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Abstract 

   We analyze the steady-state behavior of a general mathematical model for reversible galvanic cells, 

such as redox flow cells, reversible solid oxide fuel cells, and rechargeable batteries. We consider not 

only operation in the galvanic discharging mode, spontaneously generating a positive current against 

an external load, but also operation in two modes which require a net input of electrical energy: (i) the 

electrolytic charging mode, where a negative current is imposed to generate a voltage exceeding the 

open circuit voltage, and (ii) the “super-galvanic” discharging mode, where a positive current 

exceeding the short-circuit current is imposed to generate a negative voltage. Analysis of the various 

(dis-)charging modes of galvanic cells is important to predict the efficiency of electrical to chemical 

energy conversion and to provide sensitive tests for experimental validation of fuel cell models. 

Notably, we consider effects of diffuse charge on electrochemical charge transfer rates by combining 

a generalized Frumkin-Butler-Volmer model for reaction kinetics across the compact Stern layer with 

the full Poisson-Nernst-Planck transport theory, without assuming local electroneutrality. Since this 

approach is rare in the literature, we provide a brief historical review. To illustrate the general theory, 

we present results for a monovalent binary electrolyte, consisting of cations, which react at the 

electrodes, and non-reactive anions, which are either fixed in space (as in a solid electrolyte) or are 

mobile (as in a liquid electrolyte). The full model is solved numerically and compared to analytical 

results in the limit of thin diffuse layers, relative to the membrane thickness. The spatial profiles of the 

ion concentrations and electrostatic potential reveal a complex dependence on the kinetic parameters 

and the imposed current, in which the diffuse charge at each electrode and the total membrane 

charge can have either sign, contrary perhaps to intuition. For thin diffuse layers, simple analytical 

expressions are presented for galvanic cells valid in all three (dis-)charging modes in the two 

subsequent limits of the ratio δ of the effective thicknesses of the compact and diffuse layers: (i) the 

“Helmholtz limit” ( δ → ∞ ) where the compact layer carries the double-layer voltage as in standard 

Butler-Volmer models, and (ii) the opposite “Gouy-Chapman limit” ( 0δ → ) where the diffuse layer 

fully determines the charge-transfer kinetics. In these limits, the model predicts both reaction-limited 

and diffusion-limited currents, which can be surpassed for finite positive values of the compact-layer, 

diffuse-layer and membrane thicknesses. 
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Introduction 

   Reversible galvanic cells, such as redox flow cells [1]-[4], reversible solid oxide fuel cells [5]-[9], and 

rechargeable batteries [10]-[12] are electrochemical cells that can run both in a galvanic mode, 

thereby converting chemical energy in electric energy, and in the reverse, electrolytic, mode where 

electrical energy is returned into chemical energy. In the galvanic mode electrons flow spontaneously 

through an external load toward the more positive electric potential in the direction from anode to 

cathode, whereas in the electrolytic mode, the electrons are pumped toward the more negative 

potential of the cathode. Similar to rechargeable batteries, redox flow cells and reversible solid oxide 

fuel cells can be used to store electrical energy in the form of chemical energy. The main difference 

with rechargeable batteries is that the chemical energy is stored in a fluid phase which can be 

pumped to a secondary container, rather than being stored in a finite-capacity solid phase. 

   In this manuscript we develop a general mathematical model of electrochemical charge transfer and 

ion transport in galvanic cells and apply it to a one-dimensional model cell operating in steady state. 

We analyze not only the standard galvanic discharging regime in which the cell ‘generates electricity’ 

with positive power by spontaneously driving electrons through the external circuit [17][18], but also 

two operating regimes which require external electrical forcing. The first is the electrolytic charging 

regime in which an applied voltage exceeding the open-circuit voltage drives current in the reverse 

direction to convert electrical energy into chemical energy [5]-[9], while the second is an 

unconventional ‘super-galvanic’ regime in which the current is forced beyond the maximum for a 

galvanic cell in a shorted circuit. These three modes of operation are illustrated in Figure 1. Analysis 

of the full range of operation is important to better understand the efficiency and physical mechanisms 

of energy conversion, and to enable more sensitive experimental validation of mathematical models of 

galvanic cells. 

 

 

Fig. 1. Regimes of operation of a galvanic cell with imposed current. The calculations are based on a 

proton conducting fuel cell (see parameter settings of Fig. 3). 
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   In this manuscript we will present calculation results for the ion density and electrostatic potential 

profiles as function of charge-transfer kinetic rates and of the imposed current. Two models for the 

electrolyte are considered. In the first case we consider a membrane electrolyte material in which the 

countercharge has a fixed, constant, distribution in space, while only the reactive ion is mobile. This is 

the typical situation for a solid-state proton or oxygen-ion conducting electrolyte membrane. In the 

second case we analyze the situation where the inert (non-reactive) ion is mobile and is redistributed 

across the membrane. This situation is more typical for a fuel cell or redox flow cell operating in liquid 

(e.g., aqueous) solution.  

   In both cases we illustrate the general theory in calculations that assume a one-dimensional planar 

geometry, steady-state operation, and constant (time-independent) chemical potentials of the reduced 

forms of the reactive cation, whose values are different at the anode and the cathode to describe a 

galvanic cell. The assumption of a constant chemical potential in each electrode corresponds, for 

instance, to a hydrogen fuel cell where the cation is a proton which reacts to/from an absorbed 

hydrogen atom in equilibrium with a large gas phase of constant hydrogen pressure (higher in the 

anode compartment than in the cathode compartment). The same assumption can also describe the 

case that the ion reduces to a neutral atom upon arriving at the cathode and is incorporated into the 

electrode phase (and vice-versa for oxidation at the anode). In this situation, our calculations extend 

the analysis of Bazant et al. [13]-[15] on electrolytic cells, where the reactions occurring at the two 

electrodes are the same, only driven in opposite directions by an applied cell voltage (and thus the 

open circuit voltage is zero). In such situations, the behavior of the model electrolytic cell is invariant 

with respect to the sign of the current, but this symmetry is broken in a galvanic cell because the 

conditions at the two electrodes are different. 

   An important element in our work is the consideration of diffuse charge, or polarization, effects near 

the electrodes. By including these effects in our calculations, we build on recent work for fuel cells 

[16][17] that goes beyond the standard assumption of electroneutrality throughout the electrolyte 

phase, which is ubiquitous in the battery and fuel-cell literature [5][11][18]-[27]. Though polarization of 

the electrolyte is confined to nanoscopic “diffuse charge” or “space charge” layers near the electrodes 

where ionic concentrations and the electrostatic potential rapidly vary, as shown in Fig. 2, the 

electrostatic potential across the polarization layer can be a significant part of the overall cell voltage. 

An additional reason to consider the polarization layer in detail is that the ion concentrations and field 

strength at the reaction plane (which we equate to the Stern, or Outer Helmholtz, plane, i.e. the 

boundary of the electrolyte continuum) strongly influence the electron charge transfer rate. We 

emphasize in this work the importance of a final “Stern” boundary condition, which relates the Stern 

layer voltage difference to the field strength at the Stern plane [13]-[15],[38]. Considering these 

elements jointly, a complete mathematical model is developed which self-consistently and logically 

describes the effect of the charge stored in the polarization layers on the electrochemical charge 

transfer rates. In contrast, in standard models for electrochemical cells, local electroneutrality is 

implicitly assumed throughout the complete electrolyte phase, and the electron charge-transfer rate 

does not depend on the structure of the polarization layer. 
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   Polarization layer effects in electrochemical cells have been included in a limited amount of previous 

work [13]-[17],[28]-[30],[39],[40] but except for refs. [16][17] these papers consider electrolytic 

operation where the open-circuit voltage (OCV) is zero and no current is generated spontaneously 

upon closing the electrical circuit. This class of problems includes the broad topic of electrodialysis, 

where ion transport is analyzed between ion-exchange membranes under the application of an 

external voltage. Related work has focused on super-limiting currents and hydrodynamic instability at 

large voltages [31][32], but for this class of problems much simpler Dirichlet boundary conditions of 

constant ion concentrations and constant electrostatic potential are commonly used to describe the 

membrane-electrolyte interface. In the present context of Faradaic charge transfer reactions, some 

authors modeling diffuse charge in electrolytic cells [28][29] have simplified the problem by taking the 

Gouy-Chapman limit of a zero Stern layer thickness, but this removes any local field strength-

dependence from the charge-transfer reaction rate and thus predicts a reaction-limited current, which 

cannot be exceeded without negative ion concentrations in the model. With a Stern layer included, it 

can be shown that ion concentrations are always positive [13][15]. In the case of a fuel cell with fixed 

countercharge, a more detailed galvanic cell model, which includes polarization layer effects, has 

been developed by Franco et al. [16].  

   In our recent paper [17] a fuel-cell model is presented for the case of fixed countercharge, where 

local electroneutrality in the bulk electrolyte is assumed and a quasi-equilibrium structure of the 

polarization layer considered. This is the thin diffuse layer (‘thin-DL’) limit of the full model presented 

below. In ref. [17] calculation results are presented, following Bazant et al. [14][15], as function of the 

parameter δ, the ratio of the effective Stern layer (or compact layer) thickness to the Debye screening 

length. In the “Gouy-Chapman limit” of δ=0, the Stern-layer potential difference is zero, while in the 

opposite “Helmholtz limit”, where δ=∞, the Stern layer carries the complete voltage across the double 

layer, since in the Helmholtz limit the Stern capacity is assumed to be infinitely larger than that of the 

diffuse layer. The Helmholtz limit of the generalized Frumkin-Butler-Volmer (gFBV) equation 

(discussed below in detail) turns out to be equivalent to the standard Butler-Volmer (BV)-based model 

for fuel cell operation [18]-[20],[22],[26],[27]. Therefore, in ref. [17] a mathematically simple 

methodology is presented to generalize the standard BV-model for fuel cells toward arbitrary values of 

the ratio δ. In the present work we build on refs. [16] and [17] by also considering mobile 

countercharge, by analyzing in more detail the structure and charge sign of the polarization layers as 

function of current, and by studying the effect of imposing negative and very positive currents on 

galvanic cell operation. 

   When ions can be considered as point charges, without excluded volume, the structure of the 

electrolyte including the diffuse (polarization) layer that forms on the electrodes is described using the 

full, non-equilibrium Poisson-Nernst-Planck (PNP) model for the transport rates of all mobile ions 

through the electrolyte [32]. At equilibrium, or in the thin-DL limit, the diffuse part of the double layer 

can be described by Poisson-Boltzmann (PB) theory (Gouy-Chapman equation). These microscopic 

models for the polarization layer must be coupled to a suitable expression for the electron charge 

transfer rate and combined with an additional boundary condition on the electrostatic potential, to 

replace the macroscopic assumption of bulk electroneutrality. Here we will use a generalized Frumkin-
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corrected Butler-Volmer (gFBV) equation which, in our view, extends in a relevant way more familiar 

formulations based on the assumption of local equilibrium of the polarization layer. The gFBV-

formulation explicitly considers the compact (or Stern) layer potential difference as the driving force for 

electron transfer and the concentrations of reactive ions directly adjacent to the electrode, i.e., at the 

Stern or reaction plane, and does not a-priori assume the existence of a quasi-equilibrium Boltzmann 

distribution of the polarization layer. For the additional electrostatic boundary condition, we model the 

Stern layer as a uniform dielectric, and this effectively gives the forward and backward reaction rates 

an Arrhenius dependence on the normal electric field at the electrode. The generalized formulation 

completes the mathematical description without arbitrary assumptions such as local equilibrium or 

electroneutrality of the electrolyte or for instance a prescribed, constant surface charge, and can be 

applied in such situations as thin electrolyte films (where diffuse layers overlap and/or the bulk 

electrical field is a significant portion of the field strength in the polarization layer), operation at large, 

super-limiting currents [15] or large AC frequencies, which are all situations where the diffuse charge 

distribution loses its quasi-equilibrium structure. 

   FBV-formulations for the charge-transfer rate (either generalized, and those that assume quasi-

equilibrium for the polarization layers) differ from the standard unmodified BV-approach in which the 

ion concentrations outside the polarization layer (in the quasi-neutral bulk solution) are used and the 

interfacial overpotential is based on the total potential difference across the interface (thus over the 

Stern layer plus the diffuse layer) or more heuristically is based on the electrode potential relative to 

that of a reference electrode. When the BV equation is used, one is forced to combine this with a 

model for ion transport that neglects the possibility of charge separation (as occurs in the polarization 

layer). Instead, the gFBV equation which is based on local conditions at the Stern plane (ion 

concentration, and field strength, which determines the Stern layer potential difference) can be 

unequivocally and transparently combined with the PNP model which describes ion concentration and 

potential profiles both in the electrolyte bulk, as well as in the diffuse layers, all the way up to the 

reaction planes. The resulting PNP-gFBV model can be generally used, for the equilibrium situation, 

as well as for steady-state and fully dynamic transport problems.  
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Fig. 2. Schematic representation of potentials in an equilibrium polarization layer based on the Gouy-
Chapman-Stern model, in which the compact or Stern layer is located directly next to the electrode 
and separated from the diffuse layer (and ultimately the electrolyte bulk solution) by the Stern, 
reaction, or Outer Helmholtz plane (OHP). 



 6 

History of modeling electrochemical charge transfer including polarization-layer effects 

   The mathematical description of charge-transfer reactions is at the heart of any model for 

electrochemical cells, so we begin with a brief historical overview of various contributions where 

polarization-layer effects are included in charge-transfer rate modeling, a development initiated by 

Frumkin [33] who first included diffuse-charge effects in a Butler-Volmer framework. In this section we 

describe what we call the “generalized Frumkin-Butler-Volmer” (gFBV) equation, and compare with 

related representations in the literature. The gFBV-equation for the electrochemical conversion rate J 

of an n-electron reaction is given as a sum of an oxidation and a reduction reaction 

( ) ( )O R O s R O R sexp expJ K C n K C n= α ∆φ − −α ∆φ  (1) 

where αO and αR are the transfer coefficients (αO+αR=1) and CR and CO are concentrations of the 

reacting species in the reduced and oxidized state at the Stern, pre-electrode, Outer-Helmholtz, or 

reaction, plane [in numbers per volume]. As we will explain in more detail below, Eq. (1), although 

superficially similar, is fundamentally at odds with the textbook literature in electrochemistry, because 

∆φs is here explicitly defined as the voltage difference across the inner, or Stern, layer and 

concentrations are those at the Stern, or reaction, plane, not outside the polarization layer. In Eq. (1) 

we have assumed ideal thermodynamics for the two atoms (or, ions) “R” and “O” and use 

concentrations Ci instead of activities, ai. Non-idealities, such as volume constraints for finite-sized 

ions, can be included in modifications of Eq. (1), such as discussed in ref. [17]. More general models 

based on electrochemical potentials for non-ideal solutions have also recently been proposed in the 

context of rechargeable batteries [12] but here we focus on the traditional Butler-Volmer perspective, 

where the interfacial voltage biases the energy barrier for charge transfer. 

   In particular, in Eq. (1), we view ∆φs as the difference in dimensionless electrostatic potential 

between the electrode, φm, and the electrical potential at the reaction, plane, φS, which is usually 

assumed to coincide with the Stern plane, just beyond the first solvation layer of the electrode [34]. To 

simplify notation, throughout the paper we use dimensionless electrostatic potentials φ which relate to 

dimensional potentials V via φ=f⋅V with f=F/RT=e/kT is the inverse thermal voltage. The conversion 

rate J relates to the Faradaic current density i according to i=J⋅e⋅n. 

   For the one-electron proton reduction, Frumkin [33] already gives Eq. (1) [first part of his Eq. (3) for 

the proton reduction, and his Eq. (4) for the oxidation]. Also for the one-electron proton reduction and 

the reverse oxidation, Eq. (1) is given by Levich [35]. For an n-electron reduction, the second part of 

Eq. (1) is also given as Eq. (56) by Parsons [36]. For infinitely fast kinetics, the appropriate 

electrochemical boundary condition can also be derived from Eq. (1). Assuming CR fixed, e.g. for an 

ion that upon reduction becomes incorporated in the electrode, Eq. (1) results for n=1 in 

s OlnC∆φ = β +  with β a constant. This boundary condition was used in numerical work by Buck [37] 

(his Eq. 6) and Smith and White [32]. Itskovich et al. [38] give Eq. (1) for a one-electron reaction with 

CR fixed (their Eq. (10), based on assuming a constant chemical potential of the species in the 

reduced state), given by  
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( ) ( )O
* O R

O,eq

exp exp
C

J J
C

 
= α η − −α η 

  
  (2) 

where the ‘Stern’ overpotential η is the potential difference across the Stern layer minus that value at 

equilibrium, given by s s,eqη = ∆φ − ∆φ . We can show that Eq. (2) directly results from Eq. (1) when we 

set J=0 in Eq. (1) to obtain the equilibrium potential over the Stern layer, ∆φs,eq, as R O,eq
s,eq

O R,eq

ln
K C

K C
∆φ = , 

where CO,eq and CR,eq are the concentrations of the oxidized and reduced species at equilibrium at the 

Stern plane, and by making the replacements ( ) ( )O R

* R O,eq O R,eqJ K C K C
α α

= .  

   For completeness we give the generalized n-electron version of Eq. (2) with also CR participating, 

which is given by 

( ) ( )OR
* O R

R,eq O,eq

exp exp
CC

J J n n
C C

 
= α η − −α η 

  
  (3) 

   where as above concentrations C are defined at the Stern plane, and the Stern overpotential η is 

given by s s,eqη = ∆φ − ∆φ . Finally we represent Eq. (1) as  

( )( ) ( )( )† 0 0O
R O s R s

O,eq

exp exp
C

J J C n n
C

 
= α ∆φ − φ − −α ∆φ − φ 

  
 (4) 

where φ0 is a ‘formal potential’, which follows from Eq. (1) as ( )0 1 1
R Olnn K K− −φ = ⋅  and where J† is 

given by O R†
R OJ K Kα α= . Eq. (4) was given for n=1 in refs. [39] and [40]. 

   Equation (1) has been written down in some recent papers and analyzed with different, simplified 

models of the double layer. In the context of charge transfer between two immiscible electrolyte 

solutions, Horvai [44] gives Eq. (1) but with n replaced by z, being the ‘charge of the ion’. In the same 

context, Senda [45] exactly gives Eq. (1) for an n-electron reaction. Murphy et al. [28] give a 

representation of Eq. (1) for a one-electron reaction with the concentration of both the oxidized and 

reduced species included, which is their Eq. (15). To our knowledge, ref. [28] is the first paper that 

makes a full numerical calculation of a complete electrochemical cell with a microscopic reaction 

model, which is a limit of the gFBV equation (1), combined with the full Poisson-Nernst-Planck (PNP) 

transport theory. In their calculations, Murphy et al. [28] only consider the Gouy-Chapman (GC) limit 

of the gFBV equation (effectively setting ∆φs=0) because the “ions are assumed to be point charges... 

and the plane of closest approach of ions is just the electrode surface.” A similar exercise, in which 

the PNP theory is combined with the gFBV equation in the GC-limit, is presented by Moya et al. [29]. 

In both papers the kinetic constants are chosen such that at equilibrium no polarization layer is formed, 

and thus the OCV is zero. The electrostatic boundary condition used in these papers [28][29] 

essentially equates the potential at the reaction plane to that of the electrode under all conditions. This 

GC-limit (∆φs=0), however, lacks any voltage or electric-field dependence and thus reduces to 

standard first-order chemical reaction kinetics and can also become unphysical in some situations, 

since it predicts reaction-limited currents, beyond which negative ion concentrations are predicted. As 

we shall see, this problem can be avoided by introducing a more general boundary condition on the 
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electrostatic potential, which self-consistently inserts the electric field dependence in the reaction rate 

via the full gFBV equation (1).  

   Superficially similar expressions as Eqs (1)-(4) can be found in the textbook literature (e.g., see 

p. 99 in ref. [41]; p. 210 in ref. [42]; p. 109 in ref. [43]) but there presented without inclusion of 

polarization layer effects (standard Butler-Volmer equation) and thus with the concentrations, Ci, 

defined outside the diffuse layer, and the overpotential, η, defined as the difference between the case 

with and without current of the potential difference across the full polarization layer, from electrode to 

solution. Even more heuristically, the overpotential is often defined as the measurable difference 

between the situation with and without current of the working electrode potential relative to that of 

reference electrode. This approach, to omit polarization layer effects in the modeling of charge-

transfer reactions, may be due to the perspective, summarized by Newman [42], that microscopic 

double layer modeling lacks a “firm macroscopic basis” in thermodynamics, and thus “cannot be 

applied with any certainty to solid electrodes”, in spite of the “impressive qualitative account of 

complicated electrode behavior that can be attributed to double layer structure”. For thin diffuse layers, 

Newman attributes this uncertainty to the unknown surface charge, which would be enough to 

determine the ion profiles in quasi-equilibrium (unaffected by the current).  

   From a mathematical perspective, what is missing is a microscopic boundary condition on the 

electrostatic potential, which can provide the local field strength entering the gFBV equation (1). 

Indeed, we are not aware of any textbooks on electrochemistry that provide a complete set of 

boundary conditions for microscopic modeling with diffuse charge, since the assumption of bulk 

electroneutrality obviates the need for a boundary condition on the potential. Instead, the standard 

approach for microscopic modeling within the polarization layer is simply to specify the surface charge, 

ion concentration or potential (usually equated with the electrokinetic “zeta potential”). Below, we will 

show that all of these parameters (surface charge, concentration, potential) can be highly sensitive to 

the current and reaction parameters in a complete microscopic model, and thus cannot be left as a 

macroscopic fitting parameter without sacrificing predictability. 

   To our knowledge, the “missing boundary condition” on the electrostatic potential to be used in 

conjunction with the generalized, non-equilibrium, FBV equation (1) was first proposed to be explicitly 

related to the properties of Stern’s compact layer by Itskovich et al. [38]. We are not aware of any 

subsequent work with this general mathematical model for charge-transfer reaction kinetics with 

diffuse charge until the recent work of Bazant et al. [13]-[15],[46] who write the electrostatic boundary 

condition at the Stern plane in the form 

s

S S

d
dX

∆φφ =
λ

∓    (5) 

where X is the place coordinate, and λS is an effective width for the compact layer, equal to its true 

width times the permittivity ratio of the electrolyte to the compact layer. In Eq. (5) and subsequent 

expressions, the upper sign in ‘±’ and ‘ ∓ ’ is required for boundaries where the position coordinate X 

points from electrode into the electrolyte (in our calculations this will be the anode side), and the lower 

sign is for the other electrode. The boundary condition, Eq. (5), enforces continuity of the electric 

displacement from the continuum electrolyte region into the compact layer, which is described by 
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Stern’s model of an uncharged, uniform dielectric coating on the electrode. As described in ref. [14], 

Eq. (5) can also be generalized to account for a nonlinear, charge-dependent differential capacitance 

of the Stern layer. The combination of the gFBV equation (1) with the Stern boundary condition, 

Eq. (5), yields an intuitive expression for charge-transfer reaction kinetics, 

O R O S R O Rexp( ' ) exp( ' )SJ K C n K C n= α λ φ − ± α λ φn n∓  (6) 

where the acceleration factor of the kinetic rates is shown to be proportional to the normal electric field 

strength at the reaction plane; for a one-dimensional geometry, 
S

d
'

dX
φφ =n .  

   Eq. (6) clearly shows the departure of the generalized FBV formulation from the traditional BV 

approach: whereas in the latter the driving force (the term within the exponent) is the overpotential η, 

i.e., a difference in potential between two positions (electrode and solution, or between the working 

and reference electrode) and two conditions (with non-zero and zero current), here it (simply) is a fully 

local property only requiring information of the present state (not requiring comparison with the 

equilibrium state), namely the gradient of potential at the Stern plane. Not only are we of the opinion 

that this is the more general result, but additionally also that it is a much more insightful and easier-to-

grasp formulation of how the electrode potential influences charge-transfer rates. It can be 

transparently incorporated in general calculation schemes for electrochemical systems as a fully 

‘localized’ boundary condition, without a need to consider reference and equilibrium states, etc.  

   A crucial dimensionless group in the full PNP-gFBV description is the ratio δ of the effective 

thickness of the Stern layer λS to that of the diffuse layer λD given by the Debye-Hückel screening 

length, first introduced as the parameter γ by Itskovich et al. [38]. The influence of (non-zero values for) 

δ was investigated in detail only much more recently, starting with Bonnefont et al. [13] using a 

complete PNP-gFBV description including the Stern boundary condition. (Itskovich et al. [38] only 

analyze single-electrode polarization curves.) Bonnefont et al.’s [13] Eq. (7) is equivalent to our Eq. (1) 

(but note the reversed subscripts “R” and “O”). Furthermore, Bonnefont et al. [13] are first to take 

values of the ratio KO/KR such that at equilibrium a polarization layer is formed, but since this ratio is 

the same on both electrodes, the open-circuit voltage, OCV, equals zero, which precludes 

spontaneous current and only describes electrolytic cell operation. Bazant et al. [14], Chu and Bazant 

[15] and Prieve [30] extend these calculations. He et al. [39] use the gFBV-formulation in the 

represention of Eq. (4), for a steady-state calculation for a spherical nanoelectrode, with the 

counterelectrode as a infinitely large shell, infinitely far away. On the nanoelectrode they set the 

formal potential φ0 to zero which implies that at equilibrium no polarization layer is formed. The same 

gFBV-representation is used in ref. [40]. In both these works a seemingly rather complicated 

expression is used for the potential drop over the compact layer,  ∆φs, which however, is equivalent to 

Eq. (5). Olesen et al. [47] also give Eq. (1) for a one-electron reaction but in their calculations take a 

local equilibrium approach for the polarization layer, and linearize for a small Stern overpotential. In 

the context of proton-conducting fuel cell modeling, the gFBV equation was recently given by Franco 

et al. [16] (his Eq. (52)) in a fully dynamic transport model, an approach which was significantly 

simplified in ref. [17] assuming local equilibrium for the polarization layers.  
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   Interestingly, this generalized formulation, which was the starting point of Frumkin’s analysis [33], in 

which the ion concentrations are taken at the Stern plane, and the potential driving the electron 

transfer is explicitly based on the Stern layer potential difference, is rarely mentioned in the literature, 

let alone used in calculations. (To our knowledge, the above literature overview is rather complete.) 

Instead, starting with Frumkin himself in 1933, the polarization layer structure has always been 

considered to be locally at equilibrium, and this additional information has been implemented [48]. 

This is surely a suitable simplification in many cases, although it has more limited predictive power, 

because it breaks down when polarization layers influence one another such as when the electrolytic 

film is thin, electron currents are very high and/or large AC frequencies are applied. Another important 

point is that the resulting expressions do not necessarily become easier to grasp. 

   Let us show that Eq. (1) is equivalent to the resulting more common representations of the Frumkin-

Butler-Volmer equation, which we base on Eq. (11) in Delahay [49] (p. 158), given by 

( ){ } ( ){ } ( ) ( ){ }0 e e
2 M M M Mexp exp exp 1ti i n z n n = α − φ −α φ − φ − − α φ − φ
 

  (7) 

where 0
ti  is an exchange current density, z the charge of the oxidized ion, φM is the dimensionless 

electrode potential with reference to the bulk of the solution outside of the double layer (φsol), and φM
e 

the value of φM at equilibrium (for zero current); φ2 is the potential at the reaction plane, also relative to 

φsol, see Fig. 2. Replacing in Eq. (7) φM-φ2 by ∆φs, exp(-z⋅φ2) by CO/CO,∞ (this is where we remove the 

equilibrium Boltzmann assumption again and return to the generalized formulation), replacing the 

constants it
0⋅exp(αnφM

e)/CO,∞ by KR, exp(-(z-n)⋅φ2) by CR/CR,∞ (Boltzmann for the reduced species), 

and replacing it
0⋅exp(-(1-α)nφM

e)/CR,∞ by KO, we obtain Eq. (1) (apart from an overall minus-sign; note 

that α=αR and 1-α=αO).  

   Besides its more general applicability, an additional advantage of Eq. (1) over Eq. (7) is in our view 

its increased transparency, for instance showing clearly the role of ion concentrations in the charge 

transfer rate, not being hidden in the parameters φM
e and it

0. A related point is that the representation 

according to Eq. (7) implicitly requires unchanging and unambiguous values for the background ion 

concentrations, CO,∞ and CR,∞. Though this requirement will be valid in many situations, at high 

currents and/or thin electrolyte films significant gradients in ion concentration can develop in the bulk 

electrolyte when all ions are mobile, and CO,∞ and CR,∞ are then different at the anode and cathode. 

For very high currents a related effect is that the polarization layer expands significantly [15],[31],[50] 

no longer conforming to the (Gouy-Chapman) equilibrium structure, which can also be the case when 

high frequencies are applied in the voltage or current signal imposed on the electrochemical cell. 

 

Theory 

   In this section we discuss the complete mathematical model, which combines the Poisson-Nernst-

Planck (PNP) model for the ion transport flux in the electrolyte with the generalized Frumkin-Butler-

Volmer (gFBV) rate equation and the Stern boundary condition. The theory can be generally applied 

both for the case where the countercharge is mobile and for the case where it is immobilized, such as 

will be assumed in an example calculation for a solid electrolyte used in a hydrogen fuel cell. In the 

latter case, an overall balance for the inert ions does not need to be considered. At the end of this 
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section we first discuss the simplifications that result in the thin diffuse layer (thin-DL) model of ref. [17] 

and finally present the analytical results when additional to the thin-DL assumption, the GC-limit (δ=0) 

or Helmholtz-limit (δ=∞) is considered as well, both for the case of mobile and for immobilized 

countercharge. Note that throughout this manuscript we focus on a one-dimensional and planar 

geometry, with two perfectly smooth, planar electrodes placed perfectly parallel, in direct contact with 

the electrolyte phase in between, which only contains the reactive monovalent cations and inert 

monovalent anions. Effects of additional background salt are not considered [32]. Because we only 

consider the steady state, the charge transfer rate J is equal to the electron current density i (when J 

is multiplied with the electronic charge e and the number n), as well as being equal to the transport 

flux of the reactive ion (being the cation), at each position in the electrolyte. Note that in a dynamic 

(time-dependent) calculation this would be different and the Maxwell displacement current, related to 

capacitive charging of the double layers, would have to be included as well [13],[28],[29],[46]. 

 

Electrochemical charge transfer and equilibrium thermodynamics 

   In the calculations we assume a one-electron reaction O++e-↔R with R being a neutral particle at a 

fixed chemical potential. This condition is appropriate for a system where the neutral particle derives 

from the electrode, e.g. as in electro-dissolution of a metal [13]-[15], or because it is an absorbed 

neutral hydrogen atom in equilibrium with hydrogen molecules in an adjacent gas phase [17]. In those 

cases, Eq. (1) simplifies to 

( ) ( )1 1
2 2O s R O sexp expJ J K C= ∆φ − − ∆φ  (8) 

where we have also assumed the transfer coefficients to be equal to ½. (See references in ref. [14] on 

the appropriateness of assuming α=½ for one-electron reactions, and see ref. [51] where it is argued 

that when experimentally deviations from α=½ are observed, this may well be due to neglected 

polarization-layer effects.) The transfer rate J is defined to be positive for the oxidation reaction, which 

implies that when cations are the only reactive species in the electrolyte, it describes the cation flux in 

the direction away from the electrode into the electrolyte. (Note that this is the opposite of the sign 

convention in refs. [13]-[15].) The rate constants KR and JO for the reduction and oxidation together 

fully define both the kinetics and the thermodynamics of the charge transfer reaction (both numbers 

are strictly positive). Indeed, from the gFBV equation we can derive how the rate constants KR and JO 

relate to the thermodynamics of the process, especially to the electromotive force, or open circuit 

voltage, φ0. Assuming J=0 and implementing a Boltzmann distribution, ( )O DexpC C∞= −∆φ , which is 

valid in the limit of thin, non-overlapping double layers (where the electric field is negligible outside the 

double layer, compared to the larger values within), we obtain from Eq. (8) the Nernst equilibrium 

condition for the electrode potential [33][52], 

R
T

O

ln cnst ln
K C

C
J

∞
∞∆φ = = +   (9) 

where ∆φT is the total interfacial potential difference over the double layer (thus, across Stern plus 

diffuse layer), counted from electrode to bulk solution (∆φT=φm-φsol).  
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   For a full electrochemical cell at equilibrium, the potential difference over the bulk electrolyte 

solution is zero, and thus the dimensionless open cell voltage φ0 m,C m,A= φ − φ  is given by 

R,C O,A
0 T,C T,A

R,A O,C

ln
K J

K J
φ = ∆φ − ∆φ =   (10) 

where A and C refer to the anode and cathode. Because we define φ0 to be positive for galvanic 

operation, we must choose the anode and cathode such that we comply with KR,C/JO,C>KR,A/JO,A. 

 

Poisson-Nernst-Planck transport model 

   The Nernst-Planck equation describes the mass transfer flux of each of the ionic species as a sum 

of a concentration term (diffusion) and a term due to the electrical field (migration), 

i
i i i i

d d
d d

C
J D zC

X X
φ = − + 

 
  (11) 

where Di is the ion diffusion coefficient, zi the dimensionless charge (e.g. -1 for a monovalent anion), 

and X the place coordinate. For a solid electrolyte with fixed anions, we set D-=0. For a complete 

description of the electrolyte phase, Eq. (11) must be supplemented with Poisson’s equation 

( )
2

B2

d
4

d
C C

X
+ −φ = − πλ ⋅ −  (12) 

where λB is the Bjerrum length, given by λB=e2/(4πεkT), which can be related to the Debye-Hückel 

screening length according to 1/ 2
D B(8 )C −

∞λ = πλ .  

   For stationary conditions (steady-state), and a planar, one-dimensional geometry, the flux J is 

everywhere the same for the reactive species, and at the boundaries (reaction planes) it is (in 

magnitude) equal to the Faradaic current given by Eq. (8). In steady state, the flux is zero everywhere 

for the inert ions. The final boundary condition is provided by the Stern condition, Eq. (5). Following ref. 

[14], one more condition is needed to relate the current to the cell voltage in steady state, which is an 

integral constraint specifying the total number of inert anions 

i
0

d
L

C X C L∞= ⋅∫  (13) 

where C∞ is the average concentration of inert anions. For a 1:1 salt, with one ion reactive and the 

other inert (without added indifferent salt), C∞ equals the bulk ionic strength.  

 

Dimensionless Poisson-Nernst-Planck Frumkin-Butler-Volmer model 

   Next we discuss the dimensionless representation of the full PNP-gFBV model based on a system 

with a monovalent reactive cation, and a single type of monovalent inert anion. First we present the 

model for the case that the inert ion is fixed in space, at a constant concentration of C∞. The 

dimensionless coordinate is given by x, running from anode to cathode, related to the dimensional 

coordinate X according to x=X/L where L is the distance between the two opposite Stern planes. The 

ratio of Stern layer thickness over Debye length is given by δ=λS/λD and the ratio of λD over L is given 

by ε, i.e., ε=λD/L. The dimensionless concentration of the cationic mobile species is c+, which is the 

dimensional concentration C+ over C∞. The dimensionless Poisson equation then becomes 
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( )
2

2 2

d 1
1

d 2
c

x
+φ = − ⋅ −

ε
 (14) 

while the dimensionless Nernst-Planck equation in the steady-state becomes 

d d
4

d d
c

j c
x x

+
+ φ

= − ⋅ −  (15) 

where the reduced flux j is given by j=J/Jlim with Jlim=4⋅D+⋅C∞/L [13]-[15]. 

   The dimensionless gFBV equation is given by 

( ) ( )1 1
2 2O s R O sexp expj j k c± = ∆φ − − ∆φ  (16) 

where R
R

lim

K C
k

J
∞=  and O

O
lim

J
j

J
= . At the two Stern planes the boundary condition is 

s
S

d
dx

φ∆φ = εδ∓ . (17) 

   When both ions are mobile, Eq. (14) is modified to 

( )
2

2 2

d 1
d 2

c c
x

+ −φ
= − ⋅ −

ε
 (18) 

and the Nernst-Planck equation must be solved for the anion as well, which becomes analogous to 

Eq. (15) 

d d
d d
c

c
x x

−
− φ=  (19) 

and implies a Boltzmann distribution, ( )expc − ∝ φ , for thermal equilibrium in a dilute solution. 

   To simplify the analysis [13]-[15],[46], it is in this case (when both ions are mobile) advantageous to 

define an average dimensionless concentration c=½⋅(c++c-) and a dimensionless charge density 

ρ=½⋅(c+-c-) which modifies Eq. (18) into 

2

2 2

d
dx

φ ρ= −
ε

 (20) 

and results in a replacement of Eq. (15) and (19) by 

d d
2

d d
c

j
x x

φ= − ⋅ − ρ  (21) 

and 

d d
2

d d
j c

x x
ρ φ= − ⋅ − . (22) 

   The model is completed with an overall balance for the inert ion, given by
 

( )
1

0

- d 1c xρ =∫ . 

Electrostatic potentials can be set to zero at an arbitrary position (in Figs. 5 and 6 the anode potential, 

φm,A, is set to zero, whereas φm,C=0 in Figs. 8 and 9).  

   Next we will discuss the analytical solution of the steady-state galvanic cell model in the asymptotic 

limit of thin-diffuse layers ε→0, where the membrane thickness is much larger than the Debye length. 

These equations can be used in all three modes of operation identified in Fig. 1. First we show the 

results for the case of fixed countercharge (‘solid electrolyte’) and secondly for mobile countercharge 
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(‘liquid electrolyte’). In the first case, this analytical model has already been presented in ref. [17] and 

will be repeated briefly here. For the case of mobile countercharge, this set of equations extends on 

the analytical model for an electrolytic cell in the thin-DL limit of ref. [14]. 

 

Galvanic cell model for the thin diffuse layer-limit for a solid electrolyte 

   In the thin diffuse layer-limit for a material with fixed countercharge, the Nernst-Planck equation, 

Eq. (11), can be simplified by neglecting the concentration diffusion term for bulk electrolyte transport, 

resulting in Ohm’s law for ion transport, which for the case that only the cation is mobile and reactive, 

and for a one-dimensional planar geometry, is given by 

* 1
elyt elyti R −= ⋅ ∆φ  (23) 

where i is the current density (in A/m2) which equals the cation flux J times electron charge e, where 

( ) 1*
elytR L D C e

−
+ ∞= ⋅ (with L is membrane thickness) is an Ohmic resistance in m2/A, and where ∆φelyt is 

the dimensionless potential difference over the bulk electrolyte from a position just outside the diffuse 

layer at the anode-side of the cell to the same position on the cathode-side, ∆φelyt=φsol,A-φsol,C.  

   In the model in the thin-DL limit, an equilibrium structure for the diffuse layers prevails on each 

electrode, which are separated by the bulk electrolyte phase in which the concentration of ions is 

constant, namely the ionic strength C∞. In this case we have Boltzmann statistics for the proton 

concentration at the Stern plane, 

( )O DexpC C∞= −∆φ  (24) 

where ∆φD is the potential difference across the diffuse layer, equal to φS-φsol, with φsol the value of the 

potential outside the diffuse layer, at the start of the bulk solution phase.  

   In ref. [17] a modification of Eq. (8) was used that more explicitly considers a hydrogen 

concentration cell. In such a cell, protons migrate through the electrolyte, driven by a difference in the 

hydrogen gas pressure between the anode and cathode compartment. The calculation is based on an 

anode compartment with hydrogen gas pressure pH2,A, and a cathode compartment with pressure 

pH2,C (<pH2,A). In this case, when mass transport of gaseous hydrogen from the compartment to the 

electrodes, and the hydrogen dissociation reactions are fast enough, we can make the replacements 

KR=k*j⋅√p*/(C∞⋅e) and JO=k*j⋅√pH2/e, and together with Eq. (24) rewrite Eq. (8) as [17] 

( ) ( ){ }1 1
2 2j H2 s D s* exp * expi k p p= ∆φ − −∆φ − ∆φ  (25) 

where k*j is a purely kinetic rate constant of the respective electrode and p* is a thermodynamic 

property of the membrane electrolyte material in combination with the electrode material (p* has 

dimension of pressure). The parameter p* can be considered the ‘zero-charge pressure’, i.e., is 

defined such that no polarization layer is formed at equilibrium in the membrane electrolyte when the 

hydrogen gas phase pressure in the adjacent compartment, pH2, exactly equals p*. For pH2>p* the 

membrane electrolyte becomes positively charged at equilibrium, and vice-versa for pH2<p*. 

   For the equilibrium structure of the diffuse layer, the analytical solution for the case that the mobile 

ions are positive (cations) and the fixed anions are immobile, is given by [17],[53] 
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( )D
s D D

D

exp 1
∆φ

∆φ = δ −∆φ + ∆φ −
∆φ

. (26) 

The model for the thin-DL limit is based on the above equations, evaluated on both electrodes, as well 

as on the closure equation  

cell cell m,C m,A s D C s D A elyt= = - =( + ) -( + ) -f V⋅ φ φ φ ∆φ ∆φ ∆φ ∆φ ∆φ . (27) 

Recall that / /f F RT e kT= =  is the inverse of the thermal voltage used to define all of our 

dimensionless potentials. It must be noted that in this model based on the thin DL-limit where local 

“quasi-equilibrium” can be assumed in the diffuse layers, as described by Eq. (26), this does not imply 

that the structure of the diffuse layers is that of a true equilibrium system (where the current is zero). 

Instead, the electrode charge density and the values of ∆φs and ∆φD in Eq. (26) are influenced by the 

current density i via the gFBV equation, Eq. (25).  

   Note that Eqs. (23)-(25) can be rewritten in the dimensionless parameters as used in Eqs. (14)-(22) 

when we use the conversions jO,i=¼⋅k*i⋅R
*
elyt⋅√pH2,i, kR,i=¼⋅k*i⋅R

*
elyt⋅√p*, and i=4⋅j/R*elyt, resulting in 

elyt 4 j∆φ =  and ( ) ( )1 1
2 2O s R D sexp expj j k± = ∆φ − −∆φ − ∆φ .  

   We are now ready to derive analytical current-voltage relations for galvanic cells applicable in all 

three modes identified in Fig. 1. These relationships are based on first taking the thin-diffuse layer 

limit as above and then either the Gouy-Chapman limit (δ=0) or the Helmholtz-limit (δ=∞). For the GC-

limit, we obtain 

O,A
cell 0

O,C

1 /
4 ln

1 /

j j
j

j j

−
φ = φ − ⋅ +

+
  (28) 

where the dimensionless open cell voltage is R,C O,A
0

R,A O,C

ln
k j

k j

 
φ =   

 
, while for the H-limit we obtain 

cell 0

A C

4 2 arcsinh 2 arcsinh
j j

jφ = φ − ⋅ − ⋅ − ⋅
β β

  (29) 

where A R,A O,A C R,C O,C4  and 4k j k jβ = ⋅ β = ⋅ . Eqs. (28) and (29) are mathematically identical to the same 

limits of the thin-DL fuel-cell model presented in ref. [17] (Eqs. (25) and (27) there), using the 

conversions given above. The expression for the H-limit, Eq. (29), has been presented in the context 

of hydrogen fuel cells in refs. [18]-[20], [22], [26] and [27]. Results of the thin-DL model are plotted in 

Fig. 3a and compared to analogous expressions for the liquid-electrolyte case of mobile 

countercharge in Fig. 3b, which will be discussed below. 

 

Galvanic cell model for the thin diffuse layer-limit for an liquid electrolyte 

   From the leading order approximation-procedure [13]-[15],[46],[50] we can derive a similar semi-

analytical model for the thin-DL limit (ε→0) for the case of mobile countercharge. The results that we 

present here extend on those of ref. [14] by going from a purely electrolytic system with zero open 

circuit voltage (φ0=0) to the general case of galvanic cell. In the thin-DL limit in the bulk of the 

electrolyte the cation concentration decreases linearly, and the concentrations just outside the two 

diffuse layers are related according to (Eq. (35) in ref. [14] ; Eq. (46.13) in ref. [35]) 
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C A
sol sol 2c c j= −   (30) 

where ‘sol’ stands for a position just outside the diffuse layer, see Fig. 1. Thus, with 
1

sol
0

d 1c x =∫  

because of conservation of the total number of inert countercharge, we have A
sol 1c j= +  and 

C
sol 1c j= − . The potential difference across the bulk electrolyte (between the two points we mark ‘sol’) 

is given by (Eq. (37) in ref. [14]) 

A
sol

elyt A C
sol sol

2 1
ln 1 ln ln

1

cj j
jc c

  +∆φ = − − = =  − 
.  (31) 

   Eq. (31) is also given by Levine [35], his Eq. (46.15), but there rather lengthier, namely as a 

summation of minus twice the second term of Eq. (31) and once the third term to give -∆φelyt. With 

mobile countercharge, the structure of the diffuse layer is not described by Eq. (26) but according to 

the well-known Gouy-Chapman relation, 

( )1
s D22 1 sinhj∆φ = ⋅ δ ⋅ ± ⋅ ∆φ  (32) 

where we have included the fact that near the electrodes the bulk ion concentration (on which δ is 

based via the Debye length, λD) is modified due to a non-zero current. As before, the upper sign in ± 

refers to the anode, the lower sign to the cathode, which is related to the fact that j is defined positive 

when the cations run from anode to cathode. In dimensionless notation, the gFBV-equation becomes 

( ) ( )1 1
2 2O s R sol D sexp expj j k c± = ∆φ − −∆φ − ∆φ  (33) 

to be applied on both electrodes, and combined with the closure-equation, Eq. (27). 

 For the GC- and H-limits, Eqs. (30)-(33) for the case of mobile countercharge in the thin-DL limit 

can be solved to give analytical expressions for φcell vs current j, given for the GC-limit by 

( ) O,A
cell 0

O,C

1 /
4 arctanh ln

1 /

j j
j

j j

−
φ = φ − ⋅ +

+
  (35) 

and for the H-limit by 

( )
( ) ( )cell 0

A C

4 arctanh 2 arcsinh 2 arcsinh
1 1

j j
j

j j
φ = φ − ⋅ − ⋅ − ⋅

β + β −
 (36) 

which are mathematically equivalent to Eqs. (72) and (75) in ref. [14] except for the sign reversal of j 

(in ref. [14], j is defined to be positive for the transport of positive charges from cathode to anode, 

which is the opposite of the standard sign convention) and for the fact that kR and jO (thus β) can have 

different values at the two electrodes in Eqs. (35) and (36) above. In this way, we naturally extend the 

current-voltage relations of Eqs. (72) and (75) of ref. [14] (which describe an electrolytic cell) to 

galvanic cell operation. Eqs. (28) and (29) (for fixed countercharge) differ appreciably from Eqs. (35) 

and (36) (for mobile countercharge), which is in contrast to what we erroneously argued in ref. [17] 

(namely that they would be the same, irrespective of whether countercharge would be fixed or mobile). 

   The above analytical expressions show clearly how the cell voltage φcell departs from the open-

circuit voltage, φ0, due to polarization of the cell at nonzero current, which can be decomposed into a 

transport resistance, 4⋅j or 4⋅arctanh(j), and two kinetic ‘resistances’. When the kinetic constants, jO,i or 
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βi, are very large, the transport resistance dominates, while electrode kinetics dominates when on at 

least one of the electrodes jO,i or βi is very small. 

   Fig. 3 shows calculation results for a galvanic cell with fixed countercharge (Fig. 3a) and for mobile 

countercharge (Fig. 3b) using the model in the thin-DL limit, where general results are shown as 

function of the parameter δ based on Eqs. (23)-(27) for fixed countercharge, and Eqs. (30)-(33) for 

mobile countercharge, as well as limiting results for the GC- and H-limit. Reaction-limited currents in 

the GC-limit are observed for j=-jO,C=-0.2 and for j=jO,A=0.8, as well as diffusion-limited currents at j=±1 

for mobile countercharge (Fig. 3b). We also note an interesting difference between Fig. 3a (fixed 

countercharge) and Fig. 3b (mobile countercharge) that in Fig. 3b we need a much larger range of 

δ-values to go from close to the H-limit to close to the GC-limit (~factor of 1000) than in Fig. 3a 

(~factor of 100). 

  Another interesting effect, not mentioned previously, is the possibility of non-monotonic dependence 

of the cell voltage φcell on the parameter δ (for given current j). A clear manifestation of this effect is 

seen in the upper-left corner of Fig. 3b where for δ=1 and δ=10 for j=-0.9 the cell voltage φcell is 

smaller than predicted by the H-limit. This shows that the GC- and H-limits, in spite of representing the 

limiting behavior for δ→0 and δ→∞ and conveniently approximating the “envelope” of possible charge-

voltage relations, do not strictly bound the range of possible values for j-φcell when δ is in between 0 

and ∞. The reason, illustrated in the insert of Fig 3b is that the double layer potentials ∆φi at the two 

electrodes (∆φi=∆φs+∆φD) have different dependencies on δ, and can in some cases combine to give 

the total cell voltage φcell a non-monotonic dependence on δ. In this particular case, for j=-0.9, the ion 

concentration near the anode is reduced by a factor 10 and increased at the cathode by a factor of 2, 

see Eq. (30). Thus the Debye length is much smaller at the cathode and thus, on increasing δ, the 

effect of the Stern layer becomes apparent earlier than on the anode. 
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 Fig. 3. Cell voltage vs. current for a galvanic cell with fixed (a) and mobile (b) countercharge, 
operating in all three modes identified in Fig. 1 in the thin-diffuse layer (zero-ε) limit based on Eqs. 
(23)-(36) (jO,A=0.8, jO,C=0.1, kR,A=1, kR,C=30). Reaction-limited current is obtained in the GC-limit when 
j→jO,A or j→-jO,C, while in the H-limit the current is diffusion-limited when j→±1, but only for mobile 
countercharge. Insert in (b) shows non-monotonic dependence of φcell on δ. 
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Reaction-limited current and diffusion-limited current 

   The above set of equations can be used to discuss briefly two types of limiting currents that are 

predicted in theories of galvanic cells, which are apparent in Fig. 3. Firstly, in the GC-limit (for both 

materials, with fixed or mobile countercharge) a reaction-limited current is predicted in Eqs. (28) and 

(35) when j→jO,A or j→-jO,C. This mathematical limit was discussed previously in refs. [13] and [14], 

and is due to the unphysical assumption of a zero thickness of the Stern layer, and thus the 

disappearance of the voltage-dependent Arrhenius term from the gFBV charge-transfer rate equation. 

Taking a non-zero value for δ eliminates this artificial limit, though its effect can still be seen as a 

steepening of the curve for φcell vs. j (“V-i curve”). Secondly, for the material with mobile countercharge, 

Eqs. (35) and (36) contain a term arctanh(j) which will diverge for j→1 and j→-1. These are the 

classical diffusion-limited currents [14],[15],[54], which are predicted in the thin-DL limit for a material 

with mobile countercharge. Although in reality most electrochemical cells have thin diffuse layers 

compared to the bulk dimensions, it must be formally noted that, as discussed in refs. [14], [15] and 

[31], in any calculation with a non-zero value for ε (which is required for a finite-thickness membrane) 

the diffusion-limited current is eliminated, although it will result in a steepening of the V-i curve. For 

any finite DL thickness, with a sufficiently large voltage and/or small system, it is possible to reach the 

regime of “super-limiting current” in the model, where the diffuse layer expands to a non-equilibrium 

structure, as first described by Rubinstein and Shtilman [31] in the context of electrodialysis. In 

summary, our full PNP-gFBV model does not predict any true limiting currents, but only a steepening 

of the V-i curve. It is only when either of the parameters ε or δ tends to zero that true singularities in 

the V-i curve (or plateaus in the i-V curve) are predicted.  

  It is interesting to note that in more complicated situations diffusion-limited currents can also arise in 

a full PNP-gFBV model for non-zero ε. Our analysis assumes a single reactive ion that can react 

to/from its reduced state at constant chemical potential in the two electrodes. A more general situation 

is that the current also influences the interfacial concentration of the product species. For instance, in 

the case of a neutral product species which must shuttle between the electrodes as in refs. [13], [28], 

[29] and [30], there is an overall balance of reactive plus neutral species, and thus diffusion limitation 

of the neutral species can yield a limiting current for the entire cell, under some conditions, even in a 

full model with all length scales finite (δ>0 and ε>0). 

 
Analysis of energy losses during charging-discharging cycles 

   Analytical equations such as Eqs. (23)-(36) presented above can be very valuable to use in an 

analysis of energy storage and conversion in reversible galvanic cells. For example, these equations 

can be applied to predict the energy efficiency of redox flow cells, where parameters jO,i can be made 

a function of the chemical state of the reduced species (e.g., dependent of the time-varying hydrogen 

gas pressure during charging of a redox flow cell based on electrolytic hydrogen compression). For 

energy-efficient charging and discharging it is clearly best to stay close to the open circuit voltage φ0, 

although this may overly constrain the desired rates of charging and discharging. Analysis on the 

basis of Eqs. (23)-(36) can show to what extent the cell potential φcell will diverge if the charging 

current (j<0 during charging) is too large, which implies large losses during energy storage and poor 
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efficiency of energy storage. In particular, the energy efficiency, η, defined as the work done by the 

cell upon discharge at current discharge 0j >  (converting chemical to electrical energy) divided by the 

external work done to recharge the cell at current charge 0j <  (converting electrical back to chemical 

energy), is given by cell

cell

( >0)

( <0)

j

j

φ
η =

φ
 when the cell voltage remains at a constant value during the 

charging phase, as well as during discharge. 

 

Results and Discussion 

 

Solid electrolyte 

   First we show results for the cell voltage-current characteristic of a fuel cell with immobilized 

countercharge. We take the example of a hydrogen concentration cell in which mobile protons in the 

electrolyte are electrochemically exchanged with gaseous hydrogen at the electrodes (via an 

assumed equilibrium of H2 in the gas phase with adsorbed hydrogen atoms near the charge-transfer 

site) [16],[24]. To generate a positive cell voltage, the anode compartment hydrogen pressure pH2,A is 

larger than in the cathode compartment, pH2,C. The calculation is based on both the complete PNP-

gFBV model (using Eqs. (14)-(17)) and the model in the thin-DL limit, based on Eqs. (23)-(27). 

Parameter settings in the calculation for Fig. 4 are as follows. For the model in the thin-DL limit we 

require pH2,A=1 bar, k*A=k*C=105 A/(m2⋅bar1/2), p*=1 µbar, R*elyt=1 m2/A, f--1=RT/F=68.9 mV, and δ=1. 

These parameter settings translate into those required for the full dimensionless PNP-gFBV model 

when using the conversion formula given below Eq. (27). As long as in the full model sufficiently thick 

membranes are considered, i.e., for low values of ε (below ε~0.01), results are virtually identical to 

those of the thin-DL limit. 

   In Fig. 4 we show the dependence of Vcell on current density, i, for different cathode hydrogen 

pressures. The fuel cell spontaneously generates a current (galvanic discharging mode) for currents 

between zero and a maximum value, imax, while outside this range a current is imposed, both for 

currents below zero (electrolytic charging), and for currents above imax (super-galvanic regime). For 

large positive currents, the cell acts like a resistor, set by the bulk membrane resistance, but for 

negative currents, signs of a reaction-limited current, or diverging surface overpotential, appear with 

decreasing cathodic hydrogen concentration. Interestingly, we do not find strong effects of the applied 

cathode gas pressure, pH2,C, when we operate the cell galvanically, but very strong differences 

develop when a negative current is imposed on the cell. Such experiments clearly would be very 

useful to provide informative and sensitive data to validate models for galvanic cell against. The 

strong asymmetry predicted in the curves for Vcell vs i around i=0 shows that overpotentials are not 

identical (for a given magnitude of the current) when we go from the forward (fuel cell) to the 

backward (electrolytic cell) mode, which is different from what follows from more conventional Butler-

Volmer modeling [5].  
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Fig. 4. Voltage-current characteristic for a hydrogen fuel cell which operates galvanically between 
0<i (A/m2)<7. A current is imposed upon the cell (not generated spontaneously) when Vcell and i have 
opposite signs, such as to the left of the i=0-axis (electrolytic charging), and beyond i~7 A/m2 (super-
galvanic regime). Parameter settings in main text.  
 

   Next we show in Fig. 5 profiles across the electrolyte membrane for the proton concentration, and 

for the electrostatic potential. From this point onward all calculation results that will be presented are 

based on the dimensionless complete PNP-gFBV model with non-zero values for ε. In order to 

illustrate the continuous potential profile across the reaction plane in the model, in all subsequent 

figures (except Fig. 7) we include the compact Stern layers in plots of the electrostatic potential profile 

extending from electrode to electrode, not only across the continuum regions with dimensionless 

coordinate 0<x<1. In these graphs, coordinate x is rescaled in such a way that the continuum space in 

between the Stern planes (which are represented by the dashed vertical lines in the graphs) runs from 

position δ/(1+2⋅δ) to 1-δ/(1+2⋅δ). For simplicity, we assume a permittivity ratio of unity between the 

electrolyte and compact Stern layer, so that the potential extrapolates linearly across the Stern layer 

with the limiting slope from the edge of the electrolyte.  

   In Fig. 5, all dimensionless concentrations c+ and c- are dimensional concentrations C+ and C- 

scaled to the ionic strength C∞ (concentration of each of the ions in the uncharged membrane). 

Calculation results are presented for ε=0.03 (Debye length 3% of the distance between the Stern 

planes of each electrode), for kR,A=kR,C=1, jO,A=2, jO,C=0.5, with the anode located to the left end of 

each graph, and the cathode on the right end. The chosen values for kR,i and jO,i imply that at 

equilibrium (j=0) according to 1 1
0 R,C O,A R,A O,Clnk j k j− −φ = , the dimensionless open circuit voltage φ0=f⋅V0 is 

given by φ0=φm,C-φm,A=ln(4)=1.39, which is in accordance with Fig. 5b (curve for j=0; φ0 is the 

difference between the value for φ at the very right of the curve, φm,C, minus that at the very left, φm,A).  

   For equilibrium, Eq. (9) gives the total voltage difference over each double layer ∆φT (where ∆φT is a 

summation of the voltage difference over the diffuse part, ∆φD, and that over the Stern layer, ∆φs), 
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which can be written in dimensionless units as ( )1
T R Oln k j −∆φ = . The full calculation gives the same 

result, with for j=0 ∆φT=-ln(2) at the anode and ∆φT=+ln(2) at the cathode. However, this does not 

imply that the equilibrium structure of the double layer is the same on both electrodes, because in this 

case protons are expelled on one electrode and are attracted to the other, which results in a different 

structure of the diffuse layer, and thus a different value for the diffuse charge (which determines ∆φs). 

Indeed, on the cathode we obtain in this case a slightly higher magnitude of the diffuse layer potential 

∆φD (and thus a lower ∆φs) than on the anode.  

   Fig. 5a shows concentration profiles shifted up- or downward by multiples of 0.2 to increase 

readability (except for the curve for j=0.5, which is not modified). For positions between 0.2 and 0.8 all 

concentrations c+ are very close to unity. Fig. 5b shows the corresponding dimensionless electrostatic 

potentials φ as function of position. Thin layers to the very left and right in each graph represent the 

Stern layer, with the Stern planes shown as dashed vertical lines in Fig. 5b. Fig. 5b shows how the 

cell voltage φcell=φm,C-φm,A is positive for a current of j=0.20 and below. As galvanic (spontaneous) 

operation requires both a positive j and a positive value for φcell, galvanic operation for the present 

parameter settings is only observed for 0≤j≤0.20. Below j=0 we have electrolytic conditions with an 

imposed current which is in the opposite direction compared to the current direction for ‘normal’ 

galvanic operation, i.e., we push electrons ‘in reverse’ and pump hydrogen gas from the low pressure 

side to the high pressure side. This is the situation where excess electrical energy is stored in the 

form of compressed hydrogen gas, which we have called ‘electrolytic charging’ in Fig. 1. In contrast, 

the ‘super-galvanic regime’ requires an imposed current beyond the maximum that can be provided in 

galvanic operation, namely when the external resistance is zero (jmax~0.20). This regime is 

represented in Fig. 5 by the curves ranging from j=0.50 to j=2.0.  

   As shown in Fig. 5a we have at equilibrium (j=0) an excess of protons on the anode and a deficit on 

the cathode. As discussed previously [13],[14],[17] there is no theoretical constraint for the two diffuse 

charge densities to exactly compensate one another, i.e., there is no requirement for the total 

membrane charge to be zero, not even at equilibrium. The only constraint is that the total charge on 

all electrodes combined plus the charge in the electrolyte membrane must sum to zero so that the 

entire system is electrically neutral. However, there is no requirement for the electron charge and the 

diffuse charge on any electrode to exactly compensate one another (except in equilibrium). Instead, 

the difference between the two values of charge (which for thick membranes will be small) determines 

the field strength just outside the diffuse layer and thus the migration current into the bulk electrolyte. 

In Fig. 5a we observe that with increasing currents first the cathode diffuse layer becomes uncharged 

(just beyond j=0.5) and slightly later the same occurs for the anode diffuse layer (slightly beyond 

j=1.0). Beyond that point, for j=1.5 and j=2.0 in Fig. 5a, we obtain concentration profiles which are 

completely reversed compared to the situation below j=0.5, with now an excess of protons on the 

cathode, and a deficit on the anode. These diffuse layer profiles at high currents provide for the 

‘reverse’ reduction reaction of the proton on the anode to be suppressed (which requires the proton 

concentration at the anode to go down) and thus the net reaction rate to go up. Vice-versa, the proton 

concentration is increased at the cathode to increase its reduction rate there and thus to increase the 
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proton conversion rate. The reversal of the sign of the diffuse charge upon changing the current from 

very negative to very positive is a general phenomenon and can also be found for electrolytic cells, 

also for the case of mobile countercharge [14][15], and even for a cell where at equilibrium the diffuse 

layers are uncharged.  
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Fig. 5. Proton concentration (c+) and electrostatic potential (φ) profiles for a fuel cell with fixed 
countercharge operated at various values of the dimensionless current j. The anode is located left and 
the cathode right. For currents 0≤j≤0.20 the cell functions as a galvanic cell while outside this range a 
current must be imposed on the cell. Dashed lines in b) denote the Stern plane. In a) the profiles are 
shifted up- and downward for clarity; in the bulk the dimensionless concentration is ~1 for all 
conditions.  
 

   Finally we show in Fig. 6 results for j=0.1 and for galvanic conditions, i.e., φm,C>φm,A, which implies 

we consider situations where electrical energy is generated. We vary the values of jO,A and jO,C but by 

keeping their ratio constant at jO,A/jO,C=4 the open cell voltage remains at φ0=1.39. By varying the 

values of jO,i we obtain the three situations as discussed in ref. [17]:  

1. both jO,A and jO,C are below kR,i (which is unity for both electrodes) and we have the situation that on 

both electrodes we have a proton deficit (Case III in Fig. 2 in ref. [17]);  

2. only jO,A is above kR,i and we have a proton deficit on the cathode and a proton excess on the 

anode (Case I in Fig. 2 in ref. [17]);  

3. both jO,A and jO,C are above kR,i and we have a proton excess on both the anode and cathode (Case 

II in Fig. 2 in ref. [17]). 

   What Fig. 6 shows is how the structure of the polarization layer adjusts itself to the kinetic properties 

of the electrode reactions, such that for the steady state the current becomes constant across the 

system. The sign of the voltage difference across each polarization layer cannot be derived for 

instance from the simple fact that the cell operates as a fuel cell, generating electrical energy, unless 

there is a-priori information of the electrode kinetics and/or the equilibrium structure of the polarization 

layers (such as contained in in the value of the zero charge pressure p* of the membrane/electrode-

interface for a hydrogen fuel cell). The only constraint for spontaneous, galvanic, operation is that we 

cannot have a negative charge on the anode and a positive charge on the cathode because then 
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Kirchhoff’s rule (of a zero total voltage drop around a current loop), Eq. (27), would always predict a 

negative cell voltage.  
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Fig. 6. Proton concentration (c+) and electrostatic potential (φ) profiles for a galvanic cell with fixed 
countercharge (dimensionless current j=0.1, ε=0.03, kR,A=kR,C=1). In all cases the open cell voltage is 
the same, namely φ0=ln(jO,A/jO,C)~1.39. 
 

Liquid electrolyte 

   The second set of calculations is based on the case that both ions are mobile, not only the reactive 

cation, but the inert anion as well.  

 

Liquid electrolyte – electrolytic cell 

   First we discuss results of a calculation in which kR and jO are given the same values on both 

electrodes, as in refs. [14] and [15], see Fig. 7. This implies that there are no conditions that the cell 

operates spontaneously, but instead current can only be forced through the cell, which effectively is 

always in the “electrolytic charging mode” where external electrical energy is converted into chemical 

energy (which is then also equivalent to the super-galvanic regime). This calculation will give the 

same results if the current is reversed. Because we take different values for kR and jO the electrode is 

charged even at equilibrium, i.e., without imposing a current. For the parameters we choose (kR=2, 

jO=1) we have an excess of inert anions on both electrodes and both electrodes have a negative 

diffuse charge. Because the total anion number is fixed, the increase in anion concentration at the 

electrodes implies that in the bulk its concentration is decreased compared to the situation that the 

membrane is uncharged. For the reactive cation there is no such number balance, and its total 

concentration in the membrane will be below the total number in the uncharged situation, because in 

bulk its concentration must be equal to that of the anion (thus, lower than in the uncharged membrane) 

and in the diffuse layers the cation is also depleted.  

   In Fig. 7 we show both the cat- and anion concentration profiles for the Gouy-Chapman (GC) limit of 

the gFBV equation where δ=0 (Fig. 7a,b), and the general case where we use a nonzero value for δ, 

namely δ=1 (Fig. 7c,d). As discussed before, in the GC-limit a maximum current can be reached (the 
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reaction-limited current) because the GC-limit assumes that the Stern potential difference ∆φs is zero. 

Thus, Eq. (8) can be rearranged to give 

O,A O,C
O,A O,C

R,A R,C

   ,   
j j j j

c c
k k

− +
= =  (34) 

which predicts negative concentrations for imposed currents j≥jO,A or j≤-jO,C. This shows that formally 

the GC-limit of the gFBV equation is an unphysical approximation, and we should ideally always use a 

value of δ>0. Eq. (34) implies that for the parameter settings of Fig. 7, the reaction-limited currents in 

the GC-limit are jreaction-limited=±jO,i=±1. Indeed, when the current j approaches unity, Fig. 7a,b shows 

clear signs of reaction-limitation near the anode, where the cation concentration approaches zero. 

Another aspect of Fig. 7a,b is that in the thin-DL (ε=0) limit, j=±1 is also the diffusion-limited current. 

Though in the present calculation a finite ratio for Debye length over membrane thickness is used 

(ε=λD/L=0.05), this diffusion limitation will also affect the ion concentration and potential profiles, 

leading to an expansion of the cathodic diffuse layer (extended “space charge” region) characterized 

by a nearly complete expulsion of anions, the properties of which can be analyzed on the basis of 

asymptotic analysis [14],[15],[54]. According to this analysis, when j reaches beyond 1-(2ε)2/3 an 

expansion of the cathodic diffuse layer is expected with width of order 2 / 3( )O ε  extending with further 

increasing currents [14],[31],[50].  These effects near the cathode are clearly observed in Fig. 7a,b. In 

particular, the double layer expands to a width of roughly 2 / 30.15 ≈ ε  at the cathode for 

2 / 30.8 1 (2 )j = ≈ − ε , and then expands further at j=0.9 with near-total depletion of the anions 

propagating further into the bulk. A consequence of the simultaneous onset of both limitations is that 

the total charge in the electrolyte becomes significantly negative: at an imposed current of j=0.9, large 

enough to feel strong effects of both limiting currents, the total cation concentration integrated across 

the membrane is only 40% of its value at j=0. Meanwhile, the total anion number is fixed, and its 

distribution becomes highly unbalanced, with a huge increase in concentration near the anode, due to 

the expulsion of anions from the growing space-charge layer on the cathode, where the anion 

concentration drops to a few ppm already at j=0.9. 

   The reaction-limited current is avoided for any non-zero value of δ. Indeed, if we choose δ=1 we are 

easily able to solve the model numerically far beyond j=1 and can thus present in Figs. 7c,d results up 

to j=1.5. Furthermore, even at that current the total cation number (integrated over the full membrane) 

does not deviate significantly from the value of the uncharged membrane. The anion density profile is 

also much less peaked near the anode and decreases much more gradually from anode to cathode. 

At the cathode its value is low but even at j=1.5 it is still as large as ~0.1% of the value in the 

uncharged state (instead of ppm’s which was already reached at j=0.9 in the case of δ=0). 
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Fig. 7. Ion concentration profiles in a liquid electrolytic cell with reactive cations and all ions mobile, at 
various values of the current j and for δ=λS/λD either zero or unity (on both electrodes: jO,i=1, kR,i=2, 
ε=λD/L=0.05) as function of x=X/L. Anode located left, cathode right. 
 

Liquid electrolyte – galvanic cell 

   Next we will discuss the situation that we have unequal values for kR,i and jO,i on the two electrodes 

(namely, kR,A=1, kR,C=1, jO,A=10, and jO,C=1). As a result the cell will operate galvanically in a certain 

range of currents and voltages, namely in between 0≤φcell≤ln(10). These calculations move beyond 

previous work (refs. [14] and [15]) where equal values for kR,i and jO,i on both electrodes were used.  

   In Fig. 8 we first show results for a zero current, j=0, which already presents interesting behavior, 

showing apparent interactions between the double layers, even though they do not overlap. Because 

at the cathode (right-hand side in the graph) kR,C and jO,C are equal to one another, one would naively 

expect that there all concentration profiles, as well as the potential profile, remain flat (no diffuse 

charge). However, in Fig. 8 we unexpectedly do observe the development of a diffuse layer. The 

explanation of this effect is as follows, and relates to the fact that the membrane is relatively thin. 

However, the effect is not due to a double layer overlap between the anode and cathode diffuse 

layers, but instead is due to a modification of the bulk ion concentration due to the very pronounced 

diffuse layer that forms on the other electrode, the anode. The diffuse layer formation on the anode in 
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the equilibrium state is due to the large difference between kR,A and jO,A. Because a very negative 

diffuse layer potential difference develops, anions are expelled from the interface region into the bulk 

of the membrane, leading to an anion bulk concentration increase. In order to maintain bulk quasi-

neutrality, this requires additional cations, which are synthesized from an oxidation at the anode until 

the cation bulk concentration equals that of the anions. This increase in bulk cation concentration has 

an effect on the equilibrium diffuse layer structure on the cathode, and by combining 

cO=c∞*⋅exp(-φD)  with Eq. (9) we obtain the equation ∆φT=ln(jO/(kR⋅c∞*)) which we can use to rationalize 

that for the cathode (where jO=kR) this increase of c∞* will result in a potential drop near the cathode, 

i.e., ∆φT,C<0, and therefore the development of a negative excess diffuse charge. This effect is 

generally to be expected whenever one electrode “X” is able to modify the bulk solution concentration 

to some extent and in this way will affect other electrodes, resulting in a modification of the diffuse 

layer structure there, even for zero current, without double layer overlap, and when the other 

electrode was uncharged in the absence of the electrode X. 

      

0.5

0.75

1

1.25

0 0.2 0.4 0.6 0.8 1

Position x =X /L

Io
n 

co
nc

en
tr

at
io

n

-0.2

-0.1

0

0.1

φ

c -

φ

c +

c +

c -

 

position 
 

Fig. 8. Equilibrium ion concentration and potential profiles in a liquid galvanic cell with reactive cations 
and all ions mobile (open-circuit condition, thus current j=0, δ=1, jO,A=10, jO,C=1, kR,A=kR,C=1, ε=0.05). 
Anode located left, cathode right. 
 

   In Fig. 9 we show results for the parameter settings of Fig. 8 for currents above and below zero, in 

all three ranges as shown in Fig. 1. Fig. 9a shows both an- and cation density profiles, and Fig. 9b the 

electrostatic potential profile. In Fig. 9a ion concentrations are shifted up- and downward by steps of 

∆c=0.2, to increase clarity of presentation. Without the vertical shift in the concentration profiles, in all 

cases c+ is ~1 at the cathode. Fig. 9a shows that in the bulk of the membrane the anion and cation 

concentrations are about equal, up to the upper boundary of galvanic operation, around j=0.5. 

Because of the pronounced voltage difference over the anode polarization layer, its structure is 

relatively unperturbed by the applied current. On the other hand, on the cathode the net diffuse 

charge switches sign when going from negative to positive current. The potential profiles in Fig. 9b 

show again how on the anode the diffuse layer voltage difference is not greatly influenced by current, 

whereas on the cathode it changes sign around j=0. The insert shows the cell voltage as function of 
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current and shows that the regime for galvanic operation is in between 0<j<0.45, with imposed 

currents outside this range. 

   A final comment can be made based on the results shown in Fig. 9, namely on the use of the 

terminology ‘positive’ and ‘negative’ electrodes often found in the literature. When polarization layer 

effects are considered, care must be taken to use such terms only when it is clear if one refers to the 

cell potential, the excess charge in the diffuse layer, or to the electronic charge on the electrode. To 

show for instance that the sign of the electronic charge and of the cell potential are not directly related, 

consider for instance that in Fig. 9 for j=0.1 on both electrodes there is an excess positive charge of 

the ions in the diffuse layers, while the cathode is at a positive potential with respect to the anode (cell 

potential φcell>0). At j=0.7 the signs of the diffuse layer charge on the electrodes are the same as for 

j=0.1, but the sign of the cell potential has reversed.  
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Fig. 9. Ion concentration and potential profiles in a liquid galvanic cell with reactive cations and all ions 
mobile (parameter settings as in Fig. 8 except for current j). Concentrations are shifted vertically in a). 
Dashed vertical lines in b) denote the Stern planes. The insert picture presents the cell voltage as 
function of current. 
 
Conclusions 

   We have developed a general mathematical framework to describe the steady response of galvanic 

cells to the full range of spontaneous and imposed currents, which yields simple analytical results in 

the asymptotic limit of thin double layers, as well as a convenient system for numerical simulation. 

These results should be widely applicable to fit and interpret experimental current-voltage 

measurements in galvanic cells, such as fuel cells and batteries, and to test different theoretical 

assumptions. In particular, for thin double layers, by considering both the Helmholtz limit (of zero 

diffuse-layer thickness) as well as the Gouy-Chapman limit (of zero Stern-layer thickness), we have 

derived two pairs of simple, analytical charge-voltage relations for galvanic cells, which approximately 

bound the possible behavior of the model in the thin-double layer regime. One pair of charge-voltage 

relations (28)-(29) describes solid electrolytes with fixed counter-charge, and the other (35)-(36) 

describes binary liquid electrolytes with mobile ions. As shown in Fig 3, these analytical formulae, and 

numerical results for intermediate values of the ratio δ of the Stern and Debye lengths, predict a wide 

range of behavior in the charge-voltage relation, which can be applied to experimental measurements. 
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Additionally, these simple theoretical predictions can be used to analyze the efficiency of energy 

storage in reversible galvanic cells and can be applied to place limits of the acceptable rates of 

charging and discharging to control energy losses. 

  In our model, the generalized Frumkin-Butler-Volmer (gFBV) equation is combined with the Stern 

model for continuity of the electric displacement field across the reaction plane, to give the required 

boundary conditions for the Poisson-Nernst-Planck (PNP) theory for mass transfer of charged species. 

The PNP equations describe the potential and ion profiles in the electrolyte bulk and diffuse part of the 

polarization layer alike, without making an artificial distinction between bulk and diffuse layer, and 

without implicitly assuming local or overall electroneutrality. Indeed, though in an electrochemical cell, 

the membrane electrolyte phase plus the electrodes will be overall electroneutral, the electrolyte 

generally has a non-zero overall charge. In the generalized gFBV-PNP model with a finite electrolyte 

membrane thickness and for the case of a single reactive ion that reacts to/from a species at fixed 

potential, the unphysical concepts of a diffusion-limiting current (which is only predicted for the case of 

mobile countercharge) and reaction-limited current (for both mobile and fixed countercharge) are 

avoided if one assumes a non-zero Stern-layer thickness ( 0)δ >  and a non-zero Debye-length 

( 0)ε > , respectively. Instead, the model allows any cell voltage or current to be achieved when 

realistic physical length scales are used.  

   Relevant experimental information can be obtained of fuel cell operation by imposing an electrical 

current upon a galvanic cell, either by reversing the current direction, or by operation in the super-

galvanic regime where the imposed current is larger than the spontaneous galvanic cell current in the 

limit of a shorted electrical circuit. Especially at high magnitudes of the imposed currents, the 

experimental data that are obtained can be used as a sensitive test to derive microscopic information 

and to distinguish between different theoretical models, as illustrated in Fig. 3. A proper model for 

galvanic cells should be able to describe data equally well when the cell is run in a forward mode 

(galvanic operation, i.e., production of electrical energy, and in the super-galvanic regime) and when it 

is run in the backward mode (electrolytic charging, i.e., conversion of electrical into chemical energy) 

using a single set of parameter settings. In general, we conclude that experiments on galvanic cells 

should explore the full range of imposed currents for a more stringent test of theoretical models. 
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