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Abstract

This research seeks ways to manage the process of analysis and synthesis of geographic data to

support collaboration among researchers, planners, and engineers working on a spatial problem.

This question is addressed on two levels. The first level examines the abstraction and

representation of the analysis process, using the Unified Modeling Language. The second level

examines the distributed environment that enables such collaboration, and proposes a three-tier

distributed system architecture. The interdisciplinary Urban Respiration project provides a

context and examples illustrating the need for such design. A prototype application is developed

to test and understand the applicability of the proposed designs.
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1. Introduction

1.1 Overview

Typical planning and engineering modeling problems require the collaboration of different users
from different disciplines. They are data intensive and require mixing data sets from different
sources and of different types and formats. Many system architectures exist to support modeling,
data management, and collaboration for engineering problem solving. Most of these cater to the
specific needs of a group of users and problems, but none satisfy the combined needs of
engineering modeling and spatial analysis. This research addresses the following question: how
can we manage the process of analysis and synthesis of these data sets to support collaboration
among different researchers, planners and engineers working on a spatial analysis problem?

This research begins by analyzing existing computing architectures in terms of their ability to
handle the demanding planning and engineering modeling. Geographic Information Systems
(GIS) provide useful tools for performing spatial analysis to support planning and engineering
modeling. These tools are usually not integrated with engineering modeling and analysis tools,
which often have different data models. Emerging distributed information systems and
collaborative tools offer the opportunity to create systems that support such integration.

This research looks at ways users of Geographic Information Systems and engineering modeling
systems interact, and what underlying system architecture might support such interaction. It also
examines the need for an abstract modeling language to capture and communicate analysis
processes. By developing a prototypical distributed system architecture, the research suggests
how users might use the Unified Modeling Language as an abstract graphical language to
describe and communicate their modeling exercises. The prototype design links different data
sources and servers in a distributed environment.

1.2 Problem Definition

The main question addressed through this research is how to manage the process of analysis and
synthesis of geographic data shared among different researchers, planners, and engineers. This
question is addressed on two levels. The first level examines the abstraction and representation
of geographic analysis processes. The second level examines the distributed environment that
enables such collaboration.

Users' interaction with GIS software highlights the issue of abstracting and representing the
analysis process. Typical GIS software allows the user to operate on data that has a spatial
dimension. This data is usually organized either as vector components (points, lines and
polygons) or as raster grids with other attached attributes that describe these geographic entities.'
During the analysis process the user performs some spatial functions on these data objects. This
analysis process could include several steps, use several layers of data, generate intermediate

1 Understanding GIS.



layers or incorporate other (non-spatial) data sets. It often requires several iterations through the

process to experiment with various parameters and test possible hypotheses.

A sophisticated spatial analysis process is often faced with difficulties in

e recording or capturing the steps of the analysis process,
* describing the required steps to perform a certain analysis in an abstract format rather

than a list of software-specific commands,
e building several nested layers of analysis that make it easier to understand the problem,
* documenting the process in a reproducible fashion,
* managing the different data sets involved in the analysis, and
e automating the process to allow for iteration or repetition.

An abstract model to represent a spatial analysis process could offer ways to alleviate the above

difficulties.

Current GIS system architectures highlight the issue of operating in a distributed environment.
Traditional Geographic Information Systems are based on a stand-alone model. All the required

data is collected on a single powerful machine. The required software (which is usually a
collection of packages from a single vendor) resides on the same machine. Data layers gathered

from different sources are processed to prepare for a specific analysis. Such processing includes

e converting file formats for the geographic layers and the database files to ensure
compatibility,

* converting between different coordinate system and projections to ensure geographic
consistency, and

* customization and filtering of the data records and attributes to suit the specific analysis
purpose.

A distributed environment, when available, is usually used for exchanging files and other types
2of communication2

3
Many of today's developments in distributed GIS are targeted towards the World Wide Web3

The current focus is on letting Internet users view geographic data and perform a limited set of

queries on them through a web browser. Little attention is focused on developing system
architectures and interfaces that allow for distributed analysis integrating several data sources

and servers. In part this is due to the huge interoperability problems that exist in the GIS world.

The system architecture and prototype developed in this research attempt to examine the issue of

operating in a distributed environment. Using the current GIS and programming tools, what are

the major limiting factors to the development of a distributed GIS architecture?

2 Ferreira et al, p. 99.
3 Alameh, p. 97.



1.3 System Users

The identification of the potential users of this system architecture and prototype is important in
determining the desired system characteristics and design objectives. The Urban Respiration
project (discussed in detail in Chapter 2) is a typical case of interdisciplinary collaborative
research. Each group has a different set of modeling needs, from Weather modeling, to
atmospheric pollution analysis, to spatial analysis. The data used are captured and generated
through different scientific devices and tools that are extremely diverse in their data models and
file formats. In such a context, integrating data from different sources and using them in different
applications is difficult. From a Geographic Information Systems perspective, these data need to
be overlayed on standardized layers such as roads and landuse, and used in further analysis.

The targeted users for this research are in a variety of disciplines; a technically sophisticated
planner, engineer or researcher. Their work is focused on the specific needs of a modeling
problem, yet they operate in a collaborative interdisciplinary environment that requires the
integration of different sources of information. Their analysis often includes a spatial component.

This research focuses on the needs of this user group. How can these users model and
communicate their analysis process in a distributed environment? What system architectures will
help them work together more effectively?

1.4 Objectives

In light of the problem definition and system users' needs outlined earlier, the objective of this
thesis is to design a system architecture and prototype to support the spatial modeling process in
a distributed environment.

This can be further divided into the following goals:
* Modeling of the spatial analysis process using an abstract modeling language.
* Understanding the current system architecture used in distributed GIS.
* Examining the different design alternatives for a distributed GIS system architecture.
* Implementing a prototype for the designed architecture.
* Evaluating the tools used in the implementation.

1.5 Research Methodology

The Thesis starts with a literature review that examines, first, Geographic Information Systems
and engineering modeling. The next part examines a typical problem of collaboration involving
geographic analysis, and introduces the Urban Respiration project in detail. The last part
examines distributed system architectures. The Client/Server architecture used in the design of
the prototype is given special attention.

The next step in the Thesis describes Unified Modeling Language (UML) and its possible
application in this context. A subset of UML is selected as a graphical modeling language in the



prototype. UML components are described briefly with a focus on using a subset to model
geographic analysis.

In the next step, the characteristics and components of the system architecture are identified. The
design alternatives for each component and the corresponding implementation limitations are
examined. This leads to a proposed architecture that is then implemented in the prototype. A full
description of the prototype and its different components follows. Using some examples from the
Urban Respiration Project, the prototype is tested. This leads to a discussion on the limitation in
the prototype and the reasons behind these limitations.

The conclusion includes an evaluation of the system architecture and prototype according to the
earlier design criteria and user requirements. Some future work is suggested as a follow-up to
this Thesis.

1.6 Thesis Overview

The Introduction covers the main objectives and overall context of this Thesis. Chapter 2
presents a background and a literature review. Chapter 3 describes modeling of geographic
analysis processes using the Unified Modeling Language. Chapter 4 examines the system
architecture and design alternatives. It ends with a description of the selected system architecture
for the prototype implementation. Chapter 5 provides a description of the developed prototype
and some examples form the Urban Respiration project to demonstrate it application.



2. Background

This research draws upon three bodies of knowledge, geographic information systems,
engineering modeling and system architecture design. This chapter presents a background and
overview of the current research trends in each, while concentrating on the issues most relevant
to the problem at hand.

2.1 Geographic Information Systems

"A geographic information system (GIS) is a computer based information system that enables
capture, modeling, manipulation retrieval, analysis and presentation of geographically referenced
data.4" A GIS holds two types of data; geographic entities (an abstract representation of space)
and attributes describing these geographic entities.

2.1.1 What GIS Can Do

What differentiates a GIS from other types of database systems is its ability to answer questions
that have a spatial dimension. Here are a few typical functions of a GIS:

e Overlaying spatial data from different sources in a single map reveals a lot about the
relationships among the different layers. This can be visually enhanced by using
symbology, thematic mapping and other cartographic and visualization techniques.

* Questions about location such as locating places and proximity, locating objects at
specific places and selecting places that satisfy certain criteria.

* Network analysis makes it possible to get the shortest path (time-wise or distance-
wise) between two points or a series of points.

* Terrain analysis makes it possible to build terrain models and answer questions about
path, visibility and viewsheds by incorporating a third dimension (elevation).

* Layer based analysis includes overlaying different layers to select locations that
satisfy a specific spatial characteristics. For example areas with high density and
education level within 10 miles from transit stations.

5
* Spatio-temporal analysis that includes comparing spatial information through time .

A GIS makes these functions practical by providing efficient data structures that can store, index
and retrieve massive amounts of data referenced to a geographic coordinate system.

GIS can be applied to a number of fields and applications. It is often used in areas such as
environmental science, landuse planning, utility management, automated mapping, remote
sensing and cartography.

4 Worboys, p. 1.
5 Worboys, pp. 4-11.



2.1.2 Distributed GIS

Traditional Geographic Information Systems are based on a stand-alone model, which requires
full access to the whole data set required for analysis (either locally or through a network file
system). With the proliferation of the Internet as a set of standards and communication protocols,
a distributed approach to GIS becomes practical. In a client/server environment, the spatial data
and geo-processing server become available through a network connection to several client
applications.

Interoperability problems on the applications and data levels represent the main challenges for
distributed GIS.

Current developments are more inclined towards Web-based GIS, which allows the user to
6

browse and query spatial data through a web browser interface . Products like Internet Map
Server from ESRI allow the user to publish a map on the World Wide Web with very limited
viewing functionalities .

2.2 Engineering Modeling

One of the applications of Geographic Information Systems is in the field of engineering and
scientific modeling. The Urban Respiration project is an example of the use of GIS to support
analysis and modeling in such a context.

2.2.1 The Urban Respiration project

The Urban Respiration project is a multi-disciplinary project funded by the United States
National Astronautics and Space Administration (NASA). It addresses a broad set of modeling
and measurement issues concerned with urban metabolism and respiration and involves
researchers from several institutions. The project, which started in 1997, aims at improved
measurement of trace gas emissions and atmospheric chemistry in metropolitan areas, and a

8
better understanding of how landuse influences air pollution patterns

Participants in the project include Aerodyne Research, the Department of Urban Studies &
Planning, and the Chemical Engineering Department at MIT, the University of Washington and
the University of New Hampshire.

Aerodyne Research's work is focused on mobile monitoring equipment for in situ trace gas
measurement. Their mobile van is capable of measuring the concentrations of trace gases in real-
time while traveling around the city. The van records the spatial coordinates and time stamps for
the measurement points using the Global Positioning System (GPS). The Chemical Engineering
Department at MIT has developed models of atmospheric chemistry and air pollution in and
above metropolitan areas. The University of Washington is focusing on the measurement and
modeling of meteorological conditions. And the University of New Hampshire is focusing on the

6 Alameh, pp. 24-26.
7 Internet Map Server.
8 Ferreira et al.



measurement and modeling of aerosol dynamics. The Department of Urban Studies & Planning
at MIT is focusing on the spatial information infrastructure and urban land use models. This
includes the development of distributed spatial information systems to facilitate collaboration

9
among the different groups

2.2.2 An Example of Collaboration Involving Geographic Analysis

As part of the Urban Respiration project, an analysis framework was developed that requires
processing raw data from field readings, creating several raster layers that represent a spatial
model of pollution distribution and finally overlaying these models produced from roads,
landuse, meteorological, and other layers. The following example demonstrates the range of
analysis and collaboration required in this context.

One goal of the project is to investigate the relationship between air pollution and landuse
patterns. This included building a geographic model for the area of Manchester, New Hampshire
that included landuse, transportation, demographic, topography, weather, and pollution data. The
landuse, transportation, demographic, and topography layers were available from standard data
sources at different levels of resolution. The weather and pollution data sets were the result of the
experiments of two other collaborators in the project.

The measurement of trace-gas levels was done using a mobile van equipped with a GPS and
trace gas measuring equipment. Several rounds of data collection were performed. Each round
involved some pre-designed experiments to test some hypotheses, which required measurements
along a certain path and time duration. To prepare for these experiments, researchers used GIS
data layers including landuse, roads, and emission sources. Each round of measurement
produced large files containing time-stamped geo-referenced pollution concentrations. These
output files needed several processing steps to identify and remove special measurement and
timing errors before others can make use of them.

In parallel with the trace-gas measurement experiments, another team was responsible for
measuring the weather conditions in the same area. Their work was used to calibrate their
weather models (using standard Penn State/NCAR Mesoscale Modeling System MM5)'0 . These
models simulate the weather conditions for the duration of the experiments. The simulation is
run in a nested fashion, beginning with a coarse 5 Km grid cell size in a large area (eastern U.S.),
and then zooming in to a high resolution 1 Km grid cell size centered on the study area. The
result is a large 3-dimensional grid with different weather parameters (e.g. temperature,
humidity, and wind speed and direction) at several resolutions (5, 3, 1 Kin). The creation of this
model is computationally demanding (3 days of processing on a fast, dedicated server) and
results in huge data files.

To build the spatial model, these data sets needed to be integrated with the other landuse and
transportation layers. The first step after data collection and processing was to communicate the
different types of models used and to discuss issues of data types, file formats and sizes. The
second step was to move the files (in this case the files were transferred using Internet's FTP,
File Transfer Protocol). The third step was to convert the data files from their application-

9 Ferreira et al.
10 MM5 documentation.



specific formats into a "GIS friendly" format. This required several applications to open, convert,
and reformat the files. At the end, the output was ready to be added as a GIS layer to the model.

p 'U_

Experiment design

Weather model or air movement Measurement o trace-gas levels Emission sources

Landuse Layer

Road Layer

Demographics Layers

Figure 2.1: Example of collaboration involving a geographic analysis process from the Urban Respiration project.

Overlay Layers

2-dimensional Spatial
Model of surface

3-dimensional volumetric models
of atmospheric chemistry



This example describes a typical situation that involves collaboration among different
researchers, each focusing on a specific type of modeling. Integrating the data resulting from
these heterogeneous models into a single homogeneous geographic model proves not to be a
trivial task. Each model has a different data model based on its specific processing needs.

Outputs are produced at different levels of aggregation. For example, landuse layers could have
different levels of aggregation, ranging from coarse layers covering the whole state, to more
detailed layers covering the metropolitan area at the parcel level. The choice of scale for mixing
data layers is also dependent on the requirements of the spatial and atmospheric models that it
feeds into. One of the objectives of this exercise is to develop different models of surface layers
at different resolution and levels of aggregation and see which aspects or assumptions are more

important in the overall model. For example, what is the impact of using a more detailed landuse
layer on the overall model accuracy?

At this stage the final outcome is a GIS model that includes all of the previous layers (and
others). This will be further used to perform analysis that attempts to understand the relationship
between the trace-gas measurements and the landuse, roads, weather and other parameters.

From a data perspective, this example involves several geographically-referenced data sets from
different sources. Each has its own format and data structure that is customized to its initial

application and discipline. From a processing perspective, the interaction among the different
researchers is naturally in a distributed environment: different parts of the analysis are performed
at different locations and using different software. A distributed architecture is naturally suited to
such collaborative environment. From a user perspective, the nature of the project requires
collaboration on one large problem. Each researcher is handling a small portion of the problem,
yet the whole model needs to be integrated at the end. An abstract modeling language, one that is
discipline- and technology-independent is a promising approach to facilitating this
interdisciplinary, distributed collaboration.



2.3 System Architecture

A system architecture refers to the design of an information system with either its software or
hardware components or both. The architecture of a system always defines its broad outlines, and
may define precise mechanisms as well.

An "open" architecture allows the system to be connected easily to devices and programs made
by other manufacturers. Open architectures use off-the-shelf components and conform to
approved standards. A "closed" architecture is one whose design is proprietary, making it
difficult to connect the system to other systems

One of the main reasons for interoperability problems in GIS is that most of the systems were
designed as closed systems using proprietary data structures and file formats that take advantages
of emerging hardware and software technology in new ways. As GIS technologies matured, there
have been efforts in the GIS community to address the interoperability issue through the creation
of the Open GIS Consortium (OGC); an industry-wide consortium dedicated to creating open

12software interfaces to allow GIS systems to interact

2.3.1 Mainframe Architecture

With mainframe software architectures all intelligence is within the central host computer. Users
interact with the host through a terminal that captures keystrokes, sends them to the host, and
receives screen-painting instructions (either text or graphics) in response. Mainframe software
architectures are not tied to a hardware platform. User interaction can be done using PCs and
UNIX workstations. A limitation of mainframe software architectures is that they do not easily
support graphical user or access to multiple databases from geographically dispersed sites.
Recently, mainframes have reemerged as servers in distributed client/server architectures13

2.3.2 File Sharing Architecture

Original PC networks were based on file sharing architectures, where the server downloads files
from the shared location to the desktop environment. The requested user job is then run
(including logic and data) in the desktop environment. File sharing architectures work if shared
usage is low, update contention is low, and the volume of data to be transferred is low. Typically,
this architecture can only satisfy about 12 users simultaneously. In the 1990s, PC local area
network computing changed because the capacity of the file sharing was strained as the number

14of connected users increased and graphical user interfaces became popular

2.3.3 Client/Server Architecture

Client/server architecture emerged as a result of the limitations of file sharing architectures. This
approach is most common for a database application, where a database server replaces the file
server. Using a relational database management system (RDBMS), user queries could be
developed and displayed using local forms, and only the queries would be sent via the network,

11 http://www.webopedia.com.
12 Buehler.
13 Edelstein.
14 Schussel, Edelstein.



rather than a total file transfer. This reduced network traffic and improved multi-user updating.
In client/server architectures, Remote Procedure Calls (RPCs) or structured query language

15(SQL) statements are typically used to communicate between client and server'.

The term client/server was first used in the 1980s in reference to personal computers connected
through a network. The actual client/server model started gaining acceptance in the late 1980s.
The client/server software architecture is a versatile, message-based and modular infrastructure
that is intended to improve usability, flexibility, interoperability, and scalability as compared to
centralized, mainframe, time sharing computing.

A client is defined as a requester of services and a server is defined as the provider of services. A
16

single machine can be both a client and a server depending on the software configuration.
Several variations of the Client/Server architecture exist, as follows.

Two-tier Architecture

With two-tier client/server architectures, the user-system interface is usually located in the user's
desktop environment and the database management services are usually in a server that is a more
powerful machine that services many clients. Processing management is split between the user
system interface environment and the database management server environment. The database
management server provides stored procedures and triggers. A number of software vendors

provide tools to simplify development of applications for the two-tier client/server architecture"

Three-tier Architecture

Three-tier architectures emerged to overcome the limitations of the two-tier architecture. In the
three-tier architecture, a middle tier was added between the client and the server environment.
There are a variety of ways of implementing this middle tier, such as transaction processing
monitors, message servers, or application servers. The middle tier can perform queuing,
application execution, and database staging. For example, if the middle tier provides queuing, the
client can deliver its request to the middle layer and disengage because the middle tier will
access the data and return the answer to the client. In addition, the middle layer adds scheduling
and prioritization for work in progress. The three-tier client/server architecture has been shown
to improve performance for groups with a large number of users (in the thousands) and improves
flexibility when compared to the two-tier architecture.

Distributed/Collaborative Enterprise Architecture

The distributed/collaborative enterprise architecture emerged in 1993. This software architecture
is based on Object Request Broker (ORB) technology, but goes further than the Common Object
Request Broker Architecture (CORBA) by using shared, reusable business models (not just
objects) on an enterprise-wide scale as building blocks to provide a range of applications. The
benefit of this architectural approach is that standardized business object models and distributed
object computing are combined to give an organization flexibility to improve effectiveness
organizationally, operationally, and technologically. An enterprise is defined here as a system

15 Schussel, Edelstein.
16 Schussel, Edelstein.
17 Schussel, Edelstein.



comprised of multiple business systems or subsystems. Distributed/collaborative enterprise
architectures are limited by a lack of commercially available object orientation analysis and

18design method tools that focus on applications

18 Shelton, Adler.



3. Modeling of Geographic Analysis Process

This chapter examines the need for an abstract, standard, graphical language for modeling of
geographic analysis process. The Unified Modeling Language is selected for that purpose. This
section presents an overview of UML components and sketches how it could be used in the
context of collaborative geographic analysis.

3.1 The Need for Modeling of Geographic Analysis Process

As described earlier, the complexity of a typical geographic analysis exercise makes it difficult
to capture all the steps involved in the process. An abstract modeling language could be used to
capture this process. The earlier example from the Urban Respiration project provides some
desired characteristics for this modeling language, which should:

" describe the problem in a discipline-independent way, so as to allow collaboration and
communication across different disciplines,

e support analysis and synthesis of the problem at different levels of abstraction by
decomposing a problem into smaller parts that can be tackled by different researchers
from different disciplines and then integrated seamlessly,

e encapsulate implementation details while focus on conceptual problem, and
* provide an application-independent description for the problem.

The Unified Modeling Language (UML) is a promising vehicle for meeting the above
requirements. The Unified Modeling Language is a standard language for modeling large
systems, especially ones that are software intensive. It could be used to visualize, specify,
construct and document the components of such a system 19. UML represents the state-of-the-art
in the modeling of large systems, especially object-oriented software. It offers a flexible and
wide range of modeling capabilities that could be used to describe a problem at different levels
of abstraction, from the conceptual level to the implementation level.

A model is a simplification of reality, the design blueprint of a system or process. Models are
usually built to assist in the understanding of the systems or processes we are developing. In this
context, UML performs four crucial functions:

* Visualizing the system at the development stage,
* Specifying the structure and behavior of the system,
* Providing a guiding template during the implementation or construction of the system,
* Documenting the system during the design and final stage 20

19 Booch et al, 1998, p13.
20 Booch et al, 1998, p5 .



3.2 Overview of the Unified Modeling Language

The emergence of object-oriented technology in the late seventies and early eighties resulted in
several competing modeling languages and processes, including the Booch method21 , Object-
oriented Software Engineering22 and the Object Modeling Technique2 3 . Each method offered a
modeling language for system analysis and design using object-oriented technology and each
was best fit for a specific domain of problems. Since 1994 the authors of these three
methodologies have been collaborating to produce a unified modeling language. In 1997 the
Object Management Group (OMG) adopted UML as the standard, and a revised version 1.3 was
released in fall 1998 24.

UML is currently considered the standard way to communicate object-oriented system designs.
Because UML is a graphical communication language and not a systems design process or
methodology, it can be used with any of the earlier methodologies in whole or in part. In most
cases it is possible to represent a system using a small subset of the UML 25

3.2.1 UML Elements

UML vocabulary includes three kinds of elements:
1. Things
2. Relationships
3. Diagrams

Things are abstractions of the different model elements. They are tied together using
Relationships. Diagrams are meaningful groups of things and their relationships 26

UML divides things into four different categories:
1. Structural things
2. Behavioral things
3. Grouping things
4. Annotational things

Structural things are the static elements of the system, either physical or conceptual. They
include seven types: classes, interfaces, collaborations, use cases, active classes, components,
and nodes. Behavioral things are the dynamic elements of the system which show the system's
behavior over time and space. There are two kinds of behavioral elements: interaction and state
machine. Grouping things are packages or folders that are used to organize the model by
grouping related elements of the model together. Annotational things are comments that can be
attached to elements to add description or comments. There is only one kind, called a note.2

21 Booch, 1994.
22 Jacobson, 1994.
23 Rumbaugh et al, 1991.
24 Booch et al, 1998, xviii.
25 Booch et al, 1998, xviii.
26 Booch et al, 1998, p. 17.
27 Booch et al, 1998, pp. 18-23.



UML divides relationships into four different categories:
1. Dependency
2. Association
3. Generalization
4. Realization

A dependency is a semantic relationship between things where a change in the independent thing
affects the semantic of the dependent thing. An association is a structural relationship that
describes a connection among objects. A generalization is a parent/child relationship. The child
object (specialized element) shares the structure and behavior of the parent object (generalized
element) and is substitutable for it. A realization is a semantic relationship between classifiers
where one classifier carries out (realizes) a certain function for another classifier. 28

3.2.2 UML Diagrams

UML divides diagrams into nine different kinds:
1. Class diagram
2. Object diagram
3. Use case diagram
4. Sequence diagram
5. Collaboration diagram
6. Statechart diagram
7. Activity diagram
8. Component diagram
9. Deployment diagram

A Class diagram is a static perspective of the system showing the classes, interfaces, and their
relationships. The Object diagram shows the instances of the Objects and their relationships. It
represents the system prototype. A Use case diagram represents the behavior of the system by
showing a set of use cases and actors with their relationships. A Sequence diagram and
Collaboration diagram are both types of the Interaction diagram. Interaction diagrams represent
a dynamic perspective of the system by showing the messages exchanged among the different
objects. A Sequence diagram is an interaction diagram that orders the messages among the
different system objects by time. A Collaboration diagram is an interaction diagram that orders
the messages according to the structural organization of the objects. A Statechart diagram
represents a dynamic perspective of the system by showing a state machine, which consists of
states, transitions, events and activities. An Activity diagram is a special kind of the statechart
diagram. It shows the flow of activities within the system. A Component diagram represents a
static perspective of the system. It shows the organization and dependencies among the different
components of the system. These components usually represent the system classes, interfaces or
collaborations. A Deployment diagram shows a static perspective of the system run-time
processing nodes configuration. Through these nine types of diagrams, UML presents a graphical
language that can describe all aspects of the system whether static or dynamic29

28 Booch et al, 1998, pp. 23-4.
29 Booch et al, 1998, pp. 24-6.



3.3 Using Activity Diagrams to Model Geographic Processes

Activity diagrams in particular seem useful for describing geographic analysis processes in an
abstract fashion. An activity diagram represents a dynamic sequential model of the system. It
shows the flow of an object as its state changes due to the application of a certain activity or
series of activities. Among the nine different diagrams available in UML, activity diagrams are
the most suitable subset for modeling geographic processes. It models a dynamic aspect of the
system by tracing the state of an object after the application of some activities. In this context an
Activity Diagram will graphically describe the change of state of a map layer (or layers) through
the application of a sequence of activities. An Activity represents a spatial function to be
performed on the input layer(s) and would results in a change in the state of the layer(s).

3.3.1 Activity Diagrams Elements

Activity diagrams usually contain the following elements:
1. Action States
2. Activity states
3. Transitions

* Sequential transitions
* Branching Initial state

* Forking and Joining

An Action state represents a process that Action state Action 1

occurs within the system. For example
multiplying each value in a grid layer by an Action 2

integer value resulting in a modified grid
layer. An Action state is atomic and can not
be further decomposed. An Activity state is Action 3

similar to an action state but can be further
decomposed. It represents another activity Sequential branch

diagram. Transitions are used to pass
control from one action or activity state to Concurrentfork

the next one. Simple sequential transitions
move directly from one state to the next
state. Branching is a kind of transition that
occurs when there is a decision to be made.
The next action or activity depends on the Concurrentjoin

result of this Boolean decision. Forking and Action 6

joining are other special kinds of transitions.
They are used when there are several
concurrent paths of actions or activities to Final state

be performed.30
I______________________

Figure 3.1: Elements of an Activity Diagram

30 Booch et al, 1998, pp. 260-5.



3.3.2 An Example from the Urban Respiration Project

Having all the layers from the earlier Urban Respiration example integrated on the same GIS,
they can be used to perform geographic analysis that attempts to understand the relationship
between air pollution measurements and landuse, roads, weather, and other parameters. This
example uses UML activity diagrams to design and model the analysis process.

The first part of the process includes building a model representing the relationship between road
network and levels of certain trace-gases associated with auto-emissions. The hypothesis is that
surface levels of these trace-gases are proportional to road class (highways, major roads, and
local roads) and decrease proportionally as the distance to the road increase. Using the road
layer, 4 grids are built each representing a road class. Grid cell values represent the distance to
the closest road. It shows a value of 0 at the road and increases as you go away from it (which is
the opposite of the desired relationship). Each grid represents the effect of a road class. The four
grids are then added together using different weights emphasizing, for example, highways over
local roads. By applying the operator l/x on all the values in the grid, it reflects the desired
pattern, proportionally decreasing values as the distance to the road increases. It shows a
hypothetical pattern of the impact of "road density". This pattern needs to be calibrated and
tested later. A possible way to calibrate it is by changing the weights used in adding the grids.
These weights represent parameters that can be modified in several iterations to test several
hypotheses about this relationship.

Figure 3.2: UML Activity Diagram for the roads Model

Road Layer initial state

Road Layr final state



Figure 3.3: Raster grid for road model

Similarly, a model is built to represent a hypothetical relationship between landuse and levels of
trace-gas emissions. Each landuse category (e.g. industrial, commercial, residential) is assumed
to have a particular average level of emissions represented by a lookup table. A grid is created to
represent this relationship. The values in the lookup table are parameters that can be used to
verify and calibrate this relationship.

In the Urban Respiration project, other factors are also taken into considerations (weather and
demographics) but are not described in this document. The final model represents an aggregation
of all these different factors to create one grid showing the pollution concentration of trace gases.
This model needs to be verified and calibrated using the real field measurements.



Landuse Activity Diagram

Lookup table: CH4 levels
Landuse Layer iitial state from landuse (ppb):

-Industrial 23
-Commercial 10

Multiply by lookup table 1 -Residential 1 4
-Residential 2 6
-Residential 3 8

Landuse Layer final state

Figure 3.4: UML Activity Diagram for the Landuse Model

Being able to deal with the results of both models and combine them together without the need to
handle their details elevates the problem to a higher level of abstraction and creates a platform
for different researchers to focus on their specific contribution which can then be plugged in the
bigger model. UML makes it possible to have several levels of nesting. An activity diagram
representing one of the models can be inserted in another diagram as a single activity. For
example, the road model and landuse model are inserted in the combined model (figure 3.5) as
one activity. This encapsulates all the details inside each of the models and elevates the problem
to a higher level of abstraction.

UML also simplify the task of iterating through the model using
aggregation and/or different combinations of emission sources and
The model can also be used for several trace gases or applied at
changing the procedures.

different levels of spatial
dispersion characteristics.
several locations without

Figure 3.5: UML Activity Diagram for the combined roads and landuse model

Combined Model



4. System Architectures for Managing GIS Processing

As described earlier, a system architecture refers to the overall design of the system components
and their interactions. This chapter provides a description for the desired system functionality
and characteristics and the system components. Several alternative system architectures are then
examined to select a prototype system architecture. This chapter examines the prototype
architecture and implementation in more details.

4.1 System Functionality

The main idea of this project is to design and prototype a system architecture to manage the
geographic analysis process in a distributed environment. The system should allow the users to:

" model the analysis process using an abstract modeling language such as the Unified
Modeling Language, which allows the user to graphically represent, document, and
communicate the analysis process in a standard language, and re-run it as a macro using
different parameters and data sets,

e have access to spatial data repositories stored on different data servers in different
formats,

" have access to different geo-processing services available on different application servers
in a distributed environment, and

" provide a user-friendly client with a Graphical User Interface to manage this process.

4.2 System Characteristics
To achieve the previous design goals, the system architecture and prototype need to provide a
modular, open, distributed and user-friendly design.

1. A modular design:
* uses Component-based software development,
e allows for adding or calling components (services) on demand,
e integrates products from different vendors and platforms, and
" can be customized to different users' needs.

2. An open design:
0 allows different software component to communicate using standard application

programming interfaces (APIs),
e allows for the easy development of new components that integrate seamlessly, and
e is portable across different systems and platforms.

3. A distributed design:
e is aligned with the current distributed organizational needs,
e allows collaboration by sharing data & services, and
0 utilizes the Internet infrastructure.



4. A user-friendly design:
0 has a fast learning curve with lower training costs,
* attracts a large user base, and
e allows quick prototyping of an analysis model.

The implemented prototype satisfies some of these desired characteristics but not all of them.
The final discussion will include an evaluation of the prototype and the implementation tools
used, and their limitations.

4.3 Proposed System Architecture

To achieve the previous design goals and characteristics, three-tier client/server architecture with
an application server is proposed.

There are four main components in this architecture:
1. The Client
2. The Application Server (Geo-processing Server)
3. The Database Server (Spatial Database Server)
4. The Communication Layer

The Client:
- User interface
-Control process execution
* Control data access

The Communication Layer: Clint
-Internet
-Local Area Network

T Dta The Application Server:
The Database Server: E=== - Running remote process
" Spatially enabled DBMS Runig eot pocs

GIS application files Spatial Data - Controlled by the Client interface
- accessing (R/W) Spatial Database

Geo-processing Server

Figure 4.1: Proposed general system architecture

The Client represents the main module in the system. It contains the user interface and the
modeling module. It allows the user to design a graphical model for the analysis process using
UML and to display the associated map layers. It is also responsible for controlling the execution
of the analysis using the geo-processing server and handling the database access on the different
data servers.



The Geo-processing Server represents the application server that executes the geographic
processes on geographically referenced data. The details of the server location and management
are transparent to the user. Several servers could be available on the network and provide a range
of geo-processing services on demand.

The Spatial Database Server represents a repository of geographically referenced data. The data
could be stored either in a database system or as files. The details of the communication between
the client and the data server are transparent to the user.

The Communication layer represents the network communication between the client, application
server and database server. This layer should be transparent to the user.

4.4 Design Alternatives

Several design alternatives exist for each of the four main system components.

4.4.1 The Client

Two main alternatives are available for the implementation of the client prototype. The first, and
probably most suitable to the above-mentioned criteria, is using a platform-independent
component. An example is Java and ActiveX components.
The Java model is widely portable, flexible and Internet friendly. Java provides seamless access
APIs to databases using JDBC. The drawbacks of using Java are the primitive user interface and
the implied security model that restricts access to local data on the client. Another limitation is
the slow execution due to the presence of the Java Virtual Machine as an extra interpreting layer.
This is extremely important when handling massive geographic data. Some of these limitations
still exist even if the prototype is developed as a Java application. ActiveX components have less
security limitations but are restricted to using a Microsoft browser.3 '
The second alternative is to use a platform dependent development environment. This will allow
for the full exploitation of the platform specific strengths and access to system resources, while
limiting the portability of the client application. It also allows for the development of a more
sophisticated Graphical User Interface.

4.4.2 The Geo-processing Server

A geo-processing server is an application server that is capable of providing geographic services.
A geographic service is a computational process applied on geographically referenced data. In a
client/server environment, a geo-processing server would receive a request to perform a
geographic service. The required data can be either sent as a stream to the server or sent as a
query from another database server. An example is the MIT Orthophoto browser. The server is
sent a request to provide a specific image layer. The coordinates of the required image are sent as
a stream of data to the server. The server accesses an image data repository on a data server,
performs the process of preparing the required image and then sends it in the required format32

31 www.javasoft.com, www.microsoft.com
32 ortho.mit.edu, Evans.



4.4.3 The Spatial Database Server

Spatial data can be stored and managed in two different ways. The first way is to store the data in
an ordinary file system, usually using proprietary formats (e.g. shape files). This is only practical
with a small amount of data or a limited number of users. Currently most spatial data is stored in
this way resulting in many data management problems.
The second way is to use a spatially enabled database Server. Some relational database vendors
have started to provide extensions that allow for improved storage of spatial data within the
database server. Using Oracle Spatial Cartridge for example, spatially referenced data can be
stored, indexed and accessed through Oracle database33 . Other vendors are planning to support
similar configurations.

4.4.4 The Communication Layer

Operating in a distributed environment requires handling several layers of complexity in terms of
communication among different platforms using different protocols. The objective of this
prototype is to avoid these layers of complexity and provide the user with a simple transparent
access to the data and geo-processing servers.

Using a distributed object model like Microsoft's COM (Component Object Model), Sun
Microsystems' JAVA Beans or OMG's CORBA (Component Object Resource Broker) provides
a possible solution34. In this model the application is divided into small components that reside
on different machines and communicate with each other using a resource broker. This three-tier
client/server architecture with an object resource broker is useful when developing a new
environment. It is not applicable when integrating several vendor-specific environments since
current GIS software is not designed to work with these emerging architectures in a non-
proprietary way.

Another possibility is by invoking Remote Procedure Calls. RPCs provide a mechanism for
communication among different applications. It is based on the concept of procedural
programming where a procedure is called to perform a specific function. It is passed in

parameters and returns back modified values. RPC extends this concept from within one
application to among different applications. Sun Microsystems' implementation of RPC allows
for communication among different platforms and has long been supported on UNIX platforms.

33 www.oracle.com
34 www.microsoft.com, www.javasoft.com, www.omg.org



4.5 Implemented System Architecture

Selecting from the previous alternatives to develop a system architecture for the prototype
implementation is a challenging task. Some of the alternatives provide better performance but are
not easy to implement. The following architecture was selected for the prototype
implementation:

The client is developed in a win32 environment using Visual C++. Although a platform specific
implementation limits the use of this prototype, it allows for the full utilization of a powerful set
of programming tools and graphical user interface. The next decision was to use Arc/Info as an
application server using RPC as a communication layer. The choice was between using a well-
developed commercial package as an application server or building a limited number of
geographical services from scratch. The former alternative provides a powerful library of
geographic services, but restricts the data format to Arc/Info's proprietary file format. The later
alternative severely limits the services available in the prototype. Running Arc/Info as a server
implies using RPC at the communication layer. Arc/Info Inter-Application Communication
(IAC) interface allows Arc/Info to receive calls from other applications and executes them
locally. The main limitation is that the data involved in such a call must reside in a network
location accessible to the Arc/Info server. It also must be in a location accessible to the client
through a mapped network drive in order to display the processed layers. RPC masks several
layers of complexity from the user and treats the remotely controlled program as a local
extension of the client. Arc/Info and Arc/View accept RPCs that allow for the exploitation of
their functionalities. Other custom libraries could be compiled to accept RPCs with a few
modifications.

The Client:
- MS win32 client
- Implemented using Visual C++

The Communication Layer: Cli mt
-Remote Procedure Calls

F=== The Application Server:
_ - Arc/Info

The Database Server: Spatial Data
- Arc/Info proprietary files
- Possible access to Oracle data

Geo-processing Server

Figure 4.2: Implemented system architecture



5. Prototype Implementation

A prototype was implemented on a win32 platform using Visual C++ to illustrate and test some
of the previous concepts and system architecture. This chapter describes the prototype
implementation. Next chapter uses some of the examples discussed earlier from the Urban
Respiration project to illustrate how the prototype functions, and to highlight some of the
implementation issues and tradeoffs.

5.1 The Client Application

The client application (named Geo) contains three main components. The first view contains a
tree listing of all the map layers in the current workspace.
diagram. The third view contains a map display.

The second view contains a UML

.Untitled - Geo

Figure 5.1: Client screen



5.2 Using the Client

5.2.1 Creating the Model

Using the Diagram view, the user can design the UML model for the analysis. The prototype
implementation is limited to a single path linear model starting with an initial node that refers to
the initial layer, then adding several actions each implementing an Arc/Info command, and
ending with a final state which refers to the output layer of this model. The model is executed
sequentially. The output layer of each action is considered as the input layer for the following
actions. Since Arc/Info uses a proprietary format, at the end of model run all the layers used
(initial, intermediary and final) are converted to a shape file format, which is viewable through
the map view.

PROJECT <COVER FILE> <input> <output> {projection-file

Arc/Info Command Paramneters

p ro je ct cover

In Layer Parameters Out Layer

0_.L ayer 1_Layer

Parameters
iationprjl

I l a t o n p jIO K C a n c e l

Figure 5.2: Action Dialog

By double clicking on any of the diagram components, the user can change the parameters of this
specific component from the Edit Action dialog. The parameters contain the command, input and
output layers, and any other parameters required. The input and output layers are assigned
automatically to follow the sequential order of the model.

5.2.2 Configuring the Server

Before the model can be run, the Arc/Info server needs to be opened and connected to the client.
To open the Arc/Info server, run Arc/Info and then open the AI-IAC (Arc/Info Inter-Application
Connectivity). Arc/Info responds by giving the server name, program number and version
number. These three parameters are required for the client to correctly connect to this Arc/Info
IAC session (note that the numbers are in hexadecimal). Arc/Info remains available for the local
user as well as the remote user. It maintains a queue of commands entered. If the Arc/Info
session is closed, the client connection to the server is lost.



STelnet - pelli.mitedu

CQonnect E~dit Ierminal Hielp

A R C / I N F 0 7 . 2 . 1

sun4x 56 version
This program takes awhile to start.
Please wait during the silence.
Type 'help' at the Arc: prompt for online documentation.
<muzak> <muzak> <muzak> ...

Copyright (C) 1982-1998 Environmental Systems Research Institute, Inc.
All rights reserved.
ARC Uersion 7.2.1 Patch 1 (Thu Sep 17 11:30:00 PDT 1998)

This software is provided with RESTRICTED AND LIMITED RIGHTS. Use,
duplication, and disclosure by the U.S. Government are subject to
restrictions as set forth in FAR Section 52.227-14 Alternate III (g)(3)
(JUN 1987), FAR Section 52.227-19 (JUN 1987), and/or FAR Section
12.211/12.212 [Commercial Technical Data/Computer Software] and DFARS
Section 252.227-7015 (NOU 1995) [Technical Data] and/or DFARS Section
227.7202 [Computer Software], as applicable. Contractor/Manufacturer is
Environmental Systems Research Institute, Inc., 380 New York Street,
Redlands, CA 92373-8100, USA.

Arc: &type [iacopen]
Host: pelli.mit.edu Program no: 40000000 Version no: 1
0
Arc:

Figure 5.3: Opening Arc/Info Server RPC

5.2.3 Connecting to the Server

On the client side, the RPC connection needs to be configured. The RPC settings dialog box
contains the Arc/Info server settings and the workspace settings. The host name, program
number and version number must be identical to the ones in the Arc/Info IAC response (note that
numbers are in decimal and not hexadecimal).



Figure 5.4: Configuring the client RPC connection settings

The data workspace represents the workspace that Arc/Info uses to access the data layers and to
store temporary files. This workspace must be accessible to Arc/Info as read/write, and must also
be accessible to the PC client as a mapped network drive. This way Arc/Info can use the data and
the output can be displayed in the client window.

The next step is to connect to the Arc/Info server and test the connection through the RPC
Dialog. If the connection is successful the Dialog displays a "Connected" message and changes
the workspace to the one indicated in the settings. Through the top screen any messages can be
passed to Arc/Info through the RPC connection. The output of these messages is displayed on the
server screen. Only the status (O=successful, otherwise error) is passed back through RPC. After
connecting to the server, the client is ready to run the model.

Figure 5.5: Connecting to and testing Arc/Info Server RPC



5.2.4 Running the Model

After connecting to the server, the model is ready to be executed. The Run Dialog displays the
Arc/Info commands corresponding to the UML model as a script for final verification. If the user
runs the displayed script these commands will be sent to Arc/Info through the RPC connection,
and then all the layers will be converted to shape files and listed in the tree view.

sh p a r nfile _ 0_ Lay e r ......................................................................................... ..... R u
project cover 0_Layer 1_Layer lationprj
arcshape 1._Layer 2_Layer Can ceI

Figure 5.6: Running the model

5.2.5 Other Functions

Some of the other functions available in the prototype are full extent, zoom and pan for both the
diagram view and the map view. The user can also add any background map layers to the map
view from any other accessible workspace.

5.3 Prototype Limitations

It is important to differentiate between the limitations of the prototype that are due to time
constraint and those due to limitations in the implementation tools and system architecture. The

diagram view implements a small subset of the Activity diagrams, other components (sequential
branch and concurrent fork and join) are implementable within the current architecture. The use
of Arc/Info as a server implies a set of restrictions. All the data needs to be in a space accessible
to the Arc/Info server and in its proprietary format. The same workspace must be accessible
through the PC client in order to display the output layers. Also Arc/Info does not send the result
of the executed commands back through the RPC connection. It only sends an integer status. The
user can not see the output of the execution unless the Arc/Info server screen is visible (which
might not be the case for all users).

It is possible to overcome some of these limitations by expanding the current implementation.

Using a spatially enabled database server (e.g. Oracle 8 with spatial cartridge) solves the data-
handling problem.



5.4 Evaluation of the Prototype Implementation

The design was implemented using Visual C++ on win32 environment. On one hand, Visual
C++ requires a very long learning curve as it restricts the programmer with a rigid framework
(Microsoft Foundation Classes). On the other hand, it offers a very powerful rapid development
visual environment while still maintaining the strength of C++. It allows the use of ActiveX
components, which could speed the development time, by using components that could be added
directly to the interface. MapObjects and Add Flow are examples of such components.
MapObjects makes it possible to display map layers created by ArcView (shape files) and
perform some spatial analysis on them. AddFlow is a diagramming module that makes it
possible to create and manage diagrams and charts. These two components were used in the
prototype for the map display and UML diagram.

A major challenge in the design of the prototype was in the data structure design. The design
requires a data structure that can capture the diagram and its components (nodes and links) and
also the spatial analysis structure layer (including the Arc/Info commands and parameters). This
data structure is highly dependent on the application server and the data model of the spatial
data. Having an interoperable data model for the spatial data would simplify this problem.

In general, the main limitations during the implementation phase were on the level of application
and data interoperability. It is very hard to communicate among different GIS applications. This
is made even harder by the lack of a common data model.

Client Implementation

Implementing the client prototype using Visual C++ on win32 platform offered access to a
powerful Application Programming Interface (API) and Graphical User Interface (GUI). As it
stands, the prototype is can not be easily ported to other platforms without involving a lot of
programming. This does not present a big restriction. Currently win32 is the most common
operating platform for desktop computers. The important issue is to be able to access a variety of
data servers and application servers on other platforms. The use of win32 for the client does not
present any major restrictions on this side.

Server Implementation

Arc/Info was used as a geo-processing server. This is an example of using a current application
without any major modification as an application server. It offers a powerful collection of spatial
analysis libraries for a wider user base. The main limitation comes at the data access level. Files
have to be used in a shared workspace in the proprietary Arc/Info file format. This model is
useful in a LAN setting with a high bandwidth. It is not useful in an Internet setting. Users must
have access to the shared workspace, and need to handle security and file access issues at a very
low level. This is not the intention of the designed architecture. The nature of geographic data
and topology does not allow for the application server to be fed small data objects and process
them sequentially. It requires the whole data set to be handled simultaneously and passed as one
contingent data set. Even if a spatially enabled database management system is used, it is not
possible to separate the whole data set from the application server. The Database server has to be
responsible for performing the spatial queries and thus acting as an application server also.



Communication Layer Implementation

In this prototype, Remote Procedure Calls were used as the main communication protocol. RPC
succeeded in masking most of the communication complexities of working on multi platforms.
Most of the problems of communication between the client and the application server occur at
this level. For new GIS applications to be able to integrate with such a distributed architecture
they need to support standards like RPC, CORBA, COM, etc. If this were the case then it would
be possible to pass different packets of data between the client and different applications.



6. Conclusion

The main goal of this research was to learn how to manage the analysis and synthesis of
geographic data to support collaboration among different researchers, planners, and engineers
working on complex spatial analysis problems. The first research phase examined the abstraction
and representation of the analysis process using the Unified Modeling Language. The second
phase examined distributed environments to enable such collaboration, using the Urban
Respiration project for its context and examples; and developed a prototype application to test
and understand the applicability of the proposed designs.

6.1 Modeling of Geographic Processes

UML activity diagrams proved to be a useful conceptual tool for modeling geographic processes.
UML offers a standard communication language that transcends the different disciplinary
boundaries. This enables and supports collaboration among the different researchers, planners
and engineers. The urban respiration project example showed how a UML activity diagram could
encapsulate the details of the application-dependent implementation. This focuses the
researcher's attention on the conceptual problem, which could later be implemented in any
application. The roads and landuse example illustrated UML's ability to approach the problem at
several levels of abstraction using nesting, and to combine the results of different components at
a later stage. As GIS software moves towards Object-Oriented implementations, it will become
easier to translate the conceptual analysis process from UML directly to a specific application.
This research focused on the use of activity diagrams to model the analysis process; further
research could examine the applicability of other diagrams and elements in geographic analysis
context.

6.2 Distributed System Architecture

The proposed distributed system architecture is in line with current trends in technology, but
proved not to be fully implementable using current software and communications tools. In the
GIS context, a three-tier system architecture promises to offer geographic services to a wider
audience that is traditionally unable to handle the complex task of managing such a system. The
data management side is handled by a database management system, which relieves the user
from data management details and provides a better institutional framework for handling data
sources. Conceptually, geo-processing servers fits within the current Internet infrastructure and
can make GIS services openly accessible to a wider user group. Moving the data and topology to
a spatially-enabled database server overcomes the problem of passing large data files. Smaller
data objects can be sent to the geo-processing server, processed, and the response sent back to
the client. This might be more suitable for vector data where the topology can be stored on the
database server (compared to raster data that is hard to manage using the database model).
Emerging commercial technologies (Oracle Spatial data cartridge and ESRI Spatial Database
Engine) might make this distributed model more feasible within the near future. Further research
could examine the applicability of these emerging tools in implementing a similar architecture.



6.3 Prototype Implementation

The prototype implementation revealed the importance of several related issues: interoperability,
metadata and standards. By design, current GIS software is based on closed systems making it
hard to communicate among the different software or exchange data directly without processing
and conversion. Further more, geographic data sets usually do not have their metadata
encapsulated in their files. This creates the problem of trying to understand the nature of the data
at hand. The lack of standards for metadata and inter-process communication makes it hard for
GIS applications to communicate at both levels. The prototype implementation illustrates the
great need for standards that enable GIS applications to communicate and exchange data
seamlessly. This is a prerequisite for any major advancement of distributed GIS. Further research
in the area of GIS interoperability could build on current standards in distributed systems that are
widely adopted in industry and create extensions that allows GIS data and applications to be part
of the mainstream information systems. For example, efforts to embed spatial referencing
information using the Extended Markup Language (XML) may permit improved GIS
interoperability using emerging industry standards for communication and distributed
processing.

Fully implemented, the envisioned architecture would provide a platform to support engineering
modeling and analysis. Using UML as an abstract modeling language would provide a software-
independent and discipline-independent vocabulary that could also encapsulate implementation
details. The urban respiration project example illustrates how a geographic analysis could be
modeled independently of any specific implementation software, hardware, or networking. The
model can be communicated and shared among researchers from different disciplines, thus
reducing the need to discuss details of how the model is implemented, and focusing on the issues
of what analysis is to be performed. The distributed environment provides the underlying
infrastructure for such collaboration. Having the data maintained by each party through a
database server removes the hurdles of sharing and managing the data. Each party could develop
their part of the model and share the results with the rest of the collaborators. Each component
(for example the weather model or the atmospheric chemistry model) can be implemented and
managed by one group, while being accessible to the rest of the collaborators through the
distributed environment. For example, the weather models are complex and demanding, but the
output can readily be queried and extracted in standard forms to provide the wind velocity and
temperature estimates needed for the atmospheric chemistry model. Additional components
could be seamlessly added to the UML model without the need to modify the rest of the
processes. For example, trace-gas emissions from new industrial point sources could be
"inserted" seamlessly into the model via the activity diagram, and the aggregation and
integration steps could be re-run to generate new estimates of the surface level distributions.
Having access to geo-processing servers would make it possible to use a few GIS functions
without having to install and manage a full system within each research lab. For example,
inserting a geo-referenced digital orthophoto as a background to Manchester model output layers
could reveal important insights about how to interpret the analysis. Similarly, being able to
perform coordinate transformation through a server would solve problems of moving across
different geographic projection systems.
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6.4 Impact on GIS Users

From a user perspective, expressing and managing the analysis process on a conceptual level
makes geographic analysis more appealing and accessible.

The current model is based on stand-alone computing, where all the analysis is performed on a
single machine (although some data might reside in a mapped network drive). Collaboration is
done by communicating files either through the Internet (using ftp protocol) or by physically
exchanging the storage media. Integrating engineering and planning models proves not to be a
trivial task either on the conceptual level of implementation level.

The designed system architecture provides a platform for collaboration. This is illustrated using
the Urban Respiration example. The user frames the problem in a diagram using a standard
language, utilizes different data sets available through the distributed environment, implements
the model through geo-processing servers at different locations and from different vendors. The
model can be modified and iterated through to test possible hypotheses. This makes complex
spatial analysis accessible to a wider range of users.

6.5 Choices in Design and Implementation

The design and implementation of the prototype application involved making many choices
about the approach and technology, which affected the conclusions of this research. Examining
these choices reveals the complex interdependent nature of the problems addressed.

Modeling of geographic processes could be captured in several ways, for example, using a text
macro or non-standard diagramming. As this research takes the approach of building on existing
standards, it examined possible ways of capturing this process using a standard language. Using
a non-standard graphical language is still a possible option, but would lack many of the features
that UML offers. The issue of whether UML supports all the functions needed to model
geographic processes requires further research.

The prototype implementation revealed a major problem with using an abstract modeling
language. The model represented in UML describes geographic processes using simple diagrams
that encapsulate the details. To run this abstract model, these processes have to be translated into
implementation-specific commands and scripts. Different GIS applications perform similar
commands in a conceptually different manner, for example, creating a buffer grid using Arc/Info
requires a different procedure and parameters than, say, MapInfo or ArcView. The translation of
the abstract model into software-specific commands requires a mapping layer specific to each
software. The prototype implements this layer at the client side. Thus, each element in the
activity diagram includes all the Arc/Info commands and parameters. Other options include
having this layer as a set of scripts at the server side. This example illustrates the need for a
common way to describe spatial analysis in a more abstract way that is software-independent.

The road model example from the Urban Respiration project uses raster grids created from the
road vector layer. In the proposed system architecture, the choice of the data type affects the way



it is managed and stored. Vector data can be stored either in file systems or DBMS, while
spatially-referenced raster data are not yet efficiently stored in commercially available DBMS.
The proposed system architecture favors a DBMS as a more efficient way for data management,
while the implemented prototype uses files due to software limitations. This choice affects the
types of data that this architecture can handle and the efficiency of the data management.

The previous examples highlight the complexity of these choices, which are often open-ended,
interdependent and lack a clear solution. The rationale behind adopting a specific path is usually
dependent on the application context.

6.6 General Discussion

This research examined ways to improve collaboration in multidisciplinary research involving
complex spatial analysis problems. Modeling of spatial analysis processes proved to be a
promising approach to facilitate collaboration and provide an abstract representation of complex
problems. Apart from the distributed environment discussed in this research, the use of UML (or
other abstract modeling tools) could enhance problem solving and collaboration. This could be
implemented within the framework of current applications. For example, in addition to looking
at a collection of layers as a map view, set of tables or cartographic layout, a UML view would
provide information on the process of generating them. This could reflect on the way GIS users
approach spatial analysis problems. Iterating through the analysis process to test several
hypotheses could enhance the decision making process in issues that involve complex spatial
problems.

The proposed distributed system architecture illustrates the importance of improving
accessibility to information through open systems and interoperability. Data collection is one of
the most expensive and time-consuming tasks in building Geographic Information Systems. The
ability to have the current repositories of data accessible to a wider audience would remove one
of the obstacles for the proliferation of GIS applications.

This research demonstrated how to manage the analysis and synthesis of geographic data to
support collaboration among different researchers, planners, and engineers working on complex
spatial analysis problems. The examples from the Urban Respiration project illustrate the
importance of collaboration across disciplines and current ways of such collaboration. Using the
Unified Modeling Language as an abstraction language for modeling geographic processes
proved to be a promising approach.
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Appendix: Sample Visual C++ Code

Class: Cdiagram View Header File:

//{{AFX_INCLUDES()
#include "addflow.h"
//}}AFXINCLUDES
#if !defined(AFXDIAGRAMVIEW_H_7C7C1DC5_E532_1 1D2_88BI_83D3FDB4CD37_INCLUDED_)
#define AFXDIAGRAMVIEW_H_7C7C1DC5_E532_11D2_88B1_83D3FDB4CD37_INCLUDED_

#if _MSCVER > 1000
#pragma once
#endif// _MSCVER > 1000
// DiagramView.h : header file
//

// CDiagramView form view

#ifndef _AFXEXT_H_
#include <afxext.h>
#endif

// ayman
#include "MapView.h"

#include "node.h" / Added by ClassView
class CDiagramView: public CFormView

{
protected:

CDiagramViewo; // protected constructor used by dynamic creation
DECLAREDYNCREATE(CDiagramView)

// Form Data
public:

I/{ fAFXDATA(CDiagramView)
enum { IDD = IDDDIAGRAMFORM 1;
CAddFlowm_diagram;
//}}AFXDATA

// Attributes
public:

CGeoDoc* GetDocumento;
CMapView* pMapView;

// Operations
public:

CNode prevNode;

// Overrides
// ClassWizard generated virtual function overrides
I/{ IAFXVIRTUAL(CDiagramView)

public:
virtual void OnlnitialUpdateo;
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

/)} AFX_VIRTUAL

// Implementation

protected:
virtual -CDiagramViewo;

#ifdef DEBUG
virtual void AssertValido const;
virtual void Dump(CDumpContext& dc) const;

#endif

// Generated message map functions



//{ {AFXMSG(CDiagramView)
afxmsg void OnSize(UINT nType, int cx, int cy);
afx-msg void OnDiagramFullextento;
afx-msg void OnDiagramlnsertindiagramActivityo;
afxmsg void OnDiagramlnsertindiagramConcurrentforko;
afx-msg void OnDiagramlnsertindiagramConcurrentjoino;
afx-msg void OnDiagramlnsertindiagramFinalstateo;
afx-msg void OnDiagramlnsertindiagramlnitialstateo;
afx-msg void OnDiagramlnsertindiagramSequentialbrancho;
afx-msg void OnDiagramRuno;
afx-msg void OnDiagramSaveasactivityo;
afx-msg void OnDiagramZoomino;
afx-msg void OnDiagramZoomouto;
afx-msg void OnDblClicko;
afx-msg void OnDiagramlnsertindiagramActiono;
DECLAREEVENTSINKMAP()
/}}AFX_MSG
DECLAREMESSAGEMAP()

#ifndef _DEBUG / debug version in GeoView.cpp
inline CGeoDoc* CDiagramView::GetDocument()

{ return (CGeoDoc*)mpDocument;
#endif

//{ {AFXINSERTLOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately before the previous line.

#endif // !defined(AFXDIAGRAMVIEW_H__7C7CIDC5_E532_1 1D2_88Bl_83D3FDB4CD37__INCLUDED_)

Class: Cdiagram View C++ File:

// DiagramView.cpp: implementation file
//

#include "stdafx.h"
#include "Geo.h"

#include "GeoDoc.h"
#include "DiagramView.h"
#include "MyTreeView.h"
#include "Action.h"
#include "ActionDlg.h"
#include "DiagramRunDlg.h"

#include "arcrpc.h"

#ifdef DEBUG
#define new DEBUGNEW
#undef THISFILE
static char THISFILE[] = _FILE_;
#endif

// CDiagramView

IMPLEMENTDYNCREATE(CDiagramView, CFormView)

CDiagramView::CDiagramViewo
CFormView(CDiagramView::IDD)

/{{AFX-DATA-INIT(CDiagramView)
//} IAFXDATAINIT

CDiagramView::-CDiagramView()



void CDiagramView::DoDataExchange(CDataExchange* pDX)
{

CFormView::DoDataExchange(pDX);
/{ {AFXDATAMAP(CDiagramView)
DDXControl(pDX, IDCADDFLOWCTRLI, m-diagram);
//}}AFXDATAMAP

BEGINMESSAGEMAP(CDiagramView, CFormView)
//{{AFXMSGMAP(CDiagramView)
ON_WM_SIZE()
ONCOMMAND(IDDIAGRAMFULLEXTENT, OnDiagramFullextent)
ONCOMMAND(IDDIAGRAMINSERTINDIAGRAMACTIVITY, OnDiagramlnsertindiagramActivity)
ONCOMMAND(IDDIAGRAMINSERTINDIAGRAMCONCURRENTFORK, OnDiagramlnsertindiagramConcurrentfork)
ONCOMMAND(IDDIAGRAMINSERTINDIAGRAMCONCURRENTJOIN, OnDiagramlnsertindiagramConcurrentjoin)
ONCOMMAND(IDDIAGRAMINSERTINDIAGRAMFINALSTATE, OnDiagramlnsertindiagramFinalstate)
ONCOMMAND(IDDIAGRAMINSERTINDIAGRAMINITIALSTATE, OnDiagramlnsertindiagramlnitialstate)
ONCOMMAND(IDDIAGRAMINSERTINDIAGRAMSEQUENTIALBRANCH, OnDiagramlnsertindiagramSequentialbranch)
ONCOMMAND(IDDIAGRAMRUN, OnDiagramRun)
ONCOMMAND(IDDIAGRAMSAVEASACTIVITY, OnDiagramSaveasactivity)
ONCOMMAND(IDDIAGRAMZOOMIN, OnDiagramZoomin)
ONCOMMAND(IDDIAGRAMZOOMOUT, OnDiagramZoomout)
ONCOMMAND(IDDIAGRAMINSERTINDIAGRAMACTION, OnDiagramInsertindiagramAction)
//I}AFXMSGMAP

ENDMESSAGEMAP()

// CDiagramView diagnostics

#ifdef DEBUG
void CDiagramView::AssertValid() const
{

CFormView::AssertValido;
}

void CDiagramView::Dump(CDumpContext& dc) const

{
CFormView::Dump(dc);

CGeoDoc* CDiagramView::GetDocument() // non-debug version is inline

{
ASSERT(mpDocument->IsKindOf(RUNTIMECLASS(CGeoDoc)));
return (CGeoDoc*)m-pDocument;

}
#endif //DEBUG

// CDiagramView message handlers

void CDiagramView::OnlnitialUpdate()
{

CFormView::OnlnitialUpdateo;

CGeoDoc* pDoc = GetDocumento;
pDoc->pDiagramView = this;

void CDiagramView::OnSize(UINT nType, int cx, int cy)

CFormView::OnSize(nType, cx, cy);

CRect rc;
GetClientRect(rc);

CWnd *pWndAddFlow = GetDlgItem(IDC_ADDFLOWCTRL1);
if (pWndAddFlow)



pWndAddFlow->MoveWindow(rc);

void CDiagramView::OnDiagramFullextent()
{

m_diagram.SetXZoom(100);
m-diagram.SetYZoom(100);

void CDiagramView::OnDiagramZoomin()

{diagram.SetXZoom(mdiagram.GetXZoomo* 1.25);
m-diagram.SetYZoom(m-diagram.GetYZoom(* 1.25);

void CDiagramView::OnDiagramZoomout()

mdiagram.SetXZoom(miagram.GetXZoomo/1.25);
m_diagram.SetYZoom(m-diagram.GetYZoomo/1.25);

//* Calls to Diagram **************************************
//** * *** ** ** ** * *** ** ** * ** ** ** *** ** * *** * ***** ** ** ** ** * *** * **

void CDiagramView::OnDiagramlnsertindiagramlnitialstate()

char t[8];

int index = GetDocumento->mlistCounter;
CAction *pAction;
pAction = new CAction;

GetDocumento->m-actionArr[index] = pAction;
CNode newNode = m-diagram.GetNodeso.Add(1250, 200+index* 1000, 500, 500);

newNode.SetDrawColor(RGB(0, 0, 0));
newNode.SetShape(afEllipse);
newNode.SetText("");
newNode.SetUserData(index);

//pAction->m-syntax = "Arc: shapearc <inlayer> <outlayer>";
pAction->mjindex = index;
pAction->m-command = "shapearc
pAction->mjinLayer = "infile";
itoa(index, t, 10); strcat (t, "_Layer");
pAction->m-outLayer = t;

newNode.SetKey(t);

prevNode = newNode;

void CDiagramView::OnDiagramlnsertindiagramAction()

char t[8];

int index = ++GetDocumento->mjlistCounter;
CAction *pAction;
pAction = new CAction;

GetDocumento->m-actionArr[index] = pAction;
CNode newNode = mdiagram.GetNodeso.Add(500, 200+index* 1000, 2000, 500);

newNode.SetDrawColor(RGB(0, 0, 0));
newNode.SetShape(afRoundRect);
newNode.SetText("Action");
newNode.SetUserData(index);



//pAction->msyntax = "Arc: command <inlayer> <outlayer> {
pAction->mjindex = index;
pAction->m command = "command";
itoa(index-1, t, 10);strcat (t, "_Layer");
pAction->mjinLayer = t;
itoa(index, t, 10);strcat (t, "Layer");
pAction->m-outLayer t;

newNode.SetKey(t);

if (prevNode)
CLink link = prevNode.GetOutLinkso.Add(newNode);

prevNode = newNode;

void CDiagramView::OnDiagramlnsertindiagraActivity(

void CDiagramView::OnDiagramlnsertindiagramConcurentfork

void CDiagramView::OnDiagramlnsertindiagramConcurrentjoin()

void CDiagramView::OnDiagramlnsertindiagramFinalstate()

char t[8];

int index = ++GetDocumento->mjlistCounter;
CAction *pAction;
pAction = new CAction;

GetDocumento->mactionArr[index] = pAction;
CNode newNode = m-diagram.GetNodeso.Add(1250, 200+index*1000, 500, 500);

newNode.SetDrawColor(RGB(O, 0, 0));
newNode.SetShape(afEllipse);
newNode.SetText("");
newNode.SetUserData(index);

//pAction->m syntax = "Arc: arcshape <inlayer> <outlayer>";
pAction->mjindex = index;
pAction->mscommand = "arcshape
itoa(index-1, t, 10);strcat (t, "_Layer");
pAction->mjinLayer = t;
itoa(index, t, 10);strcat (t, "_Layer");
pAction->m-outLayer = t;

newNode.SetKey(t);

if (prevNode)
CLink link = prevNode.GetOutLinkso.Add(newNode);

prevNode = newNode;

void CDiagramView::OnDiagramlnsertindiagramSequentialbranch()

// TODO: Add your command handler code here

void CDiagramView::OnDiagramRun()

CString s;
CDiagramRunDlg dig;

int i = 0;



int index = GetDocumento->mlistCounter;

dlg.pDoc = GetDocumento;
dlg.index = index;
if ( !dlg.DoModal()

return;

if (!GetDocumento->rpclnfo.isConnected) / if not connected, exit
return;

for (i=0; i<=index; i++) {
s = GetDocumento->m-actionArr[i]->mscommand +" +

GetDocumento->m-actionArr[i]->mparameters 1 +" "+

GetDocumento->m-actionArr[i]->mjinLayer + " " +
GetDocumento->mactionArr[i]->mparameters2 + "+

GetDocumento->m-actionArr[i]->m outLayer + " " +
GetDocumento->m-actionArr[i]->mparameters3;

rpcSend(s.GetBuffer(O));

void CDiagramView::OnDiagramSaveasactivityo
{

// TODO: Add your command handler code here

/* ** * *** *** ** * **** ** * *** ** * **** ** * *** * *** ** ** ** ** ** ** ** *

//* Calls to ArcInfo Actions *

BEGINEVENTSINKMAP(CDiagramView, CFormView)
//{ {AFXEVENTSINKMAP(CDiagramView)

ONEVENT(CDiagramView, IDC_ADDFLOWCTRL1, -601 /* DblClick */, OnDblClick, VTSNONE)
/) }AFX EVENTSINK-MAP

ENDEVENTSINKMAP()

void CDiagramView::OnDblClick()

CNode mNode = mdiagram.GetSelectedNodeo;
if (!mNode) / exit if there is no selected node

return;

CActionDlg dig;

int index = mNode.GetUserDataO;
CAction *pAction = GetDocumento->m-actionArr[index];

dig.mactionText = m_Node.GetTexto;
dlg.m-syntax = pAction->m-syntax;
dlg.m-command = pAction->m_command;
dlg.m-inLayer = pAction->mjinLayer;
dlg.m-outLayer = pAction->moutLayer;
dlg.m-parameters 1 = pAction->mparameters 1;
dlg.m-parameters2 = pAction->m-parameters2;
dlg.m-parameters3 = pAction->m-parameters3;

if (dlg.DoModal() == IDOK)

m_Node.SetText(dlg.mactionText.GetBuffer(0));
pAction->m-command = dlg.mcommand;
pAction->m-inLayer = dlg.m-inLayer;
pAction->m-outLayer = dlg.m-outLayer;
pAction->mparameters 1 = dlg.m-parameters 1;
pAction->m-parameters2 = dlg.m parameters2;
pAction->m-parameters3 = dlg.m parameters3;
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