
XRCC1 & DNA MTases: Direct and Indirect
Modulation of Inflammation-Induced

DNA Damage

James T. Mutamba

Bachelor of Science - Biochemistry (2004)

University of North Carolina Greensboro, Greensboro, NC

MASSACHUSE-S INSTITUTE
OF TEC'toJGY

JUL 1 4 2011

, LIBRARIES

ARCHIVES

Submitted to the Department of Biological Engineering in partialfulfillment of the
requirements for the degree of

Doctor of Philosophy in Biological Engineering

Massachusetts Institute of Technology

June, 2011

@ 2011 Massachusetts Institute of Technology. All rights reserved

James Mutamba (Author)

Certified by:

Bevin P. Engelward (Thesis Advisor)

Peter C. Dedon (Thesis Advisor)

Forest M. White (5hair of Grauate jmmittee)

... . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . .



This doctoral thesis has been examined by a committee of the Department of Biological Engineering
as follows:

Professor Leona D. amson (Commitle,Chair) (

Professor Bevin P. Engelward (Thesis Advisor)

Pro~gsor Pete C. Dedon (Thesis Advisor)

ProfpssorJacauin C. Niles

now



Inflammation and Cancer: The role of XRCC1 and DNA methyltransferases in

mediating responses to inflammation-mediated DNA damage
By James Tendai Mutamba

Submitted to the Department of Biological Engineering

On May 18, 2011 in Partial Fulfillment of the

Requirements for the Degree of Doctor of Philosophy in Biological Engineering

Thesis Abstract
Cancer causes 13% of all deaths worldwide. Inflammation-mediated cancer accounts for

~15% of all malignancies, strongly necessitating investigation of the molecular interactions at play.
Inflammatory reactive oxygen and nitrogen species (RONs), including peroxynitrite and nitric oxide
(NO'), may potentiate malignancy. We hypothesize that the base excision repair (BER) pathway
modulates susceptibility to malignancy, by modulating the BER-intermediate levels, large scale
genomic rearrangements and toxicity following exposure to RONs. We further hypothesize that DNA
methyltransferases are responsible for the memory of genotoxic insult, and the epigenetic
propagation of genomic instability, following exposure to genotoxins.

Here, we exploited cell lines engineered to carry deficiencies in BER to study repair of DNA
damage induced by RONs. Toxicity and BER-intermediate levels were evaluated in XRCC1 proficient
and deficient cells, following exposure to the peroxynitrite donor, SIN-1 and to NO*. Using the
alkaline comet assay, we find that while XRCC1 proficient and deficient CHO cells incur equivalent
levels of SIN-1 induced BER-intermediates, the XRCC1 null cells are more sensitive to killing by SIN-1,
as assessed by clonogenic survival. Furthermore, using bioreactors to expose CHO cells to NO', we
found that the BER-intermediate levels measured in XRCC1 null cells were lower than in WI cells.
We found that while XRCC1 can facilitate AAG-mediated excision of the inflammation-associated
base lesions ethenoadenine and hypoxanthine, in vitro; XRCC1 deficient human cells were no more
susceptible to NO' than WT cells. However, in live glioblastoma cells, XRCC1 is acting predominantly
downstream of AAG glycosylase. This work is some of the first to assess the functional role of XRCC1,
in response to RONs and suggests complexities in the role of XRCC1.

We also demonstrate that the underlying basis for the memory of a genotoxic insult and the
subsequent propagation of genomic instability is dependent on the DNA methyltransferases, Dnmtl
and Dnmt3a. We found that a single exposure led to long-term genome destabilizing effects that
spread from cell to cell, and therefore provided a molecular mechanism for these persistent
bystander effects.

Collectively, our findings impact current understanding of cancer risk and suggest
mechanisms for suppressing genomic instability, following exposure to inflammatory genotoxins.
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Bevin P. Engelward
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Chapter I

Introduction



Cancer is the leading cause of death globally, accounting for 13% of all deaths

worldwide (-8 million deaths) (Ferlay et al., 2010). Additionally, cancer related deaths are

projected to rise to -12 million deaths by the year 2030, further stressing the impact of this

illness to current and future generations. Most importantly, according to the World Health

Organization more than 30% of cancer deaths can be prevented, perhaps providing an

exploitable chink in the armor of this seemingly intractable malady, once the mechanisms at

play have been established.

1.1 Inflammation and Cancer

Cancer can be defined as a collection of genetic disease states, arising from the

multi-staged accumulation of heritable changes in gene expression and resulting in invasive

tumors. These heritable changes can be mutations, permanently fixed transmissible changes

in the coding sequence of genomic DNA (Friedberg, 2006), and/or epigenetic changes,

heritable changes that do not involve changes in DNA sequence (Lund, 2004; Vogelstein,

2004). More specifically, these heritable changes are changes that allow cells to divide,

independent of growth stimuli, evade cell cycle checkpoints, become pro-angiogenic,

become immortal, evade apoptosis; metastasize, gain mutations, or indeed, possess any

combination of these and additional attributes (Hanahan and Weinberg, 2000).

A recognized and useful, but appreciably simplified, model of carcinogenesis is the

two stage model of carcinogenesis (Philip, 2004). This model is based on the idea that

carcinogenesis is a multi-step process with sequential stages of initiation and promotion,

followed by progression (Fig. 1-1). This model hypothesizes that somatic cell mutations

occur as a consequence of endogenous or exogenous exposure to carcinogens. Cells that

14



have been 'initiated', by induction of tumor promoting mutations and/or changes in

methylation patterns, subsequently accumulate and can persist indefinitely in otherwise

normal tissues until promotion. Certain micro-environmental conditions act as 'promoters',

giving initiated cells a selective advantage and leading to the accumulation of more tumor-

promoting mutations. These micro-environmental conditions may be the result of chemical

irritants (e.g. phorbol esters), endogenous factors released at the site of wounding (e.g.

cytokines, complement components), or tissue damage (e.g. from organ resection). These

conditions allow for the proliferation of the 'initiated' population, and or for the selective

growth of this population by Darwinian-like selection. Inflammation is now increasingly

appreciated as a critically important micro-environmental condition that both promotes

tumorigenic mutations (potentially at both the initiation and the promotion stages); and

that yields a selective advantage to pre-malignant cells, allowing for progression to

malignancy.

In 1863 Rudolf Virchow, "the father of modern pathology", proposed that cancer

originated from sites of chronic inflammation, based on the observation of leukocyte

infiltration at neoplastic sites (Balkwill, 2001; Coussens, 2002). Today, almost a century and

a half after Virchow's initial observations, the association between chronic inflammation

and cancer is well established. Indeed, 15-25% of all malignancies are thought to be

associated with a chronic inflammatory state (Hussain, 2003; Kuper, 2000; Ohshima et al.,

2003). Concordantly, many factors that cause chronic inflammatory conditions are now

known to be associated with malignancy (Table 1-1) (Shacter, 2002). However, the precise

molecular processes that drive this determinedly complex relationship remain elusive. This

is not surprising as inflammation is itself, an intricately complex, multi-component response



to a plethora of stimuli including irritants, pathogens and autoimmunity. Indeed, chronic

inflammation is characterized by prolonged, concurrent, active tissue repair and damage as

a result of numerous chemically mediated vascular and cellular responses (Kumar, 2005;

Philip, 2004). As such, a singular etiological relationship between chronic inflammation and

cancer is improbable.

Initial models for inflammation mediated carcinogenesis focused on proliferation

(Coussens, 2002; Preston-Martin, 1990; Tamir, 1996). However, while it is generally

appreciated that enhanced cellular proliferation is a risk factor for cancer, this singular

attribute is not sufficient to cause cancer. Instead, consistent with the two-stage model of

carcinogenesis described above, chronic inflammation is now thought to provide a micro-

environment conducive to initiation, promotion and indeed subsequent progression of

precancerous lesions to malignant tumors (Philip, 2004). In this regard, the role of reactive

oxygen and nitrogen species (RONs) is thought to be critically important. RONs have the

ability to induce mutations by directly or indirectly damaging DNA (Hussain, 2003) and by

epigenetic processes (Cerutti, 1985; Dickey, 2009). Additionally, RONs create conditions

wherein initiated cells have selective growth and survival advantages (Shacter, 2002).

1.2 Reactive Oxygen and Nitrogen Species, DNA Damage and Genomic
Instability

Of particular interest to our group in the etiology of inflammation-associated cancer,

is the role played by reactive oxygen and nitrogen species (RONs) in the initiation and

promotion of malignancy. The chronic inflammatory milieu is characterized by infiltration of

dendritic cells, mast cells and phagocytes (neutrophils, eosinophils, monocytes,



macrophages) (Shacter, 2002). When exposed to any of a number of different inflammatory

stimuli, for example bacterial Iipopolysaccharide (LPS) or IFNy, macrophages and neutrophils

can become activated and generate large quantities of RONs (Fig. 1-2). These oxidants,

including superoxide, hydrogen peroxide, nitric oxide (NO*), hypochlorous acid and hydroxyl

radical, serve to kill bacteria and invading parasites (Dedon, 2004; Lonkar and Dedon, 2011).

However, collateral damage is often suffered by proximal somatic cells. The biomolecular

targets of inflammatory RONs in these target cells are varied and include proteins,

membranes and cellular and mitochondrial DNA. Importantly, RON-driven reactions with

these cellular targets lead to deleterious phenotypes including DNA double strand breaks

DSBs (Clemons et al., 2007), cytotoxicity (Szabo et al., 1996; Zhang et al., 1994) and genomic

instability via point mutations (deRojas-Walker et al., 1995; Gal and Wogan, 1996) and large

scale genomic rearrangements (Kiziltepe, 2005; Li, 2006) (Fig. 1-2), that may all potentiate

malignancy.

NO' is an important reactive molecule, present in the inflammatory environment.

At relatively low concentrations, this diatomic radical regulates processes in the nervous,

immune and cardiovascular systems (Bredt and Snyder, 1994; Cary et al., 2006; Thomas et

al., 2008). However, NO' can be genotoxic at higher concentrations (Burney et al., 1997;

Wink et al., 1991). Indeed, via its reactions with superoxide and oxygen to form

peroxynitrite (ONOO) and nitrous anhydride (N203) respectively, NO' has been shown to

make numerous DNA lesions both in vitro (Burney et al., 1999b; Wink et al., 1991) and in

vivo (Gal and Wogan, 1996). For example, ONOO can oxidize guanine making 8-nitro-

guanine (Yermilov et al., 1995), which can spontaneously depurinate leaving an abasic site,

or be further oxidized to 8-oxo-guanine (8-oxo-G) (Dedon, 2004; Epe et al., 1996; Kennedy



et al., 1997; Uppu et al., 1996), which can then also spontaneously depurinate(Dedon,

2004), also yielding an abasic site. 8-oxo-G is particularly mutagenic, causing G:C-*T:A

transversion mutations (Shibutani et al., 1991). Furthermore, depending on the levels of

CO2, 0NOO can make direct DNA single strand breaks (SSBs) via direct oxidation of the sugar

backbone. Nitrosoperoxycarbonate, the product of the reaction of peroxynitrite and CO2,

skews the reactivity of peroxynitrite from reaction with the deoxyribose to form SSBs, to

reaction with nucleobases, as described (Tretyakova, 2000; Yermilov, 1996). In contrast,

N203 primarily creates base deamination products; converting guanine to xanthine, adenine

to hypoxanthine and cytosine to uracil (Burney et al., 1999a). Additionally, RONs can cause

lipid peroxidation which creates secondary metabolites that can then alkylate DNA, creating

alkylation lesions like 1, N6-ethenoadenine (EA), for example (El Ghissassi et al., 1995; Nair

et al., 1998). EA blocks replicative polymerases (Frick et al., 2007), is mutagenic causing

AT->GC transitions and A:T->T:A and A:T-+T:A transversions (Basu et al., 1993; Pandya and

Moriya, 1996) and is associated with the signature p53 and Kras mutations observed in rat

and human liver cancers, following exposure to vinyl chloride (Barbin, 1998; Barbin, 2000).

Many of the DNA lesions resulting from exposure to RONs can promote a number of

deleterious phenotypes including toxicity (Szabo et al., 1996; Zhang et al., 1994) elevated

DNA double strand breaks (DSBs) (Clemons et aL., 2007) and genomic instability, via point

mutation (deRojas-Walker et al., 1995; Gal and Wogan, 1996) and large-scale genomic

rearrangements (Kiziltepe, 2005; Li, 2006). Consequently, the repair of RON-mediated DNA

damage may be an important mechanism for mitigating the toxic and tumorigenic effects of

these lesions. Indeed, an individual's capacity to repair inflammation-mediated DNA lesions

may represent a hitherto poorly-defined risk factor for inflammation-mediated malignancy



(Fortini, 2003; Frosina, 2007; Meira LB, 2008; Sweasy, 2006; Tudek). For example, Meira et

al. demonstrated that DNA damage induced by a chronic inflammatory stimulus (derived

from dextran sulfate sodium in drinking water) contributes to the formation of pre-

neoplastic lesions in AAG deficient mice (Meira LB, 2008).

1.3 Base Excision Repair

Overview

In mammalian cells, base excision repair (BER) is responsible for repairing many of

the inflammation-mediated lesions. The base excision repair (BER) pathway consists of three

sub-pathways: short patch-monofunctional glycosylase, short patch-bifunctional

glycosylase and long patch BER (Fig. 1-3, for overview). These three sub-pathways can be

further simplified to five enzymatically catalyzed steps: lesion excision, strand scission, gap

tailoring, DNA synthesis and ligation, conducted by numerous proteins in a complex set of

interactions (Table 1-2).

The nomenclature "short" vs. "long" patch refers to the length of excised/ inserted

bases, in effect the repair gap size; short patch is a single nucleotide excision/insertion,

whilst long patch is an insertion of 2-7 nucleotides (Fortini, 2003; Frosina, 1999).

Additionally the nomenclature "monofunctional" vs. "bifunctional" glycosylase refers to the

number of enzymatic steps (functions) conducted by the enzyme. Monofunctional

glycosylases carry out the single enzymatic activity of lesion excision, whilst the bifunctional

glycosylases carry out both lesion excision and strand scission steps via a connate AP lyase



activity. Interestingly, all glycosylases for oxidative DNA damage possess this bi-functionality

(Hegde et al., 2008).

The first step, lesion excision, involves the identification and hydrolytic cleavage of

the N-glycosidic bond of an aberrant base to yield an apurinic/ apyrimidinic (AP) site by a

lesion-specific monofunctional or bifunctional glycosylase. However, the AP site may also be

generated spontaneously. Monofunctional glycosylases possess only N-glycosidic hydrolytic

activity. In contrast, and as mentioned, bifunctional glycosylases possess N-glycosidic

hydrolytic activity and AP lyase activity that carries out the strand scission step by cleaving

the DNA backbone 3' to the abasic site (Fig. 1-4A).. However, in the case of short patch-

monofunctional glycosylase BER, the strand scission step is conducted by APE1

(apurinic/apyrimidinic endonuclease 1), after base removal by the glycosylase. APE1 nicks

the phosphodiester backbone 5' of the AP site, yielding a 5' ligation-blocking lesion, 5'-

deoxyribose-5-phosphate (5'dRP) (Fig. 1-4B).

Both the 3' and the 5' blocking lesions must be restored to 3'-OH and 5' phosphate

by gap tailoring processes to allow for DNA synthesis and ligation. The 5'dRP is removed by

the dRP lyase activity of Pol@. The 3' blocking lesions are varied depending on the initiating

glycosylase but are removed by PNKP (polynucleotide kinase 3'-phosphatase) and TDP1

(Tyrosyl-DNA phosphodiesterase 1) (Wilson, 2007).

For long patch BER, rather than rely upon a DNA lyase to remove the 5'dRP, cells

have the option of incorporating several new nucleotides, thus creating a longer repair

patch (Frosina 2001; Fortini 2003). In addition to the length of the gap size, long patch and

short patch BER are differentiated by the enzymes involved. Short patch has a single

nucleotide gap, with Pol@ conducts the DNA re-synthesis. Long patch involves re-synthesis of



a longer gap, typically two to seven nucleotides long and involves either Pols or the

replicative polymerases 6/E. In long patch BER, the length of the re-synthesis gap

necessitates displacement of the lesion containing strand and this is conducted by proteins

that will be discussed below. Long patch BER could potentially be initiated by either

monofunctional or bifunctional glycosylases, however, it is thought that specific

intermediate proteins in the monofunctional glycosylase pathway (e.g. 5'dRP) (Fortini et al.,

1999; Sung, 2006), as well as the local concentrations of specific BER proteins as a function

of cell cycle (e.g. PCNA, Pol 6/E) (Bravo and Macdonald-Bravo, 1987; Savio et al., 1998),

signal for the long patch pathway. Additionally, there is evidence that XRCC1 and ligase Ila

can regulate the switch between short and long patch BER (Petermann et al., 2006).

Following excision, the strand is then resealed or ligated by the action of ligase I or the

XRCC1- ligase Illa complex to restore undamaged DNA.

Additionally, there are other proteins that, although not formally considered part of

the BER pathway, play a role in single strand break repair. These proteins may play a

facilitative role (Table 1-2) in lesion detection and or protein co-ordination e.g. poly (ADP-

ribose) polymerase (PARP) 1&2, XRCC1 and may thus influence the rate at which single

strand breaks are repaired. A more detailed description of each of the BER steps follows.

BER Steps

Lesion excision

Lesion excision is carried out by an evolutionarily conserved group of hydrolytic

enzymes known as glycosylases (Table 1-3). These enzymes are monomeric proteins, each

with the ability to act on a limited number of damaged or inappropriate (Table 1-4).



A glycosylase's specificity for its cognate substrate(s) is variable. While UDG is highly

specific for uracil (Hegde et al., 2008) other glycosylases, such as the alkyladenine DNA

glycosylase (AAG), recognize and excise many substrates including alkyl purines (e.g. 3-

methyl adenine, ethenoadenine) and hypoxanthine (Friedberg, 2006)(See Table 1-4). The

specific mechanisms by which glycosylases search for, interrogate and excise damaged

bases are complex and the subject of intriguing speculation and intense inquiry (Friedman

and Stivers, 2010). However, glycosylases are known to excise damaged or inappropriate

bases by a "base-flipping" mechanism in which the damaged base is rotated from the DNA

double helix into the glycosylase active site pocket, where hydrolysis of the N-glycosidic

bond occurs (Geir et al., 1996; Roberts and Cheng, 1998). Further, glycosylases can be

categorized as being either monofunctional or bifunctional in their activity; a designation

which refers to their ability to carry out the glycosylytic step and incision of the

phosphodiester backbone. Monofunctional glycosylases can perform only the N-glycosidic

hydrolysis, typically using an activated water molecule as a nucleophile to attack the sugar

Cl' of the damaged base. Whereas, the bifunctional glycosylases can perform both the N-

glycosidic hydrolysis and incision of the back bone. The bifunctional glycosylases utilize the

N-terminal proline or E-NH 2 of lysine as the nucleophile for the glycosylytic reaction.

Additionally, bifunctional glycosylases can carry out the base excision and lyase steps in a

concerted reaction, but these steps can also be decoupled. For example, OGG1 has weak

lyase activity and yields primarily AP sites, post-excision of 8-oxoG (Hill et al., 2001).

Strand scission

The N-glycosylytic action of monofunctional glycosylases results in the formation of

an abasic site (a sugar devoid of a base). An endonuclease, primarily APE1 in human cells,

then performs incision of the phosphodiester DNA backbone 5' to the AP site, generating a
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3'-OH and a residual 5' dRP lesion. Alternatively, following bifunctional glycosylase excision

of the damaged base, AP endonucleases demonstrate AP lyase activity that allows for

incision of the DNA backbone 3' to the AP site (as described in the lesion excision section,

above). This AP lyase activity can proceed via a P-elimination reaction or a P, 6-elimination

reaction, generating a 3' phospho a, 0-unsaturated aldehyde or a 3' phosphate, respectively

(Baute, 2008).

Gap tailoring

The strand scission activities of APE1 and bifunctional glycosylases result in specific

5' and 3' blocking lesions. These termini are called blocking lesions as they block replication

of DNA by polymerases. Other types of 5' and 3' blocking lesions can also be generated by

different genotoxins. Indeed, most radiation and ROS induced DNA SSBs result in non-

conventional termini (Tables 1-4A and B).Ultimately, these non-conventional strand break

ends block replication and are toxic (Sobol, 2000; Sobol et al., 2003), mutagenic (Takemoto,

1998) and recombinogenic (Sobol et al., 2003). Thus, in order to restore conventional ends,

i.e. a 3'-OH from which a polymerase can extend, and or a 5' phosphate for the subsequent

ligation reaction, tailoring of the nonconventional DNA strand nick is required. APE1, in

addition to the phosphodiesterase endonuclease activity discussed above, possesses weak

3' phosphatase and 3' exonuclease (Marenstein et al., 2004; Wiederhold et al., 2004)

activity, allowing for restoration of a 3'OH terminus from a 3'-phospho a, 0-unsaturated

aldehyde (product of bifunctional glycosylase 1-elimination). The 3' phosphate blocking

lesion (product of NEIL P, 6-elimination) is restored to the conventional 3'OH by the 3'

phosphatase activity of PNKP (Breslin and Caldecott, 2009) and TDP1 (Tyrosyl-DNA

phosphodiesterase 1). In contrast, 5' blocking lesions are tailored by polymerase 0 and PNKP

(Wilson, 2007). For example, the 5'dRP product of APE1 phosphodiesterase activity is
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restored to a conventional 5' phosphate via the action of the 5'dRP lyase domain of

polymerase @ (Sobol et aL., 1996). This lyase activity has been determined to be the rate

limiting step of at least the monofunctional glycosylase initiated BER pathway in vitro

(Srivastava et al., 1998) and arguably in vivo as well, since the majority of endogenous AP

sites found in rats and human liver are cleaved 5' to the AP site (Nakamura and Swenberg,

1999).

DNA synthesis

Once a conventional 3'OH terminus has been restored, polymerase P or polymerase

6/E/X can then synthesize DNA to fill the gap (Blank et al., 1994; Braithwaite et al., 2010;

Wang et al., 1993). PolI, although similar to the replicative polymerases, is distributive and

has no exonuclease activity. This 39 kDa polypeptide has a 31 kDa C-terminal polymerase

domain and an 8 kDa N-terminal lyase domain for the removal of the 5'dRP blocking lesion

(see Gap tailoring above), after the polymerase domain conducts its DNA synthesis activity.

Pol P acts primarily, but not exclusively, in the context of short patch BER. Pol6 and PolE

perform the gap-filling DNA synthesis step, typically in the context of long patch BER. Pol6 is

made up of four subunits: p125-the polymerase and 3' to 5' exonuclease proof reading

domain, p66, p50-which interacts with proliferating cell nuclear antigen (PCNA), and p12.

Indeed, the long patch BER polymerases are associated with many other proteins including

replication factor-C (RFC), which loads the processivity-augmenting clamp, PCNA.

Importantly, Pol@ and Pol6/E can all participate in long patch BER, since they all interact with

the long patch machinery proteins like flap endonuclease, FENI (Liu et al., 2004). FEN-1 is

essential in long patch BER for the removal of the variable-length oligonucleotide displaced

from DNA by the replicative machinery. Recently solved crystal structures of this protein

with the substrate and product DNA indicate that this protein uses helices to carry out
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recognition and threading of 5'-overhangs for subsequent hydrolysis (Tsutakawa et al.,

2011).

Ligation

In BER, ligation is carried out by one of two ATP-dependent ligases: ligase I or ligase

lila. Although typically associated with ligation of Okazaki fragments in DNA replication,

ligase I can act in both long and short patch BER, as this protein interacts with both Pol P

(Prasad et al., 1996) and PCNA (Levin et al., 1997; Tom et al., 2001). In contrast, Ligase lila

acts primarily in an XRCC1-dependent complex (Mackey et al., 1997; Nash et at., 1997) in

short patch BER (Fortini, 2003) and in an XRCC1-independent pathway in mitochondrial BER

(Gao et al., 2011). In fact, it has recently been suggested by Gao et al. that ligase Illa is

critical for mitochondrial genome integrity, but is dispensable for nuclear BER (Gao et al.,

2011). Nevertheless, obligate termini for the ligation reaction are a 3'OH and a 5'

phosphate. Once in place, DNA ligases act in a three step reaction to seal DNA single strand

nicks. DNA ligases first use a lysine side chain to form a covalent linkage to AMP (adenosine

monophosphate), using ATP. The ligase-AMP intermediate then transfers AMP to the 5'

phosphate, thereby activating 5' phosphate for nucleophilic attack by the terminal 3'OH.

Then finally, as the 3' OH attacks the activated 5' phosphate, the nick is sealed and intact

DNA is restored. AMP is released as a byproduct in this final step.

Facilitative functions

The functions and proteins discussed above represent the core BER pathway and the

minimal components sufficient to reconstitute BER in vitro. However, there are additional

proteins that are known to facilitate the role of the major BER proteins in vivo (See Table1-

2). Among these, and yet to be fully discussed, are PARPI and PARP2, and XRCC1.



PARP1 and PARP2 are members of the ADP-ribosyl transferases (ARTs) family of

proteins (Yelamos, 2011) and are enzymes that use -NAD* as a substrate to poly(ADP-

ribosyl)ate other proteins and auto- poly(ADP-ribosyl)ate themselves in response to DNA

strand breaks and other stimuli. In this regard, PARP proteins play an important role in

detecting DNA nicks via two CX2CX28, 30HX2C zinc fingers (DNA-break-sensing motif) and

then catalyzing formation of long and branched polymers of poly(ADP-ribose) (PAR) on

proteins, including other BER proteins like XRCC1, or at sites of DNA damage, with hundreds

of negatively charged subunits (Schreiber et al., 2006). PARP also interacts with AP sites,

presumably to protect the lesion until APE1 can perform the strand scission step (Khodyreva

et al.). Additionally, PARP proteins also physically interact with XRCC1, conceivably to

facilitate DNA repair via BER (Masson et al., 1998) and homologous recombination (Ahmed

et al., 2010).

PARP proteins play roles in cell-survival and death and there is a growing

appreciation of numerous other roles for PARP proteins, stemming from the ability of these

proteins to post-translationally modify other proteins, e.g. in epigenetic regulation of

transcription by modifying histones by damage-dependent and damage-independent

processes (Poirier et al., 1982); but also other functions independent of their poly(ADP)

ribosylation activity, e.g. in interacting directly with transcription factors like NF-KB and

subsequently regulating NO' expression by immune cells (Oliver et aL., 1999).

PARP proteins therefore function as sensors and signal transducers of DNA damage,

and while not canonically considered a component of BER, PARP plays a role in facilitating

the repair of DNA single strand breaks (Godon et al., 2008; Str6m et al., 2011). DNA single

strand breaks, in as far as they represent a physical discontinuity in the DNA back bone, are



indistinguishable from intermediates of base excision repair (i.e. products of DNA strand

scission through pre-ligated 3' and 5' termini). Thus, the repair of DNA SSBs is considered a

sub-pathway of base excision repair, and as such PARP1 and PARP2 are thought to facilitate

BER (Pachkowski et al., 2009; Schreiber et al., 2006; Yelamos, 2011).

1.4 X-ray Repair Cross Complementing Group 1 (XRCC1)

Like PARP1 and PARP2, XRCC1 plays a facilitative role in BER and is particularly

protective against alkylation DNA damage. The X-ray repair cross-complementing group I

(XRCC1) is a protein devoid of enzymatic activity, and is thought to function as a scaffold

protein that facilitates BER by recruiting and interacting with other BER proteins

(Thompson, 2000)(See Table 1-2). Additionally, The XRCC1 protein preferentially binds to

single strand breaks and AP sites in DNA, forming a Schiff base covalent complex with the AP

site (Mani et al., 2004; Nazarkina et al., 2007). XRCC1 is extremely gregarious, interacting in

a variety of ways with many different BER proteins. XRCC1 contains two BRCT domains. The

C-terminal BRCT domain of XRCC1 interacts with (Nash et al., 1997) and stabilizes ligase Illa

(Caldecott et al., 1994); the N-terminal BRCT domain interacts with PARP1 (Beernink et al.,

2005; Nazarkina et al., 2007), inhibiting PARP's activity (Masson et al., 1998). XRCC1 has also

been demonstrated to interact either physically or functionally with the core pathway BER

proteins. Indeed, XRCC1 is known to interact with glycosylases: AAG (Campalans et al.,

2005), OGG1 (Campalans et al., 2005; Marsin et al., 2003), NEIL1 and NEIL2 (Campalans et

al., 2005), NTHL1 (Campalans et al., 2005); gap tailoring enzymes: APE1 (Vidal et al., 2001)

and PNKP (Mani et al., 2007); Polymerase 3 (Dianova et al., 2004; Wong and Wilson, 2005)



and ligase Illa, in the aforementioned XRCC1-ligase Illa complex (Caldecott et al., 1994).

XRCC1 also interacts with the facilitative polymerase processivity protein PCNA (Fan et al.,

2004; Mani et al., 2007).

By interacting with these proteins, XRCC1 accelerates the rate at which DNA base

lesions and SSBs are repaired (Campalans et aL., 2005; Doulias, 2001; Thompson, 1990;

Thompson, 2000). These lesions could be induced by ionizing radiation, e.g. y rays

(Thompson, 1990; Vanankeren, 1988) and x-rays (Schwartz, 1987), or by hydrogen peroxide

(Dianova et al., 2004), or by alkylating agents like MMS, EMS (Thompson et al., 1982;

Zdzienicka et al., 1992) and the cancer therapeutic Temozolomide (TMZ) (Horton, 2008).

Indeed, XRCC1 deficient cells are deficient in the repair of DNA SSBs (Taylor, 2002; Wong

and Wilson, 2005). Further, XRCC1 has also been implicated in the repair of DNA DSBs, since

it co-localizes with the homologous recombination-associated protein Rad5l (Fan et al.,

2004; Taylor, 2000), and is highly expressed in testes and especially in pachytene (meiotic

recombination stage) spermatocytes and round spermatids (Ahmed et al., 2010; Zhou and

Walter, 1998a). More directly, XRCC1 deficient hamster cells have been shown to have

decreased rates of DSB repair (Schwartz, 1987).

XRCC1 deficient cells also show elevated baseline (Thompson, 1985; Zdzienicka et al.,

1992) and MMS-exposure-induced levels of sister chromatid exchanges (SCEs) (Zdzienicka et

al., 1992), a measure of homologous recombination and the result of large scale genomic

rearrangements between sister chromatids. Whether the increased SCEs are due to

increased DSBs that result from SSBs e.g. via replication fork break-down(Helleday, 2007), or

more directly by way of Rad51-mediated homologous recombination (Fan et al., 2004;

Taylor, 2000), or by a recently discovered XRCC1-dependent DSB repair pathway (Ahmed et



al., 2010; Audebert et al., 2004; Charbonnel et al., 2010), is yet to be determined.

Nevertheless, XRCC1 is thought to play pivotal role in base excision repair and the

maintenance of genomic instability.

1.5 Base Excision Repair, Inflammation Mediated DNA Damage and Malignancy

Since inflammatory RONs can cause mutagenic and toxic DNA damage that is

associated with malignancy, as described in section 1.2 above, and since base excision repair

acts on many of the lesions known to be made by inflammatory RONs, it is logical to posit

that BER could modulate cancer risk. Indeed, various deficiencies in BER are associated with

increased genomic instability and cancer risk. A few pertinent exemplars follow, below.

Glycosylases

AAG deficient cells as are highly sensitive to killing by alkylation damage and have

elevated levels of post-MMS-exposure SCEs (Engelward et al., 1996a); but knockout mice

are, surprisingly, only mildly sensitive and have no increased incidence of cancer (Engelward

et al., 1996a). In contrast, AAG deficient mice do have increased levels of base lesions EA

and 8-oxoG, and display increased pathology and colon tumorigenesis on exposure to

inflammatory chemicals (Meira LB, 2008). This apparent discrepancy in the tumorigenic

potential of AAG deficiency may be due to tissue-specific differences, the differential action

of translesion polymerases and the levels of damage (spontaneous vs. induced).

Although MYH knockout mice are viable and display no overt phenotype,

deficiencies in MYH result in increased frequency of mutation (Xie et al., 2004). Additionally,

biallelic inherited mutations in MYH are associated with colorectal cancers (Al-Tassan et al.,



2002; Sampson, 2005). These malignancies display G:C+T:A transversions in the APC gene

(Al-Tassan et al., 2002), which controls the proliferation of colon cells and the oncogene K-

ras (Lipton et al., 2003). The G:C4T:A transversion mutation is consistent with an inability to

correct the 8-oxo-G:A mispair that MYH addresses (See Table 1-4).

The S326C polymorphic variant of OGG1, the bifunctional glycosylase responsible for

the removal of oxidized and ring-opened purines, e.g. 8-oxoG and FaPy-G, is associated with

increased risk of esophageal (Xing et al., 2001), prostate (Xu et al., 2002) and lung (Le

Marchand et al., 2002; Sugimura et al., 1999; Wikman et al., 2000) cancers (Goode, 2002).

Additionally, a role for OGGI in tumor suppression has been suggested, based on the fact

that its location on chromosome 3, is a region that frequently experiences loss of

heterozygosity in kidney and lung tumors (Chevillard and F., 1998).

Low levels of NEIL1 protein and inactivating mutations in this glycosylase are

associated with gastric cancer (Shinmura et al., 2004). However, there are redundancies in

the functions of oxidative damage glycosylases, so much so that single-glycosylase knock-

out mice display subtle or no phenotypes. It is only when two or more glycosylases are

eliminated, that symptoms then become apparent (Hegde et al., 2008; Xie et al., 2004).

APE1

While the complete abrogation of APE1 is embryonically lethal, heterozygotic cells

and animals are sensitive to oxidative stress and heterozygote mice have elevated levels of

spontaneous mutations (Huamani, 2004).

Interestingly, BER can also modulate cancer disease prognosis, once diagnosed. For

example, increased levels of XRCC1 and APE protein increase the survival rate in bladder

cancer patients being treated by radiotherapy (Sak et al., 2005).



XRCC1

As mentioned in section 1.4 above, XRCC1 deficient cells have elevated baseline and

post-MMS-exposure SCE frequencies (Thompson, 1985; Zdzienicka et al., 1992).

Additionally, XRCC1 deficient cells display increased formation of MMS-induced micronuclei,

another measurement of chromosomal instability, on exposure to MMS (Brem, 2005). In

humans, various polymorphic variants have been associated with deficient SSB repair (Au,

2003; Takanami, 2005) and malignancy (Goode, 2002; Ladiges et al., 2003). For example, the

R399Q polymorphism is associated with increased risk of breast (Duell et al., 2001) and

stomach cancer, while the R194W polymorphism is associated with decreased risk of

bladder, esophageal (Lee et al., 2001) and lung (Ratnasinghe et al., 2001; Stern et al., 2001)

cancers.

While relatively little has been published on the role of XRCC1 in response to NO,

XRCC1 is known to protect against oxidative DNA damage (Kulkarni et al., 2008). This is

consistent with the ability of XRCC1 to associate with and stimulate oxidative DNA damage

excision glycosylases e.g., OGG1 and NEIL (Campalans et al., 2005), and with gap tailoring

enzymes specific to oxidative damage, e.g. PNKP (Mani et al., 2007). Thus, one could posit

that cells would be similarly dependent on XRCC1 for the repair of NO' oxidative (and

alkylation) DNA damage.

Importantly, while the above-enumerated BER deficiencies are nominally associated

with increased cancer risk, there is a growing appreciation that it is the intermediates of

BER, that potentiate the deleterious phenotypes associated with BER deficiencies (Fortini,

2003; Sobol et al., 2003; Sossou, 2005; Spek et al., 2002; Wilson, 2007). Thus, it can be

surmised that any perturbations to the pathway that might alter BER intermediate levels



would similarly alter cancer risk. Such perturbations would include imbalances in the levels

of BER proteins, pathway polymorphic variants with differential functional efficiencies and

exposure to environmental genotoxins that overwhelm the repair pathway's connate

efficiency (repair capacity).

NO' and bystander effect-induced genomic instability

NO* has also recently been implicated in the communication of DNA DSBs and

genomic instability via a transmissible epigenetic mechanism known as the bystander effect

(Dickey, 2009; Shao et al., 2002). This phenomenon, comprising of the propagation of

increased toxicity, SCEs and genomic instability from genotoxin-exposed cells to naive,

neighboring cells, has traditionally been associated with ionizing radiation (IR) exposure

(Huo, 2001; Lewis, 2001a; Little, 2003; Nagar, 2003; Nagasawa, 1992; Zhou et al., 2000).

However, our group has shown that a persistent hyper-recombination phenotype can be

induced in both the distant progeny of cells exposed to the cross-linking agent, mitomycin C

(MMC), and their nafve bystander cells (Rugo, 2005). Additionally, other groups have

demonstrated that NO*, possibly in the context of an inflammatory-like response, is capable

of generating a bystander effect (Burr, 2010; Dickey, 2009; Shao et al., 2002).

While, the specific molecular signals underlying this phenomenon are, as yet,

unknown; epigenetic mechanisms have been implicated (Kovalchuk, 2008; Lorimore, 2003).

Of particular interest, in this regard, is the potential role of DNA methyl transferases

(DNMTs). It has been shown that DNMT1 protein levels increase in distal, bystander cells,

but not in directly exposed cells; and conversely global methylation levels decrease in



directly exposed cells, but not in distal bystander cells (Koturbash, 2006). The bystander

effect therefore represents an additional mechanism, albeit poorly understood, by which

RONs can mediate genomic instability.

1.6 Goals and thesis design

Our overall objective is to determine how base excision repair proteins, in particular

XRCC1, act and interact to modulate DNA damage and toxicity on exposure to inflammatory

genotoxins. We also sought to define, how these phenotypes are epigenetically propagated.

The potential applications of understanding the mechanistic and molecular underpinnings of

these processes abound; from improved means of preventing inflammation-associated

cancer, to enhanced methods for treatment of the disease (since many chemotherapeutics

impinge on base excision repair). Our general hypotheses were two-fold:

First, we hypothesize that XRCC1 plays a role in modulating the toxicity and DNA damage

levels associated with exposure to the reactive oxygen and nitrogen species derived from

NO' (Fig. 1-5). Secondly we hypothesize that the epigenetic transmission of genomic

instability via the bystander effect, known to be propagated by NO', is mediated by DNA

methyltransferases.

The work described herein is therefore the culmination of efforts to synthesize and

test these hypotheses.
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Carcinogen
DNA-reactive

"Initiator"

Non-DNA reactive
"Promoter"

(Complete carcinogen
when used repetitively)

Darwinian selection of initial
mutations

e.g. Mutator Phenotype

Initiation
Promotion

Figure 1-1. Two stage model of carcinogenesis. Promotion
(modified from Philip, 2004). See text for details.

Progression
to (and of) Cancer

is followed by progression



Bladder
Cervical

Ovarian

Gastric
MALT lymphoma
Esophageal
Colorectal
Hepatocellular
Kaposi's Sarcoma
Cholangiocarcinoma
Oral squamous carcinoma
Bronchial
Mesothelioma

Infectious agent

Schistosomiasis
Papillomavirus
Pelvic inflammatory disease/tissue
remodeling
H. pylon induced gastritis

H. pylon
Barrett's Metaplasia
Inflammatory bowel disease

Hepatitis virus B and C
Human herpes virus type 8
Cholangitis
Gingivitis , lichen planus

Silica, asbestos, cigarette smoke

Asbestos

Non-infectious agent

Table 1-1. Chronic inflammatory conditions that are associated with malignancy (modified
from Shacter, 2002).
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Figure 1-2. Model for RON-mediated DNA DSBs, Toxicity and genomic instability (modified
from Dedon, 2004). See text for details.
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Figure 1-3. Base excision repair pathway schematic. A. Short patch-monofunctional
glycosylase, B. Short patch-bifunctional glycosylase and C. Long Patch- monofunctional

glycosylase BER. (modified from Frosina, 2000). See text for details.
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0. Facilitative
Functions

1. Lesion 2. Strand 3. Gap 4. DNA
Excision Scission Tailoring Synthesis

5.
Ligation Monofunctional

Bifunctional
U Long Patch

Table 1-2. BER pathway protein components and functions. BER consists of 5 major
functions: Lesion excision, strand scission, gap tailoring, DNA synthesis and ligation. These
functions are carried out by specific proteins in two distinct sub-pathways: monofunctional
glycosylase-initiated and bifunctional glycosylase-initiated pathways that can progress via
short (single nucleotide) or long patch (2-7 oligonucleotide) repair. There are also facilitative
proteins associated with multiple sub-pathway components, e.g. XRCC1, or associated with
a certain sub-pathway e.g. PCNA in long patch repair. Colors indicate participation of
specified protein in one or potentially multiple sub-pathways.



Protein Enzymatic Classi Protein Family/ Sub-type E oi

Nth

Nth superfamily Muty

AIkA

Fpgsuperfamily 
Tg
Fpg, Nei

Other Aag

Nfofamlly Nfo

PALFfamily

Family A Pol

DNA Polymerases FmlB

Family X

NAD+-dependent UgA
DNA Ligases

ATP Dependent

3'-phosophodisterase

Flap endonuclease

OtherPARP

9-1-1 complex

5. cerevisiae

Unl1p UNG

Ntglp, Ntg2p NTHL1
MUTYH

Ogglp OGGI
Magip

NEIL1,2 & 3

Apngp

Apnlp

Pol V

AAG (MPG)

APE1&2 (APEX, Hap4,Ref-1)

PALF

Pal V

POI6 POI PO E Pol6, Pol, Pol C, Pol (

Pol 0, Pol A

Cdc9p

Radlp-Rad10p,
Mus81p44ms4p

Rad27p

Po30p

Ddclp-Radl7p-
Mec3p

Ug1, Ug Illa

PNKP

FEN1

PCNA

RAD9B-RAD1-HUS1

Table 1-2. Proteins involved in different steps of BER in E.coli, budding
cells (modified from Zharkov, 2008). See text for details.

yeast and human



UNG UNG Uracil DNA glycosylase Uracil (U)

SMUG1 SMUG1 SMUG DNA U, 5-
glycosylase hydoxymethyluracil

Monofunctional

Monofunctional

Thymine DNA U, T, or etheno-C
TDG glycsylase opposite G (Preferably Monofunctional

CpG sites)

MYH MutY Homolog DNA A opposite 8-oxoG, 2-
glycosylase OH-A opposite G

Bifunctional

Monofunctional

NTHL (NTH1)

AAG (MPG, ANPG,
MDG, MIDi

Alkyladenine DNA
Glycosylase

3-alkylpurines,
hypoxanthine, etheno-

Endonuclease Vill-like Oxidized or
NEIL2 DNA glycosylase 2 fragmented

pyrimidines

Table 1-4. Human DNA glycosylases and their cognate substrate(s) (modified from
Friedberg, 2006). See text for details.

TDG

MYH

NTHL

AAG

NEIL1

NEIL2

NEL3

Monofunctional

Bifunctional

Bifunctional

Gene Protein Common Name |Cognate Substrate(s) Mono- or Bifunctional



3' Blocking Lesions:
3'-phosphate

0

Formation:

e ROS attack of
deoxyribose
* Bifunc. glycosylase
activity (0,6
elimination) e.g.
NEIL1&2

Repair processing:

e PNKP
* APE1(SSB)
eTDP1

3'-phosphoglycolate ester 3'-phospho a,-unsaturated
aldehyde

0
0

* ROS attack of
deoxyribose

" APE1(SSB),TDP1(DSB)
" APE2, Artemis

e Bifunctional
glycosylase e.g. hOGG1,
NTH 1
- Spontaneous cleavage
of AP site(@
elimination)

* APE1

Figure 1-4A. Base excision repair 3' replication blocking lesions. X= OH for bifunctional
glycosylase and APE-induced strand scission, following bifunctional glycosylase step
(modified from Wilson, 2007).



5' Blocking Lesions:
5'-deoxyribose phosphate 5'-OH

HO-

Formation:
* AP endonuclease
cleavage of AP site

e ROS attack of
deoxyribose

Repair processing:
* Poli (lyase activity) e PNKP

Figure 1-4B. Base excision repair 5' replication blocking lesions. X= OH for APE-induced
strand scission in BER, following monofunctional-glycosylase step. (modified from Wilson,
2007).



BER intermediates

Environment

Genotype

E.g. Inflammation E.g. BER Capacity
E.g. RONs E.g. XRCCI-mediated

functions

E.g. Point mutations
E.g. Large scale genomic

rearrangements

Figure 1-5. Hypothetical model for inflammatory genotoxin mediated malignancy.
Inflammation-mediated carcinogenesis is, in part, due to a genotype/environment
interaction with genotype exemplified by repair capacity and environment by inflammatory
RONs. By modulating the levels of BER intermediates and toxicity that result from RON-
mediated DNA damage, BER modulates the inflammation-mediated genomic instability that
may potentiate malignancy.
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Chapter 11

Role of XRCC1 in response to nitric oxide and peroxynitrite-
mediated DNA Damage



2.1 Abstract

Inflammation mediated cancer accounts for upwards of 15% of all malignancies,

strongly necessitating investigation of the molecular interactions at play. Inflammatory

reactive oxygen and nitrogen species (RONs), including peroxynitrite (ONOO~) and nitric

oxide (NO*), potentially play a role in the toxicity and large scale genomic rearrangements

associated with many malignancies. We hypothesize that base excision repair modulates

susceptibility to malignancy by modulating the levels of BER-intermediates, genomic

instability and toxicity resulting from exposure to RONs. Surprisingly, few studies have

examined the functional role of BER deficiencies on exposure to reactive nitrogen species.

Here, we exploited both CHO and human glioblastoma cell lines engineered to carry

deficiencies in BER to study repair of DNA damage induced by RONs. In particular, we

focused on XRCC1 for two reasons. First, XRCC1 is a scaffold protein critical for BER. Second,

it has been established that certain polymorphisms in the XRCC1 gene are associated with

either increased or decreased risk of cancers associated with inflammation, suggesting a

possible link between inflammation-induced cancer and BER. Cytotoxicity and SSB-

intermediate levels were evaluated in repair proficient and deficient cells following

exposure to the peroxynitrite donor, SIN-1 and to gaseous NO. We found that the XRCC1

null cells are somewhat more sensitive to killing by SIN-1 when compared to WT, as

assessed by clonogenic survival. In addition and as expected, XRCC1-/- cells are deficient in

repair of methyl methane sulfonate-induced SSBs. Unexpectedly however, we found that

XRCC1 does not significantly impact repair of SIN-1 induced SSBs. Furthermore, using small

scale bioreactors to expose cells to NO' , delivered in the gaseous form by perfusion into

media via silastic tubing, we found that the SSB levels measured in XRCC1 null cells were not



increased relative to WT cells (and if anything were decreased). This result is consistent with

a model in which XRCC1 plays a role in facilitating strand scission of NO-induced damage,

perhaps via facilitation of AAG glycosylase activity. To assess these dynamics of BER-

mediated repair in human cells, we exploited engineered human cell lines with varied levels

of AAG and XRCC1. Our findings suggest a difference in the repair dynamics and damage

thresholds between CHO and glioblastoma. For human glioblastoma cells, balanced levels of

both XRCC1 and AAG are required to suppress NO-induced SSBs and toxicity. Additionally,

XRCC1 is acting predominantly downstream of AAG glycosylase in mediating repair of

genotoxic insult. This work is some of the first to assess the functional role of XRCC1, and

other BER components, in response to nitric oxide and peroxynitrite and suggests

unexpected complexities in the role of XRCC1 in response to reactive nitrogen species.



2.2 Introduction

The association between chronic inflammation and cancer is now well established

with upwards of 15% of all malignancies being driven by chronic inflammation (Balkwill,

2001; Coussens, 2002; Kuper, 2000; Ohshima et al., 2003; Pisani et al., 1997). Of particular

interest is the role played by reactive oxygen and nitrogen species (RONs) in the initiation

and promotion of malignancy. During inflammatory states, neutrophils and macrophages

become activated and release RONs including nitric oxide (NO*) and superoxide (Dedon,

2004; Lonkar and Dedon, 2011). These reactive oxidants serve to kill invading bacteria and

parasites, but often proximal host cells incur collateral damage. While NO-derived species

are likely to have pleiotropic effects in mediating malignancy, we hypothesize that DNA

damage caused by NO' and NO'-derived chemicals can cause toxicity and genomic instability

that initiates and promotes malignancy.

NO' is an important signaling molecule at lower concentrations (Bredt and Snyder,

1994; Cary et al., 2006; Thomas et al., 2008), regulating processes in the nervous, immune

and cardiovascular systems (Bredt and Snyder, 1994; Cary et al., 2006; Thomas et al., 2008).

However, at higher concentrations NO~ can be genotoxic (Burney et al., 1997; Wink et al.,

1991). Indeed, via its reactions with superoxide and oxygen to form peroxynitrite (ONOO~)

and nitrous anhydride (N203) respectively, NO' has been shown to make numerous DNA

lesions both in vitro (Burney et al., 1999b; Wink et al., 1991) and in vivo (Gal and Wogan,

1996). For example, ONOO~ can oxidize guanine making 8-nitro-guanine (Yermilov et a/.,

1995), which can spontaneously depurinate leaving an abasic site, or be further oxidized to

8-oxo-guanine (8-oxo-G) (Dedon, 2004; Epe et al., 1996; Kennedy et al., 1997; Uppu et al.,

1996), which can then also spontaneously depurinate (Dedon, 2004). Furthermore, ONOO~



can make direct DNA single strand breaks (SSBs) in the presence of CO2 via the action of

nitrosoperoxycarbonate (Tretyakova, 2000). In contrast, N203 primarily creates base

deamination products; converting guanine to xanthine, adenine to hypoxanthine and

cytosine to uracil (Burney et al., 1999a). Additionally, RONs can cause lipid peroxidation

which creates secondary metabolites that can then alkylate DNA, creating mutagenic

alkylation lesions like 1, N6-ethenoadenine (EA), for example (El Ghissassi et al., 1995; Nair

et al., 1998). EA blocks replicative polymerases (Frick et al., 2007), is mutagenic causing

AT4GC transitions and A:T+T:A and A:T4T:A transversions (Basu et al., 1993; Pandya and

Moriya, 1996) and is a signature p53 and K-ras mutation observed in rat and human liver

cancers, following exposure to vinyl chloride (Barbin, 1998; Barbin, 2000).

The DNA lesions described above, resulting from exposure to RONs, can promote a

number of deleterious phenotypes including toxicity (Szabo et al., 1996; Zhang et al., 1994)

elevated DNA double strand breaks (DSBs) (Clemons et al., 2007) and genomic instability via

point mutation (deRojas-Walker et al., 1995; Gal and Wogan, 1996) and large-scale genomic

rearrangements (Kiziltepe, 2005; Li, 2006). Consequently, the repair of RON-mediated DNA

damage may be an important mechanism for mitigating the toxic and tumorigenic effects of

these lesions. Indeed, an individual's capacity to repair inflammation-mediated DNA lesions

may represent a hitherto poorly-defined risk factor for inflammation-mediated malignancy

(Fortini, 2003; Frosina, 2007; Meira LB, 2008; Sweasy, 2006; Tudek).

In mammalian cells, base excision repair (BER) is responsible for repairing many of

the inflammation-mediated lesions described above. Briefly, this pathway consists of five,

enzyme-catalyzed steps: lesion excision, strand scission, gap tailoring, DNA synthesis and

ligation. For a detailed review of BER, the authors refer the reader to section 1.3 of this



thesis and elsewhere (Fortini, 2003; Hegde et al., 2008; Zharkov, 2008). Importantly, all five

enzymatic steps in the BER pathway are putatively facilitated by the x-ray repair cross-

complementing group 1 (XRCC1) protein. Indeed, XRCC1 is a scaffold protein that, although

lacking its own enzymatic activity, facilitates the enzymatic roles of numerous other BER

pathway proteins. For example the alkyl adenine DNA glycosylase (AAG), that carries out

excision of 3-methyl adenine (3me-A) (Campalans et al., 2005), hypoxanthine (Hx)

(Campalans et al., 2005), EA (Meira LB, 2008) and other alkyl purines (Friedberg, 2006), has

been shown to be physically associated and functionally associated with XRCC1 (Campalans

et al., 2005). Indeed, XRCC1 deficient cells have been shown to be deficient in the repair of

alkylation (Taylor, 2002; Wong and Wilson, 2005) and ionizing radiation-induced (Schwartz,

1987; Thompson, 1990; Vanankeren, 1988) DNA damage and are acutely sensitive to killing

by alkylating agents like methyl methane sulfonate (MMS) (Horton, 2008; Thompson et al.,

1982). Furthermore, XRCC1 deficient cells have higher baseline and post-MMS-exposure

sister chromatid exchanges (SCEs) (Thompson, 1985; Zdzienicka et al., 1992), which are a

measure of large scale genomic rearrangements and thus represent a genomic instability

mutator phenotype.

Surprisingly, little is known about the susceptibility of XRCC1 deficient cells to

inflammatory genotoxins. Previous studies have shown that XRCC1 deficient Chinese

hamster ovary (CHO) cells have elevated levels of SCEs on exposure to NO'. XRCC1 deficient

mouse (Horton, 2008) and CHO (Dianova et al., 2004) cells are only moderately sensitive to

hydrogen peroxide, but XRCC1 does protect against the lethality of oxidative damage in

non-dividing neural cells (Kulkarni et al., 2008). Collectively, these findings suggest that

XRCC1 may be important in the repair of RON-mediated DNA damage and may modulate



toxicity and cancer risk. Indeed, various polymorphic variants in XRCC1 have been shown to

be either increasingly (Duell et al., 2001)or decreasingly (Lee et al., 2001; Ratnasinghe, 2001;

Stern et al., 2001) associated with various inflammation-associated malignancies. These

findings underscore the importance of defining the role of XRCC1 in response to

inflammatory genotoxins, both for cancer risk assessment and for therapeutic intervention.

Here we show that XRCC1 is important for mitigating peroxynitrite induced toxicity

by a BER-independent mechanism. Unexpectedly, we also show that in CHO cells, XRCC1

does not protect cells from NO'-induced toxicity. Furthermore, while XRCC1 facilitates AAG-

mediated excision of inflammation associated lesions EA and hypoxanthine, XRCC1 does not

protect cells from NO' induced damage. Instead, XRCC1 plays a role downstream of the

glycosylase for repair of alkylation-induced BER-intermediates.

2.3 Materials and Methods

2.3.1 Cells and Cell Culture

AA8 and EM9 CHO cells were obtained from ATCC (Manassas, VA) and the human

complemented EM9 cells were engineered, and kindly provided by the lab of Larry

Thompson (Thompson, 1990). CHO cells were cultured in 10% FBS (Atlanta Biologics,

Lawrenceville, GA) in DMEM (Cat#11965, Invitrogen, Carlsbad, CA) and penicillin/

streptomycin (100U/ml;100ug/ml) (Sigma, St. Louis, MO). CHO cells were cultured in

150mm dishes (Falcon, BD) and were kept growing exponentially, being passaged

approximately once every three days. Cell passaging was conducted by aspirating media,

rinsing in warm PBS and treating cells with trypsin (Invitrogen, Carlsbad, CA) for 5-10min,
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quenching with 10mL media and then transferring 1mL of the resultant cell suspension to

30mL fresh media.

Engineering of glioblastoma LN428 cells has previously been published (Tang et al.,

2009; Tang et al., 2011). Briefly, the cell line LN428 is an established glioblastoma derived

cell line with mutations in p53 and deletions in p14ARF and p16 and is WT for PTEN (Tang et

al., 2009). Human AAG expressing cells were generated by transfection using FuGene 6

transfection reagent (Roche Diagnostic Corp.) according to the manufacturer's protocol.

Transfected cell lines were cultured in G418 and/or puromycin for 2 wk, and individual

clones stably expressing human AAG were selected. The shuttle vectors (control: pLKO.1-

puro-turbo green fluorescent protein (GFP]) were purchased from Sigma, as was the XRCC1

shRNA oligonucleotide (Gene ID: NM_006297, Clone ID: NM_006297.1-1489s1c1, Target

sequence: CCAGTGCTCCAGGAAGATATA, Oligonucleotide Sequence:

CCGGCCAGTGCTCCAGGAAGATATACTCGAGTATATCTTCCTGGAGCACTGGTTITT). The WT cells were

cultured in alpha MEM (MediaTech, Manassas, VA), 10% fetal bovine serum (Atlanta

Biologics, Lawrenceville, GA), antibiotic/ antimycotic (Sigma, St. Louis, MO), gentamycin, L-

glutamine (Sigma, St. Louis, MO). The engineered glioblastoma cells including the XRCC1KD

cell line, the AAGOE/XRCC1KD cell line, the AAGOE and the GFP cell lines, were cultured in

the same media as the WT media described above except with 1p1g/mL puromycin (Sigma,

St. Louis, MO).

2.3.2 Cell extract preparation and Western Blot

CHO whole cell extracts were prepared using RIPA according to manufacturer's

instructions (Pierce, Rockford, IL). Protein concentration in extracts was done by BCA



quantification (Pierce, Rockford, IL) according to the manufacturer's instructions. 20-100ptg

of protein was loaded into a precast 4-20% gradient Tris-HCI gel (BioRad, Hercules, CA).

Protein was transferred onto nitrocellulose membrane and XRCC1 protein was probed using

a rabbit polyclonal primary antibody against XRCC1 (Abcam, Cambridge, MA) and an HRP-

conjugated secondary goat antibody against rabbit IgG. For the loading control a rabbit

monoclonal antibody (Cell Signaling, Beverly, MA) was used.

LN428 nuclear extracts were prepared and protein concentrations were determined as

described previously (Tang et al., 2009). 20 ptg of protein was loaded on a precast 4-20%

Tris-glycine gel (Invitrogen) or 25 mg of protein was loaded onto a precast 4-20% Mini-

PROTEAN TGX gel (Bio-Rad). The following primary antibodies were used in the

Western blot assays: anti-human MPG (Mab; clone 506-3D)(Tang et al., 2009); anti PCNA

(Santa Cruz Biotechnology, Santa Cruz, CA).

2.3.3 CHO MMS and SIN-1 Exposures for Comet Assay

Growing CHO cells were rinsed with warm PBS and were passaged as described

above. Approximately 24 hours later cells were removed from their dishes by trypsin

treatment for 5-10 min. Cells were then counted and re-suspended in 1% low melting point

(LMP) agarose (Invitrogen, Carlsbad, CA) at 370C at a density of 2.5x105 cells/ mL. A volume

of 500.IL (1.25x105 cells) of gel containing re-suspended cells was then pipeted onto 370C

pre-warmed, agarose-precoated glass slides and cover-slipped. The cells were allowed to

settle onto the slides for 10 minutes and were then moved to 4*C to allow the gel to solidify.



Cover-slips were removed and the cells were then exposed to either MMS or SIN-1 at the

specified concentrations in phosphate buffered saline (PBS) (Invitrogen, Carlsbad, CA). For

the repair experiments, following exposure to the specified dose of MMS or SIN-1, the slides

were rinsed with PBS and were transferred to CHO media for the specified period of time

before being lysed for the alkaline comet assay (See Section 2.3.6).

2.3.4 CHO and Glioblastoma NO' Exposures

For NO* exposures, 1x106 CHO or glioblastoma cells were seeded in media into

60mm tissue culture dishes (BD Falcon, Franklin Lakes, NJ) and allowed to adhere.

Approximately 24 hours later, cells were placed in 100mL and were exposed to gases for

specified periods of time, as previously described (Kiziltepe, 2005; Li et al., 2006; Wang et

al., 2003). Following exposure, a sample of media was taken for nitrite quantification and

the cells were removed from the dish by trypsin treatment for 5-20 min at 37"C. The cells

were then counted and were split into two batches for subsequent analysis: one batch for

the clonogenic survival assay and the other batch for analysis by alkaline comet assay.

2.3.5 Clonogenic Survival Assay

Clonogenic survival assay was conducted as reported elsewhere (Freshney, 2005).

Briefly, treated (long term exposure) or untreated (dose response and repair experiments)

CHO and glioblastoma cells were seeded at known numbers and allowed to adhere for



approximately 24 hours. Untreated cells were then exposed for SIN-1 or MMS for 30min at

370C. The cells were then rinsed with PBS and incubated in media for 10-14 days to form

colonies. The colonies were then fixed in 1:1 Methanol:PBS and stained with 0.5% crystal

violet in 1:1 Methanol:PBS for 10min. Colonies were rinsed with de-ionized water and

allowed to dry and were then counted. Survival for each cell type was calculated as a ratio

of plating efficiency for each cell type vs. the WT plating efficiency. P values were calculated

by student's t-test on the mean of at least three replicate experiments.

2.3.6 Alkaline comet assay

To measure the accumulation of base excision repair intermediates on exposure to a

given genotoxin, a modified version of the alkali comet assay (single cell gel electrophoresis)

was employed (Olive, 2006). Briefly, cells immobilized in 1% LMP agarose were lysed for at

least one hour in lysis buffer containing 2.5M NaCl, 100mM Na2EDTA, and 10mM tris and 1%

triton X-100 at pH 10. Following lysis, cells in gel are held in electrophoresis buffer (0.3M

NaOH, 1mM Na2EDTA) for 40 minutes for alkali unwinding. Then, following the alkali

unwinding incubation, electrophoresis was performed at 1V/cm, 300mA for 30min. Slides

were neutralized in 0.4M tris, before staining with 500ptg/mL ethidium bromide. Image

analysis was carried out by Metafer v.3.6.7 (Metasystems, Waltham, MA). At least 100

nucleoids per condition were analyzed and the median calculated. Each experiment was

replicated at least 3 times and the mean of all replicates plotted. P values were calculated

by student's t-test.



2.4 Results and Discussion

2.4.1. Role of XRCC1 in response to NO' and peroxynitrite exposure in CHO cells

Reactive oxygen and nitrogen species released by activated immune cells can cause

myriad DNA lesions, which in turn can result in a number of deleterious phenotypes. Among

these potentially deleterious reactive species are NO' and superoxide, which can combine to

form peroxynitrite (Fig. la)-one of the dominant reactive nitrogen species formed under

physiological conditions. Our first objective was therefore to investigate whether cells

deficient in XRCC1 are susceptible to peroxynitrite and NO.

To facilitate this investigation, Chinese hamster ovarian (CHO) cells were exposed to

SIN-1-derived peroxynitrite, and gaseous NO'. Specifically, we exploited EM9 CHO cells,

deficient in XRCC1; AA8 CHO cells wild type (WT) for CHO XRCC1; and H9T3-6-3 and H9T3-7-

1, EM9 CHO cells complemented with human XRCC1 (Fig. 1b). EM9 cells are effectively null

for XRCC1 as they carry a frameshift mutation that results in expression of only a third of the

XRCC1 protein (Shen, 1998). The EM9 mutant cells were initially isolated from their parental

AA8 CHO cell line by a generalized mutant screen for sensitivity to DNA damaging agents

and are sensitive to killing by EMS, MMS and ionizing radiation (Schwartz, 1987; Thompson

et al., 1982; Vanankeren, 1988). Additionally, EM9 cells display defective base excision

repair (Thompson et al., 1982; Thompson, 2000) and have elevated frequency of baseline

(Dillehay et al., 1984; Thompson et a/., 1982) and post-genotoxin exposure sister chromatid

exchanges (SCEs). As controls, we employed H9T3-6-3 and H9T3-7-1 cells, kindly provided

by Larry Thomson. These cells were made by complementing XRCC1-deficient EM9 cells via
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cosmid transformation with a human gene, subsequently cloned and identified as XRCC1

(Thompson, 1990). The H9T3-6-3 and H9T3-7-1 cells are therefore human XRCC1-

complemented EM9 CHO cells.

As a point of reference in these studies, XRCC1 cells were exposed to the alkylating

agent methyl methanesulfonate (MMS). XRCC1 deficient EM9 CHO cells(Thompson et al.,

1982; Thompson, 1990; Thompson, 2000; Wong and Wilson, 2005) and indeed other XRCC1

deficient cell types (Brem, 2005; Taylor, 2002; Wong and Wilson, 2005) have previously

been demonstrated to be unable to efficiently repair DNA lesions formed following MMS

exposure. Exposure of cells to MMS therefore serves as a positive control for the repair

deficiency in XRCC1 deficient cells, and represents a suitable reference against which to

benchmark the relative toxicity and base excision repair intermediate levels in XRCC1-

deficient cells on exposure to inflammatory RONs.

Following exposure to SIN-1, gaseous NO* and MMS, CHO cells were assessed for

survival via clonogenic survival assay. As previously established (Thompson et al., 1982;

Thompson, 1990; Wong and Wilson, 2005), XRCC1 deficient CHO EM9 cells were

significantly more susceptible to MMS exposure than XRCC1 WT AA8 cells and human

XRCC1-complemented H9T3-6-3 and H9T3-7-1 cells (Fig. 1c). In contrast, XRCC1 deficient

cells were only moderately more sensitive to SIN-1 (p< 0.05 for doses over 5mM) when

compared to WT cells or human XRCCi-complemented cells to SIN-1 exposure (Fig.1c).

These results are consistent with studies showing XRCC1 deficient cells are mildly sensitive

to oxidizing agents (Horton, 2008). Unexpectedly, however, EM9 cells were no more

sensitive than XRCC1 WT AA8 cells on exposure to gaseous NO exposure (Fig. 1c), even at

doses that are toxic to WT cells.



The observation that XRCC1 cells are susceptible to killing by SIN-1 and not by NO' is

surprising and may be due to the difference in the spectrum of lesions made by SIN-1 versus

NO*. While SIN-1 and NO' may make many of the same lesions via peroxynitrite, including

direct DNA SSBs (Doulias, 2001; Tretyakova, 2000) and oxidized base lesions including 8-oxo-

7, 8-dihydro-2'-deoxyguanosine(Inoue and Kawanishi, 1995) , 8-nitro-2'-deoxyguanosine

(Yermilov et al., 1995; Yermilov et al., 1996) and 5-guanidino-4-nitroimidazole(Gu et al.,

2002), NO' exposure can result in other chemistries. For example, NO* can cause base

deamination via the action of nitrous anhydride (N203). Deamination of DNA by nitrous

anhydride can form xanthine and hypoxanthine from guanine and adenine, respectively.

Therefore, while the deamination products of NO' may be more readily tolerated by XRCC1

deficient cells, the excision products of the oxidative lesions and direct SSBs induced by

ONOO~, may result in BER intermediates that are more toxic. Indeed, it has been

demonstrated that the intermediates of BER, following excision of a damaged bases, and

not the damaged bases themselves, may mediate the toxicity associated with an exposure

to a DNA damaging agent (Sobol, 2000; Sobol et al., 2003; Spek et al., 2002)

As an alternative approach for evaluating the biological role of XRCC1 in response to

RONs, we investigated XRCC1's impact on BER capacity following RON-induced DNA

damage. XRCC1 deficient cells and their WT and complemented counterparts were assessed

for BER capacity, using the alkaline single cell gel electrophoresis (comet assay). The alkaline

comet assay is a well-established, gel-electrophoresis based assay that has been used to

measure DNA SSBs, apurinic/apyrimidinic (AP) sites and alkali-labile base lesions in single

cells (Collins, 1997; Olive, 2006; Singh, 1988). The assay can thus be used to measure the

levels of DNA base excision repair intermediates, following exposure to inflammatory RONs.



XRCC1 deficient cells trend towards a greater accumulation of base excision repair

intermediates compared to WT cells as the dose of MMS was increased (Fig. 2a), which is

consistent with previous studies (Brem, 2005; Horton, 2008; Kubota, 2003; Taylor, 2002;

Wong and Wilson, 2005). XRCC1 deficient EM9 cells were also deficient in the repair of MMS

induced BER-intermediates (Fig. 2a insert). XRCC1 deficient cells displayed equivalent levels

of BER intermediates as WT cells on exposure to increasing doses of SIN-1 (Fig. 2a) and the

XRCC1 null EM9 cells repair SIN-1-induced BER-intermediates with the same efficiency as

the AA8 WT cells (Fig. 2a insert). This indicates that, at least in CHO cells, XRCC1 does not

play a significant role in the repair of SIN-1-induced DNA damage. This finding suggests that

the XRCC-depedent protection against SIN-1 toxicity may be independent of the role of

XRCC1 in BER.

To explore the possibility that XRCC1 modulates repair of NO'-induced DNA damage,

we used the comet assay to assess the BER intermediate levels in EM9 and AA8 CHO cells on

exposure to NO'. In contrast to SIN-1 exposure, on increasing duration of exposure to NO*

the WT AA8 cells showed higher levels of NO'-induced BER intermediates than the XRCC1

deficient EM9 cells. The levels of NO-induced BER-intermediate levels in the WT AA8 cells

then fell to below the levels demonstrated by the XRCC1 null EM9 cells after 8 hours of

exposure to NO* (Fig. 2b).

The observation that the XRCC1 WT cells have higher levels of BER intermediates

than the XRCC1 null EM9 cells may at first glance seem anomalous. However, since the

comet assay detects AP sites and frank DNA SSBs, the comet assay effectively detects DNA

species in between the glycosylase step and the ligation step of the BER pathway. Therefore,

the increase in BER intermediates in WT cells relative to the XRCC1 deficient cells on



exposure to NO* may be due to an XRCC1-facilitated removal or scission of NO'-induced

base damage. Specifically, XRCC1 may facilitate a glycosylase that acts specifically on NO'-

induced DNA damage and not SIN-1-induced damage, i.e. deamination products like

xanthine and hypoxanthine. Indeed, other groups have shown that AAG can excise

deamination products like Hx (Asaeda et al., 2000; Miao et a/., 1998; Saparbaev, 1994), and

that XRCC1 can facilitate this activity (Campalans et a/., 2005). We therefore set out to more

directly explore the impact of XRCC1 on AAG-mediated excision of NO'-mediated DNA

damage.

2.4.2 Role of XRCC1/ AAG interaction in human (glioblastoma LN428) cell

extracts

Two key mutagenic lesions created by NO' and excised by AAG are hypoxanthine

(Hx) and ethenoadenine (EA). Hx is the deamination product of adenine that is formed by

NO* via the nitrosative action of nitrous anhydride (N20 3)-an auto-oxidation product of the

reaction between NO' and molecular oxygen (Dedon, 2004). Hx mispairs with cytosine,

causing A:T to G:C transition mutations . In contrast, EA can mispair with adenine, guanine

or cytosine (Speina et al., 2003) and is a DNA damage product of RON-derived lipid

peroxidation (Chung et al., 1996; El Ghissassi et al., 1995; Marnett, 2000). Furthermore, EA

inhibits DNA replication (Tolentino et al., 2008) and is thus a toxic base lesion that may

potentiate malignancy (Bartsch and Nair, 2004). We therefore investigated whether, and to

what extent, XRCC1 facilitates AAG excision of the inflammation-associated Hx and EA DNA

lesions. To do this, we used LN428 glioblastoma cells that were WT (LN428WT) or that were



engineered to be deficient in XRCC1 via lentiviral shRNA knock down (XRCC1KD), or

engineered to over-express AAG (AAGOE), or be both deficient in XRCC1 and be over-

expressing AAG (AAGOE/XRCC1KD), and cells engineered to express GFP (GFP) as a control

for the exogenous constructs in the other cells (Fig. 3a).

Using a fluorescence-based molecular beacon excision assay that has previously

been used to measure the efficiency with which glycosylases can excise specific base lesions

in real time, in vitro (Maksimenko et al., 2004), we assessed the ability of LN428WT cells,

XRCC1KD, AAGOE, and AAGOE/XRCC1KD cell extracts, to excise EA and Hx. We found that a

control molecular beacon containing no lesion, incubated with extracts from LN428WT,

XRCC1KD, AAGOE, and AAGOE/XRCC1KD cells, resulted in minimal increase in fluorescence

(Fig. 3a). In contrast, a molecular beacon containing Hx resulted in a time-dependent

increase in fluorescence, when incubated with extracts from LN428WT, XRCC1KD, AAGOE,

and AAGOE/XRCC1KD cells, which is indicative of base release by the AAG glycosylase

(Fig.3c). As expected, cells over-expressing AAG and WT for XRCC1 (AAGOE) yielded the

highest increase in fluorescence, indicating that these cells are the most efficient at excising

a Hx lesion. However, when XRCC1 is knocked down in the AAGOE cells, as is the case with

the AAGOE/XRCC1KD cells, there is a decrease in the observed fluorescence (Fig. 3b). This

difference indicates that in cell extracts XRCC1 facilitates AAG excision of Hx, which is

consistent with previous work (Campalans et al., 2005). Furthermore, consistent with XRCC1

being a scaffold protein that does not directly excise damaged bases, the XRCC1KD cells

resulted in only a modest increase in fluorescence, similar to the LN428WT cells. This

nominal increase in fluorescence is probably due to the low amounts of AAG expressed in



the LN428WT parental cell line. The levels of AAG in the LN428WT parental cell line are so

low as to preclude detection by western blots (Fig. 3a).

We then queried whether EA excision by AAG, like Hx excision, could be facilitated by

XRCC1. We incubated cell extracts from the glioblastoma cells with a molecular beacon, this

time containing EA. Similar to the Hx molecular beacon, a time-dependent increase in

fluorescence was observed on incubation with LN428WT, XRCC1KD, AAGOE, and

AAGOE/XRCC1KD cells. Of the cell lines examined, the AAGOE cells yielded the greatest

increase in fluorescence and the AAGOE/XRCC1KD cells yielded slightly lower fluorescence

(Fig. 3b). The difference in the observed fluorescence between the AAGOE cells and the

AAGOE/XRCC1KD cells indicated that, as is the case for Hx, XRCC1 does indeed facilitate AAG

excision of EA. Collectively, these data indicate that XRCC1 is capable of stimulating the

AAG-mediated excision of the inflammation-associated base lesions, Hx and EA, in vitro.

2.4.3 Role of XRCC1/ AAG in response to NO' exposure in live human

(glioblostoma LN428) cells

While our findings suggested that XRCC1 can facilitate AAG-mediated excision of

inflammation-associated base lesions in vitro, we queried whether the same dynamics

exited in live cells. As a control to the NO' exposure protocol that we employed,

glioblastoma cells were incubated with a single concentration of 50PM of MMS for

increasing durations of time. The base excision repair intermediates generated were then

measured by alkaline comet assay. We found that there was a time-dependent increase in

base excision repair intermediates for all the cell types examined following exposure to



MMS (Fig. 3c). Importantly, we found that the LN428WT, XRCC1KD, GFP, and the AAGOE

cells, accumulated similar levels of BER intermediates. This indicates that the increase in

base-excision initiation that is the result of over expression of AAG is tolerated in these cells.

Additionally, this result indicates that the deficiency in XRCC1 is similarly tolerated.

However, when XRCC1 is decreased in cells that are over-expressing AAG, there is a

significant accumulation of BER intermediates, as is observed in the case of the

AAGOE/XRCC1KD cells (Fig. 3c). The accumulation of BER intermediates in cells that are

over-expressing AAG and are deficient in XRCC1 on exposure to an alkylating agent, is

consistent with a model in which XRCC1 is primarily facilitating the activity of a BER step

downstream of the glycosylase. Thus while AAG is initiating BER and excising damaged bases

from DNA to form BER intermediates that can then be detected by the comet assay, the lack

of XRCC1 prevents the efficient resolution of these BER intermediates. We speculate that

the lack of XRCC1 results in the decreased efficiency of the dRP lyase activity of polymerase

@ (Pol @), previously shown to be the rate-limiting step in the monofunctional glycosylase

initiated BER (Nakamura and Swenberg, 1999; Sobol et al., 1996; Sobol et al., 2003;

Srivastava et al., 1998). Indeed, it has been demonstrates that the XRCC1-pol P interaction is

important for the repair of both alkylation (Wong and Wilson, 2005) and oxidative (Dianova

et al., 2004) DNA damage. Thus, the accumulation of BER intermediates in

AAGOE/XRCC1KD cells may primarily be due to an accumulation of BER intermediates

occurring in between the glycosylase step and the dRP lyase gap tailoring step of

polymerase P. This result demonstrates the importance of XRCC1 in tolerating an imbalance

in BER, caused by excess glycosylase activity. Therefore, when considering the potential

impact of an observed increase in glycosylase activity, the efficiency of downstream

components, including steps facilitated by XRCC1, must be similarly considered.



To explore the extent to which XRCC1 can facilitate AAG-initiated base excision of

NO'-mediated DNA damage in live cells we exposed glioblastoma cells to two steady state

concentrations of 1.74pM and 11.23lpM of NO', achieved by exposure to 10% and 100% NO'

respectively. We assessed cells exposed to both concentrations of NO' for BER

intermediates using the alkaline comet assay. Interestingly, the response of the human

glioblastoma cells to NO0 exposure was different to the CHO cell response. This result is

consistent with previous findings that different cell types have different thresholds for, and

thus respond differently to, NO' exposures (Burney et al., 1997; Li, 2006; Wang et al., 2003).

Similar to the MMS exposures, BER intermediates in the XRCC1KD cells, AAGOE cells, and

GFP control cells exposed to NO' were similar to the levels in the LN428WT cells. The

AAGOE/XRCC1KD cells, while not statistically different to the WT cells, trend towards

modestly elevated BER intermediates compared to the WT cells. This suggests that,

following exposure to NO*, XRCC1 facilitates a step downstream of the glycosylase for AAG-

initiated BER, albeit to a lesser extent than following exposure to MMS. The slight increase

in BER-intermediates observed in the AAGOE/XRCC1KD vs. the LN428WT cells, may be due

to the fact that that NO* induced DNA damage that is processed by the bifunctional

glycosylase BER sub-pathway (e.g. 8-oxo-G ), in addition to lesions processed by the

monofunctional glycosylase sub-pathway (e.g. Hx, EA). Therefore, the relative difference in

BER intermediates between AAGOE/XRCC1KD and the LN428WT cells when comparing

exposure to MMS vs. NO', may indicate that XRCC1 preferentially facilitates a step

downstream of monofunctional glycosylases and less so steps downstream of the

bifunctional glycosylases. This is consistent with previous observations that XRCC1 null cells

are relatively more susceptible to alkylating agents than they are to oxidative DNA damage

(Horton, 2008), when compared to WT cells. Importantly, these results suggest that for



MMS exposures, and to a lesser extent NO* exposures, deficiencies in XRCC1 act to reveal

imbalances in BER.

In order to determine the susceptibility of the human glioblastoma cell lines to killing

by NO', we initially exposed cells to 50iM MMS for increasing durations of time and

assessed the cells for survival by clonogenic survival assay. We found that the LN428WT,

XRCC1KD, GFP, and the AAGOE cells were killed as the duration of exposure to MMS was

increased (Fig. 3d). Importantly and as expected, the XRCC1KD cells were more sensitive to

killing by MMS than LN428WT cells. This is consistent with previous studies that have found

that XRCC1 deficient cells are acutely sensitive to alkylating agents (Horton, 2008) and

indeed consistent with the toxicity observed in the CHO XRCC1 knock out cells in this work.

Surprisingly however, the AAGOE/XRCC1KD cells that displayed highly elevated BER

intermediates on exposure to MMS, were not particularly susceptible to killing by MMS (Fig.

3d). This suggests that the toxicity observed in the XRCC1KD human glioblastoma cells may

be independent of BER intermediates, and independent of XRCC1's role in BER. Further, this

suggests that the elevated BER intermediates observed in AAGOE/XRCC1KD cells are

tolerated and do not result in toxicity.

On exposure to NO', we found that all the glioblastoma cell genotypes examined

were increasingly sensitive to killing as the duration of exposure to both the 10% and 100%

NO* increased. Furthermore, consistent with the levels of BER-intermediates measured in

these cells, none of the glioblastoma cells assessed were relatively more sensitive to killing

by NO', when compared to the LN428WT cells (Fig. 3d). This indicates that XRCC1 confers no

protection against killing by NO*, in contrast to the protection conferred against killing by

MMS.



2.5 Conclusions:

Understanding the role that reactive nitrogen and oxygen play in initiating and promoting

malignancy is important for risk assessment and therapeutic intervention in inflammation-

associated malignancies. Here, we examined the role of a putative risk factor in

inflammation-associated malignancy: the role of XRCC1 in the repair of DNA damage by the

reactive nitrogen species ONOO and NO'. We found that in CHO cells, XRCC1 is protective

against ONOO~ mediated toxicity, but this protection was independent of XRCC1's role in

base excision repair. These results suggest that XRCC1 may be modulating toxicity in a BER-

independent fashion. Indeed, there is evidence that XRCC1 may play a role in Ku-

independent, non-homologous end joining (Ahmed et a/., 2010; Audebert et al., 2004;

Charbonnel et al., 2010) a mechanism for the repair of DNA double strand breaks which can

result in toxicity and other deleterious phenotypes (Helleday, 2007). Additionally there are

several lines of evidence that suggest XRCC1 may play a role in homologous recombination,

another pathway by which DNA DSBs can be repaired. For example, Taylor et al. showed

that XRCC1 partially co-localizes with an important homologous recombination protein,

Rad5l, implicating XRCC1 in homologous recombination (Taylor, 2000). Further, the high

levels of XRCC1 observed in testes relative to levels in other cell types (Yoo et al., 1992) and

the occurrence of these higher levels specifically in pachytene spermatocytes (Zhou and

Walter, 1998b), implicate XRCC1 in meiotic recombination. These examples, and indeed our

findings here, are consistent with role(s) for XRCC1, in addition to its role in base excision

repair.



While XRCC1 may stimulate AAG excision of the inflammation mediated base lesions

Hx and EA in vitro, in live human cells XRCC1 primarily acts downstream of the glycosylase

for alkylation damage and NO'DNA damage, albeit to a lesser extent in the latter. Indeed,

consistent with the levels of BER-intermediates in the glioblastoma cell lines, none of the

glioblastoma genotypes examined were more sensitive to killing by NO', despite the

significant sensitivity displayed by the AAGOE/XRCC1KD cells to MMS exposure.

Importantly, we have demonstrated that a deficiency in XRCC1 reveals an otherwise

undetectable imbalance in base excision repair, on exposure to MMS.

Collectively, the result of these studies suggest that the association between XRCC1

polymorphic variants and malignancy may be independent of the role of XRCC1 in BER and

or may be due to BER imbalances that are revealed by the differential capacity of XRCC1 to

facilitate BER steps downstream of the glycosylase initiating step.
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Figure 2-1. Role of XRCC1 in modulating toxicity of peroxynitrite and NO' in CHO cells. A.
During inflammatory states macrophages become activated and release reactive nitrogen
and oxygen species that can cause DNA lesions that result in DNA DSBs, toxicity and
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complemented EM9 (H9T3-6-3 and H9T3-7-1) cells were used to assess the (C) toxicity of
MMS, the peroxynitrite donor SIN-1 and gaseous NO'. P values were produced by a two-
tailed t-test .
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as a result of decreasing the extent of XRCC1 facilitation by knocking down XRCC1. Cellular

responses in glioblastoma cells on exposure to MMS and NO* as measured by C) base

excision repair intermediates (alkali comet assay) and D) toxicity (clonogenic survival assay).

P values were produced by a two-tailed Mann- Whitney test for the comet assay data and a

two-tailed t-test for the clonogenic survival assay.
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Chapter III

Development of Tools for Measuring Base Excision Repair



3.1 Abstract

DNA damage by various endogenous and exogenous factors is associated with a

number of deleterious phenotypes including cancer, ageing and neurological disorders. The

ability to inexpensively, accurately and rapidly measure DNA damage, is therefore of

importance for a range of applications including genotoxin exposure monitoring,

epidemiological disease risk assessment, drug development and drug screening. This

chapter describes our group's initial efforts in developing a tool for the measurement of

different kinds of DNA damage, with an emphasis on the measurement of DNA damage

repaired by base excision repair. We enumerate the system constraints, design

considerations, resultant technical challenges and a few preliminary results using one of the

approaches that were employed.

The primary approach utilized now well-established microfabrication techniques to

micropattern cells for assessment of DNA damage by alkali single cell gel electrophoresis

(comet assay). Micropatterning of cells allows for higher information density and spatial

encoding of samples for parallel, high throughput assessment of DNA damage. The comet

assay, in contrast, allows for the robust measurement of DNA damage, including damage

that is repaired by the base excision repair pathway. Together, these techniques represent

the basis of a lab-scale tool that enables the measurement of base excision repair in

different cell types. We also present herein, an application of this device, albeit technically

fraught, to the measurement of DNA damage in a macrophage coculture system.



3.2 Introduction & Motivation

DNA is constantly damaged by a host of endogenous and exogenous agents

(Friedberg, 2006). Nature has therefore evolved many mechanisms by which to prevent,

recognize and repair DNA damage. Indeed, failure to adequately repair DNA damage can

lead to a variety of deleterious phenotypes, including cancer, aging and neurological

disorders (Hoeijmakers, 2009). Furthermore, methods for damaging DNA have found utility,

either incidentally or by design, in arenas as varied as warfare, food processing and in

healthcare. For instance, the use of mustard gas primarily in World War I (Jowsey et al.,

2009; Vogt et al., 1984; Wattana, 2009) and the mounting threat of radiological explosives

and dispersion devices (Karam, 2005); radiation sterilization of food (Blumenthal, 1990) and

medical implements (Darmady et al., 1961) using ionizing gamma and X-ray irradiation; and

the use of radiation and DNA-interacting chemicals, to induce cell death in cancer therapy

(Hurley, 2002; Roos and Kaina, 2006). Thus, due to the ubiquity of DNA damaging agents,

both those endogenously-derived and as a consequence of our 21't century environment, an

understanding of the biological significance of exposure to these agents is warranted. Such

an understanding would have applications in disease prevention, disease risk assessment,

and may aid in the discovery of improved cancer therapeutics.

An important first step in understanding the biological significance of DNA damage

and repair is the ability to detect and quantify DNA damage. Consequently, many

techniques have been developed to measure DNA damage and repair. These techniques are

as varied as they are numerous, utilizing different modalities and measuring different

aspects of, and the response to, DNA damage. As exemplars of such techniques, are

methods that detect and measure DNA damage-associated chemistries (e.g. aldehyde



reactive probe staining); different chromosomal compositions (e.g. sister chromatid

exchanges (SCEs) (Perry, 1974) and chromosomal aberrations) and distributions (e.g.

micronucleus assay (Garriott et al., 1988)); there are methods that detect different protein

modifications in response to DNA damage (e.g. yH2AX phosphorylation (Rogakou et al.,

1998)); methods that quantify differential electrical and or mechanical properties of DNA

after damage (e.g. electrical conductivity of DNA with correct base pairing versus

mismatches (Guo et al., 2008)); there are methods that measure the rates of incorporation

of nucleotides in DNA as it is repaired (e.g. unscheduled DNA synthesis (UDS) (Friedberg,

2006)) or indeed even methods that precisely quantify the damaged bases themselves (e.g.

mass spectrometry (Dawidzik et al., 2003; Taghizadeh et al., 2008; Tretyakova et al., 2001;

Zhou et al., 2005)). A detailed review of each of these techniques is beyond the scope of this

chapter; however the reader is referred to the literature noted above.

While the techniques described above are useful to varying degrees, each has its

limitations. Indeed, some of the barriers that prevent routine assessment of DNA damage

are that these existing assays are often laborious, expensive, and technically challenging.

We therefore set out to develop a tool (or set of tools) that could measure DNA damage and

repair in the context of conditions pertinent to this thesis, i.e. inflammation-mediated DNA

damage, but that would also have broader applications in measuring DNA damage and

repair for epidemiological studies and genotoxicity drug screening. Thus, the criteria used to

constrain our approach are as follows:

1) Lesion(s) Specificity: Allow for measurement of base excision repair substrates

2) Quantitative rigor:



a) Have a low (baseline) damage detection threshold, good sensitivity

(approximates linear damage response), and high dynamic

range(spanning subtoxic-toxic DNA damage levels)

b) Measure physiologically relevant DNA damage

3) Throughput: Lab-accessible tool for medium (10-30) to high (>100) sample

counts.

4) Sample Diversity: Allowfor different cell types, different parallel conditions

5) Temporal resolution: Allowfor measurements shortly after exposure and at small

(5-10min) time intervals

6) Expense: Allow for relatively low cost per run

Adapting an existing, validated technology, rather than defining a novel technique

was deemed a more expedient approach. Consequently, a systematic assessment of existing

techniques for measuring DNA damage, constrained by the above-enumerated criteria, was

used to select a base technology upon which to build.

Two techniques were qualitatively deemed appropriate following a non-exhaustive

search; the alkaline single cell gel electrophoresis (comet) assay and the polymerase I-

mediated biotin-dATP nick-translation (PANT) assay. A discussion of our work in developing

a comet assay on a chip (CoaCh) device follows immediately. Then, an application of the

most recent CoaCh device in measuring activated macrophage-mediated DNA damage will

be reviewed. Our efforts with the polymerase 1-mediated biotin-dATP nick-translation

(PANT) assay shall not be fully discussed in this thesis. Our preliminary attempts with this

technique were not promising and the data quality poor, yielding no dose-dependent



increases in signal. However, this technique is mentioned here for completion and to give

the reader an understanding of the scope of this work.



3.3 Comet on a Chip (CoaCh)

3.3.1 Introduction & Background

The Alkaline Comet Assay

The single cell gel electrophoresis (Comet) assay is an electrophoresis-based

separation technique used to assess DNA damage and repair, and is based on the

relaxation of nucleoid DNA coils as a consequence of sustained damage. Movement of

negatively charged DNA in an electric field, away from the central nucleoid body (Suppl. Fig.

3-1.) and toward the positively charged anode through a gel matrix, is proportional to the

number of DNA lesions in the nucleoid and is apparent as a 'tail' on visualizing DNA with a

fluorescent stain. Initially developed by Ostling and Johanson (Ostling, 1984), and then

notably modified by Singh et al.(Singh, 1988) for greater sensitivity; and again by Olive et al.

(Olive et al., 1990) for analysis methodology , the comet assay has since been shown to be

highly adaptable and useful in the measurement of different kinds of DNA damage, in

different cell types, and in cells in different stages of cell cycle.

The traditional alkali comet assay is conducted by immobilizing a single cell

suspension of cells of interest in an agarose hydrogel. The agarose is permitted to cool and

solidify, trapping cells in place. The cells are then lysed through the gel, by full-gel-

incubation in a buffer containing high salt and, depending on the protocol, a non-ionic

surfactant e.g. triton X-100. The lysed gel-immobilized cells, now termed nucleoids, are then

held in alkali buffer for a length of time, allowing the DNA to unwind and for alkali labile

sites to be converted to SSBs. The resultant nucleoids are then subjected to an electric field
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that causes migration of negatively charged DNA loops to the anode. This results in DNA

moving from the center of the nucleoid body, termed the head region, to the tail region,

yielding a comet-like morphology in the case of damaged cells (Suppl. Fig. 3-1). Nucleoids,

still immobilized in gel, are then brought back to neutral pH (~7.5) and are stained with a

nucleic acid stain for analysis e.g. ethidium bromide. Nucleoids can be analyzed by eye or

computationally to derive metrics of damage from the comet morphology. The most

commonly used metrics include tail length, percentage DNA in tail and tail moment. Tail

length is sensitive, and thus useful, at low levels of DNA damage but is not particularly

useful at higher levels of damage. The comet tail increases in intensity, and not in length, as

the DNA damage levels increase (Collins, 2002). The percentage tail is a measure of relative

tail intensity compared to the head and thus gives an intuitively descriptive metric of the

damage experienced by a nucleus. Percentage tail is linearly related to DNA break frequency

and is relatively unaffected by threshold settings as it is a relative metric. The tail moment is

the product of the amount of DNA in the tail, expressed as a percentage, and the mean

distance of migration in the tail (Olive et al., 1990). The tail moment metric, thus attempts

to capture the high dynamic range afforded by the percentage tail and the sensitivity of the

tail length. Typically about 100 nucleoids (comets) are analyzed per condition and a mean or

median calculated for assessment of DNA damage to that sample.

The alkaline comet assay has been used to assess a wide variety of different types of

DNA damage including DNA single strand breaks, double strand breaks, and alkali-labile DNA

lesions including apurinic/ apyrimidinic abasic DNA lesions (Rojas et al., 1999). The comet

assay can also be coupled with lesion-specific endonucleases and lytic enzymes from various

organisms to increase its sensitivity and its range of application to the detection of specific



lesions, otherwise undetected by the comet assay. For example, bacterial endonucleases

like endonuclease Ill (Nth), Formamidopyrimidine DNA glycosylase (FPG) and AlkA, can be

used to reveal and detect oxidized pyrimidines, oxidized guanines, and alkylated bases,

respectively (Collins, 2011). Bacterial uracil DNA glycosylase (UNG) has also been used to

detect uracil in DNA (Duthie and McMillan, 1997). Additionally, a T4 virus endonuclease V

has been used to detect cyclobutane pyrimidine dimers (Collins et al., 1997). Furthermore,

by challenging cells with appropriate DNA damaging agents, DNA repair capacity can be

evaluated for many different repair pathways (nucleotide excision repair; non-homologous

end-joining, base excision repair, etc.). Finally, the comet assay can be applied to virtually

any tissue (as long as individual cells can be obtained), making it possible to compare the

exposure-induced or genetically-induced DNA damage responses of different cell types.

Importantly, only very few cells (< 1000) are required for the assay per condition, allowing

for sample isolation from even the most cellularly reticent sources and biological

compartments, including urine, blood, mucus etc. The comet assay thus represents an

amenable and flexible modality for the measurement of base excision repair and

inflammation-mediated DNA damage.

Adherent Cell Micropatterning

In order to address the criteria for higher throughput and diversification of samples,

we chose an approach that calls for arraying of cells. In addition to maximizing real estate by

minimizing the distance between objects of interest, arraying or micropatterning cells allows

for spatial encoding: the addressing of specific conditions or samples to specific loci in

space. Spatial encoding, therefore allows for the querying of diverse samples in known,

specific locations. Indeed, spatial encoding has become an abstraction with tremendous

utility in biotechnology, with microarrays that allow for the spatially defined localization and
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querying of RNA and siRNA (Mousses S et al., 2003; Wheeler et al., 2004), DNA and cDNA

(Butte, 2002), carbohydrates (Wang et al., 2002), proteins (Gl6kler and Angenendt, 2003;

Zhu and Snyder, 2003); and even cells (Xu, 2002) and tissues (Kononen et al., 1998).

While various techniques for micro-patterning cells exist, we considered two broad

categories of patterning that were putatively consistent with the comet assay: namely

suspended cell patterning and adherent cell patterning (see supplemental table 1). Due, in

part, to constraint criterion 2) b), and due to culture characteristics of the cells of interest,

i.e. the requirement to measure physiologically relevant DNA damage and repair in

anchorage-dependent cells, we initially pursued adherent cell patterning (See Suppl. Table

3-1 for other approaches considered). Indeed, there is evidence that normal cellular

processes, including DNA damage-mediated toxicity, require mechanochemical cues derived

from cell adhesion (Chen et al., 1997; Lewis, 2001b; Truong, 2003). Therefore, to measure

physiologically relevant DNA damage and repair in adherent cells, an approach utilizing

adherent cells was deemed appropriate. However, for information on subsequent

exploration of suspended cell patterning the reader is referred to work published by other

members of our group (Wood et al., 2010).

Various methods exist for micropatterning cells adherently on a substrate. These

methods include methods wherein a cell adhesion substrate is patterned e.g. micro-contact

printing(Chen, 1998), microstencil printing (Folch, 2000) and photolithographic substrate

micropatterning (Bhatia et al., 1997). There are also methods wherein cells themselves are

directly patterned e.g. direct cell printing (Schiele, 2010), gravitational settling of pre-

arrayed cells (Rosenthal et al., 2007) etc. A cursory assessment of these techniques was

conducted, with preliminary experimentation and an appreciation of the design constraints



previously specified. Ultimately, we proceeded with photolithographic substrate

micropatterning as this method was relatively facile and scalable, while yielding many of the

design features required.



3.3.2 Materials and methods

Cells and cell Culture

TK6 Lymphoblastoid cells were a kind gift from the Wogan Laboratory and were

cultured as follows. Cells were grown in 150mm tissue culture dishes (Falcon) in 30mL of

RPMI (Cambrex, East Rutherford, NJ) media supplemented with 10% heat inactivated horse

serum (Cambrex, East Rutherford, NJ), L-glutamine (Invitrogen, Carlsbad, CA) and Pen/ Strep

(100U/mL; 100ig/mL) (Sigma, St. Louis, MO) and maintained in log phase at a concentration

of ~0.8-1.2x10 6 cells/mL by passaging every 2-3 days.

HeLa Cells were a kind gift from the Bhatia laboratory and were cultured as follows.

Cells were grown in 150mm tissue culture dishes (Falcon) in 30mL of High glucose

DMEM(Invitrogen, Carlsbad, CA) media supplemented with 10% fetal bovine serum (Atlanta

Biologics, Lawrenceville, GA), L-glutamine (Invitrogen, Carlsbad, CA) and pen/ strep (Sigma,

St. Louis, MO) and maintained in log phase at a concentration of ~0.8-1.2x10 6 cells/mL by

passaging every 2-3 days.

Rat hepatocytes were isolated from 2-3 month old female Lewis rats (Charles River,

MA) weighing 180-220 g, by a modified procedure described by Seglen (Seglen, 1976).

Briefly, the animals were anesthetized in a chamber containing saturated ether. The liver

was first perfused through the portal vein with 400 ml of perfusion buffer followed by a

1mM ethylenediamineetraacetic acid (EDTA) at 30 mL/min. The perfusate was then

equilibrated with 1 L/min 95 % 02 and 5 % CO2 through silicone tubing that was maintained

at 37*C using a heat exchanger. Subsequently, 200mLof 0.05% collagenase in perfusion

buffer was perfused with 5 mM of CaCI2 at a flow rate of 20mL/min for 10 minutes. At this



stage the swollen liver was torn from the ligaments and was transferred to culture dish. The

liver capsule was torn apart, and the cell suspension passed through two nylon filter-mesh

grids, sized 25Opm and 62pm respectively. The cell suspension was centrifuged for 3

minutes at 500 rpm at 40C. Non-parenchymal cells (i.e. stellate, kupffer, endothelial) cells

are more buoyant and float in the supernatant which is aspirated to leave a pellet of

primary rat hepatocytes. The pellet is then re-suspended in Krebb's Buffer. A cell count of

150 million - 250 million cells was obtained per isolation and a repeated viability of 88% -

93% was calculated using trypan blue exclusion. Non-parenchymal cells based on the

morphology and size (~10plm) constituted < 1% of the cells after filtering. Hepatocyte

culture medium consisted of Dulbecco's Modified Eagle Medium with high glucose, 0.5

U/mL insulin 1% (v/v) penicillin/streptomycin (100U/ml; 100ug/ml), 7 ng/mL glucagon,

7.5g/mL hydrocortisone, and 10% (v/v) fetal bovine serum.

Chip Microfabrication

Prior to chip fabrication, chrome or transparency masks (Fineline Imaging, Colorado

Springs, CO) with the desired 'island' size and pitch (~50pm) were generated (opaque spots

on clear background). Chips were fabricated using either silicon wafers or borosilicate glass.

50mm (1 inch) diameter wafers, or in the case of glass, 34mm #2 borosilicate coverglass

slides (Fisher Scientific Inc.). The substrates were incubated for 45min in 3mL (silicon wafer)

or 1.5mL (glass) of 1:1 diluted, 1.2mg/mL collagen: de-ionized distilled water, at 37*C.

Excess, non- adsorbed collagen was rinsed off with de-ionized distilled water. The chips

were then spin coated with S1813 positive photoresist (Shipley Corporation). The chips were

then baked to evaporate excess solvents and exposed to UV light for 90 sec in a bottom side

mask aligner (Karl Suss, Waterbury Center, VT) through the chrome or transparency photo-

masks printed at 8000 d.p.i. Exposed photoresist was then developed and solubilized

99



(Microposit 321 Developer, Shipley), rinsed in de-ionized water and baked for 90 seconds to

complete curing. The UV exposure time and the bake time were optimized to allow easy 'lift

off' of the photoresist during sonication with acetone. To ensure complete removal of UV-

exposed photoresist down to bare glass, slides were exposed to oxygen plasma (oxygen

pressure 250 mTorr, base vacuum 80mTorr, 200 Watts for 10 minutes). Chips were rinsed

with water and placed in either a 60 mm petri dishes (wafer), or in 35mm (glass) petri dishes

or into each well of a 6-well plate. Chips were incubated in 'sea' material e.g. BSA or PEG

disilane overnight and then placed in an acetone bath and sonicated (Fisher, Pittsburg, PA)

at 10 seconds intervals for 2-3 minutes to remove residual photoresist and expose the

underlying collagen 'island' in a 'sea' of PEG Disilane. Chips were rinsed several times with

water, dried under a stream of air, and stored dry at 40*C for up to 2 weeks prior to use.

Alkaline comet assay

A modified version of the alkali comet assay (single cell gel electrophoresis) was

employed (Olive, 2006). Briefly, for the 'traditional' comet assay cells were immobilized in

1% agarose. For the adherent comet assay, after patterning or adhering cells, the cells were

overlaid with 1% agarose gel at 370C. Cells, once immobilized in gel, were lysed for at least

one hour in lysis buffer containing 2.5M NaCl, 100mM Na2EDTA, and 10mM tris and 1%

triton X-100 at pH 10. Following lysis, cells in gel are held in electrophoresis buffer (0.3M

NaOH, 1mM Na2EDTA) for 40 minutes for alkali unwinding. Following the alkali unwinding

incubation, electrophoresis was performed at 1V/cm, 300mA for 30min. Slides were

neutralized in 0.4M tris, before staining with 500pg/mL ethidium bromide. Analysis was

carried out either by Metafer v.3.6.7 (Metasystems, Waltham, MA) or Komet 5.5 (Andor

Technology, Ireland). At least 100 nucleoids per condition were analyzed and the median
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calculated. Each key experiment was replicated at least 3 times and the mean of all

replicates plotted. Where applicable, P values were calculated by student's t-test.

3.3.3 Results

Micropatterning Cells

As an approach to arraying cells, we employed a photolithographic substrate

patterning technique, allowing for differential and controlled adsorption of a cellular

adhesion bio-molecule on a glass or silicon wafer. The resultant wafer or chip can therefore

be described as having bio-molecule 'islands' for cell adhesion, in a 'sea' of material that

precludes cellular adhesion (Fig. 3-1a). This technique of patterning substrates for the

adhesion of cells, with various modifications, has previously been used to mediate selective

adhesion of a variety of cell-types including immune cells (Kim et al., 2004a), neuroblastoma

cells (Matsuda et al., 1992), endothelial cells (Stenger et al., 1992), hepatocytes (Bhatia et

al., 1997) and myocytes (Rohr et al., 1991), with micron-scale resolution.

A key consideration in the synthesis of the chip, was the choice of materials for the

cell-binding 'islands' and the cell-excluding 'sea'. We therefore crudely tested the ability of

commonly used cellular adhesion molecule, collagen 1, as the 'island' material, and the

ability of naked glass, bovine serum albumen (BSA) and poly ethylene glycol (PEG) disilane

as 'sea' materials to exclude cells. We found that HeLa cells adhered more to collagen I-

coated slides, than naked glass slides coated in PBS, and that this adhesion increased as a

function of incubation time (Fig. 3-1b). We also found that BSA was somewhat effective in

blocking against cell adhesion, resulting in less cell depletion from a suspended cell culture.
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However, when slides were incubated with both BSA and collagen 1, BSA did not prevent

adhesion of cells (Fig. 3-1b). Finally, we found that coating glass slides with PEG disilane, was

remarkably effective at preventing HeLa cell adhesion. We therefore adopted a protocol

employing collagen I 'islands' in a PEG disilane 'sea'.

This protocol proved to be effective, with collagen 'islands' being discrete, regular

and somewhat uniform (Fig. 3-2a). Furthermore, cell patterning was effective in at least two

cell types that were assessed: HeLa and primary hepatocytes (Fig. 3-2a & 2b). The number

of captured cells could be controlled by controlling the size of the collagen 'island', with

20ptm diameter 'islands' capturing the greatest number of single cells (hepatocytes) (Fig. 3-

2c). To test whether cell patterning was robust enough to withstand processing consistent

with the comet assay, patterned hepatocytes were overlayed with 1% low melting point

(LMP) agarose, and cell patterning was assessed microscopically before and after gel

overlay. We found that shear stress exerted by gel overlay did indeed cause loss of cells

from the array (Fig. 3-2d). It was determined that the speed with which a coverslip was laid

on top of the gel overlay affected this phenomenon. Slower placement of coverslip resulted

in better array preservation (data not shown). Thus adherent cell patterning, in a manner

that is consistent with the comet assay, was achieved.

Adherent Comet Assay

We then queried whether the alkali comet assay could be run on adherent cells.

Running of the comet assay on adherent cells is uncommon, but not novel. Indeed, Singh et

al. developed a method for running the comet assay on adherently cultured fibroblasts

(Singh et al., 1991). To realize the adherent comet assay, a specialized fenestrated slide was
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engineered that allowed for cell adhesion in the center and had frosted edges to hold

agarose to the slide. Other groups have utilized custom fenestrated slides for the comet

assay as well (Petersen et a/., 2000). However, instead of a custom fenestrated slide, we

made a fenestrated slide using GelBond, a commercially available agarose adhesion film

(see "Fenestrated" GelBond slide, Fig. 3-3b). Even though this technique has previously been

employed, our implementation was not without challenges. On attempting to run the comet

assay on adherent cells we found comet nucleoids with anomalous morphologies. These

morphologies were classified and derived nomenclature from their qualitative features, and

in keeping with the celestial theme inherent to the comet assay. Astral morphology group:

these were nucleoids that were spindled and had astral projections, strikingly similar to the

cytosolic projections of adhered fibroblasts. Flare morphology group: This group, although

containing nucleoids, displayed stained genetic material in axes different to the electric field

and some projections not associated with nucleoids, resembling solar flares. Nebula

morphology group: This group was comprised of stained, granulated genetic material in

cloud like patterns, wherein no discrete nucleoids could be detected. Two hypotheses were

offered for these anomalous morphologies:

1. DNA adsorption to glass surface resulting in anomalous morphologies,

2. Movement of gel resulting in DNA streaking.

Methods for testing and addressing these potential causes were considered and the

second hypothesis, proved the more facile to test.

We tested the hypothesis that anomalous nucleoid morphology groups were

generated by gel movement by designing a slide that would allow for gel movement (Fig. 3-
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3b). This slide, designated a 'billow' slide, would allow for a lifting or billowing of the

agarose from the cells adherent to the glass and would also allow for perpendicular

translation of the gel overlay. Following execution of the comet assay on traditional comet

assay slides, fenestrated GelBond slides and billow GelBond slides comet, we found that gel

movement accounts for the Flare morphology nucleoids (Fig. 3-3c). The billow slide

managed to recapitulate different flare morphologies that had previously been observed.

To determine the cause of the astral morphology group, we hypothesized that the

astral nucleoid morphology was the result of the adherent cell morphology. That is, we

believed that on overlaying cells with gel and allowing the gel to solidify around the

adherent cell, a cell void is made in the gel that on lysis of the cell fills with genetic material.

The genetic material would therefore take on the shape of the adherent cell prior to

electrophoresis. To test this hypothesis, we first asked whether cell morphology could be

altered after gel overlay. Cells were seeded on collagen pre-coated slides and allowed to

adhere and spread. The cells where then overlayed with 1% LMP agarose and the gel

allowed to solidify. The gel-immobilized cells were then incubated at room temperature

with PBS or 0.25% trypsin/ EDTA. Trypsin is a serine protease that cleaves peptide chains

and will cleave cell adhesion molecules in cell-surface interactions. EDTA is a bivalent cation

2+chelator and prevents inhibition of trypsin as wells as chelating Ca , which cell integrins use

for adhesion. We found that an incubation of 10min with trypsin/EDTA caused spindle-

shaped adherent cells in gel to round (Fig. 3-4a). Further we found that on running the

comet assay on cells treated with PBS or trypsin, the PBS treated cells yielded the astral

group morphology cells while the trypsin/EDTA treated cells yielded normal comet
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morphology. This indicated that the anomalous astral morphology was the result of the

shape of the adherent cell on overlaying with gel.

We then sought to determine whether the adherently run comet assay would yield

similar quantitative measurements of DNA damage as the traditional comet assay. This was

an important consideration as we did not want to sacrifice any of the quantitative attributes

of the traditional comet assay. TK6 cells were initially used for this assessment, as they are

rounded and do not spread, on adhesion to polyD-lysine coated slides via non-specific

adsorption, thereby negating the need for a trypsin incubation that may have confounded

the radiation-induced damage signal. We found that there was a gamma ionizing radiation

dose dependent increase in the damage reported by both the traditional comet assay and

the adherent comet assay (Fig. 3-4c). The adherent samples did seem to have slightly

elevated median olive tail moment when compared to the traditional samples. This

comparison of adherent versus suspended cells was repeated for HeLa cells. More rigorous

interpretation of the difference between the traditional and adherent comet assay was

deferred, as these data were only preliminary (n=1). However, this assessment was

informative in that the adherent comet assay was indeed a feasible approach and could be

utilized for DNA damage assessment in different cell types.

To determine the quantitative robustness of the patterned adherent cell comet

assay, we patterned primary rat hepatocytes and ran the adherent comet assay on the

resultant array. Primary hepatocytes were used primarily to demonstrate the utility of

CoaCh on primary cells and due to the importance of liver metabolism in genotoxicity

assessment. We found that rat primary hepatocytes patterned reasonably well (Fig. 3-5a)

with ~60-70% of the chip collagen 'islands' capturing 1-3 cells (data not shown). Importantly,
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a radiation dependent increase in DNA damage was observed for both patterned adherent

cells and the traditional comet assay (Fig. 3-5b). Adherent and traditional nucleoids display

DNA damage. A comparison of the standard deviations of the patterned adherent comets

vs. traditional comets reveals that there is less spread and thus higher precision in the

adherent patterned comets. This experiment also allowed for a demonstration of the

increased throughput enabled by use of the adherent comet assay chip. Hepatocytes were

treated with 5 doses of X-rays on one chip using a sliding lead shield. The footprint of the

chip was approximately equivalent to that of one and a half slides and thus, throughput was

increased approximately 300%. Additionally all cells were treated concurrently, by virtue of

being on the same substrate, allowing for more consistent handling across doses for the

entire experiment.

3.3.4 Discussion

We demonstrate a technique for measuring DNA damage that could potentially be

applied to measuring base excision repair. This technique is relatively cheap, sensitive,

applicable to capturing adherent cell biology, and is scalable for higher throughput. In

adapting the comet assay as a high throughput tool for the assessment of DNA damage and

repair, we decided to address cell patterning and the application of the comet assay to

adherent cells separately, effectively decoupling these variables. In addressing the

patterning variable, a now standardly-used (Bhatia et al., 1997; Irimia and Karlsson, 2003)

photolithographic technique for micro-patterning cells, and for our purposes using collagen

'islands' on a 'sea' of PEG disilane, proved effective in arraying a variety of adherent cell

types, including human HeLa cells and rat hepatocytes. While various materials and surface
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functionalizing protocols could potentially have been used-and we indeed demonstrated

that non-adherent cells, e.g.TK6 lymphoblastoid cells, could be cultured on poly D-lysine

slides (Fig. 3-4 )-collagen and PEG disilane are commercially available and relatively cheap

and easy to use. We demonstrated that naked glass excludes cells to an extent (Fig. 3-1b),

and thus with some optimization and likely for only certain cell types, using a glass 'sea'

could further reduce cost.

This fabrication process also allowed for the control of spatial parameters including

distance between 'islands' and the size of 'islands'. Indeed controlling the spacing between

'islands', allows for control of the spacing between nucleoids. This, in turn, allows for

maximal use of the chip real-estate. Additionally, allowing for control of 'island' size, allows

for control of the number of captured cells for analysis: the bigger the 'island' the greater

the number of cells captured by that 'island'. This feature has utility. Indeed, studies by

other members of our group have assessed the possibility of multiple-cell capture for use in

the comet assay (Wood et al., 2010). One application of this feature would be in assessing

DNA damage levels in tissue samples, i.e. capture of small aggregates of cells.

We also demonstrated that comet nucleoid morphology, an important parameter for

damage analysis, is dependent on the shape of the cell prior to lysis and is sensitive to any

gel movement post-lysis. Importantly, we demonstrated that, trypsin could be used through

the gel to restore rounded cellular morphology to yield spheroid nucleoids. This application

of trypsin was utilized primarily as an experimental proof-of-concept method for restoring

spherical cellular morphology and would likely not be applicable for actual experimentation

due to the fact that trypsin may yield a confounding DNA damage phenotype, and may

negate any of the benefits associated with capturing normal adherent cell behavior. We

107



instead propose an approach wherein controlling the shape of the 'island', controls the

spheroid morphology. Techniques for controlling cell morphology based on controlling

substrate geometry have previously been used with success (Chen et al., 1997), and are the

basis for at least one commercial product.

We demonstrated that the adherent comet assay could be used on a number of cell

types including HeLa, TK6 and primary hepatocytes. We demonstrated that throughput

could be increased and real estate use optimized, by using lead shielding and a single chip to

treat cells with 5 doses of X-rays. The same data could only have been achieved by

independent dosing of separate slides resulting in increased opportunity for human and

timing errors due to the increased slide handling (1 chip vs. 5 slides per run). While we did

not formally attempt to maximize the throughput of our chip, additional work done by our

group has further demonstrated the increased throughput afforded by cellular

micropatterning (Wood et al., 2010).

We also showed, using HeLa cells, TK6 cells and hepatocytes that the adherent cell

response was similar to that of suspended cells, albeit slightly higher. This may be due to a

greater sensitivity afforded by adherent cells. However, additional studies will be required

to compare the DNA damage response in adherent vs. suspended cells and determine the

cause of any difference. One such aspect for further study is assessing to what extent

cellular adhesion affects DNA migration. In the case of suspended cells, agarose surrounds

the cells allowing for multiple degrees of freedom for nucleic acid migration. However, the

adherent cell is limited in this regard, with a basal glass surface that may interact with DNA

and modify DNA migration physically and or electrostatic ally (Nanassy et al., 2007). Another

aspect for further investigation will be defining why adherent cells display decreased

108



spread, and thus greater precision, in comet damage signal. This could be biological and or

physicochemical and could be useful in improving the comet assay in general. Indeed,

whether the higher precision of adherent comet data is biological or physicochemical,

defining how general this precision phenotype is across different cell types and species will

be an important consideration.

3.3.5 Conclusions

The comet assay represents a well established technique for the measurement of

DNA damage and repair. Here, we demonstrated that a photolithographic micropatterning

protocol employing collagen and cell exclusion by PEG disilane could be used to array cells

for the adherent comet assay. We demonstrated that the cell number captured could be

altered as a function of collagen 'island' diameter and provided that shear was kept to a

minimum, the patterned cells could be retained for the comet assay. We characterized

classes of aberrant nucleoid morphology and established that these morphologies were

derived from cell-morphology pre-lysis and gel movement post-lysis. Cell morphology could

be rectified by trypsinization through the gel or by controlling 'island' geometry.

Additionally, gel movement artifacts could be decreased by an adequate appreciation of the

existence of this parameter and the movement of the slide fenestration GelBond further to

the slide interior. Finally we demonstrated that patterned adherent nucleoids yield similar

quantitative information to the traditional suspended nucleoids, but have greater precision

and allow for experiments with higher throughput. While some technical challenges remain,

continued work by our group and others may yet provide a relatively cheap, high
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throughput, quantitatively rigorous tool for DNA damage assessment and the assessment of

base excision repair.

3.4 Measurement of macrophage-induced DNA damage

3.4.1 Introduction

Chapter 11 addressed investigations of the effects of specific reactive oxygen and

nitrogen species (RONs), namely nitric oxide (NO*) and peroxynitrite (ONOO) on cells with

differential base excision repair (BER) capacity. Here, we attempted to evaluate the effects

of a generalized inflammatory environment, approximating physiological exposure

conditions. To accomplish this we used a macrophage coculture system. Macrophages

provide a putatively more physiological model of inflammation as these cells release many

other factors besides RONs that could potentially affect DNA metabolism and thus DNA

damage levels.

3.4.2 Materials and Methods

Cells and cell culture

Murine RAW264.7 macrophage-like cells were a kind gift from the lab of Gerald

Wogan. AA8 and EM9 cells were obtained from ATCC (Manassas, VA). All cells were cultured

in 10% FBS (Atlanta Biologics, Lawrenceville, GA) in DMEM (Cat#11965, Invitrogen, Carlsbad,

CA) and Penicillin/ streptomycin (100U/ml;100ug/ml) (Sigma, St. Louis, MO). For passaging,

all cells were cultured in 150mm dishes (Falcon, BD) and were kept growing exponentially,

being passaged approximately once every three days. CHO Cell passaging was conducted by

aspirating media, rinsing in warm PBS and treating cells with trypsin (Invitrogen, Carlsbad,
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CA) for 5-10min, quenching with lOmL media and then transferring 1mL of the resultant cell

suspension to 30mL media. RAW264.7 cell passaging was conducted by aspirating

supernatant, rinsing cells very gently with PBS and then shearing loosely attached cells off

the surface and re-suspending these cells for re-plating like the CHO cells.

Contra-surface coculture

Macrophages were seeded at desired densities on the ventral surface (Fig. 3-6A) of

the 0.4pM polycarbonate transwell membrane inserts (Cat#3419, Corning). The

macrophages were allowed to adhere for 2-6 hours and then the insert was returned to its

correct orientation and ~1x106 target cells seeded. The cells were then either activated

immediately or allowed to acclimate overnight. RAW264.7 cells were activated by the

addition of "activating media": media with 20U/mL IFNy (Cat#485-MI, R&D Systems,

Minneapolis, MN) and 20ng/mL LPS (Sigma, St. Louis, MO). The cells were held for specific

durations of time and samples were taken from the target cell compartment at intervals

throughout, or at the end of each experiment for assessment of activation by nitrite

quantification, using Griess reagent (Promega, Madison, WI) (data not shown).

For iNOS inhibition with L-NMA, RAW264.7 cells were seeded in a 96 well plate and

allowed to adhere and acclimate. Cells were then treated with activating media with the

specified concentrations of L-NMA (Chem-Biochem Research, Inc., Salt Lake City, UT).
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Contra-surface coculture comet assay

Following coculture incubation with either activated or inactivated macrophages,

polycarbonate inserts were removed and rinsed with ice cold PBS. The target cells were

removed from the membrane by trypsin, quenched in ice cold media and re-suspended in

molten, 1% LMP agarose at 370C. The comet assay was then conducted as described in

section 2.3.3.

Transwell CoaCh coculture system

In this setup, the microwell-capturing gel was molded as previously described (Wood

et al., 2010). CHO target cells were loaded and captured on the chip. Macrophages were

placed in the 0.4ptm transwell membrane and activated as described above. The cocultures

were held for specified durations of time and on removal of the membrane, a 1% Agarose

gel overlay was applied and the comet assay conducted as previously described (Wood et

al., 2010).

Direct-CoaCh coculture system

This setup is similar to the transwell CoaCh coculture system, except in this setup the

membrane is dispensed with and the activated macrophages are applied direct to the chip,

following capture of the target CHO cells.
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3.4.3 Results & Discussion

After determining the role of XRCC1 in repairing NO' and peroxynitrite-induced DNA

damage as described in Chapter II, we next sought to investigate the role of XRCC1 in

repairing activated-macrophage induced damage. Activated macrophages putatively

represent a more physiological model for inflammation-mediated DNA damage than

exposure to NO' and peroxynitrite alone as, in addition to RONs, activated macrophages

release a number of inflammation-associated factors that can interact with, and thus affect

DNA metabolism. These factors, including cytokines and chemokines like TNFa, IL-1 and

MIP-3a/CCL20 can result in DNA damage via reactive oxygen species (ROS) (Davies et al.,

2008; Fulton and Chong, 1992) or cause cellular proliferation (Coussens, 2002) that

promotes for replication in the presence of DNA damage.

To carry out this investigation we once again used XRCC1 null CHO EM9 cells and

XRCC1 WT CHO AA8 cells (See Chapter 2.3.1) and exposed these cells to bacterial

lipopolysaccheride (LPS) and IFNy-activated RAW264.7 cells, in a membrane transwell

coculture system. The RAW264.7 cell line is a murine, macrophage-like cell line that releases

inflammatory chemicals and NO' as a linear function of exposure to increasing

concentrations of IFNy and or LPS (Kim and Son, 1996). Additionally, the transwell

membrane system has previously been used in a variety of studies to investigate the effects

of diffusible species released from one cell type on another target cell type. For example, for

studies investigating immune cell and bacterial communication (Bussiere et al., 2005) and

for studies involving the communication of genomic instability mediating factors from

irradiated cells to un-irradiated bystander cells (Yang et al., 2005). The system, for our

purposes, consists of a 75mm tissue culture dish with a suspended, 0.4ptm porous
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polycarbonate membrane. CHO target cells and RAW264.7 cells are kept separate by

culturing each cell type on opposite sides of the membrane (Fig 3-6), here termed "contra-

surface coculture".

We found that the RAW264.7 cells release NO*, measured as nitrite, at a constant

rate over a period of ~6-42 hours after activation of the cells with LPS and IFNy (Fig 3-6B).

Nitrite and nitrate are terminal oxidation products of NO', and nitrite is therefore used as a

proxy for NO" release into the media (Wang et al., 2003). The amount of NO' release,

measured as nitrite, is proportional to the number of macrophages seeded and the rate of

NO' appears to be, at least qualitatively, related to the number of macrophages seeded (see

slopes in Fig. 3-6B). Additionally, the nitrite measured in the media on activation of the

RAW264.7 is due primarily to NO production by NO* synthases (NOS), since the nitrite

detected can be decreased by incubation of RAW264.7 with increasing concentrations of

N G-methyl-L-Arginine monoacetate (L-NMA), a potent inhibitor of NOS (Toutouzas et al.,

2008; Zhuang and Wogan, 1997)( Fig. 3-6C). The fact that NO' synthases can be effectively

inhibited using L-NMA is important as it allows for an assessment of the DNA damage

attributable to NO', in cocultured target cells .

Preliminarily, we found that when target cells and macrophages are cocultured for

~40 hrs in the transwell coculture system, the nitrite concentrations reproducibly (data not

shown) increase as a function of increasing the number of seeded macrophages (Fig. 3-7A).

We also found that the DNA of target CHO cells was increasingly damaged on exposure to

increasing numbers of activated macrophages. Importantly, we preliminarily found that the

XRCC1 deficient EM9 cells incurred greater levels of BER intermediates as measured by the

alkali comet assay, on exposure to activated macrophages (Fig. 3-7B). However, on
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attempting to replicate these data, it was found that the trends observed in the damage

levels in the target cells were not easily reproduced (Fig3-8A). Indeed, even the damage

incurred by the target cells at the highest macrophage seeding concentrations used in each

subsequent experiment, yielded similarly erratic results (Fig. 3-8B), with neither the AA8 nor

the EM9 being systematically more damaged than the other. Closer examination of the

damage levels at the single cell level revealed that the inconsistency may have been due to

non-heterogeneous damage to the target cell population (data not shown). One potential

cause for non-heterogeneous damage to the target cells could be non-heterogeneous

adhesion of either the target cells or the macrophages, or both.

In an attempt to address the lack of heterogeneity in the surface coverage of the

transwell membrane by the cells, we lowered the degrees of freedom of the target cells in

the system by using two variants to the contra surface coculture system. These variants

utilize the suspended version of the Comet assay-on-a-Chip (CoaCh) device (Wood et al.,

2010). The first variant, named "Transwell-CoaCh Coculture", uses 14 Im microwells for cell

capture in a 1% normal melting point (NMP) agarose chip (Fig 3-9A) and the transwell

membrane with or without media headspace between the chip and the membrane (Fig 3-

9B). The second variant, named "Direct-CoaCh Coculture", utilized the suspended CoaCh

device without a membrane for separation (Fig. 3-9C). In the Direct-CoaCh Coculture setup,

target cells were first captured in the microwells, macrophages were then cultured directly

over the target cells. We found that both the Transwell-CoaCh setup and the Direct-CoaCh

setup yielded similarly erratic and irreproducible results, even though nitrite levels in the

media supernatant indicated that there were increasing amounts of NO' released by

increasing numbers of seeded macrophages (data not shown).
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Another potential cause for the erratic results we observed could have been due to

the polycarbonate transwell membrane quenching or otherwise preventing RONs released

by macrophages from damaging the target cells. To investigate this possibility, we treated

cells adhered to the membrane with 5 pM hydrogen peroxide (H202) and compared the

DNA damage levels in these cells to gel-immobilized cells exposed to the same dose of H202.

We found that the gel-immobilized cells showed an increase in DNA damage levels on

exposure to 5p.M H202. However, the transwell-adherent cells did not show any significant

increase in damage on exposure to 5 pM H202. One possible reason for an absence of

damage signal is repair of damage during the time it takes to prepare samples for the comet

assay. To control for any repair that may have occurred during this step, we allowed one

sample of gel-immobilized and treated cells to repair any induced damage and only lysed

this sample when the transwell adherent cells were lysed. The gel-immobilized cells that

were allowed to repair still showed a damage signal by comet assay while the treated

transwell-adherent cells showed no damage signal. This observation suggests that repair of

damage is not the cause for the low damage levels observed in the transwell-adherent cells

treated with 5pM H202. Instead, this suggests that the Transwell-adherent cells were not

damaged at all, by a dose of H202 that does damage gel-immobilized cells. We note and

concede that another model that may explain these data is that adherent cells repair H20 2-

induced DNA damage faster than suspended cells. Nevertheless these observations

suggested that there was some uncertainty associated with measuring the DNA damage

levels in transwell membrane associated experiments.

An alternative approach involves the use of a protocol, devoid of the polycarbonate

membrane, to expose cells to activated macrophages. We therefore sought to employ the

116



suspended CoaCh approach as this protocol had benefits (e.g. throughput and parallel

sample processing) that we did not want to sacrifice (Fig. 3-11). However, to initially avoid

the complexity afforded by using a biological source of RONs, i.e. by using the RAW264.7

cells, we opted to optimize the ability of the suspended CoaCh setup to measure DNA

damage on exposure of target cells to gaseous NO*. Gaseous NO' dosing via bioreactor could

be better controlled and was more reproducible than the NO' derived from macrophage

activation by LPS and IFNy (data not shown). We found that as expected, the NO' levels (as

measured by nitrite) increased as the duration of exposure to NO' increased (Fig. 3-11A).

However on examination and comparison of the DNA damage levels in the CoaCh target

cells vs. traditionally treated cells (see Chapter 2.2.4), we found that the CoaCh exposed

cells yielded quantitatively and qualitatively different results to the traditionally exposed

cells. While these data are preliminary, we hypothesize that this observed difference is due

to the differential kinetics, and thus differential reactivity, of NO' through agarose gel.

Further studies will have to be done to characterize the treatment of cells through agarose.

3.4.4 Conclusions

We have described herein an approach that has potential utility in measuring,

among other DNA repair pathways, base excision repair in target cells exposed to either NO'

or activated macrophages. While technically challenging, and decidedly preliminary, the

protocols described in this work have set the foundation for further development of tools

for measuring DNA damage and repair pathways in varied systems. We have demonstrated

that a macrophage coculture system could potentially be used to query the role of BER in

repairing macrophage-induced DNA damage. We demonstrated that although a transwell
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system showed promise, this system displayed poor reproducibility. We hypothesized that

this lack of reproducibility was due, in part, to target cell and macrophage heterogeneity in

covering the membrane surface and that the membrane itself may have the capacity to

quench reactive oxygen species. We demonstrated some putative solutions to this problem

using suspended CoaCh, however further characterization of this system is required to

resolve what we hypothesize are issues with RON diffusion through agarose gel.
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quantification on BSA and collagen versus (C) adhesion on collagen and PEG disilane.
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Figure 3-2. Patterning of different cell types for the adherent comet assay. A, HeLa cell

patterning and (B) hepatocyte patterning 3hrs after adding cells to chip and rinsing with

PBS. C, Number of hepatocytes captured as a function of collagen 'island' diameter. D,

Retention of cell patterning following overlay with 1% LMP (low melting point) gel. Cells 1

and 2 are retained after gel overlay, cell 3 is lost.
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Figure 3-3. Anomalous morphologies of adherent cell nucleolds, following the adherent comet

assay. A, 'Astral', 'Flare' and 'Nebula' nucleoid morphologies observed after preliminary attempts at

the adherent cell comet assay. B, Illustration of the billow GelBond slide used to test the effects of

gel movement. The experiment generated (C)normal nucleoids from the traditional and fenestrated

slides and the billow slide recapitulated the 'Flare' morphology.
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Figure 3-4. Effect of trypsin through gel and cell adhesion on DNA damage assessment. A,
Treatment of adherent cells with trypsin, through gel, allows for restoration of spherical
cellular morphology. B, Nucleoid morphology is dependent on the morphology of the

adherent cell pre-lysis. Red arrows indicate spindle shaped cells that formed anomalous
nucleoid morphology. Green arrows indicate normal nucleoid morphology. C. Quantitative
comparison of DNA damage assessment between adherent and suspended (traditional)
comet assay nucleoids in TK6 lymphoblastoid cells and HeLa cells.
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Figure 3-5.Difference between patterned adherent hepatocytes and traditional comet

assay. A, Patterned hepatocytes with subsequent patterned nucleoids. B, Quantitative
comparison of DNA damage and damage spread in adherent patterned comet nucleoids vs.

traditionally X-ray irradiated hepatocytes (from thesis of Sukant Mittal).
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Figure 3-6. Contra-Surface Coculture system. A, RAW264.7 cells are cultured on ventral
surface of membrane (exterior), target cells are cultured on dorsal surface (interior). B,
Quantification of nitrite in two different seeding concentrations of macrophages as a
function of time post-activation with LPS and IFNy. C, Concentration dependent L-NMA
inhibition of RAW264.7 nitric oxide synthases.
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Figure 3-7. Measurement of macrophage dependent NO' release and DNA damage. A,
Measurement of nitrite concentration in supernatant media following ~4Ohr CHO cell/
RAW264.7 coculture transwell coculture system. B. DNA damage assessed by alkaline comet
assay in activated (+LPS & IFNy) and control (Sine LPS & IFN y) transwell CHO cell/
RAW264.7cocultures.

130



Tail Length for CHO cells exposed to
activated maximal macrophage

1 density*

c80 m
0

= 20

80
'MU

4Az~ i~iI iliV 0 2 4 6 8 10 12 14 16
- Run Number (Sequential trials)

~E~MiE

~.mib * Macrophages seeded vary from 30x106 to 60x106

and in seeding protocol

Figure 3-8. Poor reproducibility of damage levels in target CHO cells in tranwell coculture
system. A, DNA damage in target CHO cells showing multiple replicates of RAW264.7
macrophages/ CHO cells transwell coculture experiments. The number and protocols used
to seed macrophages vary. B, Plot of the damage levels, as assessed by alkaline comet assay,
in the sample with the maximum seeded number of macrophages in a given experiment.
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Figure 3-9. Transwell CoaCh System and subsequent variations. A. Microwell normal
melting point (NMP) agarose chip with 14p.m diameter microwells is the basis of this setup.
Allowing for coculture use with (B), or without (C) transwell membrane.
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Figure 3-10. Comparison of DNA damage as assessed in Gel-immobilized cells and
transwell adherent cells. Cells were exposed to 5 pM H202 and DNA damage was assessed
by the alkaline comet assay. The "repaired" sample is a gel-immobilized sample that was
treated with 5lM H202 and allowed to repair for the same amount of time as it took to
prepare the transwell-adherent samples for the comet assay. "Repaired" sample was lysed
for the comet assay at the same time as the transwell-adherent samples.
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Figure 3-11. Experimental setup for quantification of NO'-induced DNA damage using
suspended CoaCh. Setup allows for multiple and highly parallel sample treatment and

processing. A maximum of 16 samples can be treated per reactor for the 96 well plate
format.
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Figure 3-12. DNA damage assessment in CHO and glioblastoma cells treated in suspended
CoaCh format or traditional format. A, Nitrite levels measured in CoaCh reactor

supernatant, indicating that NO' was supplied to the reactors. B, Comparison between

CoaCh observed results and the expected results as obtained from traditionally treated CHO

and glioblastoma cells.
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Cathode Direction of DNA migration
Anode

Supplementary Figure 3-1. Representative damaged comet nucleoid with analysis reticule.

DNA is pulled from nucleoid head region (red), towards the anode forming the tail (end of
tail in white). Cyan box shows region from which background fluorescence is calculated for

comparison to nucleoid intensity.
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Suspended Cell Patterning Adherent Cell Patterning

BioFlip Chip

Dielectrophoresis

Microfluidic placement

Stencil patterning

Microwell cell capture

BioFlip Chip

Dielectrophoresis

Microfluidic placement

Direct patterning/ cell printing

Substrate micro-patterning

Supplementary Table 3-1. Alternative approaches for cell patterning for the comet assay.

Options include suspended and adherent cell patterning modality. Some approaches allow

for either modality.
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Chapter IV

Methyltransferases mediate cell memory of a genotoxic
insult
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4.1 Abstract

Characterization of the direct effects of DNA damaging agents shows how DNA

lesions lead to specific mutations. Yet, serum from Hiroshima survivors, Chernobyl

liquidators, and radiotherapy patients can induce a clastogenic effect on naive cells, showing

indirect induction of genomic instability that persists years after exposure. Such indirect

effects are not restricted to ionizing radiation, as chemical genotoxins also induce heritable

and transmissible genomic instability phenotypes. While such indirect induction of genomic

instability is well described, the underlying mechanism has remained enigmatic. Here, we

show that mouse embryonic stem (ES) cells exposed to y-radiation remember the insult for

weeks. Specifically, conditioned media from progeny of exposed cells can induce DNA

damage and homologous recombination in naive cells. Notably, cells exposed to conditioned

media also elicit a genome destabilizing effect on their neighbors, thus demonstrating

transmission of genomic instability. Moreover, we show that the underlying basis for the

memory of an insult is completely dependent on two of the major DNA cytosine

methyltransferases (MTases), Dnmtl and Dnmt3a. Targeted disruption of these genes in

exposed cells completely eliminates transmission of genomic instability. Furthermore,

transient inactivation of Dnmtl, using a tet-suppressible allele, clears the memory of the

insult, thus protecting neighboring cells from indirect induction of genomic instability. We

have thus demonstrated that a single exposure can lead to long-term, genome destabilizing

effects that spread from cell to cell and we provide a specific molecular mechanism for

these persistent bystander effects. Collectively, our results impact current understanding of

risks from toxin exposures and suggest modes of intervention for suppressing genomic

instability in people exposed to carcinogenic genotoxins.
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4.2 Introduction

It is well established that DNA damaging agents, such as ionizing radiation and

chemical genotoxins, can directly induce mutations that in turn promote cancer and ageing

(Friedberg, 2006; Hoeijmakers, 2009). Less well understood, but increasingly appreciated,

are the indirect effects of such exposures on genomic stability. For example, cells can suffer

a persistent, increased frequency of mutations, many cell generations after the original

exposure (Kadhim, 1992; Little et al., 1990). Additionally, naive cells cultured in the presence

of the descendents of exposed cells similarly display an increased frequency of genetic

changes (Huo, 2001; Nagasawa, 1992; Zhou et al., 2000). These indirect effects of exposure

to DNA damaging agents are conventionally described as persistent or bystander effects

(Bender, 1962; Morgan, 2003).

A variety of phenotypes have been observed to persist, long after an initial genotoxic

exposure. A classic example is delayed reproductive cell death, and reduced plating

efficiency, which can persist for more than fifty generations after exposure (Chang and

Little, 1992). In addition, de novo genetic changes occur many cell divisions after exposure

(Kadhim, 1992; Pampfer, 1989; Seymour and Mothersill, 2004). As with persistent effects,

many different phenotypes have been associated with the bystander effect. Naive

bystander cells cultured in the presence of either cells that have been previously exposed to

a genotoxic agent, or to media from exposed cultures, are prone to genomic instability,

toxicity and malignant transformation (Huo, 2001; Lewis, 2001a; Little, 2003; Nagar, 2003;

Nagasawa, 1992; Zhou et al., 2000).
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An understanding of the mechanisms involved in persistent and transmissible

responses to genotoxins is clearly important to human health, given the ubiquitous

presence of DNA damaging agents endogenously, in our environment, and in the clinic.

Indeed, since the initial discovery of genotoxicity-associated persistent and bystander

phenotypes, the underlying causes, physiological impact, and mechanistic etiology of these

responses have been intensively studied (Morgan and Sowa, 2005; Mothersill and Seymour,

2005; Mothersill, 2006). Traditionally, persistent and bystander phenotypes have been

studied in response to high doses of ionizing radiation (Mothersill, 2001). However more

recently, these phenotypes have also been generated by non-ionizing radiation e.g. ultra

violet (UV) radiation (Limoli, 1998; Mothersill, 1998), reactive oxygen and nitrogen species

(Azzam, 2002; Dickey, 2009), cytokines (Dickey, 2009) and other genotoxic, chemical

exposures (Rugo, 2005). Thus, because endogenously generated chemical species (e.g.

cytokines and reactive oxygen and nitrogen species) and exogenous agents to which cells

are physiologically exposed (e.g. UV and low dose IR radiation), are capable of initiating

persistent and bystander phenotypes alike, it is reasonable to posit that these responses

represent normal, physiologically relevant, cellular responses to stressors. Consistent with

this view-point, are observations of persistent and bystander phenotypes not only at the

cellular, but at the tissue (Goldberg, 2002; Koturbash, 2006; Mothersill, 2002; Pant, 1977;

Watson et al., 2000a) and even organism level of organization (Mothersill et al., 2007).

Further, these responses appear to be evolutionarily conserved across different kingdoms

and species (Yang et al., 2008).

Intense interest in the underlying mechanism of the bystander effect has prompted

studies that have revealed many of the agents capable of inducing persistent and bystander
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phenotypes, as discussed above. Much less is known, however, about the mechanism by

which cells retain and consequently transmit 'memory' of an insult, becoming genomically

unstable for a long time after exposure. Earlier work in our laboratory showed that genomic

instability was transmissible from one cell to the next (i.e., a bystander can induce genomic

instability in a naive cell over multiple generations) (Rugo, 2005). This transmission of

genomic instability, while implying heritability, clearly is not consistent with genetic

inheritance. Thus our findings, and related observations by others (e.g., (Kovalchuk, 2008;

Lorimore, 2003), suggest that persistent and bystander effects might be propagated by an

hitherto unknown epigenetic mechanism.

Epigenetic mechanisms of heredity include DNA methylation, histone modification and

the functions of certain non-coding RNAs (Goldberg, 2007). Importantly, DNA methylation

has been implicated in heritable, persistent changes in phenotype. For example, the

persistent and heritable change in coat colour, and conferred obesity-resistance in the

progeny of female mice that were fed genistein during gestation, were found to be DNA

methylation-dependent (Dolinoy, 2006). Here, we show that DNA methyltransferases

(DNMTs), the enzymes responsible for the epigenetic methylation of mammalian DNA,

mediate the propagation of an instability phenotype on exposure to a genotoxin.

Specifically, we find that DNA methyltransferases 1 and 3a mediate murine embryonic stem

(ES) cell memory of an exposure to ionizing radiation.
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4.3 Materials and Methods

Alkali single cell gel electrophoresis (Comet) Assay.

Trevigen, Inc (Gaithersburg, MD) Comet Assay kit was employed. Briefly, after harvesting, ES

cells were immobilized in 1% agarose gel and were then lysed in the provided lysis buffer,

held in alkali conditions and electrophoresed @30V (1V/cm), 300mA, as per product

instructions. Andor technology (Belfast, Northern Ireland), Komet 5.5 imaging software was

used to capture and analyze at least 100 nucleoids per condition

Sister Chromatid Exchange (SCE) assay.

A modification of the giemsa-based differential staining of sister chromatids (Perry,

1974) was employed. Briefly, ES cells were treated with 10pM 5-bromo-2-deoxyuridine

(BrdU) for 30-36 hours before the addition of 0.1 pg/mL demecolcine, to arrest the cells in

metaphase. Cells were then harvested, held in a hypotonic solution and fixed in Carnoy's

fixative, before being dropped, stained and imaged by standard bright field microscopy. At

least 30 metaphase spreads per condition were examined a frequency of exchanges per

spread was calculated. All experiments were done with at least three independent

replicates. Student's T-test was used to determine statistical significance of any observed

differences.

4.4 Results & Discussion

Ionizing radiation is of great societal importance, both in the context of the

environment and the clinic. To learn if y-radiation leads to persistent transmissible

instability in ES cells, DNA damage was assessed in bystanders. Naive cells, designated
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primary bystanders (Fig. la), that shared media with cells descended from irradiated

cultures showed increased DNA damage (Fig. 1b), while naive cells that shared media with

sham-irradiated cells showed no increase in DNA damage by comet assay. To test for

transmission of this DNA damage, a second group of naive WT cells, designated secondary

bystanders, were co-cultured with the primary bystanders (Fig. la). These secondary

bystanders had increased DNA damage when exposed to media from primary bystanders to

irradiated cells (Fig. 1c), thus demonstrating transmission of radiation-induced genomic

instability from exposed cells, to naive cells (primary bystanders), to naive cells (secondary

bystanders).

To determine whether persistent instability results from methyltransferase-dependent

epigenetic changes, we exploited the fact that ES cells do not require genome methylation

for viability, and are readily cultured, following disruption of the three major DNA MTases:

Dnmtl, Dnmt3a and Dnmt3b (Tsumura, 2006). During normal development, the Dnmt3a

and Dnmt3b de novo MTases catalyze the transfer of a methyl group from S-adenosyl

methionine to the 5 position of cytosine at CpG sites (Chen, 1991). Methylation is

maintained primarily through the activity of Dnmtl, which efficiently methylates

hemimethylated CpG sites (Stein, 1982). Dnmt1 is essential for heritable, epigenetically

regulated changes in gene expression that are key to differentiation and development (Li,

1992). To test the possible role of MTases in cellular memory of an insult, we asked if

Dnmtl-/-; Dnmt3a-/-; Dnmt3b-/- cells (gift of M. Okano) were able to remember and

transmit genomic instability following y-radiation. Results show that descendents of

irradiated Dnmtl-/-; Dnmt3a-/-; Dnmt3b-/- cells were not able to induce DNA damage by

comet assay in neighboring cells, when compared to WT cells (Fig. 2a).
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One of the earliest descriptions of a bystander effect in cultured cells revealed that

when ~1% of nuclei were irradiated, over 30% of the cells had increased homologous

recombination, detected as sister chromatid exchanges (SCEs) (Nagasawa, 1992).

Furthermore, ionizing radiation induces a persistent increase in homologous recombination

(Huang et al., 2007). We therefore asked if SCEs are induced by the progeny of irradiated

WT and Dnmtl-/-; Dnmt3a-/-; Dnmt3b-/- cells. Naive cells indeed exhibited a significant

increase (p<0.0001) in the frequency of SCEs when they shared media with descendents of

irradiated cultures (Fig. 2b). However, there was only a very slight, yet significant

(p=0.0168), increase in SCEs when the irradiated cells were

Dnmtl-/-; Dnmt3a-/-; Dnmt3b-/- cells, compared to mock irradiated

Dnmtl-/-; Dnmt3a-/-; Dnmt3b-/- cells. Interestingly, SCEs were increased in cells that shared

media with unirradiated Dnmtl-/-; Dnmt3a-/-; Dnmt3b-/- ES cells, compared to cells that

shared media with unirradiated WT ES cells (Fig. 2b). Given that Dnmtl-/- cells are

genomically unstable (Chen et al., 1998; Kim et al., 2004b), Dnmtl-/-; Dnmt3a-/-; Dnmt3b-/-

ES cells may be similarly unstable and may thus elicit transmissible responses, analogous to

the effects of irradiation. Regardless, progeny of irradiated Dnmtl-/-; Dnmt3a-/-; Dnmt3b-/-

cells are less able than WT cells to induce genomic instability in naive neighbors, showing

that one or more MTases are essential for persistent radiation-induced instability.

To discern the roles of individual MTases, we analyzed ES cells carrying targeted

disruptions of each MTase (gift of E. Li) (Lei et al., 1996; Okano et al., 1999). The MTase

deficient cells have normal sensitivity to radiation toxicity (data not shown). Interestingly, y-

radiation had no effect on SCEs in primary bystanders to irradiated Dnmtl-/- cells, when

compared to bystanders to unirradiated Dnmtl-/- cells (Fig. 3). The inability of the Dnmtl-/-
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cells to sustain a heritable phenotypic change is consistent with their hypomethylated

phenotype (Lei et al., 1996). In addition, Dnmtl-/- cells induce homologous recombination

in neighboring cells, even without irradiation, which is consistent with their instability

phenotype (Chen et al., 1998; Kim et al., 2004b). Although Dnmt1 is a maintenance MTase,

it is possible that Dnmtl's ability to perform de novo methylation in response to DNA

damage (Mortusewicz et al., 2005) contributes to the transmissible instability. Similar to

Dnmtl-/- cells, Dnmt3a-/- cells did not transmit genomic instability (Fig. 3), indicating that

Dnmt3a-mediated de novo methylation is necessary for cells to remember and transmit an

instability phenotype. Interestingly, as with Dnmtl-/-, Dnmt3a-/- cells caused an increase

(P<0.0001) in SCEs in bystanding WT cells in the absence of radiation, when compared to

SCE levels in WT bystanders to unirradiated WT cells. Lastly, unlike Dnmtl and Dnmt3a,

Dnmt3b was not essential for transmissible instability, as a deficiency in this gene still

resulted in transmission of an instability phenotype (Fig. 3).

The observation that genomic instability is induced by unirradiated Dnmtl-/- and

Dnmtl-/-; Dnmt3a-/-; Dnmt3b-/- cells suggested a possible threshold that prevents further

induction of instability after irradiation. We hypothesized that transient loss of Dnmtl might

prevent memory of genotoxic exposure, while protecting bystanders from the instability

due to Dnmtl loss. To test this hypothesis, we exploited mouse ES cells carrying a

tetracycline repressible Dnmtl allele (Borowczyk et al., in press). By three days post

doxycycline treatment, Dnmt1 was undetectable, and within three days after removing

doxycycline, Dnmtl expression resumed (Fig. 4a). To suppress Dnmtl expression before,

during and after irradiation, we added doxycycline three days before irradiation and

sustained it for seven days. Doxycycline was then removed to restore Dnmtl expression
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(Fig. 4a). Consistent with previous results (Figures 2 and 3), the descendants of irradiated

WT cells induced homologous recombination in neighboring cells. However, under

conditions where Dnmtl was transiently suppressed, descendents of irradiated cells were

not able to induce homologous recombination in their neighbors (Fig. 4b). Importantly,

unlike the cells that carried disrupted Dnmtl alleles, cells transiently suppressed for Dnmt1

do not induce instability in their neighbors.

The transmissibility of genomic instability through shared media has important

implications when considering potential tissue-wide responses in vivo. To explore

transmissibility, we studied secondary bystanders. Primary bystanders were able to induce

homologous recombination in naive cells only if the irradiated target cells had had normal

Dnmtl expression (Fig. 4b). Thus, transient suppression of Dnmtl prevented transmission of

instability both to naive primary bystanders, and to their secondary bystander neighbors.

Characterizing the underlying causes of genomic instability is fundamental in cancer

etiology, prevention of premature ageing, and for understanding the risks of exposures. It is

becoming increasingly clear that indirect mechanisms of mutation induction that involve

changes in cellular behaviour, in addition to the directly induced DNA lesions, can lead to an

increased risk of disease-causing mutations for months or even years after exposure

(Lorimore et al., 2003; Maxwell et al., 2008; Morgan, 2003; Mothersill and Seymour, 2001;

Pant, 1977). Furthermore, at least one study suggests that the extent of bystander-induced

DNA damage can be as great as that of the original exposure (Dickey et al., 2009).

While the studies described here do not query the exact mechanism by which DNA

methylation results in persistent bystander phenotypes, it is possible that changes in gene
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expression, mediated by DNA methyltransferases (Hermann, 2004), cause cells to secrete

factors that impact genomic stability. Specifically, DNA damage is known to alter Dnmtl and

Dnmt3a activity (Maltseva, 2009; Mortusewicz, 2005) and DNA damage can also alter

secretion profiles (Rodier et al., 2009). Additionally, it is known that cells that secrete TNF-

alpha, NO and TGF-beta can induce DNA damage in nearby cells (Burr, 2010; Dickey, 2009).

Thus, as a result of exposure to secreted, genotoxic species, bystander cells could adopt a

methylation pattern similar to that of the target cell, and thus both remember and transmit

a bystander phenotype. The memory of the genotoxic insult would therefore be stored

structurally in DNA in the form of DNA methylation patterns that are created and

maintained by DNA methyltransferases (e.g., Dnmt1 and Dnmt3a). Propagation of the

bystander phenotype could then be effected by a change in the secretion profile of the

insulted cell. Interestingly, in normal tissues, communication among cells helps to control

cell behaviour. Bystander effects may similarly reflect a coordinated response.

The observation that genomic instability can be transmitted from cell to cell, both in

vitro (Lorimore et al., 2003; Mothersill and Seymour, 2004; Nagasawa and Little, 1992) and

in vivo (Lorimore et al., 2005; Watson et al., 2000b), opens the possibility that there are

tissue wide changes in genomic stability following exposure to a genotoxin, and calls

attention to the possibility that persistent and bystander effects are critical risk factors for

disease. Here, we have demonstrated that two of the three major MTases, Dnmtl and

Dnmt3a, are essential in order for descendents of irradiated cells to become able to

transmit genomic instability to naive cells. Furthermore, we have shown that by temporarily

turning off expression of Dnmtl, it is possible to completely eliminate transmission of

genomic instability. Interestingly, and indeed consistent with these findings, Dnmtl and 3a
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have also recently been shown to play important roles in neurological memory and learning

(Feng et al., 2010). This finding, albeit apparent specifically in neurons, may represent a

general mechanism by which cells store information on, and adapt to, genotoxic and other

stimuli.

In conclusion, knowledge of the molecular basis for transmission of genomic instability

opens the doors to novel interventions, including the potential administration of Dnmt

inhibitors in conjunction with cancer chemotherapy to preserve tissue-wide genomic

stability and thus suppress secondary cancers.
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Figure 4-1. Persistent and transmissible induction of genomic instability. a, Irradiated (or

mock irradiated) target ES cells are cultured for three weeks. During the three weeks, cells

were passaged three times a week at densities of 0.5-2x106 cells per 55mm 2 dish. After

three weeks, 6x104 naive WT ES cells subsequently shared media with the progeny of target

ES cells for 5 days (to create primary bystanders). Primary bystanders were then cultured for

another three weeks. Naive WT ES cells then shared media with the progeny of primary

bystanders (to create secondary bystanders). Media was shared via co-culture, employing 1

Im transwell inserts (Corning), or by exposure to conditioned media (filtered [0.25pim]; 1:1,

fresh media:conditioned media). ES cells were exposed to ionizing radiation (3 Gy) using a

Co-60 source (73 cGy/min). DNA damage was assessed by the alkaline comet assay (Olive,

2006) in primary (b), and secondary (c), bystanders. For all comet analysis, >100 nucleoids

were analyzed per condition using Komet 5.5 (Andor Technology, Ireland) and P values were

produced by a two-tailed Mann-Whitney. For comet studies, boxes represent the quartiles,

whiskers mark the 10 th and goth percentiles, and the median is indicated. For all studies,

data were combined from three or more independent experiments.
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Figure 4-2. ylR does not lead to the persistent induction of genomic instability in primary

bystanders to Dnmtl-/- Dnmt3a-/- Dnmt3b-/- cells. DNA damage by comet assay (a) and

SCEs (b) in naive WT ES cells exposed to media from WT and Dnmtl-/- Dnmt3a-/- Dnmt3b-/-

cells. See Fig. 1 for experimental design. SCEs were counted for >80 spreads/condition as

previously described (Engelward et al., 1996b). For SCE studies, median with interquartile

range is shown and P values were produced by a two-tailed t-test.
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Figure 4-3. Dnmtl and Dnmt3a are required for persistent induction of homologous

recombination in naive, primary bystander ES cells. SCEs in naive WT ES cells exposed to

media from ylR (and mock irradiated) WT, Dnmtl-/-, Dnmt3a-/-, and Dnmt3b-/- target ES

cell populations. See captions from Figs. 1 & 2 for design and analysis.
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Figure 4-4. Transient suppression of Dnmtl protects against radiation-induced genomic

instability. a, Doxycycline-dependent repression of Dnmt1 in mouse ES cells assessed by

Western blot. b, SCEs in primary bystanders to normal and Dnmtl transiently-deficient cells.

c, SCEs in naive (secondary bystander) cells exposed to media from primary bystanders to

normal and Dnmt1 transiently-deficient cells. Data analysis as per caption for Fig. 2.
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Chapter V

Conclusions, Future Work and Perspective
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The role of reactive nitrogen and oxygen species (RONs) in the association between

cancer and inflammation is complex (Balkwill, 2001; Coussens, 2002; Philip, 2004; Shacter,

2002). RONs damage DNA, modify the activity of cellular mechanisms to repair this damage,

and communicate genomic instability to naive, bystanding cells, via epigenetic mechanisms.

In this work, we investigated the role of the base excision repair scaffold protein

XRCC1 in the repair of NO' and peroxynitrite-induced DNA damage. Further, we explored

how XRCC1 interacts with another BER component protein, AAG, to mediate the response

to NO'-induced DNA damage. We also developed the framework for a tool for the high-

throughput measurement of DNA damage and for the measurement of base excision repair.

Finally, we investigated the mechanism by which genomic instability can be propagated

epigenetically, following exposure of cells to genotoxins.

In our investigation of the role of XRCC1 in mediating the response to RON-induced

DNA damage, we found that XRCC1 protects CHO cells from killing by peroxynitrite, and that

this protection appeared to be independent of the levels of BER intermediates. This

suggests a role for XRCC1 independent of BER. Indeed, XRCC1 has been implicated in non-

homologous end joining(Ahmed et a/., 2010; Charbonnel et al., 2010) and homologous

recombination (Taylor, 2000; Zhou and Walter, 1998b). However, the fact that no difference

is observed in the comet-detectable levels of damage in the XRCC1 WT compared to XRCC1

null cells, suggests there may be a DNA repair-independent mechanism at work. This is a

possibility that warrants further study.

We also made observations consistent with previously published (Li et al., 2006)

results regarding the differential thresholds of different cell types to NO" exposure. We

found that CHO cells repaired NO' differentially to human glioblastoma cells, resulting in
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differential XRCC1-dependent BER-intermediate dynamics. In the CHO cells, the XRCC1 WT

cells displayed an initial increase in the formation of BER-intermediates on exposure to

increasing cumulative doses of NO'. In the human cells, the BER intermediate levels in

XRCC1 deficient cells were indistinguishable from the levels in the WT cells, on exposure to

increasing cumulative doses of NO. In the human cells, elevated BER-intermediates were

observed only in the case of the XRCC1 deficient and AAG over expressing cells. These

observations, including the differences between CHO and glioblastoma cells, may be

explained by differences in the specifics of interactions between BER proteins in each cell

type in mediating responses to NO' exposure. Indeed, we found that in human cells, XRCC1

can facilitate AAG-mediated excision of the inflammation associated lesions EA and

hypoxanthine, in vitro. However, in live cells XRCC1 is likely acting predominantly

downstream of its interaction with AAG, in mediating the responses to genotoxins.

The implications for our findings suggest that the associations between polymorphic

variants and malignancy may be independent of the role of XRCC1 in BER and or may be due

to BER imbalances that are revealed by the differential capacity of XRCC1 to facilitate BER

steps downstream of the BER glycosylase initiating step. This warrants more studies of the

role of XRCC1 in cell biology more generally and warrants epidemiological studies in which

BER pathway functional haplotypes are examined, as opposed to individual variants. For

example, epidemiological studies should examine the association between malignancy and

XRCC1 and Polo polymorphic variants in individuals. It would therefore be the interaction

between the BER pathway polymorphisms, and not any individual variant that would

modulate cancer risk. This mode of analysis would be consistent with a model in which BER-

intermediates are the mediators of inflammation associated genomic instability. Further
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studies will also need to be done to formally test specific XRCC1 polymorphic variants for

their ability to repair RON-induced DNA damage.

Additionally, our findings have implications for improved cancer therapeutics. The

fact that the cells that displayed the highest BER-intermediates (AAGOE/XRCC1KD) also

displayed the highest sensitivity to killing by MMS, suggests that therapeutic strategies that

increase BER-intermediates may result in greater toxicity in cancer cells. For example,

tumors could be profiled for their BER capacity and then agents, capable of exploiting any

observed pathway deficiencies to increase BER-intermediates, could be chosen from

preexisting pharmacopeia or rationally developed to generate synthetic lethality in these

tumors.

We developed the framework for a tool for the high-throughput measurement of

DNA damage and for the measurement of base excision repair. This device consisted of a

micro-fabricated chip for cell micropatterning and subsequent single cell gel electrophoresis

(comet assay) on arrayed cells. We demonstrated that this device, technical challenges

notwithstanding, has potential applications in the measurement of macrophage and NO'-

induced DNA damage and repair. Continuing work to overcome NO* trans-gel diffusion may

allow this potential to be realized. Additionally, the adherent CoaCh approach may have

utility in a later generation of the device: an operationally integrated chip allowing for cell

loading, dosing and assessment of DNA damage and repair on-chip. Nevertheless, our

efforts have culminated in a simple and scalable device that provides high throughput,

quantitatively robust measurements of DNA damage and repair (Wood et al., 2010).

We also investigated the mechanism by which memory of a genotoxic insult and

subsequent genomic instability can be propagated epigenetically, following exposure of cells
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to genotoxins, e.g. NO and ionizing radiation. We found that two of the three major DNA

MTases, Dnmtl and Dnmt3a are responsible for the propagation of genomic instability

following exposure to radiation (Rugo et al., 2010). Continuing work will serve to fully define

the precise molecular mechanisms mediated by the DNA methyltransferases, in

communicating memory of genotoxic exposures. Nevertheless, knowledge of the molecular

basis for transmission of the bystander effect suggests novel interventions, including the

potential administration of Dnmt inhibitors in conjunction with cancer chemotherapy to

preserve tissue-wide genomic stability and thus suppress secondary cancers. It is also

tempting to speculate on the extent to which cellular memory of a genotoxic insult is similar

to, and thus gives clues on, the molecular mechanisms of neurological memory.

In toto, this work addressed the role of BER, and specifically the role of the BER

scaffold protein XRCC1, in mediating the cellular response to RON-induced DNA damage.

This work also described the development of a chip based device for the measurement of

DNA damage and repair. Finally, this work revealed a mechanism by which genomic

instability can be propagated epigenetically, following exposure to genotoxins. Our findings

therefore ultimately suggest ways in which inflammation-mediated cancer can be studied

and impacted.
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