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ABSTRACT

Traumatic brain injury (TBI) is a significant cause of death and morbidity in both the civilian and
military populations. The major causes of TBI, such as motor vehicle accidents, falls, sports
concussions, and ballistic and explosive blast threats for military personnel, are well established
and extensively characterized; however, there remains much to be learned about the specific
mechanisms of damage leading to brain injury, especially at the cellular level. In order to
understand how cells of the central nervous system (CNS) respond to mechanical insults and
stimuli, a combined modeling/experimental approach was adopted. A computational framework
was developed to accurately model how cells deform under various macroscopically imposed
loading conditions. In addition, in vitro (cell culture) models were established to investigate
damage responses to biologically relevant mechanical insults. In order to develop computational
models of cell response to mechanical loading, it is essential to have accurate material properties
for all cells of interest. In this work, the mechanical responses of neurons and astrocytes were
quantified using atomic force microscopy (AFM) at three different loading rates and under
relaxation to enable characterization of both the elastic and viscous components of the cell
response. AFM data were used to calibrate an eight-parameter rheological model implemented in
the framework of a commercial finite element package (Abaqus). Model parameters fit to the
measured responses of neurons and astrocytes provide a quantitative measure of homogenized
nonlinear viscoelastic properties for each cell type. In order to ensure that the measured
responses could be considered representative of cell populations in their physiological
environment, cells were also grown and tested on substrates of various stiffness, with the softest
substrate mimicking the stiffness of brain tissue. Results of this study showed both the
morphology and measured force response of astrocytes to be significantly affected by the
stiffness of their substrate, with cells becoming increasingly rounded on soft substrates. Results
of simulations suggested that changes in cell morphology were able to account for the observed
changes in AFM force response, without significant changes to the cell material properties. In
contrast, no significant changes in cell morphology were observed for neurons. These results
highlight the importance of growing cells in a biologically relevant environment when studying
mechanically mediated responses, such as TBI. To address this requirement, we developed two
model systems with CNS cells grown in soft, 3D gels to investigate damage arising from
dynamic compressive loading and from a shock pressure wave. These damage protocols, coupled
with the single cell computational models, provide a new tool set for characterizing damage
mechanisms in CNS cells and for studying TBI in highly controllable in vitro conditions.
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Chapter 1

Introduction

A thorough understanding of the biomechanics of the central nervous system (CNS) is essential

for understanding injury and pathology. While there are large bodies of research on the

morphology, biochemistry, and electrophysiology of CNS cells, there is comparatively very little

information on their biomechanical properties. Research dealing with the causes and disease

progression of traumatic brain injury (TBI) is one area that would benefit greatly from a better

characterization of the biomechanics of all cell types present in the CNS. CNS cells include

neurons and glial cells, with glial cells consisting of astrocytes, microglia and oligodendrocytes.

Glial cells were discovered in 1856 by a German pathologist, Rudolf Virchow [5] and named

based on the idea that glial cells served as glue to hold the neurons together. Since their

discovery, it has been shown that glial cells have many critical roles in brain function and the

response to injury. Astrocytes perform a variety of functions in the CNS including release of

neurotransmitters and synthesis of extracellular matrix (ECM) molecules [6-8]. They are also



involved in the process of synaptic neurotransmission and are capable of dynamically changing

the coverage of synapases [9- 11]. In addition, unlike neurons, which are excited electrically via

action potentials, astrocytes can be excited non-electrically. Oligodendrocytes play critical roles

in myelination and microglia are involved in the host defense system. Microglia respond to

chemokines released by astrocytes and localize to sites of injury during inflammation responses

[11]. In addition, both neurons and glia are involved in the cell response after TBI. A better

understanding of the biomechanics of neurons and glia will fill an important gap in

characterizing the cellular response to mechanical trauma.

TBI is the result of various types of mechanical loading on the brain. A blow to the head,

motor vehicle accident, sports injury, fall, or shock wave from an explosion are all examples of

forces that elicit a mechanical response at both the cellular and tissue level in the brain [12]. This

mechanical response ultimately leads to a pathophysiological response involving both neurons

and glial cells, and eventually leads to brain damage and observed behavioral and cognitive

changes. While it is well established that various mechanical loading scenarios can cause brain

injury, there is still work to be done to fully connect the initial mechanical response with

secondary signaling and eventual damage. A key component to filling in this knowledge gap is to

have tools to study TBI at the cellular level in vitro. This includes having computational models

to simulate how cells deform under various types of mechanical loading, as well as developing in

vitro damage devices to subject cells to a variety of mechanical insults. In addition, since the

initiator of the damage cascade is a mechanical load, it is critical to have measurements of cells

grown in a mechanical environment that is biologically relevant. These experiments are critical

for determining cellular injury thresholds and identifying potential therapeutics.



The work presented in this thesis provides a characterization of the biomechanics of

neurons and glia in addition to developing important tools for studying and quantifying TBI at

the cellular level. It builds on what is currently known about the mechanical response of single

neurons and astrocytes, as well as on the existing in vitro cellular damage systems, as described

in depth in Chapter 2. This work contributes significantly to the basic knowledge of the

biomechanics of CNS cells.

Both experimental and computational approaches are utilized in this thesis to quantify the

response of neurons and astrocytes to mechanical loading. Chapter 3 describes the methods used

to measure single cell properties and create computational models for both neurons and

astrocytes and contrasts these with previously published methods. This includes atomic force

microscopy (AFM) indentation techniques to test cells at three different loading rates and in

relaxation, as well as the formulation of a finite element model used to characterize the cell

response. The AFM and modeling techniques are applied to test cells grown on substrates of

different stiffness. Results and discussion of the single cell experiments and simulations are

presented in Chapters 4 and 5. Chapter 4 quantifies and compares the mechanical response of

neurons and astrocytes grown on glass, while Chapter 5 expands on this work and presents

results of cells grown on gels of different stiffhess to address how the stiffness of the substrate

influences the mechanical properties of CNS cells.

In addition, this thesis presents the design and preliminary characterization of two in vitro

cell injury systems. Details on the systems are described in Chapter 6. One system compresses

the cell cultures, simulating what might occur with an impact. The second system sends a shock

wave through the cell culture, simulating loading associated with a blast wave from an explosion.

Both systems utilize what was learned in Chapter 5 about the importance of substrate selection



on ensuring cells have morphology and force response similar to what would be expected in vivo,

and damage the cells in a soft, 3-dimensional collagen gel. In addition, preliminary data and

future plans for further characterizing the cellular damage and biochemical response are

presented.

As summarized in Chapter 7, this thesis provides insight into how CNS cells respond to

mechanical loading. The single cell models and measurements at a range of loading rates and on

substrates of different stiffness provide a comprehensive characterization of the biomechanics of

CNS cells in a variety of conditions and provide critical information for simulating TBI at the

cellular level and determining damage thresholds. The quantification of cell properties, coupled

with devices to damage cells in vitro, provides key tools to link well-defined stresses and strains

to measured biochemical responses. These systems provide efficient ways to study TBI, identify

new target molecules, and screen potential therapeutics.



Chapter 2

Background

2.1 Traumatic Brain Injury

TBI is a major cause of death and morbidity in the United States, affecting some 2 million

civilians each year [13] and an estimated 20% of the 1.6 million veteran population returning

from Iraq and Afghanistan [14, 15]. In addition, based on statistics collected from 2002 to 2006,

the Centers for Disease Control and Prevention (CDC) estimated that TBI results in 1.365

million emergency room visits and 52,000 deaths each year in the United States [12]. They also

found that TBI is a contributing factor in one third of the injury related deaths in the United

States [12]. Cases of TBI can range from mild to severe, however, mild cases are much harder to

diagnose, and as a result, accurate incidence estimates are hard to obtain. Mild TBI is

characterized by a brief loss of consciousness (although not in all cases) and ongoing symptoms

of headaches, dizziness, memory and concentration problems, and other behavioral and cognitive



changes [3]. Civilian TBI is often due to falls, sports injuries, and motor vehicle accidents, with

falls being the leading cause of TBI and motor vehicle accidents being the leading cause of TBI-

related death [12]. In the case of the veteran population, an additional cause of TBI is blast

injury, which has become so prevalent in recent years it is often referred to as the signature

injury of military troops today [16, 17].
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Figure 2-1: Characteristic blast wave pressure profile and resulting changes in atmospheric
pressure. Before the explosion (1) atmospheric pressure is normal. After the explosion and upon
passage of the shockwave (2), the blast wind flows away from the explosion. When a drop in
atmospheric pressure occurs below normal, the direction of the blast wind reverses (3).
Reproduced with permission from Taber et al [1]

Blast TBI (bTBI) is caused by the interaction of a shockwave with the brain. After an

explosion, the blast wave rapidly expands and propagates through the air and tissues. The blast

wave is characterized by a near instantaneous rise in pressure followed by a decay profile

reaching negative pressures (Figure 2-1). This quick rise in pressure results in a blast wind due to

the kinetic energy transmitted to the air particles. bTBI is classified into four main categories,

depicted in Figure 2-2 [14, 16-18]. Primary blast injury results from the shock wave itself. The
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Figure 2-2: Schematic of the primary, secondary, and tertiary blast mechanisms and the
characteristic brain injuries. Reprinted with permission from Macmillan Publishers Ltd: Journal
of Cerebral Blood Flow and Metabolism, copyright 2010 [2]

shock wave consists of both over and under-pressures that travel through the brain tissue and act

to compress and stretch the tissue. In addition, shockwaves can be concentrated and reflected at

air-fluid interfaces, rendering certain regions of the body especially vulnerable. Typical

shockwaves take place over millisecond timescales, but the exact pressure profile changes with

the type and size of the explosive [16]. In secondary bTBI, shrapnel penetrates the head and

causes damage. Tertiary injury occurs when the head is accelerated by the blast wind, potentially

causing impact with surrounding objects. Finally, quaternary injury includes all other factors not

accounted for in the first three phases. This could include chemical or thermal burns or breathing

problems from smoke inhalation. Often, primary blast injury can be classified as mild TBI, or



concussion, and results in a brief loss of consciousness or altered mental status [17]. Mild bTBI

is especially hard to diagnose but the consequences are still significant and cases are prevalent.

In two studies of sample populations of U.S. soldiers, 15-16 % [17, 18] were found to have

symptoms consistent with mild TBI. In addition, based on the most up-to-date numbers for

military TBI in Iraq and Afghanistan (shown in Figure 2-3), it is clear that the vast majority of

the TBI occurrences fall in the group of mild TBI, a category based on the characteristics of the

acute sequelae following the injury. Memory and executive dysfunction (e.g. deficits in selective

attention, planning and decision making, cognitive flexibility) are among the most common and

disabling, but non-specific, features of mild bTBI. The prevalence of bTBI highlights the need

for a better understanding of damage thresholds, injury progression, and potential therapeutics

and preventative measures for both mild and more severe forms of bTBI.

Blast TBI has been studied in various animal models, showing that the primary blast

wave alone is sufficient to cause TBI [19-29]. The animal studies indicated the involvement of

both neurons and glial cells in the injury response. For example, Kaur and colleagues found both

microglia and astrocytes to be activated in rats after being subjected to an explosive-generated

blast [21, 25, 26]. Changes in neurons after blast injury have also been detected in animal

models. For instance, Kato et al. studied the effects of a blast on rats and showed the

characteristics of neuronal damage varied with the magnitude of the overpressure. Pressures

greater than 10 MPa resulted in an increase in TUNEL positive neurons, indicating involvement

of apoptotic signaling pathways. For lower overpressures (1 MPa), morphological changes in

neurons were identified, with neurons taking on a spindle shape and their nuclei becoming

elongated [29]. Despite recent advances from what has been learned in animal models of blast

TBI, there remains a need for a better understanding of the damage progression and injury



thresholds, especially at the cellular level, to enable development of preventative measures and

potential therapeutics.

DoD Numbers for Traumatic Brain Injury

IF 0-'10 Q4 Totals
Penetrating 3,451

* Severe214
* Moderate 34,001

Mild 155,623
Not Classifiable 7,082

Total -All Severities 202,281
Source: Armed Forces Health Surveillance Center Numbers for 2000 -2010 Q4, as of 17 Feb2011

Figure 2-3: Official Department of Defense numbers for different severities of Traumatic Brain
Injury (from http://www.dvbic.org/TBI-Numbers.aspx)

While the most common damage occurrences leading to mild or moderate forms of TBI

(e.g. motor vehicle accidents or falls [30-32], sports concussions [33-35], and blast exposures [1,

32, 36, 37]) have been widely acknowledged and thoroughly reviewed, the etiology of the

ensuing cognitive, behavioral or neuropsychological disorders/impairments (e.g. memory loss,

language difficulties, concentration deficiencies, behavioral abnormalities and/or depression)

remains poorly understood. In particular, little is known about the multiple damage mechanisms

suspected to unfold at the CNS cell level in the seconds to hours (and probably days) following

initial mechanical insult(s) to the brain, and likely to result in cell/tissue alteration.

Cellular damage following TBI is a complex process involving both the initial damage

caused from deforming the cells and tissue and secondary cellular responses involving diverse

................ ......



damage pathways. Due to the time lag between the initial primary damage and secondary injury,

there is hope that a better understanding of secondary damage mechanisms could lead to

meaningful therapeutics and minimization of lasting damage [3]. The initial deformation can

result in membrane damage and other structural failures [38-40] that lead to subsequent

secondary mechanisms such as inflammation and changes in cell signaling [41-44]. Damage

progression involves both neurons and glial cells, as depicted in Figure 2-4, with the secondary

response leading to, among other processes, neuronal death [41], microglial activation [45], and

reactive gliosis [46], which in turn cause tissue loss and glial scar formation [46]. A common

theme in studies of TBI is the attempt to understand how the mechanical forces of the trauma

incident activate cellular processes, and how these processes result in the pathological changes

occurring hours to days after the initial trauma. Knowledge of the initial injury cascade is crucial

for identifying potential therapeutics and interventions before the damage progresses.

One of the immediate consequences of mechanical trauma is an increase in plasma

membrane permeability or mechanoporation [38, 39, 47, 48]. This can be a result of

mechanically activated ion channels as well as tearing of the membrane. While mechanoporation

may not kill the cells, especially in mild TBI, it does result in changes in cell function, ion

homeostasis, electrical activity, and cell signaling [49]. In addition, it causes conduction block

[50], neurofilament compaction [42], and impaired axonal transport [51], suggesting a role in

connecting initial mechanical damage with cell biochemical response. Increased membrane

permeability after mechanical trauma has been shown in both animal models [38] and in vitro

cellular models [52-54]. In addition, work at the cellular level has shown that P-188, a nontoxic,

nonionic, tri-block amphiphilic co-polymer that has been shown to reseal membranes, is able to

block the mechanically induced increase in membrane permeability [53, 54].
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Figure 2-4: Schematic depicting some of the key pathways associated with secondary damage
after TBI, involving neurons (blue), astrocytes (orange), and microglia (green). Reproduced with
permission from Park et al. [3] © Canadian Medical Association. Copied under license from the
Canadian Medical Association and Access Copyright. Further reproduction prohibited.

Excitotoxicity also occurs after TBI, as a result of an increase in extracellular

concentration of glutamate, an excitatory neurotransmitter (for a detailed review see Yi and

Hazell [55]). This increase in glutamate levels is thought to also be involved in the toxic increase

in intracellular calcium levels following TBI [3]. In neurons, abnormal calcium homeostasis is

involved in cell death processes. Changes in the glutamate receptors are among the causes for the

observed increase in glutamate levels. There are two main classes of glutamate receptors, N-

methyl D-aspartate receptors (NMDARs) and a-Amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptors (AMPARs). NMDARs have been shown to be especially

critical in the loss of ionic homeostasis after TBI [56]. For instance, they have been shown to be

involved in the increase in cytosolic calcium levels [57]. NMDARs are also coupled to the
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generation of reactive oxygen and nitrogen species. These products, coupled with other free

radicals produced by the mitochondria eventually lead to fatal cellular processes [3]. In addition,

NMDARs are linked to the actin cytoskeleton, providing potential insight into how stretch or

other mechanical loading results in activation of NMDARs and the resulting changes in ion

levels [58]. AMPARs have also been shown to be involved in TBI. AMPARs are involved in

synaptic plasticity and could be key players in the immediate and long-term alterations of the

neuronal network due to TBI. AMPARs also lose their desensitization property for 24 hours

following mechanical injury [59, 60]. In addition, it has been shown that tumor necrosis factor a

(TNFa), which is released from injured glia and inflammatory cells, leads to an increase in

expressed AMPARs lacking the GluR2 subunit [61], a subunit involved in receptor calcium

permeability [62]. As a result, this change in AMPAR subunit content could be a major

contributor to the post-injury increase in calcium levels [3]. For a detailed review of the

glutamate receptors and their role in TBI see Yi and Hazell [55] and Whalen et al [43].

The changes in levels of excitatory amino acids, free radicals, and intracellular calcium,

along with many other complex pathways can ultimately result in loss of function and cell death.

Cell death can occur via either a necrosis or apoptosis pathway. For detailed reviews of the cell

death pathways see Raghupathi [41], Yuan et al [63], and Whalen et al [43]. Apoptosis, or

programmed cell death, can occur as the result of multiple pathways, one of which involves the

activation of death-inducing proteases. One class of proteases, the caspases, has been found to be

activated in TBI [41, 43, 64]. It is believed that caspases cleave multiple proteins and the

additive effects lead to cell death [65]. Cytoskeletal proteins, cell survival enzymes, and

inhibitors of DNA endonucleases are all substrates on which the caspases act [43]. Work by

Yakovlev and colleagues showed that cell death following fluid-percussion brain injury was



reduced when a caspase inhibitor was administered to the rats [66]. There are also both intrinsic

and extrinsic pathways of apoptosis. The intrinsic pathway is triggered by the injured

mitochondria. In the extrinsic pathway of apoptosis, membrane bound receptors such as Fas and

TNFR1 are activated. This leads to recruitment of cytosolic adapter proteins. In turn, activated

adapter proteins bind procaspases and form a death-inducing signaling complex (DISC). TNFRs

are also involved in intracellular signaling pathways that can lead to cell survival. Activation of

NFKB has been shown to be antiapoptotic and offers protection against TNF and Fas induced

apoptosis by promoting increased transcription of antioxidant and antiapoptotic genes [43]. In

addition, it has been shown that inhibition of Fas receptor and TNF-a improves neurologic

function after brain injury in both adult and immature mice [43, 67].

Cell death following TBI can also occur via the necrosis pathway. Severe insults to the

brain result in increased membrane permeability, organelle swelling, changes in both cellular and

nuclear size and decreases in cell energy levels that lead to cell death [43]. This type of cell death

is characterized as necrosis and occurs early in the damage progression and results in an

inflammatory response [63]. There is also some work that suggests that necrosis can occur as a

type of programmed cell death initiated by members of the tumor necrosis factor receptor family

[68]. Since most of the damage leading to necrosis occurs early after injury, potential treatments

targeting necrosis would need to be administered very soon after injury to be successful

interventions.

Glial cells also play a unique and significant role in responding to CNS damage via a

process known as reactive gliosis. Reactive gliosis involves hypertrophy and proliferation of

microglia, astrocytes, and NG2 cells. Microglia are activated first [69], followed by increased

proliferation of NG2 cells [70], and finally astrogliosis occurs [71]. Astrogliosis involves



astrocytes in the region surrounding the lesion responding to damage by proliferating, increasing

process length, producing extracellular matrix, and increasing intermediate filaments and glial

fibrillary acidic protein (GFAP) [7, 72, 73]. Initially, reactive gliosis has seemingly positive

effects, minimizing tissue damage and helping to re-establish the blood-brain barrier [74]. Within

days after injury, astrocytes "wall off' the damaged area and the resulting glial scar replaces the

damaged neuronal cells. However, this glial scar is ultimately detrimental to neuron

regeneration, as it has been shown that the neurites cannot penetrate the scarred region [46, 75].

The processes described in this section are just some of the complex cellular processes

occurring after mechanical trauma that ultimately result in observed phenotypes associated with

TBI. As described, these are complex processes involving both neurons and glial cells. Better

understanding of these events requires not only knowledge of the activated biochemical

pathways, but also a quantitative analysis of cell biomechanics, to truly connect the initial

mechanical damage with injury thresholds and downstream cellular responses.

2.2 Biomechanics of Single Neurons and Glia'

One line of approach towards better elucidating some of the key damage mechanisms involved in

TBI relies on addressing two distinct, yet interrelated, questions: (1) how mechanical transients

applied to the organ boundary (head) translate into local stress-strain (force-displacement)

distribution maps at the mesoscopic tissue level and microscopic cell level, and (2) how the cell

machinery responds to these mechanical stimuli. An improved quantitative knowledge of

material properties at the CNS cell level is necessary to understand the former on a quantitative

1 Section 2.2 is adapted from [76] Bernick K.B., Prevost T.P., Suresh S., Socrate S.
Biomechanics of Single Cortical Neurons. Acta Biomaterialia 2011;7:1210. with permission
from Elsevier



basis and to better characterize the latter in a controlled environment. Such characterization

inevitably calls for measurable external mechanical inputs (e.g. pressure waves and imposed

deformation profiles) to be applied to the boundary of in vitro cell systems (e.g. two-dimensional

(2D)/ three-dimensional (3D) cell culture constructs or organotypic tissue slices) in a

reproducible manner so that the latter inputs may systematically be associated with reliable

estimates of force and deformation magnitudes at the single cell level.

Probing mechanical properties of individual cells has been made possible in recent years

through the advent of novel testing techniques (for a review, see e.g. [77-79]) including magnetic

twisting cytometry [80-83], particle-tracking microrheology [84-86], atomic force microscopy

(AFM) [87-92], micropipette aspiration [93-98], optical tweezing and stretching [99-102], and

microplate rheometry [103-105]. The last three techniques, which have been successfully

employed to characterize the deformability of certain cell types in suspension (e.g. red blood

cells [95, 101], white blood cells [93, 96], Mller glial cells [102], chondrocytes [98],

myofibroblasts [94], and pancreatic cancer cells [105]), may not be easily applied to CNS

neuronal cultures because neurons in vitro form intricate networks of adherent cells

interconnected via multiple processes whose continuous growth and viable maintenance require

the support of a substrate. Magnetic twisting cytometry is a powerful measurement technique

providing local material properties at the membrane level but is not suited to examine global

properties at the cell body level. AFM, originally developed to image surfaces of inorganic

materials with atomic resolution [106], has proven to be a highly versatile testing tool in

mechanobiology, enabling the measurement of material properties at the cell/subcellular level

over a large range of forces (from pico- to nanonewton levels), speeds (from quasistatic to

dynamic load levels), and length scales (from nano- to micrometers) via a variety of tip



geometries [107]. The diversity in available AFM tip geometries allows for a range of

experiments to be performed under various loading conditions. Sharp tips may probe local

properties at the cytoskeletal level or fine cellular structures such as neuronal processes, while

large spheres may provide global "homogenized" properties at the whole cell level. Although

widely used to characterize the mechanical response of numerous cell types including fibroblasts

[87], leukocytes [91], cardiac myocytes [90] and blood cells [89, 92], AFM has been infrequently

utilized to examine the response of CNS cells.

Limited information on the material properties of neurons and glia is currently available

in the literature. To our knowledge, only Lu et al [102] have reported dynamic mechanical

measurements on single CNS neurons - with measurements conducted in the linear infinitesimal

strain regime only. Elastic storage and viscous loss moduli were extracted from the force-

displacement output of oscillating 3 tm spherical AFM probes actuated to small indentation

depths at the cell surface. These measurements, aimed at characterizing some of the local

viscoelastic properties of neural cells, could not provide significant insights into the global

mechanical response of single neural cell bodies, nor were they directed at investigating the

mechanical nonlinearities observed at finite deformation typical of anticipated cell response in

TBI cases, for which strains larger than 15-20% may be expected [108-111]. Although astrocytes

have been studied more readily than neurons, there is still limited information on the global

mechanical response of astrocytes. In addition, there is considerable variation in reported moduli

values. Shiga et al [112] used both force-mapping and contact mode AFM techniques to measure

the elasticity and topography of membranes of astrocytes cultured on glass and found the cell

membrane (and immediate underlying areas) above the nucleus to be relatively soft with an

elastic modulus between 1 and 5 kPa when compared to the membrane above the cytosol, which



they measured to have an elastic modulus between 1 and 35 kPa. Vergara and coworkers also

measured the mechanical properties above the nucleus of astrocytes grown on tissue culture

plastic using force mapping methods, finding the Young's modulus to range from roughly 30 to

60 kPa [113], values considerably stiffer than those measured by Shiga et al. In contrast, using

the same methods used for measuring properties of neurons, Lu et al found the elastic moduli of

astrocytes to range between 300 Pa and 520 Pa [102]. While there are many experimental

differences between these three astrocyte studies, one of interest is that Shiga et al and Vergara

et al kept astrocytes in culture on stiff substrates, either on glass or on tissue culture plastic, for

weeks before testing. In contrast, Lu et al acutely isolated astrocytes and measured their

properties after the cells had only been exposed to glass for a short time period. This suggests

that the culture conditions, especially substrate properties, could be one variable responsible for

measured differences in astrocyte properties.

The influence of substrate properties on measured cell mechanical response is a very

important issue when connecting in vitro measurements to those expected in vivo, especially

when developing multi-scale mechanical models. It is well established that cells are able to sense

their mechanical environment and respond in a variety of ways [114-121]. In the case of cells

found in the CNS, astrocytes have been shown to change morphology and cytoskeletal content

on substrates of different stiffness, appearing small and rounded on softer substrates and more

spread on stiffer substrates [122-124]. In addition, astrocytes grown on soft gels have been

shown to have less F-actin stress fibers running through the cell, while astrocytes grown on hard

substrates have very distinct stress fibers [122]. In contrast, neurons have been shown to have

increased neurite branching on soft substrates [122, 125] and a corresponding increased F-actin

content [122], while their process length remains unaffected by substrate stiffness [126, 127].



Soft substrates also promote the maturation of neural stem cell derived neurons, supporting

growth of long neurites and synaptotagmin positive presynaptic terminals [128]. Further

influence of substrate stiffness on neural stem cell behavior was shown by Saha and colleagues

[129]. They found that in mixed differentiation conditions, that should favor both neuron and

glial cell development, the proportion of neurons versus glial cells was dependent on the

modulus of the substrate. In addition, soft substrates have been shown to select for neuronal

growth over glial cell growth, with stiff materials allowing for more astrocyte spreading and

adherence when compared with soft substrates [122]. In some cases, soft gels have been shown

to result in glial cell death, with only neurons surviving [125]. In 3D culture systems, stiffness of

the gel matrix has been shown to alter morphology as well. The mechanical stiffness of agarose

gels has been shown to correlate inversely with the rate of neurite extension [130].

Sundararaghavan et al generated stable ID gradients of mechanical properties in 3D collagen gels

and showed that neurites favor growth down the gel stiffness gradient [131]. These observations

show that the mechanical environment influences both neurons and astrocytes and is an

important factor to consider when studying processes in vitro at the cellular level, especially

mechanical phenomena such as TBI.

In order to develop accurate single cell mechanical models as well as multi-scale models,

encompassing cell, tissue, and organism level data, it is very important to have accurate

predictions of cellular properties in vivo. One major difference between cells in vivo and cells

typically grown in tissue culture is the mechanical environment surrounding the cell. Brain tissue

is one of the softest tissues in the body with a measured modulus reported on the order of a few

kPa [132]. This is significantly different from traditionally used tissue culture plastic or glass,

which are essentially rigid with moduli on the order of GPa. One way to begin to investigate



potential differences between in vivo and in vitro cellular mechanical properties, stemming from

the mechanical environment surrounding the cell, is to grow cells on substrates of varying

stiffness. While this cannot completely encompass the intricacies of an in vivo environment and

all the extra cellular matrix interactions present in a 3D tissue environment, it does provide a

measure of how sensitive cells are to changes in their mechanical environment and how much

deviation from true in vivo properties may be observed in cells grown and tested on hard

substrates such as glass or tissue culture plastic.

A critical component to understanding AFM data and creating models capable of

accurately capturing the single cell response is the development of material models. AFM

mechanical measurements conducted at the (whole) cell level on cell types other than neurons

and astrocytes have been interpreted quantitatively with the aid of various continuum models.

The modeling approaches most commonly used borrow their formulation from the contact theory

developed by Hertz for linear elastic materials [87, 102, 133-135], many of which typically

incorporate time-dependencies inherent in the cell response [87, 102]. The Hertz contact theory,

however, relies on highly reductive assumptions including linearity, homogeneity, infinitesimal

deformation, and infinite substrate dimensions - all of which are unlikely to hold for biological

cell systems submitted to mechanical transients. In order to address some of these limitations,

investigators have proposed alternative continuum approaches integrating part of the

complexities observed in the mechanical response of biological cells. These approaches include

piecewise linear elastic variations [136], linear hyper-elastic/viscoelastic composite material

formulations [92, 137, 138], and biphasic linear elastic constitutive relations [139, 140]. More

complex variations borrow elements from continuum and piecewise continuum models [141].

While successful at capturing specific quantitative features of the cell response under selected



test conditions, these formulations do not account for the combined strain and strain-rate

nonlinear dependencies inherent in the cell behavior, as substantiated by a growing body of

experimental observations [90, 104, 142]. These limitations highlight the need for new single cell

models capable of capturing all aspects of typical cell responses, such as time and rate

dependencies and non-linearities, and under a variety of loading conditions. Development of

such models for neurons and glia would provide an improved quantitative understanding of the

biomechanics of CNS cells and the resulting models would be useful tools in the study of TBI.

2.3 Existing Cellular Level Models of Traumatic Brain Injury

While measurements of cell response to mechanical loading and development of single cell

material models provide important tools for the study of TBI and analysis of deformation

gradients, additional tools to reproduce TBI at the cellular level in vitro are also needed to

provide a more complete understanding and simulation of the complex processes unfolding at the

cellular level after TBI. In vitro models of TBI provide important complementary information to

in vivo experiments and clinical case studies. Studying TBI in vitro at the cellular level allows

investigators to more precisely control for the influence of different cell types and key molecules

in the damage cascade. Cell studies can be performed on individual cell types or on co-cultures,

enabling investigation into how the various cell types interact. They provide a streamlined, well-

controlled system, eliminating complexity from systemic responses of the body and also enable

high throughput analysis of potential biomarkers and therapeutics when compared to in vivo

animal studies.

A range of systems have been developed to recreate TBI in cell cultures [56]. Some

models utilize 2D cell cultures, while others are compatible with 3D cell cultures. Existing 2D



trauma models include substrate stretch [52, 57, 143-150], acceleration of culture flasks [151],

elevation of pressure [152], application of a fluid pulse [153], induction of shear forces [154,

155], and direct scratching or cutting of cell cultures [156-160]. While studies done on 3D cell

cultures are less common, models currently exist to deform 3D cell cultures in both compression

[51] and shear [161-163].

One of the most widely used 2D damage systems is the substrate stretch injury model in

which cells are plated on elastic membranes and a pressure pulse is used to stretch the

membrane, and thus deform the cells. This system has many advantages, including enabling both

uniaxial and biaxial stretch as well as the ability to stretch isolated regions of the cell cultures.

Stretching isolated regions of the cultures enables study of how secondary damage propagates

from injured to uninjured cells. In addition, strain rate and magnitude can be varied in this model

system. Studies using the stretch injury model have identified calcium level [146], membrane

permeability [52], ATP levels [149], cell death [157], and generation of excitatory amino acids

and reactive oxygen species [148] as key consequences of damage. In order to compare different

damage mechanisms using the substrate stretch system, Geddes-Klein et al subjected cortical

neurons to both uniaxial and biaxial stretching [147]. While both injury models resulted in an

increase in intracellular free calcium levels, the magnitude of the increase was much greater in

biaxially stretched cells. In addition, in uniaxially stretched cells, blocking membrane channels

stopped the increase in calcium levels, whereas in biaxially stretched cells, a significant portion

of the calcium transient remained after blocking the channels. This suggests that biaxial

stretching results in membrane tears along with the opening of membrane channels. Stretch

devices were also used to investigate how damage propagates from stretched regions to

undeformed regions of the cell culture. For example, using a uniaxial stretching device to stretch



a subset of neurons in a culture, Lusardi and colleagues observed an increase in calcium levels,

not only at the site of injury, but also in adjacent cells out of the range of the applied stretch

[146]. Also, by controlling both the magnitude and rate of stretch, neuronal cells were found to

be sensitive to both the magnitude and duration of the applied stretch [146]. In addition, stretch

models have been used to identify differences in the levels of response and damage in cells from

different regions of the brain (cortical, hippocampal, cerebellar). For example, Geddes et al

found hippocampal neurons to respond differently than cortical neurons after mechanical stretch

injury [149]. Hippocampal neurons had a larger increase in intracellular calcium concentration

and exhibited a delay in the ATP deficit when compared to cortical neurons. These differences

may be due to increased NMDA receptor densities and lower energy capacities in hippocampal

neurons. An advantage of the cell stretching devices is the ability to apply controlled, sub-lethal

mechanical stretches. Arundine et al exposed cells to sub lethal injury and then studied

biochemical responses such as generation of reactive oxygen species and how these responses

predisposed the cells to be more susceptible to secondary insult [148]. This may be applicable to

mild TBI, and additionally, provides insight into what happens after cumulative insults to the

brain. These studies highlight the diverse studies being carried out with cell stretching devices to

better understand what happens at the cellular level in TBI and identify key variables in the

damage response.

While the 2D stretch injury model provides significant insight into what happens at the

cellular level during TBI, it requires cells to be grown in a very different mechanical

environment than what is found in vivo. To address this limitation, it is useful to study cells

grown in a 3D environment with similar mechanical properties to that of brain tissue. 3D cell

culture environments, such as soft matrices or hydrogels, likely yield cells with characteristics



which are more similar to cells in vivo than to cells grown in 2D culture configurations [117,

164]. To address this issue, devices have been developed to induce injury in 3D cultures. 3D

cultures offer the advantage of providing an environment with similar stiffness to that of brain

tissue, as well as enabling a more accurate approximation of the structure and orientation of cells

in the brain. Cell-cell and cell-matrix interactions are more complex in vivo and the use of a 3D

culture system provides an important intermediate step between 2D cultures and tissue slices.

LaPlaca and coworkers have designed a system to deform cultures in 3D [161]. They created a

Sylgard cell chamber with top plate that enabled the 3D cultures to be deformed in shear. This

device has been used in subsequent studies to examine membrane permeability [162] and

compare damage in 2D and 3D cultures [163]. In addition, 3D neuron and glia cultures have

been tested at different loading rates in compression [51]. These devices provide an important

increase in complexity over 2D cultures, approximating the mechanical environment of tissue,

while maintaining the simplicity of a cell culture level study.

As outlined above, considerable work has been done to recreate TBI in cell culture

models; however, very little work has been done to study the effect of a shock wave on cell

cultures. One study has examined the effects of overpressure on astrocytes. VandeVord et al

designed a barochamber to simulate overpressure conditions similar to those of various head

injury studies [165]. Their device generated a maximum overpressure of approximately 270 kPa

with an average positive impulse of 3.239 +/- 0.848 kPa s. They looked specifically at the effects

of pressure on astrocytes and examined changes in expression of apoptotic, reactivity, and

survival genes at various time points after exposure to the overpressure wave. Initially, they

found elevated levels of survival genes, followed at later time points by a decrease in expression

of apoptotic genes. The level of pressure used in this study was below the pressure threshold



previously reported to cause glial cell injury. In this study, cells were cultured in 2D on petri

dishes. Pressure-pulse loading cells in 3D gels would be a more relevant culture system and

would greatly expand on this work by approximating the configurations the cells are likely to

take on in the brain.

The studies outlined in this section highlight the importance of several key factors in

studying TBI at the cellular level. First, it is important to consider the environment in which cells

are grown, as evidenced by the different results found for 2D versus 3D cultures [163]. Secondly,

it is necessary to select relevant loading rates, as this has been shown to be a key parameter in the

severity of the damage response [52, 146, 150, 154, 166]. This is likely due to the viscoelastic

nature of the cells. Finally, it is important to select an injury model that is relevant to the in vivo

damage to be studied, as results have been shown to change with the mechanism of damage

[147]. Depending on the trauma to be studied, stretch, compression, shear, or pressure-pulse

models may be more relevant mechanisms to damage the cells. While many tools for studying

TBI in vitro at the cellular level are well developed, there remains a need for new systems to

study TBI, especially blast TBI, in biologically relevant 3D cultures.



Chapter 3

Methods for Determining Cell

Material Properties

3.1 Overview

The homogenized material properties of both neurons and astrocytes were determined with

atomic force microscopy (AFM) indentation methods developed in this thesis. These methods

enabled testing of cells at different loading rates and under stress relaxation. In the case of

neurons, methods were developed to characterize both the soma and the processes. Properties of

astrocytes were measured in the cell region containing the nucleus. In addition, the developed

protocols enabled testing of cells grown on different substrates, providing information on how

cell material properties are influenced by the properties of their substrate. Methods for



determining height and geometry information of single cells at the time of AFM testing were

developed using a combination of AFM, bright-field microscopy, and confocal microscopy.

The AFM data were used to calibrate a material model and the experimental geometry

measurements provided information for creation of a finite element geometry representing the

cells. The resulting constitutive models, implemented in a three-dimensional finite element

framework yielded novel single cell models of both neurons and astrocytes grown on substrates

of varying stiffness. Results presented in Chapters 4 and 5 utilize the AFM experimental

methods and finite element modeling framework described in this Chapter. These methods build

on existing work by providing an in depth characterization of CNS cell response to mechanical

loading, as well as yielding models to quantify and simulate the cell response.

3.2 Atomic Force Microscopy Measurements2

3.2.1 Cell Culture

Primary neuronal cultures were prepared from cerebral cortices of postnatal day 1 Sprague-

Dawley rats (Charles River Laboratories, Wilmington, MA). Tissue was provided by the

laboratory of Professor Sebastian Seung, following a protocol approved by the Committee on

Animal Care at the Massachusetts Institute of Technology. The dissociation procedure was

adapted from a protocol detailed elsewhere [167]. Briefly, isolated cortices were minced, rinsed

3 times in modified Hank's buffered salt solution (HBSS) containing 25 mM HEPES, and

digested for 12 minutes at 37 *C with an enzyme solution containing 1 mM L-cysteine, 0.5 mM

EDTA, 1.5 mM CaCl2, 200 units Papain (Sigma, P3125), and 1 pg/mL DNAse (Sigma) in

modified HBSS. Tissue pieces were rinsed twice in culture medium (Neurobasal medium

2 Parts of section 3.2 adapted from [76] Ibid. with permission from Elsevier.
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supplemented with IX B27 and IX Glutamax (Invitrogen, 21103049, 17504044, 35050061)) and

gently triturated in 1 mL ice-cold culture medium through 1 mL pipette tips. The resulting

suspension was passed through a 70 pm cell strainer (BD Falcon, 352350) and subsequently

centrifuged at 20 g for 7 minutes. The cell pellet was re-suspended in culture medium prior to

plating at ~104 cells/mL density on 35 mm round coverslips (Carolina Biological Supply,

Burlington, NC) or polyacrylamide gels coated with 0.1 mg/mL poly-D-lysine (PDL) (Sigma,

P7886). Cultures were maintained at 37 *C in a 5% CO2 humidified atmosphere. 1 h after

plating, cultures were rinsed to remove debris and non-adherent cells. To obtain astrocytic

cultures, the same protocol was followed with the resulting cell suspension plated in tissue

culture flasks in neurobasal culture media supplemented with 0.5X B27, IX Glutamax, and 10%

fetal bovine serum. Astrocytes were grown to confluence, removed with trypsin, and plated on

substrates for AFM experiments (either PDL coated coverslips or polyacrylamide gels). For both

neuron and astrocyte cultures, half the culture media was changed every 3-4 days.

A B

Figure 3-1: Results of immunocytochemistry to verify cell types. Cells grown m serum
containing media were found to be primarily astrocytes (A) and those grown in serum free media
primarily neurons (B). Scale Bars 20 pm

... .. ..... ..........



Immunocytochemistry assays were performed on representative samples to ascertain cell

types. Anti-s-III tubulin (Abcam, ab24629) and anti-glial fibrillary acidic protein (GFAP)

(Abcam, ab4648) were used to identify neurons and astrocytes respectively (Figure 3-1). Cells

grown in serum free media were found to be primarily neurons and those grown in serum

containing media were primarily astrocytes.

3.2.2 Measurements of Neuron Somata on Glass

Neurons were tested 5 days after plating, at which time they were well adhered with well-

developed processes. Somata of single neurons were indented via an atomic force microscope

(MFP 3D, Asylum Research, Santa Barbara, CA) mounted on an inverted optical microscope

(Axio Observer.D1, Carl Zeiss MicroImaging Inc, Thornwood, NY). The mechanical probes

selected for the tests were polystyrene spheres (45 pm diameter, Polybead@ Microspheres;

Polysciences Inc, Warrington, PA) mounted on tipless, triangular shaped silicon nitride

cantilevers (Veeco Probes NP-OW, 0.06 N/m; Nanoworld PNP-TR-TL, 0.08 N/m). The

microspheres were chosen deliberately larger than the cell soma in order to approximate loading

conditions close to those prevailing in "uniaxial compression" experiments. The microspheres

were attached to the end of the silicon nitride probes using UV curable Loctite 3211 glue and

allowed to cure for 1 h under UV light. The size and positioning of the bead were verified for

one representative sample via scanning electron microscopy (Figure 3-2 A). All tests, which

lasted less than two hours, were conducted in culture medium at 37 *C in a fluid cell chamber

(BioHeater TM, Asylum Research, Santa Barbara, CA). Prior to testing, the spherical probe sitting

above the sample was lowered into the medium and allowed to reach thermal equilibrium for

about 30 min. Calibration of the spring constant was achieved for each probe using the thermal



method [168]. Cell viability was checked by visual inspection through the bright-field optical

microscope during testing. Neurons were found to be well-adhered and visually healthy

throughout the test procedure.

All tests were conducted under bright-field optical microscopy (Figure 3-2 B). The

cantilever tip was positioned on top of the cell body via manual actuation of the micrometric

screws controlling the horizontal X-Y positioning of the AFM optical stage. The center of the

cell body was aligned with the vertical Z-axis of the indenting probe through the 20X

magnification objective of the microscope (Figure 3-2 C). The indentation test sequence,

implemented as a custom routine in IGOR Pro software (WaveMetrics, Inc, Portland, OR),

consisted of an approach phase at 0.3 sim/s to a 0.3 nN contact force target (corresponding to an

indentation depth of roughly 50-200 nm) followed by a 15 s dwell phase at contact with the cell

body, and a subsequent series of load-unload segments at 10, 1, and 0.1 pm/s to 2 pm depth

followed by a 120 s relaxation segment (Figure 3-2 D). The relaxation segment consisted of a 10

sm/s loading ramp to a target indentation depth of 2 sm held for 120 s. Note that at 2 pm

indentation depth, which is roughly 14 to 40% of the height of the neuron soma, the influence of

the nucleus on the measured cell response can no longer be neglected. The properties collected

should therefore be viewed as global, "homogenized" properties of the whole cell body.

As cells may migrate, reorganize their cytoskeleton, and respond actively to external

forces on timescales of seconds, a small population of neurons (N = 10) was tested in the reverse

order of deformation rates, i.e. 0.1, 1 and 10 pm/s, to assess whether such cell activation

processes could contribute significantly to the strain rate effects measured. The loading rates

were selected to span the broadest range of deformation speeds compatible with the MFP 3D

capabilities and the physical limitations pertaining to the test configuration.
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Figure 3-2: (A) SEM image of tipless cantilever with attached 45 ptm polystyrene sphere
(dimensions in sm). (B) Bright field image of AFM tip with bead adjacent to neuron to be
indented; 20 pm scale bar. (C) Schematic of AFM experimental setup - Polystyrene bead
compressing the cell body of a neuron plated on glass. (D) AFM testing procedure: sample
approach, pre-load (black solid), sequences of load-unload segments at 10 pm/s (red dot), 1 pm/s
(blue solid), 0.1 pm/s (green dash-dot), followed by stress-relaxation (black dash).
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Figure 3-3: Cell height determination procedure: cell (black solid) and glass substrate (red, blue,
green dash) indentation curves were used to retrieve relative piezo positions associated with
contact events between cell/glass and cantilever, thereby providing an estimate for the cell
height.

To account for some variations in the cell body size observed within and across cultures,

height and "cross-diameter" estimates were collected for each cell body indented and

incorporated in the 3D finite element simulations. The cross-sectional diameter, derived from the

optical microscope images taken at the time of indentation (see e.g. Figure 3-2 B), was computed

as the geometric mean between the largest and smallest edge-to-edge measured distances:

Vd.:- d, . Height estimates were obtained after completion of the indentation test, following a

procedure adapted from previous cell height determination methods [92, 134]. Briefly, the cell

body and 2-3 adjacent glass sites were indented at 10 pm/s extension/retraction rate to a target

force of 4.5 nN. The differences in piezo positions at contact between cantilever and the cell

body or the glass substrate were retrieved from the indentation curves to derive an estimate for



the cell height (Figure 3-3). The glass-cantilever contact point was determined as the intersection

between the pre- and post-contact linear fit to the measured force-displacement indentation

responses whereas the cell-cantilever contact point was recovered following a hierarchical

Bayesian approach detailed in section 6.1 of Rudoy et al [169]. Briefly, the contact point and the

pre- and post-contact regression coefficients were inferred - following Gibbs sampling

techniques - from statistical distributions motivated by physical arguments. The post-contact

force-displacement response in the small penetration depth regime was assumed to obey a

polynomial law as predicted by the Hertz model for the response of an elastic substrate to

indention by a rigid sphere (i.e. F oc d3, where F is the indenter force and d is the indentation

depth). Use of the Hertz model to represent cell AFM response is widely established in the

literature [170-172]. The height determination procedure was implemented in MATLAB.

3.2.3 Measurements of Neuron Processes on Glass

Neuron processes were also measured with the AFM. Processes were tested 5 to 6 days after

dissociation and plating (Figure 3-4). Due to the small diameter of the processes, a pyramidal

AFM probe, with radius of curvature less than 10 nm, was used (Nanoworld PNP-TR, 0.08

N/m). Processes were indented at 10 and 1 im/s to a target force of 2 nN. Contact point was

determined using the hierarchical Bayesian approach described previously for determining

contact with the cell body for measuring neuron height [76, 169]. In order to obtain the pseudo-

elastic Young's modulus for the processes, data were fit to the Hertz model for a conical

indenter,

2 E
F = - tan(a)62 (3.1)

;r (1-v 2 )



where F is the force measured with the AFM, E is the Young's modulus, v is the Poisson's ratio

(assumed to be 0.5 in this case), a is the half angle of the AFM tip (35 degrees), and 8 is the

indentation depth. In order to avoid substrate effects, only the initial portion of the AFM force

displacement curves were fit (roughly 600 nm).

Figure 3-4: Representative neuron and AFM cantilever with pyramidal tip adjacent to process to
be indented. Processes were indented close to the neuron soma.

3.2.4 Measurements of Astrocytes on Glass

Measurements of astrocytes on glass were performed in a similar manner to those described in

3.2.2 for neurons, with a few key differences due to the different morphology of astrocytes.

Astrocytes were tested 1 day after passage. At this point, they were well adhered to their

substrate and single cells were still easy to select for testing as shown in Figure 3-5 A. Due to the

fact that astrocytes continue to divide in culture, waiting longer times after passage resulted in

overlapping cells and less clear boundaries for single cells (Figure 3-5 B). In addition, due to the

larger cell size of astrocytes, methods for whole cell compression and height determination

developed for neurons were not applicable to the astrocyte samples. Finally, the indentation

depth of the AFM loading routine was decreased to 1 pm to account for the decreased height of

astrocytes when compared to neurons (Figure 3-6).
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Figure 3-5: Confocal images of astrocytes cultured for 1 day after passage (A) and 3 days (B),
highlighting the choice to test cells after 1 day when cells remain isolated and measurements on
single cells are possible; nucleus (Hoechst, blue) and cytoplasm (Calcein-AM, green); scale bars
20 prm.

In order to obtain accurate cell geometry measurements, as well as information on the

location of the nucleus relative to the AFM tip, the AFM was mounted on a confocal microscope

(Zeiss LSM 700, Carl Zeiss MicroImaging Inc, Thornwood, NY) (Figure 3-7). Prior to AFM

experiments, astrocytes were loaded with 2 pM calcein-AM (cytoplasmic stain; Invitrogen, L-

3224) and 1.6 tM Hoechst 33342 (nuclear stain; Invitrogen, H3570) in PBS at 37 *C for 15

minutes. Following dye loading, cells were returned to culture medium and allowed to recover in

the incubator at 37 *C for 45 minutes prior to loading on the AFM and testing. Use of calcein-

AM, which only fluoresces upon entering a living cell, also verified the cells were viable at the

time of testing. No morphology changes were observed upon addition of the dye. As a control, a

small sample of cells grown on glass was tested both with and without the addition of dyes to test

for any changes in material properties caused by the dyes. No changes were observed with the

addition of dye (see Chapter 5, Figure 5-2 for results).
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Figure 3-6: Astrocyte loading routine consisting of an initial approach to the cell to a pre-load of
0.3 nN to establish contact (green dash), a 15 s pause for equilibration (green solid), 3 sets of
load-unload cycles to a 1 pim indentation depth at 3 different loading rates (10 sm/s (black
solid), 1 ptm/s (cyan solid), and 0.1 sm/s (blue dash)), and a 2 minute stress relaxation test (red
solid).

Figure 3-7: Top (A) and side (B) views of an astrocyte to be indented with polystyrene sphere
(darker blue in side view); cytoplasm (calcein-AM; green); nucleus (Hoechst 33342; cyan)

....... ............. .....



Upon completion of the AFM testing procedure, a confocal Z-stack was obtained for each

astrocyte. This enabled corresponding 3D geometry information for each set of AFM force

curves. Confocal Images were taken after the AFM measurements to minimize any changes in

cell properties due to the laser. Z-stacks were viewed in Zen (Carl Zeiss MicroImaging Inc,

Thornwood, NY) and the heights of the cells, as well as the maximum and minimum diameters,

were measured. An average cross-sectional radius for each cell was then computed as

VRm -Rm . In order to ensure consistency of this height determination method with that

described for neurons, height measurements for a sample of 10 neurons were taken with both the

confocal Z-stacks and with the previously described height determination method utilizing the

AFM to compare piezo position at contact with the cell and adjacent substrate [76]. The two

methods produced comparable results as shown in Table 3-1.

Neuron Height from AFM (Im) Height from Confocal (pm)

1 9.85 9.93
2 8.39 8.32
3 9.95 9.89
4 7.10 7.12
5 7.48 7.56

Mean 8.55 8.56
Standard Deviation 1.32 1.30

Table 3-1: Height estimates of neuron soma determined with both AFM height determination
methods and confocal imaging Z-stacks.

3.2.5 Measurements of Neurons and Astrocytes on Gels

Polyacrylamide gels of 4 different stiffnesses were prepared using a similar protocol to those

described previously [114, 119, 123, 127]. 35 mm round coverslips (Carolina Biological Supply,

Burlington, NC) were sterilized in ethanol followed by rinsing in distilled water. Coverslips were

then washed in 0.1 N NaOH and allowed to air dry. Next, they were coated with (3-
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Aminopropyl)trimethoxysilane (APTMS) (Sigma, 281778) for 4-5 minutes, followed by washing

with distilled water. Coverslips were next coated with a 0.5% solution of glutaraldehyde (Sigma,

G7526) in PBS for 30 minutes, washed in distilled water, and air-dried. Gel solutions were

prepared in HEPES buffer from stock solutions of 40% acrylamide solution (Bio-Rad, 161-0140)

and 2% bis-acrylamide solution (Bio-Rad, 161-0142) as described in Table 3-2. Polymerization

was initiated with ammonium persulfate (Sigma, A9164) and N,N,N,N'-

Tetramethylethylenediamine (TEMED) (Sigma, T7024). Solutions were passed through a 0.2 pm

syringe filter and 100 stl were placed on the center of each activated 35 mm coverslip. A sterile,

25 mm round coverslip was carefully placed on top of the gel solution, being sure to avoid

trapping any bubbles between the coverslips, and the gels were allowed to polymerize for 30

minutes. To facilitate removal of the top coverslip, the gels were soaked in 50 mM HEPES

buffer (Sigma, 83264) and forceps were used to gently remove the top coverslip. In order to

allow for binding of poly-D-lysine, the gel surface was activated with a coating of 0.5 mM Sulfo-

SANPAH (Thermo Fisher Scientific, 22589) followed by exposure to UV light in a cell culture

hood for 10 min. The gels were rinsed with 50 mM HEPES buffer and an additional treatment

with Sulfo-SANPAH and UV light was performed. Gels were rinsed with 50 mM HEPES buffer

and coated with 0.1 mg/mL Poly-D-Lysine (Sigma, P7886) for 4 hours. Gels were then rinsed

and stored at 4 *C in PBS until use. This procedure resulted in gels of roughly 200 ptm thickness

as measured by light microscopy (Zeiss LSM700, Carl Zeiss MicroImaging Inc, Thornwood,

NY) comparing Z position at the top and bottom gel surfaces.

Gel properties were measured using an AFM (MFP-3D-BIO, Asylum Research, Santa

Barbara, CA). A 45 gm polystyrene bead was glued to a tipless AFM cantilever with nominal

spring constant 2.7 N/m (AIO-TL, NanoAndMore, Lady's Island, SC). Gels were tested at 37 *C



in culture media to replicate the conditions of experiments containing cells. Gels were indented

at 1 Rm/s in scattered locations across gels from 2 different gel batches. In order to determine the

Young's Modulus, E, AFM force-displacement curves were fit in MATLAB with the Hertz

model [173] for a spherical indenter as described by equation 3.2.

F = 4 E Rb3/2 (3.2)
3 (1- v2 )

where F is the measured force, R is the radius of the bead (22.5 [tm), 8 is the indentation depth,

and v is the Poisson's ratio. The Poisson's ratio was assumed to be 0.48 as used previously for

polyacrylamide gels [123, 174]. To determine accurate indentation depths, contact point was

determined independently of the Hertz model from a hierarchical Bayesian approach described

previously [76, 169]. Cell properties were measured in the same way as on glass with geometry

measurements taken with confocal microscopy methods as described for astrocytes in section

3.2.4.

Gel Number AA (%) Bis-A (%) E (kPa) N
(mean +/- standard deviation)

1 (Softest) 5 0.07 1.682 +/- 0.0586 13
2 8 0.048 2.771 /-0.254 21
3 8 0.48 20.620 +/-2.403 17

4 (Stiffest) 18 0.4 45.779 +-3.037 21

Table 3-2: Ratios of Acrylamide (AA) and Bis-acrylamide (Bis-A) used to create gels and the
measured Young's Moduli (E). Data were taken over 2 gel sample preparations and at multiple
locations on each sample.

3.3 Finite Element Simulations3

The mechanical data gathered on single neural somata and astrocytes, plated both on glass and

on polyacrylamide gels, were interpreted with the aid of a finite element framework simulating

3 Parts of section 3.3 adapted from [76] Ibid. with permission from Elsevier.
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the experimental testing conditions. The continuum formulation selected for the homogenized

"material properties" of the cell response is predicated upon the modeling framework developed

in a recent study of the dynamic (macroscopic) behavior of porcine cortical tissue in vitro [175].

This formulation exhibits rheological features (e.g. rate effects, nonlinearities, conditioning, and

hysteresis) similar to those observed at the single cell level. Briefly, the selected model

comprises a hyperelastic network (A) accounting for the instantaneous response of the material

and a viscoelastic resistance (BCDE) encompassing the strain rate/time effects prevalent at short

(B) and long (CDE) time scales. A schematic of the rheological model is provided in Figure 3-8

A. As the model is intended to describe the cell response to large deformations, it is cast within a

large-strain kinematics framework, using the concepts and standard notation of modem

continuum mechanics (see, for example, Gurtin [176] or Holzapfel [177]).

Following Lee's decomposition [178], the total deformation gradient is expressed as:

F=FA -FB, (3.3)

where FA and FB represent, respectively, the elastic (instantaneous) and viscoelastic (isochoric)

components of the cell deformation. The viscoelastic response of the cell is captured by the

combination of a nonlinear short-term viscous element (B) and a linear viscoelastic back stress

network (CDE). With regard to the back stress network, the viscoelastic deformation gradient FB

is further decomposed as:

FB=Fc -FD (3.4)

where the linear viscous element (D) models the long-term relaxation of the back stress

contribution. Both Fc and FD are taken to be isochoric. The correspondence between

deformation gradients and idealized rheological network components is shown in Figure 3-8 A.



The Cauchy stress TA developed within the material is decomposed into its hydrostatic

and deviatoric components:

TA =Th+Td, (3.5)

where the hydrostatic component T, and the deviatoric component T, are physically associated

with the deformation mechanisms prevailing in bulk and in shear.

The hydrostatic component T. is obtained in terms of the volumetric jacobian,

J=det(F)=det(FA), according to the constitutive relationship:

T, = K -In(J) -1, (3.6)

where K is the small-strain bulk modulus and 1 is the second order identity tensor. The deviatoric

component Td is obtained in terms of the isochoric component of the elastic left Cauchy-Green

tensor, BA = J- FA F , following a formulation derived from the freely-jointed 8-chain

model for macromolecular elastic networks [179]:

T =O AL 1 A A21
J\ A/ (3.7)

A2 =-tr(BA)
3

L (#) coth(#) -

where po and AL are model parameters which scale, respectively, with the initial shear modulus

and the limiting extensibility of the network. Z denotes the Langevin function.

The evolution of the viscoelastic component of the deformation gradient, FBI s

constitutively prescribed through the nonlinear reptation-based viscous element (B), adapted

from Bergstrom and Boyce [180]. The deformation gradient time derivative, FB =F DB-F is
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obtained by aligning the stretching tensor DB with the direction of the (deviatoric) driving stress

TB= Td-TC, where Tc is the backstress from element (C), through the constitutive relationship:

- T' T'1:T') ___T'_

B=fB NB = B fR JrTB 'TB (3.8)
tr(T,2) -,aco t()

a2

fA - (3.9)
(a+ 4(tr(FBFBT)/3)

where tO is a dimensional scaling constant (fe= 10 -4 s~1). The reptation factor, fR, accounts for

the increasing resistance to viscous flow observed in macromolecular networks for increasing

levels of accumulated viscous deformation. The factor a is a small constant introduced to

eliminate the singularity at FB= 1, and is set to a=0.005, as in the previous tissue study [175]. The

rate sensitivity exponent, n, and the strength parameter, ay, are material properties.

The (deviatoric) backstress Tc is obtained from the standard linear solid network (CDE)

as further detailed in Prevost et al. [175]. Briefly, the stress in the elastic elements, (C) and (E),

is taken to scale linearly with the deviator of the respective Hencky strains through shear moduli

Go and G,. The stretching tensor, DD = F, 'D -FB' in the viscous element (D) is taken to scale

linearly with the driving stress in element (D) through a viscosity 'I. Conceptually, element (C) is

associated with short-term dissipation mechanisms, while the linear element (E) captures the

long-term partial relaxation of the backstress.

A mechanistic interpretation of the material parameters is detailed in Prevost et al. [175], and

can be briefly summarized as follows:

- K measures the small-strain resistance to volumetric deformation (bulk modulus);

- t. and AL mediate the instantaneous (elastic) nonlinear response of the cell in shear; more

specifically, po correlates with the low-strain instantaneous shear response and XL correlates



with a limiting stretch associated with a marked increase in resistance to deformation;

- Go, G., and rj address the time-dependencies unfolding at medium and long time scales;

more specifically, the ratio T. = il/G. scales with the characteristic long-term relaxation time,

while Go relates to the short term "backstress" stiffness of the material, modulating the

recovery of viscous deformation at higher rates of loading; by neglecting the compliance of

the non-linear instantaneous elastic response, an equilibrium (long term) shear modulus can

be estimated as Geq=(1/Go+1/G.)-1 ;

- a, and n address the time-dependencies unfolding at short time scales; more specifically, ao

relates to the resistance to viscous deformation in the nonlinear viscous element and n

represents the strain-rate sensitivity of the viscous resistance. For n-1, and negligible

accumulated viscous deformation, a single short term characteristic time for viscous

relaxation can be estimated as: t= (o/Go)( to-1). For nol, the non-linear element captures

the effects of superposing stress-activated viscous mechanisms, and a single time constant

cannot be meaningfully defined.

Note that the long-term dissipation mechanisms are captured mainly through a single

retardation time provided by the standard linear solid element (CDE). Although sufficient to

account for the essential features of the cell relaxation behavior (as measured under the selected

test conditions of the present study), the current formulation may require some refinements (e.g.

the introduction of additional Kelvin-type viscoelastic components) to encompass the broader

spectrum of relaxation mechanisms that are likely to unfold under more complex loading

conditions. Further details on the constitutive equations, and a review of the main alternative

modeling approaches developed within the brain biomechanics community, at the continuum

tissue level, are provided in Prevost et al. [175].



The constitutive model was implemented as a user-defined material subroutine in the

finite element software Abaqus (Simulia, Providence, RI). An axisymmetric representation was

selected for the test configuration as shown in Figure 3-8 B, C. The cell body was idealized as a

half oblate spheroid while the indenting probe was modeled as a rigid sphere. Frictionless

contact was enforced between the two. For studies on glass, the underlying glass substrate was

considered rigid, in slipless contact with the cell. For experiments on polyacrylamide gels, a 200

gm thick deformable layer under the cell was included to represent the gel. This accounted for

any deformation of the gel included in the measured AFM response. A representative geometry

and meshing is shown in Figure 3-8 C. The gel was modeled as an elastic material with Poisson's

ratio of 0.48 [123, 174] and Young's Modulus as measured with the AFM and listed in Table 3-

2. The physical dimensions of the cells were taken to match the measured estimates - cross-

diameter and height - obtained for each cell. The entire loading history (approach - dwell -

dynamic load-unload - relaxation) was simulated in Abaqus and the material model parameters

for each (homogenized) cell were determined by fitting the experimental responses, where the

quality of the fit was estimated based on the error measure:

F(Fsima - F,)
Error = .ax ex) (3.9)

F P

Fsimui and Fxp refer to the discrete time vectors for the simulated and measured indenter forces

respectively, and Fm, corresponds to the maximum reaction force as measured experimentally

at the highest (10 pm.s-1 ) displacement rate.
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Figure 3-8: (A) Schematic of cell material model, including 8 material parameters. (B)
Representative finite element model geometry for an astrocyte tested on glass. (C)
Representative geometry and meshing for a neuron grown on gel, with the gel layer included in
the model.
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Chapter 4

Characterization of Neuron and

Astrocyte Response on Glass

4.1 Introduction

In order to understand how neurons and astrocytes respond to mechanical loading transients

characteristic of TBI, it is critical to characterize their mechanical response at large deformations

and at various loading rates. In addition, single cell models with accurate material parameters are

essential for simulating what happens at the cellular level during TBI. In this chapter, results of

AFM indentation studies on neuron somata, neuron processes, and astrocytes are presented. In

addition, the AFM results are used to calibrate material parameters of the constitutive model

described in section 3.3, which was adopted for both neurons and astrocytes. This work

highlights key characteristics of the cell response, as well as some interesting differences

between the material properties of neurons and astrocytes. This chapter expands on existing
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knowledge of CNS cell material properties by characterizing the deformation at large strains and

under whole cell compression, yielding calibrated models capable of capturing all aspects of the

cell responses at 3 different loading rates and under stress relaxation. These models enable

simulations of other types of mechanical loading at the cellular level, and additionally, provide a

quantitative comparison of the properties of neurons and astrocytes.

4.2 Neuron Results

Neuron force response was measured using two different AFM experimental set-ups. One

method enabled compression of the whole neuron soma with a large microsphere, while the other

allowed for the neuron processes to be probed using a pyramidal AFM tip. These two

experiments enabled characterization of two important, yet different, areas of the neuron - both

susceptible to damage in TBI.

4.2.1 Response of the Neuron Soma4

The mechanical response measured for single cortical neurons showed marked nonlinearities in

the strain and strain rate domains and substantial hysteresis, as shown for one representative cell

(diameter of 14.2 stm, height of 7.6 tm) in Figures 4-1 and 4-2. While these key response

features - time/rate dependencies, nonlinearities, hysteresis - were consistently observed across

the neuronal cell population (N = 87), some substantial variations were noted in force magnitude

from one cell to the other. The average indentation response and standard deviation are reported

in Figure 4-3, with the corresponding finite element model fit to the average response. The eight-

parameter model captures the main characteristics of the cell behavior at large strains, including

4 Section 4.2.1 is adapted from [76] Ibid. with permission from Elsevier
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Figure 4-1: AFM data for a representative neuron of diameter 14.2 pm and height 7.6 Rm. Force
versus displacement response at the 3 consecutive loading rates of 10 sm/s (red dash-dot), 1
Rm/s (green dot), and 0.1 pm/s (blue solid).
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Figure 4-2: Force versus time responses measured for one representative neuron of diameter
14.2 pm and height 7.6 pm (black) and simulated in Abaqus with actual cell geometry (red
dash). Material parameters for this cell were found to be: p, = 13 Pa, kL = 1.06, Go = 85 Pa, G.=
80 Pa, 11= 3000 Pa.s, ao = 0.005 Pa, and n = 1. Error measure for the model fit was: 1.09x 104.

............. ..



stress-strain non-linearities, rate effects and long-term time dependencies. Values for the fitting

parameters are reported in Figure 4-3. Since the AFM data provided a single force-displacement

history response, the material bulk and shear contributions to the macroscopic cell response

could not be isolated. Following common assumptions of near incompressibility in cell

biomechanics, a relatively large value for the bulk modulus, i.e. K = 10,000 Pa, was selected,

corresponding to a small strain Poisson's ratio of v=0.499. Note that the set of model parameters

associated with the "best" fit is not proven here to be unique, although optimal parameter values

are expected to fall within a narrow range. This inference is based on the results of an automated

parameter search study conducted in Prevost et al. [175], where the same modeling framework

was used to fit the qualitatively similar response of brain tissue.

Upon inversion of the deformation rate order, the cell response was measured to exhibit

similar rate dependencies (Figure 4-4). These response features were compared to the model

predictions (obtained from the same set of best fit parameters in Figure 4-3) and a satisfactory

match was found (Figure 4-4).

Given the observed wide range of variations in cell geometry, where both cross-diameter

and height measurements showed some significant scatter (D = 16.8 + 2.1 lim; H = 7.9 ± 2.0 pm;

mean ± standard deviation, N = 79), we considered the hypothesis that the deviations in force-

indentation response could be mainly ascribed to geometric effects. To investigate the validity of

this hypothesis, we performed an approximate geometric normalization for the force indentation

responses. A subset of cells (N = 33) for which height and cross-diameter estimates could be

reliably obtained was selected to generate normalized plots of the cell response, i.e. "nominal

stress" versus "nominal strain" diagrams where "nominal stress" and "nominal strain" refer to

force and indentation depth normalized by characteristic cross-diameter area and height,
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Figure 4-3: (A) Average force versus time response for 87 cells (black line) with plus and minus
standard deviations (grey line); model fit (red dashes) to average response. The pictured model
fit corresponds to an error measure of 1.1 x 104. (B, C, and D) Average force versus displacement
response at 10, 1 and 0.1 sm/s respectively. Error bars represent standard deviations and red
dashes correspond to model fit. Material parameters obtained by fitting the force-indentation
response to the average experimental response were found to be: PO= 16 Pa, XL = 1.05, G0 = 75
Pa, G. = 40 Pa, vi = 3000 Pa.s, ao = 0.005 Pa, and n = 1. K was held constant at 10,000 Pa. (E)
Distribution in maximum force level at the end of the first loading ramp for each displacement
rate. Outliers are displayed with a red + sign. Rate effects were found to be statistically
significant (P < 0.0001, one-way ANOVA).
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respectively. The normalization procedure did not appear to substantially reduce the scatter in the

data, indicating that the observed deviations in force-indentation responses might not simply be

an effect of cell geometry variations, but may also reflect a degree of variability in the

constitutive material response.
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Figure 4-4: (A) Mean (black) and standard deviation (grey) for 10 neurons indented with
loading rates in reverse order (0.1, 1, 10 pm/s). Model predictions (red dash) using the mean set
of parameters obtained for indenting a neuron in 10, 1, 0.1 pm/s loading rate order; (B) Peak
forces reached at the end of the first loading ramp for each displacement rate. Rate effects were
found to be significant (P < 0.006, one-way ANOVA).

This conclusion is further supported by the data provided in Table 4-1, where the best fit

model parameters for the subset of cells of known geometrical features (N = 33) are given in

terms of their average values and ranges of variation. Here, in order to address possible

shortcomings of the approximate normalization procedure, sets of model parameters for each cell

were obtained by fitting the individual cell responses with finite element models accounting for

the actual cell geometry (height and diameter) as shown for one cell in Figure 4-2. The mean

squared errors between the simulated and measured responses, which ranged between 7.4x10-5

and 1.37xlO4, were found to be comparable to those obtained between the simulated and

average responses reported earlier in Figure 4-3 (1.1 x 104). The scatter in the values of the fitting
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parameters demonstrates that, even when accurately accounting for cell geometry effects, the cell

constitutive response is found to exhibit substantial variability.

G. (Pa) n a. (Pa) %L s (Pa) I (Pa.s) G. (Pa)

Mean 78.48 0.9927 0.005455 1.051 15.99 2879 52.64

Data Range 30-200 0.92-1 0.004-0.009 1.015-1.17 1-75 400-4000 7-300

Table 4-1: Distribution in parameters (mean and data range) obtained by fitting model response
to experimental data for 33 cells, accounting for actual cell configuration by varying the model
geometric parameters to match the measured height and cell radius. K was assumed to be
constant for all cells and set at 10,000 Pa.

Interestingly, in support of an inference of uniqueness for the optimized values, the

average of each model parameter obtained by independently fitting data for 33 cells (Table 4-1),

is in good agreement with the corresponding value (Figure 4-3) obtained by fitting the

representative cell response. From the representative parameters Go = 75 Pa, G. = 40 Pa, vi =

3000 Pa.s, a0 = 0.005 Pa, with a value of n=1, it is then possible to estimate short-term and long-

term characteristic times for viscous relaxation as: r0=0.67 s and -C. = 75 s, with a long-term

equilibrium shear modulus, Geq, of the order of 25 Pa.

4.2.2 Response of the Neuron Processes

Results of the indentations on neuronal processes showed processes to be viscoelastic, with

differences in force-displacement response observed between 10 and 1 prm/s loading rates

(Figure 4-5 A, B). These responses are analyzed in the context of a Hertz model, with pseudo-

elastic (rate-dependent) Young's moduli obtained by fitting the force-displacement responses at

each testing rate, 10 and 1 um/s, as shown for a representative process in Figure 4-5 C, D. The

pseudo-elastic Young's modulus was found to be dependent on the loading rate as shown in
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Figure 4-5: (A, B) Force versus
displacement response for processes at 10
and 1 sm/s, respectively (Black=mean;
Grey=standard deviation, N=25). (C, D)
Sample Hertz fits for a single process at 10
and 1 pm/s, respectively (AFM data= black
dots; Hertz Fit= Red Line). (E) Box plot
showing pseudo-elastic Young's Modulus
dependency on loading rate. Differences are
statistically significant with P<0.01.



Figure 4-5 E. The pseudo-elastic Young's modulus at 10 pm/s was found to be 1618.8 +/-

1378.1 Pa and at 1 pm/s was determined to be 791.94 +/- 508.58 Pa (mean +/- standard

deviation; N=25). The difference in modulus was statistically significant with a P<0.01. These

results show that the mechanical response of the processes is rate dependent, and should be

recast in a viscoelastic framework. Further characterization accounting for the response at

multiple loading rates with a single set of material properties, as was done for the neuron soma,

would provide a more substantial analysis of the viscoelastic characteristics of the neuron

processes. Due to limitations in the current system capability to accurately image and measure

the dimensions of the processes beneath the indenter tip (especially the thickness), this effort was

deemed to be beyond the scope of the present investigation.

In order to compare the measured response for the neuron processes with the results for

the neuron soma, a pseudo-elastic model was also considered for the soma at both the 10 and 1

tm/s loading rates. This was done by changing the material model in the Abaqus simulations to

be that of the built in elastic model characterized with a Young's modulus, E, and a Poisson's

ratio, v. Due to the viscoelastic nature of neuron soma, and for comparison with the models used

to fit the neuron process results, only the data for the first loading ramp at each rate were used for

fitting and different Young's Moduli were obtained for each loading rate as shown in Figure 4-6.

While these results yield a lower Young's Modulus for the neuron soma than for the

processes (725 Pa at 10 ptm/s and 350 Pa at 1 ptm/s for the soma and 1618.8 Pa at 10 ptm/s and

791.9 Pa at 1 sm/s for the processes) we note that the same indentation rate results in different

strain rates for the soma and the processes due to the significantly lower thickness of the

processes. This suggests that it may be more reasonable to compare the results of the processes at

1 sm/s with the results of the soma at 10 um/s. In addition, the different geometries of the AFM



tips used for testing the different regions of the neurons could potentially cause discrepancies in

the measured response. The sharp tip used to test the processes enables probing of more local

properties, when compared to the more global properties measured with the large spherical

probe. Based on these results, the neuron processes and soma appear to have properties of a

similar magnitude and it is arguable that a similar material model could be used to represent all

regions of the neuron.
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Figure 4-6: AFM data (black) and elastic model fit (red dashes) for neuron soma indented at 10
pm/s (A) and 1 sm/s (B). Young's Modulus values used for fitting were 725 Pa at 10 sm/s and
350 Pa at 1 sm/s with the cells assumed to be incompressible with a Poisson's ratio of 0.5.

4.3 Astrocyte Results

The dynamic astrocyte responses shared similar qualitative trends with those observed for

neurons, showing non-linearities, hysteresis, and time and rate dependencies. However, there

were notable quantitative differences in the measured response between neurons and astrocytes.

The characteristics of the astrocyte response are shown for a single representative astrocyte of

radius 18 pm and height 5 pm in Figure 4-7. While these qualitative trends held across all cells

tested, like neurons, astrocytes showed considerable variation in force response as shown by the
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standard deviation in Figure 4-8. Astrocytes also had considerable geometry variation with a

mean measured height of 5.34 +/- 1.28 pm and a radius of 15.53 +/- 3.97 pm (mean +/- standard

deviation).
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Figure 4-7: AFM data for a representative astrocyte of diameter 36 pm and height 5 pm. (A)
Force versus displacement response at the 3 consecutive loading rates of 10 pm/s (blue dash-
dot), 1 pm/s (cyan dash), and 0.1 pm/s (red solid). (B) Force versus time response.
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The same constitutive model used to characterize the neuron response also accurately

captured the response measured for astrocytes when calibrated with the set of material

parameters listed in Figure 4-8. Both the AFM results and the resulting model parameters

suggest that astrocytes are more elastic than neurons, exhibiting less rate effects as well as

increased elastic parameters and decreased viscous contributions. Astrocyte responses were

found to be less rate-dependent than neuron responses where the AFM force for the low-rate

cycles is more significantly reduced for the neuron population, and the equilibrium response in

relaxation is much lower than the peak force. This is reflected by differences between the

optimized material parameter values shown in Figure 4-3 and Figure 4-8, where the ratios of

viscoelastic to instantaneous moduli (GO/po and G./po) were found to be significantly higher for

astrocytes. To our knowledge, this is the first time this trend has been reported in quantifiable

terms.
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Figure 4-8: Average force versus time response for 37 astrocytes (black line) with plus and
minus standard deviations (grey line); and model fit (red dashes) to average response. Material
parameters obtained by fitting the force-indentation response to the average experimental
response were found to be: pe = 13 Pa, XL = 1.08, Go = 275 Pa, G. = 80 Pa, rj = 300 Pa.s, o. =
0.005 Pa, and n = 0.80. K was held constant at 10,000 Pa.
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4.4 Discussion 5

This study uncovers novel features pertaining to the large strain dynamic response of single

primary neurons and astrocytes of the neonatal rat cortex and presents a general framework for a

constitutive model in quantitative support of these observations. It is, to our knowledge, the first

reported body of experimental measurements on the nonlinear, hysteretic, viscous behavior of

single neurons (both somata and processes) and astrocytes at finite deformation. The cell

response was characterized over three orders of deformation rate magnitude (10, 1 and 0.1 sm.s-

1) to either 1 pm (astrocytes) or 2 stm (neuron soma) indentation depth (corresponding to a

pseudo-compression nominal strain of 15 to 40 %) in load, unload and relaxation according to

decreasing and increasing orders of deformation rates (10, 1 and 0.1 pm.s-1 for N = 87 neurons;

0.1, 1 and 10 pm.s-1 for N = 10 neurons; 10, 1 and 0.1 im.s-1 for N = 37 astrocytes). In addition,

the response of the neuron processes was measured at 10 and 1 sm.s-1 for N=25 processes.

Although quantified with a simplistic model, when compared to neuron soma modeled in a

similar manner, results suggest the response of the soma and processes to be of the same order of

magnitude and that a similar model can arguably account for the response of all regions of the

neurons. The cell response for both neurons and astrocytes was found to exhibit substantial

hysteresis, significant strain and strain-rate dependent nonlinearities, and marked long-term time

dependencies. Given the characteristic length scale at which cell properties were probed, it is

difficult to tease out information about the sub-cellular, structural basis of the various response

features. However, it may be speculated that intermediate filaments and actin filaments are the

main contributors to the nonlinear strain dependencies observed at the soma level, as

substantiated by previous mechanical investigations on these cytoskeletal components [142, 181,

s Section 4.4 is adapted from [76] Ibid. with permission from Elsevier
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182]. Key observations in the response at the single cell level (nonlinearities, hysteresis and

time-dependencies) mirror those reported by several investigators at the cortical tissue level

[175, 183, 184] and might pave the way for a unified understanding of the mechanical dynamics

unfolding from the tissue level down to the cell level in response to mechanical insults. The

corollary observation that the rate effects remain significant upon reversal of the deformation

rate order in neurons suggests that the dynamic response features measured reflect intrinsic

mechanical properties of the cell rather than manifestations of active cellular processes such as

cytoskeletal rearrangement (although the involvement of the latter processes cannot be

excluded). The present testing protocols may also be adapted/refined to characterize the dynamic

properties of other neural and glial cell types and/or sub-cellular regions, thereby providing

potentially unique insights into mechanically mediated biological responses of single neural cells

under complex regimes of deformation. Among the limitations of the current experimental study,

we note that the volumetric compliance of the cell and its response in other modes of

deformation (tensile, shear) were not investigated. Further, the current experimental method

relied on cells plated in vitro on two-dimensional, hard substrates. We cannot exclude the

possibility that the properties hereby collected differ from those actually encountered in a full

three-dimensional environment in vivo. This limitation is addressed in more depth in Chapter 5.

In addition, some significant variations in the mechanical data collected (e.g. peak forces and cell

compliances at large strains) were observed within the neuron and astrocyte populations

considered. These differences may be attributed to numerous factors including: potential

inaccuracies in the cell-cantilever contact point determination, disparities in cell body

geometrical features, variations in cell/substrate contact surface area and adhesion conditions,

intrinsic biological differences (cell types, development stages) in the cell population considered,



and variation in initial point of contact relative to the nucleus (which has been shown to be stiffer

than its cytoplasmic counterparts [185, 186]). These sources of variation may make for

interesting avenues of investigation to be explored in future studies. In particular, addressing the

question of whether substantial differences in neuron properties exist across brain regions might

help unravel the cascade of damage mechanisms suspected to unfold within the brain following

the imposition of external mechanical transients.

The constitutive model proposed for the homogenized cell response, following previous

continuum developments undertaken at the tissue level [175], was able to capture all major

complexities of the cell response, for both neuron somata and astrocytes, in load, unload, reload

and relaxation, via a relatively low number of material parameters. Although phenomenological,

the model yielded quantitative assessments of different aspects of the cell response to

deformation - e.g. elastic resilience at low to large strains, rate sensitivities in the quasi-static to

dynamic regimes. The instantaneous elastic response was found to be well captured by a

nonlinear hyperelastic formulation based on a freely-jointed chain model, while viscous

relaxation was found to be associated with multiple mechanisms, with at least two characteristic

times (- 1 s and 100 s for neurons) necessary to account for the observed response within the

probed range of deformation rates. As refined indicators of cell dynamics, the complete set of

model parameters may also elicit subtler discriminations between cell types (as described here

for cortical neurons and astrocytes) within and across brain regions, and allow for the

establishment of susceptibility-to-damage maps at the mesoscopic level. The differences in

material properties for neurons and astrocytes provide support that methods developed in this

chapter can detect differences between populations of cells in the brain and may provide insight

into how different cell types respond to mechanical trauma. These latter considerations may be



of particular significance as the potential existence of differential patterns in cell propensity for

damage has been substantiated in recent years by observations of consistent mechanical

heterogeneities within brain subregions [187]. The current constitutive formulation remains,

however, reductive in its simplistic view of the cell as a single, isotropic continuum. The

proposed modeling effort must therefore be considered as a preliminary set of constitutive

framework developments - potentially enabling the establishment of local stress-strain maps at

the cell level - on which structurally based multi-scale model refinements may be built.

4.5 Summary

The work presented in this chapter provides the first substantial quantitative set of mechanical

measurements conducted at large strains on single neurons and astrocytes. The constitutive

model proposed in support of these observations represents a critical first step towards the

development of multi-scale models that may be used to study and simulate the effects of

macroscopic mechanical transients on the local cell environment. In addition, it highlights a key

difference between neuron and astrocyte response, namely, the fact that astrocytes were found to

be more elastic than neurons, as characterized by the 8 material parameters.



Chapter 5

Effect of Substrate Stiffness on Neuron

and Astrocyte Response

5.1 Introduction

Building on work from Chapter 4, in this chapter the hypothesis that the material properties of

the substrate can influence the mechanical response of neurons and astrocytes is tested. While

changes in morphology, cytoskeletal content, and adhesion have all been investigated for

neurons and astrocytes grown on substrates of varying stiffness (as described in depth in Section

2.2), to our knowledge, no one has investigated how the material properties of neurons and

astrocytes change in response to changes in their substrate stiffness. Changes in cytoskeletal

content often correspond to changes in cell material properties. In addition, experiments on

fibroblasts, which show similar morphological changes to those of astrocytes when grown on

different substrates [124], show that fibroblasts alter their stiffness to match that of their
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substrate, with levels of F-actin increasing with gel stiffness [188]. This suggests there could be a

significant effect of substrate stiffness on measured astrocyte stiffness. By growing neurons and

astrocytes on polyacrylamide gels of different stiffness, substrate dependent changes in AFM

force response were measured. To our knowledge, these results represent the first quantitative

analysis of how material properties of neurons and astrocytes change depending on the stiffness

of their substrate.

5.2 Results

AFM characterization of the gel substrates showed the properties of the gels to be consistent

across different regions of a single gel and across different sample preparations as shown by the

mean and standard deviations in Table 3-2. The Hertz model for a spherical indenter accurately

fit the data for all of the gels, with a sample fit for data from Gel 1 shown in Figure 5-1 A. In

addition, testing with the same loading protocol used on cells (i.e. at 10 [tm/s, 1 pm/s, and 0.1

[tm/s and in relaxation), supported our choice to model the gels as elastic materials, defined by a

Poisson's ratio and Young's modulus. As shown for a sample Gel 3 in Figure 5-1 B, very limited

rate effects were observed over the span of the loading rates used in the cell experiments with the

force reaching almost the same peak level at all 3 loading rates. In addition, limited relaxation

occurred in the stress relaxation segment.

Results for experiments controlling for the effects of labeling the cells for confocal

imaging, in which neurons and astrocytes grown on glass were tested both with and without the

addition of dye, show that the dye did not noticeably alter the measured force response of either

neurons or astrocytes. As shown in Figure 5-2, both the mean and standard deviation of the

response for astrocytes (Figure 5-2 A) and neurons (Figure 5-2 B) remain very similar with the



addition of dye, and any observed differences are well within the observed scatter in the

experiment for the given sample sizes. This verifies that the properties measured with dye under

the described experimental conditions are what would be expected for unlabeled cells and

supports the use of the described methodology.
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Figure 5-1: (A) Sample Hertz fit for a representative Gel 1 (AFM data- black dots; Hertz model
fit- red solid). (B) Representative Gel 3 tested using cell loading routine at 10, 1, and 0.1 pim/s
and in relaxation (to a depth of 0.8 pm).

Force response for astrocytes and neurons showed some key differences. As described in

Chapter 4 for studies on glass, the response of astrocytes grown on gels showed less rate effects

than neurons, suggesting astrocytes to be more elastic than neurons. In addition, astrocytes were

considerably more sensitive to substrate stiffness than neurons. Astrocyte AFM indentation data

reached significantly lower forces for cells grown on Gels 1, 2, and 3, while the response of

astrocytes grown on Gel 4 was more similar to that of astrocytes grown on glass (Figure 5-3 A).

In contrast, the change in force response for neurons was considerably smaller, with no drastic

changes in force levels observed (Figure 5-3 B). To quantify the significance of the observed

dependence of force response on substrate stiffness, a one way Anova followed by multiple

comparison test was run to compare the maximum force reached in the first 10 pm/s loading
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Figure 5-2: Dye versus no dye AFM force vs. time data for astrocytes (A) and neurons (B).
Mean response for cells with no dye is shown in red with +/- standard deviation in grey
(Astrocytes N=9; Neurons N=9). Mean response for cells with dye is shown in black dashes with
+/- standard deviation in blue (Astrocytes N=37; Neurons N=15).
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Figure 5-3: Force versus time response for astrocytes (A) and neurons (B) grown on gels of 4
different stiffnesses and glass (glass > Gel 4 > Gel 3 > Gel 2 > Gel 1) show astrocyte response to
be more dependent on changing substrate stiffness with two groups emerging (Glass and Gel 4)
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ramp for cells grown on the different substrates. This showed astrocytes grown on Gel 4 to reach

a significantly higher force than those grown on Gels 1, 2, and 3 with P < 0.001 (Figure 5-4 A).

There were no statistical differences between maximum force reached between Gels 1, 2, and 3.

For the maximum force in the neuron response, no statistically significant differences were found

between cells grown on any of the gels (Figure 5-4 B). In addition, as described previously by

others [122-124], confocal imaging showed the astrocytes changed morphology on different

substrates, taking on a larger, more spread shape on stiffer substrates and a smaller, more

rounded morphology on soft gels. This morphology change is shown in representative confocal

images in Figure 5-6 A, B, C, D, E as well as in the cell dimensions in Figure 5-5 B and Table 5-

1 in which average radius is shown to increase with increasing gel stiffness. Mean height and

radius values as well as the scatter in the measurements are similar for astrocytes on Gels 1, 2,

and 3 as shown in Figure 5-5 B. However, astrocytes grown on Gel 4 have an additional

population of cells that have much greater radii values, growing even more spread than the

astrocytes grown on glass. This suggests that despite using the same concentration of cell

adhesion molecule (poly-D-lysine) on all substrates, the properties of Gel 4 favor more astrocyte

spreading than the properties of glass. This suggests a substrate of intermediate stiffness for

maximal astrocyte spreading. In contrast, neuron morphology remained similar on all substrates

as shown by confocal images in Figure 5-6 F, G, H, I, J and height and radius values shown in

Figure 5-5 A and Table 5-1.

Although, astrocytes grown on stiff substrates were mostly spread and those grown on

softer substrates were predominately rounded, some rounded astrocytes were observed on stiff

gels and some spread astrocytes were found on soft gels (as shown by the scatter in Figure 5-5

B). To determine if rounded astrocytes grown on Gel 4 have a similar mechanical response to



those grown on softer substrates, astrocytes from Gel 4 were divided in to two groups based on

the ratio of their height to radius. Astrocytes with a ratio greater than 0.7 were considered to have

a more rounded morphology (Figure 5-7 D), whereas those with a ratio less than 0.7 were

classified as being more spread (Figure 5-7 C). Results from this classification show that

astrocytes grown on Gel 4 with a more rounded phenotype have a lower AFM force response

than those classified as spread (Figure 5-7 A, B). The maximum force reached during the first 10

pm/s loading were statistically different with a P < 0.001 (Figure 5-7 E). In addition, the

response for the rounded astrocytes on Gel 4 is very similar to that observed for astrocytes grown

on Gels 1, 2, and 3.
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Figure 5-5: Scatter in height and radius measurements for neurons (A) and Astrocytes (B) grown
on different substrates; values obtained from confocal images.

Neurons Astrocytes

Cell Gel 1 Gel 2 Gel 3 Gel 4 Glass Gel 1 Gel 2 Gel 3 Gel 4 Glass
Dhnensions _______1761

Height 8.89 8.47 8.99 8.76 7.9 9.10 10.26 8.65 8.107 5.34

(sm) +/- +/- +/- +/- +/- +/- +/- +/- +/- +/-
1.66 1.82 1.17 1.63 2.0 2.21 2.80 2.44 2.71 1.28

Average 6.50 6.64 7.39 7.67 8.4 11.05 11.60 12.32 22.07 15.53
Radius +/- +/- +/- +/- +/- +/- +/- +/- +/- +/-

(sm) 0.86 1.14 1.38 1.17 1.05 4.64 3.25 3.92 10.52 3.97

Table 5-1: Dimensions of neurons and astrocytes grown on substrates of varying stiffness (mean
+/- standard deviation) obtained from confocal images.
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A B

Figure 5-6: Sample morphology of astrocytes grown on (A) Gel 1, (B) Gel 2, (C) Gel 3, (D) Gel
4, and (E) Glass, and neurons grown on (F) Gel 1, (G) Gel 2, (H) Gel 3, (I) Gel 4, and (J) Glass;
all scale bars 20 pm.
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Figure 5-7: AFM force response for astrocyes grown on Gel 4 classified as having a rounded
(A) or spread (B) morphology based on height/radius ratio. (Mean=black line; standard
deviation= grey line; rounded N=8; spread N=19). Sample astrocytes classified as spread (C) and
round (D). (E) Box plot showing the maximum force reached during the first 10 tm/s loading.
Force for round and spread are statistically significant with P < 0.001.

Results of simulations including both the cell and gel substrate showed that the

previously described constitutive model [76] can also accurately capture the response of cells
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grown on soft substrates. Due to the similarities between the neuron data for cells grown on

different substrates, the parameters obtained in Chapter 4 for neurons grown on glass were

initially used in the simulations of neurons on gels. This showed that with no parameter changes

the model provided a sufficient approximation of the neuron data (Figure 5-8). For neurons

grown on all gels, the model response obtained with the glass parameters falls close to within

one standard deviation of the mean. Considering the spread in the data and the small sample

sizes, these fits help support the conclusion that neuron properties do not change considerably

with their substrate. Next, the mean AFM data for neurons grown on each gel was used to

recalibrate the model and yield parameters representing neurons grown on each gel. The

resulting optimized fits and parameters are shown in Figure 5-9 and Table 5-2. The resulting

spread in parameter values is well within the range obtained for individual neurons grown on

glass (Table 4-1). In order to attempt to find an average set of parameters that could represent

neurons on all substrates, the parameters obtained for neurons grown on all 5 substrates were

averaged and used to simulate the neuron response on each of the gels as shown in Figure 5-10.

This set of parameters provides higher quality fits than the parameters obtained for neurons

grown on glass and is able to approximate the response for neurons on all substrates.

Neurons

Parameters Gel 1 Gel 2 Gel 3 Gel 4 Glass [76] Mean
G. (Pa) 55 75 85 85 75 75

n 1 1 1 1 1 1
a. (Pa) 0.007 0.005 0.005 0.005 0.005 0.0054
'%L 1.05 1.06 1.069 1.07 1.05 1.06
p._ (Pa) 13 13 14.1 11 16 13.4

n (Pa.s) 5000 3000 2050 1700 3000 2950
G. (Pa) 30 50 75 80 40 55

Table 5-2: Model parameters obtained by calibrating simulated response to mean AFM force
data for neurons grown on different substrates. K was held constant at 10,000 Pa for all
simulations.
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Figure 5-8: Neuron response and simulation results for cells on (A) Gel 1, (B) Gel 2, (C) Gel 3,
and (D) Gel 4. Mean AFM data shown in black with +/- standard deviation in grey and
simulation results with parameters obtained from fitting mean response on glass (Chapter 4). p =
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Figure 5-9: Neuron response and simulation results for cells on (A) Gel 1, (B) Gel 2, (C) Gel 3,
and (D) Gel 4. Mean AFM data shown in black with +/- standard deviation in grey and
simulation results with parameters calibrated to data for each gel and listed in Table 5-2.
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A similar analysis was performed for astrocytes. As an initial test, simulations for

astrocytes grown on each gel were run using material parameters obtained in Chapter 4 for

characterizing the astrocyte response on glass. The simulation results and corresponding AFM

data are shown in Figure 5-11. Interestingly, the parameters for glass are able to approximate the

astrocyte response, including the significant decrease in force levels for astrocytes grown on Gels

1, 2, and 3, with the simulation results falling within one standard deviation of the mean for all

substrates. This suggests that the shape change associated with softer substrates is more

important in the observed changes in force response than the material properties of the

astrocytes. In order to obtain a sense of the parameter variation required to obtain quality fits,

mean data for astrocytes grown on each substrate were used to calibrate the model and yield sets

of parameters for astrocytes grown on each substrate as shown in Figure 5-12 and Table 5-3. In

order to attempt to find a set of unified parameters to represent astrocytes grown on all

substrates, the simulations were run with the material parameters taken as the mean of the

parameters obtained by fitting force response on each substrate (mean in Table 5-3). These

results are shown in Figure 5-13.

Astrocytes

Parameters Gel 1 Gel 2 Gel 3 Gel 4 Glass Mean
G. (Pa) 240 200 240 275 275 246
n 0.90 0.75 0.92 0.80 0.80 0.83
a. (Pa) 0.005 0.005 0.005 0.005 0.005 0.005
%L 1.08 1.08 1.09 1.08 1.08 1.082

s. (Pa) 14 17 12 15 13 14.2
71 (Pa.s) 300 300 300 300 300 300
G. (Pa) 70 110 70 180 80 112

Table 5-3: Model parameters obtained by calibrating simulated response to mean AFM force
data for astrocytes grown on different substrates. K was held constant at 10,000 Pa for all
simulations.
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Figure 5-11: Astrocyte response and simulation results for cells on (A) Gel 1, (B) Gel 2, (C) Gel
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simulation results with parameters calibrated to data for each gel and listed in Table 5-3.
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for all substrates (Listed as mean in Table 5-3)
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To further investigate if morphology alone accounts for the observed changes in force

response, the data for astrocytes grown on Gel 4 was separated into round versus spread

populations as in Figure 5-7. Two new model geometries were created to match the average

height and radius measured for both astrocytes classified as rounded and astrocytes classified as

spread. The simulations were run using both the mean material properties and those obtained for

fitting the average response of all astrocytes grown on Gel 4 (from Table 5-3). Rounded

astrocytes were measured to have a height of 11.11 +/- 2.18 pm and a radius of 11.44 +/- 4.34

stm (mean +/- standard deviation). More spread astrocytes had a height of 6.95 +/- 2.03 and a

radius of 26.77 +/- 9.71 Rm. Results of the simulations showed that just changing the

morphology in the model could account for the decreased force levels reached in the rounded

cells (Figure 5-14). While there is error in the fits obtained with theses sets of parameters, with

the simulations actually exhibiting a larger change in force levels than was measured in the

experiments, considering the small sample size of rounded astrocytes grown on Gel 4 (N=8) and

the fact that the simulations fall within 1 standard deviation of the mean, the simulations provide

a sufficient approximation of the actual data for both sets of parameters tested and suggest that

the changing morphology is mainly responsible for the changes in measured force response.

5.3 Discussion

This study investigates the influence of substrate properties not only on cell morphology, but on

the cell material properties as well. Interestingly, while we noticed significant changes in the

AFM force response of astrocytes grown on soft gels, simulations showed changing astrocyte

morphology was more critical in accounting for this difference than changing cell material

properties. When material properties were held constant at those obtained for astrocytes grown
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on glass and cell geometry was changed to take on the more rounded phenotype observed on soft

gels, the model also predicted a decrease in force levels. In contrast for neurons, no significant

changes were observed in material properties or geometry. While morphological changes have

been observed for neurons on different substrates [122, 125, 127], these changes were primarily

in the growth cones and processes, which could explain why no changes in force response were

detected at the soma level in our study. This work provides an important expansion on our

previously published work on neurons cultured on glass substrates [76]. It greatly expands the

applicability of our cell model, yielding parameters for the material properties of both neurons

and astrocytes on a variety of substrates and indicating the importance of cell morphology on

measured force responses.

These results provide support for our choice to analyze the AFM force data in such a way

that cell morphology was taken into account. The finite element framework selected in this study

enabled both cell morphology and cell material properties to be varied, leading to the conclusion

that changing astrocyte morphology played a critical role in the observed changes in force

response. This also suggests that further model refinements to more accurately represent the cell

geometry instead of treating cells as ellipsoids may have a noticeable effect on the outcomes of

the simulations. Further refinements in model geometry can be accomplished by using the

geometries obtained from the confocal Z-stacks of each cell taken at the time of AFM

indentation.

These findings also have important implications for studying TBI in vitro at the cellular

level. In terms of developing accurate single cell and multi-scale models of mechanical loading,

our results highlight the importance of selecting appropriate cell geometries to represent the cell

in an environment relevant to the simulations. This is especially important when studying
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astrocytes, which we showed to be more sensitive to changes in their environment than neurons.

In the case of TBI and development of models of brain injury transients, it is essential to use

properties and morphologies of cells measured on soft substrates to best mimic the conditions

present in soft brain tissue.

Furthermore, for the development of relevant in-vitro experimental models to investigate

the pathways, criteria, and thresholds of cell injury, it is necessary to select a substrate or matrix

closely mimicking the mechanical properties of in-vivo conditions. For the case of astrocytes, the

significant changes in force response and cell morphology demonstrate the importance of

substrate selection in order to ensure an in vitro experiment is as biologically relevant as

possible. Models in which the cells are grown in 3D cultures in compliant gels or in 2D on soft

substrates are likely to be more relevant injury models. Systems that damage cells in 3D cultures

such as that used by La Placa and Cullen et al are more likely to measure damage in cells with

realistic morphologies [161, 163, 166]. In addition, testing the cells in a similar mechanical

environment to what would be expected in vivo should yield more realistic injury thresholds and

deformation profiles.

Other models such as uniaxial or biaxial stretch models offer interesting results, but our

results raise questions as to the physiological relevance of the morphology and force response of

CNS cells in those culture systems. For example, the material properties of cultured cortical

astrocytes have been shown to decrease after injury in a stretch model in which cells were grown

on silicone-based elastic membranes for 2 weeks prior to testing [7]. However, in order to fully

understand this observation and its meaning for in vivo damage, it would be ideal to test the

astrocytes on softer substrates on which the cells are more likely to exhibit similar responses to

those observed in vivo. Changes in morphology and cytoskeletal structure observed on soft
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substrates are likely to have an influence on how cells respond to stretch injury, especially when

a measured outcome of the experiment is changes in cell material properties.

5.4 Summary

By growing cortical neurons and astrocytes on substrates of different stiffness, to our knowledge,

the first quantitative analysis of how substrate properties influence the mechanical properties of

neurons and astrocytes is presented. This work shows that force responses of astrocytes are very

dependent on their substrate; however, changing morphology is able to account for much of the

observed changes in force response. In contrast, neurons are not significantly affected by the

properties of their substrate. In addition, the results of this chapter provide an expanded set of

model material parameters to accurately represent neurons and astrocytes grown on a range of

substrates. This work has important implications, not only for the development of multi-scale

models, but also for the design of realistic in vitro cell damage systems.
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Chapter 6

Design of Damage Devices

6.1 Introduction

In light of the data presented in section 2.1 on the prevalence of mild TBI in the military

population for the recent conflicts in Iraq and Afghanistan, there is a pressing need for systems

capable of creating mild TBI in vitro at the cellular level that share characteristics of damage

with that found in vivo. Such systems enable controlled testing of the involvement of different

cell types and measurement of cellular damage thresholds. In addition, they enable initial

screening of potential therapeutics. As part of this thesis, two damage systems were developed to

study the effects of traumatic brain injury at the cellular level in vitro. Both of these systems are

capable of subjecting cell cultures to either single pulses or to a series of pulses, as well as to

loading of different magnitudes. One system subjects the cell cultures to compressive loading,

which is likely to have similarities to TBI from a blunt impact. The other system sends a shock

wave through the cell cultures, simulating the causes of primary blast traumatic brain injury.
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Development of a system to simulate a shock pressure transient at the cell culture level is a

necessary advancement to provide a simplified experimental system, enabling better

understanding of what happens at the cellular level after an explosion.

Both of these damage systems utilize cells grown in 3D collagen gel cultures. Based on

our findings in Chapter 5, soft collagen gel should create an environment in which cell

morphology and force response are similar to what is found in vivo in the soft brain tissue

environment. In addition, using the same culture construct with two different damage devices

and types of mechanical loading enables the comparison of different types of TBI and

investigation into whether or not the same signaling cascades and pathophysiological responses

are elicited after mechanical loading transients with significantly different characteristic times.

Work done in this thesis provides a full characterization of the loading profiles of each device as

well as their compatibility with cell cultures. To further characterize these devices and determine

if they accurately reproduce key signaling pathways implicated in animal models of TBI, an

ongoing collaboration was formed with the laboratory of Dr. Michael Whalen of the

Neuroscience Center at Massachusetts General Hospital to directly compare results of damage

with our cell culture systems with that found in their in vivo mouse models of TBI.

6.2 3D Cell Cultures

Cell culture constructs were created as a two-layer collagen gel, with the thick, lower layer

consisting of unseeded collagen and the thin, top layer containing the cells (Figure 6-1). This

arrangement was selected to provide a sufficiently thick specimen for mechanical loading, but a

thin enough gel environment around the cells to ensure adequate diffusion of nutrients. In

addition, the gels are compatible with pure neuron, astrocyte, and microglia cultures, as well as
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with co-cultures containing any combination of the three cells types. This enables investigation

of how the different cell types in the brain respond to mechanical loading and whether a single

cell type is enough to elicit a damage response similar to that found in vivo, or if all cell types

must be present together to enable the complex signaling network and damage markers.

Tin Layer with Cells
Thick Layer with no Cells

Figure 6-1: Collagen gel cell culture system consisting of a thin upper layer containing cells and
a thick lower layer with no cells.

Collagen gels were created with rat-tail collagen type 1 in acetic acid (354236, BD

Biosciences, San Jose, CA) following the manufacturer's instructions for creating a 1 mg/mL

collagen gel. This concentration of collagen was selected to form a gel that was stiff enough to

enable gel manipulation but still soft enough (with a modulus less than brain tissue) to enable

long neuron process formation (based on studies finding lower concentrations of collagen to

favor neurite outgrowth [189, 190]). Collagen gels at room temperature, thus prior to starting gel

preparation all reagents were placed on ice. Each batch of collagen stock solution has a different

starting concentration and amounts had to be adjusted accordingly for each batch of collagen.

For a 3.68 mg/mL collagen stock solution used to create 10 mL of 1 mg/mL collagen gel, 1 mL

lOX PBS, 62.5 pL 1 N sodium hydroxide, and 6.22 mL sterile filtered distilled water were added

to a 15 mL tube and mixed well. While being careful to not let the solution warm up, 2.72 mL

collagen was added and mixed gently by inverting the tube. The solution was returned to ice

prior to addition to the well plates and remained stable for up to 3 hours.

To create the thick bottom layer, the 1 mg/mL collagen solution was plated in either a 24

well plate for compression studies or a 6 well Flexcell plate for blast studies. For compression
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studies, 500 ptL of collagen solution were added to each well and for blast studies, 2 mL of

collagen solution were used. The resulting gels were placed in a 37 *C incubator and allowed to

gel for 8 h prior to adding the top, cell-containing layer. To create the thin top layer containing

cells, collagen solutions were prepared as described for the thick layer, with cell suspensions

added after the addition of the collagen stock solution. To ensure the gel still set properly, cell

suspensions made up less than 10% of the total gel solution. For compression studies, 250 tL of

the collagen solution containing cells were carefully added to the top of each hardened thick gel.

For blast studies, 1 mL of the collagen solution containing cells was added to the set gels in the

Flexcell plates. The gels were returned to the 37 *C incubator and allowed to gel. After 2 h,

media was gently added to each well. Media was changed every 3-4 days.

Figure 6-2: Confocal image of representative gel, containing both neurons and glia, showing
cells are in close proximity and able to contact and communicate with one another. The
cytoplasm is stained with calcein-AM (green) and the nuclei with Hoechst (blue).
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Cell suspensions were obtained as described in section 3.2.1. For pure neuronal cultures,

cells were used immediately after dissociation and grown in serum free media (Neurobasal

supplemented with IX B27 and IX Glutamax). Neurons were maintained in culture for two

weeks to enable growth of long processes and formation of synapses. Glia were first grown in

culture flasks to obtain pure cultures prior to seeding in the gels. Confocal imaging of gels

containing both neurons and glia showed that cells were in close proximity and able to contact

and communicate with one another (Figure 6-2).

6.3 Shockwave device

In order to simulate primary blast injury at the cellular level, a system was developed to

send a shockwave through cell culture constructs. This system consists of a few key components,

a machine to generate the shockwave, cell culture constructs in Flexcell plates, and a needle

hydrophone and data acquisition system to record the signal as shown in Figure 6-3. The entire

system is placed inside a laminar flow hood to minimize possibilities of contamination (Figure 6-

3 B). Tests are performed in culture medium and the entire damage process takes just a few

minutes ensuring the cells remain outside the incubator for a minimal amount of time. After

testing, cells are immediately returned to the 37 *C incubator.

This system utilizes an EMS Swiss Dolorclast extracorporeal shockwave device (Electro

Medical Systems, Dallas, TX) to generate the shockwave. The Dolorclast device works via

pneumatic generation of a shockwave. Briefly, it uses a compressed air impulse to accelerate a

projectile against the tip of the applicator. When the projectile hits the curved surface of the

applicator, a shockwave is generated and delivered to the cell cultures, as shown in Figure 6-4.

The Dolorclast generates an unfocused, radial shockwave, enabling the shockwave to be
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delivered to a larger area. Characteristic rise times, pressures, and energy levels of the Dolorclast

shockwave are listed in Table 6-1. Chitnis and Cleveland compared the Dolorclast shock device

to two other shockwave therapy devices utilizing electrohydraulic methods of shock wave

generation [191]. They found the Dolorclast to reach lower overpressures and have an increased

duration of the positive phase of the pressure wave. Also they found the peak pressure could be

changed by controlling the energy setting of the Dolorclast device. These characteristics make

the Dolorclast a favorable choice for simulating blast injury in cell cultures.

A B

Figure 6-3: Shockwave system set-up: needle hydrophone, Flexcell plate with cell cultures in
collagen gel, Dolorclast machine coupled to the underneath of well plate with coupling gel, and
computer running data acquisition system.

Cells are grown in collagen gels in Flexcell six-well culture plates (Flexcell international,

Hillsborough, NC) as described in section 6.2. The Flexcell plates contain a silastic membrane at

the bottom of each well. Tissue Train circular foam culture plates coated with collagen are used

in the tests to facilitate gel attachment to the plates. This membrane enables the shockwave to be
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sent from underneath the cell cultures, while minimizing interface changes. The tip of the

Dolorclast gun is coupled to the bottom of the Flexcell well with ultrasound coupling gel. The

coupling gel enables the shockwave to be sent into the well without the applicator tip stretching

the membrane and also helps minimize reflections and loss of signal upon entry of the

shockwave into the cell cultures.

1 APPLICATOR

2 PROJECTILE
3 COMPRESSED-AIR CONNECTOR

Figure 6-4: Mechanism of shockwave generation of Dolorclast machine: a compressed-air
impulse accelerates a projectile in the gun; the projectile contacts the tip of the applicator; the
resulting shockwave is delivered to object in contact with the tip. (Image taken from
http://www.dolorclast.com/page_productinfo-devicebrochure.php)

Parameter Dolorclast Machine
Peak Positive Pressure [MPa] 11.9
-6 dB focal area, f,= fy [mm] 8
-6 dB focal area, fZ [mm] 8
Total energy flux density [mJ/mm2 ] 0.18
Total energy in -6 dB focus [mJ] 5.4
Total energy in 5 mm focal area [mJ] 11.9
Peak negative pressure [MPa] -5.86
Rise time [ps] 3
Compressive Pulse width [ps] 2.5

Table 6-1: Specifications reported on the Dolorclast device. Adapted from Kearney [4].

The pressure profile that the cells experience is recorded via a needle hydrophone

inserted from the top, into the collagen gel. The needle hydrophone selected for this system is an
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HNS needle hydrophone as shown in Figure 6-5 (Onda, Sunnyvale, CA). The needle hydrophone

is compatible with the cell cultures, being both small enough to insert into the gels and working

in the cell culture media. This needle hydrophone has a flat response between 1 and 10 MHz and

it can measure pressures between -10 MPa and 200 MPa. The Dolorclast waveform has a

characteristic frequency of 1 MHz, compatible with the HNS needled hydrophone, however, it

has been shown to also have components as low as 10 kHz [192]. In order to test the

appropriateness of the HNS needle hydrophone for capturing the Dolorclast shockwave, Kearney

[4] also measured the shockwave with a hydrophone with a lower bandwidth spectrum. He found

the two different hydrophones measured similar pressures and characteristic times for the

Dolorclast, suggesting the HNS needle hydrophone is appropriate for capturing the major

components of the Dolorclast Shockwave. The compatibility of the HNS Needle hydrophone

with the cell cultures, as well as its demonstrated ability to capture the key components of the

Dolorclast shockwave make it an appropriate choice for measuring the pressure profile actually

experienced by the cells.

Figure 6-5: Onda HNS needle hydrophone used for measuring pressures in collagen gels. From
http://www.ondacorp.com/images/brochures/OndaHNSDataSheet.pdf
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In order to characterize how the Dolorclast signal is transmitted to different areas of the

culture well, the needle hydrophone was placed at different locations in a Flexcell well

containing PBS and the pressure waves were measured. Results showed that the signal was the

strongest directly above the center of the Dolorclast tip (6-6 A) and the maximum pressure

decreased as the hydrophone was moved towards the edge of the well (6-6 B). It is interesting to

note that even off the edge of the Dolorclast tip, a pressure on the order of 1 MPa was still

recorded (Figure 6-6 C). This suggests that all cells in the culture will experience a shock wave,

with those in the center receiving the greatest pressure.

The signal obtained from multiple consecutive pressure pulses was also characterized in

Flexcell plates containing PBS. Both 2 and 10 consecutive pulses were monitored. The measured

pressures for both 2 and 10 consecutive shocks are shown in Figure 6-7. This characterization

showed the time between pulses to be consistent and each of the pulses to be a true shockwave.

There was some variation between the maximum pressures reached over the 10 pulses. Some of

this variation may have been due to under sampling the signal in order to acquire all 10 pulses,

and the true peak may have not been captured. In addition, there was a small variation in the

timing of later pulses as shown in Figure 6-8 B. The timing of the first pulse (Figure 6-8 A) lines

up over four sample firings, however, by the tenth pulse (Figure 6-8 B) there is variation in firing

times between the four tests. Despite the minor variation, the first and last shockwaves, in a

series of ten, are qualitatively the same, reaching similar pressure levels, lasting for the same

duration, and represent the expected characteristics of a shockwave from the Dolorclast machine

as shown in Figure 6-8 C, D. This characterization shows the Dolorclast can be used to send

either a single shock or a reproducible series of shockwaves into the cell cultures in a short

period of time.
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Figure 6-6: Characterization of the pressure signal measured at different locations in the Flexcell
well in PBS with respect to the tip of the Dolorclast gun: (A) Centered, (B) at edge of tip, (C) off
edge of tip.
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Figure 6-7: Characterization of pressure signal of 2 consecutive pulses (A) and 10 consecutive
pulses (B) in a Flexcell well containing PBS showing the time between pulses and the pressures
reached for pressure trains taken at 15 pulses per second.
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Figure 6-8: Characterization of the change in pressure signal between the first and tenth shock
taken at a frequency of 15 shocks per second in a Flexcell well containing PBS. Zoomed in view
of the first pulse (A) and the tenth pulse (B) in the series for 4 different sequences of 10 shocks
showing the timing of the initial pulse is consistent but there is some variation in the timing of
the tenth pulse, with the sample in blue arriving earlier than the other 3 samples. Zoomed in view
of the first (C) and the tenth pulse (D) for a single pressure measurement showing the change in
pressures reached between the initial and final shock.

In addition, the Dolorclast system has various options for the geometry of the applicator

tip as well as guns of two different powers. Tips are available with different radius, longer shaft

length, and with a concave tip instead of the standard convex tip. These tips increase the

flexibility of the Dolorclast system, allowing administration of shock waves with different

pressure profiles. One tip was of particular interest to our studies, having a longer shaft length. In
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order to characterize how the increased shaft length changed the pressure wave, the pressure

signal was measured in a Flexcell plate containing PBS. When compared with the standard tip,

the longer tip resulted in an elongated shockwave as shown in Figure 6-9. This is of considerable

interest for simulating blast TBI, as the shockwaves resulting from explosions take place on a

longer time scale than the shockwaves generated by the Dolorclast machine. In addition, to

characterize options for changing the maximum overpressure of the device, different magnitudes

of pressure were generated using the higher power gun as well as the normal gun with the output

of the device decreased. These results, shown in Figure 6-10 show that different magnitude

pressures can be obtained by changing the output of the system and by changing between the

normal and high-power guns.

6

4

2

0

-4

-6

-8 -6 -4 -2 0 2 4
Time (ps)

Figure 6-9: Comparison of the shockwave obtained with the standard Dolorclast tip (red) and
with a tip with elongated shaft (black). The longer tip produced an elongated shockwave.
Measurements were taken in Flexcell wells in PBS.
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Figure 6-10: Comparison of the shockwave generated with the high-powered gun (black), the
normal gun (green) and the normal gun at reduced output (red).

The reproducibility of the pressure pulse when switching wells, as would be done during

an experiment shocking cells, was also characterized. This is essential to ensure comparable

pressure profiles are measured after adding new coupling gel and repositioning the gun and

hydrophone in each new well. Results, shown in Figure 6-11, showed that there was some

variation in overpressure, on the order of what was also observed in other experiments in PBS in

a single well, and the timing and qualitative shapes of the shockwaves were the same upon

changing wells.

In order to ensure that the whole system was compatible with cell cultures, that the tests

could be carried out in a sterile manner, and that the shockwave was of an appropriate level to

not cause complete cell death, collagen gels containing astrocytes were tested with the system.

Astrocytes were seeded in the collagen gels and allowed to grow in culture for two days, at

which time shock wave tests were performed. When coupling the Dolorlast tip to the bottom of

the Flexcell plate, care was taken to just come in to contact and not stretch the membrane,
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ensuring the shockwave was the only mechanism of loading on the cell cultures. The needle

hydrophone was placed in the center of the culture well. Experimental culture wells were each

administered one shock, at the maximum energy setting of the Dolorclast machine. Control wells

received no shocks but were loaded in to the testing configuration and remained out of the

incubator for the same period of time. The measured shock waves are shown in Figure 6-12. The

pressure profile was found to be roughly reproducible, reaching similar force levels in each well,

however some variation was observed. After 48 hours, no contamination was observed and a

viability assay was performed to assess general health of the cultures. Calcein-AM was used to

identify live cells and ethidium homodimer 1 (Invitrogen, L-3224) was used to label the nuclei of

dead cells. Results of the viability assay showed that the cells remained viable 48 h after testing

(Figure 6-13). Samples were imaged using a confocal microscope (Zeiss LSM 700, Carl Zeiss

Microimaging) to examine the distribution of cell viability throughout the depth of the gel

construct. The fact that cells remained viable in culture 48 h after damage suggests this system is

ideal to study mechanisms of TBI unfolding in the hours to days after injury. This type of injury

could be characteristic of mild bTBI.

8

6

4-
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-6'
-6 -4 -2 0 2 4

Time (ps)

Figure 6-11: Characterization of the reproducibility of the shockwave when switching between 8
different wells containing unseeded collagen gel and culture media.
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Figure 6-12: Pressure profiles measured in 3 wells containing collagen gels seeded with
astrocytes. The full signal including reflections is shown in (A) and a zoomed in view of the
initial shockwave is shown in (B).

To better validate the shockwave system as a model of TBI, tests are underway in an

ongoing collaboration with the laboratory of Dr. Michael Whalen at Massachusetts General

Hospital to compare the changes in signaling pathways in the cell cultures after blast with

changes identified in mouse models of TBI. Samples of rat cortical neurons, astrocytes, and

microglia as well as co-cultures will be administered different numbers of shock waves and
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frozen at time points up to 24 hours after damage, followed by western blots to assay for

signaling molecules such as TNFa, Akt, and p-S6. These experiments will provide better

validation of our cell damage system as a realistic model of TBI.

A B

C D

Figure 6-13: Viability assay on astrocytes subjected to one shock (A, B) and control samples (C,
D). Live cells labeled with Calcein-AM (Green) and dead cell nuclei labeled with Ethidium
Homodimer 1 (Red).
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6.4 Compression Device

Injury similar to that from an impact was generated in vitro using a compression system. A

custom voice coil device, originally designed for the indentation of porcine tissue was used to

compress the cell cultures. This device consists of a displacement sensor (Transtek, DC-DC

LVDT, Model 243), a voice coil motor (H2W technologies, NCM-05-08-0052JBT), a force

sensor (Honeywell Model 31), and a 14 mm flat indenter tip (Figure 6-14). The displacement

sensor has a working range of 12 mm and the force sensor can measure loads up to 20 N. These

components allow for testing of the cell cultures at rates between 0.01 and 50 Hz at depths

resulting in 15-50 % strain. The entire device can fit into a laminar flow hood (Figure 6-15 A) to

minimize risks of contamination and the tip that actually comes in contact with the cell cultures

can easily be sterilized with ethanol. The 14 mm indenter was designed to fit inside the wells of a

24 well plate, enabling fluid to escape along the sides while still compressing the majority of the

cell construct (Figure 6-15 B).

Displacement Transducer Voice Coil Motor Force Sensor 14 mm
Flat Indenter

Figure 6-14: Schematic of the key components of the custom voice coil device used to compress
cell cultures.

Both the load cell and the LVDT were calibrated. The load cell was calibrated with

known masses in both tension and compression. It was found to be linear for loads between 50

mN and IN. In addition, calibration in both tension and compression was consistent. Force and

displacement measurements for 6 different wells containing collagen gels showed that the device

produced a consistent compression of the cultures at both 1 and 10 Hz as shown in Figure 6-16.
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In addition, reproducible results were obtained for both multi-cyclic loading and for single

cycles. Finally, the reproducible force curves validate the positioning methods for consistently

placing the indenter above the collagen gels upon changing between wells of a culture plate,

ensuring that cell cultures could be reproducibly damaged using this system.

A B

Figure 6-15: Compression device and cell culture set up in the laminar floor hood (A) and being
used to compress cell cultures in a 24 well plate (B).

In order to verify that the device did not cause complete cell death or any contamination

problems, pure neuronal cultures were compressed one time each at 0.1 Hz and 1 Hz to a depth

yielding approximately 20 % strain. Control samples were left out of the incubator during the

tests to control for any damage due to being at room temperature for the duration of the

compression experiment. No contamination was observed after 48 h, at which time a viability

assay was performed using Calcein-AM to identify live cells and ethidium homodimer 1 to label

dead cell nuclei. Epi-fluorescence images were taken at 3-4 locations per gel. Cell counts

suggested a trend of increasing cell death with rate of compression as shown in Figure 6-17.
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Figure 6-16: Reproducible displacement and force profiles obtained for compressive loading of
collagen gels at 1 Hz (A, C, E) and 10 Hz (B, D, F) for 6 wells tested at each rate.
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Figure 6-17: Percent viability for control neuron samples as well as those compressed once at
0.01 Hz and 1 Hz. Data taken from counts of live and dead cells in representative images taken
throughout the collagen gel constructs.

In order to further investigate the compression system, the above experiment was

repeated at faster loading rates and with viability images analyzed with confocal microscopy.

Use of confocal microscopy enabled better visualization of the distribution of cell viability

throughout the depth of the cultures. In this experiment, cultures containing either pure neurons

or both neurons and glia were compressed one time each at either 1 Hz or 10 Hz to a depth of 1

mm (-20% strain). An additional control was added in which some wells were loaded onto the

device and the tip was brought into contact with the gel surface, but no compression occurred. As

before, the other control wells were left out of the incubator and in the laminar flow hood for the

duration of the experiment. Results of viability assays performed with confocal imaging showed

the cell viability patterns remained consistent throughout the depth of the gels for both pure

neuronal cultures at 1 Hz (Figure 6-18 A), 10 Hz (Figure 6-18 B), control with no contact

(Figure 6-18 C), and control with contact (Figure 6-18 D). The same was true for cultures

containing both neurons and glia at 1 Hz (Figure 6-19 A), 10 Hz (Figure 6-19 B), control with no

contact (Figure 6-19 C), and control with contact (Figure 6-19 D). However, there was observed
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variation between different regions of the gels in both the controls and experimental wells. In

addition, due to clumping of cells, obtaining accurate counts of live cells proved difficult.

Despite these limitations, the results show that a percentage of cells in both pure neuronal

cultures and in co-cultures remain viable throughout the depth of the gel, making this an ideal

damage system for studying what unfolds at the cellular level after mild TBI.

To further validate this system, tests will be done with the lab of Dr. Michael Whalen at

Massachusetts General Hospital as described for the blast system. This will enable comparison to

animal models of contusion and concussion, which may be especially relevant to damage caused

by compression at the cell level. In addition, due to utilizing the same cell culture system, results

can be compared to the blast studies to investigate mechanisms of damage from two different

types of loading.

6.5 Summary

In this chapter, two new devices for generating mild TBI at the cellular level were described.

Both devices were shown to produce consistent loading profiles and the typical loads were fully

characterized. In addition, both the compression and shockwave devices were compatible with

cells cultured in collagen gels and the collagen gel culture systems were shown to yield viable

cells throughout the depth of the seeded portion of the gels. The damage systems were also

shown to not cause complete cell death after 48 h, making them ideal systems to study mild TBI

and the events that unfold in the hours to days after trauma that cause the pathopysiological

response characteristic of TBI but do not result in immediate cell death. Finally, these systems

offer great flexibility in experimental design, allowing for testing different loading conditions

(for example: number and magnitude of insult) as well as the response of different types of cells.
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These devices serve as valuable new tools in the study of TBI at the cellular level, and coupled

with the work done in collaboration with Dr. Michael Whalen, will increase the knowledge of

events occurring at the cellular level after injury.

A B

Figure 6-18: Viability assays for neurons deformed to approximately 20% strain at 1 Hz (A) and
10 Hz (B), and for control with no contact (C), and control with contact with gel (D). Live cells
labeled with Calcein-AM (Green) and dead nuclei with Ethidium Homodimer 1 (Red).
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A B

C D

Figure 6-19: Viability assays for co-cultures of neurons and glia deformed to approximately
20% strain at 1 Hz (A) and 10 Hz (B), and for control with no contact (C), and control with
contact with gel (D). Live cells labeled with Calcein-AM (Green) and dead nuclei with Ethidium
Homodimer 1 (Red).
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Chapter 7

Conclusions and Thesis Contributions

This thesis characterizes the biomechanics of cells of the central nervous system and provides

important new tools, both experimental and computational for the quantitative study of traumatic

brain injury in vitro at the cellular level. It fills in major knowledge gaps and advances the field

as outlined below:

- Atomic force microscopy methods were developed to measure the global cell response of

both neurons and astrocytes at loading rates spanning 3 orders of magnitude and under

stress relaxation.

e Single cell finite element models with a rheological material model were developed to

capture the response at three different loading rates as well as during a stress relaxation

test, providing novel single cell models of both neurons and astrocytes capable of

capturing all aspects of the measured force response with a single set of parameters.
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e The AFM experimental methods and computational analysis showed astrocytes to be

more elastic than neurons, as indicated both by the AFM force response and the material

parameters obtained from the calibrated constitutive model. To our knowledge, this

finding has not been reported previously.

e The importance of substrate on the cell response was quantified, showing neuron

response to be relatively insensitive to changes in substrate stiffness whereas astrocyte

response could be classified in to two major groups, characterized by round versus spread

morphology and lower force levels reached during AFM indentation for rounded cells.

Use of finite element modeling and the developed constitutive model showed changes in

cell morphology to account for the bulk of the observed changes in force response, with

the material parameters remaining fairly consistent. This highlights the importance of

designing in vitro studies of TBI to have the cells growing in a realistic mechanical

environment, to ensure both morphology and force response are realistic.

e Systems to damage cells with both compressive loading and shock waves in 3D collagen

gels were developed and characterized, providing new tools for investigating TBI at the

cellular level and in a realistic 3D environment with properties similar to that of soft

brain tissue. These tools are especially useful for the study of mild TBI, as shown by the

cells remaining viable for at least 48 hours after testing. The developed cell damage

systems are currently being tested to see if key signaling molecules identified in rat

models of TBI are also up-regulated in the cell cultures (in collaboration with the lab of

Dr. Michael Whalen at Massachusetts General Hospital).
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