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Abstract 
 

This work develops a practical approach to explore rough environments when time is critical. 

The harsh environmental conditions prevent the use of range, force/torque or tactile sensors. A 

representative case is the mapping of oil wells. In these conditions, tactile exploration is appealing. 

In this work, the environment is mapped tactilely, by a manipulator whose only sensors are joint 

encoders. The robot autonomously explores the environment collecting few, sparse tactile data and 

monitoring its free movements. These data are used to create a model of the surface in real time and 

to choose the robot’s movements to reduce the mapping time. 

First, the approach is described and its feasibility demonstrated. Real-time impedance control 

allows a robust robot movement and the detection of the surface using a manipulator mounting only 

position sensors. A representation based on geometric primitives describes the surface using the 

few, sparse data available. The robustness of the method is tested against surface roughness and 

different surrounding fluids. Joint backlash strongly affect the robot’s precision, and it is inevitable 

because of the thermal expansion in the joints. Here, a new strategy is developed to compensate for 

backlash positioning errors, by simultaneously identifying the surface and the backlash values. 

Second, an exploration strategy to map a constraining environment with a manipulator is 

developed. To maximize the use of the acquired data, this work proposes a hybrid approach 

involving both workspace and configuration space. The amount of knowledge of the environment is 

evaluated with an approach based on information theory, and the robot’s movements are chosen to 

maximize the expected increase of such knowledge. Since the robot only possesses position sensors, 

the location along the robot where contact with the surface occurs cannot be determined with 

certainty. Thus a new approach is developed, that evaluates the probability of contact with specific 

parts of the robot and classifies and uses the data according to the different types of contact.  

This work is validated with simulations and experiments with a prototype manipulator 

specifically designed for this application. 
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Chapter 1       

Introduction 

 Motivation 1.1.

The objective of this work is to develop a practical approach to map a man-made 

environment under harsh conditions in a short time. Existing approaches for autonomous 

exploration rely on range sensors such as cameras, lasers or sonars, which acquire a large 

amount of data in a very short time. In situations where these sensors cannot be used, 

autonomous exploration is still an unsolved problem. These situations arise, for instance, when 

mapping extremely dark and opaque structures, surfaces covered with a layer of dirt, foggy 

locations, or environments filled with an opaque fluid. Typical examples are oil wells, mines, 

caves, nuclear facilities, gas pipes, and sewers. Exploration in these environments presents the 

following challenges: 

- Few, sparse data. The lack of range sensors makes data acquisition extremely time expensive. 

Given the time constraints of the operation, mapping needs to be completed using only few, 

sparse data, which need to be chosen well and used effectively. 

- Limited sensors. The harsh environment conditions strongly limit the types of sensors that 

can be used. Range sensors, force/torque or tactile sensors are unfeasible or too delicate, 

and should be avoided. Only position sensors are feasible. This implies the use of a robotic 

agent that carries such position sensors while moving in the environment. 

- Constraining environment. The agent is highly constrained in its movements by the unknown 

environment. These constraints need to be recognized and faced with the limited sensorial 

data available, and without any a-priori knowledge of the surfaces in the environment.   

- Imprecise measurements. Besides limiting the types of feasible sensors, the environment also 

imposes strong design and structural constraints to the feasible sensors. Hence, 

measurements are expected to be imprecise and unreliable. In this work, the exploring agent 

is assumed to be a manipulator, and manipulator’s joint backlash is an example of the 

problems not considered in less hostile environments. 
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 Applications 1.2.

1.2.1. A representative case: oil well junction mapping 

A representative example of the applications addressed in this work is the mapping of a 

junction in an oil well. Oil wells often have a number of junctions where divergent branches 

leave the main well at unrecorded depths (Figure 1). When most of the oil has been extracted 

from a reservoir reached by a lateral branch, the branch is abandoned. Rising world oil demand 

and advanced oil recovery techniques have made it economically attractive to rehabilitate 

previously abandoned branches, which requires lowering instruments and tools into it. To 

allow this operation, location and shape of the junction need to be mapped. Alternatively, the 

junction can be mapped during the logging process right after the lateral drilling. In this case, 

mapping is desirable to determine the location with greater precision compared to what can be 

obtained by drilling, and to obtain a complete model of the junction shape. Any maintenance 

operation in an oil well is very expensive (tens of thousands of dollars per hour), because it 

requires suspending the production of the well and using expensive equipment such as the oil 

rig. Therefore, the map acquisition must be done as quickly as possible. Modern oil wells can 

exceed a depth of three thousands meters, and lateral wells are drilled at any depth in the well. 

At high depth, temperature and pressure can reach 300 °C and 2000 atm. Drilling mud, an 

opaque fluid that fills the well to avoid its collapse, prevents the use of visual or laser sensors to 

measure the junction. Ultrasonic sensors have been suggested for this application, but 

unpublished industrial studies have shown that they do not possess the required performance 

for down-hole conditions, and suffer from reflections problems. Also, a layer of “mud cake” 

often obscures the well surface underneath, which is the real surface to be mapped. 

1.2.2. Other applications 

The oil well industry offers several other examples. 

Whenever a cable holding a tool breaks in an oil well, the 

tool must be removed through a process called fishing. The 

current approach consists of trying to snag the object with a 

hooked tool: it is very time consuming and often 

unsuccessful [3]. The ability to map the broken tool would 

drastically increase the chances of successfully grasping it. 

Breakouts and washouts are local openings and 

deformations in an oil well, caused by pipe corrosion and 

deformation, erosion of the surrounding rocks, or other 

natural causes. Breakouts represent a challenge because 

tractors (tools used to drive other instruments into the well) 
Figure 1. Typical oil well branching 
structure, with cutaway detail of a 
junction. Image courtesy of [2] 
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are often unable to cross them. One of the 

reasons for this is the lack of information on the 

dimension and shape of the washouts. Thus, a 

tool capable of mapping the location in front of 

the tractor would considerably increase the 

chances of successfully crossing these obstacles. 

Spills from deep sea well sites (Figure 2) 

present numerous challenges due to their 

extreme depth, which makes manned 

operations impossible. Underwater Remotely 

Operated Vehicles (ROVs) have been heavily 

used in various repair operations. A major 

reason for failure of many of these procedures is 

the challenging operating environment, 

including the complete lack of visibility due to the oil flow from cracks in the wreckage. Lasers 

and sonars are unreliable due to strong turbulence and methane gas spilling from the leaks. 

Knowing the shape and dimensions of the cracks and the rate of oil spill provides critical 

information for the success of the operation. 

Other potential applications exist outside the oil well industry, requiring the exploration of a 

very challenging environment with very limited sensorial information. An example is the need 

for autonomous operations inside a nuclear reactor [4]. In a nuclear reactor, the intense 

radiation prevents the use of several sensors, including standard cameras. Tactile exploration 

and manipulation is a potential solution. Other harsh environments where visual sensors are 

often unfeasible include pipes, mines, and sewers.   

 Previous Work 1.3.

Mapping challenging environments has been a prominent application in robotics for the last 

twenty years. Robots have been used to explore pipes [5-7], sink holes [8], volcanoes [9], 

abandoned mines [10], deserts [11], the Antarctic [12], the moon and Mars [13-15], and 

underwater wreckage [16]. However, all these studies use range sensors, because the 

environment, although challenging, does not prevent the use of cameras, lasers or sonars. When 

visual data are available, the map is often created by remotely controlling a robot, as in most of 

the studies listed previously. When remote operation is not feasible, the robot needs to move 

autonomously and plan its own movement: this problem is called robotic exploration. Several 

studies have been published in autonomous robotic exploration (see [17, 18] and Chapter 5); 

however, virtually all these studies assume the use of range sensors.  

When the environment prevents the use of range sensors, the exploration must be carried out 

by direct contact using tactile sensing. Furthermore, the limited human ability to intuitively 

Figure 2. Oil spilling from the riser of BP Deepwater 
Horizon on May 17th, 2010. The oil leaks prevent 
cameras from determining the shape of the crack [1] . 
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interpret tactile data requires the exploration to be highly autonomous. In these situations, the 

exploration methods developed for range sensors are not directly applicable. Tactile exploration 

of harsh environments, discussed in this work, is therefore a new and unexplored concept. 

Another recent study presents a similar idea, but it is restricted to the simple case of mapping a 

2D pipe of known diameter by a serpentine robot [19].   

Although tactile exploration of environments is new, similar topics have been proposed in 

several related areas, including tactile localization or recognition of objects [20-29], haptics and 

manipulation [30-38], path planning for coordinate-measuring machines [39-41], and 

computational geometry [42-44].  

Several studies in tactile exploration develop techniques for locating and identifying objects 

among a library of known models. Early works focused on the object identification using as few 

data points as possible [20-23]. Other works identify local features on the object such as surface 

curvature or specific symbols [24, 25]. As several branches in robotics shifted their focus to 

stochastic methods, more recent works introduced stochastic approaches to tactile perception, 

and developed interesting strategies to guide the robot’s movements and reduce the number of 

points required for identification [26-29, 45]. Some of these studies share the exploration 

approach developed in this work, and will be described in greater detail in Chapter 5.  

However, they only identify an object among a set of models, and do not explore an unknown 

environment.  

Other approaches have been developed to map general, unknown objects. Seminal research 

focuses on the aspect of real time control of a robot [46, 47]. Other works focus on the type of 

surface description to be used. This is an important aspect in tactile exploration, because tactile 

data are sparse and time expensive. When exploration time is not an issue, or when the 

inspected surface is arbitrarily complex, a triangular mesh is often used [23, 31, 43, 44]. Other 

approaches propose splines [33, 34, 48]. While meshes and splines are effective representations 

of a general surface, they require dense data to represent a generic object well, and are not 

efficient when a short exploration time is essential. The same requirement occurs when 

generalized cylinders are used [49, 50]. An alternative approach represents surface geometry as 

a composition of geometric primitives, such as quadrics (planes, cylinders and spheres) or 

superquadrics. These primitives can be determined with curve and surface fitting methods [30, 

32, 35, 51], or using differential invariants [52].  

While focusing on the representation methods, several of these works also propose 

interesting heuristic exploration strategies [23, 30, 32]. However, such strategies have been 

developed to map small, often convex objects touched by a robotic hand, and they are not 

applicable to the exploration of an unknown environment. Some other studies develop 

strategies for objects that can be moved or manipulated by the robot [24, 36-38], which is not 

possible in environmental exploration. The mapping of a larger, static surface has been studied 

in applications related to coordinate-measuring machines [39, 40, 53]. These works recognize 

the importance of intelligently selecting the locations in which to collect data for effective 
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exploration, but the developed strategies are still tied to a two-dimensional grid, which is not 

time-effective and only applicable to specific objects.  

With regard to the physical hardware needed for exploration, the studies mentioned above 

(except [38]) use either a force-torque sensor or an active tactile probe. These sensors are not 

reliable in a very harsh environment, where only position sensors can be used (proprioceptive 

exploration1). There are some works in the literature to approach proprioceptive exploration [54-

56]. However, these works can only be applied to a small, manipulated object, and study only 

local contact detection and not the issues of exploration and surface model construction. The 

literature on this topic will be described in greater detail in Chapter 6.  

 In conclusion, while past works have studied various components of intelligent exploration, 

characterization of general unknown geometries, and proprioceptive exploration, the problem 

of exploring an unknown, harsh, internal environment when time is critical remains unsolved. 

 Contributions of this Work 1.4.

This research develops the first approach to tactilely explore harsh environments with a 

manipulator. The research can be divided in two main parts. 

The first part (Chapter 2 - Chapter 4) develops the approach for tactile exploration, and 

shows its applicability to mapping very harsh environments. The real-time robot control is 

studied to provide fast and reliable movements and contact detection with only position 

sensors. A surface representation is developed to quickly describe the environment with only 

the sparse data available from tactile sensing, while keeping the flexibility required when 

mapping a generic environment. Simple and effective exploration strategies are proposed to 

obtain a uniform coverage of a surface and a fast exploration of the environment. The 

robustness of the approach is validated with extensive simulations and experiments with a 

three degree-of-freedom prototype manipulator specifically developed for this application in 

collaboration with Daniel Kettler [2]. The approach was found to be robust to harsh 

environmental conditions such as rough surfaces, measurement noise, and surrounding viscous 

fluids. Joint backlash was found to strongly affect the ability to precisely map the surface. Thus, 

a new method to compensate for backlash has been developed: the robot compensates for 

positioning errors by simultaneously identifying, during the exploration, both surface 

parameters and backlash values.  

The second part (Chapter 5 - Chapter 6) proposes a strategy to map a constraining 

environment with a manipulator provided only with position sensors. The main contributions 

can be summarized as follows: 

                                                      
1 Proprioception is a term derived from medicine, and it refers to the sense of an individual about the position of 

the parts of his own body. In robotics, proprioceptive sensing means that measurements refer to internal variable of 
the robot, such as joint positions and torques. 
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1. To maximize the use of the acquired data, this work proposes a new hybrid approach 

involving both workspace and configuration space: data are saved and analyzed in 

workspace, but motion planning is evaluated in configuration space. 

2. Since tactile data are few and sparse, information about the entire environment needs to be 

inferred from these few points. Here, a method is developed to evaluate the correlation 

between close points, based on the physical dimensions of the objects in the environments.  

3. The amount of knowledge of the environment is evaluated with an information-theoretic 

approach, and the robot’s movements are chosen to maximize the expected increase of such 

knowledge. In previous studies using an entropic approach the two actions of movement 

and measurement could be treated separately because data were provided by range sensors. 

With tactile exploration, the robot movement is the measurement itself, and new 

information only comes from a movement into unexplored space. Therefore, the knowledge 

obtained with a path does not depend on the endpoint, but on the path itself. This requires a 

new approach to the problem. 

4. The absence of any sensor besides position encoders makes the determination of the location 

of contact a challenging problem. Here, a new approach is developed to determine the 

probability that specific parts of the manipulator are touching the environment, and thus 

classifying the type of contact. After points have been classified, a novel method is 

developed to interpret the available tactile data. This method is based on the same surface 

representation used previously, but extended to the new kind of contacts that arise when 

the environment is touched with the whole manipulator’s body. 

  



 

 

Chapter 2       

The Approach: Tactile Mapping 

This work develops a practical approach to map a surface under very harsh environmental 

conditions. The objective is to tactilely create a geometric model of the whole environment 

within a given accuracy in the shortest possible time. The harsh conditions prevent the use of 

any range sensors, while delicate sensors such as force/torque or tactile sensors are unreliable, 

and should be avoided.  

 The Proposed Solution 2.1.

This work studies the feasibility of tactile exploration using a robotic manipulator equipped 

only with position sensors.  The approach is as follows: the manipulator is brought in proximity 

to the surface to be mapped, and its base is fixed with respect to this surface. Figure 3 represents 

this situation for a very simple manipulator and environment. The problem is described here 

with a general approach, so it can be easily applied to different situations. The oil-well 

environment is one of the situations where these conditions occur, see Figure 4. 

Once the robot is fixed, the environment is mapped by touching the surface with the 

manipulator and reading the joint positions during contact. Like a man’s arm in a dark hole, the 

robot uses all the sources of information that it can obtain with its movements to map the 

environment in the shortest possible time. Since tactilely probing a surface is inherently slow, 

collected tactile data will be sparse. These data are analyzed in real time to provide a 

provisional model of the surface. This model is used by the algorithms guiding the robot to 

choose the robot’s path to make the mapping process as efficient as possible. 

 Assumptions 2.2.

 The manipulator is assumed to be brought in proximity of the environment by external 

means. The manipulator’s base is fixed on the environment, and used as the reference frame for 

the process. The surface will be reconstructed with respect of this frame. If the base is relocated, 
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the robot will create a map for each location, and these maps can be registered (joined). 

Approaches for registration are available in the literature [57]. 

The manipulator is assumed to possess only position sensors. Since most manipulators are 

composed of rotational joints, and encoders are the standard joint position sensors, in this work 

the position sensors are referred to as encoders. No assumption is made on the type of joints in 

the manipulator. Kinematic non-idealities, link deformations and encoder resolution are 

assumed to affect the manipulator’s precision and create measurement errors. Here, these errors 

are modeled as random measurement noise. Joint backlash is assumed to be too significant and 

consistent to be modeled as random noise. However, a specific backlash identification method 

will be developed to compensate for its error.  

This work does not focus on the real-time performance of a specific manipulator. Therefore, 

the manipulator’s speed is assumed to be limited by a maximum value of joint speed. If this 

holds, a measure of the time required for exploration is given by robot joint movements.  

The equivalence between robot travel and exploration time is only valid if the robot never 

stops during the exploration. However, this research assumes computational time to be 

negligible. There are several reasons for this. First of all, tactile exploration is intrinsically slow, 

because moving a manipulator in an unknown, rough environment requires low speeds. 

Second, tactile exploration collects few, sparse data, which can be processed faster than the 

large amount of data obtained with range sensors. The mapped space is also limited, because 

the surface that can be mapped by a fixed manipulator is within the manipulator’s workspace. 

Finally, if there is a specific operation requiring non-negligible computational time, it can be 

executed during the robot movements. For all these reasons, this research assumes computation 

time to be negligible, and uses the robot path as an equivalent measure of the exploration time. 

 

 

 

Figure 3. Robot for tactile exploration of an unknown 
environment. 

 

Figure 4. Manipulator for tactile exploration of 
a junction in an oil well. Image courtesy of [2]. 
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In this work, the environment is assumed to be rigid and static. In the case of an oil well, 

several surfaces are covered with a layer of a highly viscous material called mud cake. However, 

the environment to map is the rigid surface underneath the mud cake. 

The environment is assumed to be man-made. In most cases, man-made environments are 

regular, and they can be easily described by using a combination of a few, geometric primitives. 

A survey indicates that 95% of man-made objects can be described as the combination of the 

following primitives: planes, spheres, cylinders, cones and tori [58]. Therefore, this work 

assumes that the environment is mainly composed of such shapes. To maintain the generality of 

the approach, local deformed or irregular shapes can be present. 

The environment is assumed to be completely unknown. If any a-priori information is 

available, this can be easily introduced by starting the exploration with a partial map. To be 

general, this work assumes no a-priori information.  

Two parameters are required to guide the exploration and define the required accuracy of 

the map: 

1. The minimum desired dimension of a feature to be found, denoted by B. This can be 

interpreted as the characteristic length of the explored surface, and it controls the trade-off 

between details of the constructed model and required time. A lower limit on the value of B 

is the robot accuracy. 

2. The maximum allowed distance between a touch point and the constructed surface model, 

denoted by f. This value controls the approximation when modeling the surface as 

composition of geometric primitives. It is chosen as a function of robot accuracy and desired 

surface approximation. 

  



 

 

Chapter 3       

Feasibility of Tactile Exploration 

This chapter describes the feasibility of the tactile exploration approach to map a man-made 

surface. The overall goal of tactile mapping is divided into three different tasks: real-time robot 

control, representation of the surface, and exploration strategy. A solution for each of the tasks 

is proposed. Simulation and experiments demonstrate the feasibility of the approach. 

 Three Simultaneous Tasks 3.1.

The overall approach requires the following tasks to be performed simultaneously: 

1. Real time control and contact detection. The robot must be reliably controlled in real time while 

moving in a partially unknown environment. Unpredicted contact with the surface, either 

by the tip or other parts of the manipulator, needs to be detected and identified. 

2. Surface model construction. Information from the robot movement and from the contact with 

the surface is used to construct a model of the surface. This model is refined as information 

is acquired. 

3. Exploration strategy. The robot movements need to be chosen in order to minimize the 

exploration time. The partial reconstructed map is used to guide the robot, to explore the 

regions where it acquires more information. 

This chapter provides a solution for these three tasks. The third task is the most complex, and 

will be treated in depth in Chapter 5. To prove the feasibility of the tactile exploration approach, 

a simple and intuitive exploration strategy is proposed. This strategy proved to be effective in 

simulations and experiments, but no optimality or completeness can be guaranteed.  
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 Real Time Control and Contact Detection  3.2.

3.2.1. Background 

A robot interacting with the environment can be controlled using two different strategies: 

hybrid force-velocity control, or impedance control [59]. Hybrid force-velocity control see (Figure 

5) is used to slide the robot tip along a surface, by controlling the force in the direction normal 

to the surface and the speed in the two tangential directions [60]. Since these directions are 

unknown and variable, they need to be estimated at all times with a force-torque sensor. This 

control architecture is only valid when the robot is already in contact with the environment: 

another control method is needed to guide the robot in free space. 

 The second scheme to control a manipulator interacting with the environment is impedance 

control [61]. This is essentially a smart use of a position controller, see Figure 6. The joint torques 

are controlled to simulate the presence of an impedance between the robotic tip and an arbitrary 

point in space, called virtual point. The virtual point is arbitrarily moved and the robot tip 

follows it as long as no obstacle prevents its movements. When the virtual point moves beyond 

the environment surface, the robot cannot follow it and stops, and contact is detected. The 

position of the probe tip, and therefore the contact point on the surface, can then be determined 

from the manipulator’s joint angles. This controller does not require any control switch between 

contact and free-space movement, and permits the manipulator to hold its probe against the 

environment without any force or tactile sensors. There are different implementations of 

impedance control [62]. In one of its simplest forms, the impedance between virtual point and 

end effector is simply composed of a spring and a damper. The required motor torques are 

therefore: 

     T
v ee v eeT J D x x K x x         (3.1) 

where J is the kinematic Jacobian, D is the damping constant, K is the spring constant, and the 

subscripts v and ee indicate the virtual point and the end effector. 

   

Figure 5. Left: representation of an hybrid force-velocity controller. Right: block diagram. 
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3.2.2. Choice for tactile exploration 

The impedance control scheme is best suited for this application, because of the ability to 

operate without any force or torque sensors, and the robustness during the transition between 

contact and non-contact situations. The approach is inexpensive, robust, and very suitable for 

harsh environments. There are two drawbacks with impedance control, but they do not provide 

any important limitation for this particular application: 

1. Impedance control without any force sensors commands the torques in open loop, and it 

does not allow precise control of the interaction force between robot and environment 

(mostly because of joint friction). Nevertheless, if the surface is rigid, knowing the precise 

interaction force is unnecessary, as it does not provide any information. 

2. Continuously tracking a surface under impedance control is less reliable than under hybrid 

force-torque control. Nevertheless, this research showed that discretely probing a surface is 

more effective than tracing, when mapping a harsh and unknown environment (see section 

3.4.1). 

Using the position of the tip to determine the contact location assumes that contact with the 

environment always occurs at the robot tip. This might not be valid when exploring a highly 

constrained environment (see Figure 7). This assumption is relaxed in Chapter 6. 

 

Figure 7. Two situations where the robot touches the environment with its body and not its tip. 

   

Figure 6. Left: representation of an impedance controller. Right: block diagram. 
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3.2.3. Implementation 

Laboratory experiments provided the insights to ensure the robustness of the impedance 

controller under harsh conditions. A simple compliant controller did not prove to be reliable, 

because joint friction and different robot configurations often cause a false positive in contact 

detection. Joint friction in a field robot is extremely high because of the harsh environment 

conditions and the need for pressurized seals surrounding the joints. Friction compensation 

algorithms have been implemented, including a superimposed dither signal and a feedfoward 

signal for Coulomb and viscous friction [63, 64]. These methods reduced the problem, but did 

not solve it. The solution was found by introducing an integral term to the standard real time 

impedance controller: 

 
     

0x

T
v ee v ee t v ee

t

T J D x x K x x x x dt      
    (3.2) 

where 0xt indicates the most recent time when the end effector speed was close to zero. By 

resetting the integral when the tip speed exceeds a small threshold, it is effectively active only 

when the robot stops. The integral also saturates to a maximum value, to limit the force applied 

to the environment. The introduction of the integral term drastically decreased the number of 

false contact detections to a negligible number even in very harsh conditions.  

Other techniques have been implemented to provide reliable and precise contact detection. 

One of these is to “back off” the torques to a minimum value whenever contact has been 

detected, to reduce the effect of joint elasticity. This is evident when joint torques are plotted as 

a function of time, as in Figure 24 (section 4.2). The full explanation of this and other 

implemented techniques goes beyond the scope of this document. 

 Surface Model Construction 3.3.

The objective of surface model construction is to best represent the surface given the current 

information. There are two main sources of information. The first source comes from the contact 

detected between robot and surface. In this chapter, since contact is assumed to occur only on 

the robot tip, contact data are a set of sparse, three dimensional points. In Chapter 6, this 

approach is extended to include situations where contact occurs on the manipulator’s body as 

well. The second source of information is the volume swept by the robot’s movements: the 

space where the robot has passed needs to be free.  

The environment is described with a boundary representation, which defines a shape by 

describing its boundary surface. Tactile data are sparse and time consuming to obtain. To 

minimize the amount of required data, this work uses a simple and data-inexpensive surface 

representation whenever possible, and increases the complexity only when necessary (Figure 8). 

The simple representation takes advantage of the regular structure of most man-made 

environments, and represents the surface as a combination of the following primitives: planes, 
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spheres, cylinders, cones and tori. If the environment is too complex for these primitives, blends 

between primitives and local triangular meshes are introduced. This representation maintains 

the generality of the approach, because it can describe any surface, but it also remains very 

data-inexpensive for standard man-made objects. 

The problem of reconstructing a surface made of geometric primitives given points on the 

surface has been well studied in reverse engineering for large, dense datasets derived from 

range sensors [65]. This work develops and adapts these techniques to small, sparse datasets 

from tactile data. Two tasks need to be accomplished simultaneously: determine what 

primitives (type, location and parameters) are present in the environment according to the 

existing touch points, and classify the touch points to these primitives. This is called 

segmentation. The process of determining these primitives requires a method to evaluate how 

well a set of points fits a specific primitive: this problem is surface fitting. After the classification 

is completed, the primitives are intersected to produce the complete surface representation. 

Finally, information from the swept volume is used: if a section of the reconstructed surface lies 

within a region where the robot has passed, such section is removed.  

3.3.1. Surface fitting 

Assume that a set of touched points is known to belong to a specific primitive type. Surface 

fitting is the method that determines the parameters of the primitive that best approximate 

these points. This is solved with a least squares approach, minimizing the sum of the squared 

distance between primitive and data points: 

  
2

1

arg min , ( )
N

i
i

d P S


 


   (3.3) 

where Pi are the N data points, S is the primitive to which the points belong and θ are the 

surface parameters. The value of this function represents the goodness of the fit, a measure of 

 

Figure 8. The surface representation used in this work. Whenever possible, the surface is described as the 
combination of geometric primitives. When needed, blends and local triangular meshes are added. 



22 3. Feasibility of Tactile Exploration 

 

uncertainty of the modeled surface. Different solutions for this minimization problem have been 

proposed for large dataset of range data [66-68]. Small and sparse datasets present two 

problems: they are not dense enough to compute a reliable surface normal (typically used to 

find an initial condition), and they do not provide sufficient redundancy to reduce the effect of 

random noise. For these reasons, some of the solutions in the literature tend to fail. Tests 

showed that the method proposed by Jiang and Cheng works the best in this case [68]. It uses 

geometric reasoning to project the points on special lines or planes, reducing the dimension of 

the nonlinear search. 

3.3.2. Segmentation 

In order to correctly fit the data to different primitives, the numbers and types of the 

primitives need to be detected, and the touch points need to be classified so that each point 

belongs to one primitive only. This problem is called range data segmentation. Among the 

several methods proposed in the literature, an approach called fit and grow has been chosen and 

implemented in this work [69, 70]. It is based on the selection of small initial regions to which all 

the possible primitives are evaluated. Regions that give a good fit are then gradually expanded, 

otherwise they are discarded. A primitive fit is accepted when the RMS error is lower than the 

constant f, the maximum distance between a point and the approximated surface (see section 

2.2). Fit and grow is chosen because it does not require information on surface normal, and it 

fits well in this particular application, where sparse points are added to the dataset gradually, 

and where outliers may be present when a primitive has been just partially discovered. 

Furthermore, this strategy also classifies irregular shapes as outliers, denoting the need of a 

local triangular mesh. 

3.3.3. Intersection and surface cuts 

After the primitives are identified, their intersections are computed to produce the complete 

surface representation [71, 72]. Some primitive parameters need to be modified to ensure that 

the boundary conditions between primitives are consistent. This is obtained by fitting several 

primitives in a single minimization while constraining some of their parameters. This is called 

constrained fitting, and it is necessary, for instance, when two different primitives are tangent 

[73]. It has also been shown that blends between primitives can be determined with relatively 

few touch points close to the intersections [74]. 

Finally, the reconstructed surface is check for consistency with the volume swept by the 

robot. The surface is simply intersected with the swept volume, and the surface inside such 

volume is deleted. To do this, a map of the locations where the robot has passed needs to be 

kept in memory. In this work, this is performed by discretizing the volume using voxels, as 

explained in Chapter 5. 
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 Exploration Strategy 3.4.

3.4.1. Discrete sampling vs. continuous tracing 

Two approaches can be used to tactilely explore a surface: probe it discretely in separated 

points or trace continuous lines on it. The former approach has been chosen for this problem, 

for two reasons. First of all, a continuous trace is not always feasible in a rough environment 

such as an oil-well. There are two types of oil well surfaces: open-holes, where the borehole is 

unprotected, and cased-holes, where a steel pipe (called casing) and a layer of cement cover the 

hole. In open-holes, a thick and highly viscous material called mud cake often forms on the top 

of the surface. Furthermore, both in open and in cased holes, the surface is very rough. This 

prevents to trace curves while the probe is in contact with the surface. The second reason is that, 

even if a continuous trace can be executed, it would not identify the surface better than a 

discrete sampling. In fact, measurements present noise, surfaces may be rough and locally 

deformed; thus inferring a primitive from a small local region is intrinsically unreliable, even 

when hundreds of data points are used. This was first noticed by [52]. As a further proof, the 

ability to fit a cylindrical rough patch is evaluated in two cases: either by tracing two lines made 

of 500 points each, or by using 15 random sparse probe points (Figure 9). The cylindrical patch 

has length 200 mm and radius 100 mm, and it has been corrupted with surface roughness, 

which is created by a sum of 100 sinusoids with random spatial period between 2 and 10 mm. 

All the points are also corrupted by random noise with 1 mm variance. The ability to 

reconstruct the correct cylinder parameters is evaluated with a Monte Carlo simulation. The 

RMS amplitude of the surface roughness is increased at regular intervals, and 1000 fitting trials 

are performed for each interval using either the two lines or the sparse points. The percentage of 

the trials that found the correct cylinder within a 10% tolerance is shown in Figure 10, 

confirming the superiority of the discrete sampling approach. 

3.4.2. A simple discrete sampling strategy 

The guidance of the robot based on the continuous interpretation of sequentially-acquired 

data is a key factor for an efficient tactile mapping. This subject is addressed in detail in Chapter 

Figure 9. Cylindrical patch with surface roughness, examined with two continuous line traces and 15 random probe 
points. 
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5. To study the feasibility of the tactile exploration approach, here a simple strategy is proposed, 

which is well suited for the tactile exploration of rough and constrained environments such as 

oil wells. It is composed of two main steps, called Uniform Surface Density (USD) and Best Cone 

search. The concept is to locally touch a surface until a primitive is identified and then move the 

robot where the next measurement provides the most information: 

1. The robot starts in a random direction. 

2. It sequentially probes a surface (USD search) until a primitive is identified to a desired 

accuracy, which is evaluated by comparing the goodness of its fit to a function of the given 

parameter B (the dimension of the largest surface feature that can be neglected, as defined in 

2.2). 

3. Then, the robot chooses another direction and moves along a line until it touches a new 

point or the end of the workspace (Best Cone search). 

4. If this point belongs to a known primitive, it moves elsewhere as in (3), otherwise it 

investigates and identifies the surface, as in (2), before continuing the search in a new 

direction. 

3.4.2.1. Uniform Surface Density 

Step (2), called Uniform Surface Density search, is a strategy that probes points sequentially, 

one close to the other, on the same surface. It is governed by the parameter B. This method is 

designed to minimize what is called dispersion, the radius of the largest sphere, centered 

anywhere on the surface, that does not contain touch points. To ensure that no feature larger 

than B is missed, dispersion on the probed surface should be smaller than B/2. On a flat, two-

dimensional surface, the structure requiring the fewest number of points for a given dispersion 

is proved to be a lattice2 of equilateral triangles [75]. On a curved surface, simple geometric 

                                                      
2 A group of points is a lattice if it can be generated by linear combinations with integer coefficients of a finite 

number of initial elements, called base. In other words, it is an array of regularly-spaced points, that can be 
constructed by translating existing points using just a few, constant vectors.  
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Figure 10. Percentage of trials that return the correct parameters of the cylinder (within 10% tolerance), as a 
function of surface roughness, when the cylinder is examined with two lines and with 15 sparse probe points. 
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reasoning shows that the same lattice satisfies the dispersion requirement (even though 

optimality is lost). The USD search allows the robot to implement this lattice when the surface is 

unknown. Given two touch points, the robot tip is moved on a circular path at a distance 

3 /2B  from these points, until it touches the surface (Figure 11). This strategy requires an 

estimate of the surface normal vector at specific points P. If P belongs to a known primitive, its 

normal is computed using the primitive itself, providing a reliable result. If the primitive is 

unknown, the normal is estimated by fitting a plane to its neighbor touch points [76]. Since 

touch points are sparse, this fit is not always reliable. Best results are obtained using a moving 

least squares approach, where the contribution of each point is weighted with a Gaussian 

function with width equal to d and centered in Pi. A moving least squares approach allows the 

increase of the influence of points that are close to P, since they better approximate the tangent 

plane. If a point does not have enough neighbors to provide a reliable fit (this can be recognized 

by monitoring the singular values of the plane fit covariance), different points of the lattice are 

expanded first. 

3.4.2.2. Best Cone 

Step (3) is critical to reduce the time required to map the entire surface. When a primitive has 

been identified with low uncertainty, further points on that surface would not provide much 

information, and the robot changes the location to probe. This new location is chosen to 

maximize the expected amount of information given by the next measurement. This approach is 

discussed in Chapter 5. In this section, a simple geometric method is proposed. This method has 

no proof of optimality but is computationally very fast and performs well in both simulations 

and experiments with different shapes. 

Conceptually, like a man who looks around and chooses to explore where he has not yet 

been, the robot chooses to move along the direction that is away from all previously touched 

points (Figure 11). To do this, it computes all the possible circular cones with vertex at the end 

effector Pee, subject to the constraint that all the probed points Pi are external to the cone. Among 

these cones, the one with biggest aperture angle is chosen, and its axis N is the next exploration 

direction: 

 
arg max min ee i

i
N ee i

P P
N N

P P

  
       

 (3.4) 

The internal minimization determines, for a given direction N, the largest cone aperture 

angle that does not include any touch point. The external maximization chooses N to maximize 

this angle. This evaluation is computationally fast, because it involves a search in just the two 

variables representing the cone axis. The primitives do not affect this choice. In some 

applications, the intersections between primitives are important regions and require more 

accuracy. This is the case at the intersection of main and lateral wells of oil well junction. 

Greater accuracy can be achieved with detailed exploration along these intersections after the 
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initial identification, and it can be enforced with the Best Cone search by adding a positive 

weight to direction passing near these intersections. 
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Figure 11. A representation of the Uniform Surface Density triangular structure and of the Best Cone choice of 
direction. 

 Case Study 3.5.

To demonstrate the feasibility of the approach, simulations have been performed with the 

environment represented in Figure 12, composed of a sphere, a cylinder and a plane. This 

shape, although very simple, includes different primitives and a sharp intersection, and 

requires constrained fitting between the cylinder and the sphere.   

This set of simulations studies the performance of the algorithm in terms of time, or 

equivalently, length of the traveled path. Shapes are ideal primitives, but measurements are 

corrupted by random Gaussian noise with 1 mm standard deviation (σ). The robot tip moves 

inside the environment, constrained by the surface and by its workspace limits. The robot has 

no initial knowledge of the shape to map. The exploration terminates when the environment is 

identified within 1% of the correct dimensions.  

To provide a comparison for the Best Cone search, four strategies have been implemented 

Figure 12. Environment considered in simulation: a reservoir-like shape made or a sphere, a cylinder and a plane. 
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and tested:   

1. USD search: the USD strategy is carried on for the whole process, without ever using the 

Best Cone to change location. This procedure uniformly maps the whole environment with 

a specific density. 

2. Random search: every time the robot touches a point, it then moves in a random direction. 

3. Best Cone search: the complete process described in the previous section.  

4. Semi-random search: like in the Best Cone search, USD is locally used to identify primitives. 

However, once a primitive has been identified, the new direction is selected randomly. 

For each strategy, 20 trials are run. Differences in trials depend on the initial search direction 

(randomly chosen), and on measurement noise. When the initial touched points lie close to the 

intersection of two primitives, a wrong average primitive can be initially fitted. Nevertheless, 

when more points are touched, the inconsistency is automatically corrected by the segmentation 

algorithm and the real primitives are eventually found. The mean and standard deviation of the 

end-effector path lengths are represented in Figure 13, which shows that the Best Cone strategy 

has the best performance.  

 

Figure 13. Comparison of the performance of the four strategies: mean and standard deviations of the end-effector 
path after 20 trials per strategy. 

 Application: Oil Well Junction Mapping 3.6.

The methods described in the previous section have been applied to the map of a junction in 

an oil well.  

3.6.1. Requirements and conditions 

The objective of the operation is to provide a map of the junction in the shortest possible 

time, with accuracy of the order of a millimeter. Given the harsh down-well conditions, the 

roughness of the drilling process, and the possible presence of debris, the shape can be far from 

the ideal intersection of two cylinders. Thus, the algorithm needs to be flexible enough to map a 

generic man-made internal surface. 
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To reach the junction, the robot will be mounted at the bottom of a 

cylindrical wireline tools array, a system developed by oil well service 

companies that can carry various logging instruments and is connected to 

the surface with a wire. This wire serves both as a power and signal 

transmission, so that no power storage or computational equipment needs 

to be installed on the tool. This tool array will be lowered into the well and 

one of its modules will anchor itself to the well case above the junction, 

whose location is known with an uncertainty of the order of 10 meters. 

The robot will construct the environment map with respect to this tool, 

whose location can be estimated using a logging truck winch and an 

orientation sensor. The dimension of the junction depends on its depth; a 

reference value for the diameter of the main and lateral cases is 23 cm and 

18 cm respectively, with a divergence angle of 5°. The resulting junction is 

approximately 2 meters long.  

The full exploration of this long and narrow junction space requires a 

redundant manipulator. Kinematic studies were performed by Daniel 

Kettler, and are covered in greater detail in his Master’s thesis [2]. These 

studies indicate that a 4 degree-of-freedom (DOF) mechanism consisting 

of a 3 DOF anthropomorphic arm attached to a long prismatic link aligned 

with the axis of the main well is well suited for this application (Figure 

14). 

3.6.2. Simulations 

The effectiveness of the algorithm is first studied in a simulated oil well 

junction, as represented in the left of Figure 15. The same test described in 

the previous section has been used: the performances of four different 

Figure 14. Proposed 
field system in a 
cutaway junction. 
Image courtesy of [2]. 

 

Figure 15. Shape of the simulated junction (left) and simulation results using the four strategies (right). 
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strategies are evaluated by monitoring the traveled end effector path in 20 trials each. The 

results are represented in the right of Figure 15, confirming the same behavior showed with the 

sphere-cylinder-plane environment. 

3.6.3. Laboratory prototype 

A laboratory system was designed to test the algorithms developed in this work. The system 

design is explained in details in Kettler’s thesis [2].  The experimental system manipulator and 

environment tank represent the size and kinematic configuration of a well junction field system, 

given the constraints of the laboratory (Figure 16, Figure 17).  

For simplicity, in this experimental system only the 3 DOF arm has been implemented, 

replacing the first prismatic joint with a mounting ring that can be fixed at different heights. The 

sizing of the arm links is based on the workspace size and dexterity requirement inside an oil 

well. The manipulator links have lengths of 8.0 in and 6.0 in (approximately 20.3 and 15.2 cm). 

The links are stiff enough so that link deformations introduce negligible error in the measured 

position of the probe tip.  

Each joint assembly consists of a motor, gear train, encoder, and associated support bearings. 

Brushed DC motors are used. The joints are compact in order to minimize the potential for 

undesirable contact between the manipulator elbow and environment. The joints are sealed by 

encasing them within rubber bellows, allowing testing of the system while submerged in fluids. 

Since the manipulator is controlled by a simple impedance controller scheme, no force-torque or 

tactile sensors are used. 

 

Figure 16. Experimental robotic manipulator in modeled oil well junction. 
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Figure 17. Detail of the robotic arm. The rubber bellows have been removed to show the structure of the joints. 
Image courtesy of [2]. 

3.6.4. Experimental results 

A set of experiments has been completed to validate the approach proposed in this work. 

The manipulator performance has been characterized and several search methods have been 

studied. With an appropriate backlash compensation method (see section 4.3), the manipulator 

provides sensing errors of roughly 1 mm. 

Figure 18 shows a comparison between the pattern of experimental touch points produced 

by the USD strategy alone and combined with the Best Cone search. The robot has no prior 

knowledge of the environment or the type of primitives involved, but the search terminates 

when the algorithm converges to two cylinders with radius within 2% of the real value. Figure 

18 also shows the primitives fit to these touch points, as well as the intersection. Table 1 

summarizes the results for these two strategies and the semi-random search.  

Using the USD search only, the manipulator needs to travel 8.1 m to make these 

measurements over a period of 311 s. The semi-random search presents similar results. The Best 

Cone search leads to better performance: the number of points is reduced to 29 and the total 

distance traveled is reduced by half. Similarly, the required time is reduced to 180 s. Figure 18 

clearly shows the reduction in the number of touch points using the Best Cone search to achieve 

the same accuracy as the other methods. 
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Figure 18. Result of exploration of oil-well junction using the Uniform Surface Density (left) and the Best Cone 
strategy (right). 

 Conclusions 3.7.

This chapter shows the feasibility of using manipulator-based tactile exploration of 

environments where conventional range sensing is not feasible. A key challenge is that the data 

from such exploration are limited and sparse. Here data search and data processing methods 

are developed to overcome this limitation. This approach only requires a manipulator provided 

with joint encoders. The approach is applied to the economically important context of mapping 

the structures of deep-hole oil wells, and in particular mapping the junctions where divergent 

lateral wells intersect the main well. Simulations and laboratory experiments show that this 

method is feasible and effective when exploring simple environments, in terms of time, traveled 

distance and data points needed to map the unknown surface.  

This chapter leaves three topics unaddressed. First of all, the robustness of the approach 

needs to be investigated when operating in very harsh environments. Second, the simple search 

strategies need to be extended to allow for exploration in more complex and constraining 

environments, and to ensure exploration speed. Third, the assumption that the manipulator 

touches the environment with only its tip needs to be removed.  These topics are addressed in 

the following three chapters. 

  

Table 1. Experimental results 

Method Number of points Distance traveled (m)  Time (s) 

USD 68 8.1 311 

Best Cone 29 4.5 180 

Semi-random 67 8.9 382 

 



 

 

Chapter 4       

Harsh Environment Conditions 

To be practical, the mapping strategy needs to be robust enough to work in very harsh 

conditions such as those found in oil wells. Robustness is studied in this chapter, addressing 

three different topics. 

First, the effect of surface roughness and deformations is investigated. In harsh 

environments, simple shapes might present macroscopic or microscopic deformations, or be 

covered by a layer of mud or stones. Some regions of the environments can be too complex or 

too distorted to be represented by simple shapes. The approach needs to be able to cope with 

these situations, even at the cost of increasing mapping time. 

Second, the approach is tested when the robot is submerged in heavy and viscous fluids, 

such as the drilling fluid filling an oil well. The robot has been sealed and submerged in water 

and in sucrose solutions with high sugar concentrations, to test the search strategy in such 

conditions.  

Third, the effect of variable joint backlash is studied. Joint backlash often cannot be avoided 

in such harsh environments, because of the thermal expansion in the transmission gears. This 

research develops an original method to compensate for backlash positioning error, by 

simultaneously identifying the unknown surface and the backlash value. 

After these three topics are presented, an application of tactile exploration in a very harsh 

environment is described: the mapping of a crack in an underwater oil-spilling pipe. 

 Irregular Surfaces 4.1.

This approach has been developed to map man-made structures, which can be represented 

primarily as the composition of simple geometric primitives [58]. However, the harsh 

environment conditions have a strong impact on the surface shape. The man-made structures 

can deform, altering the originally regular primitives. Surface corrosion and deposits of dirt or 

mud yield rough and irregular surfaces. Here, a series of simulations and laboratory 
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experiments investigate the robustness of the tactile exploration approach to these real-world 

situations.  

4.1.1. Robustness of fitting to surface roughness 

This test investigates the ability of surface fitting to determine the underlying shape when a 

regular geometric primitive is corrupted by local surface roughness.  

Numerical simulations were presented in section 3.4.1, to show the superiority of discrete 

probing compared to continuous tracking (Figure 10). Those simulations also show that the 

discrete probing approach is quite robust to noise. When the RMS roughness equals 1/20 of the 

cylinder radius, the cylinder is identified more that 80% of the times. This percentage is even 

higher in practice, because the fitting procedure is repeated every time a new point is added to 

the dataset. 

The prototype robot and the modeled oil-well junction are used to prove the same concept 

experimentally. The surface of one of the two junction cylinders has been completely covered 

with a layer of gravel of size 3 to 10 mm (Figure 19). The robot explores the surface without any 

prior knowledge, and the number of points required to recognize the approximated cylinder is 

monitored. A primitive fit is accepted when the RMS error is lower than the constant f (see 

section 2.2). Ten trials were run with a value of f = 4 mm and different starting locations. The 

experiment stops when the cylinder is identified with good accuracy (cylinder axis within 3° of 

the ideal axis and radius within 3% of the average value). The average number of points to 

reach such accuracy is 16.4, with a standard deviation of 4.1. In average, 1.3 points are 

recognized as outliers by the segmentation procedure and excluded from the cylinder fit. 

Figure 19. Experimental test with a rough surface. The surface of a cylinder is covered with gravel, and the ability 
of the robot to determine the approximating cylinder is monitored. 
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4.1.2. Robustness of segmentation to surface roughness 

The previous paragraph shows that the fitting procedure can recognize a single primitive 

when corrupted by roughness. This paragraph studies the effect of several rough primitives in 

the environment. In this case, the segmentation needs to correctly detect and identify them.   

The effect is evaluated in terms of performance of the exploration algorithms. The four 

exploration strategies compared in section 3.5 (USD, Best Cone, random and semi-random) are 

evaluated in the same Plane-Cylinder-Sphere shape (Figure 12), where random noise 

independently affects each point measurement. Noise is increased at constant intervals, and 20 

trials were run for each value of noise and each strategy. Since points are touched discretely, the 

presence of random noise has a very similar effect as surface roughness. 

Figure 20 shows the average path travelled by the robot tip when noise variance (σ) increases 

from zero to 2% of the cylinder radius, a rather large variation. Within these noise values, the 

algorithm is robust enough to eventually reconstruct the correct surface model. With higher 

values of σ, the convergence of the fitting and segmentation procedure is not always assured. 

The figure shows that an increase in noise implies more data points, and therefore higher 

exploration time for all the strategies. The Best Cone remains the best performing strategy for 

any noise value. 

 

Figure 20. Length of the travelled path for the four strategies with increasing measurement noise. 

4.1.3. Deformed primitives  

The harsh environmental conditions can often deform surfaces that were originally 

composed of ideal primitives. This is the case for oil-well junctions, where the steel pipes are 

deformed by corrosion and by the stress they withstand during casing (insertion of the pipe into 

the well) and lateral well drilling.  

The effect of geometric deformations on the map representation is controlled by the 

parameter f, the tolerance on the distance between a point and the modeled surface. To show 

this dependency, an elliptical cross section is given to the cylinder in the generic Plane-

Cylinder-Sphere environment. When the eccentricity is not extreme, a single cylinder is 

reconstructed, see Figure 21. When the eccentricity increases, the elliptical shape is interpreted 
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as several patches composed of cylinders with different radii, provided enough points are 

probed to characterize each patch. For example, with eccentricity 0.5 (i.e. major and minor axes 

are 107% and 93% of the original radius), the elliptical cylinder is identified as a single primitive 

in 90% of the trials when f is 5% of the cylinder radius. 

4.1.4. Irregular surface 

This section shows the behavior of the algorithm when a part of the surface is too complex to 

be represented as a geometric primitive. When several points are touched close to one another, 

but no primitive can be fit to them, the segmentation labels the surface as irregular, and 

represents it with a triangular mesh joining the touched points. A triangular mesh can represent 

any shape, making the approach feasible for any surface. However, a mesh requires a high 

number of points to describe a surface, rather than just the dozen points needed to determine a 

primitive. Thus, a mesh is used only when necessary.  

A simulation using the Plane-Cylinder-Cone environment shows the behavior of this 

approach. The plane is replaced with a very rough and distorted surface, see Error! Reference 

source not found.. Since the parameter f (maximum distance between touch points and 

reconstructed surface) is set to a value lower than the plane surface roughness, this surface is 

not recognized as a plane. The algorithm needs to densely probe the surface, and reconstructs it 

as a triangular mesh. The other primitives are recognized with just a few touch points.  

 Viscous Fluids 4.2.

Several harsh environments are filled with dense and viscous fluids, such as drilling mud in 

oil wells. This section studies how fluids affect the control algorithm and the search strategy. 

First, analytical calculations estimate the exchanged forces between a manipulator and the 

 

Figure 21. Behavior of the segmentation method for a cylinder with elliptical cross section. (a) Elliptical section. 
(b) A single cylinder is fit if the tolerance f is high enough. The dashed line is the fit circle, the dotted lines 
represent the tolerance width. (c) If f is low, more cylindrical patches are formed. 
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fluids. Then, the prototype manipulator is tested in hardware experiments when submerged in 

several viscous liquids. 

4.2.1. Background 

4.2.1.1. Fluids in an oil well 

The oil-well junction mapping provides an example of viscous fluid surrounding the robot. 

Oil wells are filled with an opaque fluid called drilling mud. During the drilling process, the 

drilling mud has several purposes, including lubrication of the drill bit, transportation of the 

debris cut by drilling, and stabilization of the wellbore (compensation for the pressure of the 

surrounding rocks) [77].  When drilling is complete, the well is filled with completion fluids, 

whose purpose is to provide the right hydrostatic pressure to stabilize the well. 

Drilling muds and completion fluids are dense opaque and relatively viscous. Their 

properties change from well to well, and even as a function of depth within the same oil bore. 

Density ranges from 0.8 to 2.5 kg/l. Viscosity ranges from 1 to 50 cP. As a comparison, water 

has a density of 1 kg/l and a viscosity of 1 cP, and Italian extra virgin olive oil has a density of 

0.9 kg/l and viscosity of 75 cP. 

4.2.1.2. Dynamic effects of fluids on a robot 

Fluids effects on robots have been studied mainly to predict the behavior of underwater 

vehicles. There is relatively little literature on the subject [78-81].  

Fluid effects could be directly computed using the Navier-Stokes and continuity equations, 

assuming the fluid is incompressible and Newtonian. This approach is not computationally 

tractable, except for trivial geometries. A simpler approach will be used here, consisting of 

separating the total force applied by a fluid into three components: 

Figure 22. Exploration of an environment including an irregular shape. (0) Surface to be explored, composed of 
geometric primitives and a generic, rough surface. (1) Beginning of the exploration: the rough surface is represented 
as a mesh. (2) A primitive is discovered. (3) End of the exploration. The primitives require much fewer points than 
the mesh to be correctly described. 
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1. Buoyancy. Buoyancy represents the effect of gravity. The force is proportional to the 

displaced fluid mf and it is applied to the center of buoyancy, the center of the volume of the 

body, and directed opposite the direction of gravity. Denoting with a the gravity vector: 

  b fF am    (4.1) 

2. Added mass. When a body surrounded by a fluid accelerates, the surrounding fluid 

particles must accelerate with it, creating a reaction force on the robot surface. Since this 

force is proportional to the acceleration of the robot, it can be represented as a mass increase 

on the robot itself, called added mass. For a rigid body with 6 degrees of freedom, a matrix 

M can be defined relating any of the six accelerations to the six force components. For a 

cylinder of length L and radius R, such as a link of the experimental manipulator: 

 
 2 2 2 3 2 31 1 1

0
10 12 12

M diag m R L R L R L R L   
 

  
 

  (4.2) 

3. Viscous drag. Drag and lift are forces proportional to the relative velocity of a body with 

respect to the surrounding fluid. Lift is normal to the velocity, and it is always negligible for 

a manipulator. Drag is in parallel to the velocity. Given the drag coefficient CD, the contact 

area A, the fluid density ρ, the speed V, the drag force for a translating body is: 

A rotating body, such a manipulator’s joint, can be divided into thin strips which can be 

considered as translating bodies. The total force and torque are the sum of the contributions 

of each strip. Drag coefficients depend on the Reynolds number and are determined 

experimentally. For a cylinder such as the links of the oil-well prototype, the drag coefficient 

is approximately 1.2 for a large range of viscosities and robot speed [82]. 

4.2.2. Dynamic effects on the oil-well prototype 

The oil-well prototype is composed of cylindrical links, and joints are surrounded by semi-

rigid bellows. To make computations feasible, joints are approximated as spheres. This is 

acceptable because the joints are small compared to the links. With this approximation, forces 

can be computed analytically. Here, the results of the calculations for the second link are 

presented as a representative case. The link has diameter 30 mm, length 302 mm, weight of 

0.467 kg, inertia of 0.0077 kg m2 and travels with an average speed of 10 cm/s. The exchanged 

forces are summarized in Table 2. 

 

 

 21

2
DD C A V   (4.3) 
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Table 2. Forces exchanged between fluids and the second link of the oil-well prototype.  

  Water   

( ρ = 1 kg/l ; ν = 1 cP ) 

Dense drilling mud  

(ρ = 2 kg/l ; ν = 50 cP ) 

Buoyancy 
Displaced mass 

Buoyancy/gravity ratio 

0.14 kg 

30%  

0.28 kg 

60%  

Added 

mass 

Link’s added mass 

Added /real mass ratio 

0.0019 kg m2 

25% 

0.0038 kg m2 

50% 

Viscous 

drag 

Reynolds number 

Total drag force on the link 

3x104 

0.04 N 

600 

0.05 N 

 

The table shows that these three components reduce gravity by 25% (from buoyancy) and 

increase link inertia by 30% (from added mass). The increase in damping (from drag) is 

negligible. Considering that most of the inertia is due to the motors (because of the high gear 

ratios), and that gravity can be easily compensated for, the total effect of the fluid for this 

application is not influential. 

4.2.3. Experiments 

To confirm the results from the analytical study, the performances of the Best Cone 

algorithm are compared when the experimental tank is filled with several fluids at different 

densities and viscosities. To provide a fair comparison, the robot movements are constrained to 

be the same for each trial. The prototype manipulator is sealed by covering the second and third 

joints with appropriate bellows (Figure 23). Three fluids are used: water, simulating properties 

of some lower-density oil well fluids, and two sucrose solutions (with 45% and 60% sugar 

concentration), simulating more viscous and dense well fluids. The addition of sugar increases 

viscosity and density, as shown in Table 3:  

Table 3. Density and viscosity of sucrose solutions  

Sugar concentration %  
(kg sugar/kg solution) 

Density  
(kg/liter) 

Viscosity  
(mPa∙s) 

0 1 1 

45 1.18 10 

60 1.29 55 

 

Figure 24 shows a 5 seconds detail of the torques required by the second link with no fluid, 

sugar 40% and sugar 60% respectively. Neglecting fluctuations due to noise, no difference can 

be noticed in the applied torques, at any time of the exploration. Figure 25 shows the RMS value 

of the torques needed by the last two joints, considering only the time when the robot is 

moving.  The effect of different fluids is negligible, as analytical studies predict. This validates 

the use of the algorithms proposed in this work when operating in an environment filled with 

dense and viscous fluids, such as oil wells. 
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 Joint Backlash  4.3.

This research develops an approach for very harsh environments, with extremely high 

temperature and pressure swings. In an oil well junction, temperature and pressure reach 300 

°C and 1500 atm. The high temperature swing prevents the use of tight gears, which would 

Figure 23. Experimental prototype in the junction tank when submerged in water (left) and in a 40% sucrose 
solution (right). The red spot on the right of the manipulator in water is the lab pet, a betta fish called Captain. 

Figure 24. Torques required in a 5-second time interval by the second link in three cases: with no fluid, with sugar 
at 40% concentration, and with sugar at 60% concentration. No substantial difference can be found. Three moments 
of the real-time control strategy are highlighted. “Back-off torques” indicates a moment when torques are kept low 
for a second once contact is detected, to temper a residual dynamic effect of joint elasticity in the position 
measurement. 
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wind up because of thermal expansion. The use of loose gears results in large and time-varying 

joint backlash. However, backlash is a significant source of measurement error, and needs to be 

identified and compensated for, while the robot is performing its mapping mission 

Furthermore, the high pressure requires the use of stiff joint seals that produces high joint 

friction: hence, the effect of friction needs to be taken into account while compensating for 

backlash. 

This work proposes a new technique that identifies backlash while simultaneously mapping 

unknown surfaces. The robot probes the surfaces in several locations, and computes the contact 

points using encoder readings and kinematics. Backlash compensation is possible in this 

application because, when the robot is pressing on the environment, the motor torques force the 

gears to be in one side of the backlash play. Therefore, estimating the amplitude of the 

transmission’s backlash is sufficient for its compensation. But the amplitude cannot be 

determined a-priori, given the extreme and unknown down-well conditions. Thus, backlash 

needs to be identified and compensated while the surface is explored. Here, a least squares 

minimization is formulated, where both the joint backlash values and the surface parameters 

are identified. The operation is performed during the surface mapping and repeated when new 

information is available, improving the parameters of both backlash and surface. The method 

has been validated in representative case studies and hardware experiments. 

4.3.1. Previous work on backlash compensation 

Robot calibration has been widely studied in the literature [83-87]. Most often these studies 

deal with kinematic errors, and not with backlash. They require either some external sensors 

(open loop methods), or a point or surface as a reference (closed loop methods [83, 85]). Only a 

few studies directly consider backlash. The standard approach to determine backlash, called 

static test, manually blocks the output link and measures the movement of the input [88]. This 

measurement requires manual operations and cannot be performed on-site. An approach that 

does not require special off-line testing uses signal processing techniques to detect the presence 

of backlash [89, 90]. One of these studies excites the joints with a band-limited random signal 

and monitors the coherence function between input and output [89]. Another study exploits the 

robot’s dynamics during its normal operating movements, and detects backlash using the 

Wigner-Ville distribution and correlation techniques [90]. These methods are very sensitive to 

Figure 25. Required motor torques when the tank is filled with fluids with different viscosity. The difference is 
negligible. Torques for the first joint are not shown since the link is not completely submerged. 
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noise, or they require the use of several accelerometers to reduce this noise sensitivity. 

Moreover, these studies are useful to detect the presence of backlash beyond a threshold, but 

not to identify its amplitude. Approaches that identify the amplitude of backlash have been 

proposed. Examples include a method that monitors the change in speed of the input gear due 

to the impact with the output gear [90, 91]. Another approach uses a neural network to identify 

and correct backlash positioning error [92]. All these methods require precise models of gear 

geometry and dynamics, including inertias and frictions, which are difficult to obtain and 

affected by the harsh environments considered here. In conclusion, the backlash identification 

techniques developed to date are not applicable to a robot exploring harsh, inaccessible, and 

unknown environments.  

4.3.2. The approach: simultaneous tactile mapping and backlash identification  

The manipulator explores the environment by touching the surface with its tip. The position 

of the probe tip, and therefore the contact point on the surface, is computed from the 

manipulator’s joint angles. If the joint torque is sufficiently high when the robot is pressing 

against a surface, the gears are forced to be in one side of the backlash play. Thus, backlash 

error can be compensated by subtracting the joint backlash amplitude from the encoder 

measurement.  

The approach proposed in this research simultaneously identifies both the surface and the 

backlash amplitude (see Figure 26). A surface primitive can be identified with few touch points. 

When further touch points are available on the same primitive, this additional information is 

used by the robot to estimate and compensate for its own backlash. The exploration and the 

backlash estimation then proceed hand in hand: the backlash estimation improves while a 

larger portion of the surface is touched; this improvement in turn increases the precision of the 

robot and therefore helps the correct identification of the surface parameters. The procedure 

stops when both surface and backlash parameters converge. In several situations for such harsh 

 

Figure 26. The approach for backlash compensation: simultaneous primitive estimation and backlash identification. 
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environments, the joint backlash can reach a few degrees per joint and it is the dominant source 

of measurement error. Other errors, such as imprecisions in robot kinematics, link deformation, 

and encoder resolution, will be smaller. Here, these secondary errors are treated as noise in the 

identification process. There are no dynamic effects, because the robot is motionless while 

touching a point. 

4.3.3. Backlash identification 

The variables used in this analysis are: 

QE Vector of encoder joint angles, corrupted by backlash 

QB Vector of joint rotations due to backlash 

QR Vector of real joint angle locations 

α Magnitude of joint backlash (vector) 

P Contact points location, in Cartesian coordinates 

β Surface parameters 

T Joint motor torques (vector) 

J Jacobian of the kinematic equations 

μ Vector of joint static friction coefficients 

It is assumed that joint encoder angles are known, and a rough estimate of the joint torques is 

estimated from the commanded torque to the impedance controller. The joint angle 

measurement error is assumed to be only due to the backlash: 

 R E BQ Q Q   (4.4) 

It is also assumed that the dominant error in forward kinematics is due to backlash. The 

errors due to imprecise kinematics, deformations, and finite encoder resolution are modeled as 

noise with a uniform Gaussian distribution with zero mean and variance 2
E : 

 2( ) (0, )R EP kin Q N    (4.5) 

The initial kinematic error due to backlash is assumed to be small enough to allow for the 

identification of the primitive types using uncompensated touch points. This assumption is 

valid in practice, because the backlash error is often consistent among close points, and the 

shape of a small patch is not substantially affected by the backlash. The primitive type defines 

the distance function d between the primitive, with parameters β, and a touch points P:  

 ( , )d d P   (4.6) 

For each joint j, the backlash model consists of a function f expressing the unmeasured joint 

rotation due to backlash QBj as a function of the torque Tj and of the amount of play in the 

transmissions αj. This function depends on the static joint friction, which prevents the joint from 

reaching the end of the clearance when the torque is low. The direction of backlash error 

depends on the procedure used to align the joint encoders. Here backlash is assumed to be 

symmetric and linear in α:   
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 ( )B j j jQ f T  (4.7)
 

For negligible joint friction, f(Tj) is simply the sign of Tj. With significant friction, the location 

of backlash is unknown when the torque is smaller than the joint static friction coefficient μ, and 

it is modeled as a uniform random number. Denoting rand(a,b) as a uniform distribution 

between a and b, the backlash model (Figure 27) is: 

 
if ( )

  ( )
( ), if

j jj j

Bj j j

j j j j

Tsign T
Q f T

rand T




  


  

 

 (4.8)

 

An estimate of μ is obtained by providing an increasing torque to the arm, and monitoring 

when the link starts to move. Precision on the value of T and μ is not critical because the 

backlash function returns one, independently of T and μ, when the torque is sufficiently high. 

To estimate the backlash values α, and to refine the primitive’s parameters β, the squared 

distances between the backlash-compensated points and their associated primitives is 

minimized. The approach is the same as the one introduced for the surface model construction 

in section 3.3.1. However, here the touch points are not constant anymore, but dependent on the 

backlash parameters. Using Eq.(4.4)-(4.7) and omitting the zero-mean random term since it does 

not affect the result, the least squares minimization (3.3) for the N touch points Pi can be 

expressed as: 

   
2

,
,

1

min ( ) ,i E i i

N

i

d kin Q f T
 

 


  (4.9)
 

This expression is a function of the robot kinematics, the surface (β and the function di), and 

the backlash (α and the function f). The minimization can be solved either by linearizing it or by 

an iterative nonlinear search. 

4.3.3.1. Linearization 

Since backlash is relatively small, and an estimate of the primitive parameters is available, 

the distance function can be linearized around the known values: 

 

Figure 27. Backlash model, considering the effect of friction. When torque is low, the real position of the backlash 
is unknown and a uniform probability distribution is used. 
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The linearized least squares problem becomes: 
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 (4.11)

 

The derivative terms in the above matrix are easily expressed as a function of the surfaces, 

the kinematic Jacobian and the backlash function. The required computational time for this 

approach is low. Unfortunately, the estimates obtained this way are biased and very sensitive to 

noise. This is not surprising, because the minimization of Eq. (4.9) includes the surface 

parameters, as in the standard primitive fitting of Eq (3.3), which requires specific nonlinear 

methods to be solved reliably. Thus, the linearized expression cannot be used to solve the least 

squares problem. Nevertheless, it has been introduced because, as discussed later, it provides a 

tool to determine which backlash parameters can be identified. 

4.3.3.2. Nonlinear formulation 

As explained in section 3.3.1, effective methods have been developed to compute a least 

square fit of geometric primitives [66-68]. To apply these methods, the minimization of Eq. (4.9) 

is rewritten, separating the backlash and surface contributions: 

  
2

1

min min ( ,, ),
N

i
i i Ei id Q TP

 
 



 
 
 

  (4.12)
 

The inner minimization of is only dependent on the surface parameters, while the contact 

points Pi are constant. Hence, the same method chosen for surface model construction can be 

used. A few iterations with a local least squares minimizer, such as the Levenberg-Marquardt 

algorithm, provide a good solution. The outer minimization, seeking the best backlash values, is 

more complex, because the function presents several local minima. A local minimizer would 

have the tendency to find only such minima; thus a global minimization algorithm is needed 

[93]. In this research, the Single-Linkage Multi-Start algorithm, a two-phase stochastic method, 

provided excellent results. In the first phase, the minimizing function is evaluated in several 

initial points, and these points are clustered according to their function value and their distance 

from each other. In the second phase, only one local search for each of these clusters is 

computed, using again Levenberg-Marquardt, and the best result among these searches is 

chosen.  

4.3.4. Small joint torques 

The identification procedure is based on the assumption that the position of a joint in the 

clearance is known to be in the same direction as the applied torque. When the torque is small 

this can be not the case, and the real joint position is unknown, as the random term in the 
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backlash model of Eq. (4.8) describes. This behavior creates two problems. First, the value of the 

backlash function is required in the minimization, as in Eq. (4.9), and only a probability 

distribution is available when torques are low. A good approach in this case is to use the mean 

of the distribution. 

The second problem is more complex: points recorded when some joints have small torques 

are more imprecise than those with higher torques. The approach used in this research consists 

in weighting the contribution of the points according to their uncertainty. In a general least 

squares formulation, the best linear unbiased estimator is obtained by weighting each 

measurement with the reciprocal of the measurement variance [94]. In this case, the 

“measurement” is represented by the distance between point and surface. Thus, the variance of 

this distance due to backlash uncertainty is computed, and its reciprocal is used as a weight. 

The minimization becomes: 

   
2

,2
1

,

1
min ( ) ,i E i i

i

N

i

d kin Q f T
 

 


  (4.13)
 

The variance is computed in three steps (Figure 28): 

1. For each joint j, the probability distribution of the backlash error QEj as a function of the 

torque Tj is defined by the backlash model, Eq. (4.8). To make computations feasible, the 

distribution of QEj is approximated as a Gaussian distribution with the same mean λ and 

variance σ2 as the original. For a fixed joint friction coefficient μj: 
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
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 (4.14)

 

If μj is not known with confidence, the uncertainty can be represented by describing it with a 

mean λμ and variance σμ
2. In this case, the distribution of QB smoothly changes as a function 

of T, and its variance can be expressed, after some algebra, as a function of the Gaussian 

error function: 

 

Figure 28.  Weighted least squares according to the uncertainty due to small torques and joint friction. 
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(4.15)

 

2. The probability distribution in joint space is mapped into Cartesian coordinates using the 

kinematic Jacobian J. The operation is linear because QE is assumed to be Gaussian-

distributed: the sum of random variables is the convolution of their distributions, and 

convolution of Gaussian distributions is another Gaussian with as mean and variance the 

sum of the means and variances. Therefore, the variance of the distribution in Cartesian 

space is the sum of the contribution of all the joints, plus the contribution of the random 

measurement error σe that was defined in Eq. (4.5). For the x component: 

 
1

2 2 2 2
M

x j e
j

xjJ  


   (4.16)
 

where j = 1…M represent the degrees of freedom of the robot. The same applies for the y and 

z components. 

3. Since the least squares minimizes the distance between points and surface, the only 

component of the error affecting the minimization is the component normal to the surface 

(Figure 29). Thus, only the component of the variance in the normal direction σn is used as a 

weight in Eq. (4.13) . Denoting by n the surface normal vector, this variance is: 

 
2 2 2 2 2 2 2
n yx x y z zn n n       (4.17)

 

This weighting system is computationally very fast as it involves only a few multiplications. 

Note that since Eq. (4.14) depends on α and the normal depends on β, the weights are a function 

of both backlash and surface: they are updated after every iteration of the minimization. The 

weighting system works as intuitively expected: if some points have small torques in joints that 

create some normal uncertainty, their variance will be higher and their weight smaller. The 

variance never goes to zero because of the presence of random measurement noise σe in Eq. 

 

Figure 29. Backlash generates error (and therefore uncertainty) in the distance function only when its effect on 
the tip position is normal to the surface. 
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(4.16). If this random term is high compared to the backlash, all the weights have comparable 

values.  

4.3.5. Identifiable parameters 

Since the identification procedure is performed simultaneously with the surface exploration, 

the backlash values are refined as larger portions of the surface are explored. In the initial stage 

of the search, or when the explored environment is small, not enough data are available to 

correctly estimate all the backlash values. Given the complexity of the minimizing function in 

Eq. (4.13), the estimation of a parameter without enough data could potentially lead to a wrong 

value, and compromise the success of the procedure. Therefore, a method is needed to 

determine which joints can be estimated, so that the minimization will include only those 

variables, while freezing the others.  

To determine if a parameter should be estimated, the linear model of Eq. (4.11) is used. This 

model is too simple to provide a precise estimate of the parameters, but it is sufficient to 

evaluate if estimates would be reliable. Let A denote the normalized version of the matrix with 

the derivative terms in Eq. (4.11). The normalization is needed because the parameters in A have 

different units (length and angle). Let TB A A , and let cB denote its condition number (the ratio 

between the largest and the smallest eigenvalues) 3.When cB is close to unity, all the variables 

can be found reliably. When cB is high, instead, some variables do not have enough data point to 

be estimated. To determine which variables, the eigenvectors of B whose corresponding 

eigenvalues are zero (or very small, in the presence of noise) are computed. These eigenvectors 

represent the relationship between the variables that cannot be estimated, given the current 

data. Therefore, the nonzero elements of those eigenvectors (or large enough compared to the 

noise) indicate which variables must be held constant in the minimization.  

This linear formulation determines whether a parameter can be reliably estimated given the 

points touched during the exploration. However, identifiability is different: it is the theoretical 

possibility to obtain the value after an infinite number of measurements. This is not a function 

of the process or the touched points, but only of environment shape and robot kinematics. 

Identifiability is useful to determine if a surface is appropriate to estimate all the backlash 

parameter, or as a check to decide whether to stop the exploration process if no more 

parameters can be identified. Here, identifiability is computed by evaluating the size of the part 

of the surface where each joint backlash has an influence. Only if this portion is large, compared 

to the size of random errors, there is enough information to evaluate the backlash. The influence 

of a joint’s backlash is evaluated with the function f(Tj) used for the backlash model (Eq. (4.8)), 

where Tj are the joint torques creating a force F0 normal to the surface and with magnitude 

defined by the impedance controller: 

                                                      
3 A computationally faster approach involves the QR factorization of  matrix A. But for few, sparse data the 

difference is negligible, on the order of the microsecond, and this approach is much simpler to implement. 
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TT J F n   (4.18)

 

The assumption of normal force is consistent with the observation, explained before, that 

only normal displacements create positioning errors. Therefore, f(Tj) behaves as desired: 

wherever backlash has influence, the torque Tj is high, and f(Tj) returns 1 (or -1). The final 

expression for Sj the portion of the surface that can be used to identify backlash in joint j, is a 

simple integration of this influence function (in absolute value) over the surface reachable by 

the robot tip, Sreach: 

  
reach

jj

S

S f T ds   
(4.19)

 

4.3.6. Representative case studies  

This section presents the results of the simultaneous mapping and backlash identification for 

two environments modeled in MatlabTM. The robot chosen for these studies has the shape of the 

laboratory prototype built for oil-well exploration, with all link lengths set to 1 m for simplicity.  

The environment is completely unknown and is composed of geometric primitives. Each point 

measurement is corrupted by both backlash and an independently distributed Gaussian noise, 

as in Eq. (4.5). 

The two environments are shown in Figure 30, together with the touch points at the end of 

an exploration trial. The first shape represents two barrels on a flat floor and it is explored from 

the outside; the second represents an L-shaped junction with a spherical cup, explored from the 

inside.  

In the first environment, the three joints have respectively ±1°, ±1°, and ±2° of backlash. Joint 

friction is such that in 46% of the sample points at least one of the joint torques is smaller than 

 

Figure 30. The two environments chosen in the case studies: two barrels, explore from the outside (left), and  L-
shaped junction, explored from the inside (right). 
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the friction coefficient, generating a uniform random location of the joint within the backlash 

play. The value of the friction coefficient is not known, but an estimate is available within 30% 

precision. Measurement noise is σ = 1 mm. 

The robot probes the environment sequentially, until no more points in the workspace can be 

reached. Backlash is estimated and compensated during the computation, thus increasing the 

surface precision. Figure 31 shows the estimation of backlash and primitives as a function of the 

number of points touched on the surface.  The top curve describes the error in the estimation of 

the three joint backlash values. The bottom curve shows the improvement on the parameter 

estimates of the four primitives (four because the tops of the two barrels are geometrically the 

same plane). The goodness of the estimated primitives is evaluated with a normalized similarity 

measure that includes primitive position, orientation and dimensions, divided by a 

representative dimension. The amount of backlash at the end of the study is estimated with an 

average error on the three joints of 0.015°, which is 1.3% of the real backlash value. The backlash 

compensation greatly increases the precision of the reconstructed surface: as an example, at the 

end of the simulation the radius of the barrels is retrieved with accuracy of 99.8%, against an 

accuracy of 94.4% without backlash compensation. The change in time shown in Figure 31 is 

also interesting. The backlash in the first joint could not be estimated before 50 points, and its 

value was not computed. The precision of backlash and surfaces go hand in hand, and it greatly 

increases when new surfaces are discovered.  

The second case study, in the L-shaped environment on the right of Figure 30, has been 

performed with the same robot, but in different conditions: double noise (σ equal to 2 mm) and 

smaller backlash (α equal to ±0.5°, ±1°, ±1°). Backlash is therefore harder to identify. As 

expected, this implies a slower backlash and parameter estimation, as shown in Figure 32. 

Nevertheless, the final estimates are good: the final average backlash error is 0.03° (3.3% of the 
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Figure 31. Progress of the backlash (top) and surface (bottom) estimates for the two barrels environment, when more 
touch points become available. The similarity measure to evaluate the fitted primitives includes position, orientation 
and dimensions. 
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real backlash value), and the radius of the spherical cup has a precision of 99.7% relative to the 

real value. 

4.3.7. Experiments 

The backlash compensation method has been tested in two sets of laboratory experiments, 

first with a simple planar manipulator, and then with the spatial oil-well prototype 

manipulator.  

4.3.7.1. Planar Manipulator 

In this experiment, a planar robotic manipulator explores an unknown environment made of 

a single straight line, see Figure 33. Both joints have the same motor-encoder-gearbox unit. 

Measurements in the joints have very high resolution (250,000 counters per rev), but they 

present large backlash. This backlash has been measured statically to be 0.97°. This agrees with 

the manufacturer information. Joints also present significant elasticity, but its effect can be 

avoided by reducing the applied torques at the moment of recording a contact point location. 
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Figure 32 Progress of the backlash estimate for the L-shape while more points are touched. The detection of a 
primitive is shown by its name on the graph. 

Figure 33. Planar manipulator used in the line probing, and detail of one of the motor-gearbox units. 
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The static joint friction coefficient is approximately 0.2 Nm.  

As the manipulator autonomously explores the environment, the line parameters and the 

joint backlash are iteratively estimated online. At the end of the exploration, the line is probed 

in 19 points. The final estimated backlash values are 0.96° and 0.94°, very close to the values 

measured statically. Figure 34 shows the touched points with and without backlash 

compensation, together with their best fit line. Compensation greatly improves the precision: 

the average error of the points from the real line decreases from 2 mm to 0.25 mm. 

4.3.7.2. Spatial Manipulator: the Oil-Well Exploration Prototype 

The second set of experiments studies backlash compensation with the prototype 

manipulator for oil-well exploration. For such robot, both backlash play and joint friction are 

slightly dependent on the configuration, mostly because of the bevel gears in the transmissions. 

The average backlash value in the three joints is respectively 1.4°, 1.1° and 2.6°, and the average 

static joint friction is 1 Nm, 0.7 Nm and 0.1 Nm. 

First, the algorithm was tested in the modeled oil well junction (Figure 16). In this 

environment, the robot’s first joint axis is aligned with the main cylinder’s axis, making most of 

the environment radial symmetric with respect to the robot. With such geometry, backlash in 

the first joint is tangent to the surface, and it does not create any error, but it also cannot be 

identified. This can be shown evaluating the size of the surface where the joint has influence. 

The total surface that can be touched is 760 cm2, while the surfaces Sj where backlash has 

influence, computed using Eq. (4.19), are respectively 80, 750 and 700 cm2 for the three joints. 

The value for the first joint is very small, and cannot be identified; the other two joints, instead, 

can be correctly estimated. 

Second, to show a situation where backlash in all joints can be estimated, an experiment with 

an environment composed of three straight planes was performed (Figure 35). The same 

exploration strategy as in the simulations has been used. Results for the final, mapped surface 

Figure 34. Probed points and best fit lines with and without backlash compensation, showing the improvement 
obtained with compensation. The two axes have different scales. 
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and the behavior of the backlash estimates are shown in Figure 35. The final estimated backlash 

values are respectively 1.38°, 1.15°, and 3.09°, which represent a percentage error of 1.2%, 8.3%, 

and 18% compared to the statically-measured values. There reason why these values are not as 

close as in the previous experiment lies on the complexity of backlash in this prototype robot. 

The precision on the final surface is highly increased. This is evaluated comparing the root 

mean square distance from the touched points to the planes that they fit: without backlash 

compensation the RMS distance is approximately 3.2 mm, while with compensation this is 

reduced to 1.1 mm. 

 

Figure 35. Exploration and backlash estimation of the three-planes environment by the prototype manipulator. Left: 
robot and environment. Center: the reconstructed surface, with the touched points. The intensity of the points 
indicates the amount of torque in the first joint, correlated to the identifiability. Right: progress of the backlash 
estimate while more points are touched. 

 Application: Mapping an Oil Spill Site 4.4.

This paragraph shows the importance of the robustness to very harsh environmental 

conditions by proposing an application during a critical operation such as the intervention after 

an underwater oil spill. The application is investigated experimentally using a laboratory-

reconstructed underwater environment. 

4.4.1. Motivation 

The collapse of the offshore oil-drilling platform Deepwater Horizon in the Gulf of Mexico 

resulted in the largest marine accidental disaster in history [95, 96]. The final closure of the spill 

was accomplished by drilling a relief well five months after the accident. Temporary solutions 

to limit the spill heavily relied on Remotely Operated Vehicles (ROVs), and the only solution 

capable of stopping the spill was the placement of an oil wellhead, three months after the 

accident. All the temporary attempts before that have failed, mostly because of the harsh 

operating environment, and fifty thousand barrels of oil per day escaped into the ocean through 
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three breaks in the pipe that connected the well-head drilling platform and then lay on the 

seabed. 

Knowledge of the shape and dimensions of the cracks would have provided critical 

information for the repair work. However, vision sensors, normally used for the robot control, 

were hindered by clouds of escaping oil (Figure 2). Lasers and sonar were unreliable due to 

strong turbulence and methane gas mixed with the oil. Deposits of dirt, mud and oil composites 

accumulated on the surface of the wreckage, and the flow noise from the fast moving hydrates 

and oil made sonic sensors ineffective.  

4.4.2. The approach 

The approach developed in this research only requires a manipulator provided with joint 

encoders, which is readily available in most of the ROVs operating underwater. Hence, this 

approach could have been used during the attempts to control the escaping oil to map the shape 

of the oil-spilling cracks. This approach requires a manipulator mounted on a stationary base. 

When exploring an underwater accident site, the base is the ROV itself, which can lie on the 

ocean floor or anchor itself to an existing fixed structure such as a pipeline (Figure 36). If the 

ROV cannot be fixed, the method needs to account for base movement. Methods exist in the 

literature, but this topic is beyond the scope of this research [57, 97]. 

4.4.3. Experiment 

The effectiveness of the approach has been evaluated in a laboratory experiment reproducing 

sea floor conditions such as those near the broken leaking pipes of the Deepwater Horizon. The 

environment represented in Figure 37 presents a rusty, truncated steel pipe, two perpendicular 

planes covered with gravel and dirt, and a stone of irregular shape. This environment is 

autonomously mapped, without any a-priori knowledge. 

 

 

Riser pipe

Crack with 

spilling oil

Anchored ROV

with robotic 

manipulator

 

Figure 36. Schematics of the approach to tactilely map the shape of a crack in an oil-spilling underwater pipe using a 
robotic UAV. 
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Figure 38 represents the result of an exploration trial. The exploration strategy was able to 

identify the underlying shape of the structured elements in the environment with few data 

points: 18 points for the pipe, 12 for the sea floor, and 17 for the lateral graveled surface. Once a 

shape was identified, the robot moved to a different, unknown location; this allowed the 

reduction of the total exploration time. The irregular stone could not be described as any 

combination of primitives, and more data points were needed to represent it as a triangular 

mesh. 

Figure 38. (Left) Manipulator exploring the reproduced submersed crash site. (Right) the reconstructed surface after 
the exploration, showing the final surfaces and the touched points 

Figure 37. Environment reproducing sea-floor conditions such as those near a broken oil pipe. 
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 Conclusions 4.5.

This chapter validated the robustness of tactile exploration when applied to very harsh 

environments.  

Surface roughness and deformations are shown to reduce the speed of the exploration, 

without compromising the robustness of the operation. The submersion in heavy and viscous 

fluids was shown not to alter the performance or the requirements of the exploration algorithm. 

On the other hand, joint backlash could potentially compromise the procedure. This chapter 

develops method to compensate for backlash, by simultaneously identifying the unknown 

surface and the backlash magnitude. This method is shown to be effective in both simulations 

and experiments.  

Finally, the robustness to map a very harsh environment has been tested experimentally, by 

exploring a laboratory reproduction of an underwater oil-spilling pipe. 

  



 

 

Chapter 5       

Exploration Strategy 

The previous chapters show the feasibility of tactile exploration when mapping a harsh 

environment with a manipulator provided with only joint encoders. They show the importance 

of the exploration strategy when time is a key performance parameter, and propose a simple 

strategy, which is easy to implement and performs well in simple environments (section 3.4.2). 

However, this strategy can be improved. First of all, it does not use all the available 

information, but only the touched points. Furthermore, it fails when exploring complex 

environments which require non-trivial motion planning, such as a change in robot 

configuration to reach partially occluded areas. This chapter reformulates the problem, and 

develops a new approach to determine the exploration path using concepts from information 

theory. The key concept is to quantify the knowledge of the environment, and choose the path 

that maximizes the expected received information, discounted by the path length. Information 

about the environment is obtained by the touched points, the reconstructed surface, and the 

robot trajectory, since the volume the robot passes through needs to be free of obstruction.  

The problem is approached in two steps. First, the approach is formulated for the case of a 

point robot in a two-dimensional environment. Second, the same approach is extended to a 

planar and then a spatial manipulator with joint angle limits and finite thickness, using the 

concept of configuration space.  

 Background 5.1.

A motion planner is an algorithm that determines the motion required to complete a 

specified task. The typical example is path planning, the determination of a feasible path 

connecting two locations, the start and the goal. Exploration is similar to path planning, but it 

does not have a goal location; the objective becomes to generate a map of the unknown part of 

the environment. Motion planning has been widely studied in the literature, and it still 

represents an open research area. Several books and survey papers are available on the topic 
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[17, 75, 98-104]. This section summarizes the important concepts that are needed to understand 

the approach introduced in the chapter. 

5.1.1. Completeness and optimality 

There are two desirable properties for a planning strategy: completeness and optimality [75]. 

A strategy is complete if it is able to establish whether a solution to the problem exists, and, if it 

does, to determine it. Completeness is a difficult property to achieve in practical planner, and 

two weaker definitions have been introduced. A strategy based on the discretization of the 

environment is resolution-complete when it guarantees completeness only if the discretization if 

“fine enough”. A strategy based on random sampling is probabilistic complete if it can find a path 

with high probability when such a path exists; no assurance is implied, if no path exists.  

The second important property, optimality, requires a payoff (positive) or a cost (negative) 

function to evaluate the goodness of a strategy. Such function can be the length of the traveled 

path, or the amount of acquired information. A feasible strategy is optimal when its payoff 

function is maximized (or the cost is minimized). 

For the case of autonomous tactile exploration in limited time presented here, these 

properties should be read as follows. A complete strategy will be able to explore every part of 

the accessible environment. An optimal strategy will do it in the shortest time, and therefore 

minimize the distance the robot travels. 

5.1.2. Configuration space 

The configuration space (C-space) is a useful concept for path planning [98, 105]. The 

configuration of a robot is described with a finite number of variables. For a manipulator, the 

configuration is represented by its joint angles (and joint velocities, if dynamics is considered). 

For a mobile robot, the configuration is defined by its position and orientation (and velocity, 

with dynamics). The configuration space is the space of all the possible robot configurations. A 

single configuration is represented by a single value of for each robot’s variables. Therefore, the 

robot’s configuration is always represented by a single point in C-space, independently of its 

shape. Similarly, a path in C-space is a continuous set of configurations represented by a one-

dimensional curve. 

An obstacle in the environment limits the robot’s movements, and some robot configurations 

cannot be reached. The set of all the configurations limited by an object is the map of the object 

into C-space, and is called C-obstacle. By mapping all the obstacles in C-space, the whole 

environment can be represented.  

Since the robot is a point in C-space, and its path is a curve, motion planning in C-space 

becomes a simpler and more general problem. Independently of the robot’s type, the objective 

of path planning is to connect the start and goal configurations with a continuous curve, 

without intersecting any C-obstacle.  
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The complexity of planning in configuration space is determined by two factors. First of all, 

the dimension of the space is the number of robot degrees of freedom. Second, mapping the 

environment into C-space is a very complex and computationally-intense problem [106]. 

Analytical maps have been developed, but they are often limited to very simple robots and 

environments. Usually, the mapping is either computed by discretization, or it is never 

computed explicitly. 

5.1.3. Classification of motion planners 

Motion planning algorithms are most commonly classified in four categories: 

1. Grid-based planners. The environment is approximated with a grid, and then standard graph-

search methods (depth-first, breadth-first, A* and so on) are used to determine a path. These 

planners are resolution-complete, and resolution-optimal. Since each dimension needs to be 

discretized, they cannot be applied when the dimension of the configuration space is high 

(more than three). 

2. Roadmaps. Called also “geometric algorithms”, these planners capture the connectivity of the 

environment with one-dimensional curves, called roadmaps, joining specific locations in the 

environment, called nodes. The planner moves to the closest node, travels on the roadmap 

up to the closest node to the goal, and from there to the goal. There are different ways to 

construct a roadmap, including visibility roadmaps [107] and Voronoi Diagrams [108]. These 

algorithms are usually complete and sometimes optimal, but they can be only applied to 

simple problems.  

3. Potential Fields. These planners treat the robot as an electrical charge, the goal as a charge of 

opposite sign, and obstacles as charge of the same sign [109]. The potential field generated 

by these charges guides the robot through the obstacle towards the goal. These algorithms 

are not optimal nor complete, as the robot tends to get trapped into local minima.   

4. Sampling-based planners. These planners use a very different approach [110, 111]. Since 

mapping the environment in C-space is complex and computationally intensive, sampling-

based planners avoid this mapping and do not construct any explicit model of C-space. 

Instead, the configuration is sampled in several points, and a path between start and goal is 

constructed by connecting the feasible points with each other. Different strategies to sample 

the C-space and connect the sampled points exist. Sampling-based planners are usually 

divided in single-query or multiple-query algorithms, according to the number of 

operations that are performed on the same environment. Since no explicit representation of 

the C-space is needed, sampling-based planners can be applied to high-dimensional C-

spaces such as those of a manipulator. Most sampling-based planners are probabilistic 

complete (if they sample randomly), or resolution-complete (if they sample with a grid with 

increasing density). They are usually not optimal, but some recent approaches developed 

versions that tend to an optimal solution as the number of samples increase [112].  
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5.1.4. Planning horizon  

Oftentimes, planning does not involve a single movement, but consists of series of separated 

steps where any following step is affected by the previous movements and by events that can 

occur between steps. A simple example is a chess game, where a good player plans several 

moves ahead, also considering the unknown moves of his opponent. The same situation occurs 

in exploration, where the data acquired after a movement changes the knowledge on the 

environment, and therefore subsequent movements. 

The overall performance of a strategy is evaluated as the final payoff. Therefore an optimal 

planner should consider all the movements up to the end, to choose the series of steps to 

maximize the final payoff. When unknown events occur between the steps, the optimal strategy 

cannot be known a priori. Nevertheless, the planner can compute the expectation of the final 

payoff, and use that expectation to compute optimality. 

This computation becomes very complex with a high number of steps (n) and a high number 

of choices at each step (branching factor - b), because the number of combinations increases 

exponentially as bn. Therefore, computing all the possible combinations becomes unfeasible. The 

number of steps that a planning strategy considers is called planning horizon. Often the 

computation is so complex that only one step is computed; this case is also known as a greedy 

strategy. 

5.1.5. Entropy  

Entropy is a fundamental concept in information theory, which represents the uncertainty 

associated with a random variable. For a discrete random variable X with n possible outcomes 

{x1 , …, xn} and probability function p(X), the entropy is defined as: 

 
  
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( ) ( )log ( )n

n

n
k

H X p x p x


    (5.1) 

If X is a binary variable, the entropy can be expressed as a function of the probability of one 

outcomes P1 = p(x1): 

    11 1 1( ) log 1 log 1H X P P P P      (5.2)
 

Figure 39 shows the entropy H for a binary variable as a function of P1. The interpretation of 

entropy as lack of information is evident in this case. When P0 is zero or one, the value of the 

binary variable is known with certainty, and entropy is zero. When P0 = 0.5, the outcome of the 

binary variable can be any of the two with equal probability, and the lack of information is 

maximum. 
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Figure 39. Entropy for a binary variable. 

 Previous Work in Exploration 5.2.

Several techniques have been proposed to guide a robot’s movements to build a map of an 

unknown environment. Seminal works in robotic exploration focused on graph-like 

environments [113], or on the detection of only specific features in the environment [114]. A 

common method, called frontier-based exploration, determines a frontier between the explored 

and unexplored regions, and moves the robot to visit the nearest point on the frontier [115]. 

Another strategy extends this concept by considering the amount of seen and unseen area with 

a range sensor [116]. Other strategies have been developed for similar problems, such as 

surveillance or mine sweeping [117].  

The idea of maximizing the information obtained with the next action is introduced in [118], 

where the exploration is modeled as a Markov Decision Process and an optimal solution is 

sought. The approach has first been applied in computer vision to the problem called “Next 

Best View”, the determination of the next location for a camera to completely scan an object 

[119-121].  The same concept has been applied to robotic exploration, where the next 

measurement is chosen to maximize the amount of acquired information by reducing the 

entropy of the environment [122-127]. The extension to a manipulator in configuration space 

has been studied [128], by mounting a camera on top of a manipulator. 

These concepts cannot be applied to the problem of tactile exploration with a manipulator, 

for two reasons. First, a range sensor (usually a stereo camera) is always used to acquire 

information. The range sensor allows them to safely move to a new location, and then take a 

measurement in such location. This effectively decouples the two problems of path planning 

and entropy reduction, because the entropy is associated to only the location where the 

measurement is taken. In tactile exploration, information is acquired only when the robot 

moves in an unknown location, and there is no measurement at the end of the path. The 

information gain is therefore associated to the robot path and not to the end point. For instance, 

several paths to the same locations will provide not only a different movement cost, but also 

different entropy. Second, the approaches proposed in the literature consider a mobile robot or 
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a point camera. In such cases, there is no need to use the configuration space for path planning. 

The use of a manipulator with the same approach has been proposed in [128], but the 

information gain is completely computed in configuration space, and is missing some important 

information that would be crucial for tactile exploration, as explained later.  

The entropic approach has been also applied to tactile perception [26-29, 45], developing 

interesting strategies to guide the robot’s movements to locate and identify known objects. 

However, they only identify an object among a set of models and cannot be used to explore an 

unknown environment.  

 Tactile Exploration with a Point Robot 5.3.

This paragraph introduces the entropy reduction approach for tactile exploration, by 

applying it to a simple case: a point-robot exploring a planar environment composed of 

intersecting primitives such as lines and circles.  

The objective of the exploration strategy is to determine the best movements to explore the 

environment in the shortest time. An optimal strategy is impossible to obtain when the 

environment is unknown: the optimal path can only be computed once the whole environment 

is known (see [17]). The best that can be done is an optimal strategy given the knowledge 

acquired so far. However, an exploration horizon greater than one is very complex to 

implement, because the map can drastically change after each step. Here, a greedy strategy is 

implemented that considers only one single exploration movement. The approach can be 

summarized as follows:  

1. The whole environment is discretized into cells using an equally spaced grid [129].  

2. The state of each environment cell c can be either empty or occupied. Therefore, each cell is 

assigned an occupancy probability PC, ranging from 0 to 1. In this work, PC is defined as the 

probability of being empty. Two types of information are used to determine cell occupancy: 

the volume swept by the robot’s movements and the partial reconstructed map.  

3. Once the probability is known, the entropy of each cell can be determined using Eq. (5.2). 

Entropy reflects the lack of information on a cell: when PC is either 1 or 0 the cell is known 

and H=0; when PC=0.5 the cell has no information and H is maximized (see Figure 39).  

4. Entropy provides a measure of the lack of knowledge about the environment. A region 

where cells have low entropy is known to be empty or occupied with high confidence. The 

total lack of knowledge of the environment is simple the sum of the entropy of each cell. 

Hence, the best exploration strategy reduces the environment entropy with the smallest 

movement cost. Since the environment is unknown, only an expected value of this reduction 

is used. For each candidate path, the amount of expected entropy reduction (-ΔH) and the 

movement cost C are computed. The path with highest ratio of entropy reduction over cost 

is chosen and executed. Their ratio is the payoff function: 
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The exponent α, called aggressiveness factor, weights the effect of movement cost. With a 

smaller α, longer paths will be chosen. This is often desirable, mostly in complex and 

constraining environments, because it tends to compensate for the lack of long-term planning of 

a greedy algorithm. In this work, α is considered constant. Nevertheless, nothing prevents a 

more complex strategy which changes α dynamically. 

The payoff function in Eq. (5.3) uses two separated expectations for the entropy and the cost. 

Another option for the payoff function is /H CE    . The two functions are not equivalent 

since entropy and cost are correlated variables. However, both formulations can be 

implemented with the same steps and complexity, with very similar results in practice. In this 

work, the formulation in Eq. (5.3) has been chosen, so that expected entropy and cost can be 

treated separately. 

This approach computes an occupancy map of the whole environment. However, this map is 

only used for path planning, and not as a representation of the environment. The real 

environment map is still a boundary representation made of a composition of geometric 

primitives, as described in section 3.3. This boundary representation is computed every time a 

point is touched, and it is used by the motion planner to determine the locations where the 

robot is allowed or not to move, and to calculate the occupancy probability of each cell. Since 

the occupancy map is not used as a final map but only to compute the best path, the density of 

the grid does not need to be high.   

The following two paragraphs describe the details of concepts mentioned in points 2 and 4: 

how to obtain the occupancy probability of the environment given the swept region and the 

touch point measurements, and how to compute the expected entropy reduction, given the 

occupancy probability of the environment. 

5.3.1. Occupancy map definition 

This section proposes an approach to obtain the occupancy probability of the environment. 

At the beginning of the search no information is assumed, therefore the initial value of each cell 

is PC=0.5, the least informative value. When data on the environment are acquired, the 

occupancy probability changes accordingly. There are two types of information used to 

determine cell occupancy. First, a cell where the robot passed without hitting any obstacle must 

be empty. More specifically, the cell is empty if the robot’s position sensors are assumed to be 

perfect. If the sensors have some uncertainty, then the probability will reflect this uncertainty. 

The second type of data is the surface reconstructed with the currently available data. Contact 

points will have PC=0 (or very low, in case of noise). These points are also used to fit the 

probable shape of the surface, which affects the occupancy probability on the surrounding cells.  
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Most often in the literature, the occupancy probability of each cell is independent of the 

probability of any other cell [17, 126, 130]. This assumption highly simplifies the calculations, 

because each cell can be treated independently. Bayes’ rule can be used to update each 

measurement at each cell, and a stable and fast logarithmic formulation of the binary entropy 

can be introduced. However, this is a very strong assumption, and it would only be true if the 

environment were populated by objects smaller than the size of a single cell and uniformly 

distributed in space, like a cloud. In a real environment, surfaces are continuous, and this makes 

the occupancy of a cell correlated with the occupancy of neighboring cells. Nevertheless, when 

range sensors are used, the gain in simplicity and efficiency is enough to justify the loss of 

information. 

 This is not true with tactile data. Tactile exploration provides only a little amount of 

information: touched points are few, sparse, and time expensive. Hence, the cell independency 

assumption is not acceptable. This work proposes a method to define correlation between 

neighboring cells based on the physical geometric intuition. 

Ideally, the probability of a cell c being empty could be defined as the total number of 

feasible surfaces where c is empty, divided by the number of all possible feasible surfaces.  

 
all feasible surfaces  

all feasiblesurfaces
C

whereC is emp
P

ty




 (5.4)

 

A feasible surface in this case is consistent with all the available measurements: the swept 

region and the reconstructed surface. The total number of feasible surfaces is impossible to 

count. To compute an approximated value, this work uses an assumption based on the accuracy 

required for the reconstructed surface. Section 2.2 defined the parameter B as a “characteristic 

length” of the environment: the size of the smallest feature to be found in the exploration. Here, 

B is interpreted as the minimum expected radius of curvature of the unknown surface to be 

explored. More precisely, it is assumed that the unknown surface can be reconstructed as the 

envelope of a “solid ball” of radius B, and the free space can be reconstructed as the envelope of 

a “hollow ball” of radius B (see Figure 40). This condition is slightly stronger than a minimum 

curvature radius, because no thin walls or thin orifice of size smaller than 2B are allowed. The 

term ball is used because the approach works equivalently in 2D and 3D: balls are circles in 2D 

and spheres in 3D. 

This assumption provides an easy way to count the possible surfaces passing through a 

point. Since every point is inside either a solid or a hollow ball, one way to estimate the number 

of surfaces is to count the number of feasible (i.e. consistent with both S and R) hollow or solid 

balls including the point. The occupancy probability becomes: 

 
all feasibleballs of radius wherec isempty

all feasibleballs of radius 
CP

B

B




 (5.5)

 

For each cell, the number of feasible balls is computed by evaluating the area where the 

centers of these balls can lay: 
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Figure 40. The environment is assumed to be described as the envelope of “solid” and “hollow” balls of radius B. 
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This formula can be computed with only two operations. First, the swept region and the 

reconstructed surfaces are expanded using a binary dilation with a ball or radius B as a 

structuring element. The dilation of two sets A and B, also known as Minkowsky sum, is the 

results of adding every element of A to every element of B (Figure 41): 

   | ,A B a b a A b B       (5.7) 

Second, ,feas emptyA and ,feas fullA  are computed with a convolution of the expanded map and the 

same ball of radius B. Details underlying this process are not necessary for the understanding of 

the following parts, are are reported in Section 5.9 through two examples. 

The result of these two operations is a distribution where cells swept by the robot and in 

front of the surface have PC=1, cells behind the surface have PC=0, and the probability of 

neighboring cells fades nicely with increasing distance from the swept region or the surface. 

When a cell is further than 2B from them, this cell is unaffected and PC=0.5. Figure 42 represents 

the distribution obtained with a rectangular swept region and a reconstructed line. The right 

plot shows the fading effect for a fixed value of x. The fading function depends on the geometry 

of the swept region and the reconstructed surface. When the frontier of the swept region is a 

line, as in the lower part of Figure 42, the distribution decays with the following function: 

 

 

Figure 41. Dilation of A with element B, or Minkowsky sum of A and B. 
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     1 2( ) cos / 1 21CP x x B xx Bx       (5.8) 

5.3.2. Expected entropy  

Once the occupancy probability on the whole map is determined, its entropy is readily 

obtained using Eq. (5.2). The value of a path is computed with the payoff function, Eq. (5.3), 

which needs the expected reduction of entropy and the expected movement cost due to a path. 

There are two challenges to compute this formula. First, the number of paths to any point is 

infinite (if there is at least one). In this section, the only paths considered are straight lines 

starting from the robot location. More complex paths will be considered in the following 

section. 

The second challenge is the calculation of the expected entropy and cost. The robot needs to 

move into an unknown location to acquire some useful information, and it must expect to 

encounter an obstacle on its way. The procedure is assumed to stop if the robot either reaches 

the end of the path, or is blocked by the environment. Therefore, the expected entropy and cost 

values need to consider all the possible stops at any point in the path. This can be expressed 

recursively.  

Figure 43 represents a discretized path from cell 0 to cell n, and the expected entropy 

decrease due to the path is computed. Let kP  denote the probability of cell k being empty, and 

k
P  the probability of being occupied. Since the sum of the probability is one, 1 kk

P P  . Starting 

from cell 1, the expected entropy decrease with the path from cell 0 to 1 is the sum of the 

Figure 42. Probability distribution of the cells close to a rectangular swept region and a reconstructed surface line. The 
intensity represents the probability: PC=0 is dark grey and PC=1 is white. The right plot shows the probability 
distribution for the section indicated with the arrows. Units are normalized to the parameter B.   
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entropy reduced if cell 1 is empty ( 1
sweepH ) and the entropy reduced if cell 1 is occupied 

 ( 1
touchH ), weighted by the probability of being respectively empty or occupied: 

 1 1 1 11

sweeptouchH PH HP     (5.9)
 

If cell 1 is empty, the robot will move to cell 2, and so on until it reaches cell n. The final 

expected entropy is sum of all the cell contributions, discounted by the probability of reaching 

the cell, and can be written recursively: 
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The symbol | indicates conditional probability. For instance, P2|1 indicates the probability of 

cell 2 to be free, given that cell 1 is free. The conditional probability is different from the 

unconditional probability because of the assumption of correlation between cells (section 5.3.1). 

The product of the conditional probabilities |1,.
1

.., 1

1

k k

n

k

P






 represents the probability of reaching 

cell n from cell 0 without hitting any obstacle. This product reduces the effect of cells far from 

the robot: since those cells have a lower probability of being reached, their expected entropy 

reduction and cost are low. Increasing the density of the grid, the number of cells between two 

locations increases and so does the number of elements in |1,..., 1k kP  . However, the conditional 

probability Pk|1,…,k-1 is also dependent on the grid size: it is small for a large cell and tends to one 

with an infinitely small grid. One could even define the correlation between cells so that the 

probability of reaching cells is independent on the grid size. However, several assumptions 

would be needed to apply such distribution to multi-dimensional cases, and this work prefers 

the use of the formulation introduced in section 5.3.1.  

To compute the expected cost, a similar recursion is formulated. Denoting the distance 

between two cells by Δx, and the cost of touching a point by φ (expressed in a unit comparable 

to Δx), the total cost is: 
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Figure 43, Computation of expected entropy when the robot is moving from its location, cell 0, to the end of a 
path, cell n. 
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Once both the expected entropy reduction and the path cost are known, the payoff function 

can be computed. The path with highest payoff will be executed. 

Some simplifications are needed to implement Eq. (5.9)-(5.11). These are treated in details in 

Section 5.9. 

5.3.3. Representative case 

As a representative case, a point robot was simulated in a simple environment made of two 

lines and a circle, see Figure 44. The robot starts in the middle of this environment, without any 

a-priori information. The robot position is assumed to be corrupted by random measurement 

noise. This noise creates positioning error. Since the point is assumed to be a manipulator (and 

not a mobile robot), the positioning error is independent at any time (and not cumulative).  

The entropy reduction algorithm is not used at every step, but only once the surface that is 

currently being explored has been recognized as a primitive. Before that time, the Uniform 

Surface Density search algorithm described in section 3.4.2.1 is used. This is because one point 

does not provide enough information to identify the underlying surface. Intuitively, only when 

a surface has been discovered it is worth spending time to decide where else to go; otherwise 

new points nearby provide a very high amount of information. However, nothing prevents the 

use of the entropy approach for the entire tactile exploration. 

Figure 44 depicts the following instants of the exploration: 

1. The robot starts in the middle of the environment to be explored. The robot movement is 

also limited by a workspace, represented by the dashed square. 

2. The robot chooses a random direction, and probes a few points using the USD algorithm. 

The shading represents the entropy of the environment. The entropy is nearly zero where 

the robot has passed. 

3. Once a line has been identified, a new exploration direction is chosen using the entropy 

reduction approach. From the robot location, all the paths along straight lines are evaluated. 

The intensity of a region represents the payoff of the straight path to that area. The best path 

is the straight line toward the double circle. 

4. Once the path has been chosen, the robot proceeds along it until it either touches the 

environment or reaches the final point. 

5. The second line has been detected using USD and the robot chooses the direction that is 

expected to minimize the entropy. 

6. The process continues until the whole environment is explored. In this last frame, the third 

primitive (the circle) has been identified. 

 Tactile Exploration with a Planar Manipulator 5.4.

This section extends the entropy approach to a manipulator with nontrivial kinematics and 

finite thickness. The use of a manipulator instead of a point introduces several challenges. The 
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manipulator’s movements are constrained by the environment in a way that depends on the 

manipulator’s shape and kinematics. Furthermore, a manipulator can reach the same tip 

location with different configurations. These configurations are not equivalent, because the 

environment shape might collide with the links in some configurations but not in others. The 

concept of configuration space introduced in section 5.1.2 becomes a necessary tool. 

A simple representative case is considered (Figure 45). The robot is a two-degree of freedom 

manipulator with its base fixed on the environment. Both joints have limits: (-180º, 0º) for the 

first, and ±110º for the second. These limits constrain the workspace to the dashed black line in 

Figure 45. On the right, the configuration space without any obstacles is represented: the axes 

are the two joint angles, limited by the joint limits; the robot itself is a dimensionless point, 

representing the joint configuration. The environment to map for this representative case is 

composed of two lines and a circle. Figure 46 represents this environment and its map into 

configuration space.  

5.4.1. Planning in workspace or C-space 

There are strengths to planning the path in C-space and in workspace. The tradeoffs of the 

different methods are presented in this section.  

Figure 44. Entropy reduction strategy for a point robot in a 2D environment composed of two lines and a circle. 
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5.4.1.1. Strengths of C-space     

The C-space is a very powerful tool for path planning. By mapping the robot into a point, 

problems such as the change in robot configuration are simplified. As an example, the dark 

(blue) robot configuration shown in Figure 46 cannot easily touch the vertical line on the left in 

its original configuration. The robot needs to move to the right, change configuration, and come 

back. This problem is much easier in C-space, where the point-robot only needs to find a path 

from one configuration to another. This simplification lead to the use of configuration space in 

the vast majority of works in motion-planning [75, 98, 99].  

A second advantage of C-space is particularly useful in the application considered here, 

tactile exploration with only position sensors. When the robot detects contact, the contact 

location is not certain in workspace, because it can be occur anywhere over the manipulator’s 

link. On the other hand, the contact location in C-space is known and often extremely 

informative for a serial manipulator. Let n denote the degrees of freedom of the manipulator. If 

contact occurs on link n, the C-space constraint is a single point: the configuration in contact. If 

contact occurs at link k≤n, the constraint is a subspace of dimension n-k: a fixed value of the 

joints 1...k and each value of the joints k+1…n. For example, in two dimensions, if the first link 

touches the environment, the C-space constraint is a vertical line, because the first link is in 

contact for every value of the second joint. 

5.4.1.2. Strengths of workspace 

The use of the workspace in the entropy approach also has several advantages: 

Figure 45. (Left) Planar manipulator in an empty environment. The dashed line is the space reachable by the robot 
tip, the workspace. (Right) Configuration space representation of the same robot. 
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1. The dimension of the C-space is the number of the robot’s joints. The discretization in a grid 

would not be feasible for robots with more than three joints. As an example, the standard 

industrial 6-dof robot has a six-dimensional C-space, and a rough grid with 50 cells per 

dimension would require more than 15 billion cells. On the other hand, the workspace has 

at most three dimensions (except maybe for theoretical physicists), and it can be discretized. 

The discretization does not need to be fine, because the precision on the surface is given by 

the touched points, which are independent of the grid. 

2. The regularity of the surface in the workspace is not maintained when mapped into C-space. 

Obstacles in C-space are highly distorted and irregular; hence they cannot be represented by 

simple primitives. The fitting and segmentation process, which relies on the regularity of the 

surface to reduce the number of required touch points, need to be computed in workspace. 

The result of this process can then be mapped in C-space. Note that an explicit map can be 

only computed if the C-space can be discretized, and in any case it is complex and 

computationally expensive [106].  

3. The objective of the exploration is to determine the physical surface, not its C-space 

representation. Hence, the amount of information should be evaluated in workspace to 

ensure optimal exploration. Since a robot can reach the same physical location with several 

configurations, the amount of explored C-space does not represent the knowledge of the 

workspace well. For instance, section 5.5 shows a situation where the entire surface in 

workspace is mapped without reaching half of the C-space. If entropy is computed in C-

space, the algorithm could choose paths that would not give any information on the real 

surface. 

4. Since the robot is a dimensionless point and its swept region is a curve, information from 

the space swept by the robot is hidden in C-space. Figure 47 represents a situation where the 

robot slides its tip on the vertical line of the environment. The large area swept in the 

Figure 46. Surface to be mapped (left), and C-space map of such surface (right). The robot in two configurations is 
also shown, both in workspace and in C-space. 
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workspace must be empty. On the right, the C-space swept region is only the curve in 

contact with the C-obstacle. The darker region beneath the curve is obtained by numerically 

mapping into C-space all the configurations fitting inside the swept region of the 

workspace. The white configuration is one of these configurations. This area in C-space is 

necessarily free, but this information is “hidden”, and can be recovered only using the 

workspace.  

5.4.2. A hybrid approach 

Both the workspace and the C-space representations have strengths that could be exploited 

for the application studied in this work. Here, a hybrid approach combining both 

representations is proposed. C-space is used for path planning, and workspace is used to 

reconstruct the surface and evaluate the entropy. In particular: 

 Information is stored in workspace. The surface is reconstructed through the touched points 

and swept region. The space is discretized with a grid to store the swept region and to 

evaluate occupancy probability and entropy. 

 The possible robot paths are computed in C-space. Every time the algorithm looks for a new 

exploration direction, the algorithm generates a series of paths in configuration space from 

the robot location to any other reachable location. Non-reachable locations are due to the 

touched points in C-space (more descriptive than their counterpart in workspace) and the C-

space map of the reconstructed surface. To find paths in C-space, this work uses a Rapid 

Exploring Random Tree (RRT), a sampling-based approach that avoids the explicit 

representation of C-space [131]. 

 The payoff of any single path is evaluated in the workspace. The RRT produces a series of 

consecutive segments. The payoff of such segments can be evaluated in workspace by 

computing the swept region, the expected touched surface, and the expected entropy 

Figure 47. Information from the robot sweep is hidden in C-space. 
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reduced by the segment. The payoff of the complete path is the sum of the entropy 

reduction for all its segments, divided by the total expected cost.  

5.4.3. RRT  

Sampling-based strategies have an advantage over the other motion planning algorithms 

listed in section 5.1.3. Sampling-based strategies avoid the direct representation of C-space. This 

is important, because the map is updated after every touched point. Furthermore, this makes 

the approach applicable to manipulators with any number of degrees of freedom. Finally, this 

does not impose any constraint on the type of surface representation adopted in the workspace.  

There are two main classes of sample-based algorithms: single-query methods (such as RRT 

or randomized potential fields) and multi-query methods (such as probabilistic roadmaps). In 

this work, although the exploration strategy must be executed several times, the known map is 

continuously updated. Therefore, a single-query algorithm is chosen. In particular, the RRT 

algorithm [75, 111, 131] is simple to implement and ensures probabilistic completeness. Its 

original formulation solves the standard path planning problem: connect a starting and a goal 

position. Nevertheless, the approach can easily be adapted to exploration by removing the goal 

location so that all accessible points are reached. The approach can be explained in three steps: 

1. A random point is generated in C-space. If this is a feasible configuration, the point is saved; 

otherwise it is discarded, and a new point is generated, until a feasible configuration is 

found. 

2. The distance between this point and the tree 

is evaluated, and the closest point or segment 

on the tree is identified. 

3. The feasibility of a straight path between the 

new point and the closest tree location is 

computed. If no collisions occur, the new 

segment and the final point are added to the 

tree. Otherwise the algorithm either discards 

the point, or creates a branch of the tree until 

it hits the obstacle. 

When more and more points are stochastically 

added, the tree will eventually cover the whole 

environment, and each location can be reached by 

a path along the tree.  Figure 48 shows a 

representative example of the tree applied to C-

space. The RRT does not find optimal paths, but 

it is probabilistically complete, which means that 

if a path between two points exists, the algorithm 

will eventually find it. Recent studies proposed 

Figure 48. RRT algorithm with entropic exploration, 
in the C-space of the representative example of . The 
thick  line is the best path.   
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modifications of the RRT that makes this algorithm asymptotically optimal, by rewinding the 

tree every time a new branch is added [112]. This modification can be directly applied to the 

problem in this work to make the exploration algorithm optimal with horizon one. However, 

this research only implements the standard RRT algorithm, because it simplifies the 

implementation and does not affect the contribution of the work. 

5.4.4.  RRT with entropy reduction 

The RRT creates a tree of segments from the robot location to any reachable configuration in 

the C-space. Among these paths, the one with highest payoff should be chosen, as in Eq. (5.3). 

The approach is simple because Eq. (5.9)-(5.11) have a recursive form. When the RRT adds a 

new node n in C-space, this node is connected to a previous node n-1 through a straight 

segment in C-space. The entropy and cost of the path up to n are computed starting from the 

values at node n-1 and adding the terms relative to the new segment, as shown in Eq. (5.9) and 

(5.11). This requires the following terms to be available at the previous node: 

1. The swept region up to node n-1, Sn-1 

2. The expected entropy at node n-1, Hn-1 

3. The expected cost at node n-1, Cn-1 

4. The product of the conditional probabilities up to node n-1, |1,.
1

.., 1

1

k k

n

k
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
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   

Using these terms at the beginning of a segment, Eq. (5.9) and (5.11) can be readily applied to 

find the same values at the end of the segment. Hence, the entropy and cost of the whole path 

can be built recursively.  

The most expensive term to keep track of is the swept region, since it requires the storage of 

a full binary map of the environment, or a part of it, for each node. A trade-off between 

computation and required memory can be obtained here, by storing the partial map only for 

specific nodes, and every time re-computing the swept region from these nodes.   

The synergy between workspace and C-space is evident. The four terms to record at each 

node are associated with the workspace (except for the movement cost, which can also be 

defined in C-space). Therefore, even the nodes and segments are added in C-space, the 

workspace is always used to compute the change in entropy, cost and probability. This requires 

some attention. The recursive eq. (5.9) and (5.11) are computed discretizing the segment in small 

parts. Nevertheless, the shape and geometry of the manipulator implies that several cells can 

swept simultaneously, and some algebra is required to take this into account.  

5.4.5. Simulation 

The algorithm has been tested using the representative case described at the beginning of 

this section. The robot has now a finite thickness, which affects the collision with the 

environment and the swept surface. As in section 5.3.3, the USD algorithm is used to probe an 

unknown primitive, and the entropy strategy is called when the primitive is recognized.  
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Figure 49 shows four moments during the exploration process when the RRT is used. The 

plots use the same conventions as in Figure 44 in terms of touched points, primitives and 

occupancy map. Parts 1 and 3 show both the workspace and the C-space. Parts 2 and 4 only 

show the workspace. Each node in the RRT is evaluated, and the goodness of the paths is 

shown with color intensity. Light (green) segments represent good paths with high 

entropy/cost ratio, and dark (red) segments represent bad paths, with low entropy/cost ratio. 

The thick line in C-space represents the best path, and the dashed line in the workspace is the 

travel of the robot tip for such path.  

The three primitives in the environment are discovered after only three runs of the RRT. 

With this approach, the robot is also able to change configuration to reach the left vertical line. 

More simulations and a laboratory experiment will be presented in Chapter 6, when strategies 

to deal with contact all over the manipulator’s body will be introduced. 

 Tactile Exploration with a Spatial Manipulator  5.5.

Previous sections have presented the entropic approach for a point robot and a planar 

manipulator. This section extends the entropic approach to the tactile exploration of a three-

dimensional environment with a spatial manipulator, making it applicable to most real-world 

Figure 49. Four steps of the entropy approach with an RRT, showing the progress in the exploration. 
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problems.  

5.5.1. Extension to spatial case 

Few extensions are necessary to apply the concepts introduced in sections 5.3 and 5.4 to the 

spatial case. The method proposed to define the occupancy probability is based on the number 

of “hollow balls” and “solid balls” that are consistent with the reconstructed surface and the 

swept region (section 5.3.1). Balls are circles in 2D, and spheres in 3D. The approach is based on 

an assumption of minimum expected curvature radius. For a surface in space, there are infinite 

curvature radii, because there are infinite tangent lines to a single point. However, there are two 

particular directions, called principal directions, where the curvature radii have minimum and 

maximum values. The assumption is extended by assuming that both principal curvature radii are 

expected to be larger than the parameter B.  

The computation of the occupancy probability requires a dilation and a convolution, both 

with a ball of radius B. The convolution is executed in the same way, independently of the 

dimension of its space. On the other hand, the term dilation was specifically developed in image 

processing for two-dimensional images. However, the Minkowsky sum (equivalent to a 

dilation) is defined for any dimension. The easiest way to implement this operation in 3D is to 

convolute the original map with a solid sphere of radius B, and then flatten the result into a 

binary map using the function: 
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  (5.12) 

5.5.2. Representative case 

The extension is demonstrated with a representative case using a spatial manipulator with 

the shape of the oil-well exploration prototype (section 3.6.3). The first joint is assumed to have 

no limits, and can rotate indefinitely. The second and third joints are limited: limits are ±50º and 

±150º respectively. Links and joints have finite thickness, affecting the area swept by the robot’s 

movements. Independent random noise affects both joint angles (simulating measurement 

noise) and the final position of the tip (simulating kinematic and surface imprecision).  

The environment to be mapped is shown in Figure 50. The environment is composed of two 

cylinders, a plane and a sphere. The absence of a limit on the first joint substantially changes the 

C-space, because an angle of 360º is now equivalent to 0º. Topologically, this represents a 

homeomorphic space to 2  S , which can be imagined as a deformed parallelepiped where two 

opposite faces are “glued together”, to form a ring. However, Figure 50 represents the C-space 

as a parallelepiped where the robot can jump from the face  Q1=0º to the face Q1=360º.  
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5.5.3. Simulation 

The environment is explored using the same approach as before; the robot probes a surface 

with the USD until a primitive is recognized. Once the primitive is known, the entropy strategy 

is executed. Figure 51 shows four moments in the exploration of the environment, including the 

C-space and the RRT. Thus, the manipulator never needs to reach the top part of the C-space to 

completely explore the whole surface. The four instants in Figure 51 represent the following: 

1. The first primitive is detected, and the RRT is computed to guide the robot through the path 

with most information. Both workspace and C-space are shown. The intensity of the color in 

the RRT represents the goodness of the paths.  

2. The manipulator is probing a corner, and more points are needed to interpret it. While the 

primitive is not recognized, a triangular mesh is used.  

3. All the primitives have been found. 

4. The surface is almost completely explored. Several grey points in the lower cylinder 

represent situation where contact has been detected to occur on the robot’s link. This will be 

treated in the following chapter. 

This example shows that the approach developed in this work can be applied to a generic three 

dimensional environment. The example also shows the importance of evaluating information in 

workspace: the environment is completely mapped without ever moving into the top half of the 

workspace (Q3>0). If entropy were evaluated in C-space, several useless movements would be 

performed.  

Figure 50. Workspace and C-space of the representative case used in the 3D entropic exploration. 
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 Comparative Study 5.6.

In this paragraph, the performance of the entropy approach is evaluated by comparing it to 

other exploration strategies. Figure 53  shows the planar manipulator and the environment to be 

mapped. The robot’s speed is limited such that the Euclidean norm of the joint speeds cannot 

exceed 40 deg/sec. The exploration strategy is used in a similar way as before: when the robot 

Figure 51. Tactile exploration of a 3D environment with the entropic approach.  
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touches an unknown surface, the USD strategy is used to probe close points. Once a primitive is 

identified, the next location to explore is determined with three different strategies: 

1. The Best Cone search (section 3.4.2) 

2. A straight path along a randomly-chosen direction.  

3. The entropic RRT approach. 

The performance of the strategies is evaluated by comparing the time required to reconstruct 

the environment. The decrease in time of the amount of unknown surface is used as a measure 

of exploration speed. At all time, the percentage of the surface that still needs to be 

reconstructed is recorded. To make the comparison independent of the initial conditions, one 

hundred trials are run with independently random initial positions and initial exploration 

directions, and the average value among these trials is used for comparison. Figure 57 (left) 

shows the percentage of surface to be explored for each time instant from 0 to 140 seconds. 
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Figure 53. Environment and robot used for the comparison of performances of exploration strategies.  

Figure 52. Comparison of the exploration speed with three strategies: Best Cone, Random, and Entropy approach. 
The left figure shows the decrease in time of the percentage of surface still to explore. The right figure shows the 
decrease in environment entropy. The curves represent the mean on 100 trials for each strategy.  
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Figure 57 (right) shows the reduction of environmental entropy, for the same trials and same 

time interval. These figures show the effectiveness of the entropy approach. At time t = 100 s, 

for example, the remaining surface to explore is approximately 15% with the entropy approach, 

30% with the best cone strategy, and 45% with the random strategy. 

 Experiments 5.7.

5.7.1. Feasibility 

The feasibility of the approach is evaluated using a planar-manipulator in a planar 

environment (Figure 54). The robot links have lengths 156 mm and 215 mm. The two joints have 

the following limits: ±110º the first joint, and ±118º the second. Using a backlash compensation 

technique (section 4.3), the robot has approximately a 1mm accuracy. At all times, the end 

effector speed is limited to 25 mm/s, and both joint speeds are limited to 0.2 rad/s. 

The environment to explore is composed of three lines and two circles. Different 

configurations are required to reach the bottom left line and the internal part of the smaller 

circle. The robot starts in the upper part of the surface. The robot control is similar to the one 

used in previous cases: USD until a primitive is recognized, and RRT with entropy reduction 

once a primitive is determined.  

Figure 55 shows three frames of an exploration trial. The first frame shows the beginning of 

the exploration. Contact between the manipulator’s link and the surface occurs, and the method 

proposed in Chapter 6 is used. The second frame shows an interesting moment during the 

exploration, when the RRT decides to completely change the configuration of the robot, to touch  

Figure 54. Planar manipulator and environment for tactile exploration. 
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Figure 55. Experimental results of the exploration of a planar environment using the entropic approach.  
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the side of the larger circle. The third frame shows a superposition of the real robot and the 

reconstructed surface. The four primitives are correctly detected. The surface is accurately 

reconstructed (as an example, the diameter of the larger circle is determined with an accuracy of 

97%). The discrepancy between the superimposed images is mainly due to perspective in the 

picture.   

5.7.2. Comparative Study 

The performance of the entropy approach is evaluated by experimentally comparing it to 

other exploration strategies. The same approach as in section 5.6 is used: the entropy search is 

compared to the Best Cone strategy and to a random search. The environment to explore is the 

same as in the previous experiment (Figure 54). For each strategy, five runs have been 

performed, and the percentage of unexplored surface is monitored. Figure 56 shows the average 

behavior for the five runs, for all the three strategies. The figure exhibits approximately the 

same behavior as the one computed in simulations, showing the superiority of the entropy 

approach compared to the other strategies. 

 

 Conclusions 5.8.

This chapter develops a new approach to tactilely explore a constrained environment with a 

manipulator. The approach uses the concept of entropy to quantify the knowledge of the 

environment. The environment is discretized with regular cells, and a specific method is 

proposed to evaluate the occupancy probability of each cell, considering the correlation among 

Figure 56. Experimental comparison of the exploration speed with three strategies: Best Cone, Random, and Entropy 
approach. The graph shows the decrease in time of the unexplored portion of the surface. For each strategy, five trials 
are run, and the average value is shown.  
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neighbor cells. An RRT is created in configuration space, reaching all the points that are not 

constrained by the partially constructed map. For every path in the RRT, the expected reduction 

of entropy and expected movement costs are computed.  The path with highest entropy 

reduction compared to the cost is executed. While the approach creates a discretized occupancy 

map, the real map used as product of the exploration is still a boundary representation 

composed of geometric primitives.  

The algorithm is easy to implement and computationally feasible in real time. The 

discretization of the map does not need to be dense because it is not use as the final map. The 

occupancy probability is computed using two consecutive convolutions. The expected entropy 

and cost can be computed recursively, so that the values for a segment in the RRT can be 

evaluated starting of the previous segment.  

The approach is evaluated in several simulations, using a point robot, a planar manipulator, 

and a spatial manipulator. The simulations show the effectiveness of the approach to map very 

complex environments in short time. 

  Computations 5.9.

This section is optional and it is not required for the understanding of the work. It reports the 

steps required to compute some elements that have been introduced in this chapter.  

5.9.1. Occupancy map 

This paragraph describes why the count of “hollow balls” and “solid balls” can be computed 

with two simple operations: a dilation and a convolution. The process is explained with two 

examples: the first involving only the swept region, and the second involving both a swept 

region and the reconstructed surface. 

5.9.1.1. Probability of a point given the swept area 

The first example explains how to compute the occupancy probability of a cell C considering 

the area swept by the robot. The example is described through the five drawings in Figure 57: 

1. The situation: occupancy probability of point C is evaluated, when a large area has been 

swept. 

2. The “feasible” balls of radius B including the point C are computed. The only constraint in 

this case is the swept area, which needs to be necessarily empty. Any hollow ball is feasible, 

but only the solid balls which do not intersect the swept area are feasible. The figure 

represents a feasible and an unfeasible solid ball.  

3. To count the number of possible balls, the area occupied by their centers is evaluated. 

Hollow balls have no constraints in this case. Thus, the centers of hollow balls are all the 

points within a distance B from C: a circle or radius B, with area πB2. Solid balls are limited 
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by the swept area: the centers of the feasible ones are the points further than B to the swept 

area (horizontally-dashed in the figure).  

4. Since centers of feasible solid balls need to be further than a distance B from the swept 

region, there is an easy way to compute the area: expanding the swept region by B. More 

precisely, the area is dilated using a circle of radius B as structuring element. Once the swept 

region is dilated, the area of feasible centers is the part of the circle centered in C outside the 

dilated region. This area can be computed with a single convolution between the dilated 

swept area and a circle of radius B and value 1 inside and 0 outside. 

5. This figure plots the distribution of the probability PC as a function of distance from the 

swept region. It behaves nicely as expected:  PC is 100% inside the region, and it slowly 

decreases when moving away from it, up to 50% after a distance 2B.  

5.9.1.2. Probability of a point given the reconstructed surface 

The same approach can be used to evaluate the effect of the reconstructed surface, which 

imposes feasibility on both “hollow balls” and “solid balls”. Figure 58 represents a region with a 

small swept area and a reconstructed line. 

1. The situation: occupancy probability of a point is calculated given a swept area and a 

reconstructed wall.  

2. Since the surface is assumed to be made envelopes of balls with radius B, an area of 

thickness 2B is necessarily empty in front of this wall; this area is treated in the same way as 

the swept area. Similarly, an area of thickness 2B is occupied behind the wall; this area 

imposes constraints on the “hollow balls”. The two areas are independent because 

constraints on hollow and solid balls are to be treated separately.  

3. As in the previous example, both areas are dilated with a circle of size B, as shown in the 

figure.  
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Figure 57. How to compute the correlation between cells with the assumption that the surface has maximum 
curvature radius B. The four steps represent an example for the computation of Pc at a point C near a large swept 
area. 
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Figure 58. Procedure to determine the occupancy probability at a point near the reconstructed surface. 

4. Here, the occupancy probability of a sample point C is evaluated. The area AE in the figure 

represents the centers of the feasible hollow balls, while AF represents the centers of the 

feasible solid balls. PC is computed using (5.6) as AE/( AE + AF). As before, both AE and AF 

can be calculated with a convolution between the constraining areas and a circle of radius B. 

5.9.2. Implementation of expected entropy 

This section describes the implementation of Eq. (5.9)-(5.11), in order to compute the 

expected entropy of a point-robot tactilely exploring the environment. The equations are 

repeated here for convenience:  
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These equations contain a recurrent term in the form of the conditional probability Pk|1,…,k-1. 

This should be computed by sweeping all cells until cell k-1 and calculating the effect on the 

occupancy probability of cell k, using Eq. (5.6). However, the term Aempty in Eq. (5.6) is constant, 

because it is not affected by the (expected) robot sweep. Therefore, the value computed for the 

current entropy can be used. The term Aoccup can be approximated as either zero, if the cell was 

already swept, or as influenced by only the closest cell, k-1. This can be written as: 

   0min ,occup occupA A    (5.13) 

where A0 occup represents the value used for the current entropy, and γ is a constant calculated 

with Eq. (5.8), assuming that k is a cell surrounded by a completely swept region on one side, 

and an unknown region on the other side.  

The term 1
sweepH should be calculated in the same way, considering the effect of the new 

swept area on the probability distribution. In this work, the same approximation as in Eq. (5.13) 

is used.  
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The term 1
touchH  is more complex. When a point is touched, new information is available for 

surface reconstruction, and the new surface representation would drastically change the 

probability and entropy map. Furthermore, the touch point could be on the robot tip, or on the 

link. The exact computation of 1
touchH  is beyond the scope of this work, and is likely to require 

much computation. In this work, a heuristic strategy is used, which estimates the change in 

entropy by computing the probability of touching with the tip (discussed in Chapter 6) and the 

expected change in the entropy map according to the possible fit of the point to existing 

primitives. This estimate was tuned by comparing it to the exact value calculated in simple 

cases. 



 

 

Chapter 6       

Whole-Arm Exploration 

This chapter develops an approach to explore an environment with a robot by touching it 

with any part of the robot’s body. As in the previous part of this work, the robot is assumed to 

be equipped with only position sensors (proprioceptive exploration).  

In this research, the manipulator moves in the environment with an impedance control 

scheme (see section 3.2). By monitoring the robot’s movements, this controller is able to detect 

when the manipulator is in contact with the environment. Because the robot is not equipped 

with any force/torque or tactile sensors, there is no easy way to understand where such contact 

occurs on the manipulator. In the previous chapters, contact was assumed to occur only on the 

robot’s tip, so that the contact location could be determined from the manipulator’s joint angles.  

However, when a manipulator explores an unknown and complex environment, contact can 

unexpectedly occur on any part of the robot (Figure 59). The assumption of tip contact in such 

situations creates a wrong data point, generating an incorrect environment map. Moreover, the 

lack of a correct map may prevent the exploration strategy from working properly, and the 

manipulator may not be able to continue the exploration. This is why the approach taken in the 

previous chapters needs to be generalized to situations where any part of the manipulator 

comes into contact with the environment. 

The easiest solution to this problem is to recognize when contact does not occur on the tip, 

and discard these data points. However this approach is not ideal, because the contact point 

contains useful information, which would not be used if the data are discarded. Therefore, this 

research goes beyond the simple recognition of 

contact location, and develops a method to 

equivalently use the touch data whether contact 

occurs on the tip or on any other part of the 

manipulator. This allows not only to correctly 

reconstruct the map, but to significantly 

accelerate the mapping process. With an analogy 
Figure 59. Two situations where the robot touches the 
environment with its body. 
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to the concept of Whole Arm Manipulator introduced in [132, 133], this method is called Whole 

Arm Exploration.  

The approach is summarized in three steps. The first step estimates what link is in contact, 

using the applied torques and robot movements constrained by the environments. The second 

step estimates the probability of touching with the tip or the rest of the link. Finally, the third 

step uses information from contact on the tip or on the link to determine the environment’s 

surface. 

 Previous Work 6.1.

The earliest ideas to deal with contact between environment and robot’s body were 

introduced by Salisbury with the concept of Whole Arm Manipulation [132, 133], a 

manipulation system where the robot interacts with the environment not only with the end 

effector, but with the whole arm. Along the same line, Gordon studied the integration of tactile-

force and joint-torque data to control a Whole Arm Manipulator [134]. However, Whole Arm 

Manipulators detect the contact location with several force-torque sensors or by covering the 

robot with tactile sensors. Such sensors are too delicate to be reliable in harsh environments, 

and therefore cannot be used in this research. An approach that does not require distribute 

sensors was proposed in [135]. By measuring the forces acting on a flexible probe at the end 

effector, the contact location on the probe is estimated. However, the approach still requires a 

force/torque sensor, and assumes that contact occurs only along the flexible probe.  

Two series of interesting studies introduce robotic proprioceptive sensing, using only 

position sensors to detect the contact location of a robot in an unknown environment [54, 55]. 

The first develops a heuristic method called “self-posture changeability”, to estimate the location 

of contact between a robot and the environment. The key idea is to lock all the links but two, 

one of which is moved under positional control, and the other under compliance control. With 

specific movements, the link is forced to slide on the object, which allows the robot to infer 

where the rotation occurs, and from that the contact location. The second series of studies 

develops an interesting approach applicable to a 2D robot with circular joints and rectangular 

links. For each of the robot’s links and joints, two hypothetical contact points per link are first 

estimated, using position, velocity and torque data. Then, geometric reasoning is used to 

discard all the hypotheses but one. Finally, a sliding motion of the robot on the environment is 

analyzed using a Kalman filter, refining the contact location. These two studies introduce 

interesting concepts, and have recently been used to solve a problem in 2D proprioceptive 

exploration using a snake robot [19]. However, they have two limitations that make them 

unfeasible for the exploration of a general harsh environment. First, they can only be applied to 

a planar robot and environment (the first work is effectively applied to a two-dimensional case, 

by fixing all the joints but two). Second, they require a specific sliding motion of the 
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manipulator on the environment whenever contact is evaluated. The sliding motion is time 

consuming, and it is often not feasible in harsh environments.   

Proprioceptive sensing has been used in haptics, to estimate the shape of a object 

manipulated with a robotic hand [56]. However, such estimation cannot be applied to harsh 

environmental exploration, because it is based on several assumptions: the robotic fingers are 

assumed to stay in contact with the object at all time, they can slide on it, and contact with the 

object only occurs along the last link of the fingers. 

As a conclusion, the sensing methods proposed in the literature propose interesting 

concepts, but they are not applicable to the tactile exploration of an unknown, constraining 

environment: they require tactile and force/torque sensors, assume a sliding motion of the link 

on the environment, or can be only apply to simple cases such as planar environments.  

 The Approach 6.2.

This research develops a new approach for this problem, with a different objective. While the 

literature in the past has focused on the contact location on the manipulator, this research 

focuses on the surface.  The objective of this method is not to determine where the robot touches 

the environment, but to construct a map of the environment. The contact location is only 

determined when needed, and treated as one of the many pieces of information that are used to 

create the map in the shortest time.  

To simplify the approach, the manipulator is assumed to have a simple shape. In the planar 

case, link bodies are assumed to be rectangles, and joints and tip are circles. In the spatial case, 

link bodies are cylinders while joints and tip are spheres. Joints are assumed to be anchored to 

the body link before them, and to maintain their shape at any time. The robot tip is treated as 

the final “joint” of the last link.  

Joint position measurements and a rough estimate of the applied torques are available at all 

times. In this work, the rough torque estimate is obtained using the desired torques from the 

impedance controller.  

The approach is composed of three steps (Figure 60): 

1. Data from joint velocity at the moment of contact and desired joint torques provides a tool 

to determine which link came into contact with the environment.    

2. Once the contact link is determined, the partial knowledge of the environment is used to 

estimate the probability that contact occurs either on the joint/tip or on the link body.  

3. Tip and body contact data are used together to determine the surface primitives, in a 

common procedure of segmentation and least squares minimization. 
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 Detection of What Link Is in Contact 6.3.

The first step of this procedure is the determination of what link is in contact with the 

environment. This problem has been solved in the past with different techniques [55, 132, 134]. 

Here, these techniques are applied to the problem in this research. 

The robot is controlled under impedance control, by moving a virtual point in space and 

letting the robot follow it. If contact occurs at the nth link, all the links from 1 to n will stop, but 

the following links will still continue to follow the virtual point because a torque is applied to 

their joints. Therefore, contact can be detected at the nth link. If the robot configuration is such 

that the impedance controller does not require any torque to the links after the nth, such links 

cannot be in contact, because they cannot apply any force to the environment. Therefore, when 

contact is detected but the links from n+1 to the last have zero torque, contact must occur on the 

nth link. 

In most cases, this is enough to determine what link is in contact with the environment. 

However, if the environment is particularly rough, the torque signal is extremely unreliable, or 

very high joint friction affects the movements, it could fail. In such cases, a strategy can be 

executed to determine the contact location using position constraints and not torque 

considerations. The manipulator executes small, oscillatory motions by moving back and forth 

one joint at the time and fixing the others. By monitoring what movements are allowed or 

constrained, the link in contact can be determined. This technique is more reliable, but it 

requires considerably more time. 

    Probability of Tip Contact 6.4.

Once the link in contact is detected, the approach is the same for any link, because the simple 

robot shape makes the robotic tip equivalent to any other joint. Without loss of generality, here 

it is assumed that contact occurs on the last link. 

Even if the link in contact is detected, no information is available on the exact location of 

Figure 60. The three steps of the approach for proprioceptive tactile exploration. 
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contact along the link. There are two different cases, which will be dealt with in different ways: 

contact on the tip, and contact on the link body. Both cases are useful, because they provide a 

constraint on the location of the surface; however these two constraints are very different. 

Hence, it is first necessary to understand whether a data point belongs to one case or the other.  

The approach in this research is to evaluate the probability that either of the two cases 

occurs. Let PT denote the probability that contact occurs on the tip, called tip probability. Let PL 

be the probability of contact on the link body, called link probability. Since it is assumed from the 

previous section that either tip or link are certainly in contact, PT+PL=1. When one of the two is 

very high, the point is classified to be a “tip contact”, or a “link contact”. When the two 

probabilities are comparable, the case is uncertain, and further investigation is needed before 

reliably using the data. 

The tip probability is evaluated considering the robot movements at the time of contact and 

the partial knowledge of the map. This knowledge relies on the partial reconstructed surface 

and on the occupancy probability map, as defined in section 5.3. 

6.4.1. Tip probability in unknown environment 

To introduce the concept, a very simple case is considered first. A two-dimensional robot is 

moving in a totally unexplored area, where the region around the robot has not been explored, 

and the probability of any location being empty is uniformly 50%. In such case, the occupancy 

map is uninformative. 

In a similar fashion as in section 5.3.1, the probability of touching the surface with the tip is 

estimated as the total number of surfaces that can be encountered during the travel of the tip, 

divided by the total number of surfaces during the travel of the whole link: 

 
 T
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  (5.14) 

An intuitive way to evaluate this ratio would be considering 

the area swept by the tip and the rest of the body during its 

movement (Figure 61): 

 
,

,

swept TIP

s

T

wept TIP LINK

A
P

A 

  (5.15)

 

This formula has an evident problem: if the robot has no 

thickness, the area swept by the tip is zero, but the tip probability 

is not. For instance, if a thin arrow is randomly shot inside a room, 

it will most likely hit an obstacle with its tip, no matter how thin 

the arrow is. The reason why this happens is because objects in a 

real environment are made by continuous surfaces. If the 

environment is discretized in cells, these cells are not randomly 

 

Figure 61. Robot moving in an 
unknown environment. Contact 
probability is proportional to 
the swept area. 
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and independently empty or occupied, but they are correlated to each other. This is the same 

situation that occurred when discussing the correlation between cells in the occupancy 

probability, section 5.3.1. Hence, the same approach is used. The parameter B, indicating the 

size of the features in the environment, is assumed to represent the minimum expected radius 

of curvature of the environment. Therefore, to count the number of possible surfaces that could 

come into contact with the robot during its movement, the number of possible balls with radius 

B is counted. In particular, the number of “solid balls” that become unfeasible due to the robot 

sweep is counted. This is obtained by separately dilating the shape of the link and the tip, and 

computing the area swept by the dilated region (Figure 62):  
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Two clarifications are needed: 

1. The dilated area of the tip is a circle or radius B. Nevertheless, only the front half of this 

circle is not covered by the link, and generates tip contact. This can be imposed excluding, 

from the area swept by the tip, the area that was swept by any other part of the robot any 

instant before. As an example, if the movement is opposite to the one in Figure 62, the area 

swept by the tip is zero, in agreement with the probability of touching something with the 

tip. 

2. Similarly, the area swept by the link needs to consider the area that has been first swept by 

another link. In Figure 62, only a part of the dilated body creates swept area, because some 

of the area was swept by the first link.

 

 

B

Dilated Link

Dilated Tip
Area swept

by dilated tip

Area swept by 

dilated body
 

Figure 62. Area swept by dilated robot and dilated tip. 

6.4.2. Tip probability using the occupancy map 

The approach explained above works when all the regions around the robot have the same 

probability of being empty or occupied. The situation is different when the robot explores a 

region where some locations are most likely free or occupied. For instance, if the robot moves 

over a cell that is most probably occupied, there is higher probability that contact occurs on that 

cell. To take this into account, the swept area is weighted by the occupancy probability map. 

Particular care should be taken because the measured area is generated by the dilated robot, 
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while the occupancy probability refers to the cells swept by the original robot. Therefore, a 

function y=g(x) is defined to indicate, for each cell x of the dilated area, the part of the robot y 

that originated the dilated cell x. The probability considered for the cell x is  ( )CP g x instead of 

simply  CP x . Since the tip is the only point originating its dilation,  ( )CP g x is always equal to 

the probability of the cell where the tip is located, PC(xTIP). Denoting the probability of a cell 

being occupied as
 

1 CC
P P  , Eq. (5.16) is generalized as: 
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(5.17)

 

The formula can be simplified by reducing the robot displacement to an infinitesimal step. 

The area swept by a single point on the robot becomes the dot product between its velocity and 

the vector normal to the (dilated) robot: x xn v . The integral over an area in Eq. (5.17) becomes a 

line integral, along the profile of the dilated robot and dilated tip. The integral of dilated tip is to 

be constrained to only the positive tip side: 
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(5.18)

 

where xn  is the outer normal to the dilated shape, and direction of the axis of the link. 

The first of these integrals can be computed analytically, because the probability can be 

factored outside. With the symbols indicated in Figure 63, it can be expressed as: 
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Figure 63. Line integral of the region swept by the tip. 
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 Segmentation with Tangent Constraints 6.5.

The approach described so far classifies points in two categories: “tip contact” and “link 

contact”. This section takes as an input these two types of data and uses them to create a model 

of the surface. The approach is based on the standard surface reconstruction method described 

in section 3.3. Here, however, the two different types of data are used together in a new 

approach.  

6.5.1. Point and tangent fit 

When contact is on the tip, the contact location can be derived from the robot’s kinematics. 

Hence, the reconstructed surface is required to pass by the touched point. This was solved in 

section 3.3 using a least squares approach, Eq. (3.3). If the tip is not a point but a circle (or a 

sphere, in 3D) of radius w, the same least square minimization can be used by simply squaring, 

instead of the distance point-surface d, the difference between d and w (Figure 64). The same 

approach can be used when contact occurs on a robot joint, as long as the joint is 

circular/spherical. Thus, contact on a joint or the tip can be treated in the same way, and will be 

referred as simply “tip contact”. The least squares minimization (3.3) to determine the surface 

parameters becomes:  

  
1

2
arg min , ( )

TN

i i
i

d P S w


 


      (5.20) 

When contact occurs on the robot link, the contact location is not known. However, the “link 

contact” imposes another constraint: the surface must be tangent to the side of the link. The 

tangent line is known through robot kinematics, and an equation can be written by imposing 

the surface to be tangent to such line. This is obtained by requiring the distance d between line 

and surface to be zero. When more data points are used together, a least squares approach 

minimizes the sum of the squared distances. If the link has no thickness, the line is simply the 

axis of the link in contact. If the link has a finite thickness w, the same approach as before is 

used: the line is still the robot axis, and the value to square is the difference between d and w 

instead of d alone (Figure 65, left). Denoting by Li the link axes, and NL the number of “link 

contacts”, the minimization is: 

 

Figure 64. Primitive fitting when contact occurs along a circular (or spherical in 3D) part of the robot, such as the 
tip or a joint. 
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Since both tip and tangent fits can be expressed with a formulation minimizing a squared 

distance, they can be used together. Whenever a primitive is touched with some tip contacts 

and some link contacts (Figure 65, right), a common minimization can be written: 
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dw

 

Figure 65. Left: Primitive fitting when contact occurs along the robot’s link. Right: Primitive fitting with both point 
contact and tangent constraint. 

6.5.2. Segmentation 

Before being able to fit both type of data to a primitive, the number and type of primitives 

need to be determined, and the data points need to be assigned to such primitives. This 

problem, called segmentation, has been treated in section 3.3 for only contact points. The same 

approach can be extended to deal with tangent constraints. This extension has three noteworthy 

changes.  

First, the segmentation procedure used in 3.3, fit and grow [69, 70], requires a measure of 

distance between points in order to expand initial small regions to neighbor points. Tangent 

constraints do not specify a contact point but a contact line, therefore this distance is undefined. 

However, the link has a finite width, and the contact needs to occur between the two ends. In 

this work, the middle point between these ends is used to compute the distance to neighbor 

points. 

Second, the finite width of the links provides another tool to check the correctness of the 

operation. Once the primitive is fit, the contact point can be found for the tangent lines. If this 

contact point lies outside the length of the link, the primitive is unacceptable, and it will be 

discarded. 
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Third, the new type of contact creates a complex interaction between surface primitives, 

tangent constraints and intersections. The link can impose a tangential constraint to only 

concave locations. Hence, all the convex primitives and the primitives with no curvature (lines 

in 2D and planes in 3D) will never include a “link contact”. This must be taken into account 

during the segmentation process. However, there are other locations that can be touched: the 

concave intersections between primitives (Figure 67). Therefore, every time two primitives are 

found, and their intersection is concave, the intersection itself becomes a “primitive” in the 

segmentation process, because some tangent data points can touch it. If the segmentation 

assigns “link contacts” to such intersection, the intersection’s parameters are affected by the two 

primitives and by the tangent data point. In other words, the two primitives and the 

intersection are correlated with each other, and they should be determined with a common 

minimization, called constrained fitting [73]. 

It is worth noticing that this approach is extremely simple to implement in the planar case, 

because intersections between primitives are simple points (which can be treated as circles of 

zero radius). However, in three dimensions primitives are not points but curves. Even for the 

simple geometric primitives used in this research, such curves can have a complex shape (see 

[71, 72]), and computing analytically the distance between these curves and the robot is 

challenging. The approach can be solved numerically, but this goes beyond the scope of this 

research. This work implements the complete segmentation process only in the planar case.  

6.5.3. Computation of the tangent fit 

The distance function between a line and a surface is easy to formulate for the geometric 

primitives used in this research. Lines (in 2D) and planes (in 3D) do not have curvature, and 

tangent contact is impossible for a robot, because the surface needs to be concave. For a sphere, 

the distance line-surface can be reduced to the distance between a line and a point; for a 

cylinder and a cone, to the distance between two lines; for the torus, to the distance between a 

line and a circle in space. Algorithms to solve such problems can be found in [136]. In the planar 

case of a circle, it can be expressed as a distance between point and line. However, a linear 

formulation can also be found. The line parallel to a line ax + by + c = 0 at a distance d is given 

by: 

  2 2 0ax by c d a b     (5.23) 

 If the line equation is normalized, and the distance is expressed in terms of the circle radius r 

and the link width w, with the sign s equal to the sign of the joint torque, the equation becomes: 

  ( ) 0ax by c s r w       (5.24) 

This can be written in the following matrix form, which allows a linear least squares 

minimization: 
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6.5.3.1. Numerical robustness 

This section investigates the numerical robustness to measurement noise and surface 

irregularity of the fitting process with tangent constraints. This is shown through a case study 

where a surface is estimated using touch points, tangent points and a combination of both. 

Figure 66 represents a planar robot touching a circle in sixteen points: eight points with its 

tip, and eight with its link. Both tip and link contact points span the same amount of the circle 

(60º). The circle is corrupted by random surface roughness, and the encoders are corrupted by 

random measurement noise. The best least square fit of the circle is computed using some of 

these corrupted measurements, for three different cases:  

1. Using the eight tip contacts; 

2. Using the eight link contacts; 

3. Using four tip and four link contacts. The two sets of four data points are adjacent, so that 

the eight contact locations still span the same amount of the circle as in case (1) and (2). 

The parameters found using the least square fit are then compared to the original circle values. 

If the norm of the difference is smaller than a threshold, the fit is considered successful; 

otherwise it is unsuccessful. This is carried out for increasing value of surface roughness (up to 

2.5% of the circle radius) and for increasing values of joint measurement noise (up to a standard 

deviation on 0.25). For each value of roughness and noise, 1000 trials have been executed, and 

the percentage of the good fits is shown in Figure 68 and Figure 69. The figures show that, 

although the link contact by itself is more sensitive to joint measurement noise, the combination 

of four tip and four link points always give the best results. The addition of link contact to the 

minimization, therefore, increases the robustness of the surface fit. This also means that the 

exploration is performed faster by using a combination of tip and link contacts, because fewer 

data are needed to reach the same precision.  

Figure 67. The robot link in contact with the 
intersection point between two primitives. 

Figure 66. The situation used for the simulation 
investigating the numerical stability of tangent fit. 
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Figure 68. Percentage of fits that are close enough to the 
original circle, for three data set and for increasing 
surface roughness. 

 

Figure 69. Percentage of fits that are close enough to the 
original circle, for three data set and for increasing 
measurement noise. 

 

 Weighted Least Squares 6.6.

The approach described in this chapter can be summarized as a two-step process: the 

classification of touch data into “tip contact” and “link contact”, and the use of such data to 

construct the model of the surface. An underlying assumption is that points are classified 

correctly. If a tip contact is classified as tip or vice versa, the resulting surface fit could be 

drastically wrong. This limitation is true; however it is mitigated by several factors. 

First of all, the surface is updated and the tip probability is re-evaluated every time new 

information is available. Therefore, an incorrect interpretation can be corrected later, once more 

data are available. 

Second, the more the surface is known, the more the estimation of tip probability improves. 

A common reason for improvement is the swept region after contact is detected. If later 

movements sweep the region where the tip was located during contact, the tip probability 

drops to 0%. Similarly, if later movements sweep all the area around the location where the link 

was located during contact, the probability rises to 100%. Such movements could be executed 

on purpose, to increase the confidence of the estimation. This is basically the intuitive idea of 

“feeling around” to understand what the environment looks like in the proximity of contact. In 

this work, these movements have not been implemented, because the mere continuation of the 

exploration is enough to let the probability tend to a value close to 0% or 100%. 

For these reasons, the classification usually works well in practice. However, this research 

implements a further strategy to increase the robustness of the procedure. It is based on the 

same idea used in section 4.3.4 during backlash estimation: trust the safe data points more than 

the unsafe. When a point is classified with confidence, that point is more reliable, and should be 

considered more in the surface reconstruction. This can be formally obtained with a weighted 

least squares approach. Whenever the uncertainty of measurement points is not constant, the 
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best linear unbiased estimator is the sum of the squared distances, weighted by the reciprocal of 

the variance σ2  [94]. Eq.(5.22) becomes: 
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(5.26)

 

An estimate of the variance σ2 can be obtained from the tip probability in both cases. Here, 

the computation for tip contact is outlined.  

Figure 70 shows the situation for a link of length L, where the probability of tip contact is 

PT=α. If contact is not on the tip, a uniform probability distribution along the link is assumed (a 

more precise formulation should weight the distribution according to the occupancy 

probability). The average value and the variance of the contact location are: 
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This variance tends to zero when the probability tends to one. This is correct, because the 

point is known to be a tip contact for sure. However, some 

measurement noise is always present, and is should be 

added to the total measurement variance4. This prevents the 

weights in (5.26) from going to zero. 

A similar calculation can be performed for the point 

classified as link contact.  

The use of weighted least squares reduces the effect of 

wrong classification: uncertain points have high variance, 

and will be discounted more in the least squares fit.  

 Simulations 6.7.

A series of simulations have been performed in several structured environments. The 

exploration strategy described in Chapter 5 has been used: the Rapidly-Exploring Random Tree 

with maximum entropy reduction. Whenever contact is detected, the tip probability is 

evaluated, and points are classified in tip or link contact, and the surface is reconstructed 

                                                      
4 To be precise, the variance of the sum of two variables is the sum of the variances only for independent 

Gaussian distributions. Here, the distributions are indeed independent and noise can be reliably modeled as 
Gaussian, but the distribution of the location is not Gaussian. However, a precise computation is extremely complex 
and the game is not worth the candle.  

 

 Figure 70. Estimation of the variance 
for contact on the tip. 
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accordingly. The simulations also show the integration between the RRT-entropy approach and 

the contact detection.  

Three simulation results are shown here. Two of them are performed with a planar robot, 

and the third with the spatial oil well manipulator. The extended fitting and segmentation 

method has only been implemented in the planar case. However, the spatial simulation 

implements the calculation of the tip probability, and shows the feasibility of the same approach 

in three dimensions. 

Figure 71 shows six moments of the exploration of a planar environment made of four lines 

and two circles, with three concave intersections and a concave circle. The six frames show that 

the tip probability (in percentage) correctly classifies points into tip and link contacts, and 

probability improves in time. Link contacts points are fit to an intersection, which is recognized 

as belonging to a known circle.  

Figure 72 shows the exploration of the same environment from another starting location, so 

that the first contact occurs on the link. The estimation of tip probability improves thanks to the 

new acquired information. When four tangent contacts are recognized, the circle is correctly fit. 

Figure 73 shows four frames from the same simulation run in section 5.5.3, with exactly the 

same random numbers. This figure, however, focuses on the tip probability, plotting such 

probability for the points touched with the link. The algorithm correctly classifies the points as 

tip contacts, and the probability improves when a larger surface is discovered.  
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Figure 71. Six representative moments of the exploration with tip probability and tangent constraints. (1) First 
contact point. The point is correctly classified, but the tip probability is 66%. (2,3) More touch points are available, 
and the tip probability automatically improves. (4) RRT with maximum entropy reduction. Two non-tip points are 
correctly recognized. (5) Non-tip points are fit to an intersection, which is recognized to belong to a known circle. 
(6) Towards the end of the exploration: most tip probabilities tend to 100%. 
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Figure 72. A concave circle is recognized using four consecutive link contacts. The tip probability improves from 
measurement to measurement. In the last figure, the probabilities (not shown), are 18%, 3%, 3% and 22%. The 3% 
residual value is due to the finite grid size. 

 

 

Figure 73. The same simulation run as in Figure 51 is depicted here, showing the tip probability of points in contact 
with the link. (1) The first link contact occurs, and the tip probability is 14%. (2) When the lower cylinder is 
detected, the probability correctly drops to 0%. (3) Other link points are detected. Since this work does not 
implement the segmentation in 3D, these points are not used here. Since no surface is built, the RRT tries several 
times to go beyond the points with such configuration, creating several link contacts. (4) With more information, all 
the probabilities of link contacts tend to 0%.  
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 Experiments 6.8.

A series of experiments have been performed using the planar robot described in Section 5.7 

and shown in Figure 54.  

In the first experiment, the same exploration trial shown in Figure 55 is proposed, focusing 

here on the importance of the detection of tip probability. Several contact points occur at the 

intersection between the top line and the top circle. The algorithm correctly classifies them as 

link contact, and uses them to refine the location of the intersection between the line and the 

circle. In this case, the robot mounts a triangular tip. 

In a second set of experiments, a simpler environment is explored, composed of a circle and 

two planes (Figure 74). The same robot is used, but here a circular tip is mounted. The width of 

the link and the diameter of the tip are 1-inch. The circular tip provides a way to exclude the 

case of contact between the environment and a side of the triangular tip, a case which is not 

considered in this work. On the other hand, the thick tip does not permit the exploration of 

locations with a higher curvature than the tip radius. This is not a problem in this case, since the 

environment does not have small features.  The environment’s shape is such that contact can 

only occur along the last link and on the tip. The initial condition of the exploration is chosen so 

that the robot comes into contact for the first time with its link, as in Figure 74. The rest of the 

exploration is executed using the RRT with entropy reduction described in Chapter 5. 

Figure 74.Environment composed of a circle and two planes. The manipulator’s tip is a circle of same size as the 
link’s body (1 inch). The figure shows the first contact location. 



6. Whole-Arm Exploration 103 

 

 
 

The whole environment is explored after 22 points: 12 tip contact points, and 10 link contact 

points. The result of the exploration is shown in Figure 76. The figure shows with different 

colors the points that are recognized as link or as tip contact on the circle. Using both types of 

data allows determining the radius of the circle with an error of 3%. If only the four tip contacts 

are used, the error in the radius increases to 18%, while if only the ten link contacts are used, the 

error is 5%. The synergy between the two types of data is evident. 

 

Figure 76. Reconstructed surface, superimposed to the original surface. The circle is reconstructed using 4 tip 
contacts and 10 link contacts. 

Figure 75. Experimental results of the exploration of a planar environment, showing the detection of “link contact” 
at an intersection between primitives. 
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  Conclusions 6.9.

This chapter develops an approach to explore an environment with a robot by touching it 

with any part of the robot’s body. A method is developed, which equivalently uses the touch 

data whether contact occurs on the tip or on any other part of the manipulator. This allows not 

only to correctly reconstruct the map, but to significantly accelerate the mapping process.  

The approach is summarized in three steps. First, the link in contact is estimated based on 

the applied torques and robot movements constrained by the environments. Then, the 

probability of touching with the tip or the link is estimated. Finally, a method is provided to use 

information from contact on the link in a similar fashion than what is done for contact points on 

the tip. 

Several simulations and experiments demonstrate that the approach correctly determines the 

type of contact and the location along the manipulator. This makes the exploration of a complex 

and constraining environment using only position sensors feasible. Moreover, the two types of 

contact are shown to perform very well when used together to determine the same surface, 

resulting in a faster exploration of the environment.  

 

 

 

 

 

 

  



 

 

Chapter 7       

Conclusions 

 Summary 7.1.

This work develops the first approach to tactilely explore rough environments when time is 

critical. In extremely harsh environments, range, force/torque or tactile sensor cannot be used. 

A representative case is the mapping of oil wells, where extreme pressures and temperatures 

and an opaque fluid filling the well make these sensors useless or unreliable, and expenses for 

oil well inactivity require short exploration time.  

To map such environments, this work proposes the use of tactile exploration with a 

manipulator provided with only joint encoders. The manipulator is brought in proximity to the 

surface to map, and its base is fixed. The environment is then mapped by touching the surface 

with the manipulator and reading the position measurements during contact. Since tactilely 

probing a surface is inherently slow, collected tactile data will be sparse. These data are 

analyzed in real time to provide a provisional model of the surface and to choose the robot’s 

movements to reduce the mapping time. 

The first part of this work demonstrates the feasibility of the approach. Real-time impedance 

control provides reliable robot movements and the detection of the surface using only joint 

encoders. A representation based on geometric primitives is introduced, to describe the surface 

using the few, sparse data available. The robustness of the method is tested against surface 

roughness and different surrounding fluids. The problem of joint backlash, highly affecting the 

robot precision, is solved developing a new strategy to compensate for backlash error, by 

simultaneously identifying both surface and backlash values. The feasibility is validated 

experimentally with a 3 degree-of-freedom prototype manipulator specifically developed for 

this application. 

The second part of the work proposes an optimal strategy to map a constraining 

environment with a manipulator. A hybrid approach involving both workspace and 

configuration space maximizes the ability to interpret the tactile data. The amount of 

knowledge of the environment is evaluated with an information-theoretic approach, and the 
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robot’s movements are chosen to maximize the expected increase of such knowledge. The 

algorithm is probabilistically complete and can be made optimal with horizon one. Since the 

robot only possess position sensors, probabilistic techniques identify the contact location on the 

robot, and to use any type of contact to acquire knowledge on the surface.  

 Extensions 7.2.

The work presented in this research should be seen as a “complete package”. First, an 

unsolved problem is introduced: the mapping of rough environments in short time. A simple 

solution is proposed: the use of a manipulator with only joint encoder. Then, the solution is 

tested and validated experimentally. Finally, the solution is extended to achieve (partial) 

optimality and to be able to work in any constraining environment. However, there are several 

research directions where this work could be extended. Some of these directions are as follows: 

1. Mobile base. This research assumes that the manipulator base is fixed with the surface at all 

times. However, in some applications the base cannot be held fixed. This is the case when a 

manipulator is mounted on an underwater vehicle, or when the environment to be mapped 

does not fit in the robot’s workspace and the base needs to be relocated. The displacement of 

the base is usually hard to measure precisely, and the error introduced this way must be 

taken into account [57, 97].  

2. Extension to multi-manipulators. There are applications where more than one manipulator 

can explore the environment. In a robotic hand, for instance, several fingers can 

simultaneously explore an object or a surface. As another example, several models of 

underwater ROVs already possess two robotic arms. Exploration with multiple mobile 

robots is a known topic in the literature [125, 126, 137], but the use of manipulators has not 

been studied.  

3. Sensor integration. This approach has been developed for situations where range sensors 

are not feasible. However, there are applications where range sensor can be used, but their 

measurements are not completely reliable in some parts of the environment. In such 

situations, the integration of range and tactile sensing would considerably increase the 

exploration speed [138].  

 Lessons Learned 7.3.

This section quickly explains a few concepts that the author learnt during this research. This 

does not want to describe all the skills and concepts learnt during a PhD thesis, but only a 

couple of interesting, general concepts regarding tactile exploration.  

First and foremost: humans are smart. Tactile exploration with only position sensors is a 

challenging problem, and oftentimes the solution to some of its aspects is not trivial. However, 

human beings do it extremely well. The exploration of a dark room is not a good example, 
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because human beings have very imprecise position sensors (more precisely, proprioceptive 

sensors), but extremely sensitive and precise contact and tactile sensors. A better example 

consists in a man inserting a rigid stick into a dark hole, and moving it to understand its shape, 

while watching the hand outside this hole to determine its position. This analogy provided 

several ideas that have been used in this work, just by simply mimicking the intuitive 

movements that everyone would do. For instance, an instinctive movement is waiving the stick 

in free space, remembering where the stick has passed because there is no surface in such 

locations.  Furthermore, once contact is detected, it is natural to probe discretely in different 

locations to understand the shape of the hole. Moreover, if the stick is held horizontally and is 

moved up and down, the man intrinsically assumes that contact occurs along the side of the 

stick, and can quickly imagine a surface on the side wherever contact is. On the other hand, if 

the stick is moved back and forth, the man naturally thinks that contact occurs on the tip, and 

reconstructs in his mind the surface at the tip location. Several concepts introduced in this 

research are simply intuitive behaviors, described and implemented in a slightly more formal 

fashion. 

Another important lesson learnt about tactile exploration is that the problem is extremely 

hard if faced in its most general case. Some a-priori knowledge dramatically decreases the 

complexity of the problem. In this work, the intrinsic knowledge is represented by the 

assumption that the surface is regular enough to be represented as primitives. Another piece of 

knowledge helping both the computation of a probability map and detecting the contact 

location is the given “characteristic length” B.  The surface is assumed to change (in terms of 

curvature) within the limits of B, and therefore a prediction of the neighborhood of a known 

point is possible. Here, again, human beings do exactly the same, and in a much better way. 

Humans intrinsically mix exploration and objects recognition, based on some intuitive a-priori 

expectation. For example, if a person touches a sharp corner at the height of his hips in the 

middle of a dark room, he will probably assume that the object is a table. This hypothesis might 

be wrong and will be tested later. However, this dramatically speeds up the exploration. The 

use of (even only expected) partial knowledge, of physical intuition is a key element to 

determine a solution to tactile exploration. 
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