
Semi-Structured Capture and Display of
Telephone Conversations

by
Debby Hindus

B.S. Computer Science
University of Michigan
Ann Arbor, Michigan

1987

SUBMITTED TO THE MEDIA ARTS AND SCIENCES SECTION, SCHOOL OF ARCHITECTURE

AND PLANNING, IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF

MASTER OF SCIENCE

AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1992

@Massachusetts Institute of Technology 1992
All Rights Reserved

Signature of Author:
.. 0 4A. . .

Debby Hindus
Media Art and Sciences Section

January 17, 1992

Certified by:
...

Chris Schmandt
Princ al Research Scientist

ThgsisSupervisfr

Accepted by:
.. W........*x;Prvvvrw

Stephen A. Benton
Chairman

Departmental Committee on Graduate Students
MASSACHUSET$ IWTTI

OF TECHNLOGY
RoC

APR 28 1992

Semi-Structured Capture and Display of Telephone
Conversationsi

by

Debby Hindus

Submitted to the Media Arts and Sciences Section, School of Architecture and
Planning on January 17, 1992, in partial fulfillment of the requirements for the

degree of Master of Science at the Massachusetts Institute of Technology

Abstract

Speech dominates day-to-day communication, but despite technological advances,
ordinary conversations have remained outside the realm of computer-supported work.
This thesis addresses semi-structured audio, a framework for medium-specific
information retrieval of stored voice that does not rely upon knowledge of the actual
content. Instead, structure is derived from acoustical information inherent in the stored
voice and augmented by user interaction. To demonstrate semi-structured audio, two
software applications were constructed: the Listener, a tool for capturing structure while
recording telephone conversations, and the Browser, for subsequent browsing of speech
fragments.

The Listener segments the audio signal, using changes in who is speaking to identify
conversational turns, and pause detection to identify phrase boundaries. This
conversational structure is dynamically determined during the phone call, and presented
in a retrospective display that provides flexible capabilities for marking segments of
interest. The Listener and Browser make use of the ChatViewer widget, which supports
the display of, and user interaction with, collections of sound and text items called chats.
This semi-structured approach makes it practical to retain and access large amounts of
recorded speech.

Thesis Supervisor: Chris Schmandt
Title: Principal Research Scientist

'This work was supported by Sun Microsystems, Inc.

Acknowledgements

I would like to thank my advisor, Chris Schmandt, for his guidance and his many good
ideas.

Wendy Mackay has been a friend and source of inspiration throughout my career, and
she and Kate Ehrlich helped me formulate the original concept behind this thesis. Mike
Hawley and Janet Cahn have shared with me their enthusiasm and their insights into
audio and conversation, for which I am grateful.

I am indebted to Mark Ackerman, for the hours he spent instructing me in the art of widget
writing, for his technical expertise and keen perception of research issues, and for his
friendship and understanding during the past three years. Joe Marks has also helped me
retain a sense of humor and perspective on my work, and I feel fortunate to have known
them both as collaborators and colleagues.

Thanks, too, to Barry Arons, who provided so much practical advice and was the
developer of the Soundserver; to Chris Horner, for his contributions to the ChatViewer
widget; and to Eric Ly, for his constructive feedback on displays and diagrams. I would
like to acknowledge Don Jackson of Sun and Eric Hulteen of Apple, for their comments
on the software over the past year.

I would also like to express my gratitude to Hal Abelson and David Reed, who initially
fostered my pursuit of graduate studies.

My friends, Jo-Anne Wyndham, Leslie Rubenstein and Dave Gladstein, have given me
their comfort and strength, and kept me in touch with life beyond MIT. Amy Bruckman,
Michelle Fineblum, Lisa Neal, Sanjay Manandhar and Chi Wong were invaluable
confidants and comrades.

To my immediate and extended families I extend my love and appreciation. especially to
my mother, who has always encouraged me, and to my late father, who would not have
been surprised.

Throughout everything, I have been sustained by the constant love and support of my
husband, Bob Deloria. I could not have gotten this far without him.

Contents

1 Introduction 7
1.1 The Ubiquity of Speech . 8
1.2 Computer Workstations and Speech Data 9
1.3 Overview of This Document . 10

2 Semi-Structured Audio for Telephone Calls 11
2.1 Background . 11

2.1.1 Structure in Applications of Stored Voice 11
2.1.2 Visual Representations of Speech 12
2.1.3 The Structure of Telephone Conversations 14
2.1.4 Computers and Telephony . 15
2.1.5 Previous Work in Semi-Structured Media 16

2.2 A Demonstrational Approach to Semi-Structured Audio 17

3 The Capture and Display of Telephone Conversations 19
3.1 System Overview . 19

3.1.1 Software Components . 20
3.1.2 Software Environment . 22

3.2 The Listener Tool . 22
3.2.1 The Listener is Ubiquitous . 22
3.2.2 The Dynamic Display of Conversational Structure 24
3.2.3 Identification of Interesting Segments 24
3.2.4 Post-Call Review and Revision . 26

3.3 The Browser Tool . 27
3.3.1 Multiple Views . 27
3.3.2 Replaying Segments . 28
3.3.3 Editing Stored Conversations . 29

4 Turntaking and Segmentation 30
4.1 Workstation Audio . 30

4.1.1 Workstation Capabilities . 30
4.1.2 Workstation Audio Support . 31

4.2 How the Listener Determines Segments . 32
4.2.1 Acting on Energy Events . 33
4.2.2 Pause Detection . 35
4.2.3 Turn Detection . 36

4.3 Issues in Segmentation*. 39
4.3.1 Delays in Updating the Display . 39

4.3.2 Pause Detection
4.3.3 Synchronization

5 The ChatViewer Widget
5.1 The Nature of Widgets
5.2 Using a ChatViewer within an Application

5.2.1 Chatfiles
5.3 Implementation

6 Future Directions
6.1 Contextual Structure and Strategies for Retrieval

6.1.1 Contextual Items
6.1.2 Browsing Through Multiple Chats

6.2 User Observations.................
6.2.1 Practical Considerations for a Pilot Study

6.3 Controlling Segmentation Sensitivity
6.4
6.5
6.6

A Handful of Audio Processing Ideas
ChatViewer Variations
Other Software Improvements . . .

7 Discussion
7.1 What Was Learned and Not Learned
7.2 Applications
7.3 Impact on Users and Organizations
7.4 A Final Word

A User Documentation
A.1 Browser Man Page . . .
A.2 Browser Widget Tree . .
A.3 Browser Resource File .
A.4 Listener Man Page . . .
A.5 Listener Widget Tree . .
A.6 Listener Resource File .

B ChatViewer Reference
B.1 Synopsis
B.2 Resources
B.3 Public Data Structures
B.4 Public Routines

Bibliography

. 66

. 67

. 67
. 70
. 71
. 72

75
. 75
. 75
. 77
. . . . - - - 77

.

.

.

.

.

List of Figures

2.1 Three different visual representations of a 13-second long utterance 13
2.2 Apple's SoundBrowser representation, from [DMS92] 13
2.3 Etherphone's sound-and-silence representation, from [AS86] 14

3.1 Listener Software Architecture . 20
3.2 Receiving a phone call . 23
3.3 Sequence of segments during a phone call, with transcriptions 25
3.4 Browsing after a phone call . 27
3.5 The Browser, displaying the saved portions of the sample conversation . . 28
3.6 A closeup of a SoundViewer, with a playback in progress 29

4.1 Processing energy events in the Segmenter 34
4.2 Example of a 300-msec sliding window used in pause detection 36
4.3 State transition diagram for determining segments 38
4.4 Silences are divided between segments . 38

5.1 Examples of ChatViewer layout styles . 44
5.2 Sample chatfiie . 47
5.3 Sample ChatViewer database record . 48

Chapter 1

Introduction

Speech is second nature in our everyday lives and computing has become ubiquitous in

our work lives within the last decade. This combination presents tremendous

opportunities that have yet to be exploited. As Moran and Anderson [MA90] point out,
technologies are mundane in the workaday world, and are successful when ordinary

activities, such as telephone calls, interact seamlessly with technology. In the case of

telephone calls, we have all wished at one time or another that we had tape-recorded

something that was said. Imagine having a tool on your workstation that would ensure
important conversations would not be lost, yet not burden you with hours of extraneous
recorded audio to plow through just to find that crucial statement.

This thesis addresses that problem: the theoretical and practical issues of applying

computer technology and the concept of semi-structured audio in the context of a specific

domain, that of telephone conversations. It addresses creation of structure at the time of

capture, the visual representation of free-form conversations, dynamic displays for
real-time capture, and browsing and retrieval interactions. The work features the Listener,

a telephone listening tool that allows users to identify and save the relevant portions of

telephone calls as the phone conversation progresses, and a browser for reviewing and

modifying previously recorded conversations.

The Listener captures structure from telephone calls, as described in the following

scenario:

* You place a phone call. The Listener notices this, and displays a dialog window

from which you can choose to record the conversation.

* While you're talking, a graphical representation of the conversation is constructed

on your screen, showing the shifts in who is speaking and the relative length of

each turn.

You can click on a segment to indicate that it should be saved, or tie it to a text label.

* At the end of the phone call, you can listen to segments and decide which ones to

save.

If you want to, you can add a text summary of the conversation.

* Later on, the saved conversation can be reviewed and further pruned or annotated.

* At any time in the future, the conversation can be retrieved and played back.

In order to make that scenario real, I built a listening tool for telephone calls, referred to in

this document as the Listener, and a browser (the Browser) for stored conversations.
Listening tools capture inherent structure by taking advantage of situational constraints,

capturing available contextual data, and analyzing the speech signal as appropriate.

When computers become more capable of participating in our spoken interactions, as

intermediaries, note takers, or digital adjuncts to personal memories and recollections,

they have the potential to become deeply involved in daily life. This project is but a step
towards making audio data on the workstation as integral a part of the workaday world as

text is now.

1.1 The Ubiquity of Speech

People spend much of their work day talking. In a recent study of the work activities of

three groups of professionals within a Fortune 500 company, Reder and Schwab [RS90]

found that phone calls comprised about 20% of the workday, and face-to-face meetings

accounted for an additional 25-50%. Although text editing programs and desktop
publishing systems are commonplace in offices, and messages and documents are
increasingly communicated via electronic mail, the time spent talking has been out of

reach of computer technology. Only formal meetings are candidates for being

transformed into a computer-accessible form, as written minutes. The remaining verbal

interactions, and many meetings, are ephemeral unless, after the conversation, a

participant goes to the trouble of composing a summary online.

This loss of speech information is all the more striking in the light of studies of

communication outcomes by Chapanis [OC74] and others that convincingly demonstrate

the utility of voice communication. Furthermore, speech communication fulfills different

communicative purposes than text communication; Chalafonte, Fish and Kraut [CFK91]

concluded that speech is a rich, expressive medium that "is especially valuable for the

more complex, controversial, and social aspects of a collaborative task."

1.2 Computer Workstations and Speech Data

Technological advances have enabled workstation manufacturers to provide support for

audio digitization and playback, and these capabilities are now found on many

workstations. But despite the combination of available technology and the power of

speech as a communication medium, computer applications of stored voice are in their

infancy. This is largely due to retrieval problems; unlike text, speech cannot yet be freely

searched for keywords.

Stored voiced is bulky and difficult to access. Audio is a temporally-constrained medium;

unlike text, it cannot be skimmed, and requires more time and attention to peruse than

would a visual scan of a page of text. Speeding up the playback of the recorded speech

is helpful, but limited; speech becomes significantly less comprehensible when it is

compressed beyond 50% of the original time [BM76, FS69]1. Listening is much slower

than reading, though writing takes more effort than speaking. In sum, audio is biased

towards the speaker, not the listener.

As a result, current applications of stored voice are limited to two distinct styles of audio

data. The first consists of short message segments that are not meant to be listened to

repeatedly, as in voice mail systems. The second is highly structured audio segments,

such as in hypermedia systems, where the author applies links between data nodes and

the application provides a user interface for navigation.

What about managing large quantities of more casual recorded conversations? Retrieval

can be assisted by the application of structure in this domain as well, but without

understanding the words actually spoken, such structure must be derived from acoustical

information. With such an approach, the audio data can be automatically separated into

meaningful pieces, or segments, and these segments can be classified without

knowledge of their semantic content. The result is a framework for describing and

manipulating the recorded conversation, and the framework, together with the audio data,

can be characterized as semi-structured audio. Some semi-structuring is automatic, and

some requires the cooperation of users. Structuring may occur when the audio is

originally captured, that is, during the conversation; immediately following the

'Simply playing samples at a faster clock rate shifts the pitch of the sound so that it becomes squeaky,
like the voice of the cartoon character Mickey Mouse. More sophisticated methods of time scale modification
remove complete pitch periods during playback.

conversation, while recollection of it is still fresh; and during later retrieval and editing

operations.

1.3 Overview of This Document

The rest of this document describes the background, implementation and results of this

research. Chapter 2 discusses five areas of converging technologies and interfaces that

have led to semi-structured audio in the context of telephone conversations. The nature

of telephonic conversation is explored, along with the role of semi-structured audio in

telephone interactions. Chapter 3 begins the material on implementation of the tool set

with a system overview. It next describes the telephone listening tool and the browser.

Chapter 4 discusses how the listener determines which participant is speaking, and how

the conversation is broken up into segments. Chapter 5 describes the ChatViewer

widget, an underlying software object created to support the other tools.

The thesis ends with brief descriptions, in Chapter 6, of the various ways that this work

ought to be extended and the related issues investigated, and a discussion, in Chapter 7,

of the results and impact of this project. The Appendices contain user documentation for

the Listener and Browser applications, and technical documentation of the ChatViewer

widget.

Chapter 2

Semi-Structured Audio for

Telephone Calls

This chapter discusses the areas of converging technologies and interfaces that have led

to semi-structured audio in the context of telephone conversations. These supporting

areas include: applications employing voice snippets, structured hypermedia documents,

visual representations of time-dependent media, computer-assisted telephony, the nature

of telephone conversations, and semi-structured approaches to stored voice and other

media. The remainder of this chapter describes the approach taken towards

semi-structured audio in this project.

2.1 Background

2.1.1 Structure In Applications of Stored Voice

Voice Snippets

Many current applications of stored voice succeed because voice segments are short

and the application itself provides the structural framework for presentation of sound to

the user. Voice mail is such an application. Voice messages are short, and intended to be

short-lived; this is enforced by expiration dates for messages on many voice mail

systems. A user interface presents messages sequentially, and may also indicate the

sender and when the message was sent. Another application that uses voice snippets is

Caltalk [Sch90], which allows users to record voice entries into their calendars; the date

and time of the entry key it for later retrieval. Voice can also be used to annotate text, as

was done in Quilt [FKL88] and Slate [Cro9l]. When used for annotation, voice segments

are correlated with particular locations in the document, and are displayed appropriately.
Similarly, products have appeared to allow voice annotation of spreadsheets, where a

voice snippet is associated with a spreadsheet cell. The stored voice is not itself

structured in these applications; the recorded speech is treated as a single unbroken

entity, and there is an external pointer to the sound, such as a message number, calendar

date, or position within the text or spreadsheet.

Hypermedia

The applications just described work with short, often transitory, voice snippets that are

organized simply. Hypermedia is a prominent application area that has made meaningful

use of longer sound segments that are organized in complex ways and are intended to be

accessed repeatedly. Hypermedia documents employ large quantities of text, sound and

other media, with links between the data nodes and a user interface to navigate among

them. Although most hypermedia systems to date have concentrated on text augmented

with images, Arons [Aro9lb] describes a voice-only hypermedia system employing

recorded speech at the data nodes and utilizing speech recognition for navigation.

Hypermedia documents embody considerable structure, which is supplied during the

authoring process. Muller [MD90] describes an architecture for voice documents, and

Zellweger [Ze189] describes a means of authoring scripts or guided tours through

hyperdocuments that can include voice. Both these examples illustrate the degree of

structure that must be applied to make a medium such as audio useful when it is used in

quantity.

2.1.2 Visual Representations of Speech

Speech is often represented as a waveform or average magnitude envelope, as shown in

Fig. 2.1; although this intuitively looks like speech, it does not contain much useful

information for typical users. This form treats speech as any other audio signal, and is

required for fine-grained editing and other audio manipulations.

A somewhat different approach is employed by Apple's SoundBrowser; here, amplitude

data is presented in a format designed to be understandable by non-expert users

[DMS92]. An example is shown in Fig. 2.2.

Speech consists of audible sounds interspersed with silences, such as the natural

pauses at the end of sentences. Some visual representations make use of this aspect of

Waveform (from Mixview, on a Sparcstation)

Envelope (from SoundWorks, on a Next machine)

Speech and Silence (from Sun's Audio Tool)

Figure 2.1: Three different visual representations of a 13-second long utterance
Text: "This is an example of speech that shows how there can be spaces between words

and within words, and at the end of phrases, and at the end of sentences. Period."

speech, and show speech as periods of sound and silence. An early example of such as

representation was used in the Intelligent Ear [Sch81]. The Etherphone voice editor

[AS86], illustrated in Fig. 2.3, used black and white segments to convey the silence

information. Sun's AudioTool uses another sound-and-silence representation, as shown

in Fig. 2.1. These forms deemphasize audio details, which are unlikely to be salient to

users of speech data, and highlight the temporal aspect of sound. As will be discussed

shortly, silences are not reliable indications of the structure of the speech's content, but

do provide structure for display and graphical interaction.

ig re2 A Full Duration Shown er.epesetaion.fom. DM

..________ J.........J...L...LL..........U.L. .. J.........

Figure 2.2: Apple's SoundBrowser representation, from [DMVS92]

jlntro 1 Four score and seven years ago

4conclusion

Figure 2.3: Etherphone's sound-and-silence representation, from [AS86]

2.1.3 The Structure of Telephone Conversations

In order to design tools for capturing, displaying and retrieving structure in an audio

interaction, that interaction must be well understood. This section looks at research on

telephone and audio communication for details on the structure inherent in telephone
calls.

One useful parameter is the expected duration of business telephone calls. Three

large-scale field studies of patterns of business contacts were conducted in Sweden and

London, 1968-71, and showed that telephone calls were brief, with 82-87% of the calls

lasting between 2 and 10 minutes (summarized by Thorngren [Tho77]). Reder and

Schwab's recent study of professional work activities within a large company showed

similar results [RS90]; calls lasted an average of 3-6 minutes.

A number of studies quantify other parameters, such as turntaking, pausing, and

interruptions. These studies were designed to compare face-to-face conversations to

audio-only interactions, as summarized by Rutter [Rut87], but their results are generally

applicable to audio interaction. Butterworth, Hine and Brady [BHB77] looked specifically

at grammatical, hesitation and turntaking unfilled pauses in three conditions: visual

communication, audio-only (separated by a screen), and telephonic. Their study asked

undergraduate subjects to converse in pairs about ethical situations, and 200-second

long samples of the conversation were analyzed in depth.

The results for the telephone condition indicated that 30% of the total conversation time

was taken up with pauses, that pauses during an utterance accounted for 20% of the

utterance time, and that short utterances (such as attention signals, paraverbals,

clarification questions like "Pardon?", laughter, and attempted interruptions) occurred 5

times per 200-second sample. Within-utterance pauses were approximately .7 seconds

long, and occurred 26 times in 100 seconds.1

Another study, by Rutter and Stephenson [RS77], compared audio-only to face-to-face

'Because only measures that differed statistically were given, the durations and frequency of turntaking
pauses are not available, and cannot be compared to these untypically long pause times.

.LFour score and seven years agontro

conversations, and provides additional measures of audio communication. The subjects

were students who had not previously met, and they spoke in pairs for 15 minutes about

political matters, either sitting side-by-side, or, in the audio-only condition, conversing

over intercoms. In this laboratory experiment, turns were observed an average of 25
times per 5 minutes; participants spoke at approximately 3 words per second, and filled

pauses occurred about 3 times per 100 words, with men using more filled pauses than

women. Utterances averaged 34 words long, with 28% of those shorter than 5 words,

and an additional 15% between 5 and 10 words in length.

Two detailed analyses of actual telephone calls provide more robust parameters for

designing segmentation tools. One study of the Watergate tapes showed that utterances

averaged 15 words in length, and that approximately 10% of utterances were

(presumably brief) acknowledgments [WW77]. Beattie and Barnard [BB79] focused on

turntaking during inquiries to directory assistance, and drew upon 18 calls selected from a

a corpus of 700 British telephone operator interactions with cusomters. They found that

turntaking pauses averaged .5 seconds long, although 34% of turns were accomplished

within .2 seconds. Filled pauses occurred about .6 times as often as unfilled pauses.

Their results confirmed earlier work in that instances of simultaneous speech are less

common in phone calls than in face-to-face conversations. Interruptions are less frequent

in calls, but pauses are shorter and filled pauses are more common.

The above studies suggest that pausing in and of itself is insufficient for structuring a

conversation, because turntaking pauses will not be distinguishable from other pauses by

their length, not all pauses will be attributable to turntaking, and many turns happen with

minimal pausing. Futhermore, by extrapolation, a telephone call consists of many short

segments, interspersed with pauses, filled pauses and short utterances, that do not

necessarily reflect the conversational structure very well.

2.1.4 Computers and Telephony

The appeal of telephone conversations as a candidate for everyday use of stored voice is

bolstered by the variety of research projects supporting telephone management from

computer workstations. Examples include Etherphone [ZTS88] from Xerox PARC, MICE

from Bellcore [HORW87], and more recently, PX from Bell-Northern Research [KEE90]

and Phonetool from MIT and USC-ISI [SC89]. Such applications can allow users to place

calls from online address books; capture calling party information to assist with replying to

voice mail messages [Sti9l]; log telephone activity; and route calls based who is calling,

the time of day and so on [Won9l]. As a result, an increasing number of telephone

conversations will be mediated by workstations, making it simple to associate situational

information with a digitized telephone conversation.

2.1.5 Previous Work in Semi-Structured Media

Semi-structured media have not, to date, been extensively explored. In the text domain,

Information Lens [MGL+87] is an example of the power of a semi-structured approach.

Information Lens users add extra fields to electronic mail messages; this extra

information provides attributes to messages but is not part of the message body itself.

Users can then write rules to route and sort received mail, based on these additional

attributes [MMC+89].

In the video domain, the Interactive Cinema Group at the Media Lab has been

researching a variety of approaches to derived and annotational structure with respect to

video clips [MD89, DASP91]. Fujikawa, et al., [FSM+91] automatically derives structure

from unedited video segments by identifying differences between scenes, and motion of

either the camera or subject within a frame. This information is used to access video

segments during editing.

Europarc has been exploring semi-structured ubiquitous computing with a system that

continually videotapes lab members; situational information is used for retrieval of the

stored voice and video [LN91]. Laboratory members wear "active badges" [Wei9l] that

can be tracked, allowing a recorded conversation to be correlated with the names of the

conversants.

An early example of semi-structured audio was Phone Slave [SA85]; it used a

conversational technique to take a telephone message, asking callers a series of

questions and recording answers to each question in separate files. As the callers usually

cooperated with the automated receptionist, sound segments could be highly correlated

with structured information about the call. For example, the caller's response to "At what

number can you be reached" usually contained the phone number in a short voice

segment. Recently, structured data capture has been applied to a voice-driven form-filling

application by Resnick and Virzi [RV92], who use the form-entry metaphor for a

telephone-based voice bulletin board. In addition to recording their messages,

contributors to the bulletin board are asked to supply information for additional fields,

using appropriate mechanisms. For instance, the headline field is filled in with a brief

recording, and expiration dates are given by touch tones.

The most closely related work is by Degen, et al., at Apple Computer, and has focused on

user-supplied structuring of personal recordings. A handheld tape recorder was modified

with two buttons, so that users could mark the beginning of interesting portions of a

lengthy recording, such as a meeting, or separate shorter segments, such as items on a

to-do list. A key point is that these annotations could be made in real time, as the sound

was being recorded. The recordings were transferred to a computer-based application for

review, and considerable effort was put into understanding users' needs and then

providing a rich set of interactions [DMS92].

2.2 A Demonstrational Approach to Semi-Structured Audio

The project described in this thesis draws upon the work discussed above, and then

extends it to two speakers and live conversation. There has not been, so far as I could

ascertain, previous work that attempts to capture and display conversational structure in

real time, nor has user annotation been explored in the context of dynamic conversation.

Semi-structured audio provides a framework for organizing and manipulating audio data.

Information inherent in the speech signal and in the audio interaction can be combined

with situational constraints and user annotations to create semi-structured audio data.

Semi-structuredness provides enough structure for flexible access to the data later,

without relying on the explicit creation of structure by the source or recipient of the audio.

The real-time nature of listening tools is critical-a user is not forced to decide ahead of

time whether an utterance should be saved, and not forced to rehear the whole

conversation in order to save utterances. Users can create structure as they see fit, but

they do not have to create structure in order for the audio data to be manageable and

accessible.

The approach taken in this research is to build working software tools that demonstrate

how semi-structured audio can be applied to telephone conversations. The Listener

incorporates robust underlying browsing and segmenting capabilities. A graphical

sound-and-text display mechanism, the ChatViewer, provides grouping and manipulation

of recorded speech segments during the phone call and afterwards. The Browser also

allows fragments of recorded audio to be easily discarded or regrouped.

The other underlying capability, segmentation, is the automatic breaking up of

speech-while it is being recorded-into small, meaningful pieces, so that it is

manageable, and so that only segments of interest are retained. If it were feasible,

speech recognition and discourse analysis techniques could convert an utterance to text

and then automatically mark the text as being interesting or not. Doing these kinds of

processing reliably and in real-time is not feasible for, perhaps, decades [Zue9l].

Telephone conversations are a practical choice for demonstrating semi-structured audio.

Very little equipment is required beyond audio-capable workstations, and it is possible to

detect who is speaking during a phone call. Also, audio is the only channel for telephone

communication; facial expressions and gestures go unseen. The saturation of the audio

channel in this fashion means that capturing the audio is capturing the interaction.

Another advantage of telephone calls is that the participants cannot see each other, so a

user can operate a pointing device with minimal interference on the conversational flow.

Furthermore, users can be assumed to be experienced and skilled in conducting

telephone conversations, so training is not an issue; users will readily perceive the impact

of the listening tool on their calls; and the context is understandable and immediate.

A working implementation is a "proof-of-concept". Thus, I can speak directly to the

question of whether these concepts are currently workable, and what the limiting factors

are in their implementation. Also, a live demonstration is compelling in ways that even a

clever simulation is not, and videotaped demonstrations can be shown to far-flung

audiences. Finally, having usuable tools is a necessary condition for conducting

observational studies. Such studies are especially valuable for new technologies; see

[SAH90, SHAM90] for an example of such a study by Schmandt, et al.

Chapter 3

The Capture and Display of
Telephone Conversations

To demonstrate the capture and display of telephone conversations, this project

concentrated on building the Listener, a telephone listening tool, and the Browser, which

displays stored conversations. A listening tool is designed for a specific type of audio

interaction, and provides an appropriate representation of the audio along with user

interaction mechanisms. This chapter describes the design, implementation and behavior

of the Listener and Browser.

3.1 System Overview

The Listener and the Browser are both X Window System client applications that

communicate with several server processes, and both are built on top of a generic

sound-and-text handling mechanism, called the ChatViewer.

Two microphones collect audio signals for the Listener. Ideally, digitized sound could be

obtained directly from the ISDN phones; this capability will be available on workstations in

the near future. For the time being, to get digitized sound from an ISDN telephone set

into a Sun Sparcstation workstation's audio input, a separate device taps into the audio

signals carried through the handset cord.' For detecting turntaking, that is, changes in

which person is talking, an additional microphone is used. This microphone sits near the

user and transmits audio only from the vicinity of the user's workstation. The data from

both microphones are used by the Listener although, because the Sparcstation is

'This device is available from Skutch Electronics, Roseville, California.

Listener Client Process ----------------.....................

Server Processes

Phservr

...

Figure 3.1: Listener Software Architecture

currently limited to monoaural audio input, this second microphone is actually connected

to a second workstation.

The Listener builds a representation of the conversation, called a chat, and saves that in

a database format or, in an abbreviated form, in a chatfile. It also saves the audio in a

sound file. The Browser then uses these files to build its presentation of the chat, and can

save whatever changes the user makes to the chat.

3.1.1 Software Components

Fig. 3.1 shows the components of the Listener. As shown in the diagram, the Listener

relies upon independent servers to handle its interactions with various devices, including

the user's display, telephone line and workstation audio. Each of the components and

servers is briefly described below.

Legend

Software component

X-based
software component

Independent process

Listener software components:

* The Segmenter is the module that performs segmentation, that is, breaks the
speech signal up into meaningful chunks. Because there are two speakers,
segmentation is a significant issue and requires several levels of analysis (see
Chapter 4).

* The Interaction manager is a logical component that coordinates the other
display-related components. It is logical in the sense that, as is typical of an X client
application, this coordination is scattered throughout the application code. The X
Window System handles the lower levels of user interaction and displays.

* User controls refers to the portions of the Listener's user interface that the user
can interact with, such as menus.

* The ChatViewer is an X Window System widget (a widget is an object that uses the
X toolkit) that displays and keeps track of the sound segments generated by the
Segmenter. It makes use of two other components, the SoundViewer and the
database manager.

* The SoundViewer is another X Window System widget. It displays a sound file
according to its length and allows a user to select and play any portion of the sound.

* The database manager is one of the Speech Group's software libraries, and
provides applications with a simple record-oriented database, where fields are
defined as key-value pairs.

Independent processes:

* The Phoneserver monitors the status of the Speech Group's ISDN telephone lines
and can deliver phone-related events to other programs such as the Listener. The
Phoneserver itself resides on a Sun 386i workstation; the ISDN phone lines are
plugged into a Teleos card installed on an IBM PC. See [Won9l] for a more
complete description of the Phoneserver's operation and implementation.

* A Soundserver interfaces with the Sparcstation's built-in audio capabilities and
allows applications to asynchronously record and play audio. Digitized sound is
stored in sound files on a large-capacity disk within the Speech Group's local
network.

Two Soundservers are used by the Listener. The primary Soundserver runs on the
user's workstation and records the conversations into a sound file. It also reports
energy events from the telephone microphone to the Segmenter component of the

Listener application. The secondary Soundserver is used to report energy events
from the other microphone that hears only the local user's speech.

* As an X Window System application, the Listener relies upon the workstation's X
server to display its user interface and pass along user input events.

The Browser is similar and simpler; it does not need a Segmenter, or to communicate
with the Phoneserver or remote Soundserver processes. Later chapters describe the
Segmenter and ChatViewer in considerably more detail.

3.1.2 Software Environment

The Listener and Browser were developed in the C language on a Sun Sparcstation 2,
under the SunOS 4.1.1 operating system. Release 4 of the X Window System toolkit was
used, along with the Athena (Xaw) widget set. The SoundViewer, Phoneserver,
Soundserver, and database manager components are part of the Speech Group software
library.

3.2 The Listener Tool

The Listener, the telephone listening tool, captures structure from telephone calls.
Listening tools pose challenging user interaction issues. One issue is human cognitive
constraints, such as short-term memory limitations and loss of comprehension while
performing multiple tasks. Another challenge is how to visually present a new kind of
dynamic, real-time phenomenon so that the display is readily understandable to the user.
These challenges are discussed in the context of Listener capabilities that are available
before, during and after a telephone conversation.

3.2.1 The Listener is Ubiquitous

Part of the conceptual framework underlying this project is that technology should be
ubiquitous and integrated into routine activities. In the case of the Listener, placing or
receiving a phone call should be sufficient to invoke it. This, indeed, is the case. Through
the capabilities of the Phoneserver, the Listener is able to respond to changes in the
status of a telephone line.

When, for example, the telephone rings, the Listener pops up a notification window in the

middle of the user's display screen, as shown in Fig. 3.2. This notification provides
whatever information it can; it makes use of a local extension-based database, so that

Fron: Geek.

OK I Cancel

Figure 3.2: Receiving a phone call

calls from members of the Speech Group appear with the name of the calling extension's
owner (who is most likely the person placing the call.) For calls from within MIT's ISDN
network but outside of the Speech Group, the extension of the calling party is displayed.

The notification window gives users the option to record the call; calls are not recorded
unless the user explicitly requests recording. In fact, the window will disappear after a
short period (currently five seconds), so no action on the part of the user is necessary if
the call is not being recorded.

Once recording is selected, by pressing the OK button, the call display is started up as
shown in Fig. 3.3.

The Listener responds to additional phone line status conditions with the following
actions:

9 When the called party answers the placed call, the phone line status becomes
ACTIVE, and if recording has been selected from the Notifier window, the recording
begins at this point.

e When a call ends, the line status is IDLE and recording ends.

* When the handset is picked up and the user hears a dial tone, the phone line status
becomes DIALING, and a Notifier window appears.

The Phoneserver can also detect when on-going calls are put on hold or transferred,
though the Listener does not currently respond to those events.

The Listener is intended to run continuously on the user's workstation.

3.2.2 The Dynamic Display of Conversational Structure

While in a phone call, a person's attention is focused on the conversation, and cannot be

distracted by an obtrusive listening tool. A listening tool that is not interactive would satisfy

that constraint. However, the limited timespan of short-term memory mitigates against a

non-interactive design; to the extent that interesting segments can be identified at all

during a conversation, that identification must happen shortly after the segment is heard.

Numerous factors influence what is kept in short-term memory and for how long, but in

very general terms short-term verbal memory can hold between four and seven items, for

2-30 seconds [Pot90, MN86]. Therefore, a visual representation of the previous 30

seconds or so of the call is displayed during the conversation, and a user can select

segments of interest simply by clicking on them.

As the conversation proceeds, a visual representation is displayed retrospectively. This

representation shows each conversational turn, reflecting the phrase-level utterances of

the speakers. Each rectangular object is a representation of a segment, or portion of the

audio signal, and each tick mark within a segment represents one second of audio. The

Listener determines segment boundaries by analyzing the audio signal; the next chapter

describes this segmentation process in detail.

Figure 3.3 shows the call display during part of the conversation. The transcription for

each new segment is given below each picture of the call display window. Note that in the

third picture, the Mark New Segments button is highlighted. All the segments from then

on, concerning the article in Computational Linguistics, were automatically visually

highlighted on the screen, although the darker border color may not be distinguishable on

paper.

New segments appear at the right-hand side, and older segments scroll out of view to the

left. Speakers are visually distinguishable by their vertical offsets, and by different border

colors when unmarked. To draw the user's eyes to where new segments appear, there is

an elapsed time indicator just to the right of the segment display. It is updated about once

per second.

3.2.3 Identification of Interesting Segments

A central concept of semi-structured audio is that structure enables users to make better

use of audio. In the case of telephone conversations, the conversational structure makes

it possible to identify the segments containing information that ought to be saved for later

X[-]Call Display

[ilef mark New Segment. Quit

Debby
Bob

Debby: Hello, this is Debby Hindus speaking.
Bob: Hi Deb, it's Bob. I'm just getting out of work, I figured I'd call

going to stay tonight.
and see how late you're

jCall Display
7

[ilesjjmark New Segment Quit

Debby r"
Bob

Debby: Well, I think it'll take me about another hour, hour and a half, to finish up the things
I'm doing now.

Bob: OK, I'm just going to head on home, I'll probably do a little shopping on the way.

S[a]Call Display
J

Files; Mark New Se en u Quit

Debby
Bob 0I:

Debby: Well, if you think of it, maybe you could get some of that good ice cream that you
got last week.

Bob: OK. By the way, somebody, uh...
Bob: mentioned an article you might be able to use

KXa]Call Display

[riled Mark New Segments Quit

Debby
Bob

L~§i'~LLL.

Bob: in your tutorial. Debby: Oh really? [Debby's very short turn is ignored.]
Bob: Yeah, it's by Graeme Hirst, in the June '91 Computational Linguistics.

1[a] Call Display,

rile! Mark New Segment. Quit

Debby
_ _3

Bob 117 -1E 3

Bob: It's a review of, uh, Computers and Conversation.
Debby: Oh, that sounds pretty interesting.

Figure 3.3: Sequence of segments during a phone call, with transcriptions

I I I I

------- --- ------------

:1

retrieval. The Listener provides mechanisms for marking these interesting segments.

Marking a segment causes the segment to be visually highlighted, as shown in Fig. 3.4.

Marking also determines whether a segment is saved or not.

Segments can be marked in several different ways so that marking can take place

whenever the user realizes that the conversation has become worth saving. A phone call

often begins with a social exchange that is probably not worth saving. Later, the

conversation will turn to more substantial matters. At this point, the user may decide to

invoke the primary marking mechanism, which marks all new segments until the user

indicates otherwise. The IMark New Segmen button controls whether this mechanism

is active or not.

Interesting statements may also occur unexpectedly during a conversation, when

automatic marking is not in effect. The call display includes the just-completed utterances

and recent history of the conversation, because the significance of an utterance may not

be realized right away. At any time, a user can mark individual segments by clicking on

them. Marking is a reversible state; marked segments can be unmarked simply by

clicking on them. Therefore, uninteresting segments that occur during an otherwise

interesting part of the call can be easily unmarked.

3.2.4 Post-Call Review and Revision

The Listener is notified by the Phoneserver when the telephone call has been terminated

by either party. Recording is automatically terminated at that point. The user also can

press the Quit button at any time during the conversation.

The nature of the user interaction changes once the conversation is completed, from

capture to review. Functions that were too obtrusive during a conversation are now made

available, and the Listener essentially turns into a Browser.

The complete conversation is available for review at this point, as shown in Fig. 3.4. A

user can replay all or part of the conversation, revise the choice of segments to store and

save the chat for later retrieval. When the user finishes reviewing the chat and exits by

pressing Quit the portions of the recorded audio that correspond to marked segments

are stored permanently and the rest of the audio file is discarded.

Figure 3.4: Browsing after a phone call

3.3 The Browser Tool

The Browser graphically displays chats, collections of stored sound segments and text.

Within the Browser, the ChatViewer widget provides underlying display and sound

handling functions. The Listener uses the ChatViewer to provide a simple browsing

capability; the Browser application is intended to provide a richer set of chat editing

functions, though few of those functions are currently implemented.

3.3.1 Multiple Views

The Listener's call display window is designed to show only the last 30 seconds of the

conversation. Earlier portions can be seen by scrolling within the call display window, but

that is an unwieldy mechanism, particularly for a lengthy conversation. To provide an

overview of the conversation, the Browser creates a miniature chat along with an

enlarged display of the same representation, as shown in Fig. 3.5.

The two views both display the conversation much like a sheet of music displays a tune,

so that segments are "wrapped around" to another line when the window boundary is

reached. Scroll bars provide the capability to scroll around in the enlarged display.

In the very near future, the miniature will be hooked into a Listener-style closeup view of

X [4]Post-Call Browser

Plaq 11111

------------- I ------ 1 1 11"13------------

nr-77- 71

i.. ; Plag All Quit

-- -- -- --- = =-- ---

Figure 3.5: The Browser, displaying the saved portions of the sample conversation

the chat, so that the user can navigate through the complete conversation with a panner,

and the portion under the panner will be expanded into detail in the closeup view.2

3.3.2 Replaying Segments

Segments are displayed as SoundViewer widgets, which provide users with considerable

control over the replay of a segment. SoundViewers allow a sound to be started, stopped

and restarted at any point, with just a press of a mouse button, and the replay status is

indicated by an indicator bar that fills in as the replay progresses. Fig. 3.6 shows a

SoundViewer playing a segment.

So, it is easy to replay just a portion of a segment. Segments can be played one at a

time. The complete conversation can also be played continously, using the Play All

2 In the R5 version of the X Window System, the Athena widget set includes the Panner and Porthole
widgets, which are designed to implement exactly this kind of panning operation.

Figure 3.6: A closeup of a SoundViewer, with a playback in progress

button. These aggregations of segments are replayed using the individual

SoundViewers, so any replay can be interrupted or restarted at any point.

3.3.3 Editing Stored Conversations

The Browser is the primary interface for manipulating stored conversations. However, the

format of the stored conversations is ASCII and therefore editable; sound segments are

represented as pointers to subsections of sound files.

Chapter 4

Turntaking and Segmentation

Monolithic, lengthy recorded audio does not allow users to identify and mark the

interesting utterances. In order for the user to take advantage of a conversation's

inherent structure to filter out those worthwhile segments, the Listener needs to derive the

inherent structure from the audio signal during the conversation. This chapter discusses

the workstation's software and hardware platform for audio, describes how the Listener

breaks the audio signal into meaningful pieces, and addresses some of the related issues

in segmentation.

4.1 Workstation Audio

Real-time segmentation relies upon on the workstation's underlying hardware and

software support for audio. This section characterizes the workstation's audio capabilities

and the Speech Group's audio software library and asynchronous audio server.

4.1.1 Workstation Capabilities

The audio capabilities of the workstation used in this research are well-suited to handling

telephonic speech. The Sun Sparcstation 2 comes with hardware for digitizing a single

sound channel.1 The sampling rate is 8000 samples per second, which, according to

Nyquist's Theorem, corresponds to a 4000-Hertz bandwidth. Each sample contains 12

bits, though it is stored in a compressed, 8-bit t-law format [Par86, Sun90].

'The Sparcstation contains an AM79C30A Digital Subscriber Controller chip, supplied by Advanced Micro

Devices.

To put these numbers in perspective, consider that humans are capable of hearing

sounds up to about 20,000 Hertz, and compact-disk-quality audio is sampled 44,100

times per second with 16-bit samples. However, telephone lines carry audio signals with

only a bandwidth of 300Hz-3400Hz [Ron88], and so higher-quality digitizing would be of

no particular benefit when working with audio from telephones.

Digitized audio is stored in files, referred to as soundfiles or audio files. Even in p-law

format, audio requires considerable storage space; a recording that is 1 minute long will

take 480K bytes to store.

4.1.2 Workstation Audio Support

The workstation audio device, /dev/audio, supports low-level read and write

operations. The audio control pseudo-device, /dev/audioctl, supports operations on

the characteristics of /dev/audio, such as setting the volume levels. The Speech

Group has built a library of device-independent routines that provide a level of abstraction

above these devices, so that application programs need only be concerned with actions

on sounds themselves and not with the details of interfacing to the audio devices. This

library supports audio operations that are non-blocking, a feature required by interactive

applications. The library includes a wide variety of audio-related routines in addition to

the basic record and play routines.

The Soundserver is a networked server for managing asynchronous audio operations

that is built on top of the sound library routines. It was written by Barry Arons of the

Speech Group, and uses two other tools, the ByteStream Manager and the Socket

Manager, for handling interprocess communication [Spe9l]. The Soundserver's

architecture emulates that of the X Window System in that it consists of a server process

that executes on the workstation, and a client-side library of routines that are linked into

an application program. The client-side routines enable the application to communicate

with the server process through callbacks.

In its current implementation, a Soundserver process can interact with only one

application at a time. This is normally sufficient, as an application connects to the local

Soundserver just before it actually uses the audio device and disconnects immediately

afterwards. Applications can, however, connect to multiple Soundservers as long as they

run on different workstations, and this is what the Listener does to accommodate two

audio input streams in the absence of stereo audio input.

The Soundserver's event-oriented software interface allows for intermixing audio and

non-audio events, such as user input. This is important to an X Window System

application, because X is entirely event driven. Also, a callback-driven programming style

can lead to more modular code.

4.2 How the Listener Determines Segments

The inherent structure of a conversation is defined by the naturally-occuring pauses at

the end of phrases and sentences, and the alternation of utterances between speakers.

The audio data can be automatically segmented into understandable pieces, based on

the boundaries between speakers and between phrases. This division of the audio signal

is done by the Segmenter component.

As previously discussed, there are two sources of analog audio signals available to the

Segmenter, dispatched through two Soundservers. One audio source comes from the

telephone handset and carries speech from both ends of the phone call. The other audio

source is a local microphone, placed near the user's workstation, to capture only the local

user's speech.

To determine the boundaries of segments, the Segmenter receives audio data from both

these sources, performs pause detection on each source, synchronizes the sources, and

then locates changes of speaker between pauses. This multi-stage processing is

presented in the rest of this section.

Before the Segmenter can receive audio data, it must establish communication with the

Soundserver. The initialization involves the following steps:

" The Segmenter connects to the local and remote Soundservers when a phone call

begins.

" The Segmenter then registers, with both Soundservers, callbacks for two kinds of

sound-related events, energy events and end-of-recording events.

" Finally, the Segmenter tells the Soundservers the names and maximum lengths of

the to-be-recorded soundfiles, and requests that the digitized audio be saved in a

file in addition to causing energy events to be generated.

Once recording begins, the Soundservers receive input from the workstations' audio

devices. The energy events generated by the Soundservers trigger the registered

callback routine.

4.2.1 Acting on Energy Events

Energy events occur at fixed intervals, currently one event every 100 milliseconds, and

contain data about the audio signal over that interval. This data consists of the following

items:

which Soundserver generated this event;
the timestamp for the interval, starting at 0;
the average and peak magnitude of the signal; and,

average and peak energy values of the signal.

Note that the actual digitized audio is not part of the data returned by energy events.

The energy event callback routine performs the following functions, as shown in Fig. 4.1:

* First, the latest event, along with previous events from the same Soundserver, are

considered to determine the current mode of that audio source. The mode refers to

whether the audio is currently in a silent period, a non-silent period, or in transition

between the two. The section on pause detection, below, describes more fully how

the mode is determined.

* Then, the overall state of the conversation is determined-is someone speaking,

and if so, who is it. The procedure decides who is speaking by looking at the current

modes, speech or nonspeech, of the two sound sources.

In order for the two modes to be considered together, however, they have to be

referring to the same time interval. Events from the two Soundservers arrive

intermixed, and may arrive in groups of several events from one Soundserver,

followed by a similar group from the other Soundserver. Therefore, the two streams

of events have to be synchronized. This is accomplished by keeping two queues,

one for each audio stream. These first-in-first-out queues contain modes and their

corresponding timestamps. Once the modes are synchronized, the conversational

state for that time interval can be ascertained.

* The conversational state for each time interval is then fed into the tum detector,

which takes the appropriate actions to find the boundaries of segments and then

creates the segments. This process is complex enough that it calls for a state

transition approach, implemented as a state table, and is described below.

* When a turn is detected, a segment is created and is immediately added to the call

display, as described in Chapter 3.

Handset microphone

energy events

Pause detector

si ence s
speech s
speech s
silence s

Queues of modes at each 100-

Local microphone

Remt onsre

energy events

ilence
B ence

sence
H ence

msec Interval

mode synchronizer

mode for each microphone, for an interval

Conversational state
determiner

conversational state for an interval

State machine
to detect turns

and delimit segments

new segments

Figure 4.1: Processing energy events in the Segmenter

4.2.2 Pause Detection

The preceeding section refers to determining the mode at a particular time. This
determination procedure is actually doing pause detection, that is, dividing the audio
signal into discrete periods of speech and nonspeech, where each piece of speech is
separated by a pause, or a brief silent period.

A pause occurs when the magnitude 2 of the audio signal is low enough for a long enough
period of time. Similarly, speech is detected when the magnitude is high enough for long
enough. A pause detection procedure, then, specifies exactly how the signal is
determined to be "low enough", and what "long enough" means.

The parameters that govern pause detection are as follows:

* Minimum duration of silence, in milliseconds
Minimum duration of speech, in milliseconds

These durations are currently both set to 300 milliseconds. Note that although
durations are specified in milliseconds, the Segmenter needs to know how many
energy events to examine, and so the durations are converted into counts of energy
events when the Segmenter is initialized.

. Amplitude threshold for speech

This threshold is specified separately for each microphone, and its value is related
to the range of values typically produced by that microphone.

The amplitude of a signal containing speech is quite variable, especially at the beginning
or end of an utterance. Even during a word, any single energy event may fall below the
amplitude threshold for speech. Therefore, a pause detector cannot decide whether the
current mode is speech or nonspeech by looking at only one energy event; it must take
into account the amplitude over a period of time, as specified by the minimum duration
times.

The Segmenter uses a sliding window when deciding whether the signal is currently
speech or nonspeech, as shown in Fig. 4.2.

The pause detector looks at the average amplitude for the latest event, along with the
consecutive preceeding events that constitute the mimimum duration, and only declares
nonspeech or speech if the amplitudes from all the examined events meet the "low
enough" or "high enough" criterion. Otherwise, the pause detector does not determine

2The magnitude of a signal at a point in time is just the absolute value of the signal's amplitude.

energy values at 100-second Intervals

speech threshold

unetfm ne
un ermn

silence
silence

Figure 4.2: Example of a 300-msec sliding window used in pause detection

whether the mode is speech or not. If, for example, only one of the last three intervals is
high enough to be speech, the pause detector declares that the signal's mode is
undetermined at that time. This procedure is a simplification of the endpoint detection
algorithm given in O'Shaughnessy, p. 434 [O'S87].

4.2.3 Turn Detection

Turntaking pauses, that is, the pauses between the end of one speaker's utterance and
the beginning of the other speaker's utterance, may be quite short, so short that pause
detection would not find them. But knowing who spoke which segment makes the
structure of a conversation much more obvious, and so that information needs to be
obtained by means other than pause detection.

As previously mentioned, the Listener uses two microphones to determine who is
speaking. This speaker-based segmentation can be accomplished by detecting when
one speaker's turn begins and ends, and matching this time window to the recorded
audio. (The beginning and end times are the boundaries of the segment, and the
boundaries are used in displaying and storing segments.)

The procedure in turn detection is to ascertain who is speaking at each interval, note
when the speaker changes, and construct segments based on this information. Final

segment determination must take into account constraints that ensure segments are as
meaningful as possible.

The pause detector, described just previously, decides whether there is currently speech

or nonspeech occurring on each of the two audio sources. Then, those modes are

combined and the current conversational state is deduced, using the following simple

rules:

" When there is speech in the telephone microphone, one or the other of the

conversants is speaking. If there is also speech coming through the user's local

microphone, then the user is speaking and that segment can be attributed to her.

Note that the other person may also be speaking at the same time; there is not

enough information available for that condition to be distinguished from only the

user speaking.

* If there is speech in the telephone line, but the user's local microphone reports

silence, then the other person is speaking.

* If both audio sources are silent, then neither person is speaking and the overall

state is silence.

This overall state is then input to a state transition procedure, wherein the previous state

and the new input together determine which transition to make, that is, the action to take

and the new state. The state transitions for the turn detector are shown in Fig. 4.3.

The possible actions are:

Start the first segment-has to be special-cased
Start a segment, after a silence
Start a silent period
Switch between speakers, with no intervening silence
End a segment

The possible states are:

Unset-for starting out
Me talking
You talking
Silence

Note that silences are divided equally between segments, as shown in Fig. 4.4. This has

attractive side effects. One is that no part of the audio signal is discarded, so the

IGNORE

silence

ILENCE

IGNORE
|ILENCE

IGNORE

.ence

KEY

O states
0 transitions IGNORE

me inputs
IGNORE actions

Figure 4.3: State transition diagram for determining segments

beginning and end of every utterance is preserved. During playback, the stored
segments sound natural and complete when played individually as well as when played
sequentially. Another benefit is that the pause detector does not inadvertently cut off
parts of phonemes that have a low overall amplitude and energy in the higher
frequencies; this can happen with silibants such as "s" sounds. The low bandwidth of a
telephone line would exacerbate this problem in the case of the Listener.

segment n segment n+1 segment n+2

Figure 4.4: Silences are divided between segments

When the recording is terminated, either because the telephone call has ended or
because the user has stopped the recording, the final energy events are processed and
the last segment is created.

Constraints on Segmentation

As predicted by the studies of telephone conversations described in section 2.1.3,

utterances are short, and very short turns (VSTs) are common. These VSTs are attention

signals, attempted interruptions, paraverbals and so on, and should not, in general, be

treated as a true turn. VSTs should either be treated as part of the current segment, or

dropped altogether, or visually indicated but still contained in a larger segment.

Sometimes a single utterance will include a short segment, due to the natural pauses

used by speakers in place of commas. Even within an utterance, short segments are not

particularly meaningful or useful, and so segments should be at least a minimum length.

There is a Segmenter parameter that specifies this minimum segment duration; it is

currently set to 2 seconds, based on some experimentation.

The minimum segment duration is not sufficient for handling VSTs properly, however,

because the segment interrupted by the VST should be treated as a single segment. Just

forcing segments to be a minimum duration will cause an interrupted utterance to be

broken into two segments. (It would be three segments if the VST were treated as a

separate segment, but that is precluded by the minimum segment duration.)

4.3 Issues in Segmentation

While implementing segmentation and observing how well it worked within the Listener, I

came across several issues.

4.3.1 Delays In Updating the Display

The turn detector does not establish the ending point of a segment until after the end of

the segment; because silences are divided equally between segments, the end of a

segment cannot be known until the next segment has begun. An unfortunate

consequence of this technique is that this delays the creation, and therefore the display,

of the latest segment. The user does not see the segment until at least .5 second after it

has ended.

In practice the delay is closer to 2 seconds, and is quite noticable. As a user, I found it

disorienting to not see something happen when I spoke, and the delay caused me to

occasionally lose track of which segment corresponded to which utterance. This is a

significant drawback for a listening tool, needless to say.

A better approach would be to show a lengthening segment-like indicator while the
utterance is being spoken, and then turn it into a real segment when the endpoint has
been determined. This approach would be useful in another context as well: when a VST
interrupts a segment, the endpoints of the VST and the preceeding segment will need to
be revised. This revision will not be as visually unsettling as it might be otherwise,
because the user will be familiar with segments and endpoints being mutable.

4.3.2 Pause Detection

The issue here is ascertaining whether the microphones are transmitting useful
information or not. The Segmenter does have parameters that specify minimum
thresholds for deciding whether audio is coming through each microphone connection,
and these thresholds are intended to enable the Segmenter to tell if one of its audio
sources is not available and, if so, adapt its processing accordingly.

4.3.3 Synchronization

The Segmenter currently uses two microphones, each connected to a different
Soundserver on different workstations. The use of two machines has introduced a
synchronization issue: does the event from one audio source at time n really correspond
to the event from the other source that is also labeled time n? Or, does it correspond to
time n - 1, or time n + 1? In other words, is there a skew between the data from two audio
sources? Also, the skew might not be consistent throughout a phone call; does the data
from one of the workstations drift in relation to the other?

Skew and drift greatly affect how well the Segmenter works, in part because the size of
the interval between audio events, 100 milliseconds, is large enough that even a one or
two-event drift can cause a pause or turn to be missed. Such mistakes cause further
errors; a state transition procedure is strongly influenced by one mistaken transition, and
in practice several succeeding segments will be mis-segmented. Also, users are aware
of their own speech, and quickly notice if the segmentation errs, for example, by
erroneously attributing their utterances to the other speaker.

So, I added an explicit synchronization step at the beginning to detect the skew. When
the user is placing the phone call, the initial synchronization works by asking the user to
say the word "Go", after dialing a digit to eliminate the dial tone. (When the user is
receiving a phone call, the user is extremely likely to speak first, and the synchronization

could use that initial utterance in place of the word "Go".) The word "Go" works well for

these purposes; it has a distinct beginning point and is just long enough, 300-400

milliseconds. The synchronization procedure looks over the audio events from the two

microphones, and compares the starting point and lengths of the speech segment to

determine if there is a skew.

The Segmenter can take the skew, if any, into account when synchronizing events. If it

seemed warranted, another synchronization at the end of a phone call could verify that

there was no drift during the conversation. However, since I added the explicit

synchronization the skew has almost always been zero!

Chapter 5

The ChatViewer Widget

This thesis is premised upon the idea that speech is ever-present in everyday life, and

computers can capture that speech for later reference. However, the nature of

conversation suggests that these recordings may be lengthy; soundfiles many minutes

long will not be unusual. This raises the issue of how to make these long recordings

usable. Part of the answer is structuring the audio data; this topic was the subject of

Chapter 4. Another part is displaying the structured audio in an understandable way, and

providing users with the requisite level of control and interactivity with the audio. What

kinds of software abstractions are needed to support interaction with large amounts of

audio?

The ChatViewer is an attempt at such an abstraction. It is designed to manage and

display chats: collections of recorded speech segments and short text strings. Using the

ChatViewer, applications can provide features to create new chats, display chats in

several different ways, review and edit chats, and store chats in two kinds of files, chatfiles

and database files. ChatViewer widgets maintain information about the chat's sound and

text items in a simple database. ChatViewers also support a range of user interactions.

This chapter presents the capabilities of the ChatViewer and briefly describes its

implementation and interfaces.

5.1 The Nature of Widgets

The ChatViewer is implemented as a widget and is built using the X Window System, Xt

Toolkit, and Athena widget set supplied by MIT and the X Consortium'. A widget is a user

interaction component. It is also an abstract data type, and an object within a

single-inheritance class hierarchy abstraction [AS90]. Widgets are defined by their

attributes, or resources, and their operations, or methods. Resources are settable by

users and by application programs.

Writing a non-trivial widget is not a task to be undertaken lightly. Contrasted with

application programming, it requires a much deeper understanding of Toolkit concepts

and implementation particulars. Furthermore, widget writing is somewhat of an arcane

art, and there is not much documentation available about widget intricacies.

However, widgets are powerful tools for managing user abstractions, especially

abstractions for which the details of appearance and arrangement are critical. Both the

Listener and the Browser need to display multiple sound segments, though their displays

serve very different purposes and look quite different. The ChatViewer, as a widget, can

handle these different display needs and hide the details from the applications. Because

widgets are objects, they can be reused by different applications, and there can be

multiple ChatViewers within a single application, each with different attributes.

One major motivation behind building the ChatViewer as a widget is that a widget can

readily be employed by other applications. The ChatViewer has been used in the Listener

and Browser, of course, and also in the todo application, which supports lists of sound

and text items2. The ChatViewer can also be adapted for use in transcription tools, such

as manual speech-to-text transcriptions3.

5.2 Using a ChatViewer within an Application

Within an application, a ChatViewer widget is created and used like any other widget.

There are a number of resources defined for ChatViewers; the most important ones, the

XtNchatName resource and the XtNlayoutStyle resource, are discussed here. The

remaining resources are listed in Appendix B.

'For more information about these software libraries and the X Window System in general, see the excellent
book by Asente & Swick [AS90] or the documentation supplied by the Consortium [MIT88].

2The todo application was developed by Chris Horner of the Speech Group.
'Using ChatViewers for transcriptions was suggested by Barry Arons.

The XtNchatName resource is the name of the input datafile, either in chatfile or
database format. The XtNlayoutStyle resource specifies how the ChatViewer visually
presents the chat items in its display. The available layout styles are: XawlayoutStyleLeft,
XawlayoutStyleTime, and XawlayoutStylePan, as shown in Fig. 5.1.

XawLayoutStyleTime

.E...........

XawlayoutStyleLeft

=nr n r : =... -.- I

XawlayoutStylePan

Figure 5.1: Examples of ChatViewer layout styles

The XawlayoutStyleLeft style places each item on its own line; it is well-suited for
displaying lists of unrelated items, such as a list of things to do. The XawlayoutStyleTime
style is used by the Listener, and treats sound segments as related and in an infinitely
long horizontal display. The XawlayoutStylePan style creates the miniaturized displays of
conversations that are used in the Browser.

The ChatViewer includes public routines that provide the following functions to the
application:

9 Dynamically modify chats, by adding and deleting items.

.1

These functions are used by the Listener, which creates a new sound item for each

segment that is detected by the Segmenter (see Chapter 4 for details).

void XawCVAddItem (widget, itemid, item-info);
void XawCVDeleteltem (widget, itemid)
void XawCVMoveltem (widget, from-itemid, to-itemid)
void XawCVAddltemAtEnd (widget, item-info)

* Mark and unmark items, both visually and in the database, and enable or disable

marking.

These operations are required by the Listener, so that users can identify to the

program (and to themselves) the portions of the telephone conversation worth

saving.

void XawCVMarkItemInDB (widget, itemid)
void XawCVUnmarklteminDB (widget, itemid)
void XawCVVisualMarkltem (widget, itemid)
void XawCVVisualUnmarkItem (widget, itemid)

e Provide relative access to next and previous items; provide direct access to items

and widgets, with item-to-widget conversions and vice versa.

Although the ChatViewer itself provides the most commonly-needed functions, an

application may wish to extend these. Therefore, the widget cooperates by giving

programs access to the items at the lowest levels.

Widget XawCVltemToWidget (widget, itemid)
int XawCVWidgetTo Item (widget, item-widge)
void XawCVGetCurrentItem (widget, itemid)
void XawCVGetPrevious Item (widget, itemid)
void XawCVGetNextltem (widget, itemid)

* Play all sound segments under application control.

This function allows applications to add audio playback mechanisms beyond the

single-segment playback automatically provided by the SoundViewer that the

ChatViewer creates for each segment.

void XawCVPlayAllItems (widgeo

* Get information about a chat item, and modify it. Get the number of items in the

chat.

In addition to adding and creating items, some applications may wish to change

items. The ChatViewer stores items in a database, but the application has no direct

access to that database and must use these routines to retrieve and store data

about items.

void XawCVGetitemInfo (widget, itemid, item.info)
void XawCVSetItem Info (widget, itemid, iteminfo)
int XawCVNumItems (widget)

* Write out chats in either a database format, or as a chatfile, and set the default path

to look for sound files.

The widget reads in chats when it is created; these routines enable the application

to save chats whenever the user requests it.

void XawCVWriteDB (widget, filept)
void XawCVWriteChat (widget, filept)
void XawCVDefaultSoundPath (widget, sound-path)

The calling sequences for each of the public routines and details about the programmatic

interface to the ChatViewer are given in Appendix B. One point worth noting is that within

an application, items are numbered consecutively and can be referred to by an item

sequence number.

Widgets can define actions, and map user input events such as keystrokes or mouse

button presses to those actions. The current implementation of the ChatViewer does not

define user interactions, although the interactions defined by the sound and text widgets

are available to users. The ChatViewer widget itself relies upon the application to handle

ChatViewer-related user interactions, and provides the necessary public routines to be

called in response to user input.

5.2.1 Chatfiles

The ChatViewer can accept either a chatfile or a database file as input, and can parse

chatfiles to build a database. A chatfile contains sound and text items, in a concise and

editable format. A database file is simply an ASCII representation of the contents of a

database; it includes each record and each field. Fig. 5.2 shows a short chatfile.

The syntax for specifying sound segments is as follows:

<sound file: sound-filename [partial-segment-specification]>

<sound file: /sound/hindus/browse/listentest:::2950>
<sound file: /sound/hindus/browse/listentest::2950:6300>
<sound file: /sound/hindus/browse/listentest: :6300:8832>

Figure 5.2: Sample chatfile
This chatfile describes the chat shown earlier in this chapter.

where partial-segment-specification is:

:: [start-time] [: end-time]

Start-time and end-time are given in milliseconds. If the start-time is not given, it is

assumed to be the beginning of the sound file. Similarly, if the end-time is missing, the

end of the sound file is used. So, to refer to the complete sound file, all that is needed is

the sound-filename, preceeded by the standard prefix.

The chatfile representation does not currently include a specification for marked

segments or for the speaker's name.

5.3 Implementation

A widget written using the Xt Toolkit follows a particular canonical form for how resources

are defined and the widget code is organized. This section describes the aspects of

ChatViewer widget implementation that transcend that canonical form.

Class Hierarachy

The ChatViewer is subclassed from the Athena widget set; its immediate superclass is

the Layout widget4. The ChatViewer uses the SoundViewer widget to represent sound

items, and the Athena AsciiText widget for text items [MIT89].

Data Structures

The ChatViewer needs to maintain two kinds of information about its subsidiary sound

and text items. One kind of information pertains to the items as widgets. This information

includes the widget id, or pointer to the SoundViewer or AsciiText widget's own data

structure. Because widgets are defined as reusable objects, the item widget's data

"The Layout widget was written by Russ Sasnett and Mark Ackerman.

structure includes all other information about that widget, including its position, size,
attributes, and so on. The ChatViewer maintains a list of widget ids, ordered by item
sequence number, so that both the widget id and the item sequence number can be used
to reference an item and its corresponding widget.

{Record
({Contents} {/sound/hindus/browse/listentest\00}
{SoundSpeaker) {\00}
{SoundStart} {0\00}
{SeqNum} {1\00}
{Type} {SoundItem\00}
{SoundLen} {2950\00}
{SoundStop} {2950\00}
}

Figure 5.3: Sample ChatViewer database record
This record describes the first segment in the sample chatfile in Fig. 5.2.

The other kind of information describes the item as it pertains to the chat. These data are
stored in a database and managed by the database library routines. Fig. 5.3 shows
sample records from a chat database. For both text and sound items, there is a field for
the type of item, along with one for the item sequence number. For sound items, the
record includes the soundfile name; the speaker's name, if known; and the start and stop
times within the soundfile. If the item has been marked by the user, a field named Marked
is created. For text items, the record includes the textual contents of the item.

Procedures

The ChatViewer does most of its work during initialization and when a new item is added.
During initialization, the specified chatfile, if any, is parsed and the initial database is
created. If a database file is specified, the database manager performs the parsing and
database creation operations. Once the database exists, the initial display is created by
adding to the display each item from the database, ordered by the item sequence number.

The procedures that add new items create the SoundViewer or AsciiText widget as
appropriate and lay out, or position, the newly-created widget according to the specified
layout style. Laying out the items requires taking into account the position of the previous
item, constraints such as layout style and vertical offsets for speakers, and the relative
position of the item in its window. In some layout styles, the items are "wrapped around"

and presented in rows, so the layout procedure has to check for whether the new widget
would fall beyond the window boundary, and create another row if necessary. Changing

the display after adding and deleting an item is done very simply, by deleting and then

re-laying out the widgets with sequence numbers greater than that of the affected widget.

There are also a number of very short routines to support marking and playback

operations.

Use of SoundViewer Widget

The ChatViewer represents a sound segment with a SoundViewer widget. SoundViewer

widgets display a sound as a rectangular object, as illustrated in Fig. 5.1. The length of

the SoundViewer corresponds to the length of the sound segment so that, for example,

short segments appear short. For use in the Listener, the SoundViewer was modified and

now has resources for the starting and ending point of the segment within a soundfile.

Users can play all or part of the soundfile segment associated with the SoundViewer.

While the sound is being played, an indicator bar within the SoundViewer fills in, to show

how much of the sound has been heard so far.

The SoundViewer is subclassed from the Ind (short for Indicator) widget5. There are a

number of display-related resources supported by the SoundViewer, including several

different ways of mapping sound segments to rectangular objects. For more information

about the SoundViewer, see [Spe91].

Class Methods

The ChatViewer has its own Initialize and SetValues routines, a resource converter for

converting a string to an LayoutStyle resource, and a simple GeometryManager. The

ChatViewer is a composite widget that creates one child widget, a Form widget, and the

Form performs geometry management for the ChatViewer's sound and text children. The

ChatViewer's own geometry manager does not perform layout; it just increases the height

and width of the ChatViewer itself, to match the size of its Form child. This basic

geometry manager was required because the ChatViewer's superclass, the Layout

widget, is explicitly designed to not resize itself as its children grow.

5The Ind and SoundViewer widgets were created by Mark Ackerman and Chris Schmandt

Source Files

By convention, widgets consist most often of a single source file of C code, along with the

customary widget.h and widgetP.h include files. The ChatViewer code is broken up into

two source files, ChatViewer.c, the main source file, and chatutil.c. Chatutil.c contains the

routines that make use of the database manager; these routines were grouped together

so that a different database manager could be substituted without massive code

changes. There is also a chatutil.h file.

Chapter 6

Future Directions

This chapter explores the directions in which this research could proceed from the work

described in this thesis. The concepts under investigation turned out to be a rich source

of inspiration, and generated many ideas, both theoretical and practical, that were

beyond the scope of this project.

The first section addresses additional uses of structure. The second section discusses

the questions that a small user study might address, and strategies for gathering data

from pilot users. Next, issues of segmentation sensitivity and advanced audio techniques

are discussed. The remaining sections are concerned with more pragmatic software

issues, starting with a revised design for the ChatViewer widget. The chapter ends with a

list of recommended software revisions and extensions.

6.1 Contextual Structure and Strategies for Retrieval

In the Introduction to this document, the semi-structured approach to audio was

described as encompassing inherent conversational structure, contextual structure, and

supplemental structure. The current Listener and Browser focus on conversational

structure, however, and do not yet make full use of the other kinds of structure. This is the

primary area for additional work, and involves several different issues.

One direction is to exploit the structure of conversations above the discourse level. This

means taking into account the major phases of a particular audio interaction. For

telephone calls, there is always a period of social intercourse, establishing the speakers

and so on, before the caller pursues her reasons for making the call [Sch77]. This

meta-structure can be used to inform semi-structured audio.

On a much more pragmatic level, the Listener and Browser need to be extended so that
chatfiles and soundfiles can be saved and given names by the user; filenames are
currently hardwired. When the Listener is used on an everyday basis numerous files will
be created, and if the user does not wish to explicitly name chats, random filenames will
be assigned. How should these many files be organized? Should chats be stored in a
separate directory? How long should the (sizable) soundfiles be retained? Will users
want to group chats logically together, as in folders? If so, on what basis?

6.1.1 Contextual Items

Another mandatory feature is for the Listener to collect and store contextual, or
situational, structure. For telephone calls, contextual data includes the other party's name
and phone number, if known; the time and date of the call; and the location and extension
of the user. The location data can be derived from the location of the telephone
extension, and by information from active badges [Wei9l]. This context information
should be stored automatically with the saved segments. The user could provide an
optional descriptive tag for each conversation, though the timestamp is sufficient
identification for retrieving a conversation.

For manipulating context items, I envision a popup window that prompts for missing
items. Because only on-campus callers will be identifiable by their phone numbers, the
popup could include a list of frequent outside callers, ordered by frequency or recency, so
that the same names do not have to typed in over and over. It should eventually be
possible to link chats to related documents such as files, electronic mail, and so forth.

Context items must be stored in the chat database and, later, written out in conjunction
with the chatfile. In order to do the former, the ChatViewer widget routines to get and
modify context items will have to be fully implemented. This is straightforward to
accomplish using the database manager software. Storing context items in chatfiles is
more complicated, because a new syntax of key-value pairs will need to be defined and
supported. In a sense, what is needed is an audio markup language, akin to the Office
Document Architecture [Hor85] that has been defined for text documents. Version
numbers within chatfiles will then be helpful to accommodate the inevitable syntax
variations.

6.1.2 Browsing Through Multiple Chats

Once chats are saved regularly and contextual items are available, strategies for
retrieving specific chats will become important to users. The Browser will need to be

extended to provide access to chats and audio segments of interest, using selection

criteria similar to those used by electronic mail programs. All chats would be accessible

by date and time, by called-party, and by length. Depending on user-supplied context,

chats could also be selected by subject, by type of conversation (phone call, in-person

meeting, and so on), and by where the conversation took place.

Collections of chats could be quickly browsed, in two display formats. One representation

would be modelled after directory listings, with a text line per chat showing the

conversants' names along with the date and the duration of the conversation. The other

format would build upon the miniature chat display used by the Browser, and show one

miniature for each chat in a collection or directory. If colors were used to represent

speakers, then a user could readily identify which chats were with a particular person.

This, along with the date of the chat, used as a label, and the shape of the miniature,

should greatly assist the recall of specific conversations.

Much more sophisticated kinds of retrieval could be performed by creating retrieval

agents. These agents would analyze chats for speech signal characteristics such as

emotion and gender. For example, as part of narrowing in on the segment of interest,

users could specify that the just-played segment is too low-pitched and so would next be

presented with slightly higher-pitched segments to choose among. Another agent could

search for segments with a particular prosody, for example, questions. One way to

implement these independent agents would be using the Unix inetd facility, so that these

retrieval agents could execute on the most appropriate machines.

6.2 User Observations

The Listener and Browser tools were implemented for demonstrational use, and I was the

only user. While observers pointed out weak points and made helpful suggestions, there

was no opportunity to explore user interaction issues as could be done in the course of a

pilot study. In addition to providing feedback for improving the user interface, observations

of pilot users can address a variety of questions. Some questions of interest include:

o How will using the Listener affect a phone call and the participants?

o How will the resulting chats be used?

o Are segments marked more often during the conversation or afterward?

o After the call ends, how much do participants revise their choice of which segments

to save?

Observations of pairs of conversants making a series of calls will enable longitudinal data
to be gathered. Some of the questions to be studied are as follows:

* Does the nature of the calls change over time?

9 Are users more or less likely to create context items ahead of time as they gain
experience with the tools?

* Do participants refer to earlier conversations more frequently?

* Do the conversations become more structured?

* Are participants' perceptions of the success and satisfactoriness of calls affected by
having these tools, and if so, how?

Additional questions can be addressed if both participants in the conversation are using
Listeners:

* Do the participants agree on segments of mutual interests?

* Are segments spoken by one person more or less likely to be saved by that person?

6.2.1 Practical Considerations for a Pilot Study

One approach is as follows: several pairs of frequent phone conversants will be asked to
participate. Sample phone conversations will be recorded beforehand. During the study,
these same participants will speak again, this time with the Listener available to at least
one participant in each pair. The study should also include occasional videotaping and
interviewing of the participants.

It would be best to simply give the Listener and Browser to the pilot users and allow them
to incorporate the tools into their daily routine. This may not be realistic, however,
because of the specialized equipment required. Another approach is to invite pilot users
to make their phone calls from a properly equipped office, though the users would not be
in a familiar environment. With this scenario, it would make sense to provide users with
the Browser, and their chats, on their home systems.

A note on implementation-the Listener and Browser will need to be instrumented so that
usage data can be tabulated automatically. The logged data could include the length and
frequency of phone calls; the proportion of calls that are recorded; and segment marking
by users, as a percentage of the total call duration and as a count of segments. Retrieval,
editing, and playback operations are further candidates for automatic logging.

6.3 Controlling Segmentation Sensitivity

As discussed previously, the Segmenter demarcates segments based on detecting

pauses and turns, and its decisions are governed by a set of parameters and constraints

with preset values. The values were carefully chosen so that segments would correspond

to phrases or sentences by one speaker. In other words, the preset values result in a

segmentation that is sensitive to certain aspects of conversational structure, such as

phrases, and insensitive to others, such as individual words.

That particular level of sensitivity may not be correct, however, for purposes other than

segmenting telephone calls, or even for other users during calls. For example, some

speakers may pause more often than others; pausing during speech can be affected by

situational and individual factors such as anxiety, topic, gender, and personality

[Roc73, Rut87].

Therefore, the user ought to be able to control the sensitivity of the segmentation. One

way to provide this control would be to make the numerous segmentation parameters

separately adjustable. This would be useful to a programmer working on the

segmentation procedure, but not very understandable to a person who just wants to find

portions of phone calls.

Instead, I propose a different mechanism, one that has a single, linear adjustment for

setting the segmentation to be more or less sensitive. The implementation of this

adjustment would have to concern itself with changing various parameters as

appropriate, but the user would have a simple way to control the granularity of the

segmentation; it could vary from effectively no segmentation (a monolithic block of

sound), to every turn and pause resulting in a separate segment. The granularity of the

segmentation could then be controlled using, for example, a Sensitivity slider mechanism.

6.4 A Handful of Audio Processing Ideas

ISDN dual-channel audio In order to segment based on speaker, two microphones

were used. This dual microphone setup is something of a hack, and not generally

practical. In the near future, ISDN technology will be integrated with workstations, and

then two microphones will no longer be required. In ISDN telephone lines, the audio

signal from each speaker is carried separately; once the hardware exists to tap into these

digital signals from within a workstation, speaker-based segmentation will be easy and

reliable.

Microphone calibration The pause detector is dependent on accurate settings for the
recording levels and the speech thresholds, so that speech is distinguished from
non-speech correctly. The current Listener relies upon the user to check and adjust the
recording levels with the vumeter and xgaintool programs.' However, this calibration
could be performed automatically by the software itself, perhaps with an explicit
calibration step built into the Listener. Automatic gain control may be another option for
accommodating changes in volume.

Non-telephonic conversations An obvious avenue for extending the Listener is to
support non-telephonic audio interactions. These could involve more than two people,
such as in meetings, or even in-person discussions between just two people. Both of
these situations are much more acoustically complex than telephonic calls. Miking each
person is often impractical (though eventually microphones may be built into active
badges.) Instead, the meeting places could be wired with environmental audio
capabilities. For large groups, the auto-directional microphone devised by Flanagan and
others, though not commercially available yet, presents an attractive solution to the
problem of capturing audio from meetings [FBE90]. A capture tool may well be useful in
group meetings as part of a note-taking system.

Partial speech recognition Although real-time spoken natural language understanding
systems are a number of years away, non-real-time speech-to-text automatic
transcriptions could be made available as an overnight service; the segments of interest
from a day's conversations could be transcribed by a specialized server connected
through a network [Der9l]. This is a particularly attractive use of natural language
systems, as even partial transcriptions would be of value for later retrieval and recall of
conversatons.

Partial recognition could also be incorporated into the real-time segmentation, by limiting
the recognition to paraverbals and pre-defined audio flags. For instance, the words "first"
and "second" could be recognized as phrase delimiters.

Controlling replay speed For audio scanning of lengthy stored chats, it would be
helpful to control the speed of the audio playback. The faster replay may be even more
effective, given the chunking provided by segmentation [BM76]. This speed control could
be initially implemented using timescale modification of the speech signal, and controlled
with a slider-style interaction mechanism. Experience with scanning may indicate that

1vumeter and xgaintool are Speech Group application programs for monitoring and controlling audio
device-related parameters, including audio signal levels.

other approaches to speeding up replay should be used, including automatic elimination

of silent periods [Aro92].

Advanced signal processing Several sophisticated speech signal processing

techniques could be used to advantage in a Listener. One is speaker differentiation; this

would obviate the need for microphone-based speaker segmentation, as the program

could examine the audio signal and determine which parts of the signal belong to which

speaker. Another technique is speaker identification, or figuring out who is speaking by

matching the speech signal characteristics with stored templates from known speakers.

The Listener could even automatically create a template for frequent callers.

Another technique would use spectral filtering to refine pause detection. For an audio

signal with a greater bandwidth than telephonic speech (that is, greater than 4000Hz),

frequency-based analyses can be used to determine the zero-crossing rate, for example.

A medium zero-crossing rate is associated with noise, while a high zero-crossing rate can

detect fricatives with low energy values. [O'S87]. Finally, a Listener could classify (and

perhaps segment) segments by correlating the prosody of the segments with templates

of kinds of utterances. For example, questions can be identified by the ending rising pitch

[HP86].

These techniques are not now appropriate for a telephone Listener, due to the lack of

speech signal bandwidth, and might not be feasible for real-time use in any case, due to

the intensive calculations required. However, advances in telephone technology and

signal processing will eliminate these obstacles in the near future.

6.5 ChatViewer Variations

The ChatViewer has two major functions, managing the chat database and displaying the

chat to the user. The current ChatViewer widget performs both of these functions, and

supports several different kinds of displays.

The future of the ChatViewer is in breaking it up into a number of smaller, more

maintainable widgets. The motivations behind this strategy are, first, the code for the

ChatViewer now consists of about 2600 lines, which is quite large for a special-purpose

widget. Second, it has become obvious that the different modes, or ways of displaying

chats, is the area where the ChatViewer is most likely to change. Right now, any change

has to be made so that the other modes are not adversely affected.

The existing ChatViewer will be split up into a family of widgets, with one widget as the

base class, called the OmniViewer, and several widgets subclassed from that widget,
each with its own display semantics. The subclasses would include:

* A ListViewer, for lists of brief sound and text items, akin to the Left mode currently

used by the todo application;

This widget could well include a resource to request that the list items be

automatically numbered.

* A CallViewer, for dynamically displaying consecutive segments of a continuous

conversation with two participants, akin to the Time mode currently used by the

Listener during phone calls.

* A MiniViewer, for creating the miniaturized display of a conversation, and based on

the current Pan mode used by the Browser.

* A new ChatViewer, for displaying stored conversations; it is closely related to the

MiniViewer.

* A ScribeViewer, for transcriptions, that is, text items closely associated with sound

items and connected by arrows.

Along with separating out the different display styles, the ChatViewer can be improved in

other areas. In its current version, the ChatViewer does not respond correctly to many of

application's SetValues requests on the widget's resources. Also, the ChatViewer does

not support the selection mechanism available to X applications; selections enable users

to cut and paste sound and text items across applications. User interaction is another

area requiring work; the application-based approach now taken is overly limiting. Finally,

the ChatViewer's resources and callbacks need to be trimmed and the ones worth

keeping fully implemented.

Most importantly, the ChatViewer's geometry management will be restructured. Using a

Form widget to avoid doing layout semantics was expedient, but is too constraining in the

long run. The ChatViewer should be implemented as a true Composite widget, and

perform its own layout. This change is anticipated in the plan to break the ChatViewer

into multiple widgets; each current layout style will require independent layout semantics,

and each layout-specific widget can have just the semantics it needs.

6.6 Other Software Improvements

Representations of Conversations Alternative approaches to displaying

conversations should be explored. The current approach concentrates on segments

rather than elasped time, and so the representation is not time-based. This is partly due

to having one SoundViewer widget per segment; each SoundViewer is independent and

shows a sound as if the sound started at time zero. Other representation strategies might

preserve time information better. A related issue is that time should be more

understandable in the call display, perhaps with an explicit timeline shown below the

segments.

Also worth investigating are different visual representations for who is speaking,

especially for future Listeners that display segments from three, four or even more

speakers. Colors could be used, or the speaker's name could be put inside of each

segment.

Minor Improvements The remainder of this chapter consists of the miscellaneous

ideas and suggestions that have arisen during the course of this project, loosely grouped

by topic. Deciding which of these items is worth pursuing should, of course, be based on

more extensive experience and user feedback.

The telephone Listener could be smarter about handling telephone-related events, such

as:

" On-going calls being put on hold.

. Initiating recording after the call has started.

" Working with other workstation tools like xphone and xrolo.2

" Phone calls arriving when on a second call appearance when the Listener is

already recording a call on the first call appearance.

User interface improvements and affordances for the Listener and Browser:

* The Listener is intended to run in the background, but there should be a visual

indicator when it is running-two at once is disastrous, as the audio signal events

get intermixed. The indicator could provide additional user semantics, such as

starting recording by clicking on it.

* Reinforce the user's focus of attention during a call to the right side of the call

display (where new segments appear). One way is to maintain some whitespace at

the right end, which is non-trivial to implement for widget-related reasons.

2 Xphone and xrolo are Speech Group applications that provide visual interfaces to dialing telephones
and looking up phone numbers [SC89].

* Marking a segment could be more approximate than it is now, and mean that the

previous n seconds of conversation be saved, along with the marked segment itself.

* Marking a group of segments could be done in a single action by sweeping over

them with the pointing device.

* To aid in marking, highlight SoundViewers when the cursor moves into them.

* Add playback to the Listener call display.

* In cases of very brief transitions between speakers, the Segmenter could pad the

segments with short silences to improve the replay of each segment.

* Display an icon or scanned-image of the other conversant.

* Change cursor shape to provide affordances for various kinds of interactions.

* Improve playback interaction semantics, such as providing an obvious way to

interrupt a PlayAll operation. Three ideas: make the PlayAll button act as a toggle,
interpret a click anywhere to mean stop the playback or implement VCR-style

controls.

* Segments should be playable in arbitrary groups of selected segments, and marked

segments should be playable as a group.

* Add a message line to the Listener and Browser applications, perhaps with an

on-line help option.

* Provide a resegmentation capability. This will require saving soundfiles of the

signals from both microphones.

Miscellaneous missing features and improvements:

. Text annotations should be well-supported.

* Support multiline text items.

* Allow more generalized editing, such as moving items anywhere in 2-D space using

a drag-and-drop interaction mechanism.

* Support pasting of sounds across applications, and recording of new sound items

within the Browser.

o User configuration settings are needed, such as:

- Preferred minimum and maximum segment durations.

- Maximum call length to be recorded.

- Resources for names and colors for speakers.

- Maximum number of speakers.

. There are two planned SoundServer-related improvements:

- Move the pause detection logic into the SoundServer and define events that

occur only on transitions between speech and nonspeech.

- Allow the time interval between energy events to be set by the application
program, so that it is not just 100 milliseconds.

Chapter 7

Discussion

In this final chapter, the work described previously is placed into perspective with a

summary of the knowledge gained and a discussion of potential applications and

organizational impact.

7.1 What Was Learned and Not Learned

This project successfully demonstrated that semi-structured audio is an interesting and

realistic methodology for integrating the world of speech with the electronic world.

Furthermore, real-time segmentation can be accomplished on general-purpose

workstations and with little (none, in the near future) special equipment. With respect to

automatic derivation of conversational structure, the approach taken in this project is

simple and effective, and does not rely upon sophisticated audio hardware or

computation-intensive software methods for determining segments and turns.

Futhermore, by dividing the silences between segments, a clean-sounding segmentation

is produced.

The Listener and Browser tools allow conversational structure to be displayed and

manipulated in a fashion that is original and thought-provoking. The ChatViewer widget

itself is a general, reusable implementation for displaying sound and text items, and will

be a base for continuing to experiment with different ways of displaying large amounts of

continuous and discontinuous audio.

As can be inferred from the length of the prior chapter, Future Directions, I had hoped to

implement more aspects of the semi-structured audio concept. I wound up concentrating

on deriving and displaying the inherent conversational structure of telephone calls-now,

the work needs to move beyond that. The key step is to incorporate contextual structure

and annotation, and to provide retrieval mechanisms, as described in section 6.1. At that

point, the tools can be used on a routine basis, and users can gain experience with

real-time segment-of-interest identification, data retention and retrieval. Researchers can

make informal observations of usage, if not go so far as to conduct a small pilot study.

Here are my personal observations on using the Listener. I found it to be comfortable and

easy to use during a phone call. The structure shown in the call display did indeed make

the conversation approachable from the point of view of picking out the important

utterances, and I could readily mark segments of interest. It was interesting, too, to see

aspects of conversing that are not normally made apparent, such as the lengths of

utterances and patterns of turntaking. I did note that the accuracy (or inaccuracy) of the

segmentation often went unnoticed by visitors, presumably because the dynamic display

was so engaging. I remained sensitive to segmentation errors with respect to my own

utterances.

The most awkward situations occurred due to unanticipated telephone circumstances.

Credit card calls are a case in point; the telephone line status switches from Dialing to

Active as soon as the local 950-xxxx number answers, and so the Listener winds up

recording and segmenting the sound of numerous touch tones. This is annoying and

something of a security issue, as the tones for my PIN code were recorded as well. I also

encountered problems when I had multiple phone calls at the same time, when I put a

caller on hold and when there was Muzak. Extraneous sound of any kind, such as music,

the movements of my officemate, or even relatively quiet visitors, interfered with

turntaking detection.

A minor but amusing weakness-my demonstrational setup, a Skutch box and a PZM

mike, was not very well suited to demos, at least not ones where the visitor was the other

party in the telephone conversation. The PZM microphone was too sensitive to sound

anywhere in my office, and I wound up having to telephone a third person in another

room.

7.2 Applications

The contributions of this project can be applied to a variety of other domains and uses.

The telephone Listener is clearly an effective tool for people who conduct business over

the phone, such as reporters or writers doing interviews, and support personnel dealing

with customer inquiry and assistance calls. Imagine being able to listen to the customer's

own words when trying to resolve a problem! The software would have to be tailored for

the specific situation, of course.

Another way that this work could be built upon is building listening tools for other types of

audio interactions, such as informal discussions in offices and formal meetings.

Multimedia computer conferencing systems that make use of audio are a good

opportunity for capturing group interactions. (See section 6.4 for a brief discussion of

related audio issues.)

The ability to structure and display speech can be applied to previously recorded material

as well. Some of the potential audio sources are voice mail, and a new category of

professional tool, the personal audio agent. With personal agents, users could record

segments while away from their workstation; they could, for example, speak into a

microcassette recorder and later plug it into the computer [DMS92].

A related application area is transcribing speech to text, a task that is currently awkward

and error-prone. Arons had to use a laborious procedure in creating his hyperspeech

application, for instance; an appropriate listening tool could have greatly simplified that

task, by providing automatic segmentation, playback on a per-segment basis, and simple

entry of closely-associated text. [Aro9l a]. This application would call for a somewhat

different display representation, as mentioned in section 6.5. Another opportunity is tools

for researchers who study conversation, such as in the fields of conversational analysis

and sociolinguistics.

One final point-although this project is not specifically directed towards meeting the

needs of visually-impaired computer users, the tools produced are potentially of interest

to that user community.

7.3 Impact on Users and Organizations

Introducing new technologies can affect users in many ways. If the technology offers

enough utility, then it will be used, even if the interface is awkward. If a new technology is

not useful, then it is very difficult to convince or coerce users to adopt it. Moreover, a

useful innovation may not be used as its designers intended, the technology's use may

change over time, and it may affect other aspects of a user's worklife. For all these

reasons and more, it is worthwhile to evaluate the impact of an innovation like

semi-structured audio.

The simple text-audio database used in this project has the potential to be quite useful in

groupware applications, particularly in being a repository of "group memory", that is,

information that group members need to collectively know. Group memory often resides

in the minds of the group members, not in written form, is transmitted informally by

explanation or example, and can be irretrievably lost when a group member leaves.

One risk of a recording tool like this is inciting privacy concerns. To avoid this, no one

should be recorded without their knowledge. Restricting recording to those who have

previously given their permission is one way to accomplish this. Having the listening tool

audibly warn conversants is another possibility. With ISDN telephones, it may well be

feasible for users to have their telephone sets communicate a privacy setting, indicating

whether it is OK to record or not. Intelligent agents could even use user-defined rules to

figure out what the appropriate setting is for a particular call.

There is a societal implication to this work, too. Technologists foresee a time in the

not-too-distant future when continuous recording of audio will be the norm, infinite

storage will be very low-cost and computer capability will be available for processing all

that audio signal data. One motivation for this scenario is that interesting and important

statements are being lost to our descendents. In the past, many transactions were

conducted via the written word, as letters. Technology in the form of telephones has

eliminated that vast source of history, and continuous recording will rectify that lack.

7.4 A Final Word

Semi-structured audio is a promising concept, and the Listener and Browser tools are

early steps in an evolving implementation of that concept. The semi-structured approach

provides a framework for supporting large quantities of otherwise ill-structured sound

data. This work illustrates a new perspective on using computers to support human

conversations, and is a novel application of audio techniques. To the extent that

computers can share in conversations, their role as partners in the workplace will be

enhanced. I hope and believe that my work will change the way that people think about

audio and workstations.

Appendix A

User Documentation

A.1 Browser Man Page

Name
browse-Displays chats, collections of sound and text items.

Synopsis
browse [chatname]

Description
Browse is a companion tool to Listen, and displays the chats created by Listen.

Options
[chatname] This is the name of the chatfile or chat database file that the Browser reads

and displays. Also settable as a ChatViewer resource.

Environment
None

Files
chatdb-the default name of the input file

See Also
listen, ChatViewer, Soundviewer

A.2 Browser Widget Tree

ApplicationShell xbrowser

Form topform

Form menubox

MenuButton files

SimpleMenu filesmenu

SmeBSBObject filesmenul... 5, for menu items
TransientShell filenameDialogShell

DialogWidget filenameDialog

Command filenameDialogOK

Command filenameDialogCancel

MenuButton locate

SimpleMenu locatemenu

SmeBSBObject locatemenul. .. 5, for menu items
Command playall

Command quit

ChatViewer miniwidget

Form ...

SoundViewer ...
AsciiText ...

Viewport datavp

ChatViewer browser_widget

Form ...
SoundViewer ...
AsciiText ...

A.3 Browser Resource File

! xbrowser -- resources for browser application

Ill apii I i I Il Il I I ll I I I i I ll / Ill il ltm 111111111 1111111111I 11I11

*bitmapFilePath: /usr/local /include/X11/bitmaps

xbrowser*.title:
xbrowser*menubox.borderWidth:

xbrowser*files.label:
xbrowser*files.menuName:
xbrowser*files.sensitive:
xbrowser*locate.label:
xbrowser*locate.menuName:

xbrowser*locate.fromHoriz:
xbrowser*locate.sensitive:
xbrowser*playall.label:

xbrowser*playall.sensitive:

Browser
0

Files
filesmenu
False
Locate
locatemenu
files
False
Play All
True

xbrowser*playall.fromHoriz:
xbrowser*quit.label:
xbrowser*quit.fromHoriz:

xbrowser*filesmenul.label:
xbrowser*filesmenu2.label:
xbrowser*filesmenu3.label:
xbrowser*filesmenu4.label:
xbrowser*filesmenu5.label:

locate
Quit
playall

Load chat
Load text
Save chat
Save text
Directory

xbrowser*filenameDialog.label: Filename dialog box
xbrowser*filenameDialog.value: Initial value
xbrowser*filenameDialogOK.accelerators: #override \

<Key>Return: set() notify() \n\
<Key>Linefeed: set() notify()

xbrowser*filenameDialogOK.label:
xbrowser*filenameDialogCancel.label:
xbrowser*filenameDialog*Text*width:
xbrowser*filenameDialog*Text*borderWidth:
xbrowser*filenameDialog.value*resize:

xbrowser*filesmenul.sensitive:
xbrowser*filesmenu2.sensitive:
xbrowser*filesmenu3.sensitive:
xbrowser*filesmenu4.sensitive:
xbrowser*filesmenu5.sensitive:

xbrowser*locatemenul.label:
xbrowser*locatemenu2.label:
xbrowser*locatemenu3.label:
xbrowser*locatemenu4.label:
xbrowser*locatemenu5.label:

xbrowser*locatemenul.sensitive:
xbrowser*locatemenu2.sensitive:
xbrowser*locatemenu3.sensitive:
xbrowser*locatemenu4.sensitive:
xbrowser*locatemenu5.sensitive:

*ChatDir:

OK
Cancel
200
1
never

False
True
True
False
False

All
Date
Speaker
Type
Place

False
False
False
False
False

browse

xbrowser*mini-widget.layoutStyle:
xbrowser*mini-widget.fromVert:
xbrowser*mini-widget.height:
xbrowser*mini-widget.width:
xbrowser*miniwidget.topMargin:
xbrowser*mini widget.speakHorizDist:
xbrowser* miniwidget.speakVertDist:

XawlayoutStylePan
datavp
100
200
4
2
10

xbrowser*mini widget*SoundViewer*height: 2
xbrowser*miniwidget*SoundViewer*borderWidth: 2

xbrowser*datavp*resizable: False

xbrowser*datavp.fromVert:
xbrowser*datavp.forceBars:
xbrowser*datavp.allowHoriz:
xbrowser*datavp.allowVert:

menubox
True
False
True

xbrowser*browserwidget.layoutStyle: XawlayoutStyleTime

xbrowser*browserwidget.height: 300

xbrowser*browserwidget.width: 600

xbrowser*browserwidget.borderWidth: 0

xbrowser*browserwidget.playable: True

xbrowser*browserwidget.editable: True

xbrowser*ChatViewer.Form.borderWidth: 0

xbrowser*ChatViewer*Text*type: string
xbrowser*ChatViewer*Text*displayCaret: False

xbrowser*ChatViewer*Text*borderWidth: 0

xbrowser*ChatViewer*AsciiText*resize: both

xbrowser*ChatViewer*Text*wrap: word

xbrowser*ChatViewer*Text*height: 20

xbrowser*ChatViewer*Text*width: 600

xbrowser*ChatViewer*AsciiText*autoFill: True

xbrowser*ChatViewer*Text*editType: edit

xbrowser*ChatViewer*Text*translations: #override \

<Enter>: display-caret(on) \n\
<Leave>: display-caret(off)

xbrowser*Soundviewer*height: 13

xbrowser*SoundViewer*width: 350

xbrowser*SoundViewer*widgetDuration: 20000

xbrowser*SoundViewer*indMode: XtIndModeTruncated

xbrowser*SoundViewer*borderWidth: 3

A.4 Listener Man Page

Name
listen-dynamically structure and record a telephone conversation

Synopsis
listen [-debug] [-synch]

Description
Listen is an X Window System application that implements semi-structured audio for
telephone conversations. It creates a dynamic display of the conversation and allows
users to indicate which parts of the conversation should be retained. After the phone call
is over, the conversation can be replayed and further filtering performed. A description of
the saved portions of the conversation is saved in the chat database file named chatdb.
The recorded audio is saved in a file called listentest.

Options
-debug If this option is present, a great deal of output will be written to stdout, showing

for each energy event (every 100 milliseconds or less!) the data values and how the
pause detector and turn detector process it. Also settable as an application
resource.

-synch If this option is present, an explicit synchronization step will take place when the
handset is picked up. You will be prompted to say "Go", and when that window is
dismissed, you can proceed. Also settable as an application resource.

Environment
MY.DN-Specifies the user's own extension. This is where the Phoneserver looks for
phone-related events.

Files
chatdb-This file is the chat database file that is created.
testchatfile-This file is the chatfile format file that is created.
/sound/hindus/browse/listentest-This file is the soundfile that is created.

See Also
browser, ChatViewer, SoundViewer

Bugs
Listen must be stopped and restarted after each phone call.
File handling is dreadful.
This is experimental software.

Notes
The audio from the telephone must be fed into the user's Sparcstation audio input jack.
To do this from an ISDN phone line requires a device like the Skutch box used when this
software was created.

Turntaking detection currently relies on a second microphone connected to another
workstation.

A.5 Listener Widget Tree

ApplicationShell xlisten
TopLevelShell browserShell

Form top_form
Form menubox

MenuButton files
SimpleMenu filesmenu

SmeBSBObject filesmenul...5, for menu items
TransientShell filenameDialogShell

DialogWidget filenameDialog
Command filenameDialogOK
Command filenameDialogCancel

Command marknew
Command quit

Form databox
Label speaker_label_1
Label speakerlabel_2
Viewport chatvp

ChatViewer browser-widget
Form ...

SoundViewer ...
AsciiText ...

Label clock

TransientShell call-alert
DialogWidget callalertDialog

Command callalertDialogOK
Command callalertDialogCancel

TransientShell browser2_shell
Form topform2
Command playall2
Viewport datavp

ChatViewer browser-widget2
Form ...

SoundViewer ...
AsciiText ...

TransientShell synch
DialogWidget synchDialog

Command synchDialogOK
Command synchDialogCancel

A.6 Listener Resource File

xlisten-- resources for listener

!*debug: True
!*synch: True

xlisten*callalert.title:
xlisten*callalertDialog.label:
xlisten*callalertDialog*width:
xlisten*callalertDialog*height:
xlisten*callalertDialog*Command.height:
xlisten*callalertDialogCancel.label:
xlisten*callalertDialogOK.label:
xlisten*callalertDialogOK.accelerators:

<Key>Return: notify()

Notifier
Listening Agent
200
100
30
Cancel
OK
#override \

xlisten*synchDialog*AsciiText*width: 200

xlisten*synchDialog.label: Synchronizer\n\n\nDial

Then press Synch
xlisten*synchDialogOK.accelerators: #override \

<Key>Return: notify()
xlisten*synchDialogOK.label: Synch

xlisten*synchDialogCancel.label: Done

xlisten*synchDialog*width: 200

xlisten*synchDialog*height: 200

xlisten*synchDialog*Command.height: 30

xlisten*browserShell.title:

xlisten*menubox.borderWidth:
xlisten*menubox*font:

xlisten*files.label:
xlisten*files.menuName:
xlisten*files.sensitive:
xlisten*marknew.label:
xlisten*marknew.sensitive:
xlisten*marknew.fromHoriz:
xlisten*quit.label:
xlisten*quit.fromHoriz:

xlisten*filesmenul.label:
xlisten*filesmenu2.label:

xlisten*filesmenu3.label:

xlisten*filesmenu4.label:
xlisten*filesmenu5.label:

xlisten*filenameDialog.label:
xlisten*filenameDialog.value:

until no dialtone\n\n

Call Display

0
suncourl6b

Files
filesmenu
False
Mark New Segments
True
files
Quit
marknew

Load chat
Load text
Save chat
Save text
Directory

Filename dialog box
Initial value

xlisten*filenameDialogOK.accelerators: #override \

<Key>Return: set() notify() \n\

<Key>Linefeed: set() notify()

xlisten*filenameDialogOK.label:
xlisten*filenameDialogCancel.label:
xlisten*filenameDialog*Text*width:
xlisten*filenameDialog*Text*borderWidth:
xlisten*filenameDialog.value*resize:

xlisten*filesmenul.sensitive:
xlisten*filesmenu2.sensitive:
xlisten*filesmenu3.sensitive:
xlisten*filesmenu4.sensitive:
xlisten*filesmenu5.sensitive:

xlisten*databox.borderWidth:
xlisten*databox.fromVert:

OK
Cancel
200
1
never

False
True
True
False
False

0
menubox

xlisten*speakerlabel_1.label:
xlisten*speakerlabel_l.font:
xlisten*speakerlabel_1.borderWidth:
xlisten*speakerlabel_1.justify:
xlisten*speaker_labell.width:
xlisten*speakerlabel_1.internalWidth:
xlisten*speakerlabel_1.horizDistance:
xlisten*speakerlabel_1.vertDistance:

xlisten*speakerlabel_2.label:
xlisten*speakerlabel_2.font:
xlisten*speakerlabel_2.borderWidth:
xlisten*speakerlabel_2.justify:
xlisten*speaker_label_2.width:
xlisten*speakerlabel_2.internalWidth:
xlisten*speakerlabel_2.horizDistance:
xlisten*speakerlabel_2.vertDistance:
xlisten*speakerlabel_2.fromVert:

xlisten*clock.label:
xlisten*clock.font:
xlisten*clock.width:
xlisten*clock.horizDistance:
xlisten*clock.height:
xlisten*clock.vertDistance:
xlisten*clock.fromHoriz:

xlisten*chatvp.resizable:
xlisten*chatvp.forceBars:
xlisten*chatvp.allowHoriz:
xlisten*chatvp.allowVert:
xlisten*chatvp.fromHoriz:
xlisten*chatvp.height:
xlisten*chatvp.width:

Debby
suncour16
0
right
100
10
5
41

Callee
sun cour16
0
right
100
10
5
2
speakerlabel_1

00:00
suncour18
80
10
40
45
chatvp

False
True
True
False
speakerlabel_1
100
510

xlisten*browserwidget.height:
xlisten*browserwidget.width:
xlisten*browserwidget.layoutStyle:
xlisten*browserwidget.playable:
xlisten*browserwidget.editable:

*ChatViewer.ChatName: listenchat
*ChatDir: browse

xlisten*browser2_shell.title:
xlisten*browser2_shell.x:
xlisten*browser2_shell.y:
xlisten*browser2_shell*playall2.label:
xlisten*browser2_shell*datavp.fromVert:
xlisten*browser2_shell*datavp.height:
xlisten*browser2_shell*datavp.width:
xlisten*browser2_shell*datavp*resizable:
xlisten*browser2_shell*datavp.forceBars:
xlisten*browser2_shell*datavp.allowHoriz
xlisten*browser2_shell*datavp.allowVert:

xlisten*browserwidget2.layoutStyle:
xlisten*browserwidget2.playable:
xlisten*browserwidget2.editable:

75
500
XawlayoutStyleTime
False
False

Post-Call Browser
250
450
Play All
playall2
300
600
False
True
False
True

XawlayoutstyleTime
True
False

xlisten*ChatViewer.Form.borderWidth: 0

xlisten*ChatViewer*Text*type: string

xlisten*ChatViewer*Text*displayCaret: False

xlisten*ChatViewer*Text*borderWidth: 0

xlisten*ChatViewer*AsciiText*resize: both

xlisten*ChatViewer*AsciiText*wrap: XawtextWrapLine

xlisten*ChatViewer*Text*height: 20

xlisten*ChatViewer*Text*width: 600

xlisten*ChatViewer*AsciiText*autoFill: True

xlisten*ChatViewer*Text*editType: edit

xlisten*ChatViewer*Text*tralslatiofls: #override\
<Enter>: display-caret(on) \n\

<Leave>: display-caret (off)

xlisten*browserwidget.topMargin:
xlisten*browserwidget.speakHorizDist:
xlisten*browserwidget.speakVertDist:

xlisten*Soundviewer*height:
xlisten*SoundViewer*borderWidth:
xlisten*Soundviewer*markHeight:

xlisten*SoundViewer*width:
xlisten*Soundviewer*widgetDuration:

xlisten*SoundViewer*indMode:
xlisten*SoundViewer*record:

15
4
6
100
7000
XtIndModeTruncated
False

Appendix B

ChatViewer Reference

B.1 Synopsis

The ChatViewer is intended to be a general-purpose widget for handling simple audio
and text objects, called chats. It is a subclass of Core, Composite and Layout (the latter
provides a "just say yes" geometry manager for composite widgets).

Audio items are represented as SoundViewer widgets. Text items are represented as
AsciiText widgets. The ChatViewer supports items as being sequenced.

Within the ChatViewer, a chat is implemented as a db-style database.

B.2 Resources

Name Default Type Access Class

XtNautoLayout
XtNchatDir
XtNchatName
XtNeditable
XtNfileDescriptor
XtNfinishedPlayCallback
XtNlayoutStyle
XtNnotifyMarkCallback
XtNplayable
XtNrowVertDist
XtNspeakHorizDist
XtNspeakVertDist
XtNstartPlayCallback
XtNtopMargin
XtNwhenToScale

True
NULL
NULL
True
-1
NULL
XawLayoutStyleLeft
NULL
True
30
2
7
NULL
7
10000

Boolean
String
String
Boolean
Int
String
LayoutStyle
String
Boolean
Position
Position
Position
String
Position
Int

CG
CG
CG
CG
CG
C
CG
C
CG
CG
CG
CG
C
CG
CG

XtCAutoLayout
XtCChatDir
XtCChatName
XtCEditable
XtCFileDescriptor
XtCCallback
XtCLayoutStyle
XtCCallback
XtCPlayable
XtCSowVertDist
XtCSpeakHorizDist
XtCSpeakVertDist
XtCCallback
XtCTopMargin
XtCWhenToScale

Access refers to how the resource can be acted on. C means, set at creation time. G
means, can be retrieved via GetValues. S means, settable via SetValues. The
ChatViewer does not currently support SetValues reliably.

autoLayout Supposed to indicate whether the widget automatically lays out the chat
items or not. Not currently supported.

chatDir Specifies where to look for the sound files referred to in the chatfile. Assumed to
be a sub-directory within the user's /sound directory.

chatName The filename containing the text or ASCII database version of the chat. If the
file looks like a db-style database, it is treated as such. Otherwise, the file is
assumed to be a chatfile.

editable Supposed to indicate whether items can be edited or not. Not currently
supported.

fileDescriptor This is the Unix fd for the soundfile. It is passed to the Soundserver. If
this is negative, sound items should be insensitive.

finishedPlayCallback Supposed to call functions when a Play operation completes. Not
currently supported.

layoutStyle Specifies which layout style the widget should use. It is an enumerated type.

XawlayoutStyleLeft Each item is left-justified on its own line. Text and sound
items are both laid out properly in this style.

XawlayoutStyleTime Sound segments are laid out horizontally, in order of their
appearance in the chatfile or their sequence number in the chat database file.
In database files, one speaker's name can be included, in which case the
segments with a non-null speaker field are placed vertically offset from
segments with a null speaker field.
The widget will "wrap" the displayed segments to another row if a segment
would be drawn past the right-hand side of the widget.
Text items are not well-handled in this layout style.

XawlayoutStylePan This style is similar to the Time style, only it's intended to
make a miniature display.

A converter is defined, so that this resource can be specfied as Left, Time or Pan in
a resource file.

notifyMarkCallback Functions on this list are called when the user clicks on a widget in
marking mode.

playable Supposed to indicates whether sound items can be played or not. Not currently
supported.

rowVertDist The number of pixels to separate each row by vertically. Applies only to the
Time style.

speakHorlzDlst The number of pixels to separate each segment by horizontally. Applies
only to the Time style.

speakVertDist The number of pixels to vertically offset segments from different
speakers. Applies only to the Time style.

startMarkCallback Supposed to call functions when a Play operation begins. Not
currently supported.

topMargin The number of pixels to vertically separate the first row from the upper edge
of the widget. Applies only to the Time style.

whenToScale A segment duration past which the SoundViewer is displayed in Scaled
mode. Prevents lengthy segments from being truncated.

B.3 Public Data Structures

typedef struct Context {
int nspeakers;
char *speakers[MAX.SPEAKERS];
char *datetime;
char *host

char *phone;

char * text
} Context;
typedef struct Item {

int type;
char *contents;
long sound-start
long sound-len;
long sound-stop;
char *speaker

Boolean marked;
} Item;
#define ITEM..D int

B.4 Public Routines

In all these routines, the first argument, widget, specifies the ChatViewer widget on which
the routine will perform its actions.

Itemid refers to a sound or text item in the chat, and is the item's sequence number.
Sequence numbers are one-based.

void XawCVAdditem (widget, itemid, item-info)
Widget widget;
ITEM..D itemid;

Item *item-info;

Adds a new item just before item itemid, using data in item.info.

void XawCVAdditemAtEnd (widget, item-info)
Widget widget;
Item *item-info;

Adds a new item after all other items, using the data in item.info.

void XawCVDeleteltem (widget, itemid)
Widget widget,
ITEM..D itemict
Deletes an item from the display and from the database.

void XawCVMoveltem (widget, from-itemid, to-itemid)
Widget widget;
ITEM-ID from-itemid, ITEMID to-itemid;

Repositions an item within the item sequence.

void XawCVGetltemlnfo (widget, itemid, item-info)
Widget widget;
ITEM-ID itemict
Item *item-info;

void XawCVSetltemInfo (widget, itemid, item-info)
Widget widget;
ITEM.ID itemid;
Item *item-info;

Returns or sets data for an item.

void XawCVPlayAIItems (widge)
Widget widget;
Plays all sound items in the widget in order.

void XawCVWriteDB (widget, fileptr)
Widget widget;
FILE *fileptr;
Writes ASCII db file to file in fp.

void XawCVWriteChat (widget, fileptr)
Widget widget;
FILE *fileptr;
Writes ASCII chatfile to file in fp.

void XawCVMarklteminDB (widget, itemid)
Widget widget;
ITEM-ID itemid;

Creates a database field that indicates marking in the item's database record.

void XawCVUnmarkItemInDB (widget, itemid)
Widget widget
ITEMID itemid;
Removes the database field that indicates marking from the item's database record.

void XawCVVisualMarkitem (widget, itemid)
Widget widget
ITEMID itemid;
Displays the visual indicator of marking on an item.

void XawCVVisualUnmarkitem (widget, itemid)
Widget widget
ITEMID itemid;
Removes the visual indicator of marking from an item.

Widget XawCVltemToWidget (widget, itemid)
Widget widget
ITEMID itemid;
Returns the widget id of an item, given its item sequence number.

Int XawCVWidgetToltem (widget, item-widge)
Widget widget
Widget item widget
Returns the item sequence number of an item, given its widget id.

Int XawCVNumitems (widget)
Widget widget
Returns the total number of items in the widget.

void XawCVDefaultSoundPath (widget, sound-path)
Widget widget
char *sound-path;
Returns the widget's default sound path into sound-path.

void XawCVGetCurrentitem (widget, itemid)
Widget widget
ITEMID id;
Returns the item sequence number of the current item, but the concept of current
item has not been implemented.

void XawCVGetContextinfo (widget, itemid, contextinfo)
Widget widget
ITEMID itemict
Context *contextinfo;

Returns data for context. Not fully implemented.

void XawCVSetContextinfo (widget, itemid, context-info)
Widget widget

ITEM..D itemid;
Context *context.info;

Sets data for context. Not fully implemented.

void XawCVGetPrevlousItem (widget, itemid)
Widget widget;
ITEM.ID itemict

void XawCVGetNextltem (widget, itemid)
Widget widget;
ITEM.ID itemid;
These routines allow an app to proceed forwards or backwards through the items.

Bibliography

[Aro9l a] B. Arons. Authoring and transcription tools for speech-based hypermedia
systems. In Proceedings of 1991 Conference. American Voice 1/O Society,
September 1991.

[Aro9l b] B. Arons. Hyperspeech: Navigating in speech-only hypermedia. In Hypertext
'91, pages 133-146. ACM, 1991.

[Aro92] Barry Arons. A review of time-compressed speech and preliminary thoughts
on speech scanning. Technical report, MIT Media Lab, January 1992.

[AS86] Stephen Ades and Daniel C. Swinehart. Voice annotation and editing in a
workstation environment. Technical Report CSL-86-3, Xerox Palo Alto
Research Center, Sept 1986.

[AS90] P. J. Asente and R. R. Swick. X Window System Toolkit. Digital Press, 1990.

[BB79] Geoffrey W. Beattie and P. J. Barnard. The temporal structure of natural
telephone conversations (directory enquiry calls). Linguistics, 17:213-229,
1979.

[BHB77] Brian Butterworth, R. R. Hine, and K. D. Brady. Speech and interaction in
sound-only communciation channels. Semiotica, 20:81-99, 1977.

[BM76] D. S. Beasley and J. E. Maki. Time- and frequency-altered speech. In N. J.
Lass, editor, Contemporary Issues in Experimental Phonetics, chapter 12,
pages 419-458. Academic Press, 1976.

[CFK91] Barbara L. Chalfonte, Robert S. Fish, and Robert E. Kraut. Expressive
richness: A comparison of speech and text as media for revision. In
Proceedings of the Conference on Computer Human Interaction, pages
21-26, New York, Apr 1991. ACM.

[Cro9l] Terrence Crowley. Voice in a multimedia document system. Journal of The
American Voice //O Society, 9:21-26, Mar 1991.

[DASP91] Glorianna Davenport, Thomas G. Aguierre Smith, and Natalio Pincever.
Cinematic primitives for multimedia. IEEE Computer Graphics and
Applications, 11(4):67-74, 1991.

[Der9l] Michael L. Dertouzos. Building the information marketplace. Technology
Review, pages 29-40, 1991.

[DMS92] Leo Degen, Richard Mander, and Gitta Salomon. Working with audio:
Integrating personal tape recorders and desktop computers. To appear in
Human Factors in Computer Systems - CHI'92 Conference Proceedings,
1992.

[FBE90] J. L. Flanagan, D. A. Berkley, and G. W. Elko. Autodirective microphone
systems. Preprint of invited paper for a special issue of Acustica honoring
Professor G. M. Sessler, 1990.

[FKL88] Robert S. Fish, Robert E. Kraut, and Mary D.P. Leland. Quilt: a collaborative
tool for cooperative writing. In Conference on office information systems,
pages 30-37, Palo Alto, CA, 1988. ACM.

[FS69] W. Foulke and T. G. Sticht. Review of research on the intelligibility and
comprehension of accelerated speech. Psychological Bulletin, 72:50-62,
1969.

[FSM+91] K. Fujikawa, S. Shimojo, T. Matsuura, S. Nishio, and H. Miyahara. Multimedia
presentation system "Harmony" with temporal and active media. In USENIX
Conference Proceedings, pages 75-93, 1991.

[Hor85] W. Horak. Office document architecture and office document interchange
formats: Current status of international standardization. IEEE Computer,
pages 50-60, October 1985.

[HORW87] G. Herman, M. Ordun, C. Riley, and L. Woodbury. The modular integrated
communications environment (MICE): A system for prototyping and
evaluating communications services. In Proceedings of the 1987
International Switching Symposium, pages 442-447, 1987.

[HP86] Julia Hirschberg and Janet Pierrehumbert. The intonational structuring of
discourse. In Proceedings of the Association for Computational Linguistics,
pages 136-144, July 1986.

[KEE90] Ragui Kamel, Kamyar Emami, and Robert Eckert. PX: supporting voice in
workstations. IEEE Computer, 23(8):73-80, Aug 1990.

[LN91] Mik Lamming and William Newman. Activity-based information retrieval:
Technology in support of human memory. Technical Report 91-03, Rank
Xerox EuroPARC, Feb 1991.

[MA90] Thomas R Moran and R. J. Anderson. The workaday world as a paradigm for
CSCW design. In Computer Supported Cooperative Work - CSCW'90
Conference Proceedings, pages 381-393, 1990.

[MD89] Wendy E. Mackay and Glorianna Davenport. Virtual video editing in
interactive multimedia applications. Communications of the ACM,
32(7):802-810, 1989.

[MD90] M. J. Muller and J. E. Daniel. Toward a definition of voice documents. In
Proceedings of COIS '90,1990.

[MGL+87] T. W. Malone, K. R. Grant, K-Y. Lai, R. Rao, and D. Rosenblitt.
Semi-structured messages are surprisingly useful for computer-supported
coordination. ACM Transactions on Office Information Systems,
5(2):115-131, 1987.

[M IT88] MIT X Consortium. X Toolkit Intrinsics-C Language Interface. 1988.

[M IT89] MIT X Consortium. Athena Widget Set-C Language Interface. 1989.

[MMC+89] Wendy E. Mackay, Thomas W. Malone, Kevin Crowston, Ramana Rao, David
Rosenblitt, and Stuart K. Card. How do experienced information lens users
use rules? In Human Factors in Computing Systems, CHI 89 Proceedings,
pages 211-216. ACM, 1989.

[MN86] Yoshiro Miyata and Donald A. Norman. Psychological issues in support of
multiple activities. In Donald A. Norman and Stephen W. Draper, editors,
User Centered System Design, chapter 13. Lawrence Erlbaum and
Associates, 1986.

[OC74] R. B. Oschman and A. Chapanis. The effects of ten communication modes
on the behavior of teams during co-operative problem solving. International
Journal of Man/Machine Systems, 6:579-619, 1974.

[O'587] D. O'Shaughnessy. Speech Communication: Human and Machine.
Addison-Wesley, 1987.

[Par86] Thomas Parsons. Voice and Speech Processing. McGraw Hill, 1986.

[Pot90] Mary C. Potter. Remembering. In Daniel N. Osherson and Edward E. Smith,
editors, An Invitation to Cognitive Science: Thinking, volume 3, chapter 1.
MIT Press, 1990.

[Roc73] S. R. Rochester. The significance of pauses in spontaneous speech. Journal
of Psycholinguistic Research, 2:51-81, 1973.

[Ron88] John Ronayne. The Integrated Services Digital Network: From concept to
application. Pitman/Wiley, 1988.

[RS77] Derek R. Rutter and G. M. Stephenson. The role of visual communication in
synchronising conversation. European Joumal of Social Psychology,
7:29-37, 1977.

[RS90] Stephen Reder and Robert G. Schwab. The temporal structure of
cooperative activity. In Computer Supported Cooperative Work - CSCW'90
Conference Proceedings, pages 303-316, 1990.

[Rut87] Derek R. Rutter. Communicating by Telephone. Pergamon Press, 1987.

[RV92] Paul Resnick and Robert A. Virzi. Skip and scan: Cleaning up telephone
interfaces. To appear in Human Factors in Computer Systems - CHI'92
Conference Proceedings, 1992.

[SA85] C. Schmandt and B. Arons. Phone Slave: A graphical telecommunications
interface. Proceedings of the Society for Information Display, 26(1):79-82,
1985.

[SAH90] Christopher Schmandt, Mark S. Ackerman, and Debby Hindus. Augmenting a
window system with speech input. IEEE Computer, 23(8):50-56, Aug 1990.

[SC89] C. Schmandt and S. Casner. Phonetool: Integrating telephones and
workstations. In Proceedings of GLOBECOM'89. IEEE Communications
Society, November 1989.

[Sch77] Emanuel A. Schlegoff. Identification and recognition in interactional openings.
In Ithiel de Sola Pool, editor, The Social Impact of the Telephone, chapter 19.
MIT Press, 1977.

[Sch8l] C. Schmandt. The Intelligent Ear: A graphical interface to digital audio. In
Proceedings IEEE Conference on Cybemetics and Society, pages 393-397,
October 1981.

[Sch90] C. Schmandt. Caltalk: a multi-media calendar. In Proceedings of 1990
Conference. American Voice 1/O Society, 1990.

[SHAM90] Christopher Schmandt, Debby Hindus, Mark Ackerman, and Sanjay
Manandhar. Observations on using speech input for window navigation. In
Proceedings of the IFIP TC 13 Third International Conference on
Human-Computer Interaction, pages 787-793, Aug 1990.

[Spe9l] Speech Research Group. Software documentation, 1991.

[Sti91] L. J. Stifelman. Not just another voice mail system. In Proceedings of 1991
Conference, pages 21-26. American Voice I/O Society, 1991.

[Sun90] Sun Microsystems. SunOS 4.1 Operating System Manual. 1990.

[Tho77] Bertil Thorngren. Silent actors: Communication networks for development. In
Ithiel de Sola Pool, editor, The Social Impact of the Telephone, chapter 17.
MIT Press, 1977.

[Wei9l] Mark Weiser. The computer for the 21st century. Scientific American,
265:66-75, September 1991.

[Won9l] Chi Chong Wong. Personal communications. Master's thesis, MIT, 1991.

[WW77] Chris Wilson and Ederlyn Williams. Watergate words: A naturalistic study of
media and communications. Communications Research, 4(2):169-178, 1977.

[Ze189] Polle T. Zellweger. Scripted documents: a hypermedia path mechanism. In
Hypertext 89 Proceedings, pages 1-14, Pittsburgh, PA, 1989. ACMSIGCHI.

[ZTS88] P. Zellweger, D. Terry, and D. Swinehart. An overview of the etherphone
system and its applications. In Proceedings of the 2nd IEEE Conference on
Computer Workstations, pages 160-168, Santa Clara, CA, March 1988.

[Zue9l] Victor W. Zue. From signals to symbols to meaning: On machine
understanding of spoken language. In Proceedings of the International
Phonetics Congress, 1991.

