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Abstract: This paper represents the optimal control theory and its application to the full scale 

helicopters. Generally the control of a helicopter is a hard task, because its system is very nonlinear, 

coupled and sensitive to the control inputs and external disturbances which might destabilize the 

system. As a result of these instabilities, it is essential to use a control process that helps to improve 

the systems performance, confirming stability and robustness. The main objective of this part is to 

develop a control system design technique using Linear Quadratic Regulator (LQR) to stabilize the 

helicopter near hover flight. In order to achieve this objective, firstly, the nonlinear model of the 

helicopter is linearized using small disturbance theory. The linear optimal control theory is applied to 

the linearized state space model of the helicopter to design the LQR controller. To clarify robustness 

of the controller, the effects of external wind gusts and mass change are taken into concern. Wind 

gusts are taken as disturbances in all directions which are simulated as a sine wave. Many 

simulations were made to validate and verify the response of the linear controller of the helicopter. 

The results show that the use of an optimal control process as LQR is a good solution for MIMO 

helicopter system, achieving a good stabilization and refining the final behavior of the helicopter and 

handling the external wind gusts disturbances as shown in the different simulations. 

Key Words: helicopter, state space model, full state feedback, linear quadratic regulator, wind gust, 

robust control. 

1. INTRODUCTION 

The helicopter motion has six degrees of freedom: longitudinal motion (up-down, fore-aft), 

lateral motion (left-right), and angular motion (pitching, rolling, and yawing). These motions 

are accomplished by collectively varying the pitch of all MR blades, therefore the rotor 

thrust increased; this control is called (collective pitch). 

The blades pitch can be cyclically varied as a sinusoidal function of azimuth which 

inclines the tip-path-plane to any direction and changes the thrust vector. This control is 

called (cyclic pitch). Changing pitch of the tail rotor blades collectively lead to change of the 

tail rotor thrust and hence of the yaw moment. This control is called (pedal or TR collective). 
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A helicopter pilot must simultaneously control three forces and moments, hence, the 

control of a helicopter, is a difficult task indeed. A helicopter pilot typically has at his 

disposal a cyclic stick to control both fore/aft motions (pitch control) and left/right motion 

(roll control), a collective lever to control up and down motions (vertical control), and pedals 

to control left and right yawing motions (yaw control) [1] and [2]. 

State feedback control, also known as pole placement, involves the relocation of the 

system poles to the left half s plane in achieving stability in the closed-loop, with the 

assumption that the system is controllable or observable [3]. 

Methods based on the linear quadratic regulator (LQR) have been proven to be very 

efficient and are relatively simple ways used even for a highly nonlinear system like a 

helicopter, also linear quadratic optimal control is that LQR designs are robust with respect 

to fairly large plant variations [5]. A lot of researchers exploited the LQR theory for 

helicopter control, see references [6], [7], [8], [9], and [10]. 

This paper describes the helicopter dynamics model and the stability of the unstable 

helicopter is discussed. The paper is organized as follows: Section-2 deals with helicopter 

nonlinear dynamic model; section-3 describes the linear model of helicopter; section-4 is 

devoted to the controller structure using LQR controller with full state feedback for 

helicopter stabilization; section-5 describes the helicopter linear model for mass change; 

section-6 describes the helicopter linear model in presence of gust disturbances; section-7 

presents the simulation results of the helicopter response to test the LQR controller 

performance for mass change and gust disturbances. Main conclusions can be found in 

section-8. 

2. HELICOPTER NONLINEAR DYNAMIC MODEL 

Helicopter can be modeled as the combination of many interacting subsystems. By 

combining aerodynamics of each subsystem, we can get the integrated helicopter dynamic 

equations. The rotor interacts with the air and induces the so called “inflow”. The existence 

of inflow can affect the rotor aerodynamics heavily, so that the inflow effect must be 

considered; also the rotor flapping dynamic will be considered [11]. The helicopter model 

used in this paper has a four blades main rotor and a three blade tail rotor with conventional 

mechanical controls. A model of helicopter normally consists of a total of four inputs: θo, θ1s, 

θ1c, θoT   and nine states: u, v, w, φ, θ, ψ, p, q, r. The six degree-of-freedom rigid body motion 

of helicopter can be described as following: [11]. 

 Force equations: 

X = m. (U̇ − R. V + Q.W + g. sin(Θ)) (1) 

Y = m. (V̇ − P.W + R. U − g. sin(Φ) cos(Θ)) (2) 

Z = m. (Ẇ − Q. U + P. V − g . cos(Φ) cos(Θ)) (3) 

 Moment equations: 

L = P.̇ Ixx + Q. R. (Izz − Iyy) − (R.̇ + P. Q). Ixz (4) 

M = Q.̇ Iyy − P. R. (Izz − Ixx) + (P2 − R2). Ixz (5) 

N = R.̇ Izz + P. Q. (Iyy − Ixx) + (Q. R − Ṗ). Ixz (6) 
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The three kinematic equations are obtained by relating the three body axes system rates 

P, Q, and R with the three Euler rates Φ̇, Θ̇, Ψ̇ in the earth axes system. 

Φ̇ = P + Q. sin(Φ). tan(Θ) + R. cos(Φ). tan(Θ) (7) 

Θ̇ = Q. cos(Φ) − R. sin(Φ) (8) 

Ψ̇ = Q. sin(Φ). sec(Θ) − R. cos(Φ). sec(Θ) (9) 

Notice that the equations uses uppercase characters (U, V, W, P, Q, R, Φ, Θ, Ψ) in the 

nonlinear equations and lowercase characters (u, v, w, p, q, r, φ, θ, ψ) in the linearized 

equations. The rotor forces and moments are functions of these states and inputs besides the 

rotor induced velocity vi and flapping angles βo, β1s, β1c [11, 14]. 

Thrust vector in body frame is defined as a function the tilt of tip path plane (β1s, β1c).  

By controlling the TPP inclination, the pilot indirectly controls the direction of the 

propulsion forces [15]. 

3. LINEAR MODEL OF HELICOPTER 

Assume the model to have only small perturbations and applying the small-disturbance 

theory, we assume that the motion of the helicopter consists of small deviations about a 

steady flight condition. 

The linearized equations of motion for the full 6 DoFs, describing perturbed motion 

about a general trim condition, can then be written as: 

 ẋ = Ax + Bu (10) 

Equation (10) represents the state space model of the linear model, where A is the 

stability matrix which represents the characteristic of the system and B is the control matrix 

[11]. The state space model consists of a 9×9 state matrix A and a 9×4 input matrix B as 

shown in equations (11) 

[ẋ]9×1 = [
Alongitudinal

4×4 Across coupling
4×5

Across coupling
5×4 Alateral

5×5 ]

9×9

. [x]9×1   + [
Blongitudinal

4×4

Blateral
5×4

]

9×4

. [u]4×1 (11) 

The output matrix is: 

[y]9×1 = [I]9×9. [x]9×1 + [0]9×4. [u]4×1 (12) 

Where x and u are defined as: 

[x] = [u w q θ v p ∅ r ѱ]𝑇 (13) 

[u] = [θo θ1s θ1c θoT ]T (14) 

Finally, there are 36 stability derivatives and 24 control derivatives in the standard 6 

DoFs set. These derivatives are derived and listed in [11] and [14].  

Stability and control derivatives of the example helicopter are calculated near hover 

according to [14]. 

The derivatives are inserted in matrices A and B and G. The eigenvalues of stability 

matrix, A, are shown in Table.1. 

From this table, it is shown that the system has complex poles with positive real parts 

which indicate that the system is unstable. 



Ahmed ABOULFTOUH, Gamal EL-BAYOUMI, Mohamed MADBOULI 14 
 

INCAS BULLETIN, Volume 7, Issue 3/ 2015 

Table 1. Uncontrolled Helicopter Poles 

Poles 

0 

-5.56 

-0.962 

0.0721+0.362i 

0.0721−0.362i 

-0.439 

-0.24 

-0.00896+0.0591i 

-0.00896+0.0591i 

4. LQR CONTROLLER DESIGN 

The Linear Quadratic Regulator (LQR) was implemented to control the helicopter. It is one 

of the most commonly used methods to design full state feedback control for linear systems 

which seeks a solution for the linear full state feedback problem [19]. Consider the linear 

time-invariant system: 

ẋ = Ax + Bu, y = Cx + Du (15) 

The state feedback control law has the form 

u(t) = −Kx(t) (16) 

As all of the states are measured, the resulting feedback system is called a full state 

feedback system [16]. An equation for the closed loop system is derived as follow: 

ẋ(t) = (A − BK)x(t) (17) 

This system is stable if and only if the system matrix, A-BK, has all its eigenvalues in 

the left half plane. The closed loop system with full state feedback is shown in Figure 1. 

 
Fig. 1: Full state feedback of helicopter [11] 

Where K is the feedback gain matrix which minimize the following performance index, 

J =
1

2
∫(xTQx + uTRu)

∞

0

 dt (18) 

Q and R are the weighting matrices for states and inputs, respectively. Q must be 

positive semi definite and R positive definite. Q and R matrices contain all zeroes except 

along the main diagonal. Considering this assumption that the system is controllable and 
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observable, then the optimal Feedback matrix K that minimize the performance index (J) is 

given by equation (19). [17] and [18] 

K = R−1BP (19) 

Where the matrix P is the solution of the Riccati equation and after solving Equation 

(20), matrix P will be used to find feedback gain matrix K. 

ATP + PA − PBR−1BTP + Q = 0 (20) 

Finally the optimal performance index will be calculated using P. 

J∗ =
1

2
XO

TPXO (21) 

In [8], the theory of LQR controller design has been investigated and a different 

approach based on Bryson’s rule [19] has been adopted to select the weighting matrices. 

Bryson’s rule will be used in this paper, because it depends on the response and actuators 

constraints in the selection of Q and R weighting parameters. 

R matrix is shown in equation (22). 

R =

[
 
 
 
 
U1

−2  0  0  0 

0  U2
−2 0  0

0  0 U3
−2 0

0  0  0 U4
−2 ]

 
 
 
 

 (22) 

According to Bryson’s rule, U is the maximum acceptable input actuator. 

The states matrix Q can be found using Bryson’s rule as shown in equation (23). 

Q =

[
 
 
 
 
 
 
 
 
Q110 0 0 0 0 0 0 0
0 Q22 0 0 0 0 0 0 0
0 0 Q33 0 0 0 0 0 0
0 0 0 Q44 0 0 0 0 0
0 0 0 0 Q55 0 0 0 0
0 0 0 0 0 Q66 0 0 0
0 0 0 0 0 0 Q77 0 0
0 0 0 0 0 0 0 Q880
 0 0 0  0 0 0 0 0 Q99]

 
 
 
 
 
 
 
 

 (23) 

According to Bryson’s rule: 

Qii =
1

|xi|
2

 (24) 

Where xi is the maximum acceptable value for each state. 

The maximum accepted control inputs and maximum states for the helicopter in this 

paper are shown in Table 2. and Table 3. 

     Table 2. Helicopter Actuators Range   Table 3. LQR Weighting States 

Actuator Input Range (degree)  State Maximum 

θ0 19  q 12 deg/sec (0.209 rad/sec) 

θ1s ± 20  ϴ, ψ ± 30 degree 

θ1c ± 10.5  p 20 deg/sec (0.349 rad/sec) 

θ0T -15 to + 27  Ф ± 60 degree 

   r 10 deg/sec (0.1745 rad/sec) 
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The weighting of states values are selected according to the aeronautical design standard 

(ADS-33 Level 1) (military aircraft). [11]. The weighting parameters of linear velocities are 

selected to give a resonable results near hover flight at constant altitude. For different initial 

longitudinal and lateral velocities conditions, the time responses of the states and control 

inputs are used to demonstrate the controller performance and closed-loop system behavior 

that are achieved. The initial conditions are considered to be up to ±10 ft/sec for both 

longitudinal and lateral velocities. The weighting matrices Q and R are selected to be for the 

initial  speed range of  ±10 ft/sec as below. 

Q=diag(0.0156, 𝟏𝟎𝟔, 22.8, 3.6481, 0.0091, 8.2082, 0.912, 32.8329, 3.6481) 

R=diag(9.0950,  8.2082,  29.7804,  4.5038) 

The resulted feedback gains from LQR controller could obtain the stable poles as shown 

in Table 4. 

Table 4. Controlled Helicopter Poles 

Pole 

-780 

-30.4 

-11.3 

-4.78 

-0.837 

-0.525– 0.456i 

-0.525– 0.456i 

-0.317 

-0.075 

5. TEST OF LQR CONTROLLER FOR MASS CHANGE 

One of the assumptions made for modelling the helicopter was to treat the gross weight 

(mass) of the helicopter as constant disregarding fuel consumption. Besides fuel 

consumption the helicopter might also have to offload a payload in hover in midair. This 

could be in a military configuration offloading troopers or weapons or it could be in fire-

fighter configuration offloading water or chemicals. Helicopter in this paper has a gross 

weight of 20000 lb, fuel weight of 3000 lb which it represents 15% of the gross weight. The 

minimum operating empty weight is 10700 lb which it represents about 53.5 of the gross 

weight. 

It has been chosen here to focus on the change in mass and inertia and to disregard the 

change in CG. The estimation of helicopter inertia is a complex problem, so an approximate 

relation is suggested here; this relation depends on the radius of gyration for each axis. The 

radius of gyration ρg can be calculated through the relations in equation (25) 

ρgxx
= √

Ixx

m
             , ρgyy

= √
Iyy

m
              and    ρgzz

= √
Izz

m
 (25) 

The radius of gyration is calculated for each axis and assumed to be constant, and then 

the new moment of inertia for any change in mass can be calculated. 

For robust control the state space model is extended with two uncertainty matrices A̅ and 

B̅ as seen in equation (26) 

ẋ = (A + εA̅ )x + (B + εB̅  )u (26) 
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Where ε is the uncertainty parameter for the mass change and it can be defined as 

equation (27) 

ε =
Gross weight

New weight
− 1 (27) 

The uncertainty matrix A̅ will be written as shown in equation (28) 

 Xu

m
 

Xw

m
 

Xq

m
 0 

Xv

m
 

Xp

m
 0 

Xr

m
 0 

 

 
Zu

m
 

Zw

m
 

Zq

m
 0 

Zv

m
 

Zp

m
 0 

Zr

m
 0 

 

 
Mu

Iyy

 
Mw

Iyy

 
Mq

Iyy

 0 
Mv

Iyy

 
MP

Iyy

 0 
Mr

Iyy

 0 
 

A̅ = 

0 0 0 
 

0 
 

0 0 0 0 0 
(28) 

Yu

m
 

Yw

m
 

Yq

m
 0 

Yv

m
 

Yp

m
 0 

Yr

m
 0 

 Lu
′  Lw

′  Lq
′  

 

0 
 

Lv
′  Lp

′  0 Lr
′  0 

 

 0 0 0 
 

0 
 

0 0 0 0 0 
 

 Nu
′  Nw

′  Nq
′  

 

0 
 

Nv
′  Np

′  0 Nr
′  0 

 

 0 0 0 
 

0 
 

0 0 0 0 0 
 

6. TEST OF LQR FOR ATMOSPHERIC DISTURBANCE 

The equations of motion modified to account for atmospheric disturbances. The aerodynamic 

forces and moments acting on the helicopter depend on the relative motion of the helicopter 

to the atmosphere [13]. For example; the modification of X-force equation will be as shown 

in equation (29) 

XGM

m
=

Xu

m
(u − ug) +

Xw

m
(w − wg) +

Xq

m
q +

Xv

m
(v − vg) +

Xp

m
p +

Xr

m
r +

Xθo

m
θo +

Xθ1s

m
θ1s

+
Xθ1c

m
θ1c +

XθoT

m
θoT 

(29) 

The new model can be written in state space model as equation (30) or (31). 

ẋ = Ax + Bu + Gξ  (30) 

The state space model can be written as: 

ẋ = Ax + B̂ [
u
ξ] (31) 

Where B̂ is the new input matrix including the control and gust matrix together as shown 

in equation (32). 

B̂ = [B    G] (32) 

The full input matrix, B̂, and gust input vector, ξ , are shown in equations (33) and (34) 
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 Xθo

m
 

Xθ1s

m
 

Xθ1c

m
 

XθoT

m
 −

Xu

m
 −

Xw

m
 −

Xv

m
 

 

 
Zθo

m
 

Zθ1s

m
 

Zθ1c

m
 

ZθoT

m
 −

Zu

m
 −

Zw

m
 −

Zv

m
 

 

 
Mθo

Iyy

 
Mθ1s

Iyy

 
Mθ1c

Iyy

 
MθoT

Iyy

 −
Mu

Iyy

 −
Mw

Iyy

 −
Mv

Iyy

 
 

B̂ = 

0 0 0 
 

0 
 

0 0 0 

(33) 
Yθo

m
 

Yθ1s

m
 

Yθ1c

m
 

YθoT

m
 −

Yu

m
 −

Yw

m
 −

Yv

m
 

 Lθo

′  Lθ1s

′  Lθ1c

′  LθoT

′  −Lu
′  −Lw

′  −Lv
′   

 0 0 0 
 

0 
 

0 0 0 
 

 Nθo

′  Nθ1s

′  Nθ1c

′  NθoT

′  −Nu
′  −Nw

′  −Nv
′   

 0 0 0 
 

0 
 

0 0 0 
 

 

ξ = [

ug

wg

vg

] (34) 

For robust control the state space model including the change in mass and gust effect is 

extended with two uncertainty matrices A̅ and B̀ as seen in equation (35). 

ẋ = (A + εA̅ )x + (B̂ + εB̀) [
u
ξ] (35) 

7. SIMULATION RESULTS 

In this section, the simulation results are presented to investigate the performance of the 

LQR controller for helicopter response in a gusty environment. Control inputs are 

mechanically and aerodynamically limited to produce always possible required lift forces 

and limited to not exceed the stall limits for rotor discs. So control law can be limited with a 

saturation function to illustrate the boundary of the control mechanism. Firstly, the variation 

of maximum control inputs needed at each initial condition is obtained in Fig. 2. 

 
(a) 

 
(b) 

Fig. 2 Variation of control inputs maximum values with the initial velocities 

Fig. 2 shows that the actuators inputs are more affected by the initial side velocities 

except the main rotor collective, θo which remains constant to maintain the helicopter 



19 Hover flight control of helicopter using optimal control theory 
 

INCAS BULLETIN, Volume 7, Issue 3/ 2015 

altitude in hover. Finally, it can be said that longitudinal stabilization requires less control 

effort than lateral one. 

A simulation study is performed for the helicopter in this paper to test the effect of 

sinusoidal gusts with different frequencies and different amplitudes from x, y and z 

directions. It was found that the low gust frequencies have a significant influence on the 

steady state amplitudes of the lateral states response (v, p, ∅, r, ψ). 

All results are accepted for near hover flight for all gusts and the vertical gust has the 

significant influence on steady state amplitudes in case of low frequencies. In fact, vertical 

wind gusts can be neglected compared with horizontal gusts since the main factor 

influencing thrust in hover comes from the horizontal gusts [20]. 

Fig. 3 through Fig. 5 give a comparison between the effect of three different gust 

frequencies (ω = 0.3, 0.7 and 1.5) rad/sec from x, y and z direction on the roll angle (∅). 

 

Fig. 3 Effect of forward gust on steady state amplitude of roll angle 

 

Fig. 4 Effect of side gust on steady state amplitude of roll angle 

 

Fig. 5 Effect of vertical gust on steady state amplitude of roll angle 
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From Fig. 3, Fig. 4 and Fig. 5, it is clear that the vertical gust has the largest influence 

on the steady state amplitude of roll angle response in case of low frequencies. Also the 

steady state amplitude increases with gust amplitude in all gusts. 

Fig. 5 through Fig. 8 give a comparison between the effect of three different gust 

frequencies (ω = 0.3, 0.7 and 1.5) rad/sec from x, y and z direction on side velocity (v). 

 

Fig. 6 Effect of forward gust on steady state amplitude of side velocity 

 

Fig. 7 Effect of side gust on steady state amplitude of side velocity 

 

Fig. 8 Effect of vertical gust on steady state amplitude of side velocity 
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From Fig. 6, Fig. 7 and Fig. 8, it is clear that the vertical gust has the largest influence 

on the steady state amplitude of side velocity response in case of low frequencies. Also the 

steady state amplitude increases with gust amplitude in all gusts. 

7.1 Influence of mass change on helicopter response 

The purpose of this section is to view how the LQR controller handles the influence of the 

mass changes on the helicopter. The test was carried out using four uncertainties as shown in 

Table 5. 

Table 5. Different uncertainties for helicopter weight 

Type Helicopter weight (lb) 𝛆 

Gross weight 20000 0 

50 % drop in fuel 18500 0.081 

Minimum operating weight 10700 0.869 

Extra weight of 1000 lb 21000 −0.0476 
 

Two similar gust disturbances were applied on the four systems to view their behaviors. 

The test was performed with a sine wave disturbance in y and z directions. 

Fig. 9 through Fig. 18 show the helicopter response in the four tests using 3 ft/sec initial 

forward velocity condition and gust disturbance of 1 rad/sec frequency and 5 ft/sec 

amplitude. 

The figures arranged such that compare the same states to show the effect of gust type 

on the four uncertainties. 

 Influence of mass change on linear velocities: 

The influence of mass change on helicpter linear velocities is shown in Fig. 9 through 

Fig. 12. 
 

 

Fig. 9 Influence of mass change on forward velocity 

in case of side gust 

 

Fig. 10 Influence of mass change on forward  

velocity in case of vertical gust 
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Fig. 11 Influence of mass change on side velocity in 

case of side gust 

 

 

Fig. 12 Influence of mass change on side velocity in 

case of vertical gust 

From Fig. 9 through Fig. 12, it is clear that the LQR controller gives accepted results for 

the two case of gust. 

The most significant influence is on the side velocity in case of minimum operating 

weight and extra weight in the presence of vertical gust. 

In case of side gust, the side velocity response has a largest impact in transient region in 

case of minimum operating weight. 

 Influence of mass change on Euler angles: 

The influence of mass change on Euler angles is shown in Fig. 13 through Fig. 18. 

 

Fig. 13 Influence of mass change on roll angle in case 

of side gust 

 

Fig. 14 Influence of mass change on roll angle in 

case of vertical gust 
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Fig. 15 Influence of mass change on pitch angle in 

case of side gust 

 
Fig. 16 Influence of mass change on pitch angle in 

case of vertical gust 

 
Fig. 17 Influence of mass change on yaw angle in 

case of side gust 

 
Fig. 18 Influence of mass change on yaw angle in 

case of vertical gust 

From Fig. 13 through Fig. 18, it is clear that the LQR controller gives accepted results for the 

two cases of gust. The most significant influence is on roll and yaw angles in case of 

minimum operating weight and extra weight in the presence of vertical gust. 

8. CONCLUSIONS 

In this paper, the optimal control theory has been applied to control the dynamics of the 

helicopter in the presence of external sinusoidal wind gusts. The LQR controller is designed 

based on the linear model of helicopter. The simulation results presented clearly show that 

the LQR controller gives accepted results for the helicopter dynamics in high frequencies 

gusts. In Low frequencies the LQR controller performs good for all dynamics except in case 

of vertical gust which has more influence to the helicopter lateral dynamics. The robustness 

of the controller was performed for mass change and the controller gives accepted results for 

all mass changes. Finally the use of LQR is a good solution for MIMO systems. It gives a 

good stabilization and improving the behavior of the helicopter as it was shown in the 

different simulations. 
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