

Guan, H., Yang, H. and Wang, J. (2016) 'An ontology-based

approach to security pattern selection.' International

Journal of Automation and Computing, 13 (2): 168-182.

The final publication is available at Springer via http://dx.doi.org/10.1007/s11633-016-0950-1

ResearchSPAce

http://researchspace.bathspa.ac.uk/

This pre-published version is made available in accordance with publisher

policies.

Please cite only the published version using the reference above.

Your access and use of this document is based on your acceptance of the

ResearchSPAce Metadata and Data Policies, as well as applicable law:-

https://researchspace.bathspa.ac.uk/policies.html

Unless you accept the terms of these Policies in full, you do not have

permission to download this document.

This cover sheet may not be removed from the document.

Please scroll down to view the document.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ResearchSPace - Bath Spa University

https://core.ac.uk/display/44318424?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s11633-016-0950-1
http://researchspace.bathspa.ac.uk/

Abstract: Usually, the security requirements are addressed by abstracting the security problems arising in a specific

context and providing a well proven solution to them. Security patterns incorporating proven security expertise solution to the

recurring security problems have been widely accepted by the community of security engineering. The fundamental

challenge for using security patterns to satisfy security requirements is the lack of defined syntax, which makes it impossible

to ask meaningful questions and get semantically meaningful answers. Therefore, this paper presents an ontological approach

to facilitating security knowledge mapping from security requirements to their corresponding solutions - security patterns.

Ontologies have been developed using OWL and then incorporated into a security pattern search engine which enables

sophisticated search and retrieval of security patterns using the proposed algorithm. Applying the introduced approach allows

security novices to reuse security expertise to develop security software system.

Keywords: Security pattern, ontology, security requirement, risk analysis, security engineering.

1 Introduction

Experience shows that it is difficult to design a system

that can fulfill the specific security requirements by simply

integrating security mechanism and be error free at the

same time, even for a small system. Security expertise

tends to be valuable in such circumstances. However, such

security expert knowledge is not always available for

ordinary software developers. What’s more, with software

systems getting larger and more complicated, the situation

of software security is getting even worse.

Inspired by design patterns, security patterns incorporate

the security expertise to solve the recurring security

problems in the specific contexts. For security novices,

security patterns represent security best practices which are

a convenient way to design secure and reusable software

systems [1].They document basic mechanisms, processes or

approaches which provide ways to safeguard CIA features

of data [2].

In this paper, the security problems arising in legacy

systems are addressed through using security patterns.

Patterns are well-known solutions to recurring problems

that arise in specific contexts and specify generic schemes

with well-defined properties. Pattern writers have

introduced many collections of security patterns recently.

In [3], 415 published security patterns have been surveyed,

of course, the number of existing security patterns is not

limited to this. However, there are some features missing so

as to impede the benefit of taking advantage of security

patterns. One of the most fundamental features is how to

find the “right” from the existing security patterns to solve

the given specific security problem.

It is not possible to get right and meaningful answers



This work was supported by Research Project of Education department of

Liaoning province (China) (No. L2013156), National Scholarship

(No.201208210386), and Key Industry Problem Plan of Liaoning (No.

2012219001).

automatically because of no syntax defined in security

patterns [1]. Therefore, a framework for semantic

description and management of security patterns via

defining proper security ontology is developed in this paper.

The fundamental idea is to ease the searching of “right”

security patterns with the help of ontology technique.

Security patterns can be described based on the proposed

security core ontology which describes security patterns

semantically and precisely. Therefore, sophisticated

retrieval and search of security patterns are enabled.

2 Related work

The increasing importance of security in organizations

leads to much research focusing on the inclusion of security

concerns in the software development lifecycle. In this

section, a review of recent studies on the security pattern

selection is presented firstly with special regard to security

pattern organisation and classification. Then, a brief review

of existing ontologies in the information security domain is

given.

2.1 Review of security pattern selection

The increasing number of patterns and similar security

patterns appearing in the literature with different names

makes it necessary to develop classifications of security

patterns. A classification organises patterns into groups of

patterns that share one or many properties such as the

application domain or a particular purpose. Various

security pattern classification approaches have been

proposed since Gamma et al. introduced the first

classification of security patterns (GoF patterns) [4].

 Heyman et al. [5] classified 220 security patterns into

three categories: guidelines, process and core patterns.

Design guidelines described by Viega and McGraw in [6]

were used to compare 8 security patterns by Cheng et al. in

[7]. They extended their classification based on access types

of security patterns and thereby classified patterns in terms

of application levels: network-level, host-level and

Hui Guan1 Hongji Yang2 Jun Wang1

1School of Computer Science and Technology, Shenyang University of Chemical Technology, Shenyang, 110142, China

2 Centre for Creative Computing, Bath Spa University, SN130RP, UK

An Ontology-based Approach to Security Pattern Selection

application-level. Kienzle et al. [8, 9] classified security

patterns into two broad categories, i.e., structural and

procedural. Another broad classification of security

patterns was made by Blakley et al. [10]，in which two broad

categories of security patterns were made: available

patterns and protected patterns. Halkidis et al. [11] examined

the evolution feature of security patterns by comparing the

patterns derived from [10]. Laverdiere et al. [12] proposed

a six sigma method to classify the 12 common security

patterns from [7] and [11]. Hafiz et al [13, 14] proposed a

multi-dimension classification scheme taking consideration

of security CIA features, application context, security

wheel, McCumber cube, STRIDE threat modelling, and

hierarchical classification. The relationships used in their

work are similar to the dependencies among security

problem patterns suggested by Hatebur et al. [15].

In [16], an ontological interface for software developers

to select security patterns was proposed. The proposed

interface contains a mapping between security requirements

on the one side and threat models, security bugs, security

errors on the other side taking into consideration their

contexts of applicability. However, they did not give the

design and implementation of their ontology.

Montero et al. [17] proposed a semantic representation

for domain specific patterns based on domain knowledge.

The representation was used as an underlying basis for

complementing the textual description of pattern using

semantic annotations. However, their approach did not

fulfill its objective in selecting the appropriate set of

security patterns.

It will benefit software developers by providing a

means to request security patterns through unnecessary

classified security terms. It is meaningful if the

classification approaches for security pattern are

transparent to software developers, especially those

security novices. From this point of view, the approaches

mentioned above cannot satisfy such kind of need.

2.2 Review of security ontology

Understanding user’s security concerns plays an

important role in software development since security as

one of the NFRs becomes more and more important in the

success of modern software. Ontology can facilitate the

process as it is regarded as a good approach to

systematically classifying and categorising various security

concerns as well as related security countermeasures.

Therefore, security ontology is considered as an important

research area within the security engineering by more and

more researchers.

Some security ontologies have been proposed for

general concepts in information security domain. Herzog et

al. [18] proposed an OWL-based ontology of information

security on the basis of a book named Principle of

Information Security [19]. They endeavoured to design an

extensible ontology for the information security domain

that covers the whole general concepts. For a similar goal,

Fenz et al. [20] proposed an security ontology that covers a

more broader spectrum with 500 concepts. Their ontology

is then applied to quantified risk assessment by integrating

ISO/IEC 27001 standard ontology.

Compared with the above ontologies, the followings

describe specified aspects of security. Velasco et al.[21]

proposed an ontology framework for representing and

reusing security requirements based on risk analysis.

Security risk ontology and security requirements ontology

were developed based on the requirement engineering

standards and implemented using OWL. Tsoumas et al. [22]

defined a security ontology of risk analysis based on the

standards to provide security acquisition and knowledge

management. The security ontology acts as a container for

the security requirements.

Schumacher et al. [1] proposed a security ontology to

maintain the security pattern repository with a theoretical

security pattern search engine. However, only top level

concepts were introduced in their ontology, which is too

abstract to be applied to the specific context.

Dobson et al. [23] proposed an ontology in dependability

domain. Denker et al. [24] developed several ontologies for

security annotations of agents and web services. Karyda et

al. [25] proposed a security ontology using OWL with which

to develop secure e-applications. Security patterns were

defined to capture security expertise to support secure

application development.

Although several ontologies in information security

domain exist, none of them has been proposed to map the

security knowledge from security requirements to their

corresponding solutions - security patterns. This paper uses

ontology as a vehicle for managing different security

requirements, security patterns and their mapping

relationships.

3 Framework of the approach

An overview of the proposed security enhancement

framework is shown in Fig. 1.

The main emphasis will be given to security pattern to

guide software developers in their effort to fulfil security

requirements through the design and implementation of

security solutions so as to provide reliable security services.

In the proposed approach, security requirements are

elicited by risk analysis approach derived from our

previous work [26]and formalised as a list in which elements

related to security requirement (SR) are represented as

columns containing asset (A), threat (T), security feature

(SF) and priority (P). The meaning of these elements in the

same row is, for a given asset A, one or more threats Ts

may threaten A by violating one or more security feature

SFs. P is quantified by using the security vector approach

derived from our previous work [27]. Therefore, each

software requirement can be fulfilled in a sequence

according to the value of P during software development.

Based on the security requirements specification, a

pattern searching method is designed for automatic

identification and retrieval of the most suitable security

patterns that fulfil the given security requirement with the

aid of the proposed security ontology inference. In order to

achieve this goal, both security requirements and security

patterns are semantically described and stored.

Security requirements are represented semantically with

OWL to enable automatic mapping to their solution. Each

element that makes up the security requirement is

semantically described, categorised and organised into

different abstraction levels. Take the element “threat”, for

instance. It will be classified into Application-level,

Host-level and Network-level. Each category will be

further organised into sub-categories.

Security patterns are semantically described with

specific profiles and solutions for various contexts. The

descriptions of security pattern include abstraction level,

type of solution, applicability, context conditions and

security properties provided by the pattern. A series

semantic properties is defined to each pattern, such as

“security attribute: Confidentiality”, “Deployed in design

phase” …and so on. The incorporation of precise and rich

semantic descriptions of the security patterns enables the

use of automated reasoning mechanisms capable of

searching proper patterns to fulfil the given security

requirement.

Security patterns are formatted and stored in a

repository to support the following security pattern

integration. While the appropriate security pattern is found

via the pattern search engine, corresponding security

pattern document can be selected from the pattern

repository and thereby be integrated into the system model.

 Besides the semantic description of security

requirements and security patterns, mapping algorithms and

inference rules as parts of security ontology are developed

and stored to form a security knowledge base together with

the security pattern repository.

Fig. 2 shows the structure of the proposed security

knowledge base. Basically, the structure of the security

knowledge base is similar to a tree structure for storing

security related information that helps to reveal and

organise the security relevant features, and for relating

these properties to fundamental security requirements. It

consists of two sub repositories, security ontology base and

security pattern base. Security ontology base is used to

store the established ontology including concepts and

relationships while security pattern base is the repository to

store and organise the common security patterns for further

processing. Considering the reusability of the stored

security relevant information, the information is expressed

in a generalised way and focuses on the abstract level.

Finally, selected security patterns will be adapted,

instantiated and integrated in the system design model to be

implemented by software developers. Therefore, security

features can be incorporated to protect the system against

security attacks.

4 Security requirement elicitation

Security requirements represent the types and levels

when attempts to protect the assets to meet security policy

Fig.1 Operational framework

Fig.2 Class diagram for the meta-model of security knowledge base

Security Knowledge Base

Security Ontology

Security SolutionContext Security Problem

Asset Threat Security Attribute Priority

Security Requirement Ontology Security Pattern Ontology

Pattern Level Pattern Element Level

Security Pattern Pattern Relationship

Security Pattern Base

Security Pattern1 ** *

Security

requirement

analysis

Selected Security

Pattern

Security

Pattern

Repository

Security Knowledge Base

Pattern

Searching

Security

Ontology

Security Requirement

Security Pattern

Integration

Pattern

Semantic

Description

Security

Requirement

Description

[28]. A complete and consistent group of security

requirements can be produced by using an elicitation

method. Specially, security requirements are identified by

risk analysis—“the systematic use of information to

identify sources and to estimate the risk” [29].

Usually, most functional requirements are specified as

what must happen, while security requirements are stated in

terms of what must not be allowed to happen. After the risk

analysis, assets can be enumerated with criticality level,

threats threatening the assets can be elicited with severity

risk level, security features that would be violated by

potential threats on assets can be analysed, and priority

level representing the developing order of the security

requirements can be computed.

It is impossible to develop a completely secure system

because of the budget, deadline, and resources needed for

the development and the emerging new kinds of attacks,

even if it could be done, the usability and efficiency of the

developed system may be decreased. Thus, developing

secure systems is about trade-offs and it is quite a challenge

to find a balance point. Prioritising of each elicited security

requirement and incorporating user’s security objectives

play a key role when facing such a dilemma.

The criticality of each asset has to be evaluated, which

implies a criterion for the security threshold of an asset is

decided according to not only the impact value but also the

risk for the asset, including likelihood and impact.

Therefore, analysing the threat and vulnerability of a

system in order to evaluate the risk is required. Specially,

analysis of the threats threatening to the system is used as s

a means of identifying why the assets need protection. In

addition, the vulnerability of the system is detected and

analysed in order to understand what weakness exists in the

system that can be exploited by the threats. This is the

process of security requirement elicitation. The outcome of

this process will be a list of security requirements with

priorities representing their criticalities to the system. Table

1 shows an example output of security requirement

elicitation.

The security level of a software system can be

illustrated in Fig. 3 and be quantified by using the security

vector approach SV <A, T, V> in (1) proposed in the

previous work [27]. It can be used as the priority order of

security requirements when system designers develop

security aspects or countermeasures to fulfil them. Table 1

shows an example of security requirement format in this

paper.

v

2

t

2

a

2SV WVWTWA  ⑴

where Wa is the weight of asset A, Wt is the weight of

threat T, and Wv the weight of vulnerability V. Security

factors including asset, threat and vulnerability are

quantified and treated as the elements of the security

vectors SV.

5 Security pattern

Security patterns incorporate proven security expertise

solutions to the recurring security problems. Usually, the

security requirements are addressed by abstracting the

security problems arising in a specific context and

providing a well proven solution to them [30]. The ability of

security patterns to mitigate and stop security threats can be

found in [11, 31] where security patterns incorporated into

the system could contribute to the improvement of system’s

security level [32].

It should be noted that security patterns can be designed

and developed by security experts for different kinds of

problem solving and be applied to different contexts. For

example, they can be abstract higher level architectural

patterns that specify how to resolve a security problem

architecturally, or they can be even more abstract patterns

that depict the process to secure software development, or

they can be defensive design level patterns describing how

the detailed security artefacts can be created [30].

5.1 Security pattern format

The documentation of security patterns were originally

built by Yoder et al. [33] in 1997. Seven architectural

security patterns are presented and structured using the

formats in POSA [34] or GoF [4] which are generic schemes

for describing design patterns in the architecture level.

The format is composed of several elements shown as

follows [7]:

• Intent: description of goal and issues the pattern

addresses;

• Context: description of situations or environment in

which the pattern is used;

• Problem: description of the problem that this pattern

solves;

• Description: description of the scenarios that illustrate

the design problem;

• Solution: description of the solution to the problem;

• Consequences: description of the trade-offs and

results when this pattern is used;

• Forces: description of constraints that should be

considered when the pattern is applied.

• Known uses: description of the patterns use found in

real systems;

• Related patterns: description of the related patterns

that use this pattern as a reference.

In the view of pattern format, pattern authors can

describe all sections which they consider of importance.

Therefore, for all the elements in a security pattern, just

Problem and Context elements are useful while searching

Fig. 3 Security vectors[27]

proper security patterns from a security point of view.

The structure of security patterns adopted in this paper

is based on the traditional design patterns. They have an

expressive name, an application context, problem to be

solved and a solution to that problem.

Therefore, security pattern is represented as a 3-tuple

<Context, Problem, Solution> where:

• Context defines the conditions and situation in which

the pattern is applicable

Time and location are usually regarded as important

characteristics of context in the security domain. Time

relates to when a security problem occurs and the location

specifies at which level of the system infrastructure a

security problem occurs. In terms of software domain,

typical example of the time within a context is software life

cycle phases which are analysis, design, implementation,

integration, and location where the operation occurs usually

expressed as application, host and network [1].

• Problem defines the vulnerable aspect of an asset

The problem field of a security pattern is important for

software developers to determine whether a security pattern

is appropriate for their situation. This field defines the

security problems that occur in the specific contexts and

can be solved by the security pattern. A security problem

occurs whenever a system is unprotected or is protected

insufficiently against abuse or misuse. Generally speaking,

the security problem can be some kinds of threats which

cause possible danger or damage when someone or

something violates security policies.

• Solution defines the scheme that solves the security

problem which occurs in the security context

Security solution is a group of countermeasures to be

applied in the system in order to mitigate the security risk.

It is meaningful that at least one security countermeasure is

implemented to keep the system invulnerable for each

threat.

5.2 Security pattern organisation

A significant number of security patterns have been

proposed since the first effort in 1977 by Yoder et al. [33]. A

security pattern may address more than one security feature,

for example, Authentication pattern can protect both

confidentiality and integrity security features. At the same

time, for a specific security property, there may be more

than one security pattern to address it. It is a many-to-many

situation. Additionally, security patterns may be organised

by different parameters from abstract to more specific.

Hence, it is difficult to find the “right” security patterns for

solving a particular security problem without a proper

classification scheme of security patterns [14]. A suitable

classification scheme not only contributes to efficient

information storage and retrieval, but also benefits both

pattern navigators and pattern miners.

In this section, on the basis of several existing

classification frameworks, an efficient classification

framework for security patterns has been described to

facilitate finding the proper security patterns according to

the elicited security requirements. As the security

requirement is based on threat modelling and asset analysis,

the properties of threat and asset will be considered as the

factors for selecting security patterns. The proposed

classification scheme is based on multiple aspects of the

relevant information.

 Lifecycle Stage.

While most of the security patterns take the form derived

from design patterns, not all security patterns are dedicated

to design phase. Therefore, classification on the lifecycle

stages is meaningful for organising security patterns

ordered on the dichotomy of beginning and end, which are:

Analysis, Architecture, Design, Implementation, and

Deployment.

 Architectural Layer.

Layer provides another useful dimension, since problems

and their solutions in different layers of the architecture

differ, yet all are important. Roughly, the architecture has

been divided with an ordering from low to high level of

abstraction. The following distinctions are used as the

architecture layers, which are: Data, Application, System,

and Network.

 Application Context.

The structure of the system is usually taken into

consideration as another classification factor to partition the

security patterns according to which part of the system they

are trying to protect [14]. The security of a system is

analysed from three levels: core security, perimeter security

and exterior security. The core security deals with the

security implementation within the system while the

perimeter security focuses on security related issues at the

system entry points, such as authorisation, authentication

and security. The exterior security considers protecting data

during transmission and securing communication protocols.

 Domain Specific

Application domain can provide an important

differentiator or a filter to narrow the field of applicable

knowledge [35]. Some security pattern solutions are specific

to a particular domain or application type. This dimension

is an exception in that it does not have a dichotomy or

ordering—the space is freely defined. Pattern designers can

create patterns for their own domain as a form of

knowledge capture. After examining the existing security

pattern, several example domains are provided in this paper:

Ubiquitous computing, Distributed computing, Web and

J2EE, Embedded system, Operating system, Service

oriented architecture, SCADA (supervisory control and

data acquisition), and not limited to this coverage.

 Threat Type.

The classification scheme based on threat modelling is

more intuitive because it uses the security problems that the

patterns solve. Security architects use threat modelling to

identify and prioritise a system’s security threat which

makes the prioritisation of the mitigation effort possible.

STRIDE [36] is one of the widely used models to classify

threats according to different sources. It is the English

acronym of the following six threat types [36]:

o Spoofing is someone or something

masquerades to be legitimate and valid.

o Tampering is data interfered or modified

during network communication.

o Repudiation is the situation that user denies

performing a certain action which could be

illegal and harmful.

o Information disclosure is when an unauthorised

user gets access to confidential information,

which he or she is not supposed to have access

to.

o Denial of service is basically when a service is

brought down intentionally or unintentionally,

resulting in the disruption of normal services

for legitimate users.

o Elevation of privilege is when an unauthorised

user gets higher privilege access from the one

he or she was supposed to have, which might

result in access to restricted information, or

might apply dangerous tasks.

 Security Concerns

Software patterns are usually chosen by software

developers with a particular goal in mind. Developers tend

to view security in terms of software requirements rather

than taking the perspective of an attack. Therefore, it is

necessary to apply security goals or concerns to classify the

security patterns. This metric is more straight and easier

understood to software designer to select proper security

patterns in the security design. In this paper, the most

frequently used security concerns are listed as: Access

control, Authentication, Confidentiality, Integrity,

Availability, Accountability, and Non-repudiation.

For better visualisation, Table 2 summarises the

classification scheme for security patterns.

6 Security ontology

An ontology, in the field of knowledge representation, is

most often defined as “a representation of a

conceptualisation” [37]. A more detailed description of

ontology is that “it is a formal representation of the entities

and relationships which exist in some domains, it should

also represent a shared conceptualisation in order to meet

any useful purpose” [23]. Ontologies are useful for

representing and inter-relating many kinds of knowledge.

In 2003, Marc Donner urged the necessity of having good

security ontologies. He argued that too much security

terminology is vaguely defined, thus it becomes difficult to

communicate between colleagues and, worse, confusing to

deal with the people we try to serve: “What the field needs

is an ontology – a set of descriptions of the most important

concepts and the relationships among them. A great

ontology will help us report incidents more effectively,

share data and information across organisations, and

discuss issues among ourselves” [38].

The advantages of applying ontology technology into the

information security domain are specified in [39] from three

viewpoints: (1) ontologies can eliminate the ambiguity of

items to a properties list and organise information in a

systematic way at detailed level; (2) ontological technology

can induce the modularity which can be used by other

approaches, for example, to detect some new features by

establishing relations among different measurements; and

(3) an ontological approach has the ability to forecast

security problems by providing inference mechanisms.

The approach proposed in this paper can be summarised

by the following points. The security patterns for software

engineering are created to document the knowledge of the

experts in security field. These patterns are designed by

using the ontology techniques that provide reusable and

structured activities or solve security problems that may

arise during the development of software systems.

Moreover, due to the OWL representation, the security

patterns are available in a machine readable format and it is

expected to be automatically utilised in the system.

This section addresses the issue of fulfilling elicited

security requirements. The approach uses ontologies as a

tool for managing different security requirements and

associating them with corresponding security solutions

provided by security patterns.

The main goal is to provide a security ontology based

framework, which unifies the proposed methods in security

evolution for legacy systems. The ontology “knows” which

threats threaten which assets, and which security patterns

could lower the probability of occurrence in which contexts.

It is meaningful for the software developer to find the

appropriate security patterns by adopting an ontology based

approach [16].

6.1 Overview of the proposed ontology

The proposed security ontology is designed to achieve

the following goals:

 Describe risk relevant information especially

security requirement information applicable to web

application

 Design security pattern ontology at two abstraction

levels

 Facilitate mapping security requirements to security

patterns

 Provide the ability to annotate security related

information to facilitate the security pattern

selection

 Create reusable and easy to extend ontologies

The designed ontologies are supposed to be used by both

the security pattern providers who design new security

patterns and edit the corresponding ontology into the

ontology base to express their security capabilities, and the

security requirement requestors who have got security

requirements to be fulfilled by security patterns. From the

security requestor’s point of view, security requirements

can be stated in terms of 4-tuple <Asset, Threat, Security

Attribute, Priority>, which is elicited from the proposed

risk assessment method in [27]. When it comes to the

security pattern provider, the security capabilities are

expressed in terms of security patterns which are organised

as 3-tuple <Context, Security Problem, Security Solution>.

The proposed ontology has been developed by using

OWL, which is a language based on RDF for processing

web information by the computer rather than being read by

people. OWL is the current recommendation of W3C

(World Wide Web Consortium) for processing the content

of web information. OWL is a part of semantic web and has

three sublanguages, OWL Lite, OWL DL (including OWL

Lite), and OWL Full (including OWL DL). Based on

Description Logics, OWL-DL has been used to design the

proposed ontology for its expressivity is suitable for the

requirement and allows for complete reasoning by DL

reasoner, for example, Racer, FaCT++ or Pellet.

The tools used for developing and querying the security

ontologies are Protégé and FaCT++. The Protégé Ontology

Editor (Protégé) provides the graphical interface for

ontology designers to build OWL ontologies. However, the

Protégé itself only provides editing function so that a

reasoner (FaCT++, in this study) is required to check the

consistency of the developed ontology.

6.2 Development of the proposed security

ontology

Designing OWL ontology is not only defining a set of

classes and properties, but also including a collection of

restrictions and axioms. This ensures that the correct result

can be inferred from the proposed ontology.

There are several methods to develop ontology. The

method used in this paper is based on METHONTOLOGY
[40]. The development of security ontology is carried out in

the following phases:

 Define questions. A collection of questions within

the domain is defined to indicate what kind of

answers and information are expected by using the

ontology. The questions are informal and loosely

structure as any forms. Some important concepts

can be identified during this process, which can be

termed as the basis when building ontology classes.

 Build classes. Based on the previous phase, a lot of

relevant concepts and terms have been identified

and recorded. They can be classified and selected

according to their relevancy to the domain to form

the classes, or properties of the proposed ontology.

 Build relationships. This process involves

clarifying the relationships among the classes and

defining the hierarchy. It is the process of adding

axioms and restrictions to the ontology. Axiom is a

set of assertions specifying what is true in the

domain. It is used to connect classes and properties

with some logical information about them.

Restriction is a special kind of class description

with which all individuals in that class will satisfy

the restriction.

 Build ontology instance. This is the procedure to

create instances of the classes, which refers to

inserting the individual information or providing

examples of each of the classes.

 Validate ontology. The competence questions built

in the first phase can be used to validate the

correctness of the proposed ontology.

The aforementioned phases have been repeated several

times until the provided answers from the proposed

ontology satisfy the competency questions.

To accomplish the automatic mapping between security

requirements and security patterns, a security ontology is

developed based on [20] and its top-level concepts and

relations are shown in Fig. 4. It is composed of two

subontologies: security requirement subontology (sr) and

security pattern subontology (sp). The security requirement

subontology consists of the core concepts: Asset (sr:asset),

Threat (sr:threat), Vulnerability (sr:vulnerability), Attribute

(sr:attribute), Priority (sr:priority). The security pattern

subontology is composed of the core concepts: Security

Context (sp:context), Security Problem (sp:problem),

Security Solution (sp:solution). The concepts of sr:asset

have been derived from [41], sr:vulnerability and sr:threat

from [42], while security pattern subontology concepts are

derived from [1].

6.3 Security requirements subontology

In our previous work [26, 27], the security requirement is

identified by risk analysis, which is one of the sources to

elicit security requirement. Consequently, the requirement

ontology (Fig. 5) is developed with the concepts derived

from the risk analysis using Protégé Editor. The

meta-information associated with risk analysis (such as

asset and threat) can be used to define axioms, constraints

and rules that help to maintain the consistency of the

proposed security requirement ontology.

Every security requirement is a description of which

asset is threatened by which kind of threat by violating

which security objective and to which severity extent. The

properties defined in security requirement ontology are

described below:

 Each requirement is characterised by a unique

identifier and has been defined as Datatype

property in OWL.

Fig. 4 Proposed security ontology top level concepts and relations

Vulnerability Threat

Asset

Security

Requirement

Priority

Security

Attribute

Security

Context

Security

Problem

Security Pattern

Security

Solution

Solution Type

is kind of

implemented by

is part ofis part

of

is part

of

v
u

ln
er

ab
il

it
y
 o

n

exploited by

threatens
is part of

is part of
is part of

is part

of
has solution

type
is solved

by

Stakeholder

requires level

Severity

Scale

has severity

ow
ned by

Threat Type

Domain
Security

Concerns

Severity

Scale

has severity

is kind of

ha
s
do

m
ai

n
has

security

concerns

has threat type

 hasAsset: it represents the asset related to this

requirement. It is defined as an object property with

domain defined as class

SecurityRequirementElement and range as class

asset.

 isThreatenedBy: it represents possible threats that

endanger the asset and then make the requirement

unfulfilled. This property is represented by an

object property and its range is the class Threat (Fig.

6) defined in this ontology. According to the risk

analysis in [27], there are constraints of which threat

can occur to which asset. Fig. 7 shows partial of the

security ontology defined in OWL.

 hasSecurityAttribute: the features that make an

asset valuable. There exist four types of security

properties using an object property:

“Confidentiality”, “Integrity”, “Availability” and

“Accountability”.

 hasPriority: the value can be computed by using (1)

taking asset criticality, threat severity and

vulnerability severity scale into account and shows

the order of development. Datatype property

{“high”, “Medium”, “Low”}.

6.4 Security pattern subontology

As described in Section 4.1, the structure of the security

pattern is a 3-tuple <Context, Problem, Solution> from the

security point of view. Moreover, there are relationships

among security patterns.

Fig. 8 illustrates of security pattern subonotolgy which

is based on [1]. The main properties of the pattern

subontology are shown below:

 Security patterns are characterised by a unique

identifier and a text description. Both have been

defined in OWL as Datatype properties.

 hasContext: it represents the situation in which the

security problem occurs and is defined as object

property. The range of it is subclass

SecurityContext. Two subproperties are hasLayer

Fig. 5 Top level of security requirement ontology

Fig. 6 Top level of threat ontology

<owl:Class rdf:about="&Security;Asset">

 <rdfs:subClassOf

rdf:resource="&Security;SecurityRequirementElement"/>

</owl:Class>

< owl:Class rdf:about="&Security;Threat">

 <rdfs:subClassOf

rdf:resource="&Security;SecurityRequirementElement"/>

</ owl:Class>

…

<owl:ObjectProperty rdf:about="&Security;isThreatenedBy">

 <rdfs:domain rdf:resource="&Security;Asset"/>

 <rdfs:range rdf:resource="&Security;SecurityProblem"/>

 <inverseOf rdf:resource="&Security;hasAsset"/>

</owl:ObjectProperty>

…

<NamedIndividual rdf:about="&Security;DataTampering">

 <rdf:type rdf:resource="&Security;Authorization"/>

 <rdf:type rdf:resource="&Security;Sensitive_Data"/>

 <Security:residesOn

rdf:resource="&Security;Application"/>

</NamedIndividual>

Fig. 7 Partial ontology definition in OWL

and hasLifeCycle, whose ranges are Layer and

LifeCycle, respectively.

 hasProblem: it represents the security problem that

occurs in such a security context and is defined as

object property. The range of it is subclass

SecurityProblem and an axiom is added as

equivalent as subclass Threat in Security

Requirement subontology.

 hasSolution: it represents the security solution to

the security problem that occurs in the given

security context.

 hasThreatType: it represents the problem type

classified according to threats whose domain is

SecurityPattern and range is ThreatType.

 hasSecurityConcerns: it represents the security

features the security pattern holds.

 hasDomain: application domain the security pattern

serves. It is defined as object property whose

domain is SecurityPattern and range is Domain.

 requires: it represents the Require relationship

between security patterns. It is added as object

property with the range being SecurityPattern.

 isSpecialisedBy: it represents the Specialise

relationship between security patterns. It is added

as object property with the range being

SecurityPattern.

7 Security pattern search engine

Since this study aims to support the security pattern

selection process provided that the security requirements

have been elicited, a security pattern search engine (Fig. 9)

is designed to facilitate the process and therefore to validate

the proposed security ontology.

In this case, 32 security patterns are selected from the

published literatures and form the pattern repository which

can be extended as needed. An example of the proposed

security pattern repository is partially shown in Table 3.

Patterns in the repository are organised and labeled using

the proposed classification scheme.

The pattern search engine is composed of four

functions and can be implemented by incorporating OWL

API:

 Input function. An input function receives the

user’s required security requirement or takes the

set of security requirements as input.

 Infer function. An infer function infers the

developed security ontology to find the security

patterns according to the user input by using OWL

API. The core of infer function is the algorithms

realising the mapping.

 Search function. A search function will search the

security pattern repository according to the

mapping result of infer function and returns the

development specification of the selected patterns

which can be used by developer.

 Output function. An output function returns the

mapping index between security requirement and

mitigation security patterns.

Fig. 9 Pattern selection process

The key part of the pattern search engine is some

algorithms that match the security patterns with required

security requirements until either there are no more security

requirements existing, or there are no more security

patterns which can be matched with them.

7.1 Algorithm

In order to extract the corresponding results from the

proposed security ontology, the Protégé OWL API can be

used to encode the competency questions in the algorithm

structure. The OWL API is a Java application interface and

reference implementation for creating, manipulating and

serialising OWL ontologies. In the following, a

representative algorithm is given in a pseudo code format

to show how the search engine performs the infer function.

Fig. 8 Top level of security pattern ontology

By incorporating OWL API, Algorithm 1 is used to

search the security patterns which can mitigate the threats

threatening the given asset by violating the given security

attributes in a given domain. In the GetRelated(x, y)

function, x is a given concept, while y is a relation (also

called object property in Protégé OWL). The GetRelated(x,

y) function returns a collection of concepts which are

related with x via y. The GetInstances(x) function returns a

collection of instances (also called individuals in Protégé

OWL) belonging to concept x.

7.2 Evaluation

The security pattern search engine aims to provide the

inferring and searching capability with an interactive

interface. The kernel of engine is the proper ontology

definition and matching algorithm.

Result of the pattern searching process is a data set

comprising the selected security patterns, which is then

evaluated by security expert. Evaluation of the result is

the process of evaluating the efficiency of the proposed

security ontology.

Usually, the system developers come up with

competency questions to validate the ontology. The

questions are designed as indicative of what the ontology

can handle and reason about rather than as exhaustive as

possible. In this paper, each of the questions is firstly

expressed formally as a DL-query, which is a query

language that can be used to query RDF and OWL-DL

ontologies, and then the query results are presented with

comments in appropriated place. One of the examples is

illustrated in Fig. 10 showing the evaluation result while

using the proposed ontology to process the security pattern

searching.

 Q1: Which threats threaten the integrity attribute of

internal data assets in the network layer?

DL Query: Threat and (threaten some (Asset and (Asset

value InternalData) and (SecurityAttribute value

Integrity)) and (resideOn value Network))

DL Result: Spoofing

 Session Hijacking

 Q2: Which security patterns protect the sensitive data

against the threat of network eavesdropping?

 DL Query: SecurityPattern and (hasProblem some

(Threat and (Threat value NetworkEavesdropping) and

(threaten value SensitiveData)))

DL Result: Secure Pipe

 Secure Communication

 Secure Association

 Q3: Which security patterns can be used in Web and

J2EE domain to address the SQL injection threat?

 DL Query: SecurityPattern and (hasDomain value

WebAndJ2EE) and (hasProblem and (Threat value

SQLInjection))

DL Result: Input validator

Due to the high degree of complexity, it is inefficient to

answer all of the competency questions using simple

ontology queries. However, it illustrates the ability of

ontology to answer such complex questions.

8 Conclusions

Based on our previous work of security requirement

elicitation, this paper promotes the application of security

pattern to the secure software development. Security

patterns make it possible for security novices to integrate

security expertise into their development. However, the

number of security patterns and their different

representation forms make it difficult to select the “right”

patterns for fulfilling a given security requirement.

 In this paper, an ontological approach is proposed to

manage security requirements, security patterns and the

mapping relationships among them. The ontology has been

developed using formal method and implemented in OWL.

The ontology facilitates security knowledge mapping from

security requirements to security patterns. The definition of

proposed ontology is based on security requirement derived

from the previous work [27] and knowledge of security

pattern from [2, 4, 30]. Moreover, a prototype capable of

searching security patterns is designed by processing the

knowledge contained in the proposed ontology.

The proposed approach is novel and unique. It smooths

the transferring from security requirements to secure

architecture by using security patterns. It combines security

requirements, the pattern approach and ontology paradigm

in order to improve the application of security patterns to

security engineering domain.

Future directions for this approach will focus on two

main areas. One is the extension of the requirement

Fig. 10 Example of query result in Protégé editor

ontology using widely accepted standards, such as

OCTAVE or ISO/IEC 27001. The other area is the

implementation of the prototype system, in which the

expert systems might be used to improve the selection of

security patterns.

References

[1] M. Schumacher. Security Engineering with

Patterns: Origins, Theoretical Models, and New

Applications. Berlin, Germany: Springer-Verlag

Berlin Heidelberg, 2003.

[2] M. Schumacher, E. Fernandez-Buglioni, D.

Hybertson, F. Buschmann and P. Sommerlad.

Security Patterns: Integrating Security and Systems

Engineering. UK: John Wiley & Sons, 2006.

[3] M. Bunke, R. Koschke and K. Sohr. Organizing

security patterns related to security and pattern

recognition requirements. International Journal on

Advances in Security, vol. 5, no. 1 and 2, pp. 46-67,

2012.

[4] E. Gamma, R. Helm, R. Johnson and J. Vlissides.

Design Patterns: Elements of Reusable

Object-Oriented Software. Boston, USA: Pearson

Education, 1994.

[5] T. Heyman, K. Yskout, R. Scandariato and W.

Joosen. An analysis of the security patterns landscape.

In Proceedings of the Third International Workshop

on Software Engineering for Secure Systems, IEEE

Computer Society, Minneapolis, MN, pp. 3, 2007.

[6] J. Viega and G. McGraw. Building Secure

Software: How to Avoid Security Problems the Right

Way. Boston, USA: Addison-Wesley Professional,

2001.

[7] B. H. Cheng, S. Konrad, L. A. Campbell and R.

Wassermann. Using security patterns to model and

analyse security requirements. IEEE Workshop on

Requirements for High Assurance Systems, pp. 13-22,

2003.

[8] D. M. Kienzle and M. C. Elder. Final Technical

Report: Security Patterns for Web Application

Development, University of Virginia, USA, 2002.

[9] D. M. Kienzle, M. C. Elder, D. Tyree and J.

Edwards-Hewitt. Security Patterns Repository

Version 1.0. DARPA, Washington DC, 2002.

[10] B. Blakley and C. Heath. Security Design

Patterns Technical Guide - Version 1, the Open Group,

UK, 2004.

[11] S. Halkidis, A. Chatzigeorgiou and G.

Stephanides. A qualitative evaluation of security

patterns. Information and Communications Security:

Springer Berlin Heidelberg, pp. 132-144, 2004.

[12] M. A. Laverdiere, A. Mourad, A. Hanna and M.

Debbabi. Security design patterns: survey and

evaluation. Conference on Electrical and Computer

Engineering(CCECE '06) pp. 1605-1608, 2006.

[13] M. Hafiz and R. E. Johnson. Security Patterns

and Their Classification Schemes, University of

Illinois at Urbana-Champaign Department of

Computer Science, USA, 2006.

[14] M. Hafiz, P. Adamczyk and R. E. Johnson.

Organising security patterns. IEEE Software, vol. 24,

no. 4, pp. 52-60, 2007.

[15] D. Hatebur, M. Heisel and H. Schmidt. Analysis

and component-based realization of security

requirements. In Third International Conference on

Availability, Reliability and Security(ARES'08) IEEE

CS Press, Barcelona, pp. 195-203, 2008.

[16] P. El Khoury, A. Mokhtari, E. Coquery and M. S.

Hacid. An ontological interface for software

developers to select security patterns. In 19th

International Workshop on Database and Expert

Systems Application(DEXA '08), Turin, pp. 297-301,

2008.

[17] S. Montero, P. Díaz and I. Aedo. A Semantic

Representation for Domain-Specific Patterns.

Metainformatics, U. Wiil Ed., Germany: Springer

Berlin Heidelberg, pp. 129-140, 2005.

[18] A. Herzog, N. Shahmehri and C. Duma. An

ontology of information security. International

Journal of Information Security and Privacy (IJISP),

vol. 1, no. 4, pp. 1-23, 2007.

[19] M. Whitman and H. Mattord. Principles of

Information Security (2nd Edition). Boston: Course

Technology, 2005.

[20] S. Fenz and A. Ekelhart. Formalizing

information security knowledge. In Proceedings of

the 4th International Symposium on Information,

Computer, and Communications Security, ACM,

United States, pp. 183-194, 2009.

[21] J. L. Velasco, R. Valencia-García, J. T.

Fernández-Breis and A. Toval. Modelling reusable

security requirements based on an ontology

framework. Journal of Research and Practice in

Information Technology, vol. 41, no. 2, pp. 119, 2009.

[22] B. Tsoumas and D. Gritzalis. Towards an

ontology-based security management. In Advanced

Information Networking and Applications, 2006.

AINA 2006. 20th International Conference on,

Vienna, pp. 985-992, 2006.

[23] G. Dobson and P. Sawyer. Revisiting

ontology-based requirements engineering in the age

of the semantic web. In Proceedings of the

International Seminar on Dependable Requirements

Engineering of Computerised Systems at NPPs,

Halden, 2006.

[24] G. Denker, L. Kagal and T. Finin. Security in the

semantic web using OWL. Information Security

Technical Report, vol. 10, no. 1, pp. 51-58, 2005.

[25] M. Karyda et al. An ontology for secure

e-government applications. In The First International

Conference on Availability, Reliability and

Security(ARES 2006), IEEE, Vienna, Austria, pp. 5,

2006.

[26] H. Guan, W. Chen, L. Liu and H. Yang.

Environment-driven threats elicitation for web

applications. Agent and Multi-Agent Systems:

Technologies and Applications: Springer, pp. 291-300,

2011.

[27] H. Guan, W. Chen, L. Liu and H. Yang.

Estimating security risk for web applications using

security vectors. Journal of Computers, vol. 23, no. 1,

pp. 54-69, 2012.

[28] J. Lasheras, R. Valencia-García, J. T.

Fernández-Breis and A. Toval. Modelling reusable

security requirements based on an ontology

framework. Journal of Research & Practice in

Information Technology, vol. 41, no. 2, pp. 119-133,

2009.

[29] ISO/IEC 17799-272002. Code of Practice for

Information Security Management, 2005.

[30] C. Steel, R. Nagappan and R. Lai. Core Security

Patterns: Best Practices and Strategies for J2EE,

Web Services, and Identity Management:

Prentice-Hall, 2005.

[31] S. T. Halkidis and E. Chatzigeorgiou. A practical

evaluation of security patterns. In Proceedings of the

International Conference on Artificial Intelligence

and Digital Communications, pp. 1-8, 2006.

[32] E. B. Fernandez, N. Yoshioka, H. Washizaki and

M. VanHilst. Measuring the level of security

introduced by security patterns. In 2010 International

Conference on Availability, Reliability and Security,

Krakow, pp. 565-568, 2010.

[33] J. Yoder and J. Barcalow. Architectural patterns

for enabling application security. In Proceedings of

the 4th Conference on Pattern Languages of

Programming (PLoP ’97), USA, 1998.

[34] F. Bushmann, R. Meunier, H. Rohnert, P.

Sommerlad and M. Stal. Pattern-Oriented Software

Architecture: A System of Patterns: John Wiley&Sons,

1996.

[35] M. VanHilst, E. B. Fernandez and F. Braz. A

multi-dimensional classification for users of security

patterns. Journal of Research & Practice in

Information Technology, vol. 41, no. 2, pp. 87-98,

2009.

[36] F. Swiderski and W. Snyder. Threat Modeling:

Microsoft Press, 2009.

[37] T. R. Gruber. Toward principles for the design of

ontologies used for knowledge sharing. International

Journal of Human-Computer Studies, vol. 43, no. 5,

pp. 907-928, 1995.

[38] M. Donner. Toward a security ontology. IEEE

Security & Privacy, vol. 1, no. 3, pp. 6-7, 2003.

[39] V. Raskin, C. F. Hempelmann, K. E. Triezenberg

and S. Nirenburg. Ontology in information security: a

useful theoretical foundation and methodological tool.

Proceedings of the 2001 Workshop on New Security

Paradigms, pp. 53-59, 2001.

[40] A. Gomez-Perez, M. Fernández-López and O.

Corcho. Ontological Engineering: Springer

Heidelberg, 2004.

[41] BSI. BS7799 - Code of Practice for Information

Security Management, 1999.

[42] J. D. Meier, A. Mackman, S. Vasireddy, M.

Dunner, R. Escamila and A. Murukan. Improving

Web Application Security: Threats and

Countermeasures: Microsoft, 2003.

 Hui Guan received her B.Sc. and M.Sc. degrees

in computer science from the Shenyang Institute

of Chemical Technology, China, in 2000 and 2006,

respectively, and her PhD in software engineering

in 2014 from De Montfort University, England.

She is currently an associated professor at School

of Computer Science and Technology, Shenyang

University of Chemical Technology.

 She has published 10 referred journal and conference papers. Her

research interests include software security, model driven development

and software evolution.

 Dr. Guan received research financial support from Research Project

of Education Department of Liaoning province (China) in 2010 and

2013, respectively.

 E-mail: h.guan@syuct.edu.cn (Corresponding author, ORCID ID:

orcid.org/0000-0002-2450-8568#sthash.foVfwfzz.dpuf)

 Hong-Ji Yang obtained his BSc and MPhil in

computer science in 1982 and 1985, respectively

from Jilin University, China, and his PhD in

computer science in 1994 from Durham University,

England. He is currently a professor at the Centre

of Creative Computing, Bath Spa University,

England.

His research interests include software engineering and pervasive

computing. He served as a program co-chair at IEEE International

Conference on Software Maintenance 1999 (ICSM’99) and the

program chair at IEEE Computer Software and Application Conference

2002 (COMPSAC’02).

Prof. Yang is an IEEE computer society golden core member, 2010.

E-mail: h.yang@bathspa.ac.uk

 Jun Wang received the B.Sc. and M.Sc.

degrees in computer science from the Shenyang

Institute of Chemical Technology, PRC in 2001

and 2005, respectively, and the Ph.D. degree from

Shenyang Institute of Automation of CAS, PRC

in 2009. Currently, he is an associate professor,

and a vice-dean in the School of Computer

Science and Technology at Shenyang University of Chemical

Technology, PRC. He leads the Network and Information Security Lab.

In January 2010, he was invited as an academic visitor (including

post-doctoral project as a post-doctor) at De Montfort University, UK,

and he has been collaborating with Professors Yang, Zedan and Chen

of that university.

His research interests include software reliability in distributed

computing systems, wireless network, and the Internet of things.

 E-mail:wj_software@hotmail.com

mailto:h.guan@syuct.edu.cn

Table 1 Example of security requirements

SR No. Asset Threat CIAA Priority

SR1 User bank account Sniffing Confidential High

SR2 User account Cross-site Scripting Confidential, Integrity High

SR3 Place order User Denies Performing an Operation Accountability Low

SR4 Display product Denial of Service Availability Medium

SR5 Product Catalogue Data tampering Integrity Medium

Table 2 Summary of the proposed multiple aspects classification scheme

Criteria Classification

Application

Context

Core Perimeter Exterior

Architectural

Layer

Data Application System Network

Lifecycle Stage Analysis Architecture Design Implementation Deployment

Domain Specific

(Not limited)

Ubiquitous

computing

Distributed

computing

Web and J2EE Embedded

system

Operating

system

SOA

Threat Type

(STRIDE)

Spoofing Tampering Repudiation Information

disclosure

Denial of

service

Elevation

of privilege

Security

Concerns

Access

control

Authentication Confidentiality Integrity Availability Accountabi

lity

Non-repudi

ation

Table 3 Example of security pattern repository organised by proposed classification scheme

Pattern Name Application Architectural Lifecycle

Stage

Domain

Specific

Threat Type Security

Concerns

Audit Interceptor [30] Core Application Design Web and J2EE Repudiation Accounting

Authenticator [1] Perimeter Application Design ALL Spoofing Authentication

Authorisation [1] Perimeter Application Architecture ALL Information

Disclosure

Access Control

Checkpointed System [10] Core Application Architecture ALL Tampering Availability

Intercepting Validator [30] Core Data Design Web and J2EE Spoofing Integrity

Secure Logger[30] Exterior Data Design Web and J2EE Tampering Accountability

Non-repudiation

Secure Pipe[30] Exterior Network Design Web and J2EE Information

Disclosure

Confidentiality

Algorithm 1 Security patterns searching

Input A is the given asset

SA is the given security attribute

D is the given application domain

Output SP is the security pattern array

Initialisation SP=∅

procedure getAsset(A, SA, D) return SP

1. A ← given asset

2. SA← given security attribute

3. D← given domain

4. SP←Null

5. TL← GetRelated(A, sr:isThreatedBy)

6. for i←0 to TL.Length do

7. T← GetInstance(TL[i])

8. for j←0 to T.Length do

9. if T[j].sr:hasSecurityAttribute ==SA then

10. P← GetRelated(T[j],sp:isSolvedBy)

11. for k← 0 to P.Length do

12. PI ← GetInstance(P[k])

13. for m ← 0 to PI.Length do

14. if PI[m].sp:hasDomain= = D then

15. if PI[m].sp:hasLayer = = T[j].sr:residesOn then

16. PR← GetRealted(PI[m], sp:requires)

{*PR is the pattern set in which pattern is required by the exacted pattern

with “require” relation in security pattern subontology sp*}

17. PS←GetRelated(PI[m], sp:isSpecialisedBy)

{*PS is the pattern set in which pattern specifies the exacted pattern with

“isSpecialisedBy” relation in security pattern subontology sp*}

18. if PS.Length !=0 then

19. for l← to PS.Length do

20. SP.Add(PS[l])

21. end for

22. else

23. SP.Add(P[m])

24. end if

25. if PR.Length !=0 then

26. for n← to PR.Length do

27. SP.Add(PR[n])

28. Line 16 to Line 27 with PR[n] for PI[m]

29. end for

30. end if

31. end if

32. end if

33. end for

34. end for

35. end if

36. end for

37. end for

38. return T

39. return SP

	Article coversheet Springer
	ontology

