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Abstract

This paper develops a multi-attribute competition model for procurement of short life cycle products.
In such an environment, the buyer installs dedicated production capacity at the suppliers before demand is
realized. Final production orders are decided after demand materializes. Of course, the buyer is reluctant to
bear all the capacity and inventory risk, and thus signs flexible contracts with several suppliers. We model
the suppliers’ offers as option contracts, where each supplier charges a reservation price per unit of capacity,
and an execution price per unit of delivered supply. These two parameters illustrate the trade-off between
total price and flexibility of a contract, which are both important to the buyer. We model the interaction
between suppliers and the buyer as a game in which the suppliers are the leaders and the buyer is the follower.
Specifically, suppliers compete to provide supply capacity to the buyer and the buyer optimizes its expected
profit by selecting one or more suppliers. We characterize the suppliers’ equilibria in pure strategies for a
class of customer demand distributions. In particular, we show that this type of interaction gives rise to
cluster competition. That is, in equilibrium suppliers tend to be clustered in small groups of two or three
suppliers each, such that within the same group all suppliers use similar technologies and offer the same type
of contract. Finally, we show that in equilibrium supply chain inefficiencies, i.e., the loss of profit due to
competition, are at most 25% of the profit of a centralized supply chain.

1 Introduction

The introduction of new products is usually associated with uncertain sales forecasts. When a

product life-cycle is short, firms usually have limited opportunities to postpone production decisions

to the time accurate forecasts are available. For instance, it would be ideal to delay decisions on

production quantities until the beginning of the selling season, when initial sales have been observed

and thus sales expectations are more robust. However, if production lead times are long, this is

obviously not possible, and thus firms must take capacity and inventory risks at product launch. In

industries such as electronics or fashion retailing, managing these risks appropriately is critical for

the long-term survival of firms.

One way to reduce the financial impact of these risks is to adjust supply costs with sales realiza-

tions. This is done through flexible contracts which allow scaling up production volume and costs

with sales volume and revenues. The typical example of a flexible contract is an option contract.

This contract is characterized by two parameters, a capacity reservation fee and an execution fee.

For each unit of capacity installed by a supplier, the buyer pays in advance the reservation fee.

When demand is realized, the buyer decides how many units to order, and pays the execution fee

for each unit in the order.
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Contracts similar to option contracts are common in industries such as textiles, plastics or semi-

conductors manufacturing. In some cases, such contracts are disguised under the name of buy-back

contracts, which are equivalent to an option, as in newspaper or book distribution. Specifically, in

a buy-back contract, the cost of the component and the amount of refund for returned items are

specified; this corresponds to an option with reservation price equal to the total cost minus the

refund, and an execution price equal to the refund. It is well known, see Pasternack [15], that buy-

back contracts can be beneficial to both buyer and supplier, since they can coordinate the supply

chain.

As shown by Mart́ınez-de-Albéniz and Simchi-Levi [13], one way for a buyer to better manage

its risks is to build a portfolio of option contracts, purchased from several suppliers. This allows the

buyer to take advantage of the relative cost and flexibility of the different contracts. For instance,

it can sign the contract that offers the lowest total cost for a portion of demand that is very likely

to materialize; such a contract is typically associated with little flexibility. In addition, the buyer

can add a more expensive but flexible contract to the portfolio, for the more volatile part of sales.

An illustration of this strategy can be found in apparel retailing, where a retailer may place a large

order overseas, at a low price, and at the same time, reserve some capacity locally and have the

option of scaling up production if demand is high.

Evidently, this purchasing strategy can force changes in the way suppliers compete in the mar-

ketplace. Clearly, flexibility and price are the two attributes that the buyer cares about, and

suppliers should take note of it. The objective of this paper is precisely to analyze the suppliers’

pricing strategy when they are competing through price and flexibility. Specifically, our objective is

to characterize what option contracts will be offered by the suppliers in a competitive equilibrium.

For this purpose, we focus on products with short life cycles and consider a single period model

with many suppliers and a single buyer purchasing a single component. The sequence of events is

as follows. First, each supplier offers an option contract to the buyer, with a given reservation and

execution fee. After receiving all the competing bids, the buyer reserves capacity with some or all

suppliers. Finally, after demand is realized, the buyer requests deliveries from each supplier, up to

the installed capacity.

Of course, a supplier needs to take into account the competitors’ bids when offering its preferred

contract. A given supplier can thus undertake two main actions to become more competitive: either

to lower its reservation price or to lower its execution price. The trade-off is clear. A supplier that

charges mainly a reservation fee (and a small execution fee) competes with low overall price, but

not necessarily flexibility. On the other hand, a supplier that charges mainly an execution fee (and

a small reservation fee) typically emphasizes flexibility, but not overall price.

A supplier’s bid also depends on its cost structure. In our model, we focus on two types of costs

for each supplier.
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• A reservation cost is associated with setting up the line and making preparations for production.

We assume that this reservation cost has a linear or per-unit cost structure, corresponding to

the acquisition of special machinery or specialized labor, that scales up with the level of capacity

requested by the buyer.

• An execution cost is incurred when the supplier finalizes production and ships the components,

after it receives the firm and final order from the buyer. This execution cost also has a per-unit

cost structure, corresponding to labor, materials and logistics cost.

Different suppliers may have different costs for reserving capacity and delivering supply, depend-

ing on the type of technology (machinery) and their geographical location (labor, transportation).

In addition, the cost structure of each firm may also be determined by its production strategy: a

company that buys dedicated machines early on incurs most of the cost as a reservation cost; a

company that leases these same machines later on has the ability to pass the corresponding cost as

execution cost.

The supplier cost model is consistent with situations where the capacity installed under contract

is dedicated to the buyer, and not shared with other firms. For instance, we are familiar with a large

Taiwanese contract manufacturer that, upon signing a supply contract with a buyer, typically sets

up a dedicated line for that buyer, in advance of the production season. The reservation cost for the

dedicated line clearly increases with the capacity level. After demand is realized, the buyer, a PC

manufacturer in this case, decides a final order quantity, up to the capacity, and this is produced

and shipped by the contract manufacturer. The cost associated with production and shipping is the

execution cost defined earlier. As a matter of fact, this PC manufacturer uses another supplier for

the same component, with presumably a different cost structure.

Our objective in this paper is to understand how these suppliers compete. The model captures

the multiple cost dimensions of the suppliers, i.e., reservation and execution costs, as well as the

way they compete and differentiate their offerings, i.e., reservation and execution prices.

We describe the market equilibrium outcomes of the suppliers’ option pricing game. We char-

acterize the suppliers’ equilibria in pure strategies for a class of customer demand distributions.

Interestingly, this model is an extension of the traditional Bertrand price competition model to two

dimensions. An important result in the Bertrand model (in one dimension) is that, in equilibrium,

there is a unique supplier that captures all the orders. This supplier is the lowest cost supplier. The

equilibrium price is between its cost and the cost of the second most competitive supplier. We show

that this is not the case when two attributes are important to the buyer. Indeed, we demonstrate

that in equilibrium, a variety of suppliers will coexist, and these suppliers offer different prices. We

call this cluster competition, since suppliers tend to cluster in small groups of two or three suppliers

each such that, within a group, all suppliers use similar technologies and offer the same type of

contract.
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Intuitively, our results imply that the best strategy for each supplier is to set a price very similar

to some other supplier, while making sure that any share of capacity “stolen” from that supplier

yields positive profit. Thus, the supplier does not simply undercut the other supplier, but instead

skims carefully the type of capacity (e.g., with higher or lower probability of execution) that it wants

to capture.

In addition, we show that in equilibrium, the supply chain inefficiencies, i.e., the loss of profit

due to competition, are in general at most 25% of the first-best, i.e., the profit of a centralized

supply chain, for a wide class of demand distributions. Finally, supplier competition through option

contracts is particularly attractive to the buyer, since it may allocate more profit to the buyer than

an Expected Vickrey-Clark-Groves (EVCG) mechanism, see Schummer and Vohra [18].

We start by reviewing the different streams of literature relevant to our research in Section 2. We

then present the model in Section 3 and analyze the buyer’s behavior in Section 4. We focus on the

suppliers’ game in Section 5, where we characterize best-response strategies and equilibria. Finally,

we conclude with managerial insights in Section 6. All the proofs are presented in the appendix.

2 Literature review

Our starting point for this research is Mart́ınez-de-Albéniz and Simchi-Levi [13]. In that paper, the

authors develop a multi-period framework in which buyers optimize their purchasing strategy by

carefully balancing price and flexibility. In particular, in their single period version, they provide a

closed-form expression for the amounts of option capacities that a buyer purchases from a pool of

suppliers. However, in their model the suppliers’ bids are exogenous, i.e., there is no competition

amongst them. In contrast, here we analyze the behavior of the suppliers when they compete across

the two dimensions of price and flexibility captured respectively by reservation and execution fees.

We relate this research to the literature on supply contracts; for a review see Cachon [4] or

Lariviere [11]. Some papers study buyer behavior under option contracts, e.g., Barnes-Schuster et

al. [1] or Eppen and Iyer [7]. Most relevant to this work are papers that analyze the behavior of

suppliers in offering options to a buyer, the prelude to introducing competition between suppliers.

The existing literature usually models a sequential game à la Stackelberg, where a single buyer is

the follower and a single supplier is the leader. Typically, competition in such models is introduced

by a spot market. This spot market is the buyer’s sourcing alternative and a potential client for

the supplier. The focus is on (i) finding conditions for which both players are willing to sign a

contract and (ii) determining option prices as the outcome of the negotiation process. Our paper

moves from the traditional models of competition through dual sourcing, i.e., single supplier offering

an option contract versus spot market, to a model of oligopolistic competition amongst suppliers

offering different types of options.

The first publication in this stream of literature is by Wu et al. [24]. Motivated by electricity
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markets, they derive option prices as a function of the costs of the system, the spot price distribution

and the buyer’s utility. Later, Spinler et al. [19] and Golovachkina and Bradley [10] analyze similar

models. A multi-sourcing version of this approach is presented in Wu and Kleindorfer [22]. Suppliers

are characterized by their execution unit cost and their available capacity, and offer option contracts

to the buyer. Wu and Kleindorfer derive Bertrand-like results, where competitive suppliers contract

with the buyer up to their available capacity. Wu et al. [23] expand this model by proposing a

capacity investment game between the suppliers, where, after installing capacity, the short-run price

competition presented in Wu and Kleindorfer [22] takes place.

Interestingly, Wu and Kleindorfer [22] assume the same cost structure as ours, but suppliers

make capacity investments before price competition, there is a random spot price and the buyer

has a deterministic utility (which implies a deterministic demand function); in our model, on the

other hand, capacity investments follow pricing decisions, there is no spot market but a random

demand, and suppliers are uncapacitated. These differences lead to significantly different equilibrium

characteristics. Specifically, Wu and Kleindorfer show that the buyer follows a greedy contracting

rule, i.e., purchases capacity from the suppliers with the lowest overall price, up to capacity. Thus,

the suppliers’ equilibrium is such that all suppliers active in the contracting market offer an identical

overall price. Potentially, if all suppliers have infinite capacity, Wu and Kleindorfer imply that a

single supplier will be active in the contract market. Thus, deterministic utility leads to single

sourcing, and multi-sourcing comes from having capacitated suppliers. In comparison, in our model

uncertainty in demand leads to multi-sourcing, since multi-sourcing can manage demand uncertainty

at a lower cost, compared to single sourcing.

Another related stream of the literature concentrates on analyzing multi-attribute auctions. This

research follows the development of online auctions in B2B markets. Typically, the objective is to

design the auction mechanism so as to reach an optimal outcome. An optimal outcome may be

defined as social efficiency or profit maximization from the auctioneer’s point of view (e.g., Myerson

[14] in a one-dimensional auction). Usually, there is uncertainty in the suppliers’ cost structure,

and hence the design of the auction is done using probabilistic distributions of costs. In our paper,

however, the costs are assumed to be deterministic and known to all the players; hence, our modeling

approach is very different than the approach in this group of papers.

In this line of research, several authors have studied the winner determination problem, where

a single supplier is awarded all orders. This differs from our formulation where all suppliers may

potentially be selected for part of the procurement. For instance, Beil and Wein [2], following Che

[5], present a multi-attribute Request For Quotation (RFQ) process where the buyer declares a

scoring rule and chooses a winner among many suppliers, the one that obtains the highest score for

the declared rule.

In a different direction, some research has been done on mechanism design where many bid-

ders can be awarded orders at the same time. For instance, Schummer and Vohra [18] analyze a
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class of two-dimensional option auction mechanisms for a set of suppliers confronted with a single

buyer. Their formulation is similar to our model but focuses on designing an efficient procurement

mechanism where the suppliers have the incentive to truthfully reveal their costs. Because in their

paper the contracting mechanism is different, suppliers compete but always end up bidding the true

costs. In comparison, we analyze a model of supplier competition under complete information where

suppliers are paid their bid prices.

3 Assumptions and Notation

Consider a single buyer purchasing a component that is used in the manufacturing of a final product.

This component may be obtained from a number of suppliers. We make two assumptions regarding

the selling price and the demand observed by the buyer.

Assumption 1 The buyer sells to end customers at an exogenously fixed unit price p.

Assumption 2 The total customer demand D follows a distribution defined over an interval [d, d] ⊂
[0,∞]. The c.d.f. of demand F (·) is strictly increasing in [d, d]. We assume that F (·) is a continuous

and differentiable function over (d, d). Define f(·) = F ′(·) and F (·) = 1− F (·).

The buyer’s objective is to maximize expected profit by optimally selecting the amount of ca-

pacity to reserve from each supplier.

We denote by N the number of suppliers in the market. The suppliers’ cost structure consists

of two parts. Each supplier incurs a fixed unit cost for reserving capacity, fi, i = 1, . . . , N that

can be seen as the unit cost of installing dedicated capacity in advance of production. In addition,

suppliers pay a unit cost, ci, i = 1, . . . , N, for each unit executed by the buyer, which corresponds to

the cost of finalizing the component plus transportation. These costs differ from supplier to supplier

and may be explained by the use of different technologies or management practices. Without loss

of generality, we assume that c1 ≤ . . . ≤ cN .

Each supplier offers an option contract to the buyer. Such a contract is defined by two parameters,

v ≥ 0, the reservation price, and w ≥ 0, the execution price. These values are determined by the

supplier based on its cost structure as well as on whether the supplier emphasizes price or flexibility.

Specifically, supplier i, i = 1, . . . , N, takes position in the market by offering options at a reservation

price vi and an execution price wi.

Given the suppliers’ offerings, the buyer specifies the amount of capacity to reserve with each

supplier4. At the time the buyer executes a contract with a supplier, it can purchase any amount

up to the reserved capacity with the supplier. Thus, the profit of supplier i, i = 1, . . . , N, is
4It can be shown that the suppliers have no incentive to build more than the amount specified in the contracts, since any

additional capacity, for which no reservation fee is received, would fetch negative profit.
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(vi−fi)xi+(wi−ci)qi when the buyer reserves xi units of capacity and executes qi units, 0 ≤ qi ≤ xi.

The objective of the suppliers is to maximize their expected profit by selecting (wi, vi) optimally.

We analyze a two-stage model. In the first stage all suppliers submit bids that are defined by

(wi, vi), i = 1, . . . , N . At the same time, and based on these bids, the buyer decides on the amount

of capacity to reserve with each supplier. In the second period, demand is realized and the buyer

decides the amount to execute from each contract. If total capacity is not enough, unsatisfied

demand is lost.

This is a game in which suppliers are first-movers and the buyer reacts myopically to the suppli-

ers’ bids. Thus, there are multiple players that compete knowing the reaction of the buyer. Suppliers

have complete visibility on the buyer’s decision making process, as well as on the demand distribu-

tion. Therefore, given any N pairs (wi, vi), i = 1, . . . , N , each supplier can figure out the amount

of capacity that the buyer would reserve with each individual supplier as well as the distribution of

the amount of supply executed (requested) by the buyer.

We assume that suppliers submit sealed bids simultaneously. Thus, this is a one-shot game. We

are interested in determining the equilibria of this game in pure strategies, i.e., the N -uples (wi, vi),

i = 1, . . . , N , where no supplier has an incentive to unilaterally change its bid.

Information-wise, we assume that the cost parameters of the suppliers are known to each other.

Indeed, in practice, most firms have a rather precise idea on the type of technology used by each

one of their competitors. This is a strong assumption, which is found as well in the asymmetric

Bertrand or Hotelling models, for instance, see Vives [21].

4 The Buyer’s Procurement Strategy

Mart́ınez-de-Albéniz and Simchi-Levi [13] present a general framework for supply contracts in which

portfolios of options can be analyzed and optimized. In this section, we review their framework in

the context of a single period environment.

We consider a buyer facing N different options with terms (wi, vi), i = 1, . . . , N . Mart́ınez-de-

Albéniz and Simchi-Levi show that the buyer’s expected profit is concave in the quantity vector

x := (x1, . . . , xN ) purchased. Without loss of generality, we assume that w1 < . . . < wN < p5. We

define wN+1 = p, vN+1 = 0 and qN+1 the amount of lost sales, which creates an opportunity cost
5If two bids have the same execution price w, then we can discard the one with higher reservation price v, since it is never

optimal to allocate any capacity to it.
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of wN+1qN+1. We define also the total cost for a given demand realization d as

C(x, d) =
N+1∑

i=1

vixi+ min
q1,...,qN+1

N+1∑

i=1

wiqi

subject to





0 ≤ qi ≤ xi i = 1, . . . , N,

0 ≤ qN+1,
N+1∑

i=1

qi = d

Observe that the execution policy of the buyer (after demand is realized) is to use the option

contracts with lower execution costs first. Hence, the buyer’s profit is Π(x,D) = pD − C(x,D).

Thus, the expected profit is Π(x) = pE[D]− E[C(x,D)].

We denote y0 = 0 and

yi = x1 + . . . + xi for i = 1, . . . , N. (1)

Then, letting y := (y1, . . . , yN ), V (y) = Π(x) satisfies for i = 1, . . . , N , see [13],

∂V

∂yi
= (vi+1 − vi) + (wi+1 − wi)Pr[D ≥ yi]. (2)

Equation (2) thus provides the structure of the buyer’s optimal portfolio, determined by the

c.d.f. of customer demand. We can observe that the marginal value of increasing yi while keeping

the rest fixed (i.e., increasing xi and decreasing xi+1, in fact replacing capacity installed at i + 1

by capacity at i) is equal to the decrease in reservation cost, vi+1 − vi per unit, plus the decrease

in average execution cost, (wi+1 − wi)Pr[D ≥ yi] per unit. Under Assumption 2, when there are

no identical bids from the suppliers, the profit is a strictly concave function of (y1, . . . , yN ) defined

over the set

P =
{

(y1, . . . , yN ) ∈ RN
∣∣∣0 ≤ y1 ≤ . . . ≤ yN

}
(3)

Strict concavity implies that the optimal solution is unique. Of course, when two or more sup-

pliers submit identical bids, concavity is not strict, and the buyer may arbitrarily allocate capacity

to any of the suppliers. If this occurs, we assume that the buyer randomly selects one of the bids,

which will prevent suppliers from submitting identical bids. Instead, we allow that they submit

infinitely close bids, i.e., bids that are different but infinitesimally close to each other. As a result,

the buyer’s allocation is unique. Thus, in the game analyzed in this paper, suppliers (leaders) know

exactly how the buyer (follower) behaves.

To characterize the optimal portfolio, (x∗1, . . . , x
∗
N ), we need the following definitions.

Definition 1 Supplier i is called active if x∗i > 0. Otherwise, it is called inactive.

Definition 2 Given a set of t different pairs {(a1, b1), . . . , (at, bt)} with a1 ≤ . . . ≤ at, the winning

set is the minimal subset S = {i1, . . . , ik} of these points such that:

8



(a) ai1 ≤ . . . ≤ aik ;

(b) for 1 ≤ i < i1, bi − bi1 ≥ −(ai − ai1);

(c) for j = 2, . . . , k, for ij−1 < i < ij, bi − bij ≥ −
(

bij−1 − bij

aij − aij−1

)
(ai − aij );

(d) for ik ≤ i ≤ t, bi ≥ bik .

i1, . . . , ik are called winning points among the t pairs. Also, the lower envelope is the curve Z(a,b)(·)
defined as follows

Z(a,b)(u) =





bi1 − (u− ai1) for u ≤ ai1

bi2 −
(

bi1 − bi2

ai2 − ai1

)
(u− ai2) for ai1 ≤ u ≤ ai2

...

bik −
(

bik−1
− bik

aik − aik−1

)
(u− aik) for aik−1

≤ u ≤ aik

bik for aik ≥ u,

(4)

These definitions, together with Equation (2), are used to characterize the optimal portfolio

explicitly, as is done in the next proposition.

Proposition 1 Supplier i, i = 1, . . . , N , is active if and only if i is a winning point of {(w1, v1),

. . . , (wN+1, vN+1)}.

All the proofs are presented in the appendix.
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Figure 1: Illustration of active and inactive bids.
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The winning points consisting of all active suppliers can be determined graphically, see Figure

1. Consider the supplier bids (w1, v1) = (0, 37), (w2, v2) = (10, 27), (w3, v3) = (30, 18), (w4, v4) =

(40, 19), (w5, v5) = (50, 8), (w6, v6) = (60, 5) and (w7, v7) = (70, 6). Plot the pairs (wi, vi) as well as

(w8, v8) = (p, 0) = (100, 0), as shown in Figure 1, with the wi in the x-coordinate and the vi in the

y-coordinate. Determine the convex hull of the points, and in particular find the extreme points on

the lower envelope as defined in Definition 2; these are the points i1 < . . . < ik. For example, in

Figure 1, there are k = 5 winning points: 1, 2, 4, 6 and 8. Thus, suppliers 1, 2, 4 and 6 are active,

and 3, 5 and 7 are inactive.

Hence, the lower envelope is piecewise linear and convex. The segments have increasing slopes

or equivalently decreasing negative slopes, that is,

1 >
vi1 − vi2

wi2 − wi1

> . . . >
vik−1

− vik

wik − wik−1

> 0.

The buyer’s optimal strategy is to include only suppliers on the lower envelope that form segments

with negative slopes between 0 and 1. This implies that vi1+wi1 < . . . < vik+wik and vi1 > . . . > vik .

With these definitions, and recalling that y0 = 0, the optimal portfolio is defined by

y∗i =





F
−1

(
vij − vij+1

wij+1 − wij

)
if i = ij , j = 1, . . . , k − 1,

y∗i−1 for all others (and 0 if i = 1).

Note that this extends the classical newsvendor critical fractile to multiple suppliers. The vector x∗

follows directly from y∗. In particular x∗i = 0 for i different than i1, . . . , ik.

Recalling Equation (2), this portfolio structure yields that the buyer reserves capacity with low

execution cost w and high reservation cost v to cover the demand with higher realization probability;

and uses capacity with high execution cost and low reservation cost to cover the right-tail of the

demand.

5 The Behavior of Suppliers

In this section, we analyze the competitive interaction between the suppliers. For this purpose, we

first describe the best bidding strategy of the supplier in response to competitors’ bids; we then

analyze the equilibria of the game.

Under some reasonable properties on the demand (Definition 3 and Theorem 1), and when all

the suppliers are efficient (Definition 4), we characterize the structure of the (possibly multiple)

equilibria. The main result is Theorem 3, which shows that any bid of supplier i either is either

infinitely close to the one of i− 1, in which case the bid falls in the segment connecting (ci−1, fi−1)

to (ci, fi); or it is infinitely close to the bid of i + 1, in which case it falls in the segment connecting

(ci, fi) to (ci+1, fi+1). Thus, in equilibrium suppliers tend to mimic each other, and bid infinitely
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close to some competitor (due to Theorem 2). This can be interpreted as a multi-dimensional

extension of Bertrand competition. However, unlike the one-dimensional case, when competing in

two dimensions, a supplier is better off not pushing a competitor out of the market completely but

rather placing a bid that is infinitely close to the competitor’s bid6. Moreover, the equilibrium

conditions imply that the suppliers will form clusters of two or three in the neighborhoods of their

costs. An example of the clustering is provided in Figure 2. Three clusters are formed, depicted in

the figure by the three solid dots representing the bid values. In each cluster, two suppliers place

the same bid (suppliers 1 and 2; 3 and 4; and 5 and 6).

Figure 2: Plot of costs and equilibrium bids for six different suppliers, for a [0, 1]-uniform demand.

Theorem 3 also connects the lower convex hull of the bid pairs (wi, vi) to the lower convex hull of

the cost pairs (ci, fi). Since the former is slightly above the latter, each one of the suppliers makes

positive expected profits.

In addition, while efficient suppliers always participate in the equilibrium (Proposition 3), an

inefficient supplier might be active or inactive in equilibrium, implying positive or zero profits (The-

orem 6) depending on whether its cost pair is above or below the lower envelope of the equilibrium

bids.
6To deal with bids that are infinitely close, but not equal, we use the concept of limit-equilibrium, and find it convenient to

change variables from the bid-price pair (w, v) to the cumulative-capacity pair (y−, y+).
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5.1 Supplier profit

Our first step is to understand how each supplier will set its reservation and execution price. Given

that the buyer uses a portfolio approach as described in the previous section, it will maximize its

expected profit, taking into account the behavior of other suppliers.

Consider the decision of a given supplier i who is confronted to the bids of other suppliers. Let

(wother,vother) be the vector representing all other bids with the additional point (p, 0). Given

(wother,vother), we can identify the buyer’s optimal procurement strategy. For simplicity and with-

out loss of generality, we consider that only k of these bids are active when the (new) supplier is

not present, and that they are indexed so that w1 ≤ . . . ≤ wk (the last one of the active suppliers is

the dummy supplier with parameters (p, 0)). The buyer’s best procurement strategy, excluding the

bid of the new supplier for the moment, is to set




yother
j = F

−1
(

vj − vj+1

wj+1 − wj

)
j = 1, . . . , k − 1,

yother
k = F

−1(0).
(5)

If the supplier now places a new bid (w, v), the buyer’s optimal solution may change to take this

bid into account. Of course, suppliers that were not active before are not going to be active with

the new bid. However, it is entirely possible that some suppliers may become inactive when the new

supplier enters with the bid (w, v). Finally, the new supplier may capture zero capacity if its bid

makes it inactive. Clearly, in this case, if the supplier is inactive, we can withdraw it from the pool

of bids and consequently the capacities allocated to the other suppliers remain unchanged. This

happens when (w, v) is above the lower envelope which is described by the function Z(wother,vother)(·)
in Definition 2. Thus, when v ≥ Z(wother,vother)(w), the new supplier is inactive and its profit is

Π = 0. We define this bidding region which makes the supplier inactive as

AOUT =
{

(w, v) ∈ R2
+|v ≥ Z(wother,vother)(w)

}
.

If the new supplier’s bid is not in that region, then this supplier becomes active. Adding bid (w, v)

to the rest of the bids may change the convex hull of the points in two different ways:

• The new supplier, i, becomes the first active supplier, i.e., there exist h ∈ {1, . . . , k} such that

suppliers i, h, . . . , k − 1 are active and suppliers 1, . . . , h− 1 are inactive. We define this region

as A0h.

A0h =





(w, v) ∈ R2
+

∣∣∣∣∣∣∣∣∣∣

v − v1 ≤ −(w − w1)

v − vh ≤ −
(

vh−1 − vh

wh − wh−1

)
(w − wh) (only if h > 1)

v − vh ≥ −
(

vh − vh+1

wh+1 − wh

)
(w − wh)





(6)
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• The new supplier, i, is not the first active supplier, i.e., there exist l ∈ {1, . . . , k − 1} and

h ∈ {1, . . . , k}, h > l, such that suppliers 1, . . . , l, i, h, . . . , k − 1 are active and l + 1, . . . , h− 1

inactive. We define this region as Alh.

Alh =





(w, v) ∈ R2
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v − vl ≥ −
(

vl−1 − vl

wl − wl−1

)
(w − wl)

(or v − v1 ≥ −(w − w1) if l = 1)

v − vl ≤ −
(

vl − vl+1

wl+1 − wl

)
(w − wl)

v − vh ≤ −
(

vh−1 − vh

wh − wh−1

)
(w − wh)

v − vh ≥ −
(

vh − vh+1

wh+1 − wh

)
(w − wh)





(7)

These regions are illustrated in Figure 3. Intuitively, a bid in region Alh implies that the new

supplier forces suppliers l + 1, . . . , h− 1 out of the market, i.e., these suppliers receive zero capacity

allocation.
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Figure 3: Division of the bidding strategies in different regions.

Consider that the supplier places a bid (w, v) in Alh, l > 0. Following the buyer’s optimal

allocation (see Section 4), the capacity x allocated to this supplier is x = y+− y− where y+ and y−
are given by the following set of equations7.

F (y−) =
vl − v

w − wl
and F (y+) =

v − vh

wh − w
. (8)

7Since (w, v) ∈ Alh, one must keep in mind that (y−, y+) is constrained. Specifically, yother
l−1 ≤ y− ≤ yother

l (for l > 0),

yother
h−1 ≤ y+ ≤ yother

h and therefore y− ≤ y+ (moreover, if y− = y+, supplier i is in AOUT and is thus inactive).
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The case of l = 0 is special, since y− = 0 by construction. Hence, in that case,

y− = 0 and F (y+) =
v − vh

wh − w
.

The expected profit of supplier i is thus

Π = (v − f)(y+ − y−) + (w − c)E
[
min

{
max(D − y−, 0), y+ − y−

}]
,

where the first part is the profit made on reserving capacity, and the second part is the expected

execution profit (execution occurs for any demand D higher than y−, up to the reserved capacity).

Since E
[
min

{
max(D− y−, 0), y+ − y−

}]
=

∫ y+

y−
(u− y−)f(u)du + (y+ − y−)F (y+), integration in

parts yields

Π = (v − f)(y+ − y−) + (w − c)
∫ y+

y−
F (u)du.

Using Equation (8), we can express (w, v) as a function of y− and y+ when y− < y+, since f(·) > 0.

Specifically,

v = vh + F (y+)
−(vl − vh) + F (y−)(wh − wl)

F (y−)− F (y+)
= vl − F (y−)

(vl − vh)− F (y+)(wh − wl)
F (y−)− F (y+)

w = wh − −(vl − vh) + F (y−)(wh − wl)
F (y−)− F (y+)

= wl +
(vl − vh)− F (y+)(wh − wl)

F (y−)− F (y+)
.

(9)

This implies that we can express Π using y− and y+ instead of v and w. Within Alh, l > 0,

Π(w, v) = Jlh(y−, y+) =





(vh − f)(y+ − y−) + (wh − c)
∫ y+

y−
F (u)du

−
[−(vl − vh) + F (y−)(wh − wl)

F (y−)− F (y+)

] ∫ y+

y−

(
F (u)− F (y+)

)
du

=





(vl − f)(y+ − y−) + (wl − c)
∫ y+

y−
F (u)du

−
[
(vl − vh)− F (y+)(wh − wl)

F (y−)− F (y+)

] ∫ y+

y−

(
F (y−)− F (u)

)
du

When l = 0, the transformation described in Equation (9) is not well defined, since different values

of (w, v) yield the same (y− = 0, y+). We observe that for a given y+, y− = 0, the profit with a bid

w = wh − t and v = vh + F (y+)t, t ≥ 0, is,

Π = (vh + F (y+)t− f)y+ + (wh − t− c)
∫ y+

0
F (u)du

= (vh − f)y+ + (wh − c)
∫ y+

0
F (u)du− t

∫ y+

0

(
F (u)− F (y+)

)
du.

(10)

To maximize Π within A0h, the supplier will select t as small as possible. This yields

v + w = v1 + w1

v − vh

wh − w
= F (y+).

(11)
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This justifies the extension of Equation (8) for l = 0. Consequently,

Π(w, v) = J0h(y+) =





(vh − f)y+ + (wh − c)
∫ y+

0
F (u)du

−
[
(vh + wh)− (v1 + w1)

1− F (y+)

] ∫ y+

0

(
F (u)− F (y+)

)
du

Finally, the problem faced by the supplier is:

sup
(w,v)

Π(w, v) = max


0, max

l=0,...,k−1;h=l+1,...,k



 sup

yother
l−1 ≤y−≤yother

l ;yother
h−1 ≤y+≤yother

h

Jlh(y−, y+)








The optimization problem is defined as a supremum of profit, in terms of either (w, v) or (y−, y+).

As we shall see later in the discussion after Theorem 2, optimization with respect to (w, v) does not

always yield an optimal solution. Indeed, the supremum may be obtained by bidding arbitrarily

close to another supplier, through an infinitely close bid. However, when using (y−, y+) as decision

variables, an optimal solution is always obtained.

Since F (·) is differentiable over (d, d), the expected profit is differentiable in (y−, y+):

∂Jlh

∂y−
= (f − vl) + (c− wl)F (y−) + f(y−)

[
(vl − vh)− F (y+)(wh − wl)

(F (y−)− F (y+))2

] ∫ y+

y−

(
F (u)− F (y+)

)
du

∂Jlh

∂y+
= (vh − f) + (wh − c)F (y+)− f(y+)

[−(vl − vh) + F (y−)(wh − wl)
(F (y−)− F (y+))2

] ∫ y+

y−

(
F (y−)− F (u)

)
du

(12)

Notice that (vl − vh)− F (y+)(wh −wl) ≥ 0 and −(vl − vh) + F (y−)(wh −wl) ≥ 0 hold; we shall

use this observation later.

5.2 Border distributions

Maximizing Jlh on (y−, y+), such that (w, v) ∈ Alh, may yield, in general, interior solutions or

extreme solutions. It turns out that they are always extreme solutions for a class of customer

demand distributions. First, we define the class of border demand distributions.

Definition 3 (border distribution) A demand distribution is a border distribution if, for any

supplier, for any region Alh, defined by Equations (6) or (7), there is an optimal bid (w, v) that

belongs to the border of the region.

This definition implies that, when demand follows a border distribution, any supplier bidding

in region Alh will find an optimal bid on the boundary of region Alh, for any cost parameters. For

instance, for a supplier bidding in region A12 of Figure 3, there is an optimal bid on the boundary

of A12 with either A02 or A13 or AOUT .

The following theorem characterizes a class of distributions that are border distributions.
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Theorem 1 A log-concave demand distribution is a border distribution.

The class of log-concave distributions, i.e., with log(f) concave, includes distributions such as

uniform, exponential, normal, etc. The proof of this result is presented in the appendix and can also

be found in Mart́ınez-de-Albéniz [12]. The idea behind the proof is that there are no interior local

maxima of Jlh when the demand is log-concave. This can be easily verified for uniform demands

(e.g., Figure 4 later), in which case Jlh is always a quadratic function, and it is never concave. As a

result we can find a maximum of Jlh in the border of the region Alh. Hence, for log-concave demand

distributions, the suppliers will place their bids in the border of some region. This property allows

us to determine their optimal bids.

5.3 Optimal bids

As we will soon see, it is of particular interest to examine the bidding strategy in Alh where there

is no active supplier between l and h. Notice that these are all the regions that share an edge with

AOUT . When we know that the optimal bid is in this region, we can characterize this optimal bid.

Consider supplier i bidding in such a region, Alh, and define am to be the cumulative quantity

captured by suppliers 1, . . . , l when i is absent, i.e.,

F (am) =
vl − vh

wh − wl
. (13)

The constraint of being in Alh can be written as al := yother
l−1 ≤ y− ≤ am ≤ y+ ≤ ah := yother

h where

yother
l−1 and yother

h are defined in Equation (5).

If the bid of the supplier does not make l or h inactive, we can derive useful properties. In this

case, the optimal bid cannot be such that y− = al (because it makes l inactive) or y+ = ah (h

inactive). Therefore, since it is optimal to bid on the border of the region, it must be that y− = am

or y+ = am is optimal. These imply that the supplier bids infinitely close to l or h.

In the first case, i.e., when y− = am is optimal, recall that −(vl − vh) + F (y−)(wh − wl) = 0

so from Equation (12),
∂Jlh

∂y+
= (vh − f) + (wh − c)F (y+) and therefore we must have that c ≤ wh

and F (y+) =
f − vh

wh − c
. Similarly, when y+ = am is optimal,

∂Jlh

∂y−
= (f − vl) + (c− wl)F (y−), hence

wl ≤ c and F (y−) =
vl − f

c− wl
. We summarize these results in the next theorem.

Theorem 2 Given a border distribution, assume that, for a supplier with costs (c, f), the optimal

bid belongs to some unique region Alh, l > 0, where there is no active supplier between l and h.

Define am as in Equation (13) and hence having (w, v) ∈ Alh is equivalent, for some al, ah, to

al ≤ y− ≤ am ≤ y+ ≤ ah. Define zl and zh as follows,

F (zl) =
vl − f

c− wl
, (14)
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F (zh) =
f − vh

wh − c
. (15)

Then, one and only one case from the following is true.

(i) if al ≤ zl ≤ am and zh > ah, then y∗+ = am and y∗− = zl (bid infinitely close to supplier l);

(ii) if al > zl and am ≤ zh ≤ ah, then y∗− = am and y∗+ = zh (bid infinitely close to supplier h);

(iii) if al ≤ zl ≤ am ≤ zh ≤ ah, then y∗+ = am and y∗− = zl (bid infinitely close to supplier l) only if
∫ am

zl

[F (zl)− F (u)]du

F (zl)− F (am)
≥

∫ zh

am

[F (u)− F (zh)]du

F (am)− F (zh)
; (16)

and y∗− = am and y∗+ = zh (bid infinitely close to supplier h) only if
∫ am

zl

[F (zl)− F (u)]du

F (zl)− F (am)
≤

∫ zh

am

[F (u)− F (zh)]du

F (am)− F (zh)
. (17)

Intuitively, the theorem shows that there are two candidate optimal bids when we know that the

optimal bid is in a given region Alh, and there are no active suppliers in between l and h. First,

the supplier may choose to bid infinitely close to l, in such a way so that y∗− = zl. Note that

the optimal bid is not defined through (w, v), because of the allocation problem when two bids are

equal8. Instead, the optimal bid is defined through (y−, y+). In practice, this means that a sequence

of bids such that wδ = wl + δ and vδ = vl − F (zl)δ approaches the highest expected profit, when

δ → 0 and positive. Alternatively, the supplier may choose to bid infinitely close to h, such that

y∗+ = zh. Similarly, a sequence of bids such that wδ = wh − δ and vδ = vh + F (zl)δ approaches the

highest expected profit, when δ → 0 and positive. Note that in both of these bids, it is critical to

set the value of y∗− to zl, or y∗+ to zh, which determine the direction between the two similar bids.

It is worth pointing out that these values zl and zh depend on the supplier’s cost parameters (c, f).

Interestingly, no other situations are possible at optimality, since the demand distribution satisfies

the border property and there is no optimal solution outside Alh (thus discarding a strategy where

y− = al or y+ = ah, where the solution would belong to some other Al′h′).

Figure 4 illustrates the optimal bid decision discussed in the theorem. We depict the expected

profit of a supplier with cost c = 55 and f = 8, competing against bids (0, 55), (20, 35), (80, 2) and

(100, 0), with a buyer’s demand that is uniformly distributed in [0,1]. Specifically, we calculate the

expected profit obtained by bidding in A23, i.e., between the second and third bids, (20, 35) and

(80, 2), which implies al = 0, am = 0.45 and ah = 0.9. The figure shows the iso-profit curves9 as a

function of (y−, y+), on the left-hand side, and of (w, v), on the right-hand side.
8Recall that bidding exactly the same as supplier l is not allowed, since it results in the buyer being indifferent between the two

bids.
9Each curve corresponds to a certain level of profit. The bars at the bottom of the graphs show the profit level.
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Figure 4: Expected supplier profit (only non-negative values are shown, for better readability)

As one can observe by searching for the highest profit level in the left-hand side figure, it is

optimal to set y∗− = 0.45 and y∗+ = 0.76. Note that this corresponds to the decision y− = am and

y+ = zh. This decision achieves a higher profit than choosing y− = zl and y+ = am, as stated

in Theorem 2.10 It corresponds to placing a bid very close to (w, v) = (80, 2). This is confirmed

by observing the right-hand side figure, where indeed the highest profit level is found close to

(w, v) = (80, 2). Note however that the profit function is not defined at (w, v) = (80, 2), which

implies that the optimal bid should be wδ = 80− δ, vδ = 2 + F (0.76)δ = 2 + 0.34δ, for small δ > 0.

5.4 Equilibrium definition

We analyze now the equilibria of this game, in pure strategies. Consider first the following example.

There are N = 2 suppliers with costs (c1, f1) = (0, 60) and (c2, f2) = (75, 5). The demand is

uniformly distributed in [0, 1]. The selling price is p = 100, and hence the dummy supplier posts

a bid (p, 0). Consider the situation when both suppliers submit two bids that are very close to

(60, 12). Are these bids in equilibrium? In other words, does each supplier maximize its profit given

the competitor’s bid? As we demonstrate below, this is not the case.

Indeed, Figure 5 shows the profit functions of each supplier as a function of their bid (w, v).

The upper figure represents the profit of supplier 1, with cost (c1, f1) = (0, 60), with competing

bids of (60, 12) (supplier 2) and (100, 0) (dummy supplier). The lower figure represents the profit

of supplier 2, with cost (c2, f2) = (75, 5), with competing bids of (60, 12) (supplier 1) and (100, 0)

(dummy supplier). As one can see, both suppliers’ profits are maximized by bidding infinitely close

to (w, v) = (60, 12). Since the profit maximizer is not well defined in (w, v), as seen in the previous

10Indeed, since F (u) = 1 − u, Equation (15) implies that zh = 1 − 8− 2

80− 55
= 0.76. Similarly, Equation (14) implies that zl =

1− 20− 8

55− 20
= 0.2286. Since

∫ am

zl

[F (zl)− F (u)]du

F (zl)− F (am)
=

(0.45− 0.2286)2/2

0.45− 0.2286
= 0.1107 <

∫ zh

am

[F (u)− F (zh)]du

F (am)− F (zh)
=

(0.76− 0.45)2/2

0.76− 0.45
=

0.155, Theorem 2 implies that the optimal bid is to set (y−, y+) = (am, zh).
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section, supplier 1’s profit function is maximized by setting y∗1− = 0 and y∗1+ = 0.2, and supplier 2’s

profit function is maximized by y∗2− = 0.5333 and y∗2+ = 0.8. Hence, this cannot be an equilibrium,

since the suppliers do not agree on a capacity allocation. However, if the suppliers’ bids would yield

y∗1+ = y∗2−, both suppliers would have no incentive to modify their bids.
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Figure 5: Expected supplier profit for supplier 1 (top) and 2 (bottom)

The example shows that the concept of equilibrium needs to be refined when two bids are

identical11. To overcome this problem, we define the equilibrium for infinitely close bids. Using the

optimality equations and (y−, y+), we can determine when a bid situation with ties is stable, as

discussed for Figure 5. For this purpose, instead of Nash equilibrium, we consider the concept of

ε-equilibrium as defined in Radner [17] or Fudenberg and Levine [9]. We say a set of pure strategies

(wi, vi)i=1,...,N is an ε-equilibrium of the bidding game when for each supplier

Πi(wi, vi,w−i,v−i) ≥ sup
(w,v)

Πi(w, v,w−i,v−i)− ε.

For ε → 0, we characterize the limit of ε-equilibria. In other words, we describe what sort of

equilibria arises when suppliers choose bids that are very close to the optimum.
11With identical bids, the buyer’s problem has multiple optimal solutions and hence it is not clear how demand is allocated to

the two suppliers. It can be shown that in general, when the splitting is pre-determined exogenously, e.g., split the capacity and

the allocation 50− 50%, no equilibrium exists.
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In what follows, we say that a set of pure strategies (wi, vi)i=1,...,N is a limit-equilibrium of the

bidding game when there exists, for each supplier i, for each ε, (wε
i , v

ε
i ), such that: (1) (wε

i , v
ε
i ) →

(wi, vi) when ε → 0, and (2) for each ε,

Πi(wε
i , v

ε
i ,w

ε
−i,v

ε
−i) ≥ sup

(w,v)
Πi(w, v,wε

−i,v
ε
−i)− ε.

Essentially, this definition of equilibrium circumvents the continuity problem of the supplier profit

function, and hence makes unnecessary the use of a rationing rule in case of a tie.

In this section, we provide necessary conditions for equilibrium. We do not analyze the existence

of pure strategy equilibria, although these can be shown to exist under fairly general assumptions.

Usual proof methods may not work because a given supplier’s pay-off function is discontinuous,

when its bid is equal to some other supplier’s bid12. Fortunately, we are able to show existence by

explicitly constructing an equilibrium, see Mart́ınez-de-Albéniz [12] for the algorithmic details. An

example of the algorithm is provided in Section 5.5.

Using the results of the previous section, we can characterize a crucial necessary condition for

equilibrium, arising from Proposition 2.

Proposition 2 Consider a border distribution. In every limit-equilibrium, if (wi, vi) = (wj , vj) and

both suppliers are active, then (wi, vi) belongs in the segment [(ci, fi); (cj , fj)]. That is, there is

θ ∈ [0, 1] such that (
wi

vi

)
= θ

(
ci

fi

)
+ (1− θ)

(
cj

fj

)
.

This is a direct consequence of Theorem 2. Intuitively, if two suppliers, i and j, submit infinitely

close bids and are at a limit-equilibrium, then it must be true that the quantities that they desire,

their optimal y∗i+ and y∗j−, must coincide, as seen in the discussion of Figure 5. This results on

having the equilibrium bid in the cost segment [(ci, fi); (cj , fj)].

5.5 Equilibria with efficient suppliers only

We start by defining the concept of efficiency which leads to a natural and desirable property of

equilibria.

Definition 4 We say that supplier i is efficient when (ci, fi) is a winning point in the set {(c1, f1),

. . . , (cN , fN ), (p, 0)}.

Proposition 3 Assume that supplier i is efficient. Then, in every limit-equilibrium, this supplier

is active, and Πi ≥ 0.
12To our knowledge, the best result that we can hope for with a more general approach is existence of mixed-strategy equilibria,

following Dasgupta and Maskin [6].
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This implies that efficiency guarantees any supplier to be active in any equilibrium outcome.

That is, the supplier will receive a positive share of capacity and make positive profit.

Proposition 4 Given a border distribution, assume that all suppliers are efficient. Then, in every

limit-equilibrium, for every pair (i, j), if ci < cj then wi ≤ wj.

Proposition 4 implies that if all suppliers are efficient, supplier i, i = 1, . . . , N , bids in region

Ai−1 i+1 in every equilibrium. More importantly, this result confirms the intuition on the suppliers’

bidding behavior. No supplier will bid an execution fee, w, lower than a competitor’s execution fee

if the competitor’s execution cost is smaller. Put differently, the smaller a supplier’s execution cost,

c, the lower this supplier’s execution bid, w.

Combining Theorem 2 and Propositions 2, 3 and 4 we can characterize strong necessary condi-

tions on the equilibria.

Theorem 3 For a border distribution, assume that all the suppliers are efficient. Define cN+1 =

wN+1 = p, fN+1 = vN+1 = 0. Then, in every limit-equilibrium, supplier i, i = 2, . . . , N , places its

bid:

• either (wi, vi) = (wi−1, vi−1), and then this bid falls in the segment [(ci−1, fi−1); (ci, fi)] (in the

sense of Proposition 2);

• or (wi, vi) = (wi+1, vi+1), and then this bid falls in the segment [(ci, fi); (ci+1, fi+1)].

When i = 1, only the second case is possible, i.e., (w1, v1) = (w2, v2), and this common bid falls in

the segment [(c1, f1); (c2, f2)].

The theorem builds on the optimal behavior of each supplier: when all suppliers are efficient

(from Theorem 2), it is optimal for supplier i either to place a bid infinitely close to the bid of i− 1

or that of i+1. This implies that supplier bids will be clustered in groups of two or three suppliers.

This is true since according to the theorem, either two suppliers bid somewhere in the segment

connecting their true cost parameters, or one supplier bids its true costs and two other suppliers

place a similar bid to this one. Thus, in practice, one will observe less bids than the number of

suppliers, roughly half of them. We call this cluster competition, since in equilibrium the market is

divided into stable clusters.

The type of competition described in this result has some interesting properties. The most

striking feature is that more than one supplier will be offering the same bid. One may then wonder

whether any supplier in that position should instead reduce its bid a little bit so that it puts its rival

out of the market. The answer is that all suppliers in the same cluster, i.e., offering the same bid,

are better off staying in the cluster rather than trying to outbid the other members of the cluster.

The intuition is provided by combining Equation (12), that implies that the optimal bid of i must

be in region Ai−1,i+1 (otherwise first-order optimality conditions are not met), with Theorem 2.

Indeed, in equilibrium each supplier has three alternatives.
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1. Bid its true cost, (wi, vi) = (ci, fi). Thus, in this case, the supplier makes zero profit, but

reducing the bid would yield negative profit.

2. Place a bid such that wi < ci and vi > fi, in which case, the other supplier in the cluster

places a bid wi−1 = wi ≥ ci−1 and vi−1 = vi ≤ fi−1. Recall from Theorem 2 that it is then

optimal to set F̄ (yi−) =
vi−1 − fi

ci − wi−1
, and thus supplier i has no interest in reducing yi− and

hence the capacity allocated to supplier i− 1. In this situation, the supplier makes a profit on

the reservation portion, and a loss if the total price is considered (wi + vi < ci + fi). Hence, its

profit is positive when a small fraction of the reserved capacity is executed, negative if most of

it is executed, and positive in expectation.

3. Place a bid such that wi > ci and vi < fi, in which case, the other supplier in the cluster

places a bid wi+1 = wi ≤ ci+1 and vi+1 = vi ≥ fi+1. Again, from Theorem 2, supplier i has no

interest in increasing yi+ and hence reducing the capacity of supplier i + 1. Here the situation

is the opposite of the previous case: the supplier makes a loss on the reservation portion, and

a profit if the total price is considered (wi + vi > ci + fi). Thus, while the expected profit is

positive, it may be negative when a small fraction of the reserved capacity is executed.

The theorem also suggests that every supplier is competing directly with one of its rival suppliers,

i.e., with the supplier who has the next smaller or the next larger execution cost c. An important

insight from this observation is that, in equilibrium, each supplier’s bid will be most sensitive to

the bid of its closest competitor, and not to the rest of the bids. This implies that in equilibrium,

competition is no longer done on a global basis (among all suppliers) but rather locally (between

two or three competing suppliers).

In addition, Theorem 3 can be used to construct equilibria. If a limit-equilibrium exists, supplier

i bids the same as i − 1 or i + 1. To construct an equilibrium, where supplier i bids the same as

supplier i − 1 (resp. i + 1), in the segment [(ci−1, fi−1); (ci, fi)] (resp. [(ci, fi); (ci+1, fi+1)]), one

must ensure that the supplier realizes a higher profit than bidding the same as i + 1 (resp. i − 1).

Consider for example the case where N = 3, all suppliers are efficient, and c1 < c2 < c3 < c4 = p.

When suppliers 1 and 2 bid their true cost (the dummy supplier 4 also bids its true cost), let e(3) be

the supplier whose bid supplier 3 prefers to imitate. That is, e(3) = 2 if supplier 3 is better off by

placing a bid close to the cost of supplier 2; and e(3) = 4 if it is better to place it close to the cost of

the dummy supplier 4. Then, if e(3) = 2, (w1, v1) = (w2, v2) = (w3, v3) = (c2, f2) is an equilibrium;

if e(3) = 4, (w1, v1) = (w2, v2) = (c2, f2), (w3, v3) = (p, 0) is an equilibrium. In fact, this approach

allows one to construct one equilibrium, although, in general, many others exist. For example, when

e(3) = 2, if (w1, v1) = (w2, v2) is sufficiently close to (c1, f1) in the segment [(c1, f1); (c2, f2)], then it

is possible that (w3, v3) = (p, 0) is also an equilibrium. This approach can be extended to arbitrary

N , where e(i) is determined for all i, and then suppliers are matched so that the proposed bids form

an equilibrium. Again, it is then possible to construct one equilibrium, but with higher N many
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other different patterns may also provide equilibria: in one equilibrium, two suppliers might be in

the same cluster, and in some other, in different clusters. A more detailed discussion can be found

in Mart́ınez-de-Albéniz [12].

Finally, as pointed out above, in general there are multiple equilibria. The theorem shows that all

the possible equilibria belong to the lower envelope of the suppliers’ true costs. Such equilibria should

satisfy the optimality conditions in Equations (16) and (17). The following example (corresponding

to Figure 5) illustrates the multiplicity of equilibria.

Example 1 Assume that customer demand is uniformly distributed in [0, 1]. Let N = 2 and the

true costs be (c1, f1) = (0, 60), (c2, f2) = (75, 5), p = 100. Both suppliers are efficient. For any

w ∈ [50, 75], the following bids form different equilibria:

(w1, v1) = (w2, v2) =
(

w, 60− 55
75

w

)
, y1 =

20
75

, y2 =
4
15

+
40

3(100− w)
.

We should point out that in any of these equilibria, the buyer’s expected profit is equal to
8(150− w)2

225(100− w)
≥ 64/9. On the other hand, an Expected Vickrey-Clark-Groves (EVCG) auction,

which is supply-chain-efficient (see Schummer and Vohra [18] for details), would allocate supplier 1

a profit of 32/3− 8 = 8/3, supplier 2 a profit of 32/3− 8 = 8/3 and the buyer an expected profit of

32/3− 8/3− 8/3 = 16/3 < 64/9. Thus, in this example, the first-price competition environment is

preferred by the buyer to the supply-chain-efficient EVCG auction.

The profit functions of suppliers, buyer and the entire supply chain as a function of w (execution

price of both suppliers in equilibrium) are plotted in Figure 6. As we can see, the profit of supplier

1 is increasing in w, whereas the profit of supplier 2 is decreasing in w. Thus, among all equilibria,

there is no single one that both suppliers prefer: supplier 1 would always prefer an equilibrium with

high w, while supplier 2 would prefer small w. Furthermore, the buyer’s profit is increasing in w

(but could be decreasing in other examples), and the total supply chain profit is increasing in w.

Finally, to conclude this section, we provide a bound on the inefficiencies created by suppliers’

competition. We define the total surplus as follows:

U = (PROFIT OF BUYER) +
N∑

i=1

(PROFIT OF SUPPLIER i).

The payments between buyer and suppliers will cancel out, and this quantity will only capture

the true revenue from customers minus the costs of production. Thus, we can express the total

supply chain surplus as

U = p

∫ yN

0
F (u)du−

N∑

i=1

fi(yi − yi−1)−
N∑

i=1

ci

∫ yi

yi−1

F (u)du

=
N∑

i=1

∆ci

∫ yi

0
[F (u)− F (y∗i )]du.
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Figure 6: Expected profit of suppliers, buyer and the entire supply chain in Example 1

where F (y∗i ) =
fi − fi+1

ci+1 − ci
and ∆ci = ci+1 − ci. These quantities are well-defined when all the

suppliers are efficient. The social surplus is maximized when yi = y∗i , i = 1, . . . , N. In this case, the

optimal surplus is

U∗ =
N∑

i=1

∆ci

∫ y∗i

0
[F (u)− F (y∗i )]du.

When the suppliers compete, the allocation of capacities, yi, i = 1, . . . , N, is not necessarily efficient,

in the sense that it is possible that yi 6= y∗i for some i. The loss in surplus, due to the suppliers’

competition, is equal to

∆U =
N∑

i=1

∆ci

∫ y∗i

yi

[F (u)− F (y∗i )]du.

Theorem 4 Given a border demand distribution and efficient suppliers, in every limit-equilibrium,

the allocation of capacities obtains at least 50% of the optimal total surplus, i.e.,

∆U

U∗ ≤ 1
2
.

This is the best bound available for general border distributions. However, this bound can be

improved when we include additional conditions on the demand distribution, as shown next.

Theorem 5 Given a log-concave demand distribution and efficient suppliers, in every limit-equilibrium,

the allocation of capacities obtains at least 75% of the optimal total surplus, i.e.,

∆U

U∗ ≤ 1
4
.

This bound is tight for two suppliers and uniform demand distribution.
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The theorem thus implies that for uniform, exponential or normal demand distributions (which

belong to the log-concave class) the loss of efficiency due to competition is no more than 25%.

This bound is similar to others found in supply chain games: 25% for the single supplier, single

buyer game (bilateral monopoly) with deterministic price-dependent demand; or
e− 2
e− 1

≈ 41.8% for

the single supplier, single buyer game with stochastic (IGFR) demand, see Perakis and Roels [16].

However, the loss of efficiency here is due exclusively to supplier-supplier interactions, since, if all

suppliers were integrated (or colluded), they would be able to extract all the supply chain profit13.

5.6 Equilibria with inefficient suppliers

The previous results, characterizing equilibrium, are obtained under the assumption that all sup-

pliers are efficient. We now investigate the case in which not all suppliers are efficient.

Interestingly, as we demonstrate below, it might happen that a non-efficient supplier is active at

equilibrium. This occurs because bids are only partially linked to the true costs, and a non-efficient

supplier may capture market share by positioning itself in a segment of the market with no, or low,

competition.

Example 2 Assume that customer demand is uniformly distributed in [0, 1]. Let N = 3 and the

true costs be

(c1, f1) = (0, 40), (c2, f2) = (40, 20), (c3, f3) = (70, 11), p = 100.

Supplier 3 is not efficient. If this was a centralized system, in which the true costs are considered,

the allocation would be y∗1 = 0.5, y∗2 = 0.666 and y∗3 = 0.666, and hence the buyer would purchase

capacities x∗1 = 0.5, x∗2 = 0.166 and x∗3 = 0.

The following bids form an equilibrium:

(w1, v1) = (w2, v2) = (20, 30), (w3, v3) = (100, 0), y1 = 0.5, y2 = 0.625, y3 = 0.633.

Thus, a non-efficient supplier captures capacity and makes positive profit.

The example suggests that the presence of inefficient suppliers can lead to counter-intuitive

situations. The next theorem depicts the behavior of the suppliers at equilibrium.

Theorem 6 For a border distribution, let {(w1, v1), . . . , (wN , vN ), (p, 0)} be the bids of the suppliers

in a equilibrium. Assume that supplier i is active. Then we must have that:

(i) either there is j = 1, . . . , N + 1 such that supplier j is active, (wi, vi) = (wj , vj) and moreover

(wi, vi) belongs in the segment [(ci, fi); (cj , fj)] (in the sense of Proposition 2);

13For example, they could offer the contracts wn = p− ε and vn = F (y∗n)ε, and for i < n, wi = wi+1 − ε, vi = vi+1 + F (y∗i )ε, for

ε arbitrarily close to zero. As a result, if there is a single supplier, the inefficiency is equal to zero.
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(ii) or there are j, k = 1, . . . , N + 1 such that supplier k is inactive, supplier j is active and

(wi, vi) = (wk, vk) + θ(wk − wj , vk − vj) for some θ ≥ 0.

Note that the theorem still allows that an inefficient supplier is active in some equilibrium, as

illustrated by supplier 3 in Example 2. In fact, in an equilibrium, an inefficient supplier will be

active when its cost parameters are below the lower convex hull of the equilibrium bids; otherwise,

it will be inactive.

Theorem 6 adds a new case to what was presented in Theorem 3. This new situation arises when

an inactive supplier sets the price of some active supplier, case (ii). In that situation, the active

supplier keeps the inefficient supplier out of the market by making its entry non-profitable. Another

example of this phenomenon can be found in the Bertrand model with asymmetric players. There

the equilibrium price is fixed by the second lowest cost supplier who is inactive. Also, although it

is commonly argued that the only equilibrium in pure strategies is such that the most competitive

producer captures all the market at a price equal to the second most competitive cost, as in Tirole

[20] p.211, this equilibrium is not unique. As noted by Erlei [8], all the prices between the smallest

and the second smallest costs are Nash equilibria of the system. This is true since an inefficient player

can impact the market price by placing absurd bids knowing that it will not capture any market

share. Typically, these bids below cost are discarded because they are dominated by the strategy of

bidding at cost. In our model, it may also be possible to discard some of the equilibria proposed by

Theorem 6, by eliminating for instance dominated strategies, but this presents significant challenges.

The next example illustrates case (ii) of the theorem.

Example 3 Assume that customer demand is uniformly distributed in [0, 1]. Let N = 4 and the

true costs be

(c1, f1) = (0, 40), (c2, f2) = (40, 20), (c3, f3) = (70, 6), (c4, f4) = (80, 6), p = 100.

Supplier 4 is not efficient but the rest are. The following bids form an equilibrium

(w1, v1) = (w2, v2) = (20, 30), (w3, v3) = (88, 2.8), (w4, v4) = (80, 6)

y1 = 0.5, y2 = 0.6, y3 = 0.767, y4 = 0.767.

Supplier 4, while not capturing any capacity and making zero profit, determines the price of supplier

3, who is efficient and must react to the bid of supplier 4.

6 Discussion

In this research, we analyzed the procurement process between a single buyer and multiple sup-

pliers. Suppliers compete on price and flexibility, two attributes that are important to the buyer.

Specifically, each supplier offers a different option contract and the buyer reserves capacities at
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each supplier so as to maximize expected profit. We modeled the process as a single-shot game

where suppliers submit an offer with a reservation and an execution fee. Under the assumption of

the demand distribution having the border property, satisfied by any log-concave distribution, e.g.,

uniform, exponential or normal distributions, we characterized optimality conditions for suppliers’

bids and provided necessary conditions for equilibrium bids.

Interestingly, equilibria in pure strategies give rise to what we call cluster competition. This

provides several insights.

1 It pays to be efficient. No matter how the competitors bid, when a supplier is efficient, it will

capture orders from the buyer and will have a non-negative expected profit.

In other words, being an efficient supplier means capturing market share, and no other supplier

can push an efficient supplier out of business. Notice that our definition of efficiency allows having

multiple efficient technologies, because the cost space is two-dimensional. This implies that an inef-

ficient supplier may become efficient by reaching the efficient frontier defined by the lower envelope

of the true costs of the other suppliers. Hence, this inefficient supplier does not necessarily have

to change technology and copy the same exact cost as other suppliers; what is needed is a local

improvement of its costs so as to move to the efficient frontier.

2 Suppliers compete with suppliers with similar cost structure. When all suppliers are

efficient, a supplier will compete against another supplier with similar technology, either the one

with next lower or next higher execution cost.

Indeed, in equilibrium, a supplier’s bid is most sensitive to the bid of another supplier with

similar technology. This leads to our third insight.

3 Competition preserves diversity and segments the market. At a market equilibrium

with efficient suppliers, the suppliers are clustered into small groups of no more than three suppliers

and no less than two suppliers. All suppliers within each group offer the same option and share the

order from the buyer.

The market will thus be segmented by groups of similar technologies. Competition will diminish

technological variety but will not eliminate it. This is in contrast to market behavior in the price-

only competition. Thus, in our model, if at some point a supplier pushes its competitors in a given

cluster out of the market, this supplier will increase its market share by moving to a different cluster.

4 Prices are directly related to true costs. The equilibrium prices of the different options

offered by the suppliers lie in the lower envelope of the costs of the system. That is, the reserva-

tion and execution equilibrium prices are linked to the true reservation and execution costs and no

inflation of prices is stable.
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This insight shows the link between the costs of the system and the option prices available in the

market. Specifically, if all suppliers are efficient, this implies a range of possible bids, each of which

is along the lower envelope of the true suppliers’ costs. However, many equilibria are possible, and

hence it is not possible to predict the option prices.

5 Competition leads to a loss of supply chain profit. While suppliers’ prices are related to

their true costs, the allocation of capacity can be quite different from the one achieved in a centralized

system. However, our analysis indicates that the loss of system profit is no more than 50% of the

maximum possible, and 25% for the class of log-concave distributions, a class that includes commonly

used distributions such as the normal, uniform and exponential.

Finally, this paper will be incomplete if we do not mention important extensions of our model.

One possible direction is to allow buyers to purchase products at a spot market in addition to using

the contracts signed with the suppliers. In such a model, suppliers and buyers negotiate contracts

knowing that additional supply or demand are available in the spot market. Such a model would

generalize not only the model in the current paper but also the models presented in Wu et al.

[23]. Another extension would be to consider not only the suppliers’ bids, but also their strategic

technology choice, within a set of possible technologies. Alternatively, one could expand the multi-

dimensional competition model to include other factors such as quality or lead time, where the

optimal supply portfolio for the buyer would be found endogenously. All these extensions present

significant technical challenges.
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Appendix: Proofs

Proposition 1

Proof. To obtain the optimal portfolio we maximize function V (·) over the feasible region P defined

in Equation (3). From Equation (2), we observe that function V (·) is the sum of strictly concave

functions of yi, i = 1, . . . , N. Hence, it is strictly concave jointly in (y1, . . . , yN ). The feasible region

is a polyhedral cone with non-empty interior. This implies that the Slater conditions hold for this

problem and that the Karush-Kuhn-Tucker conditions are necessary and sufficient at optimality

(see Bertsekas [3] for details).

Define for every constraint yi−1 − yi ≤ 0, i = 1, . . . , N, the associate Lagrange multiplier λi ≥ 0.

The KKT optimality conditions are, for i = 1, . . . , N , assuming λN+1 = 0:

(vi+1 − vi) + (wi+1 − wi)F (yi) = λi+1 − λi

λi(yi−1 − yi) = 0

yi−1 − yi ≤ 0

λi ≥ 0

(18)

Let {i1, . . . , ik} be the winning set of {(w1, v1), . . . , (wN+1, vN+1)}. Define yi1 , . . . , yik−1
such

that

F (yij ) =
vij − vij+1

wij+1 − wij

F (yik) = 0 and for the other variables yi = yi−1 (remember from Equation (1) that al = 0). Note

that it can happen that yi = ∞ for some i. Define also λi1 = . . . = λik = 0 together with:

(i) for 1 ≤ i < i1, λi = (vi − vi1) + (wi − wi1),

(ii) for j = 1, . . . , k − 1, for ij < i < ij+1, λi = (vi − vij ) + (wi − wij )F (yij ),

(iii) for ik < i, λi = (vi − vik).

It is now sufficient to verify that this solution satisfies the KKT conditions, Equation (18).

Evidently, the first three requirements in (18) are satisfied by construction. It remains to verify

that λi ≥ 0 for all i = 1, . . . , N . To see this, we analyze three different cases:

(i) for 1 ≤ i < i1, λi = (vi − vi1) + (wi − wi1) ≥ 0 from part (b) of Definition 2;

(ii) for j = 1, . . . , k− 1, for ij < i < ij+1, λi = (vi− vij )+ (wi−wij )
vij − vij+1

wij+1 − wij

≥ 0 from part (c);

(iii) for ik < i, λi = (vi − vik) ≥ 0 from part (d).
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Finally, we see that no inactive point can be winning since this would imply that one of the

inactive points is on the segment joining two other points. This would contradict the minimality of

the winning set in Definition 2.

Proof of Theorem 1

Proof. It is easy to see that, in order to prove the result, one can show that the profit, as a function

of (y−, y+), does not achieve a local interior maximum, and this holds for all cost and rival bids

parameters. For this purpose, assume that for a given set of parameters, we have a strict local

maximum of the profit function.

Take am ≥ 0, define

α1 =
vl − f

c− wl
,

α2 =
f − vh

wh − c
,

and αm = F (am). Assume, with no loss of generality, that the feasible region is 0 ≤ y− ≤ am ≤ y+.

Let (y−, y+) be a strict local maximum of the function

Φ(y−, y+) =
α1 − αm

α1 − α2

∫ y+

y−

(
F (u)− α2

)
du− F (y−)− αm

F (y−)− F (y+)

∫ y+

y−

(
F (u)− F (y+)

)
du,

which corresponds to the profit divided by wh − wl. Let α− = F (y−) and α+ = F (y+).

Since this is a strict interior maximum, the first order conditions are, after recombining the

different terms,

0 =
∂Φ
∂y−

= −(αm − α2)(α1 − α−)
(α1 − α2)

+ f(y−)
(αm − α+)

(α− − α+)2
{∫ y+

y−
(F (u)− α+)du

}
(19)

0 =
∂Φ
∂y+

=
(α1 − αm)(α+ − α2)

(α1 − α2)
+ f(y+)

(α− − αm)

(α− − α+)2
{∫ y+

y−
(α− − F (u))du

}
. (20)

Let

A =
(

f(x)
F (x)− F (y)

)



∫ y

x
(F (u)− F (y))du

F (x)− F (y)




and

B =
(

f(y)
F (x)− F (y)

)



∫ y

x
(F (x)− F (u))du

F (x)− F (y)


 .

The first order conditions are equivalent to

A =
(αm − α2)(α1 − α−)
(α1 − α2)(αm − α+)

,

B =
(α1 − αm)(α+ − α2)
(α1 − α2)(α− − αm)

,
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or equivalently,

[α− − α+

α1 − α−
− 1−A

A

][α− − α+

α+ − α2
− 1−B

B
+

1
B

]
= 1 +

1
A

α− − αm

αm − α+
,

[α− − α+

α+ − α2
− 1−B

B

][α− − α+

α1 − α−
− 1−A

A
+

1
A

]
= 1 +

1
B

αm − α+

α− − αm
.

(21)

We can see that when f is log-concave, then
∫ y

x
(F (x)− F (u))du

is log-concave in y. This implies that 0 ≤ B ≤ 1. Similarly, 0 ≤ A ≤ 1 when f is log-concave. Thus

under this assumption, α− ≥ αm ≥ α+ implies that the first order conditions can only be satisfied

when α+ − α2 ≥ 0 and α1 − α− ≥ 0 or α+ − α2 ≤ 0 and α1 − α− ≤ 0.

Let
a =

α− − α+

α1 − α−
− 1−A

A

b =
α− − α+

α+ − α2
− 1−B

B

c =
α− − αm

αm − α+
.

Equation (21) can thus be expressed as

a(b +
1
B

)− 1 =
1
A

c,

b(a +
1
A

)− 1 =
1
B

1
c
.

By multiplying these two equations, one obtains
[
a(b +

1
B

)− 1
][

b(a +
1
A

)− 1
]

=
1

AB
,

or equivalently [
ab− 1

][
ab +

a

B
+

b

A
+

1
AB

− 1
]

= 0.

We have two possible cases:

1. In the first case, we have a, b ≥ 0, ab = 1, and thus α1 ≥ α− ≥ αm ≥ α+ ≥ α2. Thus Equation

(21) becomes
α− − α+

α1 − α−
− 1−A

A
=

B

A

[α− − αm

αm − α+

]
,

α− − α+

α+ − α2
− 1−B

B
=

A

B

[αm − α+

α− − αm

]
.

(22)

2. In the second case, we have a, b ≤ 0, and ab = 1− a

B
− b

A
− 1

AB
. Thus, Equation (21) becomes

−α− − α+

α1 − α−
− 1 =

αm − α+

α− − αm
,

−α− − α+

α+ − α2
− 1 =

α− − αm

αm − α+
.

(23)
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The second order condition for having an interior local maximum is that the Hessian of Φ is

negative semi-definite. It is straightforward to see that the Hessian being negative semi-definite is

equivalent to having that H, defined as follows, is negative semi-definite.

H =




1
A

∂A

∂y−
+

f(y−)
α1 − α−

1
A

∂A

∂y+
+

f(y+)
αm − α+

− 1
B

∂B

∂y−
+

f(y−)
α− − αm

− 1
B

∂B

∂y+
− f(y+)

α+ − α2




We compute the quantities that define H in the following equations, evaluated at (y−, y+). We

have
1
A

∂A

∂y−
=

f ′(y−)
f(y−)

+
[ f(y−)
F (y−)− F (y+)

][
2− 1

A

]
,

1
A

∂A

∂y+
=

[ f(y+)
F (y−)− F (y+)

][
1 +

f(y−)B
f(y+)A

]
− 2

[ f(y+)
F (y−)− F (y+)

]

1
B

∂B

∂y−
= −

[ f(y−)
F (y−)− F (y+)

][
1 +

f(y+)A
f(y−)B

]
+ 2

[ f(y−)
F (y−)− F (y+)

]
,

1
B

∂B

∂y+
=

f ′(y+)
f(y+)

−
[ f(y+)
F (y−)− F (y+)

][
2− 1

B

]
.

Thus, H can be expressed as

H =




f ′(y−)
f(y−)

0

0 −f ′(y+)
f(y+)




+




[ f(y−)
α− − α+

][
2− 1

A
− α− − α+

α1 − α−

] B

A

[ f(y−)
α− − α+

]
+

[ f(y+)
α− − α+

][α− − αm

αm − α+

]

A

B

[ f(y+)
α− − α+

]
+

[ f(y−)
α− − α+

][αm − α+

α− − αm

] [ f(y+)
α− − α+

][
2− 1

B
− α− − α+

α+ − α2

]




In case (2) defined above, we can take a look at H11, using Equation (23):

f ′(y−)
f(y−)

+
[ f(y−)
α− − α+

][
2− 1

A
− α− − α+

α1 − α−

]
≥ f ′(y−)

f(y−)
+

[ f(y−)
α− − α+

][
3− 1

A

]
.

This quantity is the derivative of Ā =
A

F (y−)− F (y+)
with respect to y−. We have that

1
Ā

∂Ā

∂y−
=





f ′(y−)
f(y−)

+
f(y−)

F (y−)− F (y+)

+
[

f(y−)
F (y−)− F (y+)

] [
2− 1

A

]
.

Since
1
A

∂A

∂y−
=

f ′(y−)
f(y−)

+
[

f(y−)
F (y−)− F (y+)

] [
2− 1

A

]
,
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when A is increasing at y−, then Ā also is. On the other hand, when A is decreasing at y−, and

since A(y+, y+) = 1/2, it must be that A ≥ 1/2. Log-concavity of f implies that

f ′(y−)
f(y−)

+
f(y−)

F (y−)− F (y+)
≥ 0

and thus Ā is again non-decreasing in y−. Thus,
A

F (y−)− F (y+)
is non-decreasing, which implies

that H11 is non-negative. The same is true for H22. Thus, in case (2), the matrix H cannot be

negative semi-definite.

In case (1), using that c =
α− − αm

αm − α+
,

H =




f ′(y−)
f(y−)

0

0 −f ′(y+)
f(y+)




+




[ f(y−)
α− − α+

][
3− 2

A
− Bc

A

] B

A

[ f(y−)
α− − α+

]
+ c

[ f(y+)
α− − α+

]

A

B

[ f(y+)
α− − α+

]
+

1
c

[ f(y−)
α− − α+

] [ f(y+)
α− − α+

][
3− 2

B
− A

Bc

]




To get rid of c, we examine
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(
A

f(y−)
B

f(y+)

)
H




A

f(y−)

B

f(y+)




=





f ′(y−)
f(y−)

A2

f(y−)2

−f ′(y+)
f(y+)

B2

f(y+)2

+
2A(2A− 1)

f(y−)(α− − α+)
+

2B(2B − 1)
f(y+)(α− − α+)

=
1

(α− − α+)2





f ′(y−)
f(y−)

{∫ y+

y−
(
F (u)− α+

α− − α+
)du

}2

−f ′(y+)
f(y+)

{∫ y+

y−
(
α− − F (u)
α− − α+

)du
}2

+2(2A− 1)
{∫ y+

y−
(
F (u)− α+

α− − α+
)du

}

+2(2B − 1)
{∫ y+

y−
(
α− − F (u)
α− − α+

)du
}

Using that

∆ = y+ − y− =
∫ y+

y−
(
F (u)− α+

α− − α+
)du +

∫ y+

y−
(
α− − F (u)
α− − α+

)du,

and defining

z =
∫ y+

y−
(
F (u)− α+

α− − α+
)du,

we can express the terms in the last bracket as

E =
f ′(y−)
f(y−)

z2 − f ′(y+)
f(y+)

(∆− z)2 + 4
f(y−)

α− − α+
z2 + 4

f(y+)
α− − α+

(∆− z)2 − 2∆. (24)

By minimizing this expression in terms of z, we obtain a lower bound on this expression, i.e.
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E ≥ ∆





[f ′(y−)
f(y−)

+ 4
f(y−)

α− − α+

][
− f ′(y+)

f(y+)
+ 4

f(y+)
α− − α+

]
∆

[f ′(y−)
f(y−)

+ 4
f(y−)

α− − α+
− f ′(y+)

f(y+)
+ 4

f(y+)
α− − α+

] − 2





=





1
f ′(y−)
f(y−)

+ 4
f(y−)

α− − α+
− f ′(y+)

f(y+)
+ 4

f(y+)
α− − α+





{[
f ′(y−)
f(y−)

∆ + 4
f(y−)∆
α− − α+

− 2
] [
−f ′(y+)

f(y+)
∆ + 4

f(y+)∆
α− − α+

− 2
]
− 4

}

We thus focus on the last term of the product,

F =
(

f ′(y−)
f(y−)

∆ + 4
f(y−)∆
α− − α+

− 2
)(

−f ′(y+)
f(y+)

∆ + 4
f(y+)∆
α− − α+

− 2
)
− 4. (25)

Over all log-concave distribution functions, F defined in Equation (25) is minimized when α−−α+

is maximized. This occurs when, after defining θ by β−θ + β+(1− θ) = β0,

f(t) =

{
f(y−)eβ−(t−y−)/∆ when y− ≤ t ≤ y− + θ∆

f(y+)e−β+(y+−t)/∆ when y+ − (1− θ)∆ ≤ t ≤ y+

We thus know the structure of the worst-case log-concave distribution. By re-scaling the problem,

F can be expressed using only β−, β+ (with β+ ≤ β−) and θ ∈ [0, 1]. To obtain the following

expression, we scale ∆ to 1 and the break-point value of the distribution f(y− + θ∆) to 1. After

defining, for k ≥ 0,

Pk(z) =
ez − 1− z − . . .− zk−1/(k − 1)!

zk
, (26)

we obtained the following scaled quantities

f(y−) = e−β−θ = P0

(
− β−θ

)

f(y+) = eβ+(1−θ) = P0

(
β+(1− θ)

)

α− − α+ =
e−β−θ − 1
−β−

+
eβ+(1−θ) − 1

β+
= θP1

(
− β−θ

)
+ (1− θ)P1

(
β+(1− θ)

)
.

Define

R1(β−, β+) =
P0

(
− β−θ

)

θP1

(
− β−θ

)
+ (1− θ)P1

(
β+(1− θ)

) ,

G1(β−, β+) = β− − 2 + 4R1(β−, β+) ≥ 0,

and

R2(β−, β+) =
P0

(
β+(1− θ)

)

θP1

(
− β−θ

)
+ (1− θ)P1

(
β+(1− θ)

) ,

G2(β−, β+) = −β+ − 2 + 4R2(β−, β+) ≥ 0.
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Thus, F can be expressed as G1G2 − 4.

Notice that, since

P1(z)′ = P1(z)− P2(z) = P0(z)P2(−z),

we have that
∂R1

∂β−
= R1

(
− θ + θ2P2(β−θ)R1

)

∂R1

∂β+
= R1

(
− (1− θ)2P2(−β+(1− θ))R2

)
,

and
∂R2

∂β−
= R2

(
θ2P2(β−θ)R1

)

∂R2

∂β+
= R2

(
(1− θ)− (1− θ)2P2(−β+(1− θ))R2

)
,

In order to obtain a lower bound on F , we examine two different cases: either the minimal value of

F subject to θ ∈ [0, 1] and β− ≥ β+ is reached in an interior point, or it is reached at the border of

the region, i.e., θ = 0, θ = 1 or β− = β+; in any of the latter cases, the distribution turns out to be

an exponential distribution.

To analyze the first case, let’s examine the critical points of F with respect to θ, β− and β+.

That is, assume that

∂F

∂θ
= 0 = −

[
4R1

(
β− − (R2 −R1)

)]
G2 + G1

[
4R2

(
(R2 −R1)− β+

)]
, (27)

∂F

∂β−
= 0 =

[
1 + 4R1θ

(
− 1 + θP2(β−θ)R1

)]
G2 + G1

[
4R1R2θ

2P2(β−θ)
]
, (28)

and

∂F

∂β+
= 0 =

[
−4R1R2(1−θ)2P2(−β+(1−θ))

]
G2+G1

[
−1+4R2(1−θ)

(
1−(1−θ)P2(−β+(1−θ))R2

)]
.

(29)

Notice that we can express

R2 −R1 =
P0

(
β+(1− θ)

)
− P0

(
− β−θ

)

θP1

(
− β−θ

)
+ (1− θ)P1

(
β+(1− θ)

)

= β+ +
θ(β− − β+)P1

(
− β−θ

)

θP1

(
− β−θ

)
+ (1− θ)P1

(
β+(1− θ)

)

= β− −
(1− θ)(β− − β+)P1

(
β+(1− θ)

)

θP1

(
− β−θ

)
+ (1− θ)P1

(
β+(1− θ)

)
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Thus, Equation (27) can be rewritten as

R1/G1

R2/G2
=

(R2 −R1)− β+

β− − (R2 −R2)
=

θ

1− θ

P1

(
− β−θ

)

P1

(
β+(1− θ)

) . (30)

Equation (28) can be expressed as

4θ
R1

G1
=

1
G1

+ 4θ2P2

(
β−θ

)
R1

[R1

G1
+

R2

G2

]
.

Using the inequality (a + b)2 ≥ 4ab for any a, b ∈ R, we obtain

16θ2
[R1

G1

]2
≥ 16θ2P2

(
β−θ

)R1

G1

[R1

G1
+

R2

G2

]
,

and hence
R1

G1
≥ P2

(
β−θ

)[R1

G1
+

R2

G2

]
, (31)

Similarly, Equation (29) yields

R2

G2
≥ P2

(
− β+(1− θ)

)[R1

G1
+

R2

G2

]
, (32)

Adding these two last equations, the term R1/G1 + R2/G2 cancels out, and thus

1 ≥ P2

(
β−θ

)
+ P2

(
− β+(1− θ)

)
.

Notice that P2 is convex, since P ′′
2 = P2 − 4P3 + 6P4 ≥ 0. We can therefore apply the convexity

inequality
1
2
P2

(
β−θ

)
+

1
2
P2

(
− β+(1− θ)

)
≥ P2

(1
2
β−θ − 1

2
β+(1− θ)

)
.

Thus, since P2(z) ≤ 1/2 if and only if z ≤ 0, combining the two inequalities, we obtain that

β−θ ≤ β+(1− θ)

Also, since β− ≥ β+ by construction, we have that

β−θ ≤ β+(1− θ) ≤ β−(1− θ).

This implies, that for any critical point, we must have:

• either β− ≥ β+ ≥ 0 and θ ≤ 1
2
;

• or 0 ≥ β− ≥ β+ and θ ≥ 1
2
.

When θ < 1/2, Equation (31) yields

R1

G1
≥ 1

2

[R1

G1
+

R2

G2

]
,
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and thus
R1

G1
≥ R2

G2
.

On the other hand, Equation (30) implies that, since θ/(1 − θ) < 1, P1

(
− β−θ

)
≤ P1(0) = 1 and

P1

(
β+(1− θ)

)
≥ P1(0) = 1,

R1/G1

R2/G2
=

θ

1− θ

P1

(
− β−θ

)

P1

(
β+(1− θ)

) < 1.

This is a contradiction.

Similarly, when θ > 1/2, we have again a contradiction using Equation (32) to show

R1

G1
≤ R2

G2
.

and Equation (30) to show
R1/G1

R2/G2
> 1.

Thus, the only feasible case is θ = 1/2 which implies β− = β+ = 0, and in this case G1 = G2 = 2,

so that F ≥ 0.

Thus, there are no critical points in the interior of θ ∈ [0, 1] and β− ≥ β+ such that F < 0.

The remaining case is when the minimum of F is reached at the border of the feasible set, i.e.,

the distribution is exponential, with parameter γ. In this case, we can express F as g(γ)g(−γ)− 4,

with, for z ∈ R,

g(z) = z − 2 +
4

P1(z)
.

Note that g(z)− g(−z) = −2z and

g(z) + g(−z) = 4
z(1− e−z) + z(ez − 1)− (ez − 1)(e−z − 1)

(ez − 1)(e−z − 1)

= 4
{

P1(−z) + P1(z)
P2(−z) + P2(z)

− 1
}

.

Hence,

g(z)g(−z)− 4 =
1
4

(
g(z) + g(−z)

)2
− 1

4

(
g(z)− g(−z)

)2
− 4

= 4

{
P1(−z) + P1(z)

}2

{
P2(−z) + P2(z)

}2 − 8

{
P1(−z) + P1(z)

}
{

P2(−z) + P2(z)
} − z2

After putting all terms under a common denominator, and observing that
{

P1(−z) + P1(z)
}2

= 4
{

P2(−2z) + P2(2z)
}

,{
P1(−z) + P1(z)

}{
P2(−z) + P2(z)

}
= 2

{
P1(−2z) + P1(2z)− P1(−z)− P1(z)

}
/z2,

{
P2(−z) + P2(z)

}2
= 4

{
P2(−2z) + P2(2z)− P2(−z)− P2(z)

}
,
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the numerator can be expressed as

12
{

P2(−2z)+P2(2z)
}

+4
{

P2(−z)+P2(z)
}
−16

{
P1(−2z)+P1(2z)

}
/z2 +16

{
P1(−z)+P1(z)

}
/z2.

We can use a series expansion to show that this final term is non-negative:

2
∞∑

k=0

{12 · 22kz2k

(2k + 2)!
+

4z2k

(2k + 2)!
− 16 · 22k+2z2k

(2k + 3)!
+

16z2k

(2k + 3)!

}

The coefficient of z2k in the series is

12(2k + 3)4k + 4(2k + 3)− 64 · 4k + 16
(2k + 3)!

≥ 0,

for all k ≥ 0. This shows that F ≥ 0, in all cases.

This completes the proof, since we have found that the second order maximality condition cannot

be satisfied.

Theorem 2

Proof. We have explained previously that under the assumptions of the proposition, either y∗+ = am

and y∗− = zl or y∗+ = zh and y∗− = am. Otherwise, it would be optimal to bid in some other region

Al′h′ in addition to Alh. Since this is a contradiction to the hypothesis, it implies that the two

possible optimal bids are either (wl, vl) or (wh, vh).

If zl > am or zh < am, from Equation (12) it is clear that it is not optimal for the supplier to bid

in this particular region Alh, because it has an incentive to bid in AOUT instead of Alh. Similarly,

if zl < al and zh > ah, neither one of the bids is admissible, and therefore there is an optimum

outside Alh. We can now partition the remaining possibilities into the three cases presented in the

proposition.

In the two first cases, since only one of the two bids is admissible, it must be optimal. In the

third case, it implies that (c, f) ∈ Alh. Bidding (wh, vh) is better than (wl, vl) when

(vh − f)(zh − am) + (wh − c)
∫ zh

am

F (u)du ≥ (vl − f)(am − zl) + (wl − c)
∫ am

zl

F (u)du.

Using Equations (14) and (15), this is equivalent to

(wh − c)
∫ zh

am

[F (u)− F (zh)]du ≥ (c− wl)
∫ am

zl

[F (zl)− F (u)]du.

But also, we have that, similarly to Equation (9),

c = wh − (wh − wl)
F (zl)− F (am)
F (zl)− F (zh)

= wl + (wh − wl)
F (am)− F (zh)
F (zl)− F (zh)

.
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Therefore, we can rewrite the previous condition as

F (zl)− F (am)
F (zl)− F (zh)

∫ zh

am

[F (u)− F (zh)]du ≥ F (am)− F (zh)
F (zl)− F (zh)

∫ am

zl

[F (zl)− F (u)]du.

After simplifying this expression, we obtain Equations (16) and (17).

Proposition 2

Proof. Consider, in an equilibrium, that i and j submit infinitely close bids equal to (w, v). That

is, for each ε > 0, there are (wε
i , v

ε
i ), (w

ε
j , v

ε
j) that converge to (w, v) and such that

Πi(wε
i , v

ε
i ,w

ε
−i,v

ε
−i) ≥ sup

(w,v)
Πi(w, v,wε

−i,v
ε
−i)− ε

and

Πj(wε
j , v

ε
j ,w

ε
−j ,v

ε
−j) ≥ sup

(w,v)
Πi(w, v,wε

−j ,v
ε
−j)− ε.

Since in the limit ε → 0, both suppliers are making non-negative profits, then it must be true

that either (1) for ε sufficiently small, (wε
i , v

ε
i ) must be in some region Ai

lj ; or (2) for ε sufficiently

small, (wε
i , v

ε
i ) must be in some region Ai

jh. Similarly, (wε
j , v

ε
j) must be for ε small in some region

Aj
l′i or Aj

ih′ . Indeed, if i (resp. j) bids in a different region, then i (resp. j) makes j (resp. i)

inactive, which is ruled out by the assumption of the proposition.

We can now apply Theorem 2. Assume that i bids in Ai
lj . Then j must bid in Aj

ih′ . By using

the optimality equations (14) and (15), yε
i− ≈ am = F

−1
(

vl − v

w − wl

)
and yε

i+ = F
−1

(
vε
i − vε

j

wε
j − wε

i

)
≈

zih = F
−1

(
fi − v

w − ci

)
, and hence we have that the slope between (ci, fi) and (wε

i , v
ε
i ), and (wε

i , v
ε
i )

and (wε
j , v

ε
j) must be very close. The same applies to the slope between (cj , fj) and (wε

j , v
ε
j), and

(wε
j , v

ε
j) and (wε

i , v
ε
i ). Hence, taking the limit as ε → 0, it must be true that (ci, fi), (w, v) and (cj , fj)

are aligned.

Assume now the other possible case: i bids in Ai
jh then j bids in Aj

l′i. A similar analysis yields

that (cj , fj), (w, v) and (ci, fi) are aligned.

In both cases, we have that (w, v) belongs to the segment [(ci, fi); (cj , fj)].

Proposition 3

Proof. Assume that supplier i is not active in an equilibrium of the game. It thus makes zero

expected profit. Define the function Z(w−i,v−i)(·) as in Equation (4), the lower envelope made of

all bids except i’s. If fi < Z(w−i,v−i)(ci), then by bidding (ci + ε, fi + ε), supplier i achieves some

positive profit for ε small enough. This contradicts the previous hypothesis and therefore we must

have fi ≥ Z(w−i,v−i)(ci).
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Construct the lower envelope C−i(·) of the costs (c1, f1), . . . , (ci−1, fi−1), (ci+1, fi+1), . . . , (cN , fN ),

(p, 0). That is, C−i(·) = Z(c−i,f−i)(·). Assume that C−i(·) is not a lower bound on the function

Z(w−i,v−i)(·). This implies that there is an active bid (wj , vj) such that vj < C−i(wj). j 6= i since i

is not active and is not defining the function Z(w−i,v−i)(·). We claim that if supplier j bids in some

region Alh, it cannot be at equilibrium. Indeed, we can use Equation (12), in particular,

∂Jlh

∂yj−
≥ (fj − vl) + (cj − wl)F (yj−),

∂Jlh

∂yj+
≤ (vh − fj) + (wh − cj)F (yj+).

If this is an equilibrium, then j’s bid in Alh must be such that (fj − vl) + (cj − wl)F (yj−) ≤ 0

and (vh − fj) + (wh − cj)F (yj+) ≥ 0. This is equivalent to

fj ≤ vl + (vj − vl)
cj − wl

wj − wl
,

or if l = 0, fj + cj ≤ vk + wk for some k, and

fj ≤ vh + (vj − vh)
wh − cj

wh − wj
.

But if all this feasible area is not strictly below C−i(·), we can find some other supplier k bidding

next to j that also satisfies vk < C−i(wk). By repeating the argument, we must find a third supplier

l satisfying vl < C−i(wl) that is not j (so no cycling possible). When we reach the supplier with

the smallest w or with the biggest w (the dummy supplier, N + 1), we reach a contradiction: for

the smallest w, we cannot find a different supplier satisfying the condition, for the dummy supplier

vN+1 = fN+1 = 0 = C−i(cN+1) = C−i(wN+1) = C−i(p). Hence j cannot be in equilibrium, and

this is a contradiction.

Therefore, the function C−i(·) lies below the function Z(w−i,v−i)(·). This implies that i cannot

be efficient, since it is not needed to define the function C−i(·), and thus is not a winning point of

{(c1, f1), . . . , (cN , fN ), (p, 0)}.

Proposition 4

Proof. Using Proposition 3, we know that every supplier is active in equilibrium.

If the proposition was false, we could find suppliers i and j such that ci < cj and wi > wj . We

may furthermore assume without loss of generality that these are consecutive bidders, i.e. there is

no bid (w, v) with wj < w < wi. To see this, assume that the active suppliers are indexed such that

w1 ≤ . . . ≤ wt and in case of a tie, sorted by increasing execution cost c.

Select a pair (i, j) such that i+1 < j with wi < wj and ci > cj . One of the following three cases

is possible.

42



• The pair (i, i + 1) satisfies wi < wi+1 and ci > ci+1 and then (i, i + 1) are consecutive bidders.

• wi < wi+1 and ci ≤ ci+1. Then, it is the pair (i + 1, j) that satisfies ci+1 > cj and wi+1 < wj .

Hence, we can iterate this argument until we find consecutive bidders i and j such that ci < cj

and wi > wj .

• wi = wi+1 but then, by construction, ci ≤ ci+1. Hence, similarly to the previous case, we

iterate the argument with the pair (i + 1, j).

Since wi > wj and i and j are consecutive bidders, the bid of supplier j must be in the border

of some region Ali (where there is no active supplier between l and i because if there was one it

would not be active), where supplier l is active. Also, wi > wj implies that wj = wl and vj = vl is

optimal, from Theorem 2. But applying Proposition 2 yields that (wj , vj) belongs in the segment

[(cl, fl); (cj , fj)]. Similarly, supplier i bids in some region A
(w−i,v−i)
jh , with supplier h active and no

active suppliers between j and h. With the same argument as before, we have that (wi, vi) = (wh, vh)

and this bid belongs in the segment [(ci, fi); (ch, fh)].

Define,

F (am) =
vj − vi

wi − wj
,

F (zjl) =
vj − fj

cj − wj
,

F (zih) =
vi − fi

ci − wi
,

and we have that zjl < am < zih because i and j are active.

We can also define
F (zil) =

vj − fi

ci − wj
,

F (zjh) =
fj − vi

wi − cj
.

Since ci < cj , and supplier i is efficient, we must have that fi ≤ fj + (cj − ci)F (zjl) because

F (zjl) is the slope of the line joining (cl, fl) to (cj , fj). Similarly, fj ≤ fi − (cj − ci)F (zih). This

implies that zil ≤ zjl < am < zih ≤ zjh as can be seen from Figure 7.

Finally, we apply Theorem 2. For this purpose, define the functions

φ(zl) =

∫ am

zl

[F (zl)− F (u)]du

F (zl)− F (am)

and

ψ(zh) =

∫ zh

am

[F (u)− F (zh)]du

F (am)− F (y2)
.
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Figure 7: Geometric situation of costs (ci, fi) and (cj , fj) in region Alh

Taking derivatives, we have, for zl > am and zh < am,

φ′(zl) = −f(zl)

∫ am

zl

[F (u)− F (am)]du

[F (zl)− F (am)]2
< 0

ψ′(zh) = f(zh)

∫ zh

am

[F (am)− F (u)]du

[F (am)− F (zh)]2
> 0.

Hence, φ(·) is non-increasing and ψ(·) is non-decreasing.

We now apply the last case of Theorem 2. Since supplier i bids (wi, vi) and not (wj , vj), we

have φ(zil) ≤ ψ(zih). Similarly, for j, φ(zjl) ≥ ψ(zjh). zil ≤ zjh < am < zih ≤ zjh yields

φ(zil) ≥ φ(zjl) ≥ ψ(zjh) ≥ ψ(zih), and hence φ(zil) ≤ ψ(zih) implies that all inequalities are in fact

equalities. Therefore ci = cj which is a contradiction.

Theorem 3

Proof. Consider supplier 1 < i ≤ N . From Propositions 3 and 4, we know that at equilibrium it

will be bidding in region Ai−1 i+1 because otherwise one of the suppliers would be inactive or they

would not be sorted in the correct order. Let l = i− 1 and h = i + 1. Supplier i will in particular

bid in the border of this region, with yi− = am or yi+ = am as established in Theorem 2. yi− = am

is equivalent to saying that it is bidding wi = wi+1 and vi = vi+1 and F (yi+) =
fi − vi+1

wi+1 − ci
. In
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this case, applying Proposition 2 yields that (vi, wi) belongs in the segment [(ci, fi); (ci+1, fi+1)].

Similarly, yi+ = am implies that (vi, wi) belongs in the segment [(ci−1, fi−1); (ci, fi)], and this is of

course possible only if i > 1. For i = 1, only the first case can occur, i.e., w1 = w2, v1 = v2, y1− = 0

and y1+ such that F (y1+) =
f1 − v2

w2 − c1
. Again, Proposition 2 implies that (v1, w1) belongs in the

segment [(c1, f1); (c2, f2)].

Theorem 4

In the following proofs, let, for each demand distribution, for x ≤ y,

L(x, y) =

∫ y

x
[F (x)− F (u)]du

F (x)− F (y)
, (33)

and

R(x, y) =

∫ y

x
[F (u)− F (y)]du

F (x)− F (y)
= (y − x)− L(x, y). (34)

Observe that L(x, y) is non-increasing in x and R(x, y) is non-decreasing in y.

Proof. The loss in surplus occurs for every supplier i when (wi, vi) = (wi−1, vi−1) and (wi, vi) 6=
(wi+1, vi+1). For all other cases, we have that yi = y∗i . We have two different possible cases.

(A) The market allocation is such that yi < y∗i .

(B) The market allocation is such that yi > y∗i .

In case (A), Equation (16) holds since (wi, vi) = (wi−1, vi−1). Therefore, using zl = y∗i−1, am = yi

and zh ≥ y∗i , and the notation of Equations (33) and (34),

L(y∗i−1, yi) ≥ R(yi, zh).

Since the function R(x, y) is non-decreasing in y and zh ≥ y∗i , and L(x, y) is non-increasing in x and

0 ≤ y∗i−1,

R(yi, zh) ≥ R(yi, y
∗
i ) and L(0, yi) ≥ L(y∗i−1, yi).

Thus,

L(0, yi) ≥ R(yi, y
∗
i ).

Examine now the loss created by supplier i.
∫ y∗i

0
[F (u)− F (y∗i )]du =

∫ yi

0
[F (u)− F (y∗i )]du +

∫ y∗i

yi

[F (u)− F (y∗i )]du

≥
(
F (yi)− F (y∗i )

)
yi +

(
F (yi)− F (y∗i )

)
R(yi, y

∗
i )

≥
(
F (yi)− F (y∗i )

)(
L(0, yi) + R(yi, y

∗
i )

)

≥
(
F (yi)− F (y∗i )

)
2R(yi, y

∗
i ),

= 2
∫ y∗i

yi

[F (u)− F (y∗i )]du.
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Hence, we have that

∆ci

∫ y∗i

yi

[F (u)− F (y∗i )]du ≤ 1
2
∆ci

∫ y∗i

0
[F (u)− F (y∗i )]du.

In case (B), it must be that i < N . Since (wi, vi) 6= (wi+1, vi+1), Theorem 3 implies that

(wi+1, vi+1) = (wi+2, vi+2), and this means that wi ≤ ci ≤ ci+1 ≤ wi+1 ≤ ci+2, yi+1 = y∗i+1

and yi ≤ y∗i+1. We can now use Equation (17) for supplier i + 1 in order to derive a bound on the

loss. Here, am = yi, zh = y∗i+1 and zl ≤ y∗i ,

R(yi, y
∗
i+1) ≥ L(zl, yi).

This implies that

R(yi, y
∗
i+1) ≥ L(y∗i , yi).

Now, note that

(wi+1 − wi)F (yi) = (ci+1 − wi)F (zl) + (wi+1 − ci+1)F (y∗i+1)

≥ (ci+1 − wi)F (y∗i ) + (wi+1 − ci+1)F (y∗i+1),

where the inequality is justified by ci+1 ≥ wi and zl ≤ y∗i . This, together with ∆ci ≤ ci+1 − wi and

wi+1 − ci+1 ≤ ∆ci+1, implies that

∆ci[F (y∗i )− F (yi)] ≤ (ci+1 − wi)[F (y∗i )− F (yi)]

≤ (wi+1 − ci+1)[F (yi)− F (y∗i+1)]

≤ ∆ci+1[F (yi)− F (y∗i+1)].

Since
∫ y∗i+1

0
[F (u)− F (y∗i+1)]du =

∫ yi

0
[F (u)− F (y∗i+1)]du +

∫ y∗i+1

yi

[F (u)− F (y∗i+1)]du

≥
(
F (yi)− F (y∗i+1)

)(
L(y∗i , yi) + R(yi, y

∗
i+1)

)

≥
(
F (yi)− F (y∗i+1)

)
2L(y∗i , yi),

we have that

∆ci+1

∫ y∗i+1

0
[F (u)− F (y∗i+1)]du ≥ ∆ci

(
F (y∗i )− F (yi)

)
2L(y∗i , yi),

and hence

∆ci

∫ y∗i

yi

[F (u)− F (y∗i )]du ≤ 1
2
∆ci+1

∫ y∗i+1

0
[F (u)− F (y∗i+1)]du.

Since yi+1 = y∗i+1, this completes the proof of the bound for any border distribution.
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Proof of Theorem 5

Let F be the set of log-concave distributions. We present two lemmas which, combined, provide

the proof of the theorem.

Lemma 1 When all suppliers are efficient, then in every equilibrium of the game

∆U ≤ 25%U∗,

provided that for each 0 ≤ x ≤ y ≤ z, such that L(x, y) ≥ R(y, z), where the functions L and R are

defined in Equations (33) and (34) respectively,
[
F (y)− F (z)

][
2L(x, y)−R(x, y)

]
−

[
F (x)− F (y)

]
R(x, y) ≤ 0 (35)

Proof. Assume that the condition defined in Equation (35) is satisfied for all 0 ≤ x ≤ y ≤ z, such

that L(x, y) ≥ R(y, z).

The loss in surplus U occurs when yi 6= y∗i . That happens when a supplier i bids (wi, vi) =

(wi−1, vi−1) and (wi, vi) 6= (wi+1, vi+1). When (wi, vi) 6= (wi−1, vi−1) and (wi, vi) = (wi+1, vi+1),

yi = y∗i .

For the situation when loss is created, since bidding with supplier i − 1 yields the maximum

profit for supplier i, then by Theorem 2, we have that

L(y∗i−1, yi) ≥ R(yi, zh), (36)

where zh is defined by F (zh) =
fi − vi+1

wi+1 − ci
. We have two different possible cases.

(A) The market allocation is such that yi < y∗i .

(B) The market allocation is such that yi > y∗i .

In case (A), since zh ≥ y∗i and y∗i−1 ≥ 0, Equation (36) yields that L(0, yi) ≥ R(yi, y
∗
i ).

We claim that in this case (A), we have

∫ y∗i

yi

[F (u)− F (y∗i )]du ≤ 1
4

∫ y∗i

0
[F (u)− F (y∗i )]du. (37)

This is equivalent to saying that

[
F (yi)− F (y∗i )

]
R(yi, y

∗
i ) ≤

1
4





[
1− F (yi)

]
R(0, yi)

+
[
F (yi)− F (y∗i )

][
R(0, yi) + L(0, yi)

]

+
[
F (yi)− F (y∗i )

]
R(yi, y

∗
i )





,

or put differently,
[
F (yi)− F (y∗i )

][
3R(yi, y

∗
i )−R(0, yi)− L(0, yi)

]
≤

[
1− F (yi)

]
R(0, yi).
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Since R(yi, y
∗
i ) ≤ L(0, yi), to prove Equation (37), it is sufficient to show that

[
F (yi)− F (y∗i )

][
2L(0, yi)−R(0, yi)

]
≤

[
1− F (yi)

]
R(0, yi),

which is exactly the condition that we assumed true. This concludes the proof of case (A), i.e.,
∫ y∗i

yi

[F (u)− F (y∗i )]du ≤ 1
4

∫ y∗i

0
[F (u)− F (y∗i )]du.

In case (B), it must be that i < N . Since (wi, vi) 6= (wi+1, vi+1), Theorem 3 implies that

(wi+1, vi+1) = (wi+2, vi+2), and this means that wi ≤ ci ≤ ci+1 ≤ wi+1 ≤ ci+2, yi+1 = y∗i+1 and

yi ≤ y∗i+1. We can now use Theorem 2, for supplier i + 1, to yield

R(yi, y
∗
i+1) ≥ L(zl, yi) ≥ L(y∗i , yi),

where zl is defined by F (zl) =
vi − fi+1

ci+1 − wi
, which implies that zl ≤ y∗i .

We claim that when R(yi, y
∗
i+1) ≥ L(y∗i , yi), then

∆ci

∫ yi

y∗i
[F (y∗i )− F (u)]du ≤ 1

4
∆ci+1

∫ y∗i+1

y∗i
[F (u)− F (y∗i+1)]du. (38)

Since the right-hand side is non-decreasing in y∗i+1, it is sufficient to show that when R(yi, y
∗
i+1) =

L(y∗i , yi), Equation (38) is satisfied.

We must first note that

(wi+1 − wi)F (yi) = (ci+1 − wi)F (zl) + (wi+1 − ci+1)F (y∗i+1)

≥ (ci+1 − wi)F (y∗i ) + (wi+1 − ci+1)F (y∗i+1),

where the inequality is justified by ci+1 ≥ wi and zl ≤ y∗i . This, together with ∆ci ≤ ci+1 − wi and

wi+1 − ci+1 ≤ ∆ci+1, implies that

∆ci

[
F (y∗i )− F (yi)

]
≤ (ci+1 − wi)

[
F (y∗i )− F (yi)

]

≤ (wi+1 − ci+1)
[
F (yi)− F (y∗i+1)

]

≤ ∆ci+1

[
F (yi)− F (y∗i+1)

]
.

Thus, in order to prove Equation (38), it is sufficient to show that
∫ yi

y∗i
[F (y∗i )− F (u)]du

[F (y∗i )− F (yi)]
≤ 1

4

∫ y∗i+1

y∗i
[F (u)− F (y∗i+1)]du

F (yi)− F (y∗i+1)
,

or equivalently,

[
F (yi)− F (y∗i+1)

]
L(y∗i , yi) ≤ 1

4





[
F (yi)− F (y∗i+1)

]
R(yi, y

∗
i+1)

+
[
F (yi)− F (y∗i+1)

][
L(y∗i , yi) + R(y∗i , yi)

]

+
[
F (y∗i )− F (yi)

]
R(y∗i , yi)





.
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Using that L(y∗i , yi) = R(yi, y
∗
i+1), it is sufficient to show that

[
F (yi)− F (y∗i+1)

][
2L(y∗i , yi)−R(y∗i , yi)

]
≤

[
F (y∗i )− F (yi)

]
R(y∗i , yi).

Again, using the condition defined in Equation (35), this is non-positive. This implies that in case

(B), for all y∗i , yi, y
∗
i+1 such that R(yi, y

∗
i+1) ≥ L(y∗i , yi),

∆ci

∫ y∗i

yi

[F (u)− F (y∗i )]du ≤ 1
4
∆ci+1

∫ y∗i+1

0
[F (u)− F (y∗i+1)]du.

Finally, putting together cases (A) and (B), we have

∆U =
N∑

i=1

∆ci

∫ y∗i

yi

[F (u)− F (y∗i )]du ≤ 1
4

N∑

i=1

∆ci

∫ y∗i

0
[F (u)− F (y∗i )]du

≤ 1
4
U∗.

Lemma 2 When f is log-concave, then for each 0 ≤ x ≤ y ≤ z, such that L(x, y) ≥ R(y, z),
[
F (y)− F (z)

][
2L(x, y)−R(x, y)

]
−

[
F (x)− F (y)

]
R(x, y) ≤ 0.

Proof. Let’s examine the worst-case scenario. For a fixed x, we claim that

sup
x≤y≤z,F∈F





[
F (y)− F (z)

][
2L(x, y)−R(x, y)

]

−
[
F (x)− F (y)

]
R(x, y)



 ≤ 0

s.t. L(x, y) ≤ R(y, z)

(39)

Clearly, we only need to examine the case when 2L(x, y) ≥ R(x, y). The objective is then

maximized for the largest z feasible, given y and F . This implies that at the maximum, L(x, y) =

R(y, z), since R(y, z) is non-decreasing in z.

Let’s now examine the worst-case scenario in terms of distribution. We first need to define the

following subclass of log-concave distributions.

Definition 5 A distribution is truncated exponential on I ⊂ R+ if and only if there are β, K, a, b,

a < b, such that for t ∈ I,

f(t) = Keβt1[a,b](t).

Without loss of generality, we can assume that x = 0, since for any other x ≥ 0 we could prove

the lemma with a shifted distribution.

Claim 1 In the problem posed by Equation (39), given optimal x = 0, y, z, we claim that at the

optimum f must be truncated exponential in [y, z], with a rate equal to f ′(y)/f(y).
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Proof. We have two possible cases. Either F (z) = 0 or not. If F (z) = 0, F (y) > 0, otherwise there

is nothing to show. Assume that f is not truncated exponential. Define the distribution equal to f

on [0, y] and to the truncated exponential

gγ(t) = f(y)ef ′(y)/f(y)(t−y)1[y, γ]

on [y,∞). Since f is log-concave, then f(t) ≤ gγ(t) for y ≤ t ≤ γ.

Define Gγ such that

Gγ(t) = F (y)−
∫ t

y
gγ(u)du =

∫ z

y
f(u)du−

∫ t

y
gγ(u)du

This is clearly increasing in γ. We have Gy(z) > 0 and Gz(z) < 0. We can thus find γ such that

Gγ(z) = 0, and hence for this particular γ,

F (y)− F (z) =
∫ z

y
gγ(u)du.

Moreover, L(0, y) = R(y, z) <

∫ z

y
[Gγ(u)−Gγ(z)]du

Gγ(y)−Gγ(z)
. This implies that for the log-concave

distribution gγ , we can decrease z to z′ with gγ(z′) > 0, while still satisfying the feasibility constraint,

thus increasing F (y)− F (z) to a larger quantity Gγ(y)−Gγ(z′). Thus f cannot be the worst-case

distribution. The only remaining possibility is that f is truncated exponential on [y,∞), with rate

f ′(y)/f(y).

Finally, if F (z) > 0, f(z) > 0 and F (y) > 0. Assume that f is not exponential. Define, for

f ′(y)/f(y) ≥ γ ≥ f ′(z)/f(z), the distribution equal to f on [0, y] and [z,∞), and to

gγ(t) = min
{

f(y)ef ′(y)/f(y)(t−y), f(z)eγ(t−z)
}

on [y, z]. This is clearly log-concave. Fix γ such that

F (y)− F (z) =
∫ z

y
gγ(u)du.

This implies that

Gγ(t) = F (z) +
∫ z

t
gγ(u)du

is always greater than F (t). Thus L(0, y) = R(y, z) ≤

∫ z

y
[Gγ(u)−Gγ(z)]du

Gγ(y)−Gγ(z)
. Hence, for the

log-concave distribution gγ , we can decrease z while still satisfying the feasibility constraint, thus

increasing F (y)−F (z) to a larger quantity. Thus f cannot be the worst-case distribution. The only

possibility is that f is exponential, with rate f ′(y)/f(y).

In any case, we have showed that for the worst case distribution must be truncated exponential

in [y, z].
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Claim 2 In the problem posed by Equation (39), given optimal x, y, z, we claim that at the optimum

f must be truncated exponential in [x, y].

Proof. Equation (39) can be rewritten as

sup
x≤y≤z,F∈F





[
F (y)− F (z)

]
2R(y, z)

−
[
F (x)− F (z)

]
R(x, y)



 ≤ 0

s.t. L(x, y) ≤ R(y, z)

The proof is similar to the proof of the previous claim.

We have two cases to address: either f(x) = 0 or not. When f(x) = 0, assume that f is not

truncated exponential. Define the distribution equal to f on [y,∞) and to the truncated exponential

gγ(t) = f(y)ef ′(y)/f(y)(t−y)1[γ, y]

on [0, y]. Since f is log-concave, then f(t) ≤ gγ(t) for γ ≤ t ≤ y.

Define Gγ such that

Gγ(t) = F (y) +
∫ y

t
gγ(u)du.

This is clearly decreasing in γ. We have Gy(x) < 1 and Gx(x) > 1. We can thus find γ such that

Gγ(x) = 1, and hence for this particular γ,

1− F (y) = F (x)− F (y) =
∫ y

x
gγ(u)du.

Moreover, R(y, z) = L(x, y) >

∫ y

x
[Gγ(x)−Gγ(u)]du

Gγ(x)−Gγ(y)
. This implies that for the log-concave

distribution gγ , we can increase x to x′ with gγ(x′) > 0, while still satisfying the feasibility constraint,

thus decreasing
[
F (x) − F (z)

]
R(x, y) to a smaller quantity. This is true because F (x) = 1 goes

down to Gγ(x′) and R(x, y) = (y−x)−L(x, y) = (y−x)−R(y, z) goes down as well. Thus f cannot

be the worst-case distribution. The only remaining possibility is that f is truncated exponential on

[x, y].

The last case to consider is that f(x) > 0. Assume that f is not exponential. Define, for

f ′(x)/f(x) ≥ γ ≥ f ′(y)/f(y), the distribution equal to f on [0, x] and [y,∞), and to

gγ(t) = min
{

f(y)ef ′(y)/f(y)(t−y), f(x)eγ(t−x)
}

on [x, y]. This is clearly log-concave. Fix γ such that

F (y)− F (z) =
∫ y

x
gγ(u)du.

This implies that

Gγ(t) = F (y) +
∫ y

t
gγ(u)du
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is always greater than F (t). Thus R(y, z) = L(x, y) >

∫ y

x
[Gγ(x)−Gγ(u)]du

Gγ(x)−Gγ(y)
. Hence, for the

log-concave distribution gγ , we can increase x while still satisfying the feasibility constraint, thus

decreasing
[
F (x)−F (z)

]
R(x, y) to a smaller quantity. Thus f cannot be the worst-case distribution.

The only possibility is that f is exponential.

In any case, we have showed that for the worst case distribution must be truncated exponential

in [x, y].

Having proved these two claims, we are ready to complete the proof. The worst-case is obtained

for a truncated exponential distribution. We have three different cases to address:

(i) The rate is negative, i.e. f(t) = Ke−βt1[a,b](t) for some parameters K, a, b, β with a < b and

β > 0.

(ii) The rate is positive, i.e. f(t) = Keβt1[a,b](t) for some parameters K, a, b, β with a < b and

β > 0.

(iii) The rate is zero, in which case the distribution is uniform.

We will start with the analysis of case (i). Hence, assume that f(t) = Ke−βt1[a,b](t) for a < b

and β > 0. It is clear that for x ≤ a < y < b, L(x, y) = L(a, y) and that for a < x < b ≤ y,

R(x, y) = R(x, b). Thus, we can without loss of generality consider the case where a = 0 ≤ yi ≤
y∗i ≤ b.

For this distribution, for all a ≤ x ≤ y ≤ b,

L(x, y) =
(y − x)e−βx

e−βx − e−βy
− 1

β
,

and

R(x, y) =
1
β
− (y − x)e−βy

e−βx − e−βy
.

Define the following functions

P1(t) =
et − 1

t
and P2(t) =

et − 1− t

t2
.

It is easy to show that these are analytical functions on R, infinitely differentiable, increasing and

convex. Using this notation, we can express

L(x, y) =
1
β

[ 1
P1(−β(y − x))

− 1
]
,

and

R(x, y) =
1
β

[
1− 1

P1(β(y − x))

]
,

By writing ∆1 = β(y − x) and ∆2 = β(z − y), the constraint L(x, y) = R(y, z) thus becomes

1
P1(−∆1)

+
1

P1(∆2)
= 2,
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On the other hand, the objective becomes
[
F (y)− F (z)

]
2R(y, z)−

[
F (x)− F (z)

]
R(x, y)

=
e−βy

β2




(
1− e−∆2

) (
2

P1(−∆1)
+

1
P1(∆1)

− 3
)

− (
e∆1 − 1

)(
1− 1

P1(∆1)

)




We need to show that for ∆1, ∆2 ≥ 0 satisfying the constraint, we have

(1− e−∆2)
(e∆1 − 1)

(
2

P1(−∆1)
+

1
P1(∆1)

− 3
)
−

(
1− 1

P1(∆1)

)
≤ 0.

Notice first that since 1/P1 is convex, we have that ∆2 ≥ ∆1. Note also that

1− 1
P1(∆2)

=
∆2P2(∆2)
P1(∆2)

=
(1− e−∆2)P2(∆2)
P1(−∆2)P1(∆2)

,

and
1

P1(−∆1)
− 1 =

∆1P2(−∆1)
P1(−∆1)

=
(e∆1 − 1)P2(−∆1)
P1(−∆1)P1(∆1)

.

Finally, we remark that for all t,

P2(t)
P1(−t)P1(t)

=
P2(t)

P2(−t) + P2(t)
,

which is an increasing function, because P2 is increasing.

The constraint on ∆1, ∆2, together with ∆2 ≥ ∆1, thus implies that

(1− e−∆2)P2(∆1)
P1(−∆1)P1(∆1)

≤ (1− e−∆2)P2(∆2)
P1(−∆2)P1(∆2)

=
(e∆1 − 1)P2(−∆1)
P1(−∆1)P1(∆1)

.

Thus (1− e−∆2)/(e∆1 − 1) ≤ P2(−∆1)/P2(∆1). Hence it is sufficient to show that for all t ≥ 0,

P2(−t)
P2(t)

( 2
P1(−t)

+
1

P1(t)
− 3

)
≤ 1− 1

P1(t)
,

or equivalently, using that P1(−t) = e−tP1(t), et = 1 + tP1(t) and P1(t) = 1 + tP2(t),

t4P2(−t)
(
2P1(t)− 3P2(t)

)
≤ t4P2(t)2. (40)

Since

t4P2(t)2 = e2t − 2et − 2tet + 1 + 2t + t2 =
∞∑

k=4

tk

k!

[
2k − 2− 2k

]
,

t4P2(−t)P1(t) = t(−et − e−t + tet + 2− t) =
∞∑

k=4

tk

k!

[
k(k − 1)− k(1− (−1)k)

]
,

t4P2(−t)P2(t) = −et − e−t + tet − te−t + 2− t2 =
∞∑

k=4

tk

k!

[
(k − 1)(1 + (−1)k)

]
,
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we have,

−t4P2(−t) (2P1(t)− 3P2(t)) + t4P2(t)2

=
∞∑

k=4

tk

k!

[
2k − 2− 2k + 3(k − 1)(1 + (−1)k)− 2k(k − 1) + 2k(1− (−1)k)

]
.

The term under brackets is always non-negative for k ≥ 4. Indeed, 1+(−1)k ≥ 0 and 1−(−1)k ≥ 0

for all k, and 2k − 2− 2k − 2k(k − 1) = 2k − 2− 2k2 ≥ 0 for k ≥ 7. Moreover,

2k − 2− 2k2 + 3(k − 1)(1 + (−1)k) + 2k(1− (−1)k) =





0 for k = 4,

0 for k = 5,

20 for k = 6.

This shows that Equation (40) is satisfied for t ≥ 0. Thus, when F is a truncated exponential

with negative rate, i.e. case (i),

sup
x≤y≤z





[
F (y)− F (z)

][
2L(x, y)−R(x, y)

]

−
[
F (x)− F (y)

]
R(x, y)



 ≤ 0

s.t. L(x, y) ≥ R(y, z)

Case (ii) can be analyzed similarly. In this case, using the same notation, ∆1 = β(y − x) and

∆2 = β(z−y), where β is now the positive rate of the exponential, the constraint is tight and hence

equivalent to
1

P1(∆1)
+

1
P1(−∆2)

= 2,

We must show now that

(e∆2 − 1)
(1− e−∆1)

(
2P1(−∆1)− 3P2(−∆1)

)
≤ P2(−∆1).

Now, ∆2 ≤ ∆1 and this implies that (e∆2 − 1)/(1 − e−∆1) ≤ P2(∆1)/P2(−∆1). Hence, we must

show that for all t ≥ 0,

P2(t)
(
2P1(−t)− 3P2(−t)

)
≤ P2(−t)2,

or equivalently, using that P2(−t)et = P1(t)− P2(t),

t4etP2(t)
(
3P2(t)− P1(t)

)
≤ t4

(
P1(t)− P2(t)

)2
.
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Since

t4P2(t)2 =
∞∑

k=4

tk

k!

[
2k − 2− 2k

]
,

t4etP2(t)2 =
∞∑

k=4

tk

k!

[
3k − 2k+1 − k2k + 1 + 2k + k(k − 1)

]
,

t4P2(t)P1(t) =
∞∑

k=4

tk

k!

[
k2k−1 − 2k − k(k − 1)

]
,

t4etP2(t)P1(t) =
∞∑

k=4

tk

k!

[
k3k−1 − k2k − k(k − 1)2k−2 + k + k(k − 1)

]
,

t4P1(t)2 =
∞∑

k=4

tk

k!

[
k(k − 1)2k−2 − 2k(k − 1)

]
,

we must show that

∞∑

k=4

tk

k!




k(k − 1) · 2k−2 − 2k(k − 1)

−2k · 2k−1 + 4k + 2k(k − 1)

+2k − 2− 2k

+k · 3k−1 − k · 2k − k(k − 1) · 2k−2 + k + k(k − 1)

−3k+1 + 3 · 2k+1 + 3k · 2k − 3− 6k − 3k(k − 1)



≥ 0.

The coefficients in the brackets are equal to

(k − 9)3k−1 + (k + 7)2k + (−2k2 − k − 5)

They are clearly non-negative for k ≥ 9. For smaller values, we have

(k − 9)3k−1 + (k + 7)2k + (−2k2 − k − 5) =





0 for k = 4,

0 for k = 5,

20 for k = 6,

224 for k = 7

1512 for k = 8.

Hence, for all t ≥ 0,

t4etP2(t)
(
3P2(t)− P1(t)

)
≤ t4

(
P1(t)− P2(t)

)2
,

and thus, when F is a truncated exponential with positive rate, i.e. case (ii),

sup
x≤y≤z





[
F (y)− F (z)

][
2L(x, y)−R(x, y)

]

−
[
F (x)− F (y)

]
R(x, y)



 ≤ 0

s.t. L(x, y) ≤ R(y, z)

Case (iii) is straightforward. When the distribution is uniform, L(x, y) = R(x, y) = (y−x)/2 for

all x ≤ y. Also the condition L(x, y) ≥ R(y, z) is equivalent to z − y ≤ y − x. Thus,
[
F (y)− F (z)

][
2L(x, y)−R(x, y)

]
−

[
F (x)− F (y)

]
R(x, y) =

1
2
(y − x)(z + x− 2y) ≤ 0.
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Theorem 6

Proof. Supplier i is active in this equilibrium. Since the demand follows a border distribution,

supplier i bids in the boundary of some region Alh constructed with all the bids except i’s. If the

bid (wi, vi) belongs to more than one region, choose Alh with l and h active. We must consider two

cases, either there is no supplier in the lower envelope between the bids of l and h, or there is one.

In the first case, there is j, j being l or h, such that j is active, and (wi, vi) = (wj , vj), from

Theorem 2. From Proposition 2, (wi, vi) belongs in the segment [(ci, fi); (cj , fj)].

In the second case, there is one supplier, k on the lower envelope between l and h such that the bid

(wi, vi) is in the border of Alh and Alk or Alh and Akh. k is thus inactive because of supplier i, and

either the bids of l, k and i are aligned, or those of i, k and h. Such a situation is depicted in Figure

8. Hence, we find j, j being l or h, active, such that (wi, vi) is equal to (wj , vj)+ θ(wk−wj , vk− vj)

for some non-negative θ.

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

Execution fee w

R
es

er
va

tio
n 

fe
e 

v Supplier l active 

Supplier h active 

Supplier k turned inactive 

Region A
lh

 

Region A
lk

 

Region A
kh

 

Figure 8: Suppliers l and h are active and supplier k is turned inactive by supplier i’s bid.
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