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Abstract:  

Density dependent, implicit solvent (DDIS) potentials, the generation of which has been 

described previously [E.C. Allen and G.C. Rutledge, J. Chem. Phys. 128, 154115 (2008); 

E.C. Allen and G.C. Rutledge, J. Chem. Phys. 130, 034904 (2009)], are used in this work 

to examine the self-assembly of a model surfactant system.  While the measurement of 

thermodynamic properties in simulations of solvated micelles requires large 

computational resources or specialized free-energy calculations, the high degree of 

coarse-graining enabled by the DDIS algorithm allows for the measurement of critical 

micelle concentration and aggregation number distribution using single processor NVT 

simulations.  In order to evaluate the transferability of potentials derived from the DDIS 

methodology, the potentials are derived from simulations of simple monomeric solutes 

and used in the surfactant system without modification. Despite the high degree of 
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coarse-graining and the simplicity of the fitting simulations, we demonstrate that the 

coarse-grained DDIS potentials generated by this method reliably reproduce key 

properties of the underlying surfactant system: the critical micelle concentration, and the 

average aggregation number.  The success of the DDIS algorithm suggests its utility for 

more realistic surfactant models. 
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Introduction 

A surfactant molecule is composed of a head group that is compatible with the 

surrounding solvent, for example water, and a tail group that is not.  Above a critical 

concentration in solution, the surfactant molecules spontaneously aggregate into 

structures known as micelles, in which the head groups surround and shield the tail 

groups from the solvent. 

 

Theoretical approaches1-2 treat micellization as arising from a set of competing free 

energy effects.  The transfer of hydrophobic tails from melt to solution promotes micelle 

formation, but is offset by a surface energy penalty and the loss of surfactant translational 

entropy.  These competing effects create a well-defined free energy minimum as a 

function of aggregation number, so that the resulting micelles are of nearly uniform size.  

The concentration at which surfactant molecules spontaneously form micelles is referred 

to as the critical micelle concentration, or CMC, and in theoretical treatments is directly 

related to the aforementioned free energy considerations.  Both the CMC and the average 

aggregation number are important properties that characterize the self-assembling nature 

of surfactants and for which we desire efficient, predictive capabilities.   

 

The literature on particle-based surfactant simulations contains a diverse set of particle 

representation approaches3-22, which can be grouped according to two key design 

decisions: the level of detail used to describe the surfactant molecule itself, and explicit 

or implicit treatment of the solvent.  Explicit solvent simulations3-19 are computationally 
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burdensome because of the low value of experimentally measured CMC’s (10-6-10-2 M).  

At these concentrations, a significant majority of the simulation cell is composed of the 

relatively uninteresting solvent.  As a result, the direct measurement of the CMC by 

explicit solvent simulations is impractical, even for very coarse-grained surfactant and 

solvent representations.  Instead, the CMC and aggregation number distribution are 

generally determined indirectly, through the use of free energy simulations10,14,15,18. 

 

By reducing the number of particles represented, and thus also the computational burden, 

implicit solvent simulations of surfactant systems allow investigation of much longer 

time and length scales.  By this approach, Lazaridis et al.21 studied the formation of 

dodecylphosphocholine (DPC) micelles using the Effective Energy Function23 (EEF1) 

implicit solvent model.  The simulated CMC was close to the reported experimental 

value.  Von Gottberg et al.22 studied A2B2 surfactants in implicit solvent using stochastic 

dynamics (SD), in which each surfactant bead was intended to represent a Kuhn segment 

(approximately ten methylene groups) of a polymer chain.  They successfully simulated a 

fully equilibrated micelle size distribution at multiple surfactant concentrations, from 

which they were able to determine the system CMC.  

 

In this paper, we employ our previously developed coarse-graining algorithm to generate 

density-dependent, implicit solvent (DDIS) potentials24,25 for a model surfactant and test 

their ability to describe surfactant aggregation.  The DDIS potentials are specifically 

derived to reproduce the chemical potentials and radial distribution functions (RDFs) of 

an underlying all-atom simulation.  The advantage of creating an implicit solvent energy 
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model via coarse-graining is that the results have a clear correspondence to an underlying 

all-atom energy model that is presumed to be a more accurate representation of the 

system.   

 

To investigate the applicability of DDIS potentials to surfactant systems, we create and 

test such potentials for a model surfactant in a Lennard-Jones solvent.  The model is a 

derivation of Smit’s11-13 well-known surfactant model, for which Pool and Bolhuis 

recently estimated the CMC and aggregation number distribution by means of free energy 

calculations18.  

 

As in our previous work, we derive the DDIS potentials from simulations of monomeric 

solutes in explicit solvent.  Our potentials are not derived from mixtures of solute types 

nor chain simulations.  We made this decision because it represents the simplest set of 

simulations from which to derive DDIS potentials, and a worst case scenario for 

transferability of the resulting potentials.  It allows us to establish a “baseline” for 

transferability of the DDIS potentials, against which other, more sophisticated derivation 

methodologies might be compared.  We use the results of these previous works to test the 

accuracy and transferability of our DDIS potentials to this surfactant model.    
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Theory 

Density Notation Conventions 

In this work, ρS refers to the total density of solute particles, where the subscript “S” 

stands for solute, and may include contributions from different solute types. ρI is the 

density of type I solute particles only.  {ρ} refers to the set of ρI that includes every 

solute particle type in the system.  Finally, ρ without subscript refers to the state point 

density, considering all particles (solute and solvent) explicitly.  A superscript L indicates 

that the density is the local density of solute particles; otherwise, the density refers to the 

global average density. 

 

Particles of different size contribute to the density in proportion to their volume, which is 

consistent with the Effective Energy Function23 implicit solvent model.  This convention 

is chosen because each solute particle reduces the local solvent density roughly in 

proportion to its volume.  Thus, we define the solute density in a specified volume V as 
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where N is the number of solute particles in the specified volume, σi is the Lennard-Jones 

radius for particle i, and σW is the Lennard-Jones radius of the solvent. 
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DDIS Potential Review 

In our previous work24, we proposed a density-dependent, implicit solvent (DDIS) 

potential with the form 
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where Ei is the effective energy of particle i, VIJ
EFF is a pairwise potential between I- and 

J-type solute particles that is an explicit function of solute particle density in the vicinity 

of particle i, 

! 

"S,i
L , and µ is a “self-interaction” term that is also a function of solute 

particle density.  The first term serves to capture the effects of solute-solvent and solvent-

solvent interactions in a mean field approximation, while the second term represents 

solute-solute interactions that are mediated by solvent.  The dependence of both terms on 

local density allows the potential to be cognizant of the greater or lesser influence of 

solvent in the different regions of a system that is inhomogeneous on the solute length 

scale, such as that which arises in a system of surfactants that self-assemble into micelles.  

We also proposed a method to derive such potentials from simulations of solute type I in 

solvent.  This fitting was performed such that the solute-solute RDF and solute excess 

chemical potential, µI
ex, are reproduced across all solution compositions.  For details of 

this fitting procedure, the reader is referred to Ref. 24, hereafter referred to as Paper 1. 

 

Mixtures of multiple particle types are treated by a simple mixing rule in which like 

particle interactions are unmodified, but the local density used is the total local solute 
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density. DDIS interactions between dissimilar particles are derived from the interactions 

between pairs of identical particles through the equation 
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where εIJ and σIJ are the Lennard-Jones parameters for I-J interactions, VIJ(r) is the I-J 

all-atom potential, and  
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The mixing rule is clearly a computational simplification – an optimized I-J potential 

could be derived across all density ranges using the DDIS approach.  However, deriving 

the true mixed potentials for an M-component system would require M(M-1)/2 fitting 

steps.   Ref. 25 discusses the mixing rule and its applicability further, and is hereafter 

referred to as Paper 2. 

 

Simulation Metrics 

The measure of error in the RDF is given by the solute-solute energy, defined as: 
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where ρI is the density of solute type I, VIJ is the exact interaction potential between I- 

and J-type particles, and gIJ is the I-J RDF.  The difference between EL for a coarse-

grained system and that for the all-atom simulation provides a measure of the error in 

g(r,{ρ}), relative to the exact g(r,{ρ},ρ) for the explicit, all-atom system, in units of 

energy.  The error in the excess chemical potential of particle type I, µI
ex, is the difference 

(in units of εW, the Lennard-Jones parameter of the solvent) between the target (all-atom) 

and measured (coarse-grain) values.  In this text, both error measurements are presented 

in terms of the standard error over all simulations.  Additionally, we supply figures where 

appropriate comparing the all-atom and coarse-grained chemical potentials and RDFs, as 

these offer an intuitive sense of the closeness of fit.  

 

A solute’s relative affinity for the solvent can be measured by the free energy of transfer, 

ΔGI(W→I), defined as the free energy change associated with transferring a single solute 

particle from a bath of solvent particles W to a bath of solute particles I.  The free energy 

of transfer can be calculated from the excess chemical potential of solute particles: 
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We characterize the local solute environment by calculating the local number of solute 

particles, <NL,I>, defined as: 
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We define the solute enhancement ratio as the number of neighboring solute particles 

within a sphere of radius Rc around a reference particle divided by the average number of 

particles in such a volume. A value less than one indicates a local depletion in solute 

density, while a value greater than one indicates a local enhancement.  A value near 1.0 

indicates that the local solute environment is very similar to the global average 

environment. 

 

Simulation Protocol 

All-Atom Model 

The underlying all-atom model described by Smit11-13 is composed of three basic particle 

types: head, tail, and solvent particles, which are hereafter referred to as H, T, and W 

respectively.  These particles interact via the truncated and shifted Lennard-Jones 

potential, VTS, where the potential between particles i and j is described by: 
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where εij and σij are the Lennard-Jones parameters for ij interactions.  ε and σ values of 

dissimilar particles are governed by Lorentz-Berthelot mixing rules.  Lennard-Jones 

parameters for all three particle types are given in Table 1.  Equations (8) and (9) allow 

for the possibility of different cut-off radii (RC,ij) for interactions between different 

particle types. (RC,ij/σij)=2.5 for W-W, H-W, and T-T interactions, and (RC,ij/σij)=21/6 for 

T-W, H-H, and H-T interactions.  These values were chosen to give the H particles a 

“solvent-philic” behavior, and the T particles a “solvent-phobic” behavior.  As indicated 

in Table 1, ΔGH(W→H) is positive for H-type particles, indicating that H-type particles 

prefer a solvent environment relative to one composed of other H-type particles.  

Conversely, ΔGT(W→T) is negative for T-type particles.  

 

In many ways, the Smit model is not an ideal candidate for coarse-graining.  This is due 

to both the variation in cutoff radius as a function of interaction type, coupled with the 

large discrepancy between pure component interactions and the corresponding mixed 

interactions.  However, the availability of high-quality simulation results in the literature 

is an appealing property of the Smit model, and we utilize it despite these limitations. 

 

Table 1 shows the solute enhancement ratio for all three types of solute particles at 

ρI/ρ=0.5.  These results indicate that H-type particles experience a local depletion of 

other H-type particles, while T-type particles experience a substantial local enhancement 
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of other T-type particles.  The local depletion of H-type particles arises because the 

radius of H-type particles (2σW) creates a large excluded volume.  As a result, the total 

density within the cutoff radius (5σW) is less than the average solute density. 

 

Surfactant molecules are composed of a single H-type particle connected to multiple T-

type particles in a linear fashion, denoted H1TM, where M is the number of T-type 

particles that form the tail.  Bonded interactions between I- and J-type particles are 

governed by a harmonic potential: 
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Vij
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where kbond=5000ε/σW
2 is the harmonic spring constant, and req,IJ=σIJ is the equilibrium 

bond length. The H-T equilibrium bond length, req,HT, is 1.5σW, while the T-T equilibrium 

bond length, req,TT, is 1.0σW.  The bonded interaction applies only to nearest neighbor 

particles in the surfactant chain.  

 

Simulation Details 

Simulation protocols for all-atom and coarse-grained simulations of monomeric solute 

are given in Paper 1.  Monomeric solute simulations were carried out in the NVT 

ensemble at T*=kBT/εW=1.0 and ρ*=ρσW
3=0.60, where εW and σW are the Lennard-Jones 

parameters of the solvent W.  
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All-atom simulations were carried out in the same manner as the monomeric all-atom 

simulations in Paper 1, using GROMACS26 (Version 3.3) Molecular Dynamics 

simulation software.  Free energy calculations in the all-atom simulation were performed 

using thermodynamic integration (TI)27.  The standard GROMACS λ switching function 

was used to integrate between an initial state in which the test particle interactions with 

the remaining system were switched off and a final state in which the test particle 

interactions were fully enabled.  Switching was applied to nonbonded interactions only, 

with soft core interactions to avoid singularities and using a soft core interaction 

parameter α=0.51.  A total of 31 λ values were used (λ = [0.00 0.03 0.07 0.10 …. 0.93 

0.97 1.00]). 

 

Implicit solvent simulations of surfactants were carried out in the same manner as the 

monomeric DDIS simulations in Paper 1, using a Monte Carlo code of our own design.  

Nearest bonded neighbor particles were included in the calculation of local density.  In 

addition to the atom-level translation moves used for monomeric simulations, simulations 

of surfactants included rigid body chain translation moves, rigid body chain rotation 

moves, and rotation about individual bonds.  The proportion of these moves was 20% 

atom translation: 60% chain translation:10% chain rotation:10% bond rotation.  

Simulations were equilibrated for 105 cycles, followed by sampling for 4 × 105 cycles. 

Free energy was calculated using the Bennett Acceptance Ratio method28
. Five λ values 

were used (λ = [0.00,0.25,0.50,0.75,1.00]) with an initial state comprising a non-

interacting test particle and a final state having a fully interacting test particle.  Free 

energy sampling was performed every two MC cycles, which was sufficient to generate 
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statistically independent samples, as determined by the autocorrelation function of the 

measured configurational energy of the solute particles. RDF sampling was performed 

every 100 MC cycles. 

 

Micelles were identified via a clustering algorithm.  Surfactant chains were designated as 

members of the same cluster if the distance between any tail particles in the surfactant 

chains was less than 1.5σT, where σT is the Lennard-Jones radius for tail particles.  This is 

the same algorithm and cutoff distance used previously by van Gottberg et al22.  The 

aggregation number distribution is relatively insensitive to small changes in the cutoff 

distance: a 30% increase (to 1.95σT ) results in only a 10% increase in the average 

aggregation number.  Because of the different nature of their single micelle simulations, 

Pool and Bolhuis used a slightly different algorithm to determine aggregation number, 

but the relevant cutoff distance there was also 1.5σT 18.  

 

Results and Discussion 

DDIS Potentials 

DDIS potentials were generated for H- and T-type particles in implicit solvent W as 

described previously24,25. Figure 1 demonstrates the ability of the H-H and T-T DDIS 

potentials to reproduce the excess chemical potential of the equivalent all-atom 

simulations across a range of solute densities.  The standard error in µex for H-type 

particles is 0.06ε, versus 0.37ε for T-type particles.  
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Figure 2 shows the worst-case reproductions of the all-atom RDFs by the DDIS 

potentials for the H-type and T-type potentials.  As with the excess chemical potential, 

the level of reproduction obtained for the H-type potential is much better than for the T-

type potential.  The standard errors in EL were EL,H=0.01ε and EL,T=0.35ε.  The larger 

relative error in the solvent-phobic T-type fitting is consistent with our previous work25.  

The characteristics of solvent-phobic particles that give rise to this difficulty of fitting are 

discussed in the Appendix.  

 

We note here that although the magnitude of errors in the T-type fitting is larger than 

those in the H-type fitting, the errors do not display any systematic bias.  Figure 1 

demonstrates that the fitted excess chemical potentials have both positive and negative 

residuals when compared to the all-atom model. 

 

Figure 3 compares the two-body portion of the coarse-grained potentials for the H-type 

and T-type potentials at a local density of 

! 

"I
L /ρ=0.2.  At short distances, the “solvent-

philic” H-type particles experience a repulsive potential where the attractive well would 

typically reside.  The shape of the H-type potential is reminiscent of the class of 

potentials referred to as “Hard Core/Soft Shoulder” (HCSS) interactions29-30.  However, 

the system behavior generated by the repulsive soft shoulder in this potential differs from 

that of previous HCSS studies.  There, the potential was used at low temperatures, and 

the repulsive plateau promoted local particle aggregation.  In this work, the soft shoulder 

models the first neighbor shell of implicit solvent, and actually encourages local particle 

depletion.  
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In contrast to the H-type particles, the T-type particles experience an attractive well 

deeper than the all-atom Lennard-Jones potential, which is responsible for increasing 

solute aggregation as the density of T-type particles decreases. These trends are 

consistent with Paper 2.   

 

Figure 4 shows the one-body portion of the DDIS potential for H- and T-type particles.  

As solute density goes to zero, the value of the one-body term approaches µI
ex(ρI/ρ=0).  

This equivalence to the excess chemical potential arises because the contribution of 

pairwise interactions disappears as solute concentration goes to zero, and must therefore 

be captured by the one-body term.  This is consistent with the findings of Paper 1.  The 

profile is relatively flat for low solute densities, changing rapidly as the solute fraction 

approaches 1.  The one-body term increases for H-type particles as density increases, 

indicating that it is energetically unfavorable to achieve high local densities.  In contrast, 

the one-body term for T-type particles decreases, further promoting aggregation. 

 

Surfactant Results 

We performed multiple simulations of 216 surfactant molecules across a range of 

surfactant concentrations.  These simulations demonstrate the true benefit of the implicit 

solvent approach, since the equivalent all-atom simulation is not computationally 

feasible.  From these simulations, we measured the system CMC and average micelle 

aggregation number.  Pool and Bohuis18 estimated the CMC’s for H1T4 and H1T5 

surfactants using semi-grand canonical simulations and found values of 5×10-6σW
-3, and 
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6×10-7σW
-3, respectively.  They suggested an average aggregation number of “≈20” for 

H1T4 and “≈30” for H1T5, the use of the ≈ symbol indicating a substantial uncertainty in 

the true values of these metrics.  These results are given in Table 2.  Due to the presence 

of explicit solvent, Pool and Bolhuis were not able to observe these values directly, but 

required a thermodynamic framework to evaluate the results.  Given the differences in 

simulation type, exact replication of their results is unlikely, but the results provide 

reasonable guidelines.   

 

We first measured the CMC of the each surfactant type by running a series of single 

processor simulations at global surfactant concentrations spanning a range around the 

CMCs reported by Pool and Bolhuis.  Figure 5 shows the number density of free 

surfactant molecules, ρ1, as a function of the total number density of surfactants, ρS.  The 

solid black line is the 45° line corresponding to no aggregation.  As Figure 5 

demonstrates, the free surfactant density initially increases along the 45° line, but 

deviates from that line as total surfactant density is increased.  This deviation indicates 

the formation of micellar aggregates.  The presence of micelles can be visually 

confirmed, as is shown in Figure 6.  The clustering algorithm used in this work also 

identifies the presence of three distinct micelles in this snapshot.  The decrease in ρ1 

above a certain ρS level is consistent with the findings of von Gottberg et al.22, who 

demonstrate that such a decrease is due to excluded volume effects.   

 

To calculate critical micelle concentration, we follow the convention of von Gottberg et 

al.22, who define the CMC as the maximum free surfactant concentration across all 
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simulations.  The values obtained for H1T4 and H1T5 surfactants by this method using the 

DDIS potentials are 4(1)×10-6σW
-3, and 8(1)×10-7σW

-3, where the error in the last decimal 

is given in parenthesis.  These CMC values are within 30% of the values reported by Pool 

and Bolhuis, as shown in Table 2.   

 

While a discrepancy of 30% with the all-atom work of Pool and Bolhuis might at first 

seem to be a cause for concern, we suggest that it is actually quite respectable.  Statistical 

thermodynamic theories of micelle formation (such as those referenced by Pool and 

Bolhuis) determine the critical micelle concentration, XCMC, based on the free energy of 

micelle formation1,2:  

 

! 

XCMC = exp "gmic n *( )[ ]                                                                                                     (10) 

 

where gmic(n) is the free energy of transferring a surfactant molecule from solution to a 

micelle of size n, and n* is the most probable aggregation number.  Based on Equation 

(10), the CMC is related to the exponential of free energy of micellization, so that a 30% 

difference in CMC implies a difference in the free energy of micellization of only 

0.25kBT, which is comparable in magnitude to the fitting error for the T-type potential.  

Given the differences in estimation methods between this work and that of Pool and 

Bolhuis, this level of agreement is as good as can be expected.   We remind, however, 

that the DDIS potentials generated by this coarse-grained methodology are in general 

temperature-dependent and transferable only over a limited temperature range; this 

transferability was explored in greater detail in Paper 1.  One should exercise caution in 
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attempting to extract any temperature dependence of the CMC using coarse-grained 

potentials without additional fitting. 

 

We next measured the aggregation number distribution at a single global surfactant 

concentration.  Sufficient sampling of this distribution was assured by generating 64 

independent initial system configurations and averaging the micelle size distribution over 

all simulations.  Figure 7 shows the H1T4 micelle size distributions using the DDIS 

potential for a total surfactant number density of 8×10-6σW
-3 and the corresponding H1T5 

distribution at 1.9×10-6σW
-3.  In both cases, a large fraction of the surfactant exists as free 

surfactant (~40%), and the profiles both demonstrate a secondary maximum.  These 

secondary maxima indicate the presence of stable micellar structures.  Both the H1T4 and 

H1T5 profiles demonstrate a single secondary maximum, indicating a preferred micelle 

size as predicted by statistical thermodynamic theories.  

 

We calculated the average aggregation number as the number weighted average of all 

aggregates of size two or larger.  For the H1T4 and H1T5 surfactant systems, the average 

aggregation numbers were 16 and 34, respectively.  These numbers are extremely close 

to the estimates of ≈20 and ≈30 reported by Pool and Bolhuis. 

 

We also examined the shape of the aggregation number distribution.  The inset to Figure 

7 shows that the DDIS models for both H1T4 and H1T5 surfactant systems demonstrate 

“extended” aggregation number distributions as indicated by the presence of a long tail in 

the aggregation number distribution, such that the mean micelle size is larger than the 
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most probable micelle size.  Nelson et al.31 demonstrated that such extended tails are 

associated with the presence of some fraction of cylindrical, or “worm-like”, micelles.  

By contrast, the results of Pool and Bolhuis show a nearly normal probability distribution 

around the average particle size, indicating mostly spherical micelles.  It is unclear at this 

time from where this difference arises.  Although the coarse-graining process could be 

responsible for the discrepancy, it could also be due to differences in measurement 

method (Pool and Bolhuis measure the free energy of different micelle sizes at infinite 

dilution and infer the aggregation number distribution) or to differences in micelle 

definition (Pool and Bolhuis include a surfactant molecule in the micelle definition if it 

resides within a certain radius of the center of mass of the existing micelle, while we use 

a clustering algorithm).  

 

Conclusions 

In this work, we have created coarse-grained, density dependent implicit solvent (DDIS) 

potentials based on underlying all-atom simulations of a truncated and shifted Lennard-

Jones model that has previously been shown to demonstrate micellization behavior11-13.  

Coarse-grained potentials were generated as we have previously outlined24,25.  Potentials 

were fit to simulations of monomeric (i.e. single repeat units) solute particles in solvent, 

without explicit consideration of mixtures as inputs to the process.  These simple fitting 

simulations were used to test the transferability of DDIS potentials for simulation 

environments far from the state point of fitting. 
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We performed large simulations of surfactant solutions at solute densities near the CMC.  

The CMCs of the H1T4 and H1T5 surfactants were within 30% of those estimated by Pool 

and Bolhuis18, which implies a difference in free energy of micelle formation of 0.25 kBT. 

Additionally, we found average micelle sizes to be extremely close to the estimates of 

Pool and Bolhuis.  For both H1T4 and H1T5 surfactants, we observed some fraction of 

large aggregate sizes that were not present in the free energy methods.  However, these 

differences cannot be directly attributed to the coarse-graining process, but may represent 

differences in simulation methodology or micelle definition.  

 

The success of the DDIS fitting framework in reproducing the properties of a simple 

surfactant model suggests that it may also be of utility with more chemically realistic 

surfactant systems. 
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A full investigation of the properties of DDIS potentials for highly aggregating particles 

is beyond the scope of this work, but this section discusses some of the issues associated 

with the fitting of such potentials.  Further study is required to identify best practices.  

 

The fitting of DDIS potentials for highly aggregating (i.e. solvent-phobic) solute particles 

is challenging, because of the heterogeneous solute distribution in the fitting simulations.  

More specifically, aggregation of the solute particles implies that the average local solute 

density, 

! 

< "S
L > , is significantly higher than the global solute density ρS.  For example, for 

the T-type particles described in this work, a simulation of 100 T-type solute particles in 

solvent at ρS/ρ=0.1 has an average local density 

! 

< "S
L > " # 0.4 .   

 

 

In Paper 1, we demonstrated that for a homogeneous distribution of solute particles one 

could use a global density dependent potential to approximate the local density dependent 

potential at a local density equal to the average local, or global, solute density.  When the 

system is not homogeneous, the average local solute density is not equal to the global 

solute density, so we modify this rule in one of two ways.  The first is to approximate the 

local density dependent potential at a given local solute density by the global density 

dependent potential obtained at the same average local solute density.  Returning to the 

T-type simulation with global solute density of ρS/ρ=0.1, given above, since the average 

local density of this simulation is 

! 

< "S
L > " # 0.4 , the potential derived from this 

simulation would be used as the local density dependent potential for local density 



 23 

! 

< "S
L > " # 0.4 .  The second approach is to combine Equations 15 and 16  from Paper 1 

to obtain Equation (A-1) below: 
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where γ(r,ρS) is defined as ratio of the radial distribution function to the pairwise 

potential.  Schommers32 states that this term is only mildly dependent on the potential, so 

to a first approximation we assume that γ(r,ρS) is independent of density, that is γ(r,ρS)= 

γ(r).  In this case, the γ terms cancel from each side, and we are left with only terms 

relating the potential and the radial distribution function. 

 Equation (A-1) links the global density dependent potential VS
EFF to the weighted 

average of local density dependent potentials, vS
EFF, where the weighting is given by the 

distribution of local densities experienced in the simulation, 

! 

P "S
L,i( ).  Once a set of m 

global density dependent potentials is obtained, a set of m equations of the form given by 

Equation (A-1) can be solved for the m unknown local density dependent potentials.   

 

In this work we attempted both methods of fitting for the T-type potentials.  The results 

were remarkably similar.  As such, we suggest that either approach can be considered a 

suitable fitting method for aggregating solute particles. 

 

A second consideration with respect to solvent-phobic particles is the value of the 

pairwise potential at the cutoff radius.  It is common practice to shift RDF-inverted 
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potentials up or down by a constant amount to obtain a value of zero at the cutoff radius.  

While in a density independent potential or a global density dependent potential such a 

shift would have a no impact on the RDF, in the local density dependent case it produces 

larger or smaller levels of particle aggregation by lowering or raising the energy of 

specific local densities relative to others in the same simulation.  This effect is most 

pronounced with solvent-phobic particles which experience a high level of particle 

aggregation.  Thus, the shifts applied to the local density dependent pairwise potentials 

must be appropriately coupled.  Here, we have treated them simply as an additional set of 

optimization parameters that can be exploited to improve the RDF and excess chemical 

fit.  In this work, we found the best fits were obtained when the pairwise potentials were 

shifted to zero at the cutoff radius for local densities greater than 

! 

"S
L " = 0.2 , but to 

negative values on the order of -0.05kBT for lower local densities.   
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Particle 

Type 

ε ii σ jj ΔGI(W→I) <NL>/<NL>IDEAL 

H 1.0 2.0 13.6±0.1εW 0.95 

T 1.0 1.0 -7.04±0.05εW 1.41 

W 1.0 1.0 0 1.00 

Table 1: Key parameters for all-atom particle types.  H-type particles are “solvent-
philic”, as indicated by the positive free energy of transfer.  T-type are “solvent-phobic”, 
as indicated by a negative free energy of transfer and high solute enhancement ratio.  
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 CMC (σw
-3) NAGG 

Simulation H1T4 H1T5 H1T4  H1T5  

All-Atom18 5×10-6 6×10-7 ≈20 ≈30 

DDIS 4(1)×10-6 8(1)×10-7 16 34 

Table 2: Behavior of H1T4 and H1T5 solutions using the all-atom and DDIS potentials.  
Errors in the last decimal is given in parenthesis.  All-atom results are taken from Ref. 18, 
and have been estimated via free-energy methods.   
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Figure 1: Comparison of excess chemical potential in all-atom (solid line) and coarse-
grained (circles) simulations.  Left: H-type particles in solvent W. Right: T-type particles 
in solvent W.   
 
Figure 2: Comparison of worst-case fits of solute RDF in all-atom (solid line) and 
coarse-grained (circles) simulations.  Left: H-type particles in solvent W at ρH=0.2.  
Right: T-type particles in solvent W at ρT=0.9. 
 

Figure 3: Coarse-grained two-body term for local solute density 

! 

"S
L /ρ=0.2  (⋅⋅⋅H,--T).  

The dark line shows the T-type Lennard-Jones interaction for comparison. 

 
Figure 4: Coarse-grained one-body term as a function of local solute density (Circles: H, 
Squares: T).  Dashed lines indicate excess chemical potential of H- and T-type particles 
as solute concentration approaches zero, and illustrate the equivalence of the one-body 
potential and the excess chemical potential at this concentration.  
 
Figure 5: Free surfactant density (circles) as a function of total surfactant density. Solid 
line is the 45° line corresponding to a condition of no micellar aggregates. Dashed line 
indicates the CMC as calculated by the method of von Gottberg et al.22.  Left: H1T4; 
Right: H1T5.  

 
Figure 6: Simulation snapshot of 216 H1T4 surfactant molecules in implicit solvent 
showing the formation of micellar aggregates. H-type particles are black, T-type particles 
are grey.  This image shows three distinct micelles, two of which (on the left) are in close 
proximity; our clustering algorithm is able to distinguish such closely-spaced micelles 
from a single, elongated micelle. 

 
Figure 7: Micelle aggregation number distribution as measured by a clustering algorithm 
(Circles: H1T4, Crosses: H1T5).  Inset shows the behavior of the distribution for large 
micelle sizes. 
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