| PREDICTED: fascin 3 [Pan troglodytes]

Length=498

C.3 Supplementary computational procedures

C.3.1 Structural similarity and sequence identity of fascin-1

1-trefoil domains to 5-trefoil domains available in the

PDB

Each B-trefoil domain of fascin-1 is structurally aligned to each of the other 58 3-

trefoil domains available in the PDB using STAMP [178] implemented in VMD 1.8.6

[181]. The B-trefoil domains are identified using the structural classification of pro-

teins (SCOP) database [153]. Subsequently, sequence alignments are performed based

on pair-wise structural alignments. Structural similarity and sequence identity be-

tween each fascin-1 p-trefoil domain and the other B-trefoil domains available in the

PDB are calculated (Fig. C-1-A and Tables C.3 and C.4). Structural similarity is

evaluated by RMSD of positions of C, atom pair equivalences of the two -trefoils

after superposition of their structures. Sequence identity is calculated by division of

the number of residue identities between two structurally aligned sequences by the

shorter sequence length.
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C.3.2 Conservation analysis over all (-trefoil domains avail-

able in the PDB

The set of 59 (-trefoil domains available in the PDB is structurally aligned using

STAMP implemented in VMD 1.8.6. Conservation analysis is performed on the

structure-based multiple sequence alignment of these B-trefoil domains. The conser-

vation grade is the combination of three different methods: the conservation surface

mapping method (ConSurf) [170, 191], the real-valued evolutionary trace method

(ET) [172, 192], and a simple entropy-based method using a 21-letter alphabet [164].

Conservation grades from these three methods are weighted and combined such that

each contributes equally to form the final grade. Highly conserved residues are de-

fined as those residing in the first quartile of residues in the molecule as ranked by

conservation grade.

C.3.3 Calculation of marginal-covariances and pair-covariance

matrix of atoms

Marginal-covariances of atom i, C(j) (x2 Txi), and the pair-covariance matrix of

atoms i and j , C(ij) = ((xi, xy)T(xi, xj)), are calculated using atomic fluctuations

computed using NMA, given by (Kxog) = kBT k YikYojk where kBT is thermal
A\k m/M,/

energy, mi is the mass of atom i, Ak is eigenvalue k, and Ylik is the component of

mode k associated with the displacement component I of atom i, x.
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