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Abstract

Purpose This research develops a modeling approach and an imple-
mentation toolset to simulate reticular lamina displacement in response
to excitation at the ear canal and to characterize the cochlear system in
the frequency domain.

Scope The study develops existing physical models covering the outer,
middle, and inner ears. The range of models are passive linear, active
linear, and active nonlinear. These models are formulated as differential
algebraic equations, and solved for impulse and tone excitations to deter-
mine responses. The solutions are mapped into tuning characteristics as
a function of position within the cochlear partition.

Objectives The central objective of simulation is to determine the char-
acteristic frequency (CF)-space map, equivalent rectangular bandwidth
(ERB), and sharpness of tuning (QERB) of the cochlea. The focus of
this research is on getting accurate characteristics, with high time and
space resolution. The study compares the simulation results to empirical
measurements and to predictions of a model that utilizes filter theory and
coherent reflection theory.

Method We develop lumped and distributed physical models based on
mechanical, acoustic, and electrical phenomena. The models are struc-
tured in the form of differential-algebraic equations (DAE), discretized in
the space domain. This is in contrast to existing methods that solve a set
of algebraic equations discretized in both space and time. The DAEs are
solved using numerical differentiation formulas (NDFs) to compute the
displacement of the reticular lamina and intermediate variables such as
displacement of stapes in response to impulse and tone excitations at the
ear canal. The inputs and outputs of the cochlear partition are utilized in
determining its resonances and tuning characteristics. Transfer functions
of the cochlear system with impulse excitation are calculated for passive
and active linear models to determine resonance and tuning of the cochlear
partition. Output characteristics are utilized for linear systems with tone
excitation and for nonlinear models with stimuli of various amplitudes.



Stability of the system is determined using generalized eigenvalues and
the individual subsystems are stabilized based on their poles and zeros.

Results The passive system has CF map ranging from 20 kHz at the
base to 10 Hz at the apex of the cochlear partition, and has the strongest
resonant frequency corresponding to that of the middle ear. The ERB
is on the order of the CF, and the QERB is on the order of 1. The
group delay decreases with CF which is in contradiction with findings from
Stimulus Frequency Otoacoustic Emissions (SFOAE) experiments. The
tuning characteristics of the middle ear correspond well to experimental
observations. The stability of the system varies greatly with the choice of
parameters, and number of space sections used for both the passive and
active implementations.

Implication Estimates of cochlear partition tuning based on solution of
differential algebraic equations have better time and space resolution com-
pared to existing methods that solve discretized set of equations. Domi-
nation of the resonance frequency of the reticular lamina by that of the
middle ear rather than the resonant frequency of the cochlea at that posi-
tion for the passive model is in contradiction with Bekesys measurements
on human cadavers.

Conclusion The methodology used in the thesis demonstrate the ben-
efits of developing models and formulating the problem as differential-
algebraic equations and solving it using the NDFs. Such an approach fa-
cilitates computation of responses and transfer functions simultaneously,
studying stability of the system, and has good accuracy (controlled di-
rectly by error tolerance) and resolution.

Thesis Supervisor: Christopher Shera
Title: Associate Professor of Otology & Laryngology and Health Sciences &

Technology
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1 Introduction

Hearing is one of the five major senses in human beings. The auditory system
perceives acoustic vibrations in the air in the range of 20 to 20 kHz, transmitted
through the ear canal to the ear drum (outer ear) and then through a series of
tiny bones (middle ear) to hair fibers in the cochlea (inner ear). The movement
of these hair fibers causes electrical nerve firings to be processed eventually by
the brain.

Study of the auditory system, which is responsible for processing sensory
information, is not only interesting scientifically because of the interconnection
between acoustic, mechanical, and electrical systems, but also because of clinical
purposes.

As hearing is a major human sense, deafness or hard of hearing is a significant
handicap that is high on the priority of health and medicine due to its effect on
social and professional interaction. Deafness is a condition in which the ability
to sense certain frequencies are completely or partially impaired. This can be
due to tearing of the ear drum, damage to the bones, or problems with the
cochlea.

This thesis develops a methodology for auditory physical and system mod-
eling and a toolkit for numerical simulation of the outer, middle, and inner ear
along with their interactions. Our objective is to form a tool to simulate trans-
mission line models of the cochlea in the time domain. We study its validity as
applied to one particular model [22] by performing time domain and frequency
analyses.

The toolset can also be used to validate various physiological hypotheses
regarding nonlinearity in the active cochlea (eg. origin(s), asymmetry of func-
tion) as well as the potential contribution of each of the hypothesized cochlear
amplifier (different ways the outer hair cells OHCs produce forces) on the sharp-
ness of tuning of cochlear filters. Such a system allows researchers to study the
characteristics of the inner ear especially, and examine the nature of otoacoustic
emissions.

1.1 Background

This section provides a background on the auditory system. The anatomy and
physiology of the outer, middle, and inner ears are briefly presented here as
prerequisite material for the literature survey, and subsequent discussion of the
scope of the thesis. In addition, the phenomenon of otoacoustic emissions is
outlined as it provides a major opportunity to examine the auditory system.

1.1.1 Auditory System Anatomy

The auditory system is composed of the outer, middle, and inner ears - as il-
lustrated in Figure 1 (adapted from [30]). The outer ear consists of the pinna,
ear canal 25-35 mm long starting with concha (opening), and the tympanic
membrane (ear drum). The middle ear consists of three bony ossicles (malleus,



incus and stapes) and air cavities opening into pharyngotympanic tube, oval
window at the stapes footplate, and the round window. The inner ear consists
of the labyrinth, which is part of the vestibular system responsible for maintain-
ing the body's balance, and the cochlea, which plays an important role in the
mechanical transmission and neuronal transduction of auditory stimuli [9].

Figure 1: Ear Compartments

The cochlea is a snail-like tube with approximately 2.75 turns. The end with
the oval and round windows is the 'base' and the other end is the apex. The
tube consists of three channels (scala vestibuli, scala tympani, scala media)for
most of its length, as illustrated in Figure 2 (adapted from [30]).

A cross section of the cochlea is shown in Figure 3 (adapted from [6]).
The outer channels, the scala vestibuli and scala tympani, are filled with an
incompressible fluid called perilymph, and the inner channel, the scala media,
is filled with a fluid known as endolymph. At the base, the scala vestibuli opens
into the middle ear through the oval window and the scala tympani is connected
to the middle ear via the round window. At the apex of the cochlea, the fluid
of the scala vestibuli and the scala tympani are continuous. There is a small
hole at the apex known as the helicotrema through which the perilymph fluid
can flow.

The three channels are separated by Reissner's membrane and the basilar
membrane. Reissner's membrane separates the scala vestibuli from the scala
media, and is flexible and distortable. Therefore, the Reissner's membrane is
generally not included in mechanical, fluid flow, and acoustic models. The
basilar membrane is much less distortable in comparison, and is thought to
contribute greatly to the tuning along the cochlea [9].

Upon the basilar membrane (BM), sits the organ of corti which consists
primarily of the rods of corti, the outer hair cells, and the inner hair cells which
convert the signal into neuronal signals that are then transmitted to the auditory
faculty in the brain. This is illustrated in Figure 4. The corti contains four rows
of hair cells, above which is the tectoral membrane. There are around 16,000
- 20,000 hair cells distributed along the basilar membrane. Each hair cell has
about 100 tiny stereocilia of different heights aligned in the order of height on
its apical surface, which are leaning on each other in a canonical bundle in the
absense of sound waves. This is pictured in Figure 5 (adapted from [6]).

........... .... ........... -- I - ........... .. ............. ...............................
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Figure 5: Stereocilia

1.1.2 Auditory System Physiology

An acoustic signal is focused into the concha by the pinna, and transmitted
through the ear canal. The ear canal has a resonant frequency of 4 kHz, and
the outer ear amplifies hearing sensitivity by a factor of 2 or 3.

The signal is then transformed into bone vibrations as it is transmitted
through the bones in the middle ear. The middle ear amplifies the sound thir-
teen times by utilizing the lever effect of the malleus and incus, and also the
area difference between the tympanic membrane and the stapes footplate. The
lever is adjustable under muscle action and may actually attenuate loud sounds
greater than approximately 75 dB for protection of the ear. As the impedance of
the air route is much higher than that of the ossicles, sound is generally assumed
to travel only through the ossicles and the air cavities are ignored [8].

The foot of the stapes applies a time-varying pressure to the oval window
that is connected to the scala vestibuli at the base of the cochlea. The signal
is therefore converted into fluid compressions of the perilymph. The acoustic
perilymph vibrations originate from the oval window and pass through the scala
vestibuli, around the helicotrema and into the scala tympani. These fluid com-
pression waves are then converted to energy at the base of the cochlea that
causes the round window to bulge in and out.

When the fluid compression and rarefaction waves travel through the per-
ilymph, they cause a pressure difference across the cochlear partition between
the two perilymph compartments. This causes the BM to bend near the base of
the cochlea (near the oval window). This bending is propagated along the length
of the BM, and is called the forward-traveling wave. This bending wave propa-
gates at a lower velocity than the acoustic fluid wave, and decreases further in
velocity as you move from the base towards the apex.

As the bending (forward-traveling) wave propagates from the base of the
basilar membrane (near the stapes and oval window) to the apex (near the heli-
cotrema), its amplitude (vertical displacement of the basilar membrane section)

.. . ...... . ...... .................................



is nonlinearly amplified as the cochlea is an active organ. Depending on the
frequency of the sound heard, the vertical displacement of the cochlear parti-
tion reaches maximum amplitude at a particular section along the membrane
length that resonates with that frequency. If a resonance element at a particu-
lar point along the BM is forced at its resonance frequency, the displacement of
BM reaches maximum amplitude at that point, after which most of the energy

(encoded in the wave amplitudes) is dissipated [91.
Vertical displacement of the cochlear partition causes bending of the hair

bundles on the hair cells towards (upwards displacement of the cochlear par-
tition) or away (downwards displacement of the cochlear partition) from the
direction of the kinocilium. This bending is associated with a change in influx
of positive ions which eventually leads - in inner hair cells, to suppression or
enhancement of neurotransmitter release. In particular, stimulation of hair cells
which lie on top of the basilar membrane, occurs as a result of shearing motion
on the stereocilia of the hair cells. The shear is thought to be caused by the
tectorial membrane in the case of the outer hair cells and the endolymph volume
velocity in the case of the inner hair cells [13].

The information is then converted to an electric current by opening of a
mechanically gated channel on the stereocilia and influx of cations. This process
is called mechano(electro)transduction (MET). The upwards displacement of
the cochlear partition is associated with an increase in the open probability
of the MET receptor channel causes an effective increase in conductance (of
mainly potassium); and - driven by the voltage at the apical end of the HC
causes an increase in receptor current [2]. The K+ current influx depolarizes
the basolateral membrane of the hair cell and in the OHCs. The depolarization
induces a conformational change in a transmembrane motor, thought to be the
protein prestin [38, 52], in a manner that decreases the length of the OHC.

This OHC contraction feeds back onto the the displacement of bm and rl.
The depolarization of the basolateral membrane also increases the open proba-
bility of Ca voltage gated channels. This corresponds to an increase in inwards
Ca current, which imposes a low pass filter and results in electrical tuning of
voltage. The Ca influx causes neurotransmitter release at the inner hair cell -
auditory nerve fiber (IHC-ANF) synapse [18].

The tuning along the cochlea can be described by multiple cochlear filters,
each centered around a different characteristic frequency and with a different
bandwidth. Tuning is studied physiologically in experimental animals by mea-
suring potentials at the ANF, or using velocimeters. It has also been studied in
passive cochlea (where the amplifier is not functional) in human cadavers [50].

As experimental studies on tuning of active cochlea cannot be performed
in humans, tuning has also been studied psychophysically in both humans and
animals, in an attempt to understand if there is any difference in tuning be-
tween humans and animals. Tonotopic maps can be made to illustrate that the
maximum amplitude of the forward-traveling wave occurs closer to the base for
higher frequencies and closer to the apex for lower frequencies. However, the
elements of resonance (in addition to the contribution of the basilar membrane)
and cause for resonance are still under study, ie. acoustic fluid wave or forward



traveling BM waves - though many studies suggest that the outer hair cells are
the resonating element, and the cause is the fluid compression wave [9].

In summary then, the sound waves travel through the outer and middle ear
and finally to the cochlea of the inner ear. In the cochlea the wave propagates
along the length of the basilar membrane. The resulting current is then con-
verted into a voltage across the hair cell membrane, and in the case of the inner
hair cells, the voltage causes an influx of Ca and therefore release of neurotrans-
mitter to the auditory nerve fiber which is then converted into electrical activity
to the central nervous system.

1.1.3 Otoacoustic Emissions

Otoacoustic emissions (OAEs) are low intensity sounds that can be measured
at the outer ear and are thought to be 'generated' from the cochlea, usually
in response to an input stimulus. These emissions arise because the fluid com-
pression wave or the forward traveling wave is reflected back towards the oval
window, through the middle ear and out the ear canal. OAE measurement is
a sensitive method for recording cochlear mechanical activity, and is therefore
used by clinicians to screen for inner and middle ear transmission pathologies in
newborns [24]. If the ear is simulated with a tonal sound (single frequency) the
ear emits the same frequency with a phase delay and a lower amplitude. The
output signal in response to a tone is known as stimulus frequency otoacoustic
emissions - SFOAE.

Several hypotheses have been put forward to explain the mechanism of
SFOAE generation, one of which is the coherent reflection theory which sug-
gests that the SFOAEs originate at the point along the cochlea where the input
frequency is maximally amplified [44]. Imposing micromechanical irregularities
by imposing a 5% jitter on the parameters would allow for the simulation of
stimulus frequency otoacoustic emissions (SFOAEs) using this tool, as energy
is propagated in both the forward and reverse directions. Studies have used
the coherent reflection theory along with a filter model theory to derive the
sharpness of tuning from SFOAE experimental data using an approximate re-
lationship between the group delay of the SFOAEs and the group delay of the
cochlear traveling wave, and assuming a relationship between the group delay
of the cochlear traveling wave and sharpness of tuning. This tool can be used to
study the relationship between sharpness of tuning and group delay of cochlear
filters based on physical models.

1.2 Literature Survey

Following the broad background outline provided above, this section conducts
a literature survey in the major areas related to the thesis. These encompass
issues of mechanically tuned elements, behavior of the basilar membrane, mecha-
noelectric transduction, cochlear amplifier and nonlinearity, and estimation of
tuning sharpness of cochlear filters.



1.2.1 Mechanically Tuned Elements

Several hypotheses have been made regarding the nature of the resonating el-
ement. The postulates suggest a variety of inner ear components as being a
possible resonance element, including the bundles of stereocilia on outer hair
cells, the rods of corti, and the basilar membrane.

The first such hypothesis was probably by Helmholtz, who suggested that
the resonating elements were the rods of corti that have different stiffnesses and
tensions across the length of the BM. However, the fact that these rods are not
present in birds and amphibians suggested the possibility of an alternative reso-
nance element. This coupled with the fact that the basilar membrane broadens
from base to apex, caused a second theory to arise - one that attributes the
resonance to the fibers of the BM.

A third theory, by Bekesy, furthers the second theory by suggesting that the
BM is like a gelatinous sheet; and the graded differences in width and stiffness of
the basilar membrane are responsible for the differences in the locus of maximal
displacement by the traveling waves. A fourth theory, that arose after Beksey's,
suggests that resonance is a result of the gradient of stiffness of the bundles in
outer hair cell stereocilia, which are shortest at the base and tallest at the apex,
as would be expected from such a resonating body [50].

The physiological model used in this study [22] takes into account the me-
chanical tuning determined by the impedance load of both the BM and the
OHCs and hence allows for a graded mechanical-parametric distribution. The
height of the hair bundles seems to be mostly taken into account by the mass
in the impedance load of the OHC.

Whereas the model used does not take into account motion of the tectorial
membrane, recent studies have shown that the tectorial membrane can also carry
traveling waves [10] and some studies incorporate the tuning characteristics of
the tectorial membrane as part of their models.

1.2.2 Behavior of the Basilar Membrane

Previous data-driven models approximated the behavior of the basilar mem-
brane using a composite elastic model [25]. It used a series of springs in three
levels, each with its own stiffness, to model the displacement of the basilar mem-
brane at some location along the cochlea in response to force (mimicking the
pressure gradient across the BM). The three levels corresponded well to the his-
tological organization (eg. transverse filaments, and ground substance) of the
basilar membrane.

More recent studies have shown a nonlinear relationship between force and
displacement of the BM. This is taken into account by the model [21, 22] used
in this study. The model collapses the BM and looks at it in only the longi-
tudinal direction (from base to apex), and ignores variability in its mechanical
properties along the horizontal/transverse (between the cochlear walls) and ver-
tical (depth) axes. Other models have taken this into account; and modeled the
BM behavior as linear and nonlinear orthotropic plates [20]; or modeled the



transverse filaments as structures reinforcing the gelatinous base substance of
the BM [27].

1.2.3 Mechanoelectrictransduction

Models have previously attempted to relate the motion of the cochlear partition,
to the shearing of the OHC's hair bundle and relate that to the change in
conductance of the echanoelectrictransduction (MET) channel. Though two
major models (gated-spring model and lateral tension model) have attempted
to relate the open probability of channels to shearing [47], not many models (we
find) attempted to study the relationship between the motion of the cochlear
partition and the shear of the hair bundles of the hair cells.

Physical models have shown that the open probability is a function of both
velocity and displacement of the cochlear partition [12]. The model used to
validate this toolset uses this simplification to relate receptor current to motion
of the cochlear partition without modeling the underlying physiological process.
Studies have shown that the hair bundle deflection is a nonlinear function of
deflection angle, and this is also incorporated only as a mathematical function
in the model used in this study.

However, recent studies have shown that as OHCs contract and squeeze the
organ of corti, fluid within the organ of corti flows in the spaces, imposing
another dimension of complexity [17, 12].

1.2.4 Cochlear Amplifier and Nonlinearity

Two mechanisms have been debated as the primary sources of signal amplifica-
tion in the cochlea: hair bundle motility and somatic motility (electromotility).

Somatic motility has been shown to occur in vitro in mammals which have
much greater amplification than reptiles. However, the major criticism of so-
matic motility being the major player in cochlear amplification is that the
RC time constant of the OHC membrane would impose a low frequency fil-
ter that could possibly have a cutoff frequency that would disallow somatic
motility from amplifying the characteristic frequencies of the basal sections of
the cochlea [36, 38]. However, arguments have suggested that the overall system
behavior is not affected by the cutoff frequency of a single component.

In the model we use for this toolset, somatic electromotility is assumed to
be the sole cochlear amplifier and this appears to be the case when simulated.
Experimental studies have found that in somatic motility, the contraction of the
OHC (due to changes in the shape of the transmembrane protein, prestin) is a
nonlinear function of basolateral voltage. However, in the model used [22], the
only source of nonlinearity is assumed to be mechanoelectrotransduction.

1.2.5 Estimating Tuning Sharpness of Cochlear Filters

One method of expressing the tuning of the cochlear filters, is by using the
inverse of the bandwidth (BW). Nondimensionalization by multiplication with
characteristic frequency (CF), gives rise to the sharpness of tuning, Q = CF/BW [43].



In the psychophysical literature, characteristic frequency (CF) is the fre-
quency at which the response peaks. Equivalent rectangular bandwidth (ERB)
is the bandwidth of the rectangular filter with the same peak response that
passes the same total power when driven by white noise. Tuning is measured by
QERB, as the ratio of CF to ERB. The QERB can be used to supply parameters
used to fit filter models, such as the rounded exponential filter model, in order
to generate the tuning curves for various CF along the cochlea.

The tuning curve of the human cochlea cannot be obtained using auditory
nerve fiber (ANF) data, unlike animals. Hence, the major approach to es-
timating the cochlear tuning curves has been to use psychophysical masking
methods, which generally uses the power spectrum assumptions suggested by
Fletcher [3]. The psychophysical methods make several assumptions, some of
which are known to be invalid - such as the linearity of the cochlear amplifier.

However, the psycho-behavioral methods are generally conducted using low
signal levels, to be in the linear range of the cochlea. It is also assumed that there
is no significant filtering beyond the cochlea, and therefore the filters estimated
using the psychophysical methods are reflective of the external ear, middle ear
and cochlear filtering as is the case with animal ANF data. Moreover, it is
assumed that the majority of the peripheral auditory system filtering is due to
the cochlea alone [26].

The psychophysical methods do not all provide the same estimates of tun-
ing sharpness. It is thought that masking phenomenon such as suppression by
masker (in the case of simultaneous masking), self suppression (in the case of
high signal levels), beats and combination tones (in the case of tone on tone
masking), and off-frequency listening (listening using adjacent cochlear filters
along the cochlea) affect the estimates of the tuning curves [12]. Certain psycho-
behavioral studies have modified their methods to eliminate some of these phe-
nomenon. We use both results for two different types of psychoacoustic studies
(which use simultaneous and nonsimulaneous masking) as well as animal ANF
data, for comparison with our simulated results of sharpness of tuning.

1.3 Problem Statement

The two top level problems addressed in the thesis are how to simulate the au-
ditory system, and how to compute the characteristics of the cochlea from the
simulation. Within the problem set of simulation, issues related to physical mod-
eling, system modeling, and numerical implementation need to be addressed.

Physical modeling is challenging not only because of the complexity of phys-
iology modeled and the variety of subsystems and their interconnections, but
also because of the simplifying assumptions that need to be made to be able to
represent the model mathematically. Several choices exist in physical modeling,
and care has to be taken to use approaches that result in implementable physical
models.

An appropriate framework for physical and system modeling is therefore
necessary for successful numerical implementation. An approach to system
modeling should be taken that allows appropriate study of the properties and



numerical simulation. The implementation issues relate to stability, simula-
tion parameters, computational efficiency and sufficient resolution to allow for
accurate characterization.

Sufficient effort has to be made to provide solutions to characterization. The
characteristics are to be chosen to be consistently computable and relevant to
perceptual phenomena. For these purposes, the thesis determines the character-
istic frequency (CF)-space map, equivalent rectangular bandwidth (ERB), and
sharpness of tuning (QERB) of the cochlea.

1.4 Organization

The problem of developing a modeling framework and toolset for simulation
and characterization of the cochlea within the auditory system is best achieved
through abstraction into multiple levels. This thesis treats physical model,
system model, and numerical implementation as separate layers of abstraction.

The study develops physical models covering the outer, middle, and inner
ears. The range of models are passive linear, active linear, and active nonlinear.
These models are formulated as algebraic differential equations, and solved for
impulse and tone excitations to determine responses. The solutions are mapped
into tuning characteristics as a function of position within the cochlear partition.

There are a number of issues addressed in this thesis. These relate to physical
modeling, system modeling, and an implementable toolset that simulates the
system. Physical modeling is conducted for the outer, middle, and inner ears,
even though the focus is on the cochlea. This is because excitation is applied at
the ear canal and the cochlea is not isolated from the middle ear.

Particular attention is paid to physical modeling of the cochlea. Acoustic
models are used for transmission in the perilymph, and electrical and mechanical
models for the cochlear partition and the outer hair cell.

Chapter 2 develops physical models. The objective here is to focus on the
mechanical, acoustic, and electrical laws that govern various parts of the audi-
tory system, and to formulate them mathematically. The development is not
distracted by issues that govern the entire system or its characterization or
numerical issues.

Chapter 3 maps the physical models into a state space formulation. This
entails specification of the state variables and space discretization, differential
algebraic equations, excitation and response. Issue of stability arise and suitable
methods are employed to address these. The chapter ends with development of
methods for extracting response and system characteristics from excitation and
response.

Chapter 4 provides the toolset for simulation of the auditory system. A
particular type of differential algebraic equations solver is proposed, and solver
parameters are calculated based on auditory system characteristics known to
date.

Chapter 5 applies the toolset to calculate the traveling wave, tuning charac-
teristics, spectra, cochlear map, ERB, QERB, and group delay. These results
are validated against available information.



2 Physical Model

This chapter presents the physical equations that model the auditory system.
These equations relate the components of the ear and the interfaces between
these components [21, 22, 33]. The equations are supplemented with boundary
conditions [21, 22, 33] to uniquely determine the solution of the equations.

The components are external canal, diaphragm, ear drum, malleus, incus,
stapes, round window, scala vestibuli, scala tympani, reticular lamina, basilar
membrane, and ohc. These components, interfaces, and boundaries are listed in
Table 1. Boundary conditions are provided at the base and apex of the scala
vestibuli, as well as between the basilar membrane and the fluid, and between
the ohc and basilar membrane and reticular lamina.

The physical equations govern mechanical, acoustic, and electrical phenom-
ena. Mechanical equations govern the outer and middle ear components com-
prising of external canal, diaphragm, ear drum, malleus, incus, stapes, round
window, basilar membrane, reticular lamina and the contraction of ohc. Acous-
tic equations govern the fluid motion in the scala vestibuli and scala tympani.
Electrical equations characterize the apical current, basolateral voltage and
charge displacement in the ohc. Generic notation for the variables and pa-
rameters are tabulated in Table 2.

To enhance readability, notation is standardized in Table 3 to indicate time
derivative, effect of a source on an object, and differences between variables.
The variables are subscripted with element. For example, Pd denotes presssure
at the diaphragm.



Table 1: Notation - Components and Interfaces
Notation Description

ec External Canal
b Speaker Base
d Diaphragm

bld Base - Diaphragm Interface
ed Ear Drum

dled Diaphragm-Ear Drum Interface
m Malleus

edw Middle Ear Wall
edwlm Middle Ear Wall - ED/Malleus Complex Interface

i Incus
mi Malleus-Incus Interface

s Stapes

ils Incus-Stapes Interface (Incudo-stapedial Joint)
w Round Window
sv Scala Vestibuli
st Scala Tympani
rl Reticular Lamina

svlrl Scala Vestibuli Reticular Lamina Interface
bm Basilar Membrane
ohc OHC

bmlwc Basilar Membrane - Cochlear wall interface

Table 2: Notation - Variables and Parameters
Mechanical variables and parameters

Notation Description
F Translational Force
x Translational Displacement (contraction in the case of OHC)
v Translational Velocity
k Stiffness
m Mass
c Compliance

Acoustic variables and parameters
Notation Description

P Acoustic Pressure
U Volume Velocity
V Particle Velocity

Electric variables and parameters
Notation Description

V Voltage
i Current
Q Charge



Table 3: Notation - Miscellaneous
Notation Description

t Time

V' Time derivative of variable V

IVo, Variable on object o by source s
eg. ohcFbm is force on bm by ohc

Vi Variable at section i of cochlea

Pst-sV Pst - Ps,



2.1 Subsystem Models

This section physically models the subsystems of the auditory organ. A subsys-
tem may be centered around an interface as is frequently the case in outer and
middle ear, or a transformation as is often the case in the cochlea.

In all cases, a formulation approach is utilized that makes it amenable to
utilization in system model of Chapter 3. Thus for example, physical equations
are written in terms of derivatives of velocities rather than double derivatives of
displacement. Also, an algebraic equation is written with left hand side equal
to zero and the right hand side equal to the algebraic expression. A multiplier
of zero is generally added on the left hand side to indicate the row in the system
formulation in which the algebraic expression is placed. The physical equations
are reformulated in terms of state variables as explained in Chapter 3.

2.1.1 Outer and Middle Ear

The subsystems in the outer and middle ears are speaker base - diaphragm,
diaphragm - ear drum, ear drum - malleus, malleus - incus, incus - stapes,
stapes and round window - fluid.

Speaker base-diaphragm The stimulus is presented by placing a speaker in
the ear canal. The base of the speaker is fixed and points towards the outer
part of the ear canal. The diaphragm of the speaker is at its front end pointing
towards the ear drum. Excitation in the form of external force, F(t), is applied
at the diaphragm, resulting in its vibration. The interface between the base and
diaphragm is modeled as a parallel spring and damper with stiffness kbld and
compliance Cbld.

Three forces act on the diaphragm with mass md to produce displacement
Xd and velocity vd. The external force (excitation) is F(t). The force from
the spring and damper is (-kbldXd - cbldvd), since the base is fixed and hence,
Xb = 0 and Vb = 0. The force acting on the diaphragm from the ear canal
between the diaphragm and the ear drum is -dledPdAd. Here Ad is the area
of the diaphragm and dled is the air between the diaphragm and the ear drum
that exerts pressure dledPd on the diaphragm.

The subsystem model is governed by the following equations:

Xd = vd (1)

mdvd = F(t) - kbldxd - cbldvd -died PdAd (2)

Diaphragm - Ear Drum The air space between the diaphragm and the ear
drum is assumed to be acoustically lossless and to be shorter than the smallest
wave length of interest ( 0.05 mm) and hence dledPd dledPed. The pressure
on the diaphragm is denoted by Pd -dled Pd.

The air space between the diaphragm and ear drum (ED) is approximated
as an acoustic compliance, so that the pressure is directly proportional to the
volume of air in the closed space. This is illustrated by the equation below. It is



assumed that the displacement of the ear drum, Xed, is equal to the displacement
of the malleus, xm, as the malleus is assumed to be rigidly fixed to the ED. The
areas of the diaphragm and ear drum are denoted by Ad and Aed.

0 * Pj = Pd - Q,(AdXd - AedXmn) (3)

Malleus-incus The interface that determines the relationship between dis-
placement of the malleus and incus is approximated as lever; the incus is con-
nected to the lever at a lower position than the malleus. As the torques at the
two positions are equal, U = f '-- gi. Therefore, imfm = glifli.

X . ifli

Middle ear wall - ED The interface between the malleus and ED is assumed
to be rigid, and hence approximated as a single body. The mass of the ED is
considered insignificant relative to the mass of the malleus.The wall-ED system
interface is approximated as a spring-dashpot system in parallel, where the wall
position is fixed. The forces on the ED-malleus body (for which we use the
subcript m) are therefore dledPed and the forces by the wall-malleus interface,
as well as the force by the lever approximating the malleus-incus interface,
mfmn = --glifi. This yields,

x' = V (4)

mMV' =d led PdAed - kedwlrXm - CedwlmVm + glifli (5)

Incus-stapes The interface between the incus and the stapes is approximated
as a mass-dashpot configuration. The incus is estimated to be massless, with
forces if1 and ilfi = Fk + Fc acting on it on opposite sides. The force balance
can be therefore written as 0 = kii,(x, - xi) + cil1 (x' - x') - i fi. Assuming a

rigid connection between the lever and the incus and the lever and the malleus,
allows for the substitution xi = x1i gxm, which gives,

xS = v, (6)

0 *j f'i =j fix - ki ,(x, - gixm) - cils(vs - gIvm) (7)

Stapes and round window - fluid The footplate of the stapes is connected
to the oval window that transmits the motion into the scala vestibuli at the
base of the cochlea. The perilymph of the scala vestibuli is connected through
the helicotrema to the perilymph of the scala tympani. The round window is
connected to the scala tympani at the base of the cochlea, and opens into the
middle ear. In the model in equation 8, The mechanical impedance of the round
window on the cochlea is incorporated as part of the stapes - cochlea interface.
The forces acting on the stapes with an effective mass of m + mw are the the
stapes/round window-cochlea interface as well as the forces by the incus-stapes
interface. According to equation, the forces by the incus-stapes interface can be



approximated as -ifig, as the incus is massless. The force by the base of the
cochlea PhfeAS is approximated to act directly on the stapes.

(m + mW)v' ifi - (ksf51 + k5 1f,)xs - (cs|f5 + clf51)vs - PfiseA (8)

2.1.2 Cochlea

Subsystems in the cochlear are stapes - perilymph base, perilymph apex- heli-
cotrema, perilymph - cochlear partition, cochlear partition - HC receptor cur-
rent, HC receptor current - voltage, ohc charge accumulation - contraction, ohc
voltage - contraction force transformation, ohc - cochlear partition feedback.

Stapes - perilymphba" The footplate of the stapes is connected to the oval
window that links the middle ear to the scala vestibuli of the cochlea. The oval
window is assumed to have negligible impedance, and the motion of the stapes is
considered directly on the compression and rarefaction of perilymph at the base
of the cochlea. According to Newton's second law, this can be approximated as,

-p OPSV (9)Ox
Pav is approximated and Pfu is used instead, as Pst is considered negligible

relative to PS, due to power loss as the acoustic wave travels through the per-
ilymph. This results in equation 10. It should be noted that the notation P'
is for nodes rather than sections, so the nodes pbose and pbase+1 surround thefi fi
basal section.

pbase+1 _ pbase

-p * V', +0 * Pbiase _ fi f I (10)

Wave propagation along the perilymph The propagation of the acoustic
wave in the perilymph, is partly described by Newton's second law, which relates
the pressure and volume velocity as in equation 11

8P5 1 pU/(
a = - AprUfi (11)OX 'Aparf1

The fact that the cochlear partition is movable, is taken into account in the
equation of mass conservation to yield equation 13. The second wave equation
is derived from the equation of continuity taking into account the change in
volume of the fluid as xrl changes. Thus, accounting for wall vibration

OP a a(U/Apar) (12)
ax at

aU 1 aPApar + aApar
19X pc2 at at



=Wparvrl (14)Ox
Equation 14 implies that volume velocity is dependent on the change in

displacement and width of the BM [32, 35].
Equations 11 and 14 are combined to get,

pwjar , P~ -2PJ1 +P 10+r P5; - fv =1 (15)0 * - Areasi 'l- (Ax) 2  
(

It should be noted that an assumption is made that the cochlear partition
sections are not directly coupled among themselves, but instead coupled only
through perilymph.

Perilymph - helicotrema The boundary condition at the apex is chosen to
be inductive and is approximated by an open ended tube, such that,

papex = V OU (16)

In the above equation, V is volume and A is area. This can be rewritten as,
aU

where mh is the effective mass per unit area at the helicotrema. Though the xr,
motion at the apex is not clamped, the boundary condition at the apex assumes
rigid walls unlike the rest of the cochlea, and hence uses the traditional equation
of continuity as part of the wave equation [3]. Taking into account this aspect
of the wave equation, 5U A&P yields,

papex _ papex-1

0 * PI apex _ P * papex + Ax (18)fl Aapexm T f Ax

Perilymph - Cochlear partition The acoustic impedance of Reissner's
membrane is considered negligible and hence the pressure in the scala media
is the same as the pressure in the scala vestibuli. Thus, we are only interested
in the differential pressure Pf1 -= P,, - Pat as the pressure driving the vertical
motion of the cochlear partition. Whereas the basilar membrane is considered
sturdy, the reticular membrane is simply the tight joining of the OHCs and the
phalangeal process of the Deiter's cells [9], and hence considered deformable.
Since the impedance is dominated by the BM as opposed to the RL, Pf1 is
approximated to act on the BM.

The forces acting on the BM are therefore Pf1 and the force by the cochlear
wall -BM interface along the entire length of the cochlear acting in the neg-
ative direction. This is reflected in equation 19. In the expression below,
mbmlwc, Cbmiwc, kbmIwc are per unit area, and the equation does not take into ac-
count spatial interaction between neighboring sections of the basilar membrane.

mbmVbm = -Pf - CbmwcVbm - kbmilwcXbm (19)



Cochlear partition - receptor current As the cochlear partition moves
in response to the stimuli, the stereocilia on each hair cell move towards or
away from the kinocilium. These stereocilia carry mechanoelectric transduction
(MET) channels whose probability of opening changes with stereocilia displace-
ment. This dependence is thought to be due to the tension in a spring-like
component linking the MET gates of one stereocilia to the next stereocilia ac-
cording to the gating-spring model. Changing the probability of an open gate
of the MET channels alters the amount of flow of potassium and other positive
ions (driven by the transmembrane voltage of the apical side of the HCs) into
the hair cells. This mechanoelectric transduction is modeled by equation 20,
where irec is the receptor current relative to the current at rest.

irec =av 1 Vrl + axlXrl (20)

It should be noted that this mechanoelectric transduction does not occur
in the passive system, as the generator for the voltage gradient across the HCs
apical membrane (which drives the receptor current) in the stria vascularis is
an energy-requiring process that is not functional in cadavers.

The receptor current is thought to be a strongly nonlinear function of cochlear
partition displacement, and this is incorporated in the nonlinear implementa-
tion of the model by substituting equation 20 with equation 21. The change in
transduction current with cochlear partition motion is greatest for small motion
amplitudes (in the linear range). Therefore, a tanh function is used to model the
nonlinearity. It should be noted that the empirical function has experimentally
been found to be asymmetric [9]. This asymmetry is due to the fact that the
probability of the MET channels being open at rest is 10%.

irec = m tanh 2(av, Vri + axrxri) (21)2 2
max

Receptor current - voltage The change in apical current alters the trans-
membrane voltage of the basalateral side of the HCs. In the HCs, the voltage
across the basolateral membrane is responsible for driving the influx of Ca++
through calcium voltage-gated channels. Specifically, the (apical) receptor cur-
rent into the OHC is associated with the transmembrane-voltage-driven flow
through basolateral Ca++ conductive channels (with conductance Gohc), as well
a capacitative current (as the membrane bilayer of the OHC has a conductance
Cohc), and the current associated with the time derivative of the charge dis-
placement Qohc. This is modeled in equation 22, where Vhc is the basolateral
transmembrane voltage of the OHC relative to the resting voltage.

irec = CohcVOltohe + GohcVoltohe + he (22)

OHC charge accumulation - contraction The charge accumulation is as-
sociated with a change in length of OHC. This process is thought to be medi-
ated by prestin, an OHC transmembrane motor protein, that is hypothesized to



change orientation of its charge groups as a function of voltage. The configura-
tional changes in prestin translate into the contraction or extension of the length
of OHC. The relationship between charge Qohc and contraction Xohc is assumed
to be linear as seen in equation 23. In the equation below, a peizo-electric model
is used to relate the OHC strain to the charge accumulation.

Xohc TohcQohc (23)

OHC voltage - contraction force transformation An impedance is as-
sumed against the contraction and extension of the OHCs [21]. The spring
constant is an expression of OHC internal stiffness, and an assumption is made
that the connections between the OHC and BM and between the OHC and RL
are rigid. This is represented as follows. The driving force is assumed to be
generated from the differential voltage (voltage of the OHC membrane - voltage
of prestin).

fohc =mohcVthc + cohcohc + kocrhoch (24)

fohc = (25)
T

V = Qahc/Cg (26)

OHC - cochlear partition feedback The change in length of the OHC
feeds back onto the motion of the cochlear partition. This feedback is thought
to act as a cochlear motor amplifier. Contraction of the OHC, would cause a
positive displacement in the BM and a negative displacement in the RL, thereby
bringing them closer together. This can be written as equation 27, where Xohc
is the contraction, rather than displacement of OHC. This is approximated as,

Xbm -- Xv± - Xohc (27)

Further simplifying assumptions The Ca++ current further tunes the
voltage across basolateral membrane [9]. In this model, tuning is assumed to
have a negligible effect on the tuning detected at the auditory nerve fibers
(ANF), as experimental studies have shown tuning at the cochlear partition is
approximately representative of tuning measured at the ANF [9]. This model
also ignores the effects of stapedius and the other muscle of the middle ear and
the feedback effects of central nervous system (CNS) descending systems.

Governing equations The equations governing the cochlear partition are
combined to yield the following equations in terms of state variables. The
equations governing the Pfl state variables are in equations 10, 15 and 18
above.

x'c =Vrl (28)



ohc _ Vohc 
(9

Vohc

CohcVohc + kohcTohcQohc VOltohc - Qohc 0 (ohc
Vohe -mohc . + Tohcmohc

Voh ir- GohcVohc - Vohc/Tohc (31)ohc - ~ Cohe 31

S+ VC Cbmlwc(Vrl + Vohc) + kbmlwc(Xrl + TohcQohc) Pf I (32)Url ohc- 2
mbm mbm

Equations 32 was later rewritten as equation 33 for purposes of stabilization,
as explained in section 3.4

S/CohcVohc + kohcTohcQohc VOltohc - Qohc/Cgohc
r -mohc 

Tohcmohc

Cbmlwc(Vrl + Vohc) + kbmlwc(Xrl + TohcQohc) _ fl (33)
mbm mbm

Derivation of cochlea equations, is based on the following equations. From 23,
we take the derivative with respect to time to get 29. To get 30, we start with 24,

fohc ~- Cohc~ohc - kohclohc
Vohc f (34)

Mohc

substitute Xohc with 23, and substitute, fohc with the terms in equations 25
and 26.

To get 33, we start with 27, and take the time derivative so that,

vri Vbm - Vohc (35)

We substitute vm with 19

P + Cbmlwcbm + kbmlwcXbm /

Vml = - - Vohc (36)

We then resubstitute Vbm and Xbm based on 27, and then substitute vohc
using 30 to finally get 33

To get 31, we rearrange 22, to get,

V'/= CGV Q (37)C

substituting Q' using 29,wege GVQ1



2.2 Parameter Values

The parameters used for implementation are in Tables 4 and 5. For parame-
ters that vary along the cochlea, the basal, middle and apical parameters are
listed in that order. These parameters are used to determine the values for the
remaining cochlear sections using log-quadratic interpolation [22] in accordance
with equation 39 where pmbase, pmmid, pmapex are the parameter values for the
apical, middle and basal sections of the cochlea and Xapex is the length of the
cochlear partition.

a = 22 n(- Mmid (38)
Xapex pmbasepmapex

b = I 1 n( Pmapex)
Lapex pmbase

pmi = pmbaseexp(axi(xapex - xi) + bxi)

We initially (before stabilization) used the parameters in table 4 [22] while
using the parameter As from table 5 [23] and approximating p of perilymph by
that of water. However, for the number of space sections we initially ran for
validation purposes, even the passive implementation was unstable and hence
too stiff to simulate using ode23t with low error tolerances (section 4.1).

We then instead simulated the physical model using the parameters in Ta-
ble 5. Whereas the passive simulation was stable, the active linear and nonlinear
simulations were both unstable, and the active linear implementation was too
stiff to simulate for an appropriate number of sections and simulation time.

We switched to using ode15s (stiffer ode solver than ode23t - section 4.1)
and allowed for increased error tolerance (see section 4.2). Then we looked
into subsystem stabilization and altered the governing equations accordingly

(section 3.4). This removed the instability of the active nonlinear version and
greatly decreased the instability of the active implementations using the param-
eters in table 5. The active linear implementation appeared to be marginally
unstable for apical sections, but was still unstable (though it blows up much
less) for the basal sections.

After modifying the governing equations, we tested for system stability (sec-
tion 3.5) and found that the system was unstable in the active linear and non-
linear implementations while using the parameters in table 5. Interestingly, the
stability of the passive and active implementations of the system while using
the parameters in table 4 depended on the number of space sections used for
discretization. We therefore finally resolved to use the parameters in table 4
using 700 space sections for which the system stability test and the implemen-
tation proved that the passive and active implementations were stable. We then
decreased the error tolerances to their original values as in section 4.2.



Table 4: Parameter values - cgs units [22]
Parameter Value

md 5e-3 g
kstld 4e8 g/s 2

cstid 1.4e3 g/s
Ad 0.75 cm 2

Acd 0.5 cm 2

g1 0.7

Qc 8.5e5 dyn/cm5

mm 8.5e-3 g
kedwim 1.5e5 g/s 2

Cedw m 20 g/s
kils 5e6 g/s 2

cils 400 g/s
ms 5e-3 g
mw 5e-3 g
ks15, 5e5 g/s 2

kw\51 1.5e5 g/s 2

Cs|f1 80 g/s
Cw|f5 20 g/s
Tohc 8.02e2 cm/statC
Cohc [9.4e-4, 9.2e-4, 2.7e-3 g/s
kohc [200, 11, 0.76] g/s 2

mo_ c [2.8e-8, 5e-7, 2.8e-5] g

Cgohc [16.2, 29.7, 63] statF

aX,, [5.337e-11, 2.068e-11, 6.67e-12] statA/cm

aVI, [1.468e-13, 6e-14, 2.27e-14] statA/cm
Gohc [8.1761e4, 4.5822e4, 2.965e4] statSiemens
Cohc [12.6, 28.8, 71.1] statF

cbmlwc [1.5, 3.2, 8.6] g/(s * cm 2)
kbmlwc [5.9e5, 4e4, 1.6e3] g/(s 2 * cm 2 )
mbm [3.8e-5, 2.8e-4, 2.le-3] g/cm 2

Apar [6.3e-2,1.4e-2, 3.1e-3] cm 2

Wpar [0.031, 0.040, 0.051] cm

p 0.98 g/cm3

mh 110; g/cm 4

imax [2.01, 0.96, 0.249] statA



Table 5: Parameter values - egs units [23]
Parameter Value

md 5e-3 g
kdtd 4e8 g/s 2

Cstid 1.4e3 g/s
Ad 0.75 cm 2

Acd 0.5 cm 2

g1 0.7

Qc 8e5 dyn/cm5

mm 8.5e-3 g
kedw m 1.5e5 g/s 2

Cedw m 20 g/s
kl 5e6 g/s 2

cl 400 g/s
m, le-2 g
mw 5e-3 g
ksf5 6.5e5 g/s 2

kwl 5 1.5e5 g/s 2

Csf 1 100 g/s
Cw f 20 g/s
As 6.25e-2 cm 2

Tehc 8.02e2 cm/statC

Cohc [9.39e-4,9.2e-4,0.002] g/s
kohc [1.96e+02,10.65,0.764] g/s 2

mohc [2.8e-8, 5e-7, 2.8e-5] g
Cgohc [1.8e-18,3.3e-18,7.0e-18] statF

aoI [1.63e-05,6.23e-06,2.04e-06] statA/cm

aVIi [4.36e-8,1.78e-8,6.8e-9] statA/cm
Gohc [9.le-15,5.le-15,3.3e-15] statSiemens

Cohc [1.4e-18,3.225e-18,7.92e-18] statF

Cbmwc [48.9,79.8,1.7e+2] g/(s * cm 2 )
kbmlwc [1.9e+07,1.007e+06,3.14+04] g/(s2 * cm 2 )

mbm [0.00124,0.0071,0.041] g/cm 2

Apar [6.25e-2,1.39e-2, 3.1e-3] cm 2

Wpar [0.031, 0.040, 0.051] cm

p 2 g/cm
3

mh 110; g/cm4

imax [6.667e-10, 3.226e-10, 8.33e-11] statA



3 System Model

This chapter develops a system of equations that are simulated through numer-
ical implementation in the next chapter to compute response of the auditory
system to an excitation. A number of alternatives exist for simulation of the
physical model equations of Chapter 2. The system model organizes the physical
equations of the previous chapter as differential algebraic equations incorporat-
ing all of the auditory subsystems.

Section 3.1 presents the state variables of the system. Section 3.2 formu-
lates the dynamics of the state variables as a system of differential algebraic
equations. Section 3.3 manipulates the system to ensure subsystem stability.
Section 3.4 discusses methods to determine stability of the entire system. Sec-
tion 3.5 presents the excitations utilized and the responses calculated. Section
3.6 summarizes the method used in computing the frequency response of the
cochlea. Section 3.7 presents methods for frequency domain characterization,
such as characteristic frequencies.

3.1 State Variables

A system of equations may be developed in the frequency domain to directly
provide insight into frequency domain characteristics, or in the time domain to
study its dynamics. The frequency domain approach is restrictive to linear time
invariant systems. As our physical models incorporate non-linear options, the
system is modeled in the time domain rather than the frequency domain, with
frequency characteristics obtained from time domain dynamics.

In addition to investigation of the nonlinear phenomena, interest lies in
studying multiple responses to an excitation, such as displacement of the stapes
and displacement of the reticular lamina throughout its length. These objec-
tives are best achieved with the use of state space system models. Hence, our
system is structured as a state space time domain model.

With an objective of developing the system model in the state space struc-
ture, the physical models of the previous chapter are designed in a fashion that
are readily convertible to such a structure. Hence, the physical models of Chap-
ter 2 are formulated in a way to use state variables explicitly. Table 6 lists the
state variables used in the system model.

3.2 Differential Algebraic Equations

A linear time invariant (LTI) state space model is of the form dx/dt = Ax(t) +
Bu(t), y(t) = Cx(t) + Du(t), where t is time, x(t) is a vector of state variables,
u(t) is excitation, and y(t) is the vector of responses. In such a formulation,
the memory dynamics are incorporated in the state vector, and the output is a
simple mapping of the state vector.

The auditory system model developed in this research uses a generalization
of the LTI model, called differential algebraic equations (DAE). This model is of
the form M(t, x(t), u(t))dx/dt = f(t, x(t), u(t)) and y(t) = g(t, x(t), u(t)), where



Table 6: State variables
Notation Description

xd Displacement of diaphragm
Vd Velocity of diaphragm
Pd Pressure at diaphragm
xm Displacement of malleus
vm Velocity of malleus

ifli Force by incus on i-m lever at the level of incus
x, Displacement of stapes
v, Velocity of stapes
Pfj Differential pressure of fluid section, P,, - Pat

xrI Displacement reticular lamina section

vrl Velocity of reticular lamina section

Qohc Charge accumulation on the OHC membrane

vohc Time derivative of contraction of OHC of section

Vohc Voltage across OHC membrane of section

M is the mass matrix that may be singular to allow in part purely algebraic
constraints between state variables.

Examination of the left hand sides of the physical model equations of Chapter
2 reveal that they represent the mass matrix, M, and the right hand sides are
the mappings, f (). The system resulting from the physical model is of the
form Mdx/dt = f(x(t), u(t)) with constant mass matrix, and f(x(t), u(t))
Ax(t) + Bu(t) for the linear case.

As the physical equations governing the cochlea have both time and space
dependence and the differential algebraic equations have only time dependence,
space discretization is required. Space discretization allows utilization of the
differential - algebraic structure, whereas treatment of the physical models as a
distributed system would not make it amenable to canonical partial differential
equations with numerical solutions.

Discretization is conducted by expanding state variables that are space de-
pendent into state variables for each section. Thus, for example, displacement of
the reticular lamina, Xri(t), and time derivative of contraction of OHC, vohc(t)
are expanded into x4,(t) and v ihc(t) as state variables.

Just as space is discretized, time may also be discretized to yield algebraic
system of equations instead of differential algebraic system of equations [22]. In
this research, time is not discretized because robust solvers exist for differential
algebraic equations. These solvers integrate the system of equations from the
initial time to the final time with initial conditions for the state variables, and are
expected to yield more accurate results than the discretized algebraic equations,
as seen in the results chapter.

Space Discretization To determine the space discretization interval, em-
pirical observation on animals that relates characteristic frequency to distance



from base of cochlea exponentially is used. In order to obtain a characteristic
frequency resolution of 0.0021 octaves, a discretization of 700 sections over a
length of 3.5 cm, with an interval length of 50 micro m (0.005 cm) is needed.
This interval length is of the same scale as a hair cell length of 10 micro meters
[9]. The equations below derive the desired space discretization interval.

CF' --(zi -x i+1)
CFi+1 exp len

Since, AX = enc then,

CF' 1
CFi+1 xp numSec

And therefore, the frequency resolution CF' - CFi+1 is,

CF' - CF
exp numSec

As the calculation above shows, the discretization of 700 intervals results in
a resolution of 28 Hz at characteristic frequency of 20 kHz at the base and a
resolution of 0.014 Hz at characteristic frequency of 10 Hz at the apex.

3.3 Excitation and Response

The external stimulus applied in experiments on living human beings is the force
at the diaphragm, Fd(t). Stimuli at other locations are possible using intrusive
surgery or through experiments on dead animals and cadavers. In this research
stimulus at the diaphragm is considered as the sole excitation.

As the focus of this research is on the cochlea, the responses are variables that
may be inputs or outputs of the cochlea. Thus, the responses are displacement
of the stapes, x, and displacement of a reticular lamina section, X,. Other
variables such as Q'he may also be considered as responses, but displacement
of a reticular lamina is the main variable characterizing the cochlea.

The excitation and response define the boundary of the system, S, under
consideration. Hence, the systems under consideration are Sba.e, cochlea start-
ing at the stapes and ending at the base; Smid, cochlea starting at stapes and
ending at the middle section; SaPex, cochlea starting at stapes and ending at
the apex of the cochlea; and S', cochlea starting at stapes and ending at the sih
section of the cochlea. The input to these systems are x, and the outputs are

base mid zapex and Z.
£rlI X£rl 'rl an .

The force at the diaphragm in the external canal is in general not equal to
the force at the ear drum, and the force at the ear drum is not the same as the
force on the stapes. However, if the outer and middle ear systems are thought
to contribute only insignificantly to tuning or delay, the displacement of the
diaphragm or the ear drum may be approximated as the displacement of the
stapes. This research work does not make this simplifying assumption as the
system from the diaphragm to the stapes does not have unit transduction.



The major types of excitation are impulse, pure tone, white noise, and click.
The impulse has a flat frequency spectrum allowing study of response at all
frequencies, pure tone has an impulse frequency spectrum allowing study of only
a single frequency, white noise has a flat spectrum, and click is a random signal
used traditionally in physiological experiments covering a band of frequencies.

The ordinary differential equation solver used for numerical implementation
not only integrates forward in time, but also backtracks in time with irregular
intervals, thereby ruling out the use of random stimuli such as clicks and colored
noise as discrete random signals.

As we are simulating a continuous time system using discrete simulation, an
impulse in continuous time would correspond to a box car in discrete simulation.
The boxcar corresponding to a unit continuous time impulse has a width equal
to the time interval (for uniformly sampled) and a height that is the reciprocal
of the time interval.

If the time sampling interval internal to the ode solver is constant, an impulse
is characterized as having a value of 1 at only one particular time sample6.25e-6 onyoepriuatiesml
and zero otherwise, for a sampling interval of 6.25e - 6. In our case, the ode
solver has adaptive time intervals internally. Hence the impulse is characterized
as a box car with an amplitude of . and a width of 6.25e-6. The start of6.25e-6
the impulse is placed at 0.005 sec to visualize the changes from rest condition.

For tones, we use a multitude of tone stimuli have a range of 100 Hz to 20
kHz, with increments of 1 kHz. This allows covering of the spectrum of interest
with suitable frequency resolution.

3.4 Subsystem Stabilization

Although the system of differential algebraic equations based on physical models
may be solved in its current form, it may result in unbounded response to
bounded excitation because of either subsystem instability or system instability.
This section considers the issue of subsystem stability, focusing on each of the
physical models of Chapter 2, and the next section addresses system stability.

This section uses s-domain analysis to determine stability of a subsystem. A
subsystem is any of the physical models of Chapter 2. Consider a hypothetical
linear subsystem, d 2y/dt 2 + ady/dt + by(t) = pd2u/dt2 +qdu/dt+ru(t). If u(t) is
input and y(t) is output, the subsystem is unstable if the roots of s2+ as + b are
in the right half plane. If y(t) is input and u(t) is output, then the subsystem
is unstable if the roots of ps2 + qs + r are in the right half plane. As may be
noted in the physical model equations, a variable may be both an input and
an output. And hence, both sides of the equation need to be analyzed. The
subsystem is marginally unstable if the roots are on the imaginary axis. Care
should also be taken if there is pole zero cancellation by omitting the common
terms. If a linear equation has more than one input, the rules of superposition
may be used to determine subsystem stability.

The remaining paragraphs of this section, analyze each subsystem of the
physical model to determine instability, and then transform the equation to
stabilize without changing the underlying physical model.



In the passive implementation of the model, it is assumed that the motion
of the cochlear partition does not alter the receptor current through the hair
bundle. Therefore, in the passive implementation, the following variables are
negligible: i, Vhc, Qohc, zohc, Vohc, and hence the contraction force by the OHC
on the RL and BM is negligible.

In investigating the stability of subsystems, we focus on those that are func-
tional only in the active implementation - equations ( 29, 33, 30, 31). In the
linear active implementation, all subsystems behave linearly, and in the nonlin-
ear active implementation all subsystems behave linearly, with the exception of
the relationship between RL motion and receptor current.

In equation 29, we find a pole-zero cancellation, which could lead to numer-
ical errors causing instability.

sQohc SXohc/Tohc, (39)

Investigating Vhc as a function of Xohc in equation 31, we find the zero to
be at s = 0 making the subsystem marginally unstable.

We also find that one of the poles of Xohc as a function of Vohc in equation 30
is when s = 0, making the subsystem marginally unstable - the other pole is
when s is negative.

The pole-zero cancelation and the marginally stable relationships above were
resolved by de-identifying Xohc and instead only dealing with Vohc as a state
variable. However, the behavior of the active system did not change and was
still unsteady.

We find that the s at which poles of xrl as a function of Xohc in equation 33
occur depend on the value of parameters.

s bm (cbmohc ± c mohc -kbmlohcmbm) (40)

For the parameter values used (both in [22] and [23]) this relationship is stable.
This is also the case with the poles of xrl as a function of Qohc in equation 33,
and the poles of orl as a function of Qohc in equation 32.

In equation, 32, we find that the zeros of xj in terms of Xohc are at s = 0
and at s = +cbmlohc/mbm. The positive root of s, suggests that the subsystem
is unstable. Rewriting, equation 32 as equation 33, resolves the instability
(s > 0) and the de-identification of Xohc resolves the marginal instability.

This alteration makes the nonlinear active system appear stable. In the
linear active implementation when using the parameters in table 5, the behavior
of xr of the apical sections appear to be stable. However, the basal sections
are unstable - though the blowing up of xr is 5 orders of magnitude less than
when using 32.

3.5 System Stability

Subsystem stability does not necessarily imply system stability because of mul-
tiple loops characterizing the system. However, unlike the case of subsystem



instability which should be resolved through manipulations that do not effect
the underlying physical phenomenon, system stability is a given and the ob-
jective is to determine whether the system is unstable rather than trying to
stabilize it.

The systems of interest are Sb"se, S"id, Sapex, and S'. Ideally , stability of
each of these systems should be determined, which is impractical. To overcome
this problem, we consider the entire system, S, with input being the excitation
at the diaphragm and output being the state vector encompassing all variables
of interest in all sections. If the system, S, is stable, it has bounded state vector
values for bounded excitation, thereby ensuring that all responses are bounded.

Stability of the system is determined as follows for linear time invariant
systems - both passive and active. Consider the differential algebraic equation,

dx
M _ = Ax(t) + Bu(t)

dt

Taking the Laplace tranform yields,

X(s) = (sM - A)- 1Bu(t)

The system is unstable if the eigenvalues of (sM - A) are in the right half
plane and marginally stable if the eigenvalues are on the imaginary axis [49, 5,
16, 51]. Thus determining stability is the same problem as solving the general-
ized eigenvalue problem. The QZ algorithm is used to calculate the generalized
eigenvalues.

3.6 Spectrum, System, and Frequency Response

As all variables are deterministic (non-random), the spectrum of a variable is
computed by taking its Fast Fourier Transform (FFT). We compute the spectra
of a state variable using an FFT size of 21. The frequency resolution of the
spectra is thus 0.6 Hz = - *80 kHz. This is sufficient resolution to handle all
frequencies of interest, as the smallest characteristic frequency (CF) is expected
to be 10 Hz.

As a linear time invariant system is fully characterized by its frequency
response, we calculate the frequency response of the cochlea and the stapes,
The frequency response of the cochlea is computed as the ratio of the spectrum
of x' to the spectrum of x,. The frequency response of the stapes is calculated
as the ratio of the spectrum of x, to the spectrum of xi, the displacement of
the incus.

The above process is restricted to calculation of the frequency response only
at frequencies where the input spectrum has non-zero value. Hence, the advan-
tage of using impulse as excitation. It should be noted however that an impulse
excitation may produce zero values at some frequencies of the input spectrum,
thereby allowing computation of frequency response of a system only at a subset
of frequencies.

For the pure sinusoidal inputs - not studying the ramped up one, the system
response spectrum cannot be studied due to numerical errors that arise due to



division by zero input for nonresonant frequencies. Instead, for any tonal input,
the output is considered, as the middle ear system is not expected to hinder
the detection of resonant frequencies, except if the sinusoid used is at the low
resonant frequency of the middle ear.

The frequency response of a linear system with tone excitation may only
be calculated at the frequency of the excitation because the excitation has no
other frequency content. Hence the frequency response of a linear system may be
calculated by exciting the system with a multitude of tones and determining the
ratio of output and input spectrum at that frequency (or alternatively amplitude
amplification and phase shift of the response) for each of the excitations. We
use this approach for validation only, as the method using impulse excitation
is more practical. Otherwise, we would have to stimulate with several tones of
differing frequencies.

In the linear simulation of the cochlea, or low level stimuli using nonlinear
simulation (which behaves linearly up to 40 dB), the resonant frequencies and
the group delays derived from Fourier transforms using a broad band stimu-
lus are expected to match those derived using tones, based on physiological
experiments.

For nonlinear systems, the ratio of output and input spectra may be cal-
culated for a specific input. However, this ratio is not the frequency response,
as an input with a particular frequency would not yield an output of the same
frequency with amplification and a phase shift. Also, superposition of input
would not yield superposition of output. The ratio thus does not characterize
the system completely and response to an arbitrary input cannot be computed
from the ratio for a particular input.

In the case that the excitation level is low, the system is only mildly non-
linear. Thus we calculate the spectral ratio treating the system as if it were
linear, making the ratio equivalent to the frequency response. This is validated
by confirming that a tone excitation results in a response that is a tone with the
same frequency as the excitation, and the frequency response computed from the
multitude of tones is approximately the same as that calculated with impulse
excitation. The threshold of excitation amplitude at which this is untrue is
determined.

3.7 Frequency Domain Characteristics

This section presents response and system characteristics in the frequency do-
main. Responses are characterized by the spectra of xs, x. Systems are char-
acterized by the frequency response of Sbase, gmid, Sapex, and S' representing
cochlea starting at the stapes and ending at a section.

3.7.1 Response Characteristics

Spectral magnitude of x, xbaise In iddle, and x",ex are plotted to determine
general frequency domain characteristics of the response to impulse excitation.
The peak frequencies and bandwidths of the spectra of x,, and xi for all i are



used as parametric characteristics of the responses. The peak frequencies are
computed by identifying the local maxima of the spectrum magnitude and the
bandwidth are calculated as in equations 43 and 44.

These spectral characteristics are calculated for the passive linear, active
linear, and active nonlinear systems with impulse as an excitation. In addition,
they are calculated for tones as excitation for purposes of validation. This is
especially useful in determining the threshold of amplitude of excitation for the
nonlinear systems to be approximated as linear. The derived spectral charac-
teristics are discussed in the context of existing literature.

3.7.2 System Characteristics

The frequency responses of the stapes and cochlea are calculated from the ratios
of their output to input spectra with impulse as an excitation. These frequency
responses are examined visually at the cochlea base, middle, and apex for general
characteristics

The parameters characterizing the frequency response are resonant frequen-
cies, bandwidth, ERB, QERB, and group delay (Nri). These are computed as
follows for all space indexes of the cochlea and the stapes. TF is the spec-
tral ratio of output and input representing the transfer function and # is the
unwrapped phase.

CF' = arg max (|TF'|) (41)

N 1 d= (42)
f df

The ERB is calculated using two separate methods to be able to compare
results with studies that use either measure. The more traditional method of
measuring ERB is as in equation 43 [45], but one of the studies uses a second
measure of ERB as in 44 [22].

ERB = TF12 df (43)

ERB JTFJ df (44)

We study the x, (input), the xr (output) for various sections, and the
system TF for various sections - where applicable, in the time domain and the
frequency domain for the different stimuli. We use these measures to extract the
characteristic frequencies (CF) vs space maps as well as the ERB and sharpness
of tuning, QERB. We also study contour plots given tonal stimuli.



4 Numerical Implementation

This chapter presents aspects related to implementation of the system model.
Section 4.1 examines the choice of equation solvers for our initial value prob-
lem. Section 4.2 presents the tolerances used in the iterative solvers. Section
4.3 derives analytically the time duration of simulation to ensure proper mea-
surement. Section 4.4. computes the time sampling interval needed to simulate
the continuous system using a discrete solver.

4.1 Ordinary Differential Equation Solver

As the system of equations governing the physical model is a differential alge-
braic equation (ie with a singular mass matrix), rather than a pure differential
equation, only methods that allow for singular mass matrices may be used. In
the case of Matlab, these are ode23t and ode15s [39, 40]. These routines solve
the linear algebraic equation for the state variables at different times using
Mx' = f, where x is the vector of state variables, and M is the constant mass
matrix of x coefficients.

ode23t is an implementation of the trapezoidal rule using a "free" inter-
polant. It can be used only if the problem is moderately stiff and a solution
is needed without numerical damping. ode15s is a variable order solver based
on numerical differentiation formulas (NDFs). It is a multistep solver, that is
appropriate when the problem is stiff. As our system is stiff for active system
and moderately stiff for passive system (as discovered during implementation),
we use odel5s . If we had used ode23t, the tolerance would have had to be
increased substantially for the active system.

4.2 Tolerance

For the passive implementation, the absolute error tolerance is set to le-6 and
the relative error tolerance is set to le-3. For the stiffer (active) implementation,
the absolute error tolerance is increased to le-5 and the relative error tolerance
is increased to 0.2 due to limitations on the internal step size.

4.3 Time Span

The differential algebraic equations are integrated using the ode solver ode15s
from time = 0 with initial rest conditions till time 0.005 sec to time = 70 msec.
Time of excitation made non-zero to visualize the changes from rest condition.

The span is chosen by considering a second order system. The denominator
of the transfer function of a second order system with natural frequency wo and
damping factor ( is as follows [4]

is 2 + 2(wos + wo (45)

As the 3dB quality factor, Q3dB is wo/BW3dB, and ( =1/ 2 Q3dB. The set-
tling time for a second order system is - ln(tolerance)/(wo, where the tolerance



is the error band within which the response to a step excitation remains after
settling time. Hence settling time is -2 ln(tolerance)/BW3dB

The smallest ERB of the auditory system is 50. Approximating this as a
value for BW3dB and assuming that tolerance is 15%, the settling time is then
0.07s.

The simulation run time is 70 msec, large enough for all input frequencies to
reach steady state, and to travel from the ear canal to the apex of the cochlea,
and back again (to detect possible reflections) taking into account the variable
acoustic wave speed within the cochlea. The stimuli are allowed to run for
70 msec for the responses to reach the very apex of the cochlea, and for all
frequencies within the humans hearing range to reach steady state.

4.4 Time Sampling Interval

In order to determine the time sampling interval for integration, we utilize
the fact that sampling rate should be larger than twice the highest non-zero
frequency to avoid aliasing (Nyquist criterion). The highest characteristic fre-
quency is 20 kHz, and hence we can assume that the spectrum is negligible
for frequencies above 40 kHz; the Nyquist frequency is therefore 80 kHz. This
implies that the sampling interval is larger than 1.25e - 5 = 1/(2 * 40kHz).
In many cases we take fast Fourier transform (FFT) of a signal, which has a
length that is power of two for efficient implementation. Our sampling rate can
be between 1.25e-5 and 7.6e - 6 = - to utilize the same size FFT. We thus
choose a sampling interval of 6.25e-6 sec.

The sampling interval is utilized as the maximum allowed step size in the
ode solver. The actual internal step size varies with time as it adapts based on
the rate of change of the solution. The values of excitation and response are
resampled at uniformly spaced time sampling intervals 6.25e-6 sec apart.

The solution of the ode solver sampled at intervals of 6.25e-6 seconds allows
for detecting frequencies up to 80 kHz to guard against aliasing problems; since
the highest CF in humans in 20 kHz, and the filters are narrowly tuned, it
is expected that the frequency response of the most basal sections would have
decayed by 4*the highest CF (80 kHz). This is expected to reduce the uplifting of
the system frequency response at higher frequencies, and its validity is discussed
further in section 5.



5 Results

This chapter presents results of numerical implementation, and discusses their
validity against previous studies. We present the waveform of the response in
the cochlea represented in the time domain and it's progression through space.
We then study the tuning characteristics of the middle ear. We investigate
individual system transfer function characteristics, as well as characteristics

(such as characteristic frequency CF, equivalent rectangular bandwidth ERB,
sharpness of tuning QERB) as a function of space and CF. As the parameters
in Table 4 are in cgs units, so are the plots in this chapter.

5.1 Traveling Wave
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Figure 6: raveling wave xrl in response to 4 kHz tone
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Figure 7: Response of x,(t) to 4kHz



Figure 6 shows an example of the simulated traveling wave produced in the
cochlea in response to a 4 kHz sinusoidal stimulus using the passive implemen-
tation. As expected, the time delay for the wave to reach more apical sections
is greater than the base. Also, the response to the 4 kHz stimulus decays sub-
stantially after the space section where the CF is 4 kHz (0.35 cm from the base
as seen in figure 12).

The traveling wave progression can also be seen as a function of space and
time (in response to a 4 kHz sinusoidal stimulus) in figure 7. Interestingly, no
reflection is seen at the helicotrema after running the simulation for 70 msec,
despite the inductive boundary condition at the apex (equation 18).

5.2 Tuning Characteristics of Middle Ear

Figure 8 shows the spectrum of x, in response to an impulse. The spectrum
of x, is equivalent to the transfer function of the middle ear system, since an
impulse stimulus has a spectrum of 1 for all frequencies. This shows that there is
a single resonant frequency of the outer and middle ear of 765 Hz, which is close
to the resonant frequency of 900 Hz experimentally measured from previous
studies [34].

Two methods are used to calculate the ERB as they are two measures used
in the literature; using equation 44 gives an ERB estimate of 2 kHz, and using
equation 43 gives an estimate of 1.36 kHz.
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Figure 8: Stapes displacement spectrum

5.3 Spectrum of Reticular Lamina Displacement

Figures 9 show the spectra of the xj at various points along the cochlea in
response to an impulse stimulus. The response of the middle section shows that
frequencies above 2 kHz are insignificant. We would expect the magnitude of
the response at frequencies above 2 kHz to be greater for the middle than the



apex. However, figure 10 shows that the magnitude of response for frequencies
above 2 kHz of the apex is greater than that of the middle. This may be a result
of the boundary condition at the apex, and is explored further in the following
sections.
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Figure 9: Spectra xr
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Figure 10: Spectra xr Mid, Apex about 2 kHz

5.4 General System Characteristics

The magnitude and phase of the frequency response of systems S', with input
x. and outputs xrl is studied. The results shown in Figure 11 are the passive
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system's response to an impulse stimulus, and show single resonances for each
of the sections.

For the most basal and the most apical sections, the spectrum of x, continues
to decay at higher frequencies, but the spectra of xrI begin to flatten out at
higher frequencies. This results in the uplifting of the higher frequencies in the
transfer functions of the basal-most sections - up to 0.17 cm, and apical-most
sections - down to 2.09. If unaccounted for, this uplifting would create an error
in measures of bandwidth such as ERB, but not BW3dB. We therefore only
calculate the ERB for system FTs of sections 0.17-2.09 cm along the length of
the cochlea. We confirmed that the uplifting is not due to numerical errors.
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Figure 11: System TF

5.5 Cochlear Map

We calculate the resonant frequencies of each cochlear section using an impulse
stimulus, and validate a few CF-space relationships using tonal excitations.
Figure 12 shows a logarithmic relationship between CF and space; with CF
decreasing from base (with a maximum CF of 20 kHz) to apex (minimum CF of
10 Hz). These observations are consistent with the results of previous studies [9,
22].

Because of uplifting higher frequencies in the transfer functions of the most
basal sections, it is possible that the higher CFs (of the basal sections) extracted
from the system transfer functions are slightly higher than the true CFs for those
locations. However, comparing the output FTs (figure 9) with the transfer
functions show that this overestimation is very small relative to the CFs of the
basal sections.

The CF cannot be estimated directly for sections more apical than 2.83 cm,
due to the great amount of uplifting of high frequencies. We therefore cap the
maximum frequency detectable for the CF to 2.5 kHz of the most apical regions
to get figure 12.
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Figure 12: CF-Space map

5.6 System TF Variation Along the Cochlea

We look at the magnitude and phase of the system transfer functions (TF) as a
function of space for particular frequencies in the impulse stimulus. Figures 13
and 14 show this for the passive implementation and in particular for the fre-
quencies 240 Hz, 1.2 kHz, and 3.66 kHz. The magnitude of the system transfer
function to any particular frequency increases slightly with space until it reaches
the space section with that frequency as a resonant frequency (where it is max-
imally amplified), then quickly decays, as would be expected from the cochlea
which allows for transmission of frequencies until they reach their sections of
maximal amplification. Interestingly, however, the frequency response then in-
creases and has minor peaks for two of the apical-most sections. This two minor
peak behavior, the small time step size chosen, and the fact that the uplifting
occurs for all frequencies after decaying at their place of resonance suggests
that the uplifting seen in the system transfer function of Figure 11 is probably
not due to aliasing problems, but rather due to inherent model behavior. As
the transfer function magnitude is bolted to a particular nonzero value for all
frequencies in figure 13, this suggests that the boundary condition at the apex
(equation 18) is incorrect. The drastic change in the CF-space relationship at
the apical sections in figure 12 also supports this conclusion.

For a delayed signal x(t - to), the Laplace transform is e-soX(s) where
X(s) is the Laplace transform of x(t). Therefore the phase delay in figure 14 is
calculated as --- The phase delay increases with distance as expected. The27rf *
figure shows an almost linear phase delay that is independent of frequency until
the place of resonance where the magnitude of the system TF is nonzero, as
would be expected in the cochlea, because a signal of frequency less than or
equal to the resonant frequency would be expected to reach that CF point in
the cochlea without deformation and purely with time delay.

.......... .......... .....
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5.7 Group Delay

The nondimensionalized group delay Nri = - is plotted for CFs given anf df

impulse stimulus to the passive implementation (the relationship using the active
implementation is similar). The relationship between Nri and CF is shown to
be logarithmic (figure 15) as consistent with previous studies that approximate
the group delay at the CF (of active cochlea) from the group delay of SFOAEs.
However, Nri appears to decrease with CF, which is the opposite of what is
expected based on these studies [43].

1 Group delay
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Figure 15: Group Delay - CF

5.8 Bandwidth and Sharpness of Tuning

Figures 16 and 17 show that ERB and QERB as measures of bandwidth and
sharpness of tuning of the passive system using the ERB in equation 43. Fig-
ures 18 and 19 show that ERB and QERB of the passive system using the
ERB in equation 44. Both calculations show that ERB CF. Therefore
ERB decreases from base to apex, as is consistent with the results of previous
studies [22].

Simultaneous psychoacoustic studies (as described in Chapter 1) suggest that
the sharpness of tuning, QERB, increases exponentially with CF until around
1kHz, after which it starts plateauing [22, 26, 43]. Nonsimultaneous psychoa-
coustic studies on humans, as well as experimental studies on animals, sug-
gest that the QERB continues to increase exponentially with frequency [26, 43].
Both calculations also show a plateauing of QERB around 1 kHz, as is observed
with nonsimultaneous studies. However, both calculations show that the QERB
increases after 1 kHz, consistent with nonsimultaneous studies - though the
relationship between QERB and CF is nonexponential. For CF below 1 kHz,
QERB increases with CF exponential with CF when using equation 44 which
is consistent with both types of psychophysical studies on humans and experi-

...........



mental studies on animals [26]. Using equation 44, on the other hand, gives the
opposite result. We do not expect the ERB and QERB results for the passive
implementation to correspond directly to that of such psychophysical studies
which are reflective of the nonlinear active cochlea. We do not discuss the ERB
and QERB of the active implementation, due to the greater dependence of sta-
bility and ERB results on the number of sections for the parameters chosen.
Further validation of the active version is required.

LI
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Figure 16: ERB using equation 43

102 103
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Figure 17: QERB using equation 43

Studies that derive relationships between Nri (f = CF) and QERB from filter
theory models suggest that Nri(f = CF) = kQERB, where k is independent of
CF [41, 43]. Our results are inconsistent with these studies.
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6 Conclusion

Summary This study developed a modeling approach and an implementation
toolset to simulate reticular lamina displacement in response to excitation at
the ear canal and to characterize the cochlear system in the frequency domain.

Physical models were developed for the outer, middle, and inner ears based
on mechanical, acoustic and electrical lumped and distributed laws. These phys-
ical models were formulated as differential algebraic state space system of equa-
tions and methods were presented to determine the stability of the system.

The auditory system was simulated using an impulse and solved using an
ordinary differential equation solver. Frequency domain characteristics of basilar
membrane displacement and partitions of the cochlea were determined. These
included generation of the cochlear map, group delay, ERB, and QERB.

Recommendations The methodology followed in this research demonstrated
the benefits of utilizing careful physical modeling alongside differential algebraic
state space system. Such an approach allows for control over accuracy of results,
time, frequency, and space resolution. This comes at the expense of computa-
tional efficiency, however, with the implementation requiring 2.5 hours of run
time and a memory use of 5 GB for the parameters and tolerances used and for
analysis of all variables for 700 space sections. This necessitates use of a 64 bit
operating system and 64 bit Matlab.

Conclusions Characteristics obtained in this paper have been compared with
findings from existing studies, whether experimental, theoretical, or computa-
tional. These include conclusions regarding the nature of the traveling wave,
tuning characteristics of the middle ear, cochlear map, group delay, ERB, and
QERB. The main point of departure has been behavior at the apex, which did
not yield expected results.

Future Directions There are two areas of improvement that may be made.
First, physical laws at the apical boundary need to be revisited as it seems to
enforce incorrect boundary conditions. Second, the equations and parameters
should be revised to ensure system stability beyond a certain number of sections.

The toolset may be tested by comparing its results to Zweig's transmission
line model for passive system for which an analytical solution is derived [53].
Other suggestions for future research include utilization of partial differential
equations rather than discretizations of space, and staged development of refined
physical models. Also, future simulation of the cochlea alone, without the outer
and middle ear would allow for further insights into system behavior.
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