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Abstract 1 

Biocatalysis has become a powerful tool for the synthesis of high value compounds, 2 

particularly so in the case of highly functionalized and/or stereoactive products.  Nature 3 

has supplied thousands of enzymes and assembled them into numerous metabolic 4 

pathways.  While these native pathways can be use to produce natural bioproducts, there 5 

are many valuable and useful compounds which have no known natural biochemical 6 

route.  Consequently, there is a need for both unnatural metabolic pathways and novel 7 

enzymatic activities upon which these pathways can be built.  Here, we review the 8 

theoretical and experimental strategies for engineering synthetic metabolic pathways at 9 

the protein and pathway scales and highlight the challenges that this subfield of synthetic 10 

biology currently faces. 11 

12 
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Introduction 13 

Synthetic biology has emerged as a powerful discipline for the creation of novel 14 

biological systems (Endy, 2005; Pleiss, 2006), particularly within the subfield of 15 

metabolic pathway and product engineering (Keasling, 2008; Savage et al., 2008).  16 

Continuing efforts to characterize and understand natural enzymes and pathways have 17 

opened the door for the building of synthetic pathways towards exciting and beneficial 18 

compounds such as the anti-malarial drug precursor artemisinic acid (Ro et al., 2006) and 19 

several branched-chain alcohols for use as biofuels (Atsumi et al., 2007).  The need for 20 

synthetic metabolic routes is a consequence of the fact that the array of compounds of 21 

interest for biosynthesis vastly outnumbers the availability of characterized pathways and 22 

enzymes.  Several key building blocks can be made biologically (Patel et al., 2006); 23 

however, a recent report from the U.S. Department of Energy highlighted twelve 24 

biomass-derived chemical targets, only half of which have known biochemical routes 25 

(Werpy and Petersen, 2004). 26 

 27 

With the lack of characterized natural pathways to synthesize many high-value 28 

compounds, we must learn to forge our own metabolic routes towards these molecular 29 

targets.  Logically, it follows that for unnatural pathways, we will need new, unnatural 30 

enzymes from which these pathways can be composed.  The parts-devices framework of 31 

synthetic biology lends itself well to this dual-sided problem of synthetic pathway 32 

creation (Endy, 2005); that is, pathways can be thought of as metabolic devices 33 

composed of individual enzyme-catalyzed reaction parts.  Implicit within this framework 34 

is the idea that the challenges of pathway creation are best approached at both the part 35 
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and device levels.   In this review, we first discuss efforts at the protein-level for 36 

broadening the array of enzyme parts that can be recruited for use in synthetic pathways.  37 

The discussion is then expanded to pathway-level synthetic biology, where we review the 38 

tools available for designing metabolic pathways from enzyme-level parts and the 39 

implementation strategies for realizing these pathways experimentally.  The overall 40 

process of pathway creation (Figure 1) combines experimental and theoretical 41 

components of synthetic biology at both scales. 42 

 43 

Synthetic Biology at the Protein Scale 44 

Through natural evolution, organisms have acquired the capacity to catalyze a multitude 45 

of diverse chemical reactions as a means to proliferate in a wide range of unique 46 

microenvironments.  Although only a small fraction of the earth’s biodiversity (and an 47 

even smaller subset of its composite enzymes) has been characterized, the identification 48 

and isolation of novel proteins with unique properties or enzymatic function is a 49 

laborious procedure. One particularly promising source of new enzymes and enzymatic 50 

activities is the emerging field of metagenomics (Handelsman, 2004).  Nonetheless, the 51 

physical and catalytic properties of natural enzymes often render them as incompatible 52 

or, at the very least, unoptimized for use in engineered pathways and strains.  In cases 53 

where natural evolution has fallen short of industrial needs, the tools and practices of 54 

synthetic biology can be applied to aid in the creation of designer enzymes and cellular 55 

phenotypes.  The challenge of building new enzymes and reengineering natural ones has 56 

been approached with the development of predictive theoretical frameworks and a range 57 

of experimental techniques (Figure 2).   58 
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 59 

Theoretical Approaches 60 

Computational tools exist to adapt the natural array of proteins for use in an increasing 61 

number of applications.  For example, the effects of codon bias on expression levels 62 

(Kane, 1995; Gustafsson et al., 2004) can be resolved by design tools such as Gene 63 

Designer (Villalobos et al., 2006).  Other effects such as Shine-Dalgarno sequences, 64 

promoter strength, and mRNA stability can be similarly optimized.  Nonetheless, the 65 

application of these tools is still limited to the biochemical diversity found in nature.  To 66 

increase the number and efficiency of biologically-catalyzed reactions, more 67 

sophisticated in silico techniques are needed.  While full-scale protein folding and ab 68 

initio protein design and modeling are neither trivial nor currently practical, the use of 69 

solved protein structures, strong physical models and experimentally derived libraries 70 

allow for the design and improvement of enzymes.  These theoretically designed proteins 71 

in turn have significant potential to impact pathway-level synthetic metabolism 72 

(Yoshikuni et al., 2008). 73 

 74 

An empirical approach to synthetic protein design includes an understanding of the 75 

protein sequence/function relationship.  One example is the use of a linguistic metaphor 76 

to describe a protein sequence (Searls, 1997; Searls, 2002).  In language, a sentence is 77 

composed of a sequence of words whose parsed meaning is a function of not only their 78 

individual definitions but their connotations which are encoded by their type (part of 79 

speech) and their relative location to other words.  Similarly, a protein ‘sentence’ is 80 

composed of residues that have not only a definitive identity but also possess chemical 81 
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properties and a relative position that affect the subsequent fold and function of the 82 

resultant protein (Przytycka et al., 2002).  Building on the successes of a putative protein 83 

grammar (Przytycka et al., 2002; Naoki and Hiroshi, 1997), Loose et al. (2006) recently 84 

demonstrated its use in the design of new antimicrobial peptides.  Using the TEIRESIAS 85 

algorithm (Rigoutsos and Floratos, 1998), a library with homology to known sequences 86 

restricted to below 60% was generated with approximately 50% of designs showing some 87 

antimicrobial activity.  An alternative approach to modeling protein sequence/function 88 

relationships involves the use of folded protein scaffolds and quantum transition state 89 

models.  Through detailed crystal structures and transition state models, Hederos et al. 90 

(2004) noted that the active site of a glutathione transferase was of the appropriate size 91 

and structure to stabilize the transition state complex of the hydrolytic degradation of a 92 

thioester.  By introducing a histidine residue within the active site they were able to 93 

impart significant thioesterase activity.  Finally, physics based free energy approaches 94 

have been developed to predict protein structure/function relationships in the context of 95 

antibody binding strength.  While total free energy models were not a good predictor, 96 

Lippow et al. (2007) found that the electrostatic interaction contributions to total energy 97 

were well correlated with antibody binding affinity.  Using this relationship, they were 98 

able to generate an improved lysozyme antibody design which demonstrated a 140-fold 99 

increase in binding.  While neither of these examples fully describe protein 100 

structure/function relationships, each does offer a unique insight into the problem.  101 

Namely, they drastically reduced the sequence space of potential modifications to a 102 

manageable subset with a high probability of success.  In this manner, such empirical 103 

models serve as an important tool in the design and improvement of enzymes.   104 
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 105 

Using a quantum transition state framework, great strides have been made in the in silico 106 

development of enzyme activities (Jiang et al., 2008; Rothlisberger et al., 2008; Kaplan 107 

and Degrado, 2004).  At the heart of these efforts is a strong understanding of the desired 108 

catalytic mechanism and its associated transition states and reaction intermediates.  Once 109 

compiled, this information can be used to generate an active site of the appropriate 110 

dimensions with critical residues incorporated into appropriate locations for catalysis.  At 111 

this point, the designer has two options: try to identify a suitable folded scaffold that can 112 

accommodate the active site with minimal mutations or generate a protein backbone with 113 

correctly folded active site de novo.  Each method has its inherent advantages and 114 

challenges.   While finding a host scaffold would appear to be the simpler of the two, it 115 

requires extensive searches of protein structure libraries with tools such as RosettaMatch 116 

(Zanghellini et al., 2006).  Nonetheless, this approach has had some success with the 117 

catalysis of unnatural reactions such as the retro-aldol catalysis of 4-hydroxy-4-(6-118 

methoxy-2-naphthyl)-2-butanone (Jiang et al., 2008) and the Kemp elimination 119 

(Rothlisberger et al., 2008).  Coupled with experimental techniques, in silico designed 120 

enzymes can have activity levels comparable to that of evolved natural enzymes 121 

(Rothlisberger et al., 2008).  In contrast, de novo protein scaffold development requires 122 

significant computational effort to not only consider the stability of the desired 123 

conformation of the backbone and active site but also the likelihood of destabilization.  124 

Nonetheless, Kaplan and DeGrado (2004) have successfully used such an approach to 125 

generate an O2-dependent phenol oxidase.  Despite the computational overhead 126 

associated with these methods, their feasibility points to an improving and functional 127 



 

 

8 

understanding of protein structure/function relationships, leading to increased 128 

possibilities for the rational design of enzymes and proteins. 129 

 130 

In the absence of rational insight, theoretical tools can assist experimental techniques in 131 

generating new and improved proteins.  One common technique is protein recombination 132 

or in vitro shuffling which combines the best traits of two or more individual enzymes 133 

(Stemmer, 1994a; Stemmer, 1994b).  However, successful recombination is contingent 134 

on shuffling at domain boundaries to ensure proper folding of each domain.    The 135 

predictive algorithm SCHEMA, developed by Voigt et al. (2002), was designed to aid in 136 

the screening process of such chimeric proteins.  By analyzing the nature and number of 137 

the disruptions of the intermolecular interactions, Voigt et al. were able to generate a 138 

metric correlated with the probability of active -lactamase hybrids of TEM-1 and PSE-4 139 

(2002).  Subsequent studies by Meyer et al. (2003) have confirmed this correlation and 140 

used SCHEMA-guided recombination to derive functional and diverse libraries of 141 

cytochrome P-450s (Otey et al., 2004) and -lactamases (Meyer et al., 2006).  Another 142 

available predictive algorithm is FamClash (Saraf et al., 2004), which analyzes chimeras 143 

for the conservation of charge, volume and hydrophobicity at a given residue.  Generated 144 

sequence scores have been demonstrated to be well correlated with the activities of 145 

hybrid dihydrofolate reductases.  While experimental techniques are important generators 146 

of diverse protein libraries, tools such as FamClash, SCHEMA and other related 147 

sequence analysis programs enrich such chimeric libraries and vastly improve their value 148 

in the development of new and improved proteins.  Currently, these tools are incapable of 149 
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predicting hits a priori; however, their importance in successful protein design should not 150 

be underestimated. 151 

 152 

Experimental Approaches 153 

Rather than focusing on the prediction of protein structure and function, experimental 154 

techniques allow the improvement or modification of existing enzymes, in some 155 

instances creating entirely new enzymes and enzyme activities.  These techniques include 156 

mutagenesis, enzyme engineering and evolution, and gene synthesis technology, with 157 

each boasting their own distinct advantages and inherent limitations (Bonomo et al., 158 

2006; Alper and Stephanopoulos, 2007).  Collectively, they comprise a powerful set of 159 

tools for the efficient generation of enzymes with user-specified properties.  Protein 160 

recombination, for example, provides a means by which secondary structural elements, 161 

from natural or evolved proteins, can be rationally assembled in a modular fashion to 162 

integrate domains featuring desired attributes (Otey et al., 2004). 163 

 164 

The construction of synthetic pathways typically involves the recruitment of genes from 165 

an array of sources to provide the required enzymatic function and activity (Figure 1).  166 

However, heterologously expressed proteins, particularly those originating from a source 167 

organism belonging to a different kingdom than that of the expression host, often suffer 168 

from poor activity as a result of dissimilarities in codon usage.  In such cases, the use of 169 

synthetic genes with codon optimized sequences has been frequently employed to 170 

achieve sufficient levels of functional expression.  Synthesis of a codon optimized 171 

xylanase gene from Thermomyces lanuginosus DSM 5826 led to a 10-fold improvement 172 
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in expression level in E. coli (Yin et al., 2008).  Plant genes are often found to be poorly 173 

expressed in E. coli (Martin et al., 2001).  Martin et al. (2003) synthesized a codon 174 

optimized variant of amorpha-4,11-diene synthase from the Artemisia annua to catalyze 175 

the conversion of farnesyl pyrophosphate to amorphadiene, a precursor used for the 176 

production of the anti-malarial drug artemisinin.  As the cost associated with gene 177 

synthesis continues to decrease, imaginable applications of synthetic genes and artificial, 178 

designer proteins to include increased elements of rational design become increasingly 179 

plausible.  180 

 181 

The versatility of directed evolution for engineering desired enzyme attributes is 182 

highlighted by a multitude of recent works employing this approach for a diverse 183 

assortment of applications, including the enhancement of thermal stability (Asako et al., 184 

2008; Shi et al., 2008) and acid tolerance (Liu et al., 2008); promoting higher chemo-, 185 

regio-, and enantio-selectivity towards substrates (Asako et al., 2008); elimination of 186 

undesired biochemical activities (e.g., side reactions; Kelly et al., 2008); and improving 187 

heterologous expression (Mueller-Cajar et al., 2008).  In the example of the stereospecific 188 

reduction of 2,5-hexanedione to (2S,5S)-hexanediol by alcohol dehydrogenase (AdhA) 189 

from the thermophillic bacteria Pyrcoccus furiosus, laboratory evolution was used by 190 

Machielsen et al. (2008) to alter the enzyme’s optimum temperature and improve its 191 

activity in recombinant E. coli under moderate culture conditions.  Meanwhile, Aharoni 192 

et al. (2004) have achieved functional expression of mammalian paraoxonases PON1 and 193 

PON3 in E. coli through a directed evolution scheme that incorporated family DNA 194 

shuffling (shuffling of DNA encoding homologous genes from different genetic sources) 195 
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and random mutagenesis to achieve the first active microbial expression of recombinant 196 

PON variants.  As a tool, directed evolution continues to benefit from refinements aimed 197 

at improving the efficiency at which desired mutations can be obtained from a minimal 198 

number of iterations while also reducing screening efforts (Reetz et al., 2007; Reetz et al., 199 

2008).  200 

 201 

In addition to improving expression and altering the thermal properties of heterologous 202 

enzymes, novel biochemical activities can be similarly engineered by the aforementioned 203 

strategies.  For example, cytochrome P450 BM3 from Bacillus megaterium has been 204 

engineered via directed evolution using several sequential rounds of mutagenesis to alter 205 

its regioselectivity for the hydroxylation of n-alkanes from subterminal positions to that 206 

of the terminus (Meinhold et al., 2006).  The approach has been employed to convert 207 

several different n-alkanes to their corresponding n-alcohols, including the hydroxylation 208 

of ethane to ethanol as a means for producing more tractable transportation fuels from 209 

petrochemical feedstocks (Meinhold et al., 2005).  To promote high end-product 210 

specificity while maximizing metabolite flux, the preferential activity of an enzyme 211 

between multiple competing substrates can also be tailored.  For instance, the substrate 212 

specificity of pyruvate oxidase (PoxB) from E. coli was altered via localized random 213 

mutagenesis to decrease its activity on pyruvate in favor of an alternative endogenous 214 

metabolite, 2-oxo-butanoate (Chang and Cronan, 2000).  Synthetic pathways 215 

incorporating this PoxB mutant will accordingly display preferential synthesis of 216 

products from the four-carbon precursor.  Meanwhile, Tsuge et al. (2003) utilized site 217 

directed mutagenesis to shift the substrate specificity of PhaJ, an R-specific enoyl-CoA 218 
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hydratase from Aeromonas caviae from short-chain 3-hydroxyacyl-CoA precursors 219 

towards those with longer carbon chain lengths (8 to 12).  When incorporated into an 220 

engineered polyhydroxyalkanoate (PHA) synthesis pathway in E. coli, increased molar 221 

fractions of C8 and C10 3-hydroxyacid monomer units were found to be incorporated into 222 

PHA.   In this case, the capacity to distinctly manipulate the composition of PHAs makes 223 

possible the synthesis of novel bio-plastics with customizable physical properties to meet 224 

commercial requirements.  The ability to finely tune the substrate specificity of an 225 

engineered enzyme is of particular importance for promoting high selectivity and product 226 

yield, as well as for reducing the ill-effects of molecular cross-talk between engineered 227 

and endogenous pathways.   228 

 229 

At the protein level, synthetic biology aims to expand the catalog of well-characterized 230 

enzymes while also engineering novel biochemistries.  Subsequent incorporation of 231 

engineered enzymes into synthetic pathways leads to the construction of devices that can 232 

be implemented to achieve a user-specified function, such as the production of biofuels or 233 

high-value pharmaceutical compounds.  The design and construction of new metabolic 234 

routes from individual enzymes represents synthetic biology at the next scale, the 235 

pathway scale, and has unique challenges of its own.   236 

 237 

Synthetic Biology at the Pathway Scale 238 

Pathway-scale synthetic biology aims to create novel metabolic routes towards both 239 

existing metabolites and unnatural compounds.  Traditionally, pathway engineering has 240 

been synonymous with metabolic engineering and its toolbox has been composed of the 241 



 

 

13 

same tools: gene knockouts, flux optimization, gene overexpression, and the like.  The 242 

ability to manipulate natural metabolism has seen many useful applications, such as 243 

improving ethanol production in Saccharomyces cerevistiae (Bro et al. 2006), 244 

solventogenesis in Clostridium acetobutylicum (Mermelstein et al., 1993; Woods, 1995), 245 

and penicillin production in Penicillium chrysogenum (Casqueiro et al., 2001).  A key 246 

limitation in all of these examples is the confinement of pathway engineering to the 247 

manipulation of natural metabolism.  Continuing advances in characterizing, modifying, 248 

and even creating enzymes (several of them discussed in the previous section of this 249 

review) now allow us to build unnatural pathways for the biological production of 250 

compounds.  Understanding synthetic biology at the protein scale affords us the 251 

opportunity to apply it at the pathway scale. 252 

 253 

As at the protein scale, pathway-level synthetic biology has been approached from both 254 

theoretical and experimental fronts.  The theoretical work centers on the concept of 255 

pathway design – assembling a logical series of enzyme-catalyzed reactions to convert an 256 

accessible substrate into a valued final compound.  Theoretical pathway design probes 257 

what conversions are possible and what enzyme parts need to be assembled to create a 258 

functional metabolic device.  In contrast, experimental efforts focus on the construction 259 

and application of unnatural pathways and serve as powerful real-world examples of what 260 

these pathways can accomplish.  Experimental approaches enable the exploration of 261 

enzyme behaviors such as substrate promiscuity and activity, both useful properties for 262 

creating unnatural pathways that cannot readily be predicted with theoretical approaches. 263 

 264 
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Theoretical Approaches 265 

Before an unnatural metabolic pathway can be built in the laboratory, it must first be 266 

designed.  The goal of pathway design is to use a series of biochemically-catalyzed 267 

reactions to connect a target product molecule to either a cellular metabolite (such as 268 

acetyl-CoA, α-ketoglutarate, or L-alanine) or to a feasible feedstock (such as glucose or 269 

glycerol).  This can be accomplished using either natural enzymes or engineered ones.  270 

The sheer number of known enzymes (both natural and engineered) and enzyme-271 

catalyzed reactions available means that there will almost certainly exist many possible 272 

theoretical pathways towards a given target compound (Li et al., 2004; Hatzimanikatis et 273 

al., 2005).  Identifying and ranking these different possibilities are the central challenges 274 

in pathway design. 275 

 276 

One of the first steps in pathway design is obtaining knowledge of the enzymes and 277 

enzyme-catalyzed reactions available for use in a pathway.  Comprehensive protein and 278 

metabolism databases, such as BRENDA (Schomburg et al., 2004), KEGG (Kaneshisa et 279 

al., 2006), Metacyc (Capsi et al., 2006), and Swiss-Prot (Wu et al., 2006), provide a 280 

wealth of information on the pool of natural, characterized enzymes that can be recruited.  281 

More importantly, these databases reveal chemical conversions that are achievable with 282 

enzymes.  As of the preparation of this manuscript, there are approximately 398,000 283 

protein entries in Swiss-Prot (build 56.2), from which the enzymes are organized into 284 

4757 four-digit enzyme classification (E.C.) groups in the most recent version of 285 

BRENDA (build 2007.2).  Because of the large number of characterized enzymes, those 286 

performing similar reaction chemistries are typically organized into generalized enzyme-287 
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catalyzed reactions for the purposes of pathway construction (Li et al., 2004).  A 288 

generalized enzyme-catalyzed reaction is defined as the conversion of one functional 289 

group or structural pattern in a substrate into a different group or structure in its product 290 

(Figure 3).  Structural information about the non-reacting portions of the substrate is 291 

ignored, making the identification of enzymes to carry out a desired chemical conversion 292 

a much more tractable problem.  However, the logical rules for assigning enzymes to a 293 

generalized reaction can be subjective (Figure 3).  One could for instance differentiate 294 

between reactions solely on the reacting functional groups (i.e. aldehyde to alcohol) as Li 295 

and coworkers (2004) did, or one could also include information about conserved 296 

patterns of molecular structure between similar enzyme-catalyzed reactions.  297 

Furthermore, generalized enzymatic reactions do not all fall cleanly into the existing E.C. 298 

system (Figure 3c). 299 

 300 

Despite the need for a universal standard in reaction generalization, several publically-301 

available tools utilize this approach to address the problem of pathway design.  The 302 

BNICE (Biochemical Network Integrated Computational Explorer) framework allows for 303 

the discovery of numerous possible metabolic routes between two compounds (Li et al., 304 

2004; Hatzimanikatis et al., 2005).  This framework was applied to aromatic amino acid 305 

biosynthesis to find over 400,000 theoretical biochemical pathways between chorismate 306 

and phenylalanine, tyrosine, or tryptophan (Hatzimanikatis et al., 2005) and it was used 307 

to explore thousands of novel linear polyketide structures (González-Lergier et al., 2005).  308 

Our group has developed a database of over 600 conserved structure generalized enzyme-309 

catalyzed reactions called ReBiT (Retro-Biosynthesis Tool, http://www.retro-310 
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biosynthesis.com) which accepts as input a molecular or functional group structure and 311 

returns as output all 3-digit E.C. groups capable of reacting with or producing that 312 

structure.  The University of Minnesota Biocatalysis/Biodegradation Database (UM-313 

BBD) uses a series of generalized reaction rules to propose pathways step by step, with 314 

particular emphasis on analyzing the degradation trajectories of xenobiotics (Ellis et al., 315 

2006; Fenner et al., 2008). 316 

 317 

Typically multiple, and indeed in some cases, several thousand, metabolic routes can be 318 

proposed for a given compound.  How does one distinguish logical, feasible pathways 319 

from frivolous, improbable ones?  What metrics can be applied to judge one 320 

computationally-generated pathway as superior (i.e. more likely to be functionally 321 

constructed) to another?   One way of narrowing the choice of pathways is to apply 322 

natural precedent to filter out unlikely pathway steps.  In this strategy, a large set of 323 

experimentally validated enzyme-catalyzed reactions are examined for patterns of 324 

structural change and a series of rules are developed to give preference to reaction steps 325 

containing structural changes that follow these rules.  This methodology is implemented 326 

in the UM-BBD to avoid the “combinatorial explosion” that results when considering all 327 

the possible pathways that any given compound can take (Fenner et al., 2008).  Another 328 

ranking strategy is to calculate the thermodynamic favorability of the steps and to 329 

penalize pathways involving steps which are energetically unfavorable.  This approach is 330 

taken by the BNICE framework (Hatzimanikatis et al., 2005) using a functional group 331 

contribution method (Jankowski et al., 2008) to compute the overall change in Gibbs 332 

energy for each individual pathway step.  A new pathway modeling tool, DESHARKY, 333 



 

 

17 

quantifies and employs metabolic burden as a metric for judging unnatural pathways and, 334 

in particular, how they are connected to cellular metabolism (Rodrigo et al., 2008).  335 

DESHARKY is a Monte Carlo-based algorithm that estimates the transcriptomic and 336 

metabolic loads on cells expressing unnatural pathways and calculates the decrease in 337 

specific growth rate as a result of these additional burdens.  There are still other 338 

possibilities for pathway ranking, such as the number of pathway steps taken, the known 339 

substrate specificities (or lack thereof) of the enzymes involved in each pathway, or the 340 

availability and diversity of homologous enzymes to test at each pathway step.  One of 341 

the key challenges in pathway design is scoring pathways in a robust and balanced 342 

manner, and only as more non-natural pathways are designed and built will there be a 343 

better understanding as to which of these metrics are relevant and useful. 344 

 345 

Experimental Approaches 346 

With a target compound and a proposed metabolic route to reach that compound in hand, 347 

one is now ready to begin experimental implementation of that pathway.  Synthetic 348 

pathway construction occurs over several shades of novelty – from recreating natural 349 

pathways in heterologous hosts to creating synthetic pathways that parallel natural ones 350 

to building completely novel metabolic routes towards unnatural compounds from 351 

multiple, ordinarily unrelated enzymes (Figure 4).  Here we discuss the situations in 352 

which non-natural pathways prove useful and several general strategies for creating these 353 

pathways. 354 

 355 
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Through the course of evolution, nature has assembled many pathways towards several 356 

useful compounds, such as the biofuel and solvent 1-butanol in Clostridium 357 

acetobutylicum (Jones and Woods, 1986; Dürre et al., 2002; Lee et al., 2008), the C5 358 

terpenoid building block isopentenyl pyrophosphate (IPP) in Saccharomyces cerevisiae 359 

(Seker et al., 2005), and the biopolymer polyhydroxybutyrate (PHB) in Ralstonia 360 

eutropha (Wang and Yu, 2007).  These pathways have physiological roles within their 361 

native hosts; for example, the butanol pathway from acetyl-CoA in C. acetobutylicum 362 

serves as an electron sink to regenerate NAD
+
 for glycolysis while deacidifying its 363 

environment (Jones and Woods, 1986).  Pathways in nature are optimized through 364 

evolution to accomplish their physiological objectives, yet in most cases of pathway 365 

engineering, it is desired to maximize the production of a target molecule in a pathway 366 

rather than to accomplish a physiological goal.  Butanol production in C. acetobutylicum, 367 

for instance, is constricted by cellular regulation tying it to pH, redox conditions, and 368 

sporulation (Dürre et al., 2002; Lee et al., 2008).  The transference of natural pathways 369 

into heterologous hosts isolates these pathways from their regulatory elements and 370 

represents a first small step towards the creation of non-natural metabolism.  While 371 

heterologous pathway expression is limited to only pathways found in nature, it 372 

nonetheless has proven effective in enhancing product titers and/or deregulating 373 

compound production for a wide array of products, including the compounds in the 374 

examples above (Atsumi et al., 2007; Kang et al., 2008; Martin et al., 2003; Pitera et al., 375 

2007).   376 

 377 
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The next level of novelty in synthetic pathway construction is creating metabolic routes 378 

that parallel natural pathways, typically by capitalizing on enzymatic promiscuity or 379 

enzyme engineering to operate natural or near-natural pathways on non-natural 380 

substrates.  This pathway construction strategy allows for the biosynthesis of truly 381 

unnatural compounds.  Returning to the PHB example, recombinant R. eutrophia have 382 

been shown to incorporate sulfur-containing short- and medium-chain length thioacids 383 

into polythioester co-polymers (Ewering et al., 2002).  The synthesis of these completely 384 

unnatural polymers was made possible by taking advantage of the relatively broad 385 

substrate specificity of polyhydroxyalkanoate (PHA) synthases (Hazer and Steinbüchel, 386 

2007), and because of that broad substrate specificity, hundreds of different monomer 387 

units of various sizes (C3-C16) and substituents have been incorporated into PHA co-388 

polymers (Steinbüchel and Valentin, 1995).  Another example of parallel pathway 389 

construction is the synthesis of triacetic acid lactone from acetyl-CoA by expressing an 390 

engineered fatty acid synthase B from Brevibacterium ammoniagenes (Zha et al., 2004).  391 

This multifunctional enzyme has many domains designed to catalyze the various 392 

reductions and condensations necessary for fatty acid synthesis (Meurer et al., 1991).  By 393 

specifically inactivating the ketoacyl-reductase domain of this fatty acid synthase, the 394 

enzyme could no longer use NADPH to reduce its acetyl-CoA condensation products, 395 

causing them to circularize into triacetic acid lactone rather than forming linear fatty 396 

acids.  Finally, natural products can be synthesized by arranging whole or partial 397 

pathways to form a mixed, synthetic metabolic route.  For example, the theoretical yield 398 

of L-glutamate was improved from 1 mol glutamate per mol glucose to 1.2 mol per mol 399 

by augmenting the native Corynebacterium glutamicum pentose phosphate pathway with 400 
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a phosphoketolase from Bifidobacterium lactis (Chinen et al., 2007).  This strategy 401 

allowed for the production of acetyl-CoA without the loss of carbon caused by pyruvate 402 

decarboxylation to acetyl-CoA and resulted in increased glutamate titers and 403 

productivity. 404 

 405 

One of the most promising (and challenging) strategies for building synthetic pathways is 406 

de novo pathway construction:  the creation of pathways using disparate enzymes to form 407 

entirely unnatural metabolic routes towards valuable compounds.  This method of 408 

pathway building does not rely upon natural precedent, but rather allows one to build 409 

entirely new metabolite conduits from individual enzymatic pieces.  As a result, this 410 

approach allows for the biosynthesis of the widest array of compounds.  On the other 411 

hand, this strategy is the most difficult to realize given that for a completely unnatural 412 

pathway, there may not be a complete set of appropriate known enzymes in nature to 413 

build it.  De novo pathway construction illustrates the need for a more complete set of 414 

enzymatic tools for use in building synthetic pathways, and frequently this strategy is 415 

coupled with enzyme engineering or the exploitation of enzymatic promiscuity to 416 

compensate for the absence of a natural enzyme to execute a desired conversion step. 417 

 418 

Because of the challenge in creating functional de novo pathways, few examples exist.  419 

However, those that are available describe the biosynthesis of a wide range of useful 420 

compounds and illustrate the utility of the approach.  For instance, a pathway for the 421 

biosynthesis of 1,2,4-butanetriol from D-xylose and L-arabinose was assembled using 422 

pentose dehydrogenases and dehydratases from Pseudomonas fragi and E. coli and 423 
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benzoylformate decarboxylase from Pseudomonas putida (Nui et al., 2003).  In this case, 424 

multiple decarboxylases were screened to find a promiscuous decarboxylase from P. 425 

putida capable of acting on a 3-deoxy-glyceropentulosonic acid intermediate in the 426 

pathway.  Another example of exploiting substrate promiscuity in de novo pathway 427 

design is in the synthesis of several higher biofuels such as 2-methyl-1-butanol, 428 

isobutanol, and 2-phenylethanol from glucose in E. coli (Atsumi et al., 2007).  Here, 429 

several 2-keto-acid decarboxylases were screened to identify one from Lactococcus lactis 430 

for use in creating alcohols from 2-ketoacids (when combined with native E. coli alcohol 431 

dehydrogenase activity).  In a third example, a synthetic pathway for the unnatural 432 

aminoacid phenylglycine from phenylpyruvate was made by combining 433 

hydroxymandelate synthase, hydroxymandelate oxidase, and D-(4-434 

hydroxy)phneylglycine aminotransferase activities from Amycolatopsis orientalis, 435 

Streptomyces coelicolor, and P. putida (Müller et al., 2006).  Finally, engineered 436 

enzymes can be employed to create de novo pathways, as in the recent case of the 437 

synthesis of 3-hydroxypropionic acid from alanine in E. coli (Liao et al., 2007).  Here, a 438 

lysine 2,3-aminomutase from Porphyromonas gingivalis (Brazeau et al., 2006) was 439 

evolved to have alanine 2,3-aminomutase activity, allowing for the biosynthesis of β-440 

alanine.  Combining this evolved enzyme with β-alanine aminotransferase and 441 

endogenous alcohol dehydrogenase activities afforded the final 3-hydroxypropionic acid 442 

product.  Another very recent work utilizes engineered pyruvate decarboxylase and 2-443 

isopropylmalate synthase for the synthesis of non-natural alcohols from 2-ketoacids in E. 444 

coli (Zhang et al., 2008).  By engineering the enzymes responsible for elongating 2-445 
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ketoacids and carrying out their decarboxylation and reduction, the production of a 446 

broader array of longer-chain alcohols was enabled. 447 

 448 

Conclusions 449 

The design and assembly of unnatural metabolic pathways represents a young and 450 

exciting field with the potential to supplement, expand upon, or even replace current 451 

industrial processes for the production of fine and commodity chemicals.  Synthetic 452 

pathway engineering integrates many components and consequently is highly 453 

interdisciplinary (Figure 1).  Key issues that need to be overcome in pathway design are 454 

(1) establishing a standard for generalized enzyme-catalyzed reactions, (2) capturing 455 

enzyme substrate preferences in these generalized reactions, and (3) determining the 456 

pathway metrics that correlate with successful pathway construction.  Overcoming the 457 

first two challenges will allow for the creation of the next generation of pathway design 458 

tools that better account for enzyme behavior, while conquering the last challenge will 459 

afford us the ability to rank and choose metabolic pathways and refine the results from 460 

design tools.  For experimentally implementing unnatural pathways, the central challenge 461 

is the limited number of characterized enzymes for the construction of new pathways.  In 462 

particular, there is great demand for both promiscuous natural enzymes and engineered 463 

enzymes to perform specific desired reactions. 464 

 465 

The need for new enzymes has given rise to several theoretical frameworks for relating 466 

protein sequence, structure, and function.  These frameworks each address a piece of the 467 

problem – energetics, active site catalysis, and protein backbone structure, etc. – but the 468 
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ability to routinely build whole enzymes is still in the distant future.  In the meantime, 469 

mimicking active sites, backbones, and protein linguistics from nature has proven fruitful 470 

in creating novel proteins.  Experimental evolution and chimeragenesis of enzymes are 471 

standard ways of imparting unnatural properties, particularly in the absence of detailed 472 

information about the protein.  The power of these experimental techniques is primarily 473 

limited by the size of the resulting enzyme libraries and the throughput of the screen to 474 

analyze them.  Computational tools such as SCHEMA (Voigt et al., 2002) and Famclash 475 

(Saraf et al., 2004) can assist in focusing and enriching these libraries.  476 

 477 

As biotechnology is increasingly relied upon as a means for chemical production, 478 

progress on the creation of new enzymes and unnatural pathway design and construction 479 

will flourish.  These new pathways must still be expressed within a cellular context, thus 480 

improving and understanding unnatural pathway efficacy at a systems level will be 481 

important for shattering barriers in pathway expression and product titer.  For example, 482 

application of flux balance analysis (Edwards et al., 2002) can guide systems-level 483 

integration of non-natural pathways with host metabolism.  Furthermore, redox balancing 484 

and cofactor regeneration with respect to new pathways are critical to minimize their 485 

burden on the host cell (Endo and Koizumi, 2001).  Systems-level functionality can also 486 

be coupled with unnatural pathways, for instance in the delivery of recombinant microbes 487 

to a cancerous tumor (Anderson et al., 2006).  Such microbes could be engineered to 488 

simultaneously produce and deliver a drug.  Established and recent advances in metabolic 489 

engineering, such as global transcription machinery engineering (Alper and 490 
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Stephanopoulos, 2007), can complement synthetic biology in this regard, leading to 491 

improved performance of novel pathways.    492 
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Figure Captions 827 

Figure 1:  Overall scheme for pathway creation.  The creation process includes protein-level recruitment 828 

and reengineering of enzymes and pathway-level efforts to design and assemble these enzymes into an 829 

unnatural pathway. 830 

 831 

Figure 2:  Flowchart for the creation of new enzymes with experimental techniques and computational 832 

tools.  New enzymes generated with these methods are examined for desired properties and either further 833 

reengineered or adapted for use in unnatural pathways. 834 

 835 

Figure 3:  Generalized enzyme-catalyzed reactions for a subset of E.C. 1.1.1 alcohol dehydrogenases (3a), 836 

E.C. 4.3.1 ammonia-lyases (3b), and E.C. 2.5.1 synthases (3c).  The “A” atoms present in the molecular 837 

structures are wildcards.  In Figure 3a, two different methods of assigning generalized reactions, one 838 

considering only the reacting parts of the molecule (core generalized reaction) and one identifying patterns 839 

of conserved molecular structure in addition to the reacting structural elements (conserved structure 840 

generalized reaction), arrive at the same generalized reaction.  In Figure 3b, the two methods arrive at 841 

different generalized reactions, illustrating the need for a generalization standard.  In Figure 3c, a set of five 842 

enzymes within a three-digit E.C. class result in two different sets of generalized reactions, illustrating that 843 

the E.C. system does not necessarily correlate with reaction generalization. 844 

 845 

Figure 4:   846 

Strategies for synthetic pathway creation arranged in increasing degrees of departure from nature.  A, B, C, 847 

D, F, α, β, γ, and Δ represent metabolites, E represents an enzyme catalyzing a reaction, and ε represents an 848 

engineered enzyme catalyzing a reaction.  In (1), a natural pathway in its native host is transferred to a 849 

heterologous host, decoupling it from native regulation.  This strategy is limited to the production of natural 850 

products using natural pathways.  In (2), new pathways are made in parallel to natural ones through the use 851 

of promiscuous enzymes (2a), enzyme engineering (2b), or combinations of natural pathways (2c).  852 

Strategies 2a and 2b allow for the synthesis of new, non-natural products, while 2c allows for the creation 853 

of new metabolic routes between natural metabolites.  Strategy 3 represents de novo pathway construction, 854 
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where individual unrelated enzymes are recruited to form entirely unnatural pathways.  This can be done 855 

using native enzyme activities (3a), promiscuous enzymes (3b), engineered enzymes (3c), or combinations 856 

thereof. 857 

858 



 

 

42 

Figure 1.  859 
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Figure 3a.  867 
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Figure 3b.  871 
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Figure 3c.  875 
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Figure 4.  879 
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