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Abstract

Thermoelectric materials are capable of solid-state direct heat to electricity energy

conversion and are ideal for waste heat recovery applications due to their simplicity,
reliability, and lack of environmentally harmful working fluids. Recently, nanostruc-

tured thermoelectrics have demonstrated remarkably enhanced energy conversion ef-

ficiencies, primarily due to a reduction in lattice thermal conductivity. Despite these

advances, much remains unknown about heat transport in these materials, and fur-

ther efficiency improvements will require a detailed understanding of how the heat

carriers, electrons and phonons, are affected by nanostructures.
To elucidate these processes, in this thesis we investigate nanoscale transport using

both modeling and experiment. The first portion of the thesis studies how electrons

and phonons are affected by grain boundaries in nanocomposite thermoelectric ma-

terials, where the grain sizes are smaller than mean free paths (MFPs). We use the

Boltzmann transport equation (BTE) and a new grain boundary scattering model to

understand how thermoelectric properties are affected in nanocomposites, as well as

to identify strategies which could lead to more efficient materials.
The second portion of the thesis focuses on determining how to more directly mea-

sure heat carrier properties like frequency-dependent MFPs. Knowledge of phonon

MFPs is crucial to understanding and engineering nanoscale transport, yet MFPs are

largely unknown even for bulk materials and few experimental techniques exist to

measure them. We show that performing macroscopic measurements cannot reveal

the MFPs; instead, we must study transport at the scales of the MFPs, in the quasi-

ballistic transport regime. To investigate transport at these small length scales, we

first numerically solve the frequency-dependent phonon BTE, which is valid even in

the absence of local thermal equilibrium, unlike heat diffusion theory. Next, we intro-

duce a novel thermal conductivity spectroscopy technique which can measure MFP

distributions over a wide range of length scales and materials using observations of

quasi-ballistic heat transfer in a pump-probe experiment. By observing the changes

in thermal resistance as a heated area size is systematically varied, the thermal con-

ductivity contributions from different MFP phonons can be determined. We present



the first experimental measurements of the MFP distribution in silicon at cryogenic
temperatures.

Finally, we develop a modification of this technique which permits us to study
transport at scales much smaller than the diffraction limit of approximately one mi-
cron. It is important to access these length scales as many technologically relevant
materials like thermoelectrics have MFPs in the deep submicron regime. To beat
the diffraction limit, we use electron-beam lithography to pattern metallic nanodot
arrays with diameters in the hundreds of nanometers range. Because the effective
length scale for heat transfer is the dot diameter rather than the optical beam di-
ameter, we are able to study nanoscale heat transfer while still achieving ultrafast
time resolution. We demonstrate the modified technique by measuring the MFP dis-
tribution in sapphire. Considering the crucial importance of the knowledge of MFPs
to understanding and engineering nanoscale transport, we expect these newly de-
veloped techniques to be useful for a variety of energy applications, particularly for
thermoelectrics, as well as for gaining a fundamental understanding of nanoscale heat
transport.

Thesis Supervisor: Gang Chen
Title: Carl Richard Soderberg Professor of Power Engineering
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Chapter 1

Introduction

1.1 Nanoscale heat transfer and thermoelectrics

Nanoscale heat transfer, where energy is transported over scales comparable to the

heat carrier wavelengths and mean free paths (MFPs), is a topic of considerable

interest.1- 7 Transport at these fundamental length scales can deviate strongly from

the predictions of diffusion theory,8'9 and materials structured at these length scales

have demonstrated properties that are unachievable in bulk materials. 10 1 7 These

materials have applications in all areas of the energy field, from solar photovoltaics

to thermoelectric waste heat recovery to batteries, to name just a few.

Thermoelectric energy conversion is one technology that has benefited significantly

from the proper application of these nanoscale effects. Thermoelectrics are capable

of converting heat directly into electricity, and can also act as solid state refrigera-

tors or heat pumps which do not use any moving parts or environmentally harmful

fluids.2,18-23 Because of their reliability and simplicity they are used extensively in

fields such as space power generation and a variety of cooling applications. 24 While

their low efficiency compared to that of mechanical cycles presently restricts their

applications, there is a considerable interest in applying newly developed materials to

waste heat recovery applications in cars or industry.24,25 This could make a sizeable

contribution to solving the energy challenge as over two-thirds of the energy presently

produced is rejected as waste heat,2" corresponding to almost 26 million barrels of oil
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Figure 1-1: Figure of merit ZT of current state of the art thermoelectric materials
versus temperature. The dashed lines show the maximum ZT values for bulk state of
the art materials, and the solid lines show recently reported ZT values, many of which
were obtained in bulk nanostructured materials. (From Ref. [23]. Material properties:
BiSbTe, Ref. [14]; Nao.95Pb2OSbTe22, Ref. [31]; PbTe/PbS, Ref. [32]; Pbo.9sTlo.0 2Te,
Ref. [33]; Pbi±.SbyTe, Ref. [34]; n-SiGe, Ref. [16]; p-SiGe, Ref. [17]).

per day. There is also interest in using thermoelectrics for solar thermal applications,

where solar energy is used to create a temperature difference across a thermoelectric

material.2 7 -30

The energy conversion efficiency of a thermoelectric material is determined by

the figure of merit ZT = S2 .T/k, where S is the Seebeck coefficient, or the voltage

generated per unit temperature difference, o is the electrical conductivity, k is the

thermal conductivity, and T is the absolute temperature at which the properties are

measured.18 '19 To obtain a high energy conversion efficiency, we want ZT as high

as possible, meaning the material should possess a high electrical conductivity, high

Seebeck coefficient, and low thermal conductivity.

These material properties do not often occur in nature. Metals have very high

electrical conductivity but also very high thermal conductivity. Glasses are the oppo-

site, having very low thermal conductivity but also very low electrical conductivity.



The best materials turn out to be heavily doped alloyed semiconductors, which have

low thermal conductivity but electrical properties that can be partially tuned by

doping.1 8 However, the thermoelectric properties are highly interdependent, so that

changing one property results in an adverse change in the other two properties so

that ZT remains constant.

Nanostructuring allows this coupling to be partially broken. In nanostructured

materials, numerous interfaces are able to scatter heat-carrying phonons, or lattice

vibrations, so that the thermal conductivity is reduced significantly while electri-

cal properties are minimally affected. Indeed, remarkably low thermal conductiv-

ities in nanostructures such as nanowires, superlattices, and nanocomposites have

recently been reported.13 , 14 ,3 5 ,36 Increases in the figure of merit have been reported

in some of these materials, including superlattices, 10 quantum dots,11 nanowires, 12, 13

and nanocomposites.1 4-17 Some of the reports made in recent years are shown in Fig.

1-1. Many different material systems exhibit enhanced figures of merit, and most have

broken the ZT ~1 barrier which was previously the maximum ZT of any material

for over fifty years.

1.2 Outline of the thesis

Despite these advances, much remains unknown concerning the precise mechanisms

by which the heat carriers in thermoelectric materials, electrons and phonons, are

affected by nanostructures. For electrons, the primary challenge is to understand

how electrically charged defects such as grain boundaries scatter electrons and alter

the electrical conductivity and Seebeck coefficient. While grain boundaries in tech-

nologically important materials such as silicon have been extensively studied, 37-40 the

magnitude of the grain boundary potential as well as the energy dependence of the

potential are essentially unknown in nanostructured thermoelectrics.

For phonons, the challenges are even greater because we still do not know basic

quantities like phonon MFPs even in bulk materials. Our basic understanding of

phonon transport is still based on simple relaxation time models which were developed



50 years ago.4,4 The ability to engineer new materials at the nanoscale thus requires

a more complete knowledge of the basic physics of phonon transport.

The purpose of this thesis is to explore the physics of nanoscale transport in

thermoelectric materials and to determine how we can use nanoscale effects to en-

gineer more efficient thermoelectric devices. Chapter 2 studies electron and phonon

transport in nanocomposite thermoelectric materials. We use modeling and materi-

als characterization to understand how carriers are affected by grain boundaries in

materials where the grain sizes are smaller than mean free paths (MFPs). We de-

velop a model to calculate the electrical and thermal transport properties of bulk

and nanocomposite thermoelectric materials using the Boltzmann transport equation

(BTE). By incorporating a new grain boundary scattering model we are able to ex-

plain how the thermoelectric properties are affected in nanocomposites as well as to

identify strategies which could lead to more efficient thermoelectric materials.

These types of nanoscale scattering models, while useful, cannot directly provide

information about how heat carriers are affected by nanostructures. The second por-

tion of the thesis focuses on determining how to more directly measure properties of

the heat carriers like the phonon MFP distribution. In chapter 3, we show that in

order to extract this information it is not sufficient to simply measure macroscopic

transport properties; we must study transport at the length scales of the heat carriers

themselves. In the quasi-ballistic regime, where transport occurs over scales compa-

rable to heat carrier MFPs, diffusion theory becomes invalid due to a loss of local

thermal equilibrium. The manner in which the transport deviates from diffusion the-

ory reveals very useful information about the underlying heat carrier distribution. To

explore this concept, in this chapter we numerically solve the frequency-dependent

phonon Boltzmann transport equation, which is valid over length and time scales

smaller than the phonon MFPs and relaxation times, respectively, unlike Fourier's

law. These numerical results confirm that by studying the quasi-ballistic regime, we

should be able to extract information about phonon relaxation times and MFPs.

The rest of the thesis focuses on experimentally measuring MFPs using our ultra-

fast pump-probe experiment in the Rosenhow-Kendall laboratory. Chapter 4 briefly



discusses the modifications that were made to the system to make it more stable, ro-

bust, and automated. These modification greatly simplify the task of data collection.

In chapter 5, we introduce a new technique to measure MFP distributions. By

observing the changes in thermal resistance as a heated area size is systematically

varied, the thermal conductivity contributions from different MFP phonons can be

determined. Using this technique, we measure the MFP distribution of phonons in

silicon for the first time, obtaining good agreement with first-principles calculations.

In chapter 6, we develop a modification of this technique which permits us to study

transport at scales smaller than the diffraction limit of approximately 1 micron, which

is the smallest length scale that can be typically achieved optically. This is important

as many technologically relevant materials like thermoelectrics have MFPs in the deep

submicron regime. To access these length scales, we use electron-beam lithography

to pattern nanoscale metal absorbers with diameters down to tens of nanometers.

By using these nanoscale absorbers as heaters, we are able to investigate phonon

transport in a larger range of materials and length scales. We apply this technique

to measure the MFP distribution in sapphire. The spectrally resolved information

which can be determined using our technique is extremely useful both fundamentally

and for technological applications which involve nanoscale transport.

Finally, chapter 7 examines possibilities for future work and concludes the thesis.
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Chapter 2

Carrier transport in thermoelectric

nanocomposites

2.1 Background

The first topic we consider is electron and phonon transport in nanocomposites. The

term "nanocomposite" has been used to describe several different types of structures.

The original concept was for either nanoparticles embedded in a host or a heterostruc-

ture geometry with nanoparticles of different materials adjacent to each other. 43,4 4

For the heterostructure geometry, when the two materials are the same, the nanocom-

posite is essentially a material with nanometer sized grains. Because the structures in

the material have dimensions typically in the tens to hundreds of nanometers, length

scales can be smaller than carrier mean free paths, resulting in modified transport

properties compared to those of the bulk material.

Nanocomposite thermoelectric materials, which we also call nanocomposites for

simplicity, have attracted much attention recently due to experimental demonstra-

tions of improved thermoelectric properties over those of the corresponding bulk ma-

terial. 14 - 17,31,32,4 5,46 These materials have an important advantage over other nanos-

tructured materials in that they can be produced in large quantities and in a form

that is compatible with existing thermoelectric device configurations. The primary

mechanism that leads to ZT improvement is a reduction in lattice thermal conduc-



tivity due to additional phonon scattering at grain boundaries. However, a potential

barrier which forms at the grain boundary (GB) leads to a reduced electrical conduc-

tivity but possibly higher Seebeck coefficient. Nanocomposites are commonly created

using either a ball milling and hot pressing technique"-17 or with thermal processing

methods. 31,32 ,45,46

Sio.8Geo. 2 nanocomposites with improved thermoelectric properties over those of

the bulk were recently reported. 6'1 7 To better understand the reported data and to

gain insight into the carrier transport in these materials, we calculate the thermo-

electric properties of these materials using the Boltzmann transport equation (BTE).

To perform the calculation for the complex nanostructured material, we split the

computation into two easier parts: first, calculating the properties of the bulk mate-

rial; second, adding to this calculation a GB scattering rate which accounts for the

additional nanoscale scattering.

For the first task, fortunately the theory for modeling bulk thermoelectric mate-

rials using the BTE is well developed and the calculation is straightforward. If the

relaxation time approximation can be used, the thermoelectric properties can be ex-

pressed as integrals of a relaxation time;4 7-49 standard expressions for the relaxation

time of various scattering mechanisms are given in the literature. 48-50 For the cases

that we study here the relaxation time approach is a good approximation. A similar

approach was taken by Vining 51 and Slack and Hussain,52 and we follow their work

closely with a few important exceptions which will be described later.

For the second task, we need to obtain an additional relaxation time TGB (or

equivalently a scattering rate rG) to account for the strong GB scattering mecha-

nism in these materials. Once determined, this scattering rate can be added to the

other scattering rates using Matthiessen's rule and the thermoelectric properties are

calculated in the usual manner.

GB scattering has been of great interest, particularly for device applications in-

volving polycrystalline silicon. Mayadas and Shatzkes obtained a scattering rate

from a series of delta function potentials. 53 Their model is commonly used to cal-

culate the resistivity of polycrystalline materials. We will show that this model is



not physically consistent for thermoelectric materials. Many other models for grain

boundary scattering in polycrystalline materials attempt to obtain I-V characteristics

by considering thermionic field emission and tunneling processes.37 4 0 However, this

framework neglects the energy relaxation of charge carriers and can result in unreal-

istically large Seebeck coefficients, especially in nanocomposites. For this reason, we

focus on calculating GB scattering rates, allowing all the properties to be determined

in a self-consistent manner.

The organization of chapter 2 is as follows. First, in Section 2.2, the basic the-

ory of calculating thermoelectric properties using the Boltzmann equation is briefly

discussed. In Section 2.3, the code which implements this calculation is validated by

calculating the thermoelectric properties of bulk Sii_,Ge_ alloys and comparing the

results to experimental data. Section 2.4 introduces models for phonon and electron

GB scattering. We apply the models to Sio.8Geo.2 nanocomposites in Section 2.5 and

compare the results to recently reported experimental data16,17 and new mobility

measurements. Finally, in Section 2.6, we use the model's predictions to help deter-

mine which strategies will be most effective in further improving the figure of merit

in these materials.

2.2 Theory

The thermoelectric properties of Sii_2Ge2 can be calculated using the BTE. If all

the scattering mechanisms are elastic, the relaxation time approximation (RTA) may

be employed, thereby simplifying the solution.48- 50' 54 If some scattering mechanisms

are inelastic, then a relaxation time cannot be strictly defined. For Sii_2Gex, the

only inelastic scattering mechanism is due to optical phonons, where the interaction

energy hwop, wO, being the optical phonon frequency, is on the order of kBT at room

temperature. Fortunately, for practical use of Sii-_Ge_ we are mostly interested in

much higher temperature ranges at which optical phonon scattering can be considered

approximately elastic, and we may use the RTA for our calculations.

A similar approach to calculate the thermoelectric properties of bulk materials



was originally performed by several authors, 51'5 2 and we follow their work closely

but with important exceptions. The common calculations are as follow. First, like

Slack, 2 we assume three band transport, using two conduction bands, one near the

X point and one at the L point; and one effective valence band. We find the L

conduction band does not contribute substantially to the transport properties. Sec-

ond, like Vining, 51 we take into account the exact form of the relaxation times from

the literature.48 49 51 55 Slack uses an effective relaxation time exponent or empirical

results in his model.

We differ from the authors' calculations in the following ways. The first difference

is that we do not assume that the conduction bands and valence bands have the same

band structure parameters; rather, we use literature values for most key quantities

such as the conduction band effective mass and deformation potential. These values

and any adjustments made are listed in Appendix A.

The second difference is that we take into account the non-parabolicity of the

X conduction band, which strongly affects the thermoelectric properties at high n-

type doping concentrations.4 9 Vining and Slack did not take non-parabolicity into

account, and while they were able to fit most of the data, unphysical values of some

fitting parameters were required, or an empirical result was used to obtain agreement.

By using a non-parabolic formulation we are able to explain experimental data over

the entire doping concentration range with only minor adjustments to the literature

values of the band structure parameters.

Another important difference is the treatment of dopant precipitation issues in

SiiGe_. As discussed by many authors,si,52,56-58 Sii_ Ge_ alloys used for thermo-

electrics, which are usually doped with P (n-type) or B (p-type), are often doped

beyond the solubility point for the dopant, causing the carrier concentration to vary

with temperature as dopants precipitate out at lower temperatures and become reac-

tivated at higher temperature. These processes can change the carrier concentration

by a factor of two or more over the entire temperature range, significantly affecting the

observed transport properties. This effect is especially pronounced for P in Sii_2Gex,

which has a strong tendency to precipitate at grain boundaries.51 Furthermore, in



many cases the carrier concentration depends on the thermal history of the sample,

making it even more difficult to compare results because the properties of the nom-

inally same material at the same temperature might not be equal due to differences

in thermal processing. We have observed this phenomenon in our measurements:

because the mobility is measured using a different system than that used for the re-

ported measurements of electrical conductivity and Seebeck coefficient, the samples

are subjected to different heat treatments and thus the electrical conductivities mea-

sured by different systems are not equal. While Vining was forced to fit the chemical

potential at each temperature to account for this variation, we are able to estimate

the change in carrier concentration versus temperature during the electrical conduc-

tivity and Seebeck coefficient measurement using the previously reported electrical

conductivity measurements, 16' 17 new mobility measurements, and model calculations.

This procedure simply uses the definition of conductivity o- = nep to estimate n(T).

It is necessary to assume one band transport for this procedure; we find this to be a

valid assumption for the cases studied here. For the n-type case, where the mobility

has a stronger dependence on the carrier concentration, an iterative procedure is used

to ensure self-consistency between all the properties.

A final point to mention before discussing the details of the calculation is the

difficulty in accurately modeling transport in p-type Sii_,Ge, using the Boltzmann

equation. The warped energy surface of the heavy hole band, along with interactions

from the split-off band (which is only 0.044 eV away from the valence band edge),

causes the parabolic energy surface approximation to be poor at high doping levels.

While it is sometimes possible to obtain a reasonable fit to the data, the quality of the

fit is often worse than that of n-type Sii_2Gex, and for the p-type nanocomposite no

satisfactory fit could be found. The valence band parameters used in the calculation

are listed in Appendix A.

2.2.1 Relaxation time approximation

We now discuss the details of the theory necessary to model bulk thermoelectric

materials. A detailed derivation of these results is given in Ref. [59]. In a bulk



material, under the RTA the electrical current J and heat current J carried by

charge carriers can be written as:47

J = L + L12 dT (2.1)
dk dx

Jq = L21 (D + L22 dx) (2.2)
__ ( ___ d T

L21 J L2_L12L21 )(dT)
L11J L2 2  L dx

where <D is the electrochemical potential. The coefficients are given by:

L = 2 r(E)V2 F D(E)dE (2.3)

L12 T- r(E)v2 (- ) (E - Ef)D(E)dE (2.4)

L21 - - T(E)V2 o (E - Ef)D(E)dE (2.5)

L22 = r(E)V2 ( (E - Ef) 2D(E)dE (2.6)

Here E is the energy, D(E) is the density of states, f0 = (exp((E-Ef)/kBT)+I) 1

is the Fermi-Dirac distribution, e is the absolute value of the charge of an electron, v

is the electron group velocity, r(E) is the relaxation time, and Ef is the Fermi level.

Note that it is essential to use the Fermi distribution rather than the Boltzmann dis-

tribution as thermoelectrics have a very high doping level and are usually degenerate.

We can identify the electrical conductivity, the Seebeck coefficient, and the electronic

contribution to the thermal conductivity as:

o- = Lu (2.7)

dS = k d4b/dx _ L 1 2

dT dT/dx L(2

ke = L 22 - L12L21 (2.9)
Ln1



We can also calculate the mobility using:

P =- (2.10)
ne

where n is the electron or hole concentration. Thus, under the RTA, the problem of

calculating thermoelectric properties reduces to calculating the coefficients Lij.

2.2.2 Additional details

To complete the formulation we need expressions for the density of states D(E) and

the electron velocity v, a way to account for multiple band transport, a way to find

the Fermi level, and the relaxation time r. The first two quantities, D(E) and v,

can be obtained from the E(k) dispersion relation. To take into account anisotropic,

non-parabolic bands we use a two band approximation, 49 50 which modifies the E(k)

dispersion relation from the usual parabolic form to:

-(E)=E(1+aE)=- = (L +2'kt) (2.11)
2 m* m*

where m* and m* are the longitudinal and transverse components of the effective

mass, respectively, and a is the non-parabolicity coefficient, an adjustable parameter

which is approximately a ~l/Eg, with Eg being the bandgap.4 9 The density of states

can thus be determined from:

-k 2 dk 1 2mD3/2 YI2dy
D(E) d 1/ (2.12)

ir2 dE 27r 2  h2 dE

where m* = N 2/3(m*m*2) 1/3 is the density of states effective mass. Here N is

the number of equivalent valleys, and is equal to six for the X conduction band in

Sii_,Ge_(the electronic structure of SiiGeis the same as that of Si for x < 0.85).60

The electron velocity is:

1 2 -y 1/2
v = -VkE = (2.13)

h m*



where -y' = dy/dE and m* is the conductivity mass. For a non-parabolic band the

conductivity mass is modified from its usual form as follows:61

3Km*0 f(-9) (E + aE2 )3/2 D(E)dE
m =K I tao (2.14)

4 2K + 1 fa (- ) (E + aE 2 )3/ 2 (1 + 2azE)-1D(E)dE

where K = m*/m* is the ratio of the longitudinal effective mass to the tranverse

effective mass.

Next, we need to account for the presence of multiple bands, including electron and

hole bands. Hole bands have the opposite sign of Seebeck coefficient from electrons

and thus can strongly affect the overall Seebeck coefficent. Multiple band transport

can be incorporated by calculating the contribution from each band and combining

the results. The appropriate manner in which to combine the terms is given below:18,5 2

o= 9 (2.15)

y =n (2.16)

S = (2.17)

kelec Z:ki +Z 1:' (S _Sj)2 T (2.18)
.ici: i+ Uj

Note the presence of the bipolar thermal conductivity term in Eq. 2.18, which can

be appreciable at high temperatures.

To find the Fermi level we use the charge conservation condition.48 ,4 9 The electron

concentration in each band is given by:

ne,i = j D(E)(e(E-(E -Ec,)/kBT + 1)dE (2.19)

where i indexes each conduction band and E is measured relative to the conduction

band edge for each band. The hole concentration in each band is

n 00

ihj =]J D(E) (e(E(Ej-Ef))kBT + 1 ) 'dE (2.20)



where j indexes each hole band and E is measured relative to the valence band edge

for each band. For charge conservation we need any net electrons or holes to be from

an impurity. This condition gives

NH - N' = nhj, - e~ (2.21)

where ND is the number of ionized donors and N- is the number of ionized acceptors.

NA and N- might not be equal to ND and NA if not all the dopants are ionized, but

since the ionization energy is small for typical dopants such as B and P the number

of ionized donors or acceptors is assumed to equal the number of donor or acceptor

atoms, respectively.62 Equation 2.21 is an implicit equation for Ef which can be

solved with a numerical scheme such as the bisection method; once Ef is found the

electron and hole concentrations in each band can be determined from Eq. 2.19 and

2.20.

2.2.3 Electron relaxation times

The final quantity needed is the relaxation time, which accounts for the scattering

processes in a material. In this paper we will be modeling Sio.8Geo.2 and will incorpo-

rate acoustic phonon (AP) scattering, non-polar optical phonon (NPOP) scattering,

and ionized impurity scattering (IIS). Note that Sii_,Ge, is not a polar material and

thus polar scattering mechanisms are not applicable. Technically Sii-2Gex also has

an alloy scattering mechanism, but our calculations show that alloy scattering is weak

compared to IIS in these highly doped materials and so is not considered here. Stan-

dard forms for the AP and IIS relaxation times are in the literature.48-50,54,55,63 The

relaxation times used here incorporate non-parabolicity. The relaxation time rAP for

AP scattering is:55

rkBTD 2
e-1 = "D(E) (2.22)pv2h~D

T I E Dv - 8j(Di+E)D (2.23)
TAP TO Eg+2E DA) _ 3(E, +2E)2 DA



where E is the energy relative to the band edge, Da is the conduction band acoustic

deformation potential, D, is the valence band acoustic deformation potential, Eg is

the band gap, D(E) is the density of states defined in Eq. 2.12, p is the density, and

v, is the sound speed. It is possible to derive other forms for the AP relaxation time

which give similar results.49

The other phonon scattering mechanism, non-polar optical phonon (NPOP) scat-

tering, is not elastic and it is not possible to strictly define a relaxation time. However,

if kBT/hwp > 1, where wo, is the optical phonon frequency, then the scattering can

be considered to be approximately elastic. For NPOP scattering we use an approx-

imation due to Ravich which gives a relaxation time with a form similar to that of

AP scattering.55 The result is:

-1 rah(kBT) 1 /2 (aD0 \ 2
-1 = 2  ,) D(E) (2.24)

TO - pa2 hwo,

-1 _1 ~ E 1 D - 2 8 E(E + E) Dvo
Tp 0  Eg+2E V Do _ 3 (Eg + 2E)2 Do

where Do is the conduction band optical deformation potential (with units J/m),

D~o is the valence band optical deformation potential, a is the lattice constant, and

the other parameters were defined earlier. The values of the acoustic and optical

deformational potentials are listed in Appendix A.

The final scattering mechanism, ionized impurity scattering, has a relaxation time

given by the standard Brooks-Herring result:48,49

-1 _ ir (47rZe2/co) 2

T = 8hk4  D(E)FimpND (2.26)

Fimp = In (1 + () (2.27)
1 +

= (2kR)2  (2.28)

where Z is the number of charges per impurity, 6o is the static dielectric constant,

ND is the doping concentration, k is the magnitude of the electron wavevector, and

R is the Debye screening length.48 ,49,61,64 In the Thomas-Fermi approximation, R is



given by:6 1,64

4ire2Z &fo )(~R -2 = 7e2 D(E)dE (2.29)
oo" (0 'E

To obtain a total relaxation time for all the scattering mechanisms, we can add

the scattering rates -1 using Matthiessen's rule:48,49

T 1 =S - 1  (2.30)

Matthiessen's rule assumes all the scattering mechanisms are independent of each

other. The total relaxation time can then be inserted into Eqs. 2.3-2.6 to calculate

the thermoelectric properties. This completes the theoretical treatment of electron

transport.

2.2.4 Phonon modeling

The final task is to model phonon transport. For this we use Steigmeier and Abeles'

model65 of the lattice thermal conductivity of alloys based on the Callaway model.41

Their model treats phonons with the Boltzmann equation under the RTA and in-

cludes point-defect, phonon-phonon, and phonon-electron scattering mechanisms, all

of which are characterized by a relaxation time as was the case for electrons. 65 These

relaxation times are used exactly as they are given in Ref. [65] and so are not repro-

duced here.

Once the relaxation times have been computed, the lattice thermal conductivity

can be determined:

k= 2r2 v kBD 3 (j + 12/13) (2.31)

where v. is the sound speed, 0 D is the Debye temperature, and 1,, 12, and Is are given

by:

/l 2 2 ax

I1 = ]rx 2 ( 2  dx (2.32)
0 (exp(arZ) - 1) 2

j1 T 
G22 ax

12 = ] -2-- 2X 2ea 2 dx (2.33)
o r 3 (exp(ax)-

37



13 = # II(1 I OT 2 a(2 1 ) 2 dX (2.34)
fo rv ( u) (exp(aX) - 1)2

Here x = W/WD, where WD is the Debye frequency, a = (6D/T)", where OD is the

Debye temperature, n ~ 1 is a fitting parameter related to higher order phonon

scattering, # is the ratio of Umklapp to normal mode scattering, and T and TU are

the total and umklapp relaxation times, respectively. The total thermal conductivity

is the sum of the lattice thermal conductivity and the electronic thermal conductivity,

Eq. 2.9.

2.2.5 Summary of the calculation

We now review the steps necessary to perform the calculation. After specifying band

structure parameters, temperature, and doping level, the first step is to calculate

the Fermi level. This can be done by calculating ne and nh for each band, as in

Eqns. 2.19 and 2.20, and combining the result in Eq. 2.21. The equation is now a

nonlinear function of the Fermi level Ef. By iteratively solving this equation using

the bisection method, we can find Ef and then the equilibrium electron and hole

concentrations. The next step is to compute the energy dependent relaxation times

and combine them using Matthiessen's rule, Eq. 2.30. Once the total relaxation

times are determined, we can compute the coefficients Lij given in Eqns. 2.3-2.6 for

each band, and subsequently calculate the properties for each band using Eqns. 2.7-

2.9. The overall transport properties, which are the quantities that are measured

experimentally, are found from combining the properties for each band, as in Eqns.

2.15-2.18. Finally, the lattice thermal conductivity can be calculated separately using

the Callaway model, given in Eqs. 2.31-2.34. This procedure can be repeated for each

temperature or doping concentration, allowing all of the thermoelectric properties to

be determined over the desired temperature and doping concentration range.



2.3 Model validation

To validate the model, we compare the calculated results to experimental data for

bulk Si1isGe. from several sources. 16,17,51,66 The band structure parameters used are

listed in Appendix A.

The modeling predictions for bulk n-type Sio.7Geo. 3, along with the same data

used by Vining for comparison, 51,66 are shown in Fig. 2-1. The calculations match

the experimental data to within about 15% over most of the doping concentration and

temperature range. The two highest doping concentrations have been increased by

about 10% from the reported values; this adjustment is expected to be within the ex-

perimental error of the measurement. Some of the important effects discussed earlier

can be clearly seen in the model; for example, for the lowest doping concentration the

bipolar thermal conductivity is dominant at high temperatures, and is accompanied

by a large decrease in Seebeck coefficient. The most highly doped material shows

evidence of dopant precipitation above 1000 K, seen as an increase in the electrical

conductivity, but this is not accounted for here as the mobility is unknown.

A similar comparison for p-type Sio.rGeo.3, along with data from Dismukes,66 is

shown in Fig. 2-2. The fit is slightly worse than that for the n-type case, particularly

the Seebeck coefficient, as this parameter is sensitive to the band structure and is

most affected by the failure of the parabolic approximation. At high temperature the

Seebeck coefficient is underestimated by about 20% in the worst case. As indicated

by the x symbols in the figure, the accuracy of some of the experimental data is

questionable as the maximum ZT value for the highest two doping concentrations is

almost ZT = 0.8, higher than the expected value of around 0.5 - 0.6 for state-of-the-

art bulk Sio.8Geo.2 shown in Figure 2-4.

We also computed the thermoelectric properties of state of the art n-type and

p-type Sio.8Geo. 2 alloys,16' 17 shown in Figures 2-3 and 2-4. In this case the carrier

concentrations are not available, forcing us to adjust the values to fit the data. The

fitted carrier concentrations were determined to be ND = 1.7x 1020 Cm 3 for n-type

and NA = 1.4x 1020 cm- 3 for p-type. The calculation is again in good agreement
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with the experimental data over the temperature range. As expected, the n-type

material exhibits a strong carrier concentration variation with temperature due to

dopant precipitation effects. To account for this, the calculated mobility and the

experimental electrical conductivity are used to estimate the carrier concentration

variation with temperature using o- = nep. As the mobility depends on the carrier

concentration to some extent, an iterative procedure to ensure consistency between

all the properties is employed. The carrier concentration variation is found to be

similar to that deduced for the n-type nanocomposite, and using either one will give

a good fit; the fit from the bulk experimental data is used for both Figs. 2-1 and 2-3

as this fit gives a smoother curve.

2.4 Modeling nanocomposites

SiiGe_ nanocomposites can have markedly different transport properties from their

bulk counterparts. Grain boundaries in materials can act as interfaces to scatter

phonons,6 electrical traps for charge carriers,67-69 and segregation sites for dopant

atoms.51 ,69 In nanocomposites these effects are further enhanced because the grain

size is often comparable to or smaller than characteristic lengths such as the phonon

mean free path or the electron wavelength. TEM images also show that the mi-

crostructure of nanocomposites is much more complicated than that of microcrys-

talline materials; in nanocomposites the nanometer-sized grains contain defects and

composition variations, and the nanometer-sized grains themselves are embedded in-

side larger grains.15- 17 We focus our discussion on the effects of grain boundaries

between the nanometer-sized grains as these are expected to have the largest impact

on transport properties.

The most obvious way the thermoelectric properties are affected by grain bound-

aries is by a reduction in lattice thermal conductivity, which is the mechanism of

ZT enhancement in Sii_2Ge, nanocomposites. 16 17 It is also found that the presence

of grain boundaries reduces the electrical conductivity and can affect the Seebeck

coefficient. The physical mechanisms for these changes in the transport properties



of polycrystalline materials have been the subject of much discussion, especially for

polycrystalline silicon. 37,38 The reduction in lattice thermal conductivity is attributed

to strong interface scattering of phonons.6 For charge carriers, the generally accepted

model to explain the effects of grain boundaries is the charge-trapping model. 67-69

This model postulates that incomplete bonding in grain boundaries leads to the for-

mation of many surface states within the band gap, making it preferable for carriers

to occupy these lower energy states. Due to a depletion of the grain near the grain

boundary, a space charge region with a potential barrier forms; this potential acts as

a scattering potential for charge carriers. Dopant segregation is also thought to affect

the electrical properties of grain boundaries, though if and how the grain boundaries

are affected is not well understood.69 Misalignment of crystallographic directions

between adjacent grains can also lead to electron scattering processes. 70

To obtain quantitative predictions of how grain boundaries affect the thermoelec-

tric properties in nanocomposites using the Boltzmann equation, it is necessary to

develop phonon and charge carrier grain boundary scattering models which give a

grain boundary scattering rate -r The resulting scattering rates can then be added

to the bulk scattering rate, as in Eq. 2.30 for charge carriers, and the thermoelectric

properties calculated in a similar manner to the bulk case. We now develop the grain

boundary scattering models. Here, we specialize the situation for charge carrier scat-

tering to electrons in an n-type material; the same discussion will apply to holes in a

p-type material.

2.4.1 Phonon scattering

There have been several previous efforts to determine the thermal conductivity of

nanocomposites. Yang and co-workers calculated the effective thermal conductivity

of a nanocomposite using the phonon Boltzmann equation.4 3 4 4 Monte Carlo tech-

niques have also been used to calculate the thermal conductivity, giving good results

but requiring significant computational time.71 Prasher has had considerable success

obtaining analytical solutions to the Boltzmann equation for simple geometries. 72 73

Scattering models based on Rayleigh scattering74 and acoustic Mie scattering theory7 5



have also been used to treat nanoparticle scattering. Minnich and Chen introduced

a modified theory to analytically compute the thermal conductivity of nanocompos-

ites.76

For the present work we use a standard boundary scattering rate. 12,7 4 We can

derive the model by examining characteristic lengths relevant to phonon transport.

In this case the appropriate lengths are the phonon mean free path relative to the

grain size. Our calculations for bulk, poly-crystalline Sio. 8Geo.2 indicate that a large

fraction of phonons have a mean free path (MFP) APH of about 100 nm, which is

much larger than the nanocomposite grain size 1g of about 10-20 nm. A reasonable

model is thus one which approximates that the phonon MFP in nanocomposites is

limited to the grain size such that APH = 1g. Then, using the sound speed as the

phonon velocity, as in the Debye model, the scattering rate follows immediately:

-1 (2.35)TG B - 1

This is added to the other phonon scattering rates, and the lattice thermal conduc-

tivity is calculated in the same manner. We are able to obtain a good fit to the

thermal conductivity data using a grain size 1g of ten to twenty nanometers, which is

consistent with the experimental values recently reported. 16, 17

2.4.2 Electron scattering

The grain boundary model for electrons is based on the charge trapping model, which

postulates that the formation of surface states at the grain boundary depletes the

grain of carriers near the grain boundary, resulting in a space charge region with a

potential barrier. The potential barrier acts as a scattering potential which affects

electron transport. To calculate electrical properties, it is necessary to develop a

model which can describe this phenomenon with a relaxation time, but to create

a consistent model it is necessary to clarify details of the GB scattering process.

Important questions that must be answered are what is a physical value for the GB

potential, whether the electron wave experiences diffuse or coherent scattering, and



over what length scale the grain boundary potential affects the electrons.

The first question, regarding an appropriate value for the GB potential, can be

answered using a depletion region approximation. This analysis yields the following

equation for the GB potential, assuming all the trap states are filled:6 7

U - qNt2 (2.36)
8END

where E is the permittivity, ND is the doping concentration, and Nt is the number

density of traps. For ND 1 X 1020 cm- 3 and Nt = 1 x 1013 cm-2, Ug will be

around 20 meV. Of course, the trap density is unknown and could vary widely. An

important unresolved question is how dopant segregation affects the distribution and

quantity of surface states. 69 It is known that P in Sii_2Ge2 has a strong tendency to

precipitate in the GB," and in principle the extra dopant atoms thus provided to the

GB could affect the surface state distribution. Assuming that the reported values for

N 1 ~ 1X1011 cm-3-1x1013 cm- 3 are a reasonable estimate for our materials, at high

doping levels this model predicts that Ug should be less than 20 meV. 69 However,

we find that a larger GB potential is required to fit the nanocomposite data; we will

discuss possible reasons for this discrepancy in Sec. 2.6.

The last two questions, whether the electron wave experiences diffuse or coherent

scattering and over what length scale the grain boundary potential affects the elec-

trons, can be answered by examining the key length scales related to carrier transport

in nanocomposites as was done for phonons. TEM and XRD measurements indicate

that the average GB size is ten to twenty nanometers and its thickness is around

one nanometer.16'17 We can determine how these length scales compare with carrier

length scales by computing the screening length R, the electron wavelength A, and

the electron MFP.

The screening length R was previously given in Eq. 2.29. Computing this value

shows that R is less than one nanometer, implying that the GB potential is completely

screened unless the electron is within a few nanometers of the GB. Hence, we can

conclude that the model should focus on only a small section of the GB, since long-



range potentials from other sections of the GB are neutralized by screening effects.

The Mayadas model53 is not consistent with this result as it models the potential as

a series of grain boundaries.

Next, the type of scattering must be determined. For example, if there are sub-

stantial variations in the potential at the GB we might expect the electron wave to be

scattered diffusely, but if the variations are small, the scattering should be coherent.

In addition, if the MFP is comparable to the grain size, we might also expect multiple

scattering effects to be important. These questions can be resolved by calculating the

distribution of electron wavelengths and MFPs. We first determine the cumulative

distribution function of the electron occupation number versus wavelength, which

gives the percentage of electrons that have a wavelength less than a certain value.

The electron wavelength Ae is given by the de Broglie expression:

27rh 27rh(1 + 2aE)
Ae = 2 mE(1+ (2.37)

m*v - 2*( E

where m* is the conductivity mass. We define the transport electron occupation

number as:
(Ofo

9t = v2 D(E) (2.38)

Integrating gt to a certain value and normalizing the result by the integral over all

energy will give the cumulative distribution function for the transport electron occu-

pation number. Additionally, we can determine the electron MFP length using an

equation of the form 1 = vr, where v is the electron velocity and T is the total bulk

electron relaxation time. The electron MFP will in general be energy-dependent, and

we can relate the electron MFP to the wavelength Ae by expressing each as a function

of energy.

These two quantities, the transport electron wavelength cumulative distribution

function and the electron MFP versus wavelength, are shown in Fig. 2-5 at 300 K

for heavily doped bulk Sio.8 Geo.2. The first observation we can make is that most

electrons have mean free paths between two and five nanometers, which is smaller

than the grain size. This fact implies that each small section of the grain with which



the electron interacts is independent of the others: since the grain size is on average

on the order of ten to twenty nanometers, after the electron scatters from the GB it

will, on average, experience several collisions before it reaches another part of the GB.

Thus the memory of the previous collision is essentially lost by the time the carrier

reaches another part of the grain, and we can conclude that each scattering point

on the GB is independent from the others. This is further evidence against using

the Mayadas model for thermoelectrics as it accounts for the effects of many grain

boundaries scattering coherently.

The second observation is that most electrons have a wavelength between six and

eleven nanometers, which is much larger than the GB thickness of one nanometer.

Diffuse scattering of the electron wave requires substantial potential variation so that

the wave is scattered randomly in all directions. Since the barrier potential is confined

to a region very close to the GB itself, any spatial variation in the potential can

only occur over a length on the order of the GB thickness. Furthermore, having a

large variation in the value of the potential along the GB would require substantial

nonuniformities which have not been observed in microstructure studies. These two

results suggest that any variation in potential is not large and is confined to a region

much smaller than the electron wavelength, which implies that the large variation in

potential required for diffuse electron scattering is not present. Thus we can conclude

that electrons for the most part should scatter coherently from the GB, enabling

the use of scattering theory to calculate scattering rates of an electron wave from a

scattering potential.

The third observation we make is that the electron MFP is predicted to be smaller

than the wavelength, implying that the Boltzmann equation is at the edge of its va-

lidity. As the Boltzmann equation still gives good results for both bulk and nanocom-

posite materials, the above discussion is still expected to hold. This issue is further

discussed in Sec. 2.6.

Based on the above discussion, the physical picture for GB scattering is that of

a carrier interacting with local regions of the GB, with each region acting as an

independent scattering site which coherently scatters an electron wave. The GB is
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composed of many of these scattering sites. The most appropriate model for GB

scattering is therefore one which models only a local potential along a small section

of the GB.

Using these results, we can now create an electron GB scattering model by iden-

tifying a scattering potential and calculating the corresponding scattering rate. We

have developed a model which describes a small section of the grain boundary with

a scattering potential Ug in a cylindrical region, as illustrated in Fig. 2-6. Since the

actual GB is an extended line defect, the modeled GB is composed of many such

cylinders, each of which acts as an independent scattering site. Possible variations in

the value of the scattering potential throughout the thermoelectric material are not

considered here. If ro is the radius of the cylinder, z is the direction normal to the

GB, and z = 0 is at the center of the GB, then the model potential is given by:

U9 Uoe-Iz/zo r < ro (2.39)
0 r > ro

Here Uo is the maximum grain boundary potential, ro is a constant on the order

of the screening length R, and zo is a constant related to the size of the depletion

region. This particular form of the potential is chosen for several reasons. The



Figure 2-6: Schematic of the cylinder model for electrical grain boundary scattering.

decaying exponential form of the potential in z is used as an approximation to the

exact potential which would result from a carrier depletion region. The cylindrical

geometry is chosen to model the effects of screening: within the cylinder the GB

potential acts on the electron, but beyond several multiples of the screening length

the GB potential is screened out and is essentially zero.

With the scattering potential determined, the final step is to determine the scat-

tering rate. We use the first Born approximation to calculate the scattering rate

as the GB potential is not expected to be large. The matrix element Mkk, for the

potential is:

Mkk' -- J e FUg(r)e- ik*rd3 r - J ei'fU,(r')d3 r (2.40)

= 47rUo zor 2 (Ji(qrro) (2.41)
1+ (qzo)2) 0  qrro }

where Ji(z) is a first order Bessel function of the first kind, q = k - k', and q, and

q, are the r and z components of q, respectively. Here the r - z coordinate system

is relative to that of the disk. From Fig. 2-6, we can express q, and qz in terms of -y,



the angle between the z-axis and k; 6, the angle between the z-axis and k'; and 4,
the angle between k, and k,. The result is:

q, = kz - k' = k(cos - -- cos 6) (2.42)

q, = k Vsin27+sin26 - 2sin'ysincos# (2.43)

The scattering rate and momentum relaxation times can be obtained from the

expressions:

S(k, k') = |M |2j(Eki - Ek) (2.44)
h

(2)3 j j j S(k, k')(1 - cos O)k'2 sin Odk'dOd# (2.45)

Since the potential does not have spherical symmetry, evaluating the momentum

relaxation time is more complicated and an analytic solution is not possible. Using

the definitions above, the momentum relaxation time can be shown to be:

8 7r 2 U2z2 ro4D(E)0 0 N I (ro, zo) (2.46)

1 f 2, j [sin 6(1 - cos ycos 6 - sin y sin 6 cos #))I(ro, zo) = b OJ (±(zo 2 2  (2.47)
7o o o .( + (qzzo)2)2

x 1ro dyd~d#
(qrro) _

where Ng is the number of cylinders per unit volume. An average has been performed

over the incoming angles y.

This scattering rate has two distinct regimes. For ( < 1 (low energy electrons),

r oc Ei 2, similar to the energy dependence of a diffusive boundary scattering rate.

For > 1 (high energy electrons), Tj oc E3/2, similar to the energy dependence of

the ionized impurity scattering rate. Depending on the value of the cylinder radius

ro, this change in energy dependence could give an energy filtering effect.

The final quantity needed is the density of cylinders Ng. If the grain boundary is

modeled as a sphere, the number of cylinders per grain is simply the surface area of



the sphere divided by the base area of the cylinder. The number density of cylinders

is then just the number of cylinders per grain multiplied by the number density of

grains:
1 4F7r(lgb/2)2  1 4f

N =2 xf=(2.48)
g 2 (7rr2) (lgb/ 2 )3 x =gbr2

The factor of 1/2 is necessary as each cylinder is shared between two grains. The

parameter 0 < f < 1 is a constant which accounts for the geometrical distribution

of the cylinders. In the actual material, the cylinders are arranged according to the

shape of the grain boundaries, but in the derivation above it is implicitly assumed

that the cylinders are uniformly distributed throughout the material. This could

lead to an overestimation of the scattering rate. To estimate the magnitude of this

effect, we implemented a simple Monte Carlo simulation which models a particle

traveling through a three-dimensional lattice containing GB scattering sites in various

geometries. In the first case, the GB sites are arranged along the faces of a cube,

an approximation to their actual locations in the material; in the second case, the

same number of GB sites are distributed uniformly throughout the region. After

the particle passes through the GB site it is assumed the particle experiences an

elastic, velocity-randomizing collision; the particle also experiences the same type of

collision over a randomly chosen distance between two and five nanometers to account

for other scattering processes. For each geometry, the number of times the particle

passes through a GB site is recorded. This analysis indicates that assuming the same

number of GB sites are uniformly distributed overestimates the number of times the

particle is scattered by a GB site by approximately 30%. To compensate for this, we

simply set f ~~ 0.7-0.8 to reduce the effective density of cylinders. This is valid as it

was previously shown that all the GB scattering sites should be independent of each

other. The results are not particularly sensitive to the value of f: using a value of

f ± 0.1 will give a GB potential of approximately Ug ± 5 meV. We use f = 0.7 for

the calculations in this study.

With the scattering rate determined, the thermoelectric properties of nanocom-

posites can be determined by adding the GB scattering rate to the other scattering



rates using Matthiessen's rule. To explain the nanocomposite data, suitable values of

the model parameters will need to be determined. The adjustable parameters of the

model are the barrier height U., the radius of the disk ro, and the potential decay

constant zo. However, the parameters are not totally arbitrary: to be consistent with

the characteristic lengths discussed before, ro must be on the order of the screening

length, about one to two nanometers, and zo must be on the order of the space charge

region width, about two to four nanometers. The charge trapping model predicts that

Ug should be less than 20 meV, though the required GB potential turns out to be

larger. In addition, for the lattice thermal conductivity model the grain size must be

specified; this is determined from XRD measurements to be on the order of ten to

twenty nanometers. 16'17

2.5 Nanocomposite results

Using these values as a guide, we have calculated the thermoelectric properties for n-

type and p-type Sio.8 Geo.2 nanocomposites whose properties were recently reported. 16' 17

The fitting procedure is as follows. First, with all other parameters kept constant, the

parameters ro, zo, and Ug are adjusted so that the calculated mobility agrees with the

experimental results. Next, the carrier concentration versus temperature variation is

determined using the calculated mobility and the reported electrical conductivity. As

mentioned before, we cannot simply use the electrical conductivity from the mobility

measurement because each experimental system subjects the sample to different heat

treatments. Finally, the electrical conductivity, Seebeck coefficient, thermal conduc-

tivity, and ZT are calculated. If the calculation is consistent, after fitting the mobility

and carrier concentration the calculated results for all the properties should match

the experimental data.

2.5.1 N-type nanocomposite Sio. 8Geo.2

We are able to obtain excellent agreement with the experimental data for the n-type

nanocomposite using this procedure, indicating that the Boltzmann equation and
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Figure 2-7: Calculated mobility for each scattering mechanism and total mobility

(curves) with experimental data (symbols) for the n-type Sio.8 Geo.2nanocomposite.
(Solid line - total mobility; broken lines - mobility for each scattering mechanism.)

the GB scattering model are a good description of the transport. The calculated

and experimental mobilities are shown in Fig. 2-7. Ionized impurity scattering is

the dominant scattering mechanism over most of the temperature range, with GB

scattering next most dominant at room temperature and acoustic phonon scattering

next most dominant above 1000 K. The GB scattering fitting parameters used to

obtain this result are summarized in Table 2.1.

Figure 2-8 shows the n-type and p-type carrier concentrations versus temperature.

For the n-type nanocomposite, there is a slight decrease in electron concentration with

temperature at intermediate temperature, followed by a large increase in electron

concentration with temperature at elevated temperature. This behavior is consistent

with previous reports, as dopant precipitation to the GB in n-type Sii_2Ge, is known

to be a significant process even at intermediate temperatures of 600-900 K. 51'58 At

room temperature the material is a supersaturated solution of Sio.8 Geo. 2 and P as the

material has been quenched in air to room temperature, freezing the dopants in place.

As the temperature is increased P is rejected from the lattice as the material attempts
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Figure 2-8: Extracted carrier concentration versus temperature for the n-type and
p-type Sio.8Geo.2 nanocomposites.

to return to its equilibrium state. At high temperature, the dopants are reactivated

due to the increasing solubility limit and the electron concentration increases. Some-

what unexpectedly, the presence of additional grain boundaries in the nanocomposite

does not seem to exacerbate this phenomenon; the bulk and nanocomposite materials

exhibit very similar carrier concentration versus temperature curves.

The calculated thermoelectric properties, including dopant precipitation effects,

are shown in Fig. 2-9 (solid curves), along with the nanocomposite experimental data

(symbols) and the calculated results without GB scattering for comparison (dashed

lines). The calculated results which include GB scattering are in excellent agreement

with the experimental results. Dopant precipitation is seen to cause the normally

monotonically decreasing electrical conductivity to actually increase above 1000 K;

the opposite trend is present in the Seebeck coefficient. The same carrier concen-

tration variation with temperature as was used for the bulk n-type case is also used

here.



Table 2.1: Fitting parameters
nanocomposite modeling.

for the grain boundary potential used in Sio.sGeo.2

Material Ug[meV] ro [nm] zo [nm] tg [nm]
n-type SiO. 8Geo. 2  45 1.0 2.0 12
p-type Sio.8Geo. 2 45 1.0 2.0 20
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and lattice components of thermal conductivity.)
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2.5.2 P-type nanocomposite Sio. 8Geo.2

Unfortunately, a completely consistent fit for the p-type nanocomposite could not

be found. Specifically, the model is not able to predict the high Seebeck coefficient

that is observed experimentally without making an adjustment to the hole effective

mass. We find that increasing the hole effective mass from 1.2me to 1.5 5me is able

to explain the data, possibly indicating the nanocomposite valence band is different

from that of the bulk. A change in hole effective mass has been reported in strained

Sii_2Gex/Sii_-Gey thin films,77 but whether the same phenomenon is responsible for

the observed nanocomposite properties is not clear.

The mobility is shown in Fig. 2-10. Unlike the n-type case, where ionized impurity

scattering is dominant, here acoustic phonon scattering is the dominant scattering

mechanism over most of the temperature range.

Figure 2-8 shows the hole concentration versus temperature. Unlike previous

reports for bulk p-type Sio.8Geo.2,56 the nanocomposite does exhibit a change in hole

concentration at elevated temperature, reducing from around 2.6x 1020 cm- 3 at room

temperature to 2.0x 1020 cm-3 at 1300 K. This is somewhat unexpected as carrier

concentration changes in p-type Sio.8Geo.2 had previously been observed only on the

time scale of thousands of hours.56 The explanation for this effect is similar to that
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Figure 2-11: Calculated (curves) and experimental (symbols) thermoelectric proper-
ties for the p-type nanocomposite (data from Ref. [17]), along with the bulk experi-
mental data shown earlier for reference. (Solid lines - model including GB scattering;
dashed lines - model without GB scattering; dotted lines - electronic and lattice
components of thermal conductivity; dash-dotted line - Seebeck coefficient calculated
using the bulk effective mass of 1.2me.)

for n-type dopant precipitation. At room temperature, the material is supersaturated

with B, but it must be raised to a higher temperature of about 1000 K to reject B

from the lattice. The B rejection causes the hole concentration to be reduced to a

value closer to the solubility limit.

Figure 2-11 shows calculated thermoelectric properties for different conditions,

along with the experimental thermoelectric properties of the nanocomposite and bulk

material. One set of curves is calculated using an effective mass of 1.5 5me and includes

GB scattering, while the second set does not include GB scattering but is otherwise

the same. The Seebeck coefficient using the bulk effective mass of 1.2me has also

been computed for comparison.

The calculated Seebeck coefficient obtained using the bulk effective mass of 1.2me

is about 25% lower than the experimental data over the entire temperature range,

while that calculated using 1.55me gives a better fit. An interesting feature of the



experimental data is that even though the hole concentration of the nanocomposite

material is almost twice that of the bulk material (2.6x 1020 cm-3 versus 1.4 x 1020

cm- 3 ), the Seebeck coefficient of the nanocomposite is actually equal to or higher

than that of the bulk. We have tried many different types of GB scattering models,

but none predict the level of increase in Seebeck coefficient that is observed; only

by increasing the effective mass are we able to obtain a satisfactory fit for all the

properties. However, whether the material actually does have a different effective

mass from the bulk is not clear, and more investigation into the transport properties

and band structure of nanocomposite p-type Sio.8Geo.2 is necessary.

2.6 Discussion

We used the model calculations to better understand the effects of GB scattering on

the thermoelectric properties. To start, we examine the nanocomposite and bulk ex-

perimental data more closely. For both the n-type and p-type materials, the nanocom-

posite electrical conductivity is reduced from the calculated value without GB scat-

tering at room temperature, but the difference decreases as the temperature increases.

This is expected because the acoustic phonon scattering rate goes as T 3/2 and thus

becomes large compared to the other scattering mechanisms at high temperature,

making the influence of GB scattering less significant as the temperature increases.

Crucially, the phonon GB scattering rate is always much larger than the other phonon

scattering rates over the entire temperature range. Thus, while the nanocomposite

electrical conductivity approaches that of the bulk at high temperature, the lattice

thermal conductivity is still much lower than that of the bulk, leading to a net in-

crease in ZT which is most pronounced at high temperature. Unfortunately, this

also implies that improving the electrical properties at high temperature is difficult

because the mobility is always limited by acoustic phonon scattering, especially in

the p-type material.

The model can provide additional information about GB scattering. An inter-

esting observation is that the GB potentials required to fit the data are several



times higher than those predicted from the Poisson equation. Even with a very

high trap density of Nt = X 1013 cm- 3 and a relatively lower doping concentration

ND = 1 X 1020 Cm 3, the magnitude of the GB potential is only predicted to be about

20 meV. However, the value required to fit the data is 45 meV. There could be

several reasons for this. One likely possibility is that there are many more defects

present than were accounted for in the model. TEM images show there are a variety

of nanoprecipitates and composition variations that could also act as electron scatter-

ing sites.-15 -1 In the model only scattering sites from the nanoscale grain boundaries

are taken into account, but if the density of scattering sites is actually larger than

this, the magnitude of the GB potential required to fit the data would decrease.

Another possibility is that nanocomposites have more disordered GB regions and

thus more trapping states than have been previously measured for microcrystalline

materials. The nanocomposite materials studied here are doped far beyond the sol-

ubility limit for the host material Sio. 8Geo.2, with the result that a large fraction of

the inserted dopants are rejected from lattice sites and are forced into other regions

of the material such as the GB. As an example, the p-type nanocomposite sample is

doped with 5% B, or 2.5x 1021 cm-3, but the measured carrier concentration is only

2.6x 1020 cm-3, indicating that most of the dopants do not occupy substitutional

sites in the lattice. It has been previously hypothesized that dopants might affect the

number of trapping states in the GB, though if and to what extent the trapping states

are modified is not known. 69 Unfortunately, it is not easy to determine the number

of trapping states with common methods, such as capacitance measurements, due to

the very small size of the grains.

Yet another possibility is that the grains are becoming so small that the volume

fraction of GB is not negligible, making the material essentially composed of two

phases, one being the host material and the inclusion phase being the GB material.

Since the GB is expected to have very low carrier mobility, the combined material's

mobility will be lower than would be predicted from a scattering model alone.

While it is clear that many questions remain concerning transport in nanocompos-

ites, the results discussed here do suggest several strategies and research topics which



could lead to further improvements in ZT. One obvious topic for further research is

determining how to fabricate nanocomposites with fewer defects and cleaner grain

boundaries. If the number of defects or number of trapping states could be reduced,

the GB scattering rate would be reduced and the mobility would increase, especially

in the room temperature to intermediate temperature range. Understanding the rea-

son for the mobility reduction and adjusting fabrication conditions to minimize it

would thus be very helpful.

Another possible research topic is based on the observation that the lattice ther-

mal conductivity has been reduced so far that it is nearing the electronic thermal

conductivity; in the n-type case the electronic thermal conductivity is actually larger

than the lattice component at high temperature. Unfortunately, this means that fur-

ther reducing the lattice thermal conductivity will yield only marginal improvements

in ZT as the lattice thermal conductivity approaches the electronic thermal conduc-

tivity. Research on ways to reduce the electronic and bipolar thermal conductivities

would thus also be very useful.

The final topic we discuss is the validity of the Boltzmann equation for highly

doped thermoelectric materials. The Boltzmann equation is an equation for particle

transport and neglects wave effects. For this requirement to be satisfied, it can be

shown that the necessary condition is that the electron MFP be much longer than

the electron wavelength.4 8 However, as shown in Fig. 2-5, for highly doped Sio.8 Geo.2

the electron MFP is predicted to be even shorter than its wavelength, making the

applicability of the Boltzmann equation somewhat questionable. The prediction of

the wavelength being longer than the mean free path may also be caused by the

inaccuracy of scattering models, which are mostly derived assuming that the doping

level is not too high. Thermoelectric materials are very highly doped and are usually

degenerate, however, and their electrical properties are sometimes closer to those

of metals than to semiconductors. Thus while the Boltzmann equation has been

successful in explaining most of the experimental data, a predictive capability for the

transport properties of nanocomposites will require a more powerful formalism.



2.7 Conclusion

In this chapter, we have used the BTE under the relaxation time approximation

to investigate the thermoelectric properties of nanocomposite Sii_.Ge2 alloys. We

account for the strong GB scattering mechanism in nanocomposites using phonon

and electron GB scattering models. We find that the calculations are in excellent

agreement with the reported properties for the n-type nanocomposite, but the exper-

imental Seebeck coefficient for the p-type nanocomposite is larger than the model's

prediction. Increasing the hole effective mass gives a better fit, possibly indicating

the valence band in the nanocomposite is different from that of the bulk material.

We also find that dopant precipitation is an important process in both n-type and

p-type nanocomposites, in contrast to bulk SiGe, where dopant precipitation is most

significant only in n-type materials. Finally, the model shows that the grain boundary

potential required to fit the data is several times larger than the value obtained using

the Poisson equation. This suggests that an improvement in electrical properties is

possible by reducing the number of defects in the grain or reducing the number of

electrical trapping states at the grain boundaries.

To conclude this chapter, using modeling along with experimental characterization

of our nanostructured materials has given us very useful insight into the nanoscale

transport processes taking place in these materials. These kinds of relatively simple

computations allow us to gain a much deeper understanding of nanoscale transport

than if we only examine experimental data.
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Chapter 3

Determining phonon mean free

paths: the quasi-ballistic heat

transfer regime

3.1 Background

In chapter 2 we saw that modeling, combined with experimental characterization, can

give us useful insight into nanoscale transport processes. However, one problem with

this approach is that it is indirect: while the model may be able to fit the data, there

is really no guarantee the model is correct. Even completely unphysical models can

fit the data presented in chapter 2 if the numbers are tweaked appropriately.

Because of this dilemma, it is natural to wonder if there is a way we can more

directly study the heat carriers themselves, rather than relying on indirect models.

Unfortunately, if we restrict ourselves to only measuring macroscopic transport prop-

erties, like was done in chapter 2, we quickly run into a problem.

Let us examine the kinetic equation for the phonon thermal conductivity. We can

express the thermal conductivity as:

k = - Cov, Adw (3.1)
3 10
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Figure 3-1: Thermal conductivity (TC) accumulation (cumulative distribution func-
tion) versus MFP. Even though these two distributions could have the same thermal
conductivity, the MFPs of phonons carrying the heat are completely different. Knowl-
edge of this distribution is critical for nanoscale engineering.

where C, is the specific heat, v, is the group velocity, A, the mean free path (MFP),

wm is the cutoff frequency, and w the phonon frequency. From this integral, we see

that if we only measure macroscopic transport properties like the thermal conductiv-

ity, we measure the integral effect of all phonons contributing to the heat transfer.

The information about the underlying distribution is not easily accessible. In fact,

any distribution of MFPs A, can give the thermal conductivity we measure, if the

numbers are adjusted appropriately. Therefore, simply measuring macroscopic prop-

erties cannot reveal properties of the distribution. To directly measure properties of

the carrier distributions, like MFPs A, or relaxation times T = A/v,, we need a

new strategy.

Before discussing what the strategy is, it is necessary to emphasize why this in-

formation is so important. The reason is illustrated in Fig. 3-1, which shows the

thermal conductivity accumulation, or cumulative distribution function (CDF) of the



thermal conductivity, as a function of the MFP. This shows how much different MFPs

contribute to the total thermal conductivity. In principle, both of these distributions

could have the same thermal conductivity after the distribution is integrated. How-

ever, the two distributions are completely different: it is difficult to engineer the

thermal properties of materials with the blue distribution because the MFPs are al-

ready very short. Meanwhile, the opposite is true for the green distribution: it is

much easier to engineer the thermal properties in this material because there are

many long MFP phonons which can be modified by nanostructuring. Unfortunately,

this dichotomy cannot be revealed by macroscale transport measurements.

Clearly, our lack of knowledge concerning MFPs is of concern, because it is very

difficult to engineer a material at the scales of the MFPs unless we know their values.

While nanostructured materials such as nanowires, superlattices, and nanocompos-

ites with strongly reduced thermal conductivities have recently been reported and

are being assessed for use in thermoelectric applications, 13,14, 35,36 further engineering

these materials will require a better understanding of phonon MFPs.

3.2 The quasi-ballistic heat transfer regime

In order to directly measure properties like MFPs, we need to study transport at the

fundamental scales of the phonons themselves. Consider a typical macroscale thermal

measurement. If thermal transport is studied in the diffusive regime, or for length and

time scales much longer than MFPs and relaxation times, the phonons have already

relaxed to a near-equilibrium distribution. Because of this, the relaxation information

is not easily accessible.

In the quasi-ballistic regime, however, where length and time scales are shorter

than MFPs and relaxation times, the phonons have not had a chance to relax due to

a lack of scattering events. As a result, local thermal equilibrium does not exist and

the transport is non-diffusive. By observing transport at these scales and watching

the phonons relax, we can extract information about MFPs or relaxation times.

This type of size effect, where there is a large temperature gradient over the scale



of phonon MFPs, has been studied both theoretically and experimentally. Transient

ballistic transport has been studied using heat-pulse techniques at cryogenic temper-

atures in low defect materials such as single-crystal sapphire, where phonon MFPs

are comparable to the dimensions of the sample itself.78 A nonlocal theory of heat

transport was proposed as a modification of diffusion theory in the case where some

phonon modes are ballistic.9 Chen predicted that the heat conduction from a heat

source smaller than the phonon MFP of the surrounding medium is significantly re-

duced.8 Such non-diffusive transport has important implications for heat transfer in

microelectronic devices.79

As an introduction to this transport regime, in this chapter we numerically solve

the frequency-dependent Boltzmann transport equation (BTE), which is valid at

length and time scales shorter than MFPs and relaxation times, to better understand

how the quasi-ballistic transport regime can yield information about the phonon dis-

tribution. We solve the BTE for a metal film on a substrate using the method of

discrete ordinates. The metal film on a substrate geometry is the same as that used

in transient thermoreflectance (TTR) experiments.80 In subsequent chapters we will

experimentally demonstrate a technique which uses observations of quasi-ballistic

transport to extract information about phonon MFPs.

There have been many numerical solutions to the phonon Boltzmann transport

equation (BTE) in past years, 7' 81-85 but many studies used frequency averaged prop-

erties. In a material such as Si, where phonon MFPs can vary by five orders of

magnitude over the Brillouin zone,86 this assumption is clearly not realistic. While

some studies did include frequency dependence, 81-83,85 several of these studies made

other simplifying assumptions which are not self-consistent .81,82 A calculation of the

phonon transport through a single material, including dispersion and polarization,

has been reported, but the calculation did not include interfacial transport.8 3

Here we include the frequency-dependence of the phonon properties in both the

metal film and the substrate, allowing for a frequency-dependent interface condition.

We discuss the definition of thermal boundary resistance at the metal-substrate in-

terface including frequency dependence. We use the model to show that Fourier's



law does not correctly describe the transport in the quasi-ballistic case, and to exam-

ine how observing quasi-ballistic transport can reveal information about the phonon

relaxation times.

3.3 Numerical solution of the frequency-dependent

phonon Boltzmann transport equation

Here we describe our numerical solution of the transient, one-dimensional, frequency-

dependent phonon BTE. To simplify the analysis, heat conduction due to electrons

in the metal film is neglected; only phonon heat conduction is considered. In reality,

of course, electrons conduct a majority of the heat in metals. However, it has been

shown that a thermal resistance due to electron-phonon coupling exists which modifies

the effective interface conductance value. 87 As we are interested in observing changes

in thermal properties due to quasi-ballistic transport only, to simplify the interpre-

tation we do not include electron heat conduction in the calculation. The thermal

conductivity of the metal film is taken to be only that of the lattice, approximately

20 W/mK.

The BTE is given by:81

Ofe afefW - fo+ pos -W (3.2)
at ax TW

Here fh = wD(w)g(w)/47r is the desired distribution function, where h is Planck's

constant divided by 27r, w is the angular frequency, D (w) is the phonon density of

states, and g(w) is the occupation function; f2 is the equilibrium distribution function,

p = cos 0 is the cosine of the angle between the propagation direction and the x-axis,

and -r is the frequency dependent relaxation time. The factors of 47r normalize the

distribution by the solid angle. Other treatments of the BTEsi'82 have written the

equation in terms of the intensity 1 = fvow; however, as will be shown later, optical

phonons must be included in the calculation but have essentially zero group velocity.

To allow for the case of zero group velocity, we remove the velocity from the definition.



The total thermal conductivity of metals is often in the hundreds of W/mK range,

but as discussed earlier, much of this is due to electrons. Here we only consider the

conduction due to the lattice. The lattice thermal conductivity of the metal is not

known with certainty; we use a value of k, ~ 20 W/mK. Phonon relaxation times are

also not well known in metals, and we take the relaxation time T to be a constant so

that k = 1/3 f Covrdw gives the specified thermal conductivity.

The equilibrium distribution f0 is given by

0 hwD (w) fBE(T) (33)
41r

where fBE(T) = (exp(hw/kBT) - 1)-1 is the Bose-Einstein distribution function, and

T is the temperature of the distribution.

For this study, we will take the materials to be an Al film on a Si substrate

because these materials are commonly studied using TTR. This equation can be solved

numerically for each frequency in both the film and the substrate, an appropriate

interface condition applied, and the solution obtained. We now discuss several issues

which must be treated properly to obtain a self-consistent solution.

3.3.1 Calculation of the equilibrium distribution

The equilibrium distribution fo can be determined by integrating equation 3.2 with

respect to frequency and angle and invoking conservation of energy.81 The result is:

j j dd = d pdw (3.4)

We now have a choice about how to satisfy this equation. In the past, the equation

has been satisfied by enforcing equality at each frequency, or f0 = 1/2 f' f dy.

However, it has been shown that this approximation will not give the correct solution

to the BTE.85

Therefore, it is necessary to determine the temperature T by integrating Eq.

3.4 over frequency and angle. To simplify the calculation, we approximate that the



temperature difference throughout the domain is not too large. We can then linearize

the equilibrium distribution:

f _ ((T) = ~~ f2(To)+ wAT (3.5)
47r 47ir

where AT = T - To. This gives a simpler equation for the temperature of the

equilibrium distribution:

4r " f- f0(To)d
AT = jrj - dpd (3.6)

fomm(Cw/rQ do o0 _1 7rW

The equilibrium distribution then follows immediately from equation 3.5.

Unfortunately, solving for the equilibrium distribution in this manner significantly

complicates the solution. Since all the frequencies are coupled, Eq. 3.6 must be solved

at each spatial point. In silicon, phonon MFPs can vary from a few nanometers for

zone-edge phonons to millimeters for long wavelength phonons, a six order of mag-

nitude difference. To obtain a correct solution for short mean free path phonons,

the numerical spatial grid must have a small step size. However, to obtain a cor-

rect solution for the fast, long MFP phonons requires a large spatial domain. Since

the solution must be known at every spatial point, these contradictory requirements

imply a large domain with very fine spatial step size is required, making the solu-

tion computationally demanding. Multi-grid schemes, with a different spatial grid for

each frequency, could be used, but to simplify numerical considerations we solve the

distribution function for all frequencies on a single grid.

3.3.2 Role of optical phonons

Optical phonons are typically neglected in studies of phonon transport, as they con-

tribute little to the thermal conductivity due to their near zero group velocity.8 6

However, in transient heat transport, optical phonon modes with large specific heats

act as a thermal capacitance and thus affect the transport, even if the modes do not

actually transport any heat themselves.83 ,8 We incorporate these phonons in Si (Al



does not have optical phonons) simply as another mode with zero group velocity. We

must also specify an optical phonon relaxation time; we use a value of 3 ps.89 The

solution is not sensitive to the precise value. The optical phonon specific heat is given

by the Einstein model assuming three degenerate optical branches:4 7

ChOPp 2 exp(hwop/kBT)
S3NkB O kBT (exp(hwop/kBT) _ 1)2

where N is the number density of the material and wo, is the optical phonon frequency,

equal to 63 meV in Si.60

3.3.3 Interface condition

After the phonons travel through the metal film they reach the interface between

the metal and substrate, where phonons are either transmitted or reflected. Unfortu-

nately, the details of these transmission or reflection processes are largely unknown. A

phonon could be scattered diffusely, or randomly in all angles; or specularly, in a mir-

ror type reflection. Phonons could also scatter inelastically, resulting in a change in

phonon frequency, or undergo mode conversion, resulting in a change in polarization.

In our treatment of the interface, we assume elastic, diffuse scattering and neglect

any type of mode conversion: phonons do not change frequency or polarization as

they cross the interface, but are scattered equally in all directions. A diagram with

the dispersions of Al and Si, along with the allowed scattering modes, is shown in

Fig. 3-2.

We can split the distribution function into forward-going (0 < p < 1) and

backward-going (-1 < p < 0) phonons at both sides of the interface. Generally the

incoming fluxes to the interface, or the forward going flux on side 1, fi, and back-

ward going flux on side 2, f-2, are known; the outgoing fluxes, or backward going flux

on side 1, f-1 , and the forward going flux on side 2, fl2 , need to be determined.

The interface condition simply expresses that the heat flux carried by f 1 and f,2 is

equal to the reflected and transmitted heat flux from fi and f-2. Because we assume

elastic scattering and neglect mode conversion, the heat flux equality condition must
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Figure 3-2: Phonon dispersions of Al (left) and Si (right). Scattering is permitted
between phonons of the same polarization and frequency. High frequency phonons
lacking a corresponding state are diffusely backscattered, indicated by the cutoff mis-
match in the figure.

be satisfied for each frequency and polarization. The condition is:

q+= jfiv pdy (3.8)/10O
qj = jf- 2v 2 pdy (3.9)

fo2Vw2 = 2 (T12(w)q+ - R 21(w)q2) (3.10)

f,-ivi = 2 (-T21(w)q- + R12(w)q+) (3.11)

Here T12(w) is the transmission coefficient from side 1 to 2, R21(w) is the reflection

coefficient from side 2 back into side 2, and so on.

Under the assumption of elastic scattering and the neglect of mode conversion,

some high frequency phonons are unable to transmit from one material to the other

due to a lack of a state. For Al and Si, this occurs for phonons in the Al transverse

branch and the Si longitudinal branch. These phonons are not able to transmit and

therefore have zero transmissivity; this is indicated by 'cutoff mismatch' in Fig. 3-2.



Previous analyses did not consider cutoff frequency mismatches between two materials

or frequency dependent transmission and reflection coefficients, and it is necessary to

reexamine the relations between the coefficients to ensure that frequency dependence

is properly incorporated.

There are several restrictions on the values of the transmission and reflection

coefficients so that the principle of detailed balance and conservation of energy are

satisfied. Let us assume the frequency-dependent transmissivity from medium 1 to

medium 2, T 12 (w), is specified. The principle of detailed balance requires that when

both materials are at an equilibrium temperature T, no net heat flux can transmit

across the interface. Typically this condition is written as an integral over frequency,4 7

but it can be shown that the principle of detailed balance applies for every phonon

mode on each side of the interface.90 The condition is:

T12(W)fi(T)vei = T21(w)f. 2 (T)vo2 (3.12)

Thus, even if T12(w) is frequency independent, T21(w) will in general be frequency

dependent. Because we have assumed diffuse scattering, none of the transmission or

reflection coefficients are angle-dependent and no further restriction is necessary.

Note that because f,(T) depends nonlinearly on T, temperature cannot be ex-

tracted from Eq. 3.12, meaning that the relationship between T12(w) and T21(w)

required to satisfy detailed balance will change depending on the phonon temper-

ature. However, due to the small deviations from the equilibrium temperature To

considered here, to excellent approximation detailed balance can be satisfied for all

the phonons by evaluating Eq. 3.12 at To.

The rest of the relations between the transmission and reflection coefficients can

be derived by enforcing an equality of the heat fluxes on each side of the interface, 47

giving:

R 12 (w) = 1-T 12(w) (3.13)

R 2 1(w) = 1 - T21 (w) (3.14)



All of these conditions must be satisfied at every frequency and polarization.

Finally, the transmissivity T12 (W) can be related to the interface conductance G

by calculating the heat flux and equivalent equilibrium temperature on each side of

the interface. 7 The interface conductance is defined as G = q/AT, where q is the

heat flux at the interface and AT the temperature difference across the interface.

The heat flux depends on the transmissivity, and therefore will be different from the

results derived previously7 due to the frequency dependence of the transmissivity.

The temperature difference AT is difficult to define consistently. Assuming that

fji and f32 have some emitted phonon temperature Tei and Te2 , respectively, fj2 and

f,- will be composed of reflected and transmitted phonons at these different tempera-

tures and will be strongly out of equilibrium. 7 It has been shown that the appropriate

quantity to use is the equivalent equilibrium temperature, which represents the tem-

perature of the distribution that a non-equilibrium phonon distribution would reach

if it were to relax adiabatically to equilibrium.7 Thus, even though the forward and

backward going phonons are strongly out of equilibrium, using the equivalent equilib-

rium temperature allows the results to be compared to the Fourier's law result which

assumes local thermal equilibrium.

Using these results, the modified relation between the interface conductance and

transmissivity is:

(T12(U))f,'osi) =2_ (3.15)
(Cv)- 1 - (Cv)21 + (2G)-1

where (-) denotes integration over frequency. The details of the derivation are pre-

sented in appendix B. If the transmissivity is frequency independent then this formula

reduces to the result derived previously.7 It is important to remember that this for-

mula assumes that the incoming distributions to the interface, fji and f-2, have a

temperature. If these distributions are also out of equilibrium, then it is not pos-

sible to relate the interface conductance and transmissivity. In this case, with the

transmissivity specified, the interface conductance will change with time until the two

incoming distributions do have a temperature, at which point Eq. 3.15 will be valid



and the interface conductance will become a constant. Due to the transient nature of

the heat transport studied here, the two distributions never exactly achieve a thermal

distribution, and so the thermal conductance can still change slowly with time.

3.3.4 Phonon dispersion and relaxation times

We now need to specify the dispersion and relaxation times for both the Al film and

the Si substrate. We use the experimental dispersion in the [100] direction for both

Al and Si.

We assume a constant relaxation time T for all modes in Al; the value T = 10 ps is

chosen to yield the desired lattice thermal conductivity k ~ 20 W/mK. For Si, we use

relaxation times for phonon-phonon scattering extracted from molecular dynamics

simulations9 1 but with an empirical term exp(-9/T) to extend the relaxation times

to lower temperatures.42 We also add boundary scattering and impurity/isotope scat-

tering, important at T < 100 K, and combine the relaxation times using Matthiessen's

rule - 1 = E T- 1 . The relaxation times are:

TL 1 = ALW 2 T1.49 exp(-/T) (3.16)

Ti 1 = ATW2T 1.65 exp(-O/T) (3.17)

ri 1 = Ajw4  (3.18)

r1 = Wb (3.19)

where L and T denote longitudinal and transverse, respectively. The parameters used

are specified in table 3.1.

The thermal conductivity is calculated with the above relaxation times using the

kinetic theory expression for the thermal conductivity:

k = CWV2 TdW (3.20)

where the sum is over polarization p. The exact dispersion is used in this calculation.

As in Holland's model,42 the additive term accounting for normal scattering from



Table 3.1: Parameters used in the phonon relaxation time models for natural silicon.

Parameter AL [K. 4 9 /s] AT [K1.65/S] 0 [K] A, [S3] Wb [S-1
Value 2 x 10-19 1.2 x 10-'9 80 3 x 10-45 1.2 x 106

Callaway's model is neglected.'

3.3.5 Numerical details and boundary conditions

We solve the BTE numerically using a discrete ordinates method.82 Both the angle

and frequency are discretized using Gaussian quadrature to minimize the number

of points required. The angle is discretized into N,, = 40 points. The frequency

discretization is more complicated because of the cutoff frequency mismatch for zone-

edge phonons. Integrals involving the phonon dispersion are split into two integrals,

one over the modes in common between Al and Si and another over the remaining

modes, which in this case is the high frequency modes of the Al T branch and the Si

L branch. These integrals are then separately discretized using Gaussian quadrature.

An explicit first-order finite difference method is used to discretize the spatial and

temporal derivatives. 82

In addition to the interface conditions, one boundary condition is required for each

angle -1 < p < 1. The distribution function must be specified for angles 0 < p < 1

at x = 0, or the top of the metal film, and for angles -1 < p < 0 at x = L, or

the bottom of the substrate, where L is the length of the numerical domain. We

choose the boundary condition at x = 0 to be diffuse reflection so that this surface

is adiabatic. For the boundary condition at x = L, the type of boundary condition

used ideally should not matter if the domain is sufficiently long. We use adiabatic or

constant temperature boundary conditions and verify that the solution ot the BTE

is the same in both cases.

The initial condition is an exponentially decaying phonon temperature distribu-

tion, with the 1/e depth of the temperature profile taken to be the light absorption

depth in Al, approximately 7 nm for visible wavelengths. 92
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Figure 3-3: Lattice surface temperature versus time predicted by the BTE and the

heat equation with truncated relaxation times to 10 ps at 300 K. The curves are

almost identical.

The interface transmissivity T12(w) is calculated using Eq. 3.15 for a particular

value of G specified at the beginning of the simulation. The rest of the transmission

and reflection coefficients can then be calculated as described in section 3.3.3.

3.4 Results

We first consider a test case. In this simulation, performed at T=300 K, the maximum

relaxation time was truncated to 10 ps, putting the transport easily into the diffusive

limit. In this case, the solution from the BTE should be very close to the Fourier

law solution. Fig. 3-5 shows the surface temperature of the metal film versus time

predicted by the BTE and by the heat equation. The length of the domain is 3 Pm.

To verify that the finite length of the domain does not influence the solution, two

different boundary conditions, adiabatic and constant temperature, were employed

at the edge of the substrate, and the length of the domain was varied. In all cases
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Figure 3-4: Calculated interface conductance G from the BTE with truncated relax-

ation times to 10 ps at 300 K. The result is close to the specified value of 1.1x108

W/m2K, which is chosen at the beginning of the simulation by calculating the trans-

missivity from Eq. 3.15 using a particular value of G.

the solutions were nearly identical, indicating that the spatial domain is sufficently

large. To verify convergence of the numerical solution, the number of spatial points,

angle points, and frequency points were all increased; the solution again remained

identical.

We can also calculate the interface conductance and compare it to the value speci-

fied at the beginning of the simulation. The result is shown in Fig. 3-4; the calculated

result is close to the specified value of 1.1 X10ol W/M2K

This test case demonstrates that the calculation successfully reproduces the diffu-

sive limit and is operating properly. We now perform the same simulation, only with

the restriction on relaxation times removed; relaxation times are now given by the

equations in Sec. 3.3.4 and can be arbitrarily long. The same figures as before, lattice

surface temperature versus time and interface conductance versus time, are shown in

Figs. 3-5 and 3-6, respectively.
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Figure 3-5: Lattice surface temperature versus time predicted by the heat equation
and BTE with full relaxation times at 300 K. The two curves do not match exactly,
indicating the transport is in the quasi-ballistic regime.



This calculation gives an unexpected result. Examining Fig. 3-5, we see that at

room temperature the solution from the BTE does not match that from diffusion

theory, indicating ballistic effects are present. This is somewhat surprising, consider-

ing that estimates of the average phonon relaxation times are around 50 ps in Si.4 7

This illustrates the danger of using the concept of an average relaxation time in

many materials. As mentioned in Sec. 3.2, despite the average relaxation time being

relatively short, more detailed analyses of phonon transport reveal that MFPs and

relaxation times can vary by 5-6 orders of magnitude over the Brillouin zone. In Si,

it is estimated that 40% of the thermal conductivity is contributed by phonons with

MFP longer than 1 pm.91 In terms of the present one-dimensional simulation, these

long MFP (and relaxation time) phonon modes do not scatter over the timescale of

the simulation, resulting in a non-equilibrium phonon distribution and the failure of

Fourier's law, which assumes local thermal equilibrium. From Fig. 3-5, we see that

the surface temperature decay curve is shallower than the Fourier law prediction, indi-

cating that the heat transfer in the quasi-ballistic case is smaller than in the diffusive

case. This phenomenon of "ballistic thermal resistance" in quasi-ballistic transport

has been demonstrated experimentally in sapphire,93 in semiconductor alloys,94 and

in the subsequent chapters of this thesis.

Examining the interface conductance in Fig. 3-6, we see an additional unexpected

result. Instead of a constant interface conductance close to the value of 1.1x108

W/m 2 K specified, the interface conductance changes with time. The reason for this

was discussed in Sec. 3.3.3. To define an interface conductance, the incoming distri-

butions at the interface must have a thermal distribution. As shown earlier, due to

the long relaxation times of some phonons, a local thermal equilibrium does not exist

over the short timescales of this simulation, making it impossible to define a constant

interface conductance.

To better understand this effect, let us examine the angle-integrated intensity for

each frequency normalized to the specific heat:

f fedpi
T = f,(3.21)

CW
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Figure 3-6: Calculated interface conductance G from the BTE at 300 K. The interface
conductance is not constant as in the diffusive case.

This gives a 'temperature' for each frequency. If the distribution is in thermal equi-

librium this temperature will be constant for all frequencies. This quantity is plotted

at t=10 ns for the 10 ps truncated and full relaxation times. As shown in Figs. 3-7

and 3-8, the 10 ps case has a well defined temperature even at the interface, while the

full relaxation time case does not. This indicates that the phonon distribution is not

in thermal equilibrium for the full relaxation time case, as expected. Therefore, the

assumption made in the derivation of the relation between thermal conductance and

transmissivity is not strictly valid, and it is not possible to define a constant interface

conductance.

These ballistic effects are much more apparent at T< 300 K, where phonon relax-

ation times can be substantially longer than 1 ps. A typical result is shown in Fig.

3-9 for T=100 K. There is a much more marked difference between the heat equation

and BTE solutions, indicating that the transport is quasi-ballistic and a local thermal

equilibrium does not exist.
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Figure 3-7: Frequency-dependent 'temperatures' for truncated relaxation times to
10 ps case at 300 K. That the temperatures are almost identical indicates that the
phonons have a thermal distribution and are in local thermal equilibrium.
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Figure 3-8: Frequency-dependent 'temperatures' for the full relaxation time case at
300 K. The distribution is out of thermal equilibrium, especially at the interface.

3.5 Discussion

From the results presented, it is clear that qualitatively, the solution of the phonon

BTE compared to the Fourier's law solution contains information about relaxation

times. In particular, if the BTE solution is different than the Fourier's law solution, we

can conclude that some phonon modes have relaxation time longer than the timescale

of the simulation. The magnitude of the difference between the two solutions also

gives some information about relaxation times: the longer the relaxation times, the

larger will be the deviation and vice versa.

We would like to better understand which phonon modes are responsible for these

discrepancies and determine how to extract information about relaxation times. As

discussed in the previous section, quasi-ballistic transport results in a smaller heat

flux than predicted by Fourier's law, corresponding to a smaller effective thermal

conductivity. We can interpret the value of this effective thermal conductivity using
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Figure 3-9: Lattice surface temperature versus time predicted by the heat equation
and BTE with full relaxation times at T = 100 K. Ballistic effects are more apparent
at low temperatures where relaxation times are longer.



an earlier work by Koh and Cahill.94 In their work, a modulation-frequency depen-

dence of the thermal conductivity of semiconductor alloys was observed, with a lower

thermal conductivity measured at higher modulation frequency. They explained this

result as follows: as the modulation frequency of the heating pump beam is increased,

the cross-plane thermal penetration depth Id becomes shorter, increasing the fraction

of phonons which have MFP longer than the penetration depth. The larger fraction

of ballistic phonons results in a smaller heat flux and hence lower effective thermal

conductivity, similar to that observed in our numerical simulations. The important

component of their interpretation is that the difference between the true and mea-

sured thermal conductivity is the contribution by phonons with A, > Lpd = 2 x ld.

In other words, the effective thermal conductivity in the quasi-ballistic case is due to

phonons with A, < Lpd; phonons with A, > Lpd do not contribute to the thermal

conductivity measured by the experiment.

We can use this interpretation to better understand our numerical simulations.

As a first step, we examine the single-pulse BTE response; the accumulation effect of

multiple pulses will be considered later in the chapter. We fit the single-pulse BTE

solution with a Fourier's solution using an effective thermal conductivity keff and

interface conductance Geff, both of which will be smaller than the values specified in

the BTE computation due to quasi-ballistic effects. This fit is demonstrated in Fig. 3-

10 for T=300 K. The BTE solution, in which k = 140 W/mK and G=1.1x108 W/m 2 K

were specified, matches a Fourier's law solution with different effective values of kef f

100 W/mK and Ge! f = 1.0 x 108 W/m 2 K. Under Koh and Cahill's interpretation, the

discrepancy between these two thermal conductivity values is due to phonon modes

with A, > Lpd. For the single pulse case, Lpd 2 x i/7ro, where a ~ 10-' W/m 2 K is

the thermal diffusivity of silicon at T=300 K and t ~ 5 ns is the approximate timescale

of the experiment. Using these values, we find that Lpd- 2.5pm, suggesting that

phonons with MFPs longer than about 3 pm do not contribute to the measured

thermal conductivity. To determine if this value is reasonable, we use the frequency-

dependent model of thermal conductivity described in section 3.3.4 to calculate the

thermal conductivity excluding phonons with MFPs longer than 3ptm. The result
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Figure 3-10: Fourier law solutions for k=140 W/mK and k=100 W/mK compared to

the solution of the BTE for an aluminum film on silicon at T = 300 K. Even at room

temperature, the BTE solution does not match that predicted by diffusion theory.
Instead, the BTE solution almost exactly matches a Fourier's law curve with reduced

effective thermal conductivity, indicating quasi-ballistic transport is occurring.

is k ~ 100 W/mK, in remarkable agreement with the value obtained from fitting the

BTE solution.

The results of this fitting procedure for temperatures down to T=100 K are shown

in table 3.2. At and below T = 100 K a satisfactory fit using Fourier's law is difficult to

obtain for reasons that are presently unclear. However, above T=100 K, there is quite

good agreement between the MFP cutoff values Ac,, obtained from the frequency-

dependent model of thermal conductivity, and twice the penetration depth Lpd. These

results further support the hypothesis that phonons with A, > Lpd do not contribute

to the measured thermal conductivity.

We can now see that we have made good progress towards our goal of measuring

MFPs and relaxation times by studying the quasi-ballistic regime. The BTE cal-

culation shows that when transport occurs over timescales comparable to relaxation



Table 3.2: Values of the effective (keff) and actual (k) thermal conductivities from the
BTE solution at several different temperatures, along with the MFP cutoff values A,
required to achieve this thermal conductivity and the effective penetration depth Lpd
at each temperature. The MFP cutoff values agree reasonably well with the effective
penetration depth.

T [K] keff [W/mK] k [W/mK] A, [pm] L~d [pmrn]
300 100 140 2.5 2.4
250 130 190 3.0 2.8
200 170 273 4.0 3.6
150 230 429 5.3 5.1

100* 450 815 20 8.7

* Poor fit of BTE solution

times, the transport deviates from the predictions of heat diffusion theory. By ana-

lyzing the deviations with simple models, we are able to extract information about

phonon relaxation times. For the calculations in silicon, the results indicate that

phonons with MFP longer than approximately 3 pm contribute 40 W/mK to the

total thermal conductivity at room temperature. Unfortunately, if we consider only

the single-pulse response there does not seem to be any way to change the penetration

depth so that we can measure the MFP distribution at more than one point. This

issue will be solved in chapter 5, where we introduce an experimental technique which

can measure MFPs over a wide range of length scales and materials.

3.6 Unresolved puzzles

Despite the apparent consistency of our numerical analysis, there are two unresolved

puzzles. First, while the single-pulse numerical simulations suggest that quasi-ballistic

effects should be observable at room temperature in silicon at nanosecond timescales,

experimentally the correct thermal conductivity is routinely measured using standard

ultrafast techniques, though in these measurements the accumulation effect of mul-

tiple pulses is important. The reason for this discrepancy is presently unknown and

warrants further investigation.



Second, our simulation is presently not able to explain the modulation frequency

dependence of thermal conductivity observed in Koh and Cahill's experiment. So far,

we have only numerically solved for the single-pulse response of the BTE. In a typical

transient thermoreflectance experiment, however, an accumulation effect occurs where

the observed response of a sample is actually due to multiple pulses because of the fast

repetition rate (80 MHz, or one pulse every 13 ns) of the laser.95 Koh and Cahill's

observation of modulation frequency-dependent thermal conductivity can only be

interpreted using this multi-pulse response.

The multi-pulse response can be calculated from the single-pulse response using a

procedure described in Ref. [96]. Briefly, the procedure involves adding later portions

of the single-pulse response multiplied by a phase factor to the beginning of the

single-pulse response:
00

Z(t) = h(qT + t)e0iwO(Tt) (3.22)
q=O

where Z(t) is the multi-pulse response at time t, h is the single-pulse response, T is

the time between laser pulses, and wo is the modulation frequency. The modulation

frequency affects the multi-pulse response by changing the phase factor multiplying

the single-pulse response.

In the diffusive limit, the multi-pulse response should correspond to the same

thermal conductivity of the impulse response regardless of the modulation frequency

used. Therefore, if h is a Fourier's law response with a particular thermal conductivity,

then the multi-pulse response must correspond to the same value of thermal conduc-

tivity for all modulation frequencies. In order to measure a modulation-frequency

dependent thermal conductivity, then, the single-pulse response must deviate from

the Fourier's law response so that the multi-pulse response at different modulation

frequencies corresponds to different thermal conductivities. However, as can be seen

in Fig. 3-10, the BTE solution can be fit using a Fourier's law response with an ef-

fective thermal conductivity. Because the BTE response and Fourier's law response

with effective properties are essentially identical, the multi-pulse response of the BTE

must yield a thermal conductivity equal to its original effective value regardless of
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Figure 3-11: Typical multi-pulse responses at different modulation frequencies calcu-

lated from the single-pulse response for the BTE and Fourier's law. Both fits corre-

spond to effective thermal conductivity keff = 100 W/mK and interface conductance

G = 1 x 10' W/m2 K and therefore do not not predict a modulation-frequency de-

pendence of thermal conductivity.



the modulation frequency. Thus, the present BTE calculation does not predict a

modulation-frequency dependent thermal conductivity.

This lack of frequency dependence is demonstrated in Fig. 3-11. Here, we have

used Eq. 3.22 to calculate the multi-pulse response of the BTE solution and the

Fourier's law solution with the effective properties keff=100 W/mK and G = 1 x 108

W/m 2K. As the figure shows, this same set of effective parameters can explain both

the amplitude and phase responses of the BTE at two different modulation frequen-

cies. We have calculated the multi-pulse responses at several different frequencies in

the MHz range and obtained the same result. Calculating the multi-pulse response

at lower modulation frequencies is difficult because up to 1 ys of the BTE solution

must be computed, but based on the above discussion we do not expect to observe a

frequency dependence even at these lower frequencies.

It is interesting to note that experimentally, Koh and Cahill did not observe a

modulation frequency effect in pure silicon. The effect was only observed for semi-

conductor alloys. It would therefore be useful to repeat the BTE calculations with

relaxation times corresponding to those for alloys and perform the same type of

analysis. Perhaps in this case the BTE would predict the experimentally observed

modulation frequency effect.

3.7 Conclusion

In this chapter we took a first step towards determining how we can measure MFPs

and relaxation times in materials. We showed that these properties are difficult to

measure in the diffusive regime because the carriers have already relaxed. Instead, we

must study the quasi-ballistic regime, where transport occurs on scales comparable

to MFPs and relaxation times. To further investigate this regime, we numerically

solved the frequency-dependent Boltzmann transport equation including a frequency-

dependent interface condition. We showed that quasi-ballistic heat transfer will differ

from the predictions of heat diffusion theory, and that by analyzing the deviations

with simple models we can extract very useful information about MFPs and relaxation



times. In chapter 5 we introduce a new technique to experimentally measure MFPs

using observations of quasi-ballistic transport with our ultrafast pump-probe system.

First, in chapter 4 we briefly describe our experimental pump-probe system and

the modifications we have made in recent years to make these measurements more

efficiently.



Chapter 4

Modifications to the pump-probe

experiment

4.1 Background

As discussed in the last chapter, studying heat transfer in the quasi-ballistic regime

allows us to extract information about phonon MFPs and relaxation times. To exper-

imentally study transport in this regime, length and time scales must be comparable

to MFPs and relaxation times. This implies we need nanometer to micron spatial

resolution and picosecond time resolution. These requirements, though strict, can be

mostly satisfied using ultrafast pump-probe techniques. This type of optical exper-

iment offers sub-picosecond time resolution and micron spatial resolution, which is

sufficient to study the quasi-ballistic regime in materials which have phonons with

MFPs in the micron range.

In this chapter we describe our experimental pump-probe setup arid the modifica-

tions which have been made since the setup was first constructed. Our experiment is

based on a pulsed Ti:sapphire laser with a fundamental harmonic at 800 nm and an

80 MHZ repetition rate. A schematic of the system is shown in Fig. 4-1.96 Because

the principle of the system and many experimental details are extensively described

in Ref. [96], only a brief review will be presented here.

The principle of pump-probe is as follows. A laser pulse is split into two pulses, a
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Figure 4-1: Schematic of the pump-probe system in the Rosenhow Kendall Heat
Transfer Laboratory (from Ref. [96]). A Ti:Sapphire laser emits a pulse train of
800 nm, 250 fs pulses at a rate of 80 MHz. The pulse train is split into pump and
probe beams using a 1/2 waveplate and beamsplitter. The probe is directed to a
mechanical delay line and subsequently to the sample. The pump is modulated using
an electro-optic modulator (EOM), frequency doubled to 400 nm using a Bismuth
T riborate crystal (BIBO), and directed to the sample at the lower left of the figure.
The reflected probe light is send to a fast PIN detector (amplified or unamplified
photodiode); this signal is then sent to a lock-in amplifier.



pump and a probe. The pump pulse train is modulated at some frequency to allow

lock-in detection. In our implementation of the experiment, the pump pulses are

frequency doubled using a BIBO (Bismuth Triborate, Newlight Photonics) crystal to

allow easier removal of the pump pulses at the detector using color filters. A sample

consists of a substrate of interest coated with a thin (~ 100 nm) metal transducer

film, typically Al. The pump beam is focused to a spot of 1/e2 diameter between 10-

60 pm, heating up the sample. This causes a change in the optical reflectivity of the

film, which is monitored using a variably time-delayed probe pulse train. The time

delay is accomplished by using a mechanical stage to create a variable difference in

path length. The probe has a 1/e 2 diameter of around 10 pm. For small temperature

rises induced by the pump beam, the change in optical properties of the film will be

linearly related to the change in temperature of the film. Therefore, by monitoring

the change in optical properties for different time delays of the probe pulses, we can

measure the temperature decay curve due to the impulsive heating from the pump

pulse. The shape of the temperature decay curve contains information about the

thermal properties of the system, so by fitting this curve to a thermal model, we

can extract the thermal properties of the material system. Typically, the interface

conductance G between the metal film and substrate and the thermal conductivity k

of the substrate are extracted.

Further details of the experiment and the thermal model are extensively discussed

in Ref. [96] and will not be presented here. Instead, we discuss the changes that

were made to make the system more stable and robust and simplify the task of data

collection.

4.2 Modifications to signal detection circuitry

One of the most helpful modifications we have made is improving the circuitry used

to extract the desired signal from the photodiode and send it to the lock-in amplifier.

To review, the pump pulse train is modulated at some frequency, typically between

1-15 MHz, to enable lock-in detection. This causes a change in temperature at the



surface of the metal film at the modulation frequency, which is detected by the probe

pulse train. Therefore, when the probe pulses are focused into the photodiode, the

resulting photocurrent contains very strong frequency components at multiples of 80

MHz, the repetition rate of the laser, and a much weaker component at the modulation

frequency which contains the information we wish to extract. This is very similar to

amplitude modulation of radio waves, with a lower frequency signal modulating an 80

MHz "carrier" wave. The challenge is to convert the photocurrent at the modulation

frequency, which may be as small as 1 pA, to a usable voltage which can be accurately

detected by the lock-in amplifier while removing the carrier signal.

In the first generation of the system, this challenge was made even more difficult

because of the way in which the modulation was performed. Originally the pump

beam was modulated with a square wave, which contains frequency components at

odd harmonics (3, 5, 7, ...) of the fundamental. Unfortunately, our lock-in amplifier

also mixes the incoming signal with a square wave, allowing these odd harmonics to

contaminate the desired signal at the fundamental modulation frequency. To remove

these odd harmonics, it was necessary to use a resonant LC filter with a high quality

factor. While this setup attenuated the odd harmonics and magnified the voltage

measured by the lock-in amplifier with a gain of 10, it also required the filter to be

changed in order to change the modulation frequency. This made data collection

laborious and time-consuming.

We solved this problem and removed the need for the resonant filters, allowing

us to change modulation frequencies completely automatically, as follows. First, we

replaced the original digital electro-optic modulator (EOM) amplifier (Conoptics 25D)

with an analog amplifier (Conoptics 25A). The analog amplifier amplifies whatever

waveform is sent to it, in contrast to the digital amplifier, which is capable of only

square wave (on-off) modulation. By modulating the pump beam with a sine wave

rather than square wave, we remove the odd harmonics, and hence the need for a

resonant filter.

Second, we use an active transimpedance amplifier (TIA) to convert and amplify

the photocurrent into a usable voltage signal. Amplified detectors can be easily



purchased and provide a gain of ~ 2000 V/A, amplifying the small photocurrent into

the pV range. Our detector has a bandwidth of approximately 15 MHz, ensuring that

the signal at the modulation frequency is amplified while the 80 MHz carrier signal

is not.

These two modifications remove the need for the resonant filter and make changing

the modulation frequency completely automated. To make the system more robust

and stable, we make a few additional modifications. First, we place a band-pass filter

between the output of the amplified photodetector and the lock-in. This band pass

filter passes 20 kHz < f < 30 MHz, the typical range of the modulation frequency,

while further attenuating the carrier signal at 80 MHz. The removal of the interfering

carrier signal allows us to place the lock-in amplifier at a more sensitive setting,

making the whole setup less susceptible to external EM interference and internal

coherent pickup inside the instrument.97

Second, we moved the lock-in amplifier and signal generator as close to the detector

as possible to minimize the length of the coaxial cables. While coaxial cable ideally

should be shielded, a small amount of radiation at the modulation frequency can

still be radiated and picked up by signal cables. This is particularly true for the

coaxial cables from the EOM, which transmit high voltages and thus radiate strongly.

Shortening the signal cables minimizes external EM interference and makes the system

far more stable. A picture of our cable setup is shown in Fig. 4-2.

Third, we added an automated beam blocker (DCH50 chopper, Electro-optical

Products Corporation, with USB-6008 DAQ board, National Instruments) to null

any constant offset voltages at each frequency. There are many sources of signal at

the modulation frequency which add a constant offset to the signal measured by the

lock-in amplifier, including radiation from EOM cables and internal pickup in the

lock-in itself. These offset voltages must be nulled, with the pump beam blocked,96

in order to obtain a measurement which can be directly compared to our model's

predictions. By automating the blocking of the pump beam, this cancellation can be

performed automatically, significantly easing the task of data collection.



Figure 4-2: Demonstration of good cable practices in our experiment. Note the short
cables from the photodiode and function generator to the lock-in amplifier.

4.3 Correction of laser beam astigmatism

The ideal fundamental mode from an oscillator cavity is a symmetric Gaussian beam.

A Gaussian beam is completely characterized by the beam diameter and the radius of

curvature.98 The diameter of the beam is typically characterized by the 1/e 2 diameter,

or the width of the beam where the intensity I = |E 2 has dropped to 1/e 2 of its peak

value, where E is the electric field. The radius of curvature specifies how fast the

wavefront is converging or diverging.

However, real lasers often exhibit astigmatism, meaning the beam diameter and

radius of curvature are different in different directions. In our laser, the beam exiting

the oscillator has diameters of 1.7 and 1.0 mm and beam divergence angles (related to

the radius of curvature) of 0.2 and 0.7 mrad in the X and Y directions, respectively.

This astigmatism makes tightly focusing the beam difficult. While the size of

the beam does affect the beam waist, the more difficult problem is the difference in

beam divergence angle. Specifically, this difference causes the Y beam waist to occur

approximately 75 pm behind the X beam waist, meaning the X and Y foci do not



Figure 4-3: Cylindrical lenses (focal lengths -80 and 130 mm) used to correct the
probe beam astigmatism.
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occur at the same location. Thus, while the beam waists in each direction may be, for

example, 8 pm, the actual minimum waist that is achieved at any point is somewhat

bigger, and the beam is actually only round at exactly one point. In practice, this

point is very difficult to find.

Because the probe weights the metal film optical properties according to its shape,

the signal carried by the probe can depend strongly on its shape. This is particularly

true in materials with high thermal conductivity, where radial conduction is important

and the heat transfer induced by the pump and sampled by the probe will be affected

by the intensity profiles of each beam.96 Because our model assumes symmetric

Gaussian beams, it is important to make sure the experiment is consistent with the

model.

While in principle it should be possible to directly correct the output of the oscil-

lator at the beginning of the beam line, we were not able to align the lenses correctly

to accomplish this. Since the pump beam is relatively circular due to other optics

along its path, we decided to correct the probe after the delay line to ease the align-

ment. We use a pair of cylindrical lenses to control the beam divergence angle in

one dimension, and hence the location of the beam waist in that dimension, so that

it more closely matches the beam waist location of the other dimension. Figure 4-3

shows the lenses used. These lenses slightly decrease the beam divergence angle so

that the Y beam waist occurs closer to the X beam waist. This circularizes the probe

beam to a diameter of approximately 11 pm.

One final point is that the BIBO crystal used to frequency double the pump beam

can severely distort the pump beam shape and prevent diffraction-limited focusing

if it is damaged. This was found to be the case for our 2 mm thick BIBO crystal.

We replaced this crystal with a 1 mm BIBO crystal to minimize the temporal and

spatial distortion of the pump pulse and were able to get diffraction-limited focusing

afterwards. The damage threshold for our BIBO crystal is 4 GW/cm 2 for a 250 fs

pulse at 800 nm. Care should be taken to ensure that the intensity remains well below

this value.
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4.4 Sample preparation and film quality

One of the most important procedures to get reproducible, stable data from the

experiment is properly preparing the substrate and depositing a high quality metal

film. The primary requirement of the film is that the change in reflectivity be linearly

related to the change in temperature. This can only be satisfied if the incident pump

and probe intensities are not too high and if the film is tightly bonded to the substrate.

If any delamination occurs, or if the laser pulses damage the film, the data obtained is

essentially meaningless. We adopted the following procedure to ensure reproducible

results:

1. The sample surface must be cleaned thorougly to remove dust and organic

contaminants from the surface. For Si, an appropriate cleaning solution would

be a piranha solution (1:3 H20 2:H2SO 4). Of course, the solution will depend on

the particular substrate. If interface studies are desired, or if a high interface

conductance is required, it is especially important to remove the native oxide

layer prior to deposition. For Si, an 20:1 H20:HF dip is sufficient; this short

procedure increases the interface conductance by a factor of 3, from a 1 x 108

to a 3 x 108 W/m 2K.

2. The film should be deposited under very high vacuum (< 10-6 torr) to minimize

impurities in the film. We have also found the electron beam evaporation con-

sistently gives better films than does sputtering. The EBeamFP tool, a rapid

loadlock evaporator at MIT, is ideal for our purposes and can finish an entire

deposition procedure in under an hour. If film adhesion is a problem, a thin

(= 5 nm) Ti or Cr adhesion layer significantly improves the adhesion.

3. The power density of the pump and probe beams must not be too high or

else the film can be damaged, or the change in reflectivity will not be related

to the change in temperature. The film seems especially sensitive to damage

while under high vacuum. After much trial and error we have found the power

density limits are around 100mW/60pm2 ~ 35 pW/pm2 for the pump and
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20mW/10pLm 2 ~ 60 [LW/pm2 for the probe. If the pump power is too high, the

signal can be unstable and will not be constant in time. If the probe power is

too high, the change in reflectivity will not be linearly related to the change inl

temperature and the resulting data will not agree with the model. In practice,

we find that 10 pm is the minimum diameter for the probe beam which permits

enough power for a usable signal. Note that these values are approximate

because they depend strongly on the quality of the film.

4.5 Other miscellaneous modifications

In the new Rosenhow Kendall lab it was found that there were fairly strong air

currents blowing over the table from the ventilation system. These air currents cause

the pump and probe beams to wobble slightly with respect to each other, resulting in

increased noise. To remove this noise source, we surrounded the entire setup with a

clear plastic curtain. This makes the air much more still over the table, and has the

added benefit of reducing dust accumulation on the optical table. The present setup

is shown in Fig. 4-4.

We also found reflections from various optical elements, particularly from the

doubling crystal, could sometimes be reflected back into the laser and destabilize the

cavity. To prevent this, we placed the optical isolator directly in front of the output

of the oscillator. This significantly stabilized the laser and reduced laser intensity

noise.

4.6 Conclusion

In this chapter we have described our pump-probe experiment and the recent modifi-

cations which have made it more robust, stable, and automated. We also showed that

the system possesses the time and spatial resolution necessary to measure thermal

properties at scales comparable to phonon MFPs. In the next chapter, we introduce

a novel technique to experimentally measure MFPs using our pump-probe setup.
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Figure 4-4: Picture of the curtains used to enclose the experiment and reduce air
currents and dust accumulation.
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Chapter 5

Measuring mean free paths using

thermal conductivity spectroscopy

5.1 Introduction

In the previous two chapters we showed that studying transport at the length and

time scales of phonons can reveal important information about the underlying phonon

distribution, and that ultrafast pump-probe techniques are capable of the length and

time resolution required to observe these effects. In this chapter, we introduce a novel

thermal conductivity spectroscopy technique which is able to measure phonon MFPs

as a distribution like that plotted in Fig. 3-1 using our pump-probe experiment.

As mentioned in earlier chapters, despite the crucial importance of the knowledge

of phonon MFPs to understanding and engineering size effects, MFPs are largely

unknown for even bulk materials and few experimental techniques exist to measure

them. Traditionally, empirical expressions and simple relaxation time models have

been the only means to estimate MFPs." Recent first-principles calculations in mate-

rials such as silicon show that MFPs of phonons relevant to thermal conductivity vary

by more than five orders of magnitude over the Brillouin zone.86 '91 Experimentally,

inelastic neutron scattering has been used to measure phonon lifetimes in certain ma-

terials, but its resolution is limited and.it is not readily accessible.99 A time-resolved

x-ray diffraction and time-domain thermoreflectance technique can measure ballistic
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transport in some structures, and was used to study transport in GaAs.1 00 Koh et al.

observed a modulation frequency dependence of the thermal conductivity in a tran-

sient thermoreflectance experiment, which can lead to some knowledge of the phonon

MFP distribution, but this technique is limited by the modulation frequency. 94

In this chapter, we introduce a thermal conductivity spectroscopy technique which

can measure MFP distributions over a wide range of length scales and materials using

observations of quasi-ballistic heat transfer. The technique is based on the prediction

that the heat flux from a heat source will be lower than that predicted by Fourier's law

when some phonon MFPs are longer than the heater dimensions due to nonlocal heat

conduction external to the heat source.8 Our numerical solution of the Boltzmann

transport equation from Chapter 3 also showed this effect; the prediction was recently

confirmed experimentally in a transient grating experiment which measured the heat

transfer from nickel nanolines on a sapphire substrate using a soft x-ray probe. 93 The

authors observed higher thermal resistance than predicted by Fourier's law between

the nickel and sapphire substrate and attributed this observation to an additional

"ballistic resistance" due to ballistic transport external to the nickel nanolines. The

total thermal resistance was composed of contributions from both the nickel-sapphire

interface and the sapphire substrate. While this experiment measures the total ther-

mal resistance, yielding an average MFP, our technique can distinguish the separate

interfacial and substrate resistances, enabling us to extract the thermal conductivity

contributions from phonons with different MFPs in the substrate. As mentioned ear-

lier, considering the frequency dependence of the MFPs is essential because MFPs

vary over such a broad length range. In addition, our approach is based on a standard

pump-probe thermoreflectance technique, simplifying the experiment and modeling.

To see how the thermal conductivity spectroscopy technique works, let us examine

the transport of phonons in a transient thermoreflectance (TTR) experiment. A

sample usually consists of a metal film on top of a substrate which we assume is a

dielectric. At t = 0 the metal film is impulsively heated by an ultrafast laser pulse

of 1/e2 diameter D, called the pump pulse. Phonons emitted by electrons diffuse

through the film and travel to the interface, where they are transmitted or reflected;
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Figure 5-1: Illustration of the change from the diffusive transport regime (left), where
the heater size D is much larger than MFPs, to the ballistic regime (right), where
the heater size is much smaller than MFPs and a local thermal equilibrium does
not exist. The thermal conductivity spectroscopy technique measures the change
in thermal resistance as a function of heater size to determine the contributions of
different phonon MFPs to the thermal conductivity.

the transmitted phonons then travel through the substrate.

We are concerned with heat transport in the substrate. As the transmitted

phonons travel through the substrate, their probability of scattering depends on the

value of the phonon MFPs A, relative to D, where w is the phonon frequency. If

D > A., the transmitted phonons scatter sufficiently to relax to a local thermal

equilibrium, allowing the use of Fourier's law. Alternatively, if D < As, phonons will

not scatter near the heated region and the transport will be ballistic. It has been

shown that in this regime, the actual heat flux is lower than the Fourier's law pre-

diction, which assumes the occurrence of scattering events which are now not taking

place.8 '93 This reduction in heat flux is the origin of the ballistic resistance which

is observed experimentally.93 In real materials, the strong frequency dependence of

phonon MFPs A, means that for any value of D comparable to MFPs, the transport

will be quasi-ballistic: some phonons will be in the diffusive regime, others in the bal-

listic regime, and intermediate MFP phonons somewhere in between. The magnitude

of the ballistic thermal resistance will depend on the particular value of D relative to

the MFPs.

The above discussion shows that a measurement of heat transfer in the quasi-

ballistic regime contains information about phonon MFPs. To see why, let us start

with the case D > A, and decrease D. For the case of large D, the heat transfer
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is diffusive and described by Fourier's law. As D decreases, the ballistic thermal

resistance will appear when some phonons have A, > D, with the magnitude of the

ballistic resistance depending on the importance of a particular group of phonons

to the heat transfer. For example, if the ballistic resistance grows significantly as

D decreases from 60 pm to 30 pm, we can conclude that phonons with MFPs 30

pum < A, < 60 pm carry a significant portion of the heat. Our thermal conductivity

spectroscopy technique consists of systematically varying D and observing the change

in ballistic resistance from one value of D to the next, as illustrated in Fig. 5-1. By

doing so, we can infer the contribution of different phonon MFPs to the thermal

conductivity based on the change in ballistic resistance. The technique is similar to

point contact spectroscopy for electrons in which electron transport becomes ballistic

when the contact diameter is comparable to the electron MFP. 101

5.2 Experiment

We experimentally demonstrate this technique using transient thermoreflectance (TTR)

because TTR routinely achieves micron spatial resolution and picosecond time res-

olution, comparable to phonon MFPs and relaxation times in many materials. We

study c-Si at T < 300 K, because at these temperatures many phonon MFPs are

hundreds of microns or larger, making the pump beam waist D between 10 - 60 Pm

much smaller than a significant fraction of the phonon MFPs.

We performed a standard TTR experiment on a high-purity (> 20, 000 Qm) nat-

ural Si wafer coated with 100 nm of Al using electron-beam evaporation. The wafer

was cleaned using a piranha solution and the native oxide removed using an HF etch

immediately prior to deposition, giving a high interface conductance G = 3.5 x 10'

W/m 2K at T = 300 K. The thickness of the film was verified using profilometry. Our

experimental setup has been described elsewhere.95 To obtain quantitative informa-

tion from TTR it is necessary to fit the experimental data using a thermal model.

We use a two-dimensional model based on the heat equation,9 5 from which we can

obtain the interface conductance G between Al and Si and the thermal conductivity
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Figure 5-2: Experimental data (symbols) at T = 90 K for pump beam diameters
D = 60 pmn and D = 15 pm, along with the best fit to the a) amplitude and b)
phase data from a thermal model (solid lines). To show the sensitivity of the fit, the
model prediction for the best fit thermal conductivity values plus and minus 10% are
shown as dashed lines. The thermal conductivities obtained from the fits are 630 and
480 W/mK, respectively, different from each other and both far from the accepted
thermal conductivity of 1000 W/mK.'o2

k of Si. When the heat transfer is diffusive, this fitting procedure returns accurate

thermal properties for a variety of materials. 95 However, for quasi-ballistic transport

the experiment will measure an additional ballistic resistance, the magnitude of which

depends on the number of modes with MFPs longer than the pump beam diameter.

Figures 5-2(a) and 5-2(b) show representative experimental amplitude and phase

signals (R 2 = X 2 + Y 2; <P = tan-- (Y/X); where X and Y are the in-phase and

out-of-phase signals returned from the lock-in amplifier, respectively), and the fitting

curves which are used to extract the thermal conductivity. 95 The data in this figure

were taken at T=90 K for pump beam diameters D = 60 pm and D = 15 pm.

The fits are quite good, but correspond to thermal conductivities of 630 W/mK and

480 W/mK, respectively, different from each other and both far from the accepted

thermal conductivity of 1000 W/mK at 90 K. 102 This indicates that the heat transfer

in the substrate is significantly smaller than that predicted by Fourier's law.

Figure 5-3(a) shows our TTR measurements of the thermal conductivity of Si

versus temperature, along with literature values of the thermal conductivity 10 2 and

modeling results which will be explained later in the chapter. The symbols and er-

ror bars represent the average and standard deviation, respectively, of measurements
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Figure 5-3: (a) Experimental (symbols), calculated by only including the contribu-
tions of the indicated MFP or smaller (dashed lines), and the literature (solid line)
thermal conductivity of pure c-Si. 0 (b) Measured interface conductance of the Al/Si
interface. It is seen that the interface conductance does not depend on beam diame-
ter. (c) Representative measurements of the normalized thermal conductivity versus
pump beam modulation frequency for several temperatures and beam diameters. No
frequency dependence of the thermal conductivity is observed.
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taken at different locations on different samples, prepared at different times, at four

different modulation frequencies from 3-12 MHz. Three different pump 1/e 2 diame-

ters of 60 pm, 30 pm, and 15 pm were used with a constant probe beam diameter

of 11 pm. The ellipticities e of the pump and probe beams were 0.8 < e < 1. The

pump beam power was adjusted so that the intensity remained the same for each

diameter; the probe power remained constant. Care was taken to ensure that the

steady-state and transient temperature rise of the sample did not exceed 2 K. The

lateral spreading of heat in the Al film is estimated to be less than 1 Pm in the tem-

perature range of the experiment. All measurements were taken under high vacuum

(1 x 10-5 torr). The temperature of the sample was monitored using a silicon diode

placed next to the sample. At room temperature, where MFPs are shorter, our mea-

surements are independent of diameter and in good agreement with literature values,

but our measurements begin to diverge from the literature values below around 200

K and a diameter dependence of the thermal conductivity appears. This discrepancy

is because the ballistic thermal resistance measured by the experiment increases as

temperature decreases due to the rapid increase in MFPs. A smaller thermal conduc-

tivity is measured for smaller pump beam diameters because the ballistic resistance

is larger around a smaller heated region.

The thermal interface conductance values between Al and Si measured using dif-

ferent laser beam diameters are shown in Fig. 5-3(b), and no diameter dependence

is observed, indicating that ballistic transport in the silicon substrate is responsible

for the observed results. In the transient grating experiments in Ref. 93, the total

thermal resistance from the interface and substrate was measured, making it difficult

to study transport specifically in the substrate.

Koh et al. observed a laser modulation frequency dependence of the measured

thermal conductivity of semiconductor alloys in a pump-probe experiment and inter-

preted the result by assuming that some phonons are ballistic over the cross-plane

thermal diffusion length.94 We did not observe a strong frequency dependence as

shown in Fig. 5-3(c), suggesting that the change in radial heat transfer is the domi-

nant effect rather than a one-dimensional thermal penetration effect. The authors of
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Ref. 94 also did not observe a frequency dependence of the thermal conductivity in

Si at room temperature.

5.3 Discussion

To further understand our measurements, we need to examine how ballistic modes

affect the heat flux. In principle the transport in the quasi-ballistic regime can be

calculated using the Boltzmann transport equation (BTE)."1 However, solving the

BTE is difficult because the distribution function is a function of 5 variables under

the isotropic crystal approximation, and a large spatial domain comparable to D is

required. More importantly, the solution requires the MFPs, which are generally

unknown, to be specified. We would like to measure spectrally resolved properties

without any a priori assumptions concerning the relaxation times or MFPs.

Therefore, rather than solving the BTE, we make the following approximation

which still yields useful results. We divide the phonons in the substrate into two

groups, a diffusive group and a ballistic group. The diffusive group has short MFPs

A, < D so that a local thermal equilibrium exists among these modes and diffusion

theory is valid. The ballistic group, however, has MFPs A, > D which are assumed

to be effectively infinite. If we examine the BTE,81 we find that this assumption

completely decouples the ballistic group from the rest of the phonons; individual

phonon modes in the ballistic group propagate independently of the diffusive group

and of each other. As shown earlier, while these ballistic modes still carry heat,

due to their ballistic resistance, they carry significantly less heat than is predicted

by Fourier's law. Meanwhile, the diffusive group is transporting heat according to

Fourier's law. Under this approximation, then, the thermal conductivity measured in

the experiment is the thermal conductivity of the diffusive group with MFP A, < D;

the ballistic group does not contribute to thermal transport due to the effectively

infinite ballistic resistance. 94

To verify this model we can calculate the expected thermal conductivity if the

ballistic group, with A, > D, does not contribute to the measured thermal con-
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ductivity. Because there are many different suggested relaxation times for Si in the

literature, we compute the phonon MFPs in Si from first principles, following a sim-

ilar procedure as described in Ref. 86. Briefly, density functional theory is employed

to compute the potential energy derivative in Si crystals. Perturbation to the atomic

positions is used to extract the third and fourth order anharmonic coefficients of the

potentials, and Fermi's golden rule is used to compute relaxation times, while other

quantities such as the dispersion and group velocity are computed from the harmonic

force constants.io3 Using the computed information, the thermal conductivity can be

determined from k = Cqv ,qrT, where q is the phonon wavevector. The ballistic

group can be excluded by removing terms from the sum according to the MFP of the

mode. The results of the calculation are shown as the dashed lines in Fig. 5-3(a).

The agreement between our measurements and this simple cutoff model is reasonably

good. Obtaining quantitative agreement is difficult because at these low tempera-

tures the thermal conductivity is highly sensitive to the isotope concentration, which

is not known exactly for our sample. We take a typical isotope concentration value

for natural silicon specified in chapter 3; the calculation using this value matches our

experimental results reasonably well.

We can now use our measurements to determine the thermal conductivity distri-

bution of silicon as a function of MFP.104 In our experiment, we have measured the

thermal conductivity of the diffusive group of phonons with MFPs shorter than the

pump beam diameter. Thus, normalizing the measured thermal conductivities by

the true thermal conductivity of Si will give the fraction of the thermal conductivity

contributed by phonons with A, < D, which is simply the thermal conductivity ac-

cumulation distribution. Our experimental measurements of this distribution, along

with that predicted by the first-principles calculations, are shown in Fig. 5-4. The

agreement between the experiment and the calculation is again reasonably good. Note

that no assumption about the MFPs was used in the analysis of the experimental data:

the data were analyzed using the heat equation to determine the apparent thermal

conductivity, and this value was compared to the results of the first-principles calcu-

lations. The consistency between these two approaches is encouraging, and indicates
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Figure 5-4: Experimental measurements (symbols) and first-principles calculations
(lines) of the thermal conductivity accumulation distribution of silicon versus MFP.
The symbols and error bars represent the average and standard deviation, respec-
tively, of measurements taken at different locations on different samples, prepared at
different times, at four different modulation frequencies from 3-12 MHz. Because of
the finite number of reciprocal space points included in the first-principles calcula-
tions, the calculated distribution of MFPs is discrete and cannot include some long
wavelength (and hence long MFP) modes. We use an extrapolation (dashed lines) to
estimate the contribution from these long wavelength modes.
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that our technique is accurately measuring the thermal conductivity contributions

from different phonon MFPs.

5.4 Conclusion

In summary, we have demonstrated the first experimental technique which can mea-

sure the MFPs of phonons relevant to thermal conduction across a wide range of length

scales and materials. While empirical expressions and simple relaxation time models

have traditionally been the only means to estimate MFPs, our technique enables a

direct measurement of how heat is distributed among phonon modes. Although our

demonstration of the thermal conductivity spectroscopy technique is based on low

temperature experiments where a considerable fraction of the phonons have MFPs

longer than tens of microns, the technique can be extended to a much wider length

range by creating smaller heat sources. There are many ways to achieve smaller

heat sources such as tight focusing of laser beams, transient grating experiments, and

lithographically patterned heaters or light absorbers. Considering the crucial impor-

tance of the knowledge of MFPs to understanding and engineering size effects, we

expect the technique to be useful for a variety of energy applications, particularly

for thermoelectrics, as well as for gaining a fundamental understanding of nanoscale

heat transport. For example, determining how much heat is carried by which MFPs

will allow the design of structures which can most effectively scatter these modes,

reducing the thermal conductivity of the material. For thermoelectrics, this would

directly translate to an increase in energy conversion efficiency, assuming the electrical

properties are minimally affected.

115



116



Chapter 6

Measuring mean free paths at the

nanoscale

6.1 Introduction

In the last chapter we introduced a thermal conductivity spectroscopy technique

which is able to measure phonon MFPs and their contribution to thermal conduction,

and we demonstrated the technique by measuring the MFP distribution of silicon at

cryogenic temperatures. The technique was successful in this demonstration because

phonon MFPs in silicon are hundreds of microns or longer at these low temperatures,

much longer than the pump beam diameters of tens of microns. The natural next step

is to measure MFPs using the technique in materials of technological relevance, like

thermoelectric materials at room temperature. Unfortunately, applying the technique

requires creating a heated region of size comparable to the MFPs of the heat-carrying

phonons, which are in the tens to hundreds of nanometers for many materials. This

small length scale is not accessible optically due to diffraction; the minimum beam

waist that can be typically achieved is approximately one micron. As discussed in

chapter 4, the practical minimum size for the pump and probe beams is much larger,

approximately 10 pm, due to restrictions on power density in the film. We therefore

have a problem if we wish to probe phonon transport at the nanoscale using this

technique.
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Figure 6-1: Schematic of the metallic nanodot array on a substrate illuminated by a
much larger optical heating beam. Because the effective length scale for heat trans-
fer is the dot diameter rather than the optical beam diameter, heat transfer at the
nanoscale can be observed, beating the diffraction limit.

In this chapter, we introduce a modification of thermal conductivity spectroscopy

which allows us to access these length scales. Rather than heating a continuous metal

film, in this modified technique we instead lithographically pattern metallic nanodot

arrays on the sample using electron beam lithography (EBL), as shown in Fig. 6-1.

Then, we use the pump beam to illuminate the entire dot array and the probe to

measure the heat transfer from the dots. In this way, the effective length scale for

heat transfer is the dot diameter rather than the optical beam diameters. Because

EBL is capable of spatial resolution down to tens of nanometers, we are able to probe

heat transfer at length scales far below what is possible optically. Here we study

phonon transport in sapphire as this material is transparent to visible light. A similar

technique was demonstrated in Ref. [93], where soft x-ray light was used to observe

quasi-ballistic transport from thin Ni lines patterned on a sapphire substrate. In

this work, we show we can observe quasi-ballistic transport simply by using transient
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thermoreflectance (TTR), and use our observations to extract the MFP distribution.

This chapter is organized as follows. First, we introduce the model used to calcu-

late the heat transfer from the dots. Next, we discuss the details of our experiment

and the fabrication of the dot arrays. We then present our measurements of the MFP

distribution, and discuss the possibilities for future work.

6.2 Heat Transfer Model

6.2.1 Introduction

The heat transfer analysis used for our experiment has been described in detail in

Ref. [95] and will be briefly reviewed here. The solution of the heat equation which

accounts for radial heat transfer, Gaussian beams, and the high repetition rate of our

laser is given in terms of the transfer function Z:95

00

Z(t) = [ H (wo + mw) ej)s (6.1)
m=-oo

The real and imaginary parts of Z correspond to the in-phase and out-of-phase signal

return by the lock-in amplifier, respectively.95 Here wo is the angular modulation fre-

quency, typically between 1 and 15 MHz; w, = 80MHz is the angular laser repetition

frequency; j = 1 , and H(w) is the solution of the heat equation.

The solution H(w) can be written as the product of the transfer matrices for the

layers.1 1
5 The properties at the bottom of a layer can be related to the properties at

the top of a layer using a transfer matrix given by:

Ob cosh(qd) ;-gsinh(qd) 0,(62

f1 L -o-zq sinh(qd) cosh(qd) f1
where 0 is the temperature, f is the heat flux, subscript b and t denote the bottom

and top of the layer, respectively, d is the layer thickness, Uz the cross-plane thermal

conductivity, and q2 = jw/a, where a is the thermal diffusivity. Multiple layers can
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be conveniently treated simply by multiplying the matrices together:

Ob .. A B O (6.3)
f Aj C D f LA

Mi is the transfer matrix for layer i. If the bottom layer is semi-infinite or adiabatic,

which is usually the case, then the surface temperature at the top of the layers, Ot, is

given in the terms of the heat flux boundary condition ft as:

Ot = (ft (6.4)
C

To account for radial conduction, a zero-order Hankel transform is applied to the heat

equation in cylindrical coordinates. It has been shown that the results above apply

in this case with only a modification to the definition of q, which now becomes: 95

q2 _rk 2 CvjW (6.5)
Orz

where o, is the in-plane thermal conductivity, C, is the volumetric specific heat, and

k is the Hankel transform variable. The heat transfer boundary condition ft is now

a Gaussian function of the radial coordinate r, following the intensity distribution

of the pump beam of radius wo. Weighting this result with the Gaussian intensity

distribution of the probe with radius wi gives the final solution to the heat equation

H(w): 95
00 (-D (-k 2 (W2~

H(w) = j k ( ) exp ( w± )) dk (6.6)

Because the final solution is normalized to facilitate fitting with experimental data,

the constants have been omitted from the above equation. This is the model which

is used for a typical pump-probe experiment.95

6.2.2 Single Dot Heat Transfer Model

The previous analysis models the heat transfer through continuous layers with a

Gaussian heating and probing profile. This analysis must be modified to account for
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the discontinuous nature of the dot array. We first assume that the heat transfer

from a particular dot is independent from the other dots, making the modification

is particularly simple. Since the dot radius a is much smaller than the pump and

probe radii, both the heating and probing profile can be well described by a radial

step function of radius a. The zero-order Hankel transform of a step function is

JI(ak)/k,106 where Ji(z) is a first-order Bessel function of the first kind, and so

replacing the exponentials in Eq. 6.6 with this function gives H(w) for a circular dot:

H(w) = j k ( Jj2(ak)dk (6.7)

If the dot were square rather than circular, we would obtain a similar mathematical

expression but with a two-dimensional integration over a sinc(x) x sinc(y) function.

6.2.3 Dot Array Heat Transfer Model

If the dots are sufficiently close together that the heat transfer from a particular dot is

affected by the presence of other dots, then it is necessary to solve for the heat transfer

from the entire dot array. Fortunately, the dot array can be incorporated into the

transfer matrix method fairly easily. To account for the discontinuous nature of the

dots, we model the metal film as a special layer in which the thermal conductivity in

the r direction, Ur, is zero. Then, we apply a heating profile that has the shape of

the dot array. In this way, the special film is only heated at the location of the dots,

and, because Or = 0, the heat can only diffuse in the z direction. Thus there will

be no heat transfer between the heated regions, corresponding precisely to the actual

physical system.

The next step is to determine the appropriate heating profile. A square array

of circles is difficult to Fourier transform analytically, but a square array of squares,

or a two-dimensional square wave, can be represented exactly as a Fourier series.

Therefore, we model the heating profile as a two-dimensional square wave with each

square having a side length of w = 2a and a period L. It is now more appropriate to

solve the heat equation in Cartesian rather than cylindrical coordinates, and so the
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definition of q becomes:
2 OxY(k2+ k 2) +CjW

q = ± k (6.8)

where oxy is the in-plane thermal conductivity, and kx and ky are the spatial Fourier

transform variables in x and y, respectively.

To obtain H(w) we can perform the procedure as before; compute the transfer

matrices for different values of kx and k., compute the Fourier transform of the

heating function ft, obtain 6 t = (-D/C)ft, and weight this by the probe function to

get H(w). Since the square wave heating function is periodic, its Fourier transform

consists of discrete multiples of the fundamental spatial frequency Qo = 27r/L:

ft(Q) = Q S S Xnm6(Q - n~o)6(Q - mQo) (6.9)
n m

where Q is the energy of the pump beam, Q is a continuous spatial frequency variable,

and Xnm are the Fourier components of the square wave, given by:

w2/ IL2 n = m = 0

- iL( 1 - exp(-jmQo)) n =0, m 0
Xnm= 2 Tmj (6.10)Xnm ( 1 - exp(-jnQo)) n # 0,m = 0

-(1-exp(-jmQo)(1-exp(-jno) n m 5 0
47r 2nm

Because ft only contains discrete multiples of Qo, Ot = -(D/C)ft only contains these

frequencies. It can be shown that weighting Ot by the same probe profile results in

the simple expression for H(w):

H(w) = Xnml 2 (-) (6.11)
n m n,m

where the subscripts n and m correspond to evaluating the argument at frequencies

kX = nQo and ky = mQo, respectively.

Note that this procedure has neglected the Gaussian intensity variation of the

pump and probe beams. To account for this, it is necessary to modify the heating and

probing profile by multiplying the square wave by a Gaussian. In the Fourier domain,
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the multiplication becomes convolution, and the result is essentially a Dirac comb of

Gaussians at each discrete frequency point. The resulting Fourier transform is now

a continuous function of frequency because the Gaussian is aperiodic, significantly

complicating the analysis.

An approximation can be made if the squares are much smaller than the pump

and probe radii. Intuitively, if the pump and probe radii wo and wi are much larger

than the array period L then it is reasonable to approximate the pump and probe

radii as infinitely large and with uniform intensity. In the frequency domain, this can

be explained because of the mismatch in spatial frequencies. An array with a small

period L, relative to wo and wi, will have a high spatial freqency Qo = 27r/L. The

frequency components in the Gaussian are distributed as exp(-wQ 2 /8), where i=1

or 2 corresponds to the pump or probe radius. Thus if (wi/L)2 > 1, the frequency

components of the Gaussian will be confined to a region in frequency space close to

the discrete frequency of the square wave. In this case we can simply approximate the

function as a delta function and recover the simpler result given in Eq. 6.11. Because

the condition for this approximation to hold scales as (wi/L)2 , the approximation

is expected to be accurate even for periods approaching the probe radius wi. As

described in the next section, the probe radius is around 5 pm, and we are typically

concerned with L < 2 pum, and so the approximation is expected to be valid.

Finally, we note that in the previous two sections, we assumed a different shape

for each heat transfer model, a circle and a square, due to mathematical convenience

for each model. While it is possible that the shape of the nanodot could affect the

heat transfer, experimentally we find the heat transfer is a strong function only of

the dot size, not the shape.

6.3 Sample Design and Fabrication

The metal nanostructures are fabricated using a standard metal lift-off process. Before

discussing the fabrication details we quickly discuss the design of the dot arrays

which we found necessary to obtain usable data. Ideally, we would like to make
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the dot diameters as small as possible so that we can study heat transfer at the

smallest length scales. This requires a dot thickness smaller than the dot diameter so

that the dot aspect ratio is not too large and the dots can adhere to the substrate.

Motivated by this goal, we initially tried fabricating dots with thicknesses around

20-30 nm but encountered several challenges. First, when the metal layer is so thin

the thermal conductivity extracted from the model is extremely sensitive to the metal

layer thickness. A difference of only 2-3 nanometers in the dot thickness can change

the fitted thermal conductivity value by up to 30 %. Furthermore, because electron-

beam evaporation is an inherently random process, spatial variations in the deposition

rate and roughness in the film can easily lead to a difference in thickness between

dots on the order of a 2-3 nanometers. These two issues make obtaining reliable,

quantitative data from thin dots difficult.

Thin dots present another problem. The rate at which the dots cool is linearly

related to their volumetric specific heat. If we perform a simple lumped capacitance

analysis, we find the time constant for the temperature decay is T = Ct/G, where C

is the volumetric specific heat, t is the thickness of the dot, and G is the interface

conductance. If the dots are thin, their temperature, and hence the thermoreflectance

signal, quickly decays to a level that is at the noise floor of our experiment. Thus after

a certain delay time, we are only able to measure noise rather than the desired signal,

making it impossible to extract the thermal conductivity. Increasing the thickness to

70-80 nm increases the thermal time constant and makes the measurement possible.

From these considerations, we focused on obtaining reliable, quantitative results

from dots with thicknesses of approximately 70-80 nm and diameters larger than 100

nm. The sample fabrication procedure is as follows. The substrate is a 12.5 mm

square, single side polished, single crystalline c-plane sapphire wafer (MTI corpora-

tion). Sapphire is chosen because it is transparent to visible radiation and has MFPs

in the hundreds of nanometers.93 The sapphire wafer is rinsed with DI water, then

spin-coated at 1000 RPM with 950K PMMA resist (950K A2 from Microchem, A4

can also be used to give a thicker resist layer), giving a resist layer approximately

150 nm thick. The resist layer should be at least twice the desired metal thickness,
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but not too thick as this decreases the resolution of the lithography process. Because

sapphire is electrically insulating, it is necessary to deposit a 5-10 nm Ti conduction

layer for the electron-beam lithography (EBL) process. The dot array is designed

using the CleWin4 layout software. The resist is exposed using EBL at 10 kV, per-

mitting feature sizes down to 100 nm to be reliably written. Because the MIT EBL

machine often exposes a larger area than specified in the layout, a size matrix of

several slightly smaller diameter dots (typically 25-50 nm smaller than the desired

diameter) is exposed for each desired diameter. Next, the titanium layer is removed

using a 20:1:1 H20:HF:H 20 2 solution, and then the resist is developed with a 3:1

IPA:MIBK solution. The wafer is immediately coated with a 5 nm Ti adhesion layer,

followed by 60-70 nm of Al, using electron-beam evaporation. Finally, the remaining

resist is removed by soaking the sample in Microstrip (N-Methyl-2-pyrrolidone) at 80

C for two hours, followed by a one minute low power sonication. The thickness of the

dots is verified using profilometry.

The final result is shown in optical and SEM images in Fig. 6-2. The nanostruc-

tures consist of arrays of closely packed circles or squares of varying diameter. Because

the dots are discontinuous and cannot exchange heat as they would in a metal film,

the effective length scale for heat transfer is the dot diameter rather than the optical

beam diameter. While ideally each dot cools independently of the others, when the

separation between the dots is comparable to the thermal penetration length lth the

heat transfer from a particular dot will be affected by presence of the other dots.

Because lh ~ fa/fo - 1 im. in sapphire, where a is the thermal diffusivity and fo

is the modulation frequency, it is expected that for dot separations in the hundreds

of nanometers the dots will not be independent, necessitating the use of the model

derived in section 6.2.3.

When the dot radius becomes comparable to the dominant phonon MFPs in sap-

phire the transport becomes quasi-ballistic. By observing the increase in ballistic

thermal resistance as the dot radius shrinks we can measure the contribution of dif-

ferent phonon MFPs to the thermal conductivity, just as we did to measure the silicon

MFP distribution in the previous chapter.
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(a) Optical image at 1oX magnification. (b) SEM image at 5 kV, 4000X magnifi-
cation.

Figure 6-2: Optical image and SEM image of the nanodot array fabricated by electron-
beam lithography (EBL). The numbers in the optical image correspond to the diam-
eter of the dot (800 = 800 nm, and so on). Because the MIT EBL machine often
exposes a larger area than specified in the layout, a size matrix of several differ-
ent diameter dots was exposed for each intended diameter; these different sizes are
indicated by the number of large dots below each array.

6.4 Results

We created both circular and square individual dots with diameters from 1-10 pm,

along with dot arrays containing square dots with diameters from 100 nm - 10 pm.

The measurements were taken at a modulation frequency of 12 MHz to shorten the

thermal penetration length and minimize the influence of other dots on a particular

dot's heat transfer. In order to obtain reliable data with a sufficient signal to noise

ratio (SNR), the pump and probe powers and sizes needed to be adjusted. Because

the dots occupy 25% of the surface area on the sapphire, only approximately 25% of

the reflected light is due to the dots and thus the signal is nominally four times smaller

than it would be with a continuous film. In practice, we find that the signal is often

up to ten times smaller than in the continuous film case because some probe light

is diffracted and does not reach the detector. To offset this decrease, we increased

the probe power, which increases the power reaching the detector but also decreases

the power in the pump beam. To offset this decrease in pump power, we shrink

the pump beam diameter to around 30 pm, increasing the pump beam intensity
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Figure 6-3: Typical amplitude experimental data for D=400 nm Al dots on a sapphire

substrate. The inset shows data for shorter delay times, where oscillations in the signal

are observed. The oscillations are believed to be due to a transient diffraction grating

effect caused by thermal expansion and contraction of the dots.

and therefore the magnitude of the desired signal. These modifications result in

a sufficiently high SNR to obtain quantitative measurements of thermal properties.

Figure 6-3 shows a typical experimental data curve. The early part of the decay

curve, up to approximately 2 ns, shows an interesting oscillation. Examining the

period of the oscillation, we find that the period is too long to be caused by acoustic

strain waves traveling through the thickness of the dots.96 Instead, it seems likely

that this oscillation is a type of transient grating effect due to thermal expansion and

contraction of the dots. The dot array, as a periodic array of objects with a spacing

on the order of the laser wavelength, acts as a diffraction grating for the pump and

probe beams. When the pump heats up the dots, the dots thermally expand and
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Figure 6-4: Experimental data (symbols) dot diameters D = 10 pm and D = 400 nm,
along with the a) amplitude and b) phase fit to the data from a thermal model (solid
lines) and 10% bounds on the fitted thermal conductivity value (dashed lines). The
thermal conductivities obtained from the fits are 37 and 22 W/mK, respectively. The
value for the 10 pm dots is in good agreement with the literature value for the thermal
conductivity of sapphire, but the value for the 400 nm dots is lower, indicating that
MFPs are in the hundreds of nm in sapphire.

subsequently. contract in an oscillatory manner, resulting in a small change in the

amount of probe light diffracted and thus the amount of light reaching the detector.

We estimate that for a 10 K temperature rise the dots expand by only 1-5 Angstroms,

a very small change which remarkably appears to produce the oscillating signal shown

in Fig. 6-3. After the oscillation damps out, the monotonically decreasing signal is

due to the thermal decay of the dots. It is this portion of the signal which contains

information about the heat flux from the dots to the substrate and hence the thermal

properties of the substrate.

Figures 6-4a and 6-4b shows the data and the model fit for 10 pm and 400 nm

dots. Recall that the in-phase signal X = Re(Z), out-of-phase signal Y = Im(Z),

amplitude R 2 = X 2 + Y2, and phase <D = tan-1 (Y/X), where Z is the transfer

function. The model fits both data sets quite well, but the fit for the 400 nm dots

corresponds to a smaller thermal conductivity of 21 W/mK rather than the bulk value

of 35 W/mK, indicating the heat transfer is in the quasi-ballistic regime for the 400

nm dots.

The measured thermal conductivity for all the diameters is shown in Fig. 6-5.

At the largest length scales of 1-10 pm, the heat transport is diffusive and the dots
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Figure 6-5: Measured thermal conductivity of sapphire versus dot diameter. The
measurements indicate that the dominant heat-carrying phonons in sapphire have
MFPs < 1 pm.

cool independently; both heat transfer models return the bulk thermal conductivity

of sapphire, which is approximately 35 W/mK along the c-axis at room tempera-

ture. We also confirm that the shape of the dot has little effect on the heat transfer.

Deviations from Fourier's law appear for dot diameters less than 1 pm, where we

measure a lower thermal conductivity than the literature value. This indicates that

the transport is quasi-ballistic and the experiment is measuring an additional ballistic

resistance, exactly as was observed in chapter 5. Our results show that the dominant

heat carrying phonons in sapphire have MFPs < 1 pm, which is consistent with pre-

viously reported results,93 and that phonons with MFPs between approximately 400

nanometers and 1 pm contribute slightly under half to the total thermal conductivity.
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6.5 Conclusion

In this chapter we have extended the technique of thermal conductivity spectroscopy

to the nanoscale. By using electron-beam lithography to pattern nanodot arrays, we

are able to observe quasi-ballistic heat transfer and measure the MFP distribution

at length scales far below the diffraction limit. In sapphire, we have confirmed that

the dominant phonon MFPs are in the hundreds of nanometers. We expect that

this combination of ultrafast optical techniques with nanoscale spatial patterning will

prove useful in measuring MFP distributions in technologically relevant materials like

thermoelectrics, where MFPs may be in the tens or hundreds of nanometers.
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Chapter 7

Summary and future directions

7.1 Summary

Nanoscale heat transfer is a fascinating and rapidly growing field which could make

substantial contributions to addressing one of our present energy challenges. In par-

ticular, nanostructured thermoelectric materials could allow some of the enormous

amount of wasted heat to be recovered as electricity, improving the overall efficiency of

our energy conversion systems. Despite recent improvements in the figure of merit of

nanostructured thermoelectrics, much remains unknown concerning the precise mech-

anisms by which the heat carriers in thermoelectric materials, electrons and phonons,

are affected by nanostructures. This thesis has explored the physics of nanoscale

transport in these materials and helped identify how we can use nanoscale effects

to engineer more efficient thermoelectric devices. Using a combination of modeling

and experiment we were able to better understand electron and phonon transport in

nanostructured thermoelectrics, and we introduced a new experimental technique to

help us understand fundamental phonon transport in all types of materials.

Chapter 2 studied electron and phonon transport in nanocomposite thermoelectric

materials using a newly developed grain boundary scattering model and materials

characterization. Using the model we are able to explain how the thermoelectric

properties are affected in nanocomposites as well as to identify strategies which could

lead to more efficient materials.
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The rest of the thesis focused on understanding the quasi-ballistic phonon trans-

port regime, where a lack of scattering results in the loss of local thermal equilibrium,

and determining what we can learn from studying this regime. Ultimately, we showed

that observations of quasi-ballistic transport can yield extremely useful information

about phonon MFPs and their contribution to thermal conduction. In Chapter 3 we

numerically investigated this regime using the frequency-dependent phonon Boltz-

mann transport equation, showing that studying how the transport deviates from

diffusion theory can yield information about phonon relaxation times and MFPs.

Chapter 4 briefly discussed the modifications that were made to the pump-probe

system used in this work to experimentally study quasi-ballistic transport.

Chapters 5 introduced a new thermal conductivity spectroscopy technique which

for the first time is able to measure MFPs relevant to thermal conduction across a

wide range of length scales and materials. We demonstrated that by systematically

changing the size of a focused beam at length scales comparable to MFPs and ob-

serving the change in thermal resistance, the thermal conductivity contributions from

phonons of different MFPs can be determined. We presented the first experimental

measurements of this distribution in silicon at cryogenic temperatures (30 K to 100

K).

In Chapter 6, we extended thermal conductivity spectroscopy to the nanoscale

by observing heat transfer from lithographically patterned metallic light absorbers

with diameters in the hundreds of nanometers range. Accessing this length range is

important because many technologically relevant materials like thermoelectrics have

MFPs in the deep submicron regime. We demonstrated this modified technique by

measuring phonon MFPs in sapphire.

Considering the crucial importance of the knowledge of MFPs to understanding

and engineering size effects, we expect the techniques developed in Chapters 5 and

6 to be useful for gaining a fundamental understanding of nanoscale heat transport,

and for applications involving nanoscale thermal engineering such as thermoelectric

materials and heat transfer in microelectronic devices.
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7.2 Future work

One important conclusion of this thesis is that studying transport at the length

and time scales of heat carriers yields far more detailed and useful information than

can be obtained from a typical macroscopic measurement. In a sense, then, the

work presented here is only the beginning because it describes the development and

demonstration of one experiment which studies phonons at the MFP length scale, our

thermal conductivity spectroscopy technique. With this particular technique, there

is no shortage of interesting materials, both bulk and nanostructured, to which the

technique can be applied; and there are many possibilities to study electrons, phonons,

and photons at these same small scales to reveal interesting and useful results.

The future work for thermal conductivity spectroscopy consists of measuring

MFPs for increasingly complex materials. The simplest next step would be to per-

form a similar analysis as was done for silicon to other materials which have suitably

long MFPs at low temperatures. Ideally, the material would be simple enough to

permit a comparison of first-principles calculations and experimental results. III-V

materials such as GaAs would be suitable for this purpose. Analyzing the differences

between the MFP distributions of different materials can yield information about the

scattering mechanisms such as phonon-phonon scattering in pure semiconductors.

Next, one can consider the effect of alloying or doping on the MFP distribution.

For alloys, it is generally accepted that high frequency modes are strongly scattered

and a larger fraction of the heat is conducted by low frequency, long MFP modes.

Our technique should be able to confirm this picture and give an idea which MFPs

are carrying the heat in alloys. This type of information would be very useful for

thermoelectrics as they are almost always alloys.

After this, nanostructured materials can be investigated. It is believed that grain

boundaries are effective in scattering long MFP phonons, but exactly which phonons

are still carrying the heat in nanocomposite materials is not known. This type of

investigation could give results which are very useful for thermoelectrics. By deter-

mining which phonon modes carry how much heat, we will be better able to determine
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how to effectively scatter these modes and reduce the thermal conductivity. As dis-

cussed in chapter 1, a reduction in thermal conductivity will lead to an increase in

energy conversion efficiency, assuming a minimal reduction in electrical properties.

At this point, when we start investigating materials with low thermal conductiv-

ities and short MFPs, an additional modification of the technique will be necessary.

As discussed in Chapter 6, accessing short length scales optically requires using litho-

graphically patterned nanodot absorbers. We used this technique to measure submi-

cron MFPs in sapphire. An important detail of this technique is that these nanodot

absorber arrays typically cover at most 25% of the sample surface area, assuming

a 50% duty cycle in the X and Y directions. The reason this technique worked for

sapphire is that sapphire is transparent to visible radiation, meaning the 75% of the

pump and probe light which reached the sapphire was not absorbed and thus did not

contribute to the measured signal. However, most materials of interest are opaque to

visible radiation. If we apply this technique to silicon, for example, 75% of the signal

will be due to silicon and only 25% will be due to the nanodot arrays. Since we do

not know a priori what the signal from silicon will be, it is difficult to extract the

desired dot signal from the total signal.

To overcome this problem, we have been investigating designing special nanodot

arrays which are suitable for studying heat transfer but also have special optical

properties which prevent the laser radiation from being absorbed by the substrate.

One idea is to design a structure which has has a very high reflectance for a particular

wavelength and polarization so that the incoming light is reflected before it can be

absorbed by the substrate. Determining how we can achieve strongly confined heating

despite the presence of a possibly absorbing substrate is an important hurdle which

must be overcome.

For electrons, a technique called point contact spectroscopy,101 similar to what

has been developed here for phonons, may yield information about electron MFPs.

This technique measures electrical conduction from nanometer-sized contacts which

are shorter than electron MFPs. By analyzing the deviations in the resistance from

the Ohm's law prediction, information about MFPs can be extracted. This technique
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may be helpful in determining more directly than the models presented in Chapter 2

how electrons are affected by grain boundaries.

Apart from investigations of electron and phonon transport for thermoelectrics

applications, an important result of this thesis is that the pump-probe technique is

versatile and can be applied to many different experimental configurations. Tradi-

tionally, pump-probe for heat transfer applications was employed only to measure

thermal conductivities and interface conductances of different bulk materials using

the familiar metal film on substrate geometry; in chapter 6, we modified this ge-

ometry to measure heat transfer at the nanoscale using dot arrays. In this spirit,

there are myriad possibilities for how the same experiment can be applied to yield

novel and useful results. Some of the possibilities are using pump-probe to measure

heat transport down ultra-drawn polymer chains, measuring boiling and condensation

heat transfer at ultrafast timescales, and using AFM techniques with pump-probe to

achieve true nanoscale spatial and ultrafast time resolution.

These are just a few of the possibilities which could yield important and useful

information about nanoscale transport. As the length scales of technology continue to

shrink, our ability to understand and engineer transport at these scales will become

the enabling factor for future innovation. We hope that this thesis has given insight

into thermal transport at the nanoscale and will be useful for engineering the next

generation of nanostructured materials.
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Appendix A

Numerical constants used in the

nanocomposite model

Values of the parameters used for the calculation of the electronic and thermal prop-

erties using the Boltzmann transport equation in Chap. 2 are given here. All data are

from Ref. [60] unless otherwise noted. While most values are taken directly from the

literature, four parameters require some modification. The low frequency dielectric

constant co, needs to be increased from its literature value to reduce the strength

of ionized impurity scattering. This is a common adjustment when ionized impu-

rity scattering is a dominant scattering mechanism, and Vining5 1 also performed this

adjustment.

The second adjusted parameter is the non-parabolicity a of the X conduction

band. This parameter is not known with certainty and is often adjusted to obtain a

better fit. In this case, a value of az = 0.5 eV- 1 has been reported,107 but we find

that a higher value of 1.25 eV- 1 is necessary to explain the data.

The final adjusted parameters are the valence band deformation potential D, and

hole effective mass m*. For the deformation potential, here is no clear consensus on

the precise value, and reported values vary from 2.94 eV in Ref. [51] to 5 eV in Ref.

[49]. We find that a value in the middle of these, 4.0 eV, is required to fit the data

for our model.

The hole effective mass is difficult to define due to the warped shape of the heavy
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hole band and perturbations from the split-off band. We find a value of m* = 1.2me is

necessary to fit the data, similar to the value of 1.4 me used by Vining5 1 and consistent

with Slack and Hussain's discussion.5 2 As discussed in Sec. 2.5, a higher value of 1.55

me is necessary to explain the nanocomposite data.

The temperature dependence of the band gap Eg(T) was accounted for using a

curve fit from Ref. [108]. The fit is given as follows:

Eg,si = 1.1695 - 4.73 x 10-4T 2 /(T + 636)

Eg,Ge = 0.85 - 4.774 x 10- 4T 2/(T + 235)

Eg(T) = E,si(1 - x) + Eg,Ge -- 0.4x(1 - x) (A.1)

Here T is in K and Eg is in eV.
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Table A.1: Lattice parameters for Sii_,Ge, used to calculate the lattice thermal
conductivity.

Property
Lattice constant
Bulk modulus
Debye temperature
Density
Ratio of normal to
umklapp scattering
Anharmonicity (n-
type)
Anharmonicity (p-
type)
Strain parameter
Higher-order phonon
scattering exponent

Symbol (Units)
a (A)

Ci (1010 N/m 2 )
ED (K)

p (kg/m 3 )
3

Value
5.431(1 - x) + 5.658x

9.8 - 2.3x
640 - 266x

2329 + 3493x - 499x 2

2.0

1.0

0.7

100
1.4
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Table A.2: Band structure parameters for Sii_,Ge, used to calculate electrical prop-
erties.
Property Symbol (Units) Value Comment
Electron longitu- m*/m* (e)0

dinal/transverse
effective mass (X)
Electron longitu- m*/m* (me) 1.59/0.082
dinal/transverse
effective mass (L)
Energy gap between X EL (eV) 0.8
and L
Hole DOS effective m * (me) 1.2/1.55 Ref. [52]
mass (bulk/nano)
Non-parabolicity of X a (eV ) 1.25 Ref. [107]: 0.5
Low frequency dielec- EOr () 21 Ref. [60]:
tric constant 11.7 + 4.5x;

Ref. [51]: 27
Electron Acoustic De- DA (eV) 9.0 Ref. [107]
formation Potential
Hole Acoustic Defor- D, (eV) 4.0 Ref. [51]:
mation Potential 2.94; Ref.

[49]: 5.0
Electron Optical De- D0 (x 10 10eV/m) 2.2(1 - x) + 5.5x Ref. [109]
formation Potential
Hole Optical Deforma- D,, (xl10 10eV/m) 2.2(1 - x) + 5.5x Ref. [109]
tion Potential
Optical phonon energy hw, (eV) 0.0612(1 - x) + 0.03704x Ref. [109]
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Appendix B

Derivation of the relation between

transmissivity and interface

conductance

Here we derive a relation between the transmission and reflection coefficients of an

interface and the interface conductance G, defined as:

G = q (B.1)
AT

where q and AT are the heat flux and temperature drop across the interface, respec-

tively. Assuming that the incoming distributions to the interface (or forward-going

phonons at the left of the interface, and backward-going phonons at the right of the

interface) have temperatures Tei and Te2, we can use the Landauer formalism to find

the heat flux:
f1 T12 (W)CQ, ivwidoq = Ti()4 v -w(Tei - Te2 ) (B.2)

4

However, it is inconsistent to define the interface conductance based on the emitted

phonon temperature. We instead need the equivalent equilibrium temperature of all

the phonons, both forward- and backward-going, at each side of the interface. Once

the equivalent equilibrium temperature is obtained, a consistent interface conductance
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can be defined. Here we derive the necessary relations while accounting for the

frequency dependence of the transmission coefficients.

Several approximations are necessary for this derivation. First, the known, in-

coming fluxes to the interface must have a thermal distribution characterized by

temperatures Tei and Te2. These will be the emitted phonon temperatures. Second,

we must linearize the equilibrium distribution; otherwise, there is no way to extract

the temperature drop from the Bose-Einstein distribution. Finally, we assume elastic,

diffuse scattering and neglect any type of mode conversion: phonons do not change

frequency or polarization as they cross the interface, but are scattered equally in all

directions.

The equilibrium distribution f3 is given by

f 0 hwD (w)fBE(T)Lu.(T) = - 4r(B.3)47r

where fBE(T) = (exp(hw/kBT) - 1)-1 is the Bose-Einstein distribution function, and

T is the temperature of the distribution. The linearized relation is:

fw (T)(w) fBE(T) ~hwD (w) fBE (T - T) = fw (TO) + -EAT
47 47 OT TO4

(B.4)

We will define foo, = f0(To) and drop the A from AT. By the first approximation,

the incoming distribution to the interface are:

fWi- = fow i + CwiTel (B.5)47

= 0 + Cw2 Te2  (B.6)

We can express the outgoing distributions f,2 and fJ-1 as the transmitted and reflected

components of these distributions. We can write the energy balance as:

j f,+2vo 21pdyu = T12 (w) j fjiviupdy - R 2 1 (w) J fj 2 v2 c2pdy (B.7)

fivojpdp = T21 (w) f§2v 2 dy - R 12 (w) j fjivoipdy (B.8)
f-1 f-1 wV2td
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Because the incoming distributions are independent of angle and we assume diffuse

scattering, none of the distributions are angle-dependent. The angle integration will

just give a factor of 1/2 which will cancel. The minus sign in front of the reflec-

tion coefficients accounts for the fact that the reflected heat flux changes direction.

Inserting the thermal distributions and carrying out the angle integrations gives:

= T12 (W) fo"'i +

T21(W) ±fow2 +

CiTei v.i + R21 (P)

Cw2 Te2 Nw2 + R12(W)
41r ) v 2 R 2 w

C2Te2 v 2 (B.9)

(f0o1 + C )Tei vWi (B.10)

We now have expressions for both the forward- and backward-going fluxes at each

side of the interface, which are highly non-equilibrium. The next step is to find the

equivalent equilibrium temperature on each side of the interface. To do this, we first

find the total energy density on each side of the interface. For side 1:

I (fRividTdo

+1 R2()fo1 w1+R12 (W)CQw1 VwiTei 1

2 (47r

= ~ ( fivi+ C iwVTewI (B. 11)

+ - (T21 (W) fOw2Vw2 +T1()C2VTe dw
2 47r_

To simplify this expression, we can use the principle of detailed balance and conserva-

tion of energy, which restricts the values of the transmission and reflection coefficients.

The principle of detailed balance requires:

T12 (W) w+ CiT vW i = T21(W) 0+ Cw2T ow2 (B.12)

Conservation of energy requires:

R12(O) = 1 -T 12 (W)

R 21 (W) = 1 - T21 (W)

(B.13)

(B.14)

These equations apply at each frequency. We can use R 12 (W) = 1 - T 12 (W) in the

second term of eq. B.11 and the principle of detailed balance in the third term. Now,
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we also introduce the equivalent equilibrium temperature of the distribution of side

1 of the interface:

(B.15)fifo"i + CoiT1

47w

Using these 3 relations, eq. B.11 becomes:

= fojW [fv"
W fo + C"Ti) v dow

+ CW iWTei
+ 47w

+- (1 - T12 (w))fo Vwi +
2 (

( 1 -T1 2(w))CiviTei +
4r

+T12(W)CwlVTe2  dw
47r

The underscored terms cancel while the overscored terms combine. This gives:

fWl Cwiv1Ti d[i CiVw1Tei 1 T122 (w)CiVw1 (Tei -Te2) dw(B.17)JO 41 d0 47 2 4T)

T = Tei - I (T 12(W)Civi) (Tei - Te2 ) (B.18)
2 (Civi)

The procedure for side 2 of the interface is exactly the same, giving an equation for

the equivalent equilibrium temperature T 2 :

T2= Te2 + 1 (T21(U)C 2V2) (Tei - Te2 )2 (C2v2 )
(B.19)

To get the interface conductance G, we need to get the equivalent equilibrium

temperature difference, obtained by subtracting the above equations:

Ti - T 2 = (Tei -Te2) 1 - +
1 2 (Civi) (C2v2)

(B.20)

If the transmission coefficients are frequency-independent this formula reduces to

that given in previous works.

The final step is to eliminate either T12 (w) or T21(w) from the equation, leaving

the interface conductance as a function of a single transmission coefficient. This can

be achieved using the principle of detailed balance. In order for this procedure to be

possible, it is necessary to use the principle of detailed balance at a single temperature
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To, giving

T12(W)/O',ivwi = T21(W)/Ow2Vwi (B.21)

While this relation does depend on temperature, the temperature differences con-

sidered here are so small that it is almost exact to assume the form given above.

Then,

jW2 T21(w)C, 2v, 2dW = T12(w) v0ow iCw2dw = W T 12 (w)CliveidW (B.22)
0 JO f~o 2 fo

since Ci = fO,,1/fo0- 2C2. The transmissivity T12(w) restricts the range of the inte-

gration to those frequencies common between the two materials, making the limit of

integration irrelevant. Now, we can relate G and T12 (w):

(T12 (w)Civi) AT = GAT (B.23)
4 1 _ (T12(W)CiVi) + (T12(W)CiVi)

2 (civi) (C 2 v 2 )

Solving for T 12 (w):
2

(T12 (w)Civi) = 1  1 + 1 (B.24)
<>1 <Co>2 2G

If we let T12(w) be a constant for those frequencies that transmit and zero otherwise,

we arrive at the final formula:

2/|(Cv)'
T12 (w) = 2/ 1 1 ± (B.25)

<Cv>1 <C>2 2G

where (Cv)' denotes integration over only those frequencies which have non-zero

transmissivity. The transmissivity is a constant for those frequencies in common

between the two sides and zero otherwise. However, T21(w) is in general frequency

dependent because of the principle of detailed balance at each frequency.
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