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Abstract

The focus of research in air traffic control has traditionally been on the airborne flight
phase. Recently, increasing the efficiency of surface operations has been recognized
to have significant potential benefits in terms of fuel and emissions savings. To iden-
tify opportunities for improvement and to quantify the consequent gains in efficiency,
it is necessary to characterize current operational practices. This thesis describes a
framework for analysis of airport surface operations and proposes metrics to quan-
tify operational performance. These metrics are then evaluated for Boston Logan
International Airport using actual surface surveillance data. A probabilistic model
for real-time prediction of aircraft taxi-out times is described, which improves upon
the accuracy of previous models based on queuing theory and regression. Finally, a
regression model for estimation of aircraft taxi-out fuel burn is described. Together,
the modules described here form the basis for a surface operations optimization tool
that is currently under development.
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Chapter 1

Introduction

1.1 Motivation

The field of air transportation has been a topic of intense research in recent years.

The focus of this scrutiny has been on the financial aspects of the airline industry,

the alleviation of delays to passengers, more efficient air traffic control procedures,

and aircraft fuel burn and emissions. Efficient surface operations are a relatively new

field of interest. However, there is increasing awareness of the significant benefits

that research in this area can offer. Departure operations at airports are the most

susceptible to delay, due to downstream constraints in the airspace, and stand to

benefit the most from improved procedures and technologies. Therefore, in this thesis,

we have tried to develop a picture of the current state of airport surface operations

in general, and taxi-out procedures in particular. In order to truly understand the

departure process, it is necessary to have access to detailed data relating to aircraft

operations. Traditionally, such data has been available for airborne operations, but

not for surface operations. Fortunately, the recent introduction of surface surveillance

equipment such as the Airport Surface Detection Equipment, Model-X (ASDE-X) [1]

in major US airports (29 as of November 2010) has solved this problem. We were

able to access this data through the MIT Lincoln Laboratory’s Runway Status Lights

system. A major part of this thesis will focus on leveraging archived ASDE-X data for

analysis of surface operations and for prediction of aircraft behavior on the ground.
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1.2 Thesis Development

While ASDE-X data offers tremendous opportunities for development of efficient pro-

cedures and assessment of potential benefits, it comes with its own challenges. The

detailed nature of the data means that archived files are large, with each day’s data

occupying approximately 2GB of disk space. Therefore, identifying and sorting indi-

vidual flight tracks is difficult. This is further complicated by exogenous tracks in the

data, which may be produced by helicopters, aircraft being towed, or ground vehicles

with transponders. Finally, the raw data also contains a large amount of noise. This

means that a large amount of preprocessing is required before the surface surveillance

data can be used for further analysis.

Consequently, Chapter 2 describes a multi-modal Unscented Kalman Filter de-

veloped for estimation of aircraft position, velocity and heading from noisy surface

surveillance data. The raw data is composed of tracks generated by the Airport

Surface Detection Equipment, Model-X at Boston Logan International Airport. The

multi-modal filter formulation facilitates estimation of aircraft taxi mode, described

by different acceleration and turn rate values, in addition to aircraft states. The re-

sulting sorted and smoothed flight tracks are used for the analysis described in the

two subsequent chapters.

Chapter 3 describes how airport performance characteristics such as departure

queue dynamics and throughput can be measured using surface surveillance data.

Several metrics to measure the daily operational performance of an airport are also

proposed and evaluated. The results presented are for the specific case of Boston

Logan International Airport.

The accurate prediction of aircraft taxi-out times is the first step toward the

optimization of departure operations at airports. In Chapter 4, we present a taxi-out

time prediction tool that models the airport surface as a network. Travel times along

links of the network are assumed to be random variables with unknown distributions.

The methodology used to derive these distributions from empirical surface surveillance

data is described. The resulting theoretical model is validated using observations from
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an independent test data set, and is shown to predict taxi-out times accurately. The

resultant airport surface model lends itself to use with existing route optimization

algorithms with minor modifications.

In addition to ASDE-X data, we also had access to a limited amount of Flight

Data Recorder (FDR) data. In addition to position and velocity, this data set also

contains information on instantaneous fuel flow rate. Chapter 5 uses the FDR data

to build a model for estimation of on-ground fuel consumption of an aircraft, given its

surface trajectory. This model is an important part of any procedure that optimizes

departure operations as it allows the assessment of potential fuel savings. Since the

taxi-out phase of a flight accounts for a significant fraction of total fuel burn for

aircraft, reduced taxi-out times will result in reduced CO2 emissions in the vicinity

of airports. In Chapter 5, taxi-out fuel burn is modeled as a linear function of several

factors including the taxi-out time, number of stops, number of turns, and number of

acceleration events. The parameters of the model are estimated using least-squares

regression. The statistical significance of each of these factors is investigated. Since

these factors are estimated using data from operational aircraft, they provide more

accurate estimates of fuel burn than methods that use idealized physical models of

fuel consumption based on aircraft velocity profiles, or the baseline fuel consumption

estimates provided by the International Civil Aviation Organization. Our analysis

shows that in addition to the total taxi time, the number of acceleration events is a

significant factor in determining taxi fuel consumption.

Finally, Chapter 6 describes a method for applying the model to the estimation of

fuel burn for flight tracks generated from surface surveillance data. A procedure that

could be used to estimate fuel burn benefits from congestion management strategies

is also suggested. Chapter 7 summarizes the important findings in this thesis, and

suggests directions for future work.
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Chapter 2

ASDE-X Data Preprocessing

The two sets of data (ASDE-X and FDR) used in this work are in time-series format.

At every time step, individual aircraft states are reported. Sorting and concatenating

several successive reports from the same aircraft generates flight tracks. However,

the tracks thus generated contain a significant proportion of noise. Therefore, both

sets of data require filtering. The noise content in FDR data is fairly low, since all

the states are measured using onboard equipment. Consequently, it is sufficient to

pre-process FDR data using a linear Kalman Filter. The ASDE-X data, on the other

hand, contains much more noise, since it is measured using onboard transponders

as well as surface surveillance equipment. Therefore, much more elaborate filtering

is required to make it usable for further analysis. This chapter describes the filter

developed to pre-process ASDE-X data.

2.1 Introduction

2.1.1 Motivation

The availability of surface surveillance data allows us to visualize actual taxi routes

of aircraft and to directly measure metrics such as total taxi distance, taxi time and

time spent in the departure queue. These quantities form the basis for further studies

such as the calculation of total fuel burn due to airport surface operations [2] or the

21



prediction of aircraft taxi-out times [3].

However, estimates produced using raw ASDE-X tracks are prone to error, be-

cause of inherent noise in the data. For example, noise in position data can lead to

overestimation of taxi distance, noise in velocity data can lead to errors in detection

of takeoff and landing, and noise in heading data can lead to false turn detection.

In order to mitigate these effects, an unscented Kalman filter (UKF) [4, 5] in the

multi-modal form was found to work very well. A bank of UKFs filters the raw data,

with each filter representing a different taxi mode. The current taxi mode is detected

by selecting the filter with the least (normalized) squared error, combined with a

heuristic that offers resistance to rapid mode jumping.

The performance of the linear and extended versions of the Kalman filter [6] was

also measured. The linear filter had insufficient noise suppression, while the extended

Kalman filter was found to diverge often when applied to the current system. The

unscented Kalman filter, on the other hand, was seen to be much more stable. Finally,

the multi-modal filter formulation (MMF) was used because of its tracking accuracy

and the relative ease of inferring taxi mode, when compared to a single filter. The

multi-modal formulation has been previously used in areas such as computer vision

[7], but it appears to have not been used for aircraft position tracking on the ground.

The latter part of this chapter compares the performance of the MMF with a single-

mode UKF.

2.1.2 Overview of ASDE-X data

The Airport Surface Detection Equipment, Model-X is primarily a safety tool de-

signed to mitigate the risk of runway collisions [1]. It incorporates real-time tracking

of aircraft on the surface to detect potential conflicts. There is potential, however,

to use the data generated by it for surface operations analysis and aircraft behavior

prediction. The data itself is generated by sensor fusion from three primary sources:

(i) Surface movement radar, (ii) Multilateration using onboard transponders, and

(iii) GPS-enabled Automatic Dependent Surveillance Broadcast (ADS-B). Reported

parameters include each aircraft’s position, velocity, altitude and heading. The up-
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date rate is of the order of 1 second for each individual track. The coverage range is

approximately 20 miles out from the airport.

All the ASDE-X data used here is from the Runway Status Lights (RWSL) system

at Boston Logan International Airport (BOS). The results presented in this chapter

are based on data from August to December 2010. As discussed above, the raw data

contains a substantial amount of noise despite an upgrade installed in April 2010 to

the system at Boston.

2.2 Formulation

As mentioned in the previous section, both the linear and the extended versions of

the Kalman filter were tried without much success. The linear filter was unable to

reduce noise to a satisfactory level without sacrificing accuracy, while the extended

filter was prone to divergence. While ‘truth’ was not available in this study since the

data was from actual operations, some idea of taxi path could be inferred from the raw

trajectories superimposed over a layout of the taxiways in Google Earth R©. Specifi-

cally, aircraft do not stray far from the centerlines marked on the taxiways/runways,

allowing comparison of filter tracking behavior by visual inspection.

2.2.1 System Dynamics

The state vector to be estimated consists of aircraft position (X in meters east and

Y in meters north), absolute velocity (V , m/s) and heading (θ, degrees):

x̄ =
[
X Y V θ

]′
(2.1)

The number of states is n = 4. To account for values of longitudinal acceleration and

turn rate different from those in the system model, the velocity and heading states

were assumed to have independent, zero mean, white Gaussian process noise with

variance σ2
wV and σ2

wθ respectively. The assumption of independence meant that the
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process noise covariance matrix Q was diagonal:

Q =

σ2
wV 0

0 σ2
wθ

 (2.2)

Since all four states are available in ASDE-X data, the measurement vector ȳ had the

same components as the state vector. It was assumed that noise variance involved

in the measurement of X and Y positions was independent but had equal variance.

The position, velocity and turn-rate noise variances were assumed to be equal to σ2
vxy,

σ2
vV and σ2

vθ respectively. The measurement noise covariance matrix, R was therefore

given by:

R =


σ2
vxy 0 0 0

0 σ2
vxy 0 0

0 0 σ2
vV 0

0 0 0 σ2
vθ

 (2.3)

Finally, the continuous nonlinear state dynamics were assumed to be:

˙̄x =


Ẋ

Ẏ

V̇

θ̇

 =


V sin θ

V cos θ

a

ω

 +Bww̄ (2.4)

Here, a is the longitudinal acceleration and ω is the turn rate, both of which are

assigned different constant values in the system model for each mode. Since a heading

of zero degrees is due north, the sine component of velocity affects X position while

the cosine component affects Y position. A full list of taxi modes is given in Table

2.1. For the single-mode UKF used for comparison purposes, the assumed values were

a = ω = 0. The additive noise term in (2.4) is the product of the the matrix Bw and

the process noise w̄. The noise vector w̄ = [wV wθ]
′ contains noise in acceleration

and turn rate, and is assumed to vary like N (0, Q). The matrix Bw ensures that w̄
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affects only velocity and turn rate, and is given by:

Bw =


0 0

0 0

1 0

0 1

 (2.5)

The measurement vector is equal to the state vector with an additive noise term:

ȳ = x̄+ v̄ (2.6)

Here v̄ = [vX vY vV vθ]
′ is the measurement noise vector, assumed to be inde-

pendent of process noise, white, Gaussian and to vary like N (0, R). The diagonal

covariance matrix R ensures that the elements of measurement noise are independent

of each other.

Mode Description Longitudinal Turn
Number Acceleration Rate

a (m/s2) ω (deg/s)
1 Default 0 0
2 Moderate Acceleration 1 0
3 Moderate Deceleration -1 0
4 Constant Speed Turn Right 0 10
5 Constant Speed Turn Left 0 -10
6 Accelerating Turn Right 3 10
7 Accelerating Turn Left 3 -10
8 Decelerating Turn Right -3 10
9 Decelerating Turn Left -3 -10
10 High Acceleration 3 0
11 High Deceleration -3 0

Table 2.1: List of taxi modes

25



2.2.2 Form of filter

Definition of Constants

The UKF formulation used for each mode was based on the method proposed by Wan

and van der Merwe [4]. According to this method, a state vector of length n results

in (2n+ 1) sigma points. Some additional required constants are defined below. Note

that in this case, the number of states is n = 4.

κ = 3− n (2.7a)

α = 0.5 (2.7b)

λ = α2(n+ κ)− n (2.7c)

β = 2 (2.7d)

Based on these constants, the weights used for generation of the (2n+1) sigma points

from the sigma point generator matrix are defined.

wc,i =
1

2(n+ λ)
for i = 1, 2, ..., 2n (2.8a)

wc,2n+1 =
λ

n+ λ
+ 1− α2 + β (2.8b)

wm,j =
1

2(n+ λ)
for j = 1, 2, ..., 2n (2.8c)

wm,2n+1 =
λ

n+ λ
(2.8d)

Finally, the discrete equivalent process noise covariance matrix, Qd, is based on the

approximation (2.9), with Ts the time difference between two successive measure-

ments. Note that Qd is of size 4× 4.

Qd ≈ BwQB
T
wTs (2.9)

Filter Algorithm

Let us define the quantity z
(i)+
k to be the value of the generic quantity z after the

measurement update at time step k, for the ith sigma point where i = 1, 2, ..., 2n+ 1.
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Similarly, z
(i)−
k+1 is the quantity z propagated to time step k + 1 but prior to the

measurement update at time step k + 1. Let ˆ̄x denote the estimated state vector,

x̄(i) denote the ith sigma point, ȳ denote actual measurements, ˆ̄y be the expected

measurement vector and P be the sigma point generator matrix, viz. the uncertainty

matrix from which sigma points are generated. The filter algorithm [4] is given

below. Since all the states are available for measurement, algorithm initialization is

done using ˆ̄x+0 = ȳ0 (first detection of current aircraft) and P+
0 = R.

1. Generation of sigma points at time step k, with the ith sigma point generated

using the transpose of the ith row belonging to the matrix square root of (n +

λ)P+
k :

x̄
(i)+
k = ˆ̄x+k + [{

√
(n+ λ)P+

k }
(i)]T for i = 1, 2, ..., n

= ˆ̄x+k − [{
√

(n+ λ)P+
k }

(i)]T for i = (n+ 1), (n+ 2), ..., 2n

= ˆ̄x+k for i = 2n+ 1

2. Propagation of belief to the next time step, with af and ωf being the acceleration

and turn rate values assumed in the system model for filter f . The propagation

equations are based on simple kinematics.

x̄
(i)−
k+1 = x̄

(i)+
k +


(V

(i)+
k Ts + 1

2
afT

2
s ) sin ( π

180
θ
(i)+
k )

(V
(i)+
k Ts + 1

2
afT

2
s ) cos ( π

180
θ
(i)+
k )

afTs

ωfTs



3. Calculation of expected state vector at step k + 1 from the propagated sigma

points:

ˆ̄x−k+1 =
2n+1∑
i=1

wm,ix̄
(i)−
k+1
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4. Estimation of the uncertainty covariance matrix:

P−k+1 = Qd +
2n+1∑
i=1

wc,i(x̄
(i)−
k+1 − ˆ̄x−k+1)(x̄

(i)−
k+1 − ˆ̄x−k+1)

T

5. Recalculation of sigma points x̄
(i)−
k+1 using the same equations as in step 1, but

with P−k+1 as the generating matrix. The measurement sigma points, ȳ
(i)
k+1, are

equal to x̄
(i)−
k+1 since full state measurement is available.

6. Calculation of expected measurement vector at step k + 1:

ˆ̄yk+1 =
2n+1∑
i=1

wm,iȳ
(i)
k+1

7. Calculation of the Kalman filter gain at time step k + 1, Lk+1:

Pyy = R +
2n+1∑
i=1

wc,i(ȳ
(i)
k+1 − ˆ̄yk+1)(ȳ

(i)
k+1 − ˆ̄yk+1)

T

Pxy =
2n+1∑
i=1

wc,i(x̄
(i)−
k+1 − ˆ̄x−k+1)(ȳ

(i)
k+1 − ˆ̄yk+1)

T

Lk+1 = PxyP
−1
yy

8. Belief update using actual measurement at time step k + 1, ȳk+1:

ˆ̄x+k+1 = ˆ̄x−k+1 + L · (ȳk+1 − ˆ̄yk+1)

P+
k+1 = P−k+1 − LPyyL

T
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This algorithm is run simultaneously on all filters in the bank. The expected

measurement from each filter is compared to the actual measurement vector. Based

on this comparison, the current taxi mode is set, and the state estimate from the cor-

responding filter becomes the new state estimate for the entire bank. The algorithm

then repeats, starting from step 1.

Selection of Taxi Mode

The selection of taxi mode is based upon a Quality Index (QI) that is essentially the

negative of the second-order norm of the residual for each filter, normalized by the

measurement noise covariance.

QI = −(ȳk+1 − ˆ̄yk+1)
TR−1(ȳk+1 − ˆ̄yk+1) (2.10)

The filter selection algorithm tracks the Quality Index for each filter, for the latest

three time steps. The particular filter selected is the one that has the maximum QI,

among all f filters, for the most times in these three time steps. If three different filters

have one instance each of maximum QI in the last three time steps, the incumbent

filter continues to be selected. The algorithm is initiated at the start of each flight

track with the ‘straight, constant velocity’ mode active.

A Gaussian likelihood estimate, based on the measurement error of each filter,

and the uncertainty as derived from the matrix P , was initially tested as the criterion

for mode selection. However, it was found that the measurement noise can cause the

error to be occasionally so large that all likelihood values drop to machine zero. In

addition, the evaluation of Gaussian likelihood requires a call to a separate subroutine

in the code, and is computationally expensive. Therefore, the second-order norm was

chosen as a measure of likelihood. The additional heuristic of choosing the best filter

over the last three time steps helps avoid frequent mode jumping caused by erratic

measurement errors.
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2.3 Results

2.3.1 Multi-Modal Filter Output

A comparison of the output from the multi-modal filter with raw data is shown in

Figure 2-1, while Figure 2-2 shows sample output for a departure and an arrival.

Figure 2-1 is from a portion of taxiway close to the threshold of Runway 33L at

Boston Logan. The white line in the upper plot traces the raw data, while the multi-

colored segmented line in the lower plot is the filter output. It can be seen that most

of the noise in the raw data has been filtered out by the MMF. At the same time,

an idea about tracking performance of the filter can be obtained by observing that

filtered output in all the figures is fairly close to the taxiway markings on the surface.

Note that the colors in the filter output indicate the taxi mode as detected by the

filter. Table 2.2 relates the colors to the taxi modes from Table 2.1.

Taxi Mode Mode Numbers Color
Raw data - White
Straight, constant speed 1, 2, 3 Dark Blue
Decelerating straight / turn 8, 9, 11 Red
Accelerating straight / turn 6, 7, 10 Green
Turn, constant speed 4, 5 Light Blue

Table 2.2: Color coding for Figures 2-1 and 2-2

Figure 2-3 shows results from the taxi mode detection algorithm for a specific

flight. It can be seen that the code correctly detects a constant speed turn (starting

at 756 seconds on the X axis) followed by takeoff, which is a period of sustained high

acceleration. Note that the fourth plot in the figure shows relative Quality Index

values for each mode, i.e., the difference between the Quality Index of each filter and

the instantaneous Quality Index of the default mode having [a, ω] = [0, 0].
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(a) Raw Data

(b) MMF Output

Figure 2-1: Sample output from Multi-modal Filter. Both pictures correspond to the
area enclosed by the orange rectangle in the inset image.
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(a) Arriving flight: Landing on the runway is seen on the right, with strong braking marked
in red. The flight then leaves the runway and taxis towards its gate beyond the top edge of
the picture. Portions where a turn was detected are marked in light blue.

(b) Departing flight: Departure is on Runway 4R, with acceleration phase indicated in green.

Figure 2-2: Sample MMF output
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Figure 2-3: Taxi mode detection for a sample flight. The first two plots show velocity
and heading for the aircraft trajectory shown in the bottom plot. The third plot
shows the output of the mode detection algorithm, with acceleration and turn-rate
values of each mode marked on the Y axis. The fourth plot shows the quality index
of the best five modes in this time period, relative to the baseline mode [a, ω] = [0, 0].

Figures 2-4 and 2-5 are typical examples of the noise in raw data. In Figure 2-

4, considerable jitter is seen in the measured Y position, most of which is removed

by the filter. There is some noise in the X position as well, but not much in the

velocity and heading fields. In Figure 2-5, there is noise in velocity and heading but

not in position. Note that each of the four fields is independently measured by the
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ASDE-X system, and therefore, measured velocity is not simply the derivative of

position. Finally, Figure 2-6 shows autocorrelation plots of the estimation residuals

for a single flight. For each measurement variable, it shows the correlation coefficient

of the residual (error) at one time step with all other residuals in the rest of the flight

track. The low value of correlation except where the difference in index goes to zero

(correlation with itself) indicates that the residuals are a white sequence [8, 9], and

therefore the filter is working efficiently.
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Figure 2-4: Comparison of raw data and filtered output for a sample flight with noise
seen in position measurement
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Figure 2-5: Comparison of raw data and filtered output for a sample flight with noise
seen in heading and velocity measurement
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Figure 2-6: Autocorrelation of residuals for a single sample flight
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2.3.2 Comparison with single-mode UKF and Raw data

In terms of output quality, the single-mode UKF formulation ends up being inferior to

the multi-modal form. This is primarily due to the fact that the process model in the

single-mode UKF only accounts for straight, constant speed taxi. If noise suppression

comparable to the MMF is desired, the assumed measurement noise covariance needs

to be so high that the filter fails to track quick changes in velocity and heading.

For example, Figure 2-7 shows the filter output belatedly tracking a turning aircraft,

thus producing an estimate of position which is unrealistically close to the edge of

the taxiway.

Figure 2-7: Sample result from single-mode UKF: Raw data in white, UKF output
in yellow

Figure 2-8 gives an idea of the relative tracking behavior of the filters discussed so

far. It shows the mean ratio of the taxi distance measured using three different meth-

ods for a total of 20 flights, to the taxi distance measured visually by a straight-line

approximation of the taxi path. The three ways in addition to the visual measure-

ment, by which taxi distances have been calculated are (i) using the MMF, (ii) using

the single-mode UKF, and (iii) from raw data. The normalization of taxi distance

in this manner accounts for different taxi paths used by different flights. As seen in

the figure, the mean distance measured by the MMF is closest to the straight-line
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method. Note that the MMF output is likely to be closer to actual taxi distance

than the straight-line approximation since aircraft do not stick strictly to taxiway

centerlines. It is clear from the figure, though, that taxi distance calculated using

raw data would hold very little value for further analysis, because of its large taxi

distance estimates. Further, the large variance precludes the use of constant-factor

scaling to increase the accuracy of the raw estimates.
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Figure 2-8: Comparison of taxi-out distance ratios

2.4 Summary

In this chapter, it was showed that the raw data contained a significant amount of

noise, precluding its direct application to further analysis such as taxi distance cal-

culations. The MMF was shown to successfully mitigate the effect of noise, while

maintaining tracking performance. Tradeoffs involved with the use of a single-mode

UKF instead of the MMF were considered. It was found that the MMF had better

tracking properties than the UKF, making it the filter of choice for applications re-

quiring accurate estimates of aircraft position and taxi mode. In subsequent chapters,

all the ASDE-X data has been pre-processed using either the single-mode UKF or the

MMF, depending on the accuracy required and the amount of data to be processed.

37



38



Chapter 3

Characterization of Airport

Surface Operations

3.1 Introduction

Airports form the critical nodes of the air transportation network, and their perfor-

mance is a key driver of the capacity of the system as a whole [10]. With several

major airports operating close to their capacity, the smooth and efficient operation

of airports is essential for the efficient functioning of the air transportation system.

Studies of airport operations have traditionally focused on airline operations and on

the aggregate estimation of airport capacity envelopes [11, 12, 13, 14]. Most of this

research is based on data from a combination of the Aviation System Performance

Metrics (ASPM) [15] and the Airline Service Quality Performance (ASQP) systems.

These databases, when in individual aircraft format, provide the times at which flights

pushback from their gates, their takeoff and landing times, and the gate-in times, as

reported by the airlines. ASPM also provides airport-level aggregate data, which enu-

merates the total number of arrivals and departures in 15-minute increments. Such

data can be used to develop queuing models of airport operations [16, 17] or empiri-

cally estimate airport capacity envelopes [13]. However, this level of detail is typically

insufficient to investigate other factors that affect surface operations, such as inter-

actions between taxiing aircraft, runway occupancy times, etc. As outlined in the

39



previous chapter, ASDE-X data does provide the level of detail that allows analysis

of aircraft interaction in a disaggregate sense. This chapter describes the ways in

which ASDE-X data can be leveraged to characterize airport surface operations, and

proposes methods to track airport operational performance.

The filtering algorithm described in Chapter 2 processes the ASDE-X flight tracks,

one full day at a time. These filtered quantities are then used to tag each valid

flight track with a departure/arrival time and runway. By tracking each aircraft from

pushback to wheels-off, various airport states such as the active runway configuration,

location and size of the departure queue, and departure/arrival counts are measured.

In addition, airport-level performance metrics such as average taxi-out times, runway

usage and inter-departure spacing statistics are also tracked. The definitions of these

metrics and the algorithms proposed for measuring them are described in subsequent

sections of this chapter.

3.2 Airport Operational Characteristics

3.2.1 Departure Queue Characteristics

Visualization of the filtered ASDE-X data gives insights into the dynamics of airport

operations. For example, locations on the surface where aircraft typically queue up

for departure can be determined. These locations depend on the runway configuration

and operational procedures. For example, Figure 3-1 (left) shows the layout of BOS.

Figure 3-1 (right) shows the departure queues formed on a day in September 2010 in

the 22L | 22R configuration, i.e., when runway 22L (on the east side) was being used

for arrivals and 22R (on the west side) was being used for departures.

There is a primary departure queue at the runway threshold, and a secondary one

before it. The secondary queue is composed of aircraft waiting to cross the depar-

ture runway on their way to the primary queue. During the months of August and

September 2010, there was taxiway construction at BOS, which closed the taxiway

area denoted by white in the the figure.
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Figure 3-1: (Left) Layout of Boston Logan International Airport. (Right) Visual-
ization of airport operations. Aircraft in green are departures and the ones in red
are arrivals. A previously arrived aircraft can be seen at the bottom of the picture,
waiting to cross the departure runway on the way to its gate.

Observation of operations over several days of data provided an insight into typical

queue formation areas. These areas were then designated in the analysis codes for

automatic tracking of departure queues and calculation of statistics such as time spent

by individual aircraft in the queue and the variation of queue length over each day.

Figure 3-2 shows the variation of mean time spent in the primary departure queue,
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Figure 3-2: Variation of mean time spent in the departure queue with departure queue
length at the time of a flight joining it
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with the queue length. It is based on 40 days of data from all runway configurations.

We define queue length as the number of aircraft in the primary departure queue as

seen by a new aircraft just joining it. It can be seen that on average, each additional

aircraft in queue entails a penalty of 83 seconds for all the aircraft behind it. This

value seems to be reasonable when compared to the standard departure separations

described in Section 3.3.3.

3.2.2 Departure Throughput Characteristics

Departure queue characterization offers an insight into surface operations from an

aircraft’s perspective. Airport-level operational performance was tracked using the

variation of departure throughput (defined as the number of takeoffs in a 15-minute

interval) with the number of active departing aircraft on the surface. Aircraft were

defined to be active from the time of first transponder capture (first detection with

ASDE-X) to wheels-off time. Previous studies [17, 18] have shown, using ASPM data,

that the increment in departure throughput decreases with the addition of aircraft

to the surface, finally leading to saturation. This is corroborated by the results pro-

duced using ASDE-X data. Figure 3-3 shows the departure throughput curve for

a specific configuration at Boston. Note that only jet aircraft are counted in this

analysis. This is because propeller-driven aircraft are fanned out via separate depar-

ture fixes at Boston, thus not affecting the jet departure process. The throughput

curves for other configurations are similar in nature to Figure 3-3, differing only in the

point of saturation and maximum throughput. These differences can be attributed

to configuration-specific procedures, such as closely spaced departures on intersecting

runways.

3.3 Operational Performance Metrics

Building on the results described in the previous section, it is possible to develop

metrics to measure an airport’s operational performance. The motivation is not to

scrutinize controller performance, but to look for systematic inefficiencies and to iden-
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Figure 3-3: Departure throughput saturation: 22L, 27 | 22R configuration.

tify opportunities for improvement. The basic concepts used to define these metrics

are generalizable to any airport. However, each airport has local rules, regulations

and procedures that must be considered in order to be consistent across different con-

figurations and time periods. For example, there are subtle variations in the strategies

used by different airports to accommodate both arrivals and departures on the same

runway or on intersecting runways. At Boston, arrivals have to cross the departure

runway in the 22L, 27 | 22R configuration. On the other hand, in the 27 | 33L

configuration, it is the departures that have to cross the arrival runway. Arrivals at

Boston are controlled by the Boston Center, and consequently, they receive priority

over departures. Their sequence and separation is not controlled by the tower. The

following discussion presents the performance metrics, developed in consulation with

Boston ATC, that account for as many of these complexities as possible while keeping

the computational effort at a reasonable level.
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3.3.1 Average Taxi-out Times

The most natural performance measure from the point of view of passengers is the

average taxi-out time for departures. This is an important quantity that affects not

only flight delays but also taxi-out fuel consumption. In general, taxi-out times are

highest in the peak congestion periods. At Boston, these are the morning departure

push at around 0600 hours local, and the evening push between 1900 and 2000 hours

local time. Figure 3-4 shows the variation of average taxi-out times on a sample day.

The averages are calculated over 15 minute intervals for the entire day. Each bar in the

upper plot represents the average taxi-out time experienced by the aircraft pushing

back in that 15 minute interval. The number of pushbacks in the corresponding

interval are shown in the lower plot. The peaks in both pushbacks and taxi-out

times around 0600 and 2000 can be seen clearly. Note that in the calculation of this

metric, the time spent by aircraft absorbing departure holds, has been subtracted.

These aircraft usually have specified departure times known as Expected Departure

Clearance Times (EDCTs), decided by constraints elsewhere in the National Airspace

System (NAS). While it is desirable to have aircraft absorb these delays at the gate,

it is not always possible because of conflicts with arrivals that are scheduled to dock

at the same gate. Figure 3-5 shows a similar plot as Figure 3-4, but with flights with

EDCTs included in the data. A comparison of the two plots illustrates the effect of

excluding these flights.

3.3.2 Runway Utilization

The most capacity-constrained element in departure operations is the runway [19].

Therefore, it is important to ensure that an airport’s runway system is used as effi-

ciently as possible. To look at the current usage characteristics of runways at Boston,

a metric called Runway Utilization was defined. The utilization is expressed as a

percentage, calculated for every 15 minute interval. It is given by the fraction of

time in the 15 minute interval for which a particular runway is being used for active

operations. The types of active operations considered were:
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Figure 3-4: Variation of average taxi-out times on Dec 09, 2010. Flights with long
holds due to EDCTs have been removed from the calculation of average taxi-out
times.
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Figure 3-5: Variation of average taxi-out times on Dec 09, 2010, including flights with
EDCTs.
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1. Departure roll: Counted from the start of takeoff roll to wheels off

2. Departure hold: A departing aircraft holding stationary on the runway, waiting

for takeoff clearance

3. Approach: Counted from the time an aircraft is on short final (within 2.5 nm

of runway threshold) to the time of touchdown

4. Arrival: Counted from the moment of touchdown to the time when the aircraft

leaves the runway

5. Crossings/Taxi: When aircraft are either crossing an active runway, or taxiing

on an inactive runway

Each of these operating modes was detected using the filtered states from ASDE-X

tracks for each aircraft. The ‘approach’ phase was included in the runway utilization

because no other operations can be carried out on the arrival runway, or a crossing

departure runway, when an aircraft is on short final. Even though, technically, the air-

craft is not on the runway, ignoring this operational constraint would give erroneously

low utilization figures.

Figures 3-6 to 3-8 show the utilization plots for a sample day, for three different

runways. The topmost plot in each figure shows the breakup of utilization for the

runway over the course of the day. The plot in the middle shows operational counts

in each 15 minute interval, for both ends of the runway. Finally, the lowermost plot

shows the variation of queue length over the day. It should be noted that the queue

length is calculated for every second, while the top two plots are aggregate figures over

the 15 minute interval. Details such as configuration changes can be seen immediately

from the utilization plots. For example, we can see from Figures 3-7 and 3-8 that

departure operations shifted from runway 22R to runway 33L at 1000 hours.

Ideally, it would be desirable to have the utilization figures be 100% for the active

runways in times of peak demand. The sample figures show that while this figure is

achieved for much of the peak period, it is difficult to sustain. Disruptions may be

caused by off-nominal events such as runway closures due to foreign objects, arrivals
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Figure 3-6: Utilization of Runway 9/27 on Dec 09, 2010. Runway 27 was used for
arrivals for the entire day. An occasional departure can be seen in the second plot,
accompanied by a dip in the number of arrivals and the utilization for the time period.
In the bottom plot, queue formation can be seen, composed of aircraft waiting to cross
the runway for departure on 33L.

requesting a departure runway for landing, or gaps in the arrival sequence. It should

be noted that the utilization for the departure runway is always higher than that for

the arrival runway. This is because the departures can be packed close together, with

the next aircraft in queue holding on the runway while the previous aircraft starts

its climb-out. On the other hand, tightly packed arrivals increase the risk of frequent

go-arounds caused by aircraft not vacating the runway quickly enough to allow the

next arrival to land. Therefore, the arrival stream usually has a buffer over and above

the minimum spacing dictated by standard procedures.
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Figure 3-7: Utilization of Runway 15R/33L on Dec 09, 2010. Runway 33L was
inactive until 1000 hours, after which it was used for departures. Occasional arrivals
seen in the second plot are heavy aircraft requesting this runway for landing due to its
greater length. Arrivals in the peak period between 1800 and 2000 cause a noticeable
dip in the utilization.
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Figure 3-8: Utilization of Runway 4L/22R on Dec 09, 2010. Runway 22R was used
for departures during the morning peak period. Note the longer queue lengths seen
here, compared to those for runway 33L. This is because the morning demand is
concentrated into two banks at 0600 and 0745 hours.

3.3.3 Departure Spacing Efficiency

As noted earlier, departures can be spaced more tightly compared to arrivals. How-

ever, the minimum departure spacing is still governed by a set of standards, cus-

tomized to each airport depending on the runway and airspace layout. It is generally

recommended to maintain a minimum spacing of 120 seconds for a departure follow-

ing a heavy aircraft [20]. At Boston, the target separations, based on a combination

of regulatory requirements and historical performance, are as given in Table 3.1.
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P S L 757 H
P 40 40 40 40 40
S 40 65 65 65 65
L 40 65 65 65 65

757 110 110 110 110 110
H 120 120 120 120 120

Table 3.1: Target departure separations. The columns correspond to the weight class
of the trailing aircraft, while the rows correspond to the weight class of the leading
aircraft. All figures are in seconds.

To compare the actual inter-departure separation with these target values, a metric

called the Departure Spacing Efficiency was defined. As with runway utilization, this

metric is calculated for each 15 minute interval. However, the Departure Spacing

Efficiency is not runway-specific, but addresses departure operations at the airport

as a whole. To calculate it, the difference between the wheels-up times of each pair

of consecutive departures is compared to the target level of separation for that pair,

based on the aircraft classes of the leading and trailing aircraft. Each additional

second more than the target level is counted as a second lost. Time is counted as

‘lost’ only if there are other aircraft in queue, waiting for departure. This ensures that

the efficiency figure does not fall simply because of low demand. On the other hand,

controllers can also sometimes manage to depart aircraft with a separation less than

the target level, depending on factors such as the availability of multiple runways for

departure. In this case, each second less than the target separation level is counted as

a second gained. Then, the Departure Spacing Efficiency in each 15 minute interval

is given by:

η = 1.00 +
Total seconds gained in the interval− Total seconds lost in the interval

Length of interval

It should be noted that the use of multiple runways does not always allow depar-

tures to take place with less than the target level of spacing. For example, at Boston,

departure operations on runways 22R and 22L have to take place as on a single run-

way, because both sets of departures have to use the same departure fixes. However,

when runways 4R and 9 are used for departures, aircraft can be spaced more closely,
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thus boosting the airport’s efficiency. Figure 3-9 demonstrates the calculation proce-

dure for counting the time lost in a 15 minute interval. The local time is shown on

the X axis. Each spike denotes the wheels-off time for a departure, with the height of

the spike corresponding to the weight class of the aircraft. The spike then tapers off,

reaching the ‘clear to release’ line when the target separation interval elapses. The

gap from this point to the next departure spike counts towards the total number of

seconds lost in the current 15 minute interval. There is, however, a caveat associated

06:23:00 06:24:00 06:25:00 06:26:00 06:27:00 06:28:00

Clear to Release 

 Prop Departure

 Small Departure

 Large Departure

 757 Departure

 Heavy Departure

Local time (hrs)

Departures on Runways 22R and 22L on Dec 09, 2010

 

 
Departure on 22R
Departure on 22L

Completion of
standard separation

requirement

Departure time
757 followed by Large
          110 sec

Figure 3-9: Visualization of departures

with calculation of the total time lost. As described previously, arrival spacing is

not under the discretion of Boston Tower. In configurations where arrivals take place

on a runway that is the same as or that intersects the departure runway, this can

cause a dip in the efficiency. We account for this effect by discounting the idle time

of a departure runway when an arrival is on short final (within 2.5 nm of threshold)

to an intersecting runway or to the same runway. Figures 3-10 and 3-11 show the

variation of Departure Spacing Efficiency with the time of day for December 09, 2010,

with and without accounting for the arrival effect, respectively. In each figure, the

plot on the top shows the efficiency in each 15 minute interval, while the plot on the

bottom shows the departure count in the corresponding intervals. The colored bars

in the middle indicate the departure demand level at the airport, calculated using

51



a combination of the departure counts and queue lengths. We note that there are

several time periods (for example, between 1630 and 2015 hours), when not including

the impact of arrivals would lead to the erroneous conclusion that the efficiency was

lower than it actually was. A comparison of Figures 3-10 and 3-11 suggests that the

efficiency during this time was above 85% when accounting for arrivals, whereas it

was as low as 75% when the effect of arrivals was ignored.

Note the large dip in efficiency just prior to the configuration change at 1000 hours.

A few intervals with net efficiency more than 1.0 can also be seen. These intervals

correspond to spikes in the departure count, since consistent separation values less

than the target level result in a large number of departures. The most notable high-

efficiency interval is the one from 1945 to 2000, which is in the middle of a period with

high demand. The bottom plot shows that the controllers managed 10 departures in

this interval (nine on runway 33L and one on runway 27), while a comparison with

Figure 3-6 shows that 7 arrivals were also achieved. In this way, a combination of

different performance metrics offers insights into the intricacies of surface operations,

that result in the net operational counts that are the traditional measure of airport

performance.
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Figure 3-10: Departure spacing efficiency on Dec 09, 2010, accounting for the effect
of arrivals on the same/crossing runway.
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Figure 3-11: Departure spacing efficiency on Dec 09, 2010, not accounting for the
effect of arrivals on the same/crossing runway.

3.4 Performance Metrics: Operational Feedback

The metrics defined above, tracked over several months of data, can be used to mea-

sure average operational performance. For example, Figure 3-12 shows the average

departure spacing efficiency at Boston, sorted by configuration and demand level.

One immediate conclusion from the figure is that for most configurations, the effi-

ciency drops as demand increases. This is intuitive, since high demand usually means

more complex operations, more runway crossings, and so on. We can also see that

departures on runways 9 and 4R is the most efficient configuration. As mentioned be-

fore, this configuration allows closely-spaced departures on the two crossing runways,

which boosts the efficiency. An interesting footnote is that the 33L | 27 configura-

tion, with departures on runway 27, is more efficient than the 27 | 33L configuration.

Either of these can be used when winds are from the northwest. Therefore, Boston

ATC now prefers using the former configuration when the departure demand is high,

particularly in the morning, when this is not accompanied by high arrival demand.

According to the Boston Air Traffic Manager, one possible explanation for the in-

53



creased spacing on 33L could be that it is longer than runway 27. This means that a

departure takes longer to be completely clear of the runway, which is a visual cue for

the controller to release the next aircraft.
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Figure 3-12: Average Departure Spacing Efficiency in common configurations

3.5 Summary

This chapter presented several ways in which surface surveillance data could be used

for the detailed analysis of airport surface operations. This included directly measur-

able quantities like departure queue statistics and throughput characteristics, along

with performance metrics like average taxi-out times, runway utilization and depar-

ture spacing efficiency. The ensuing discussion showed how they could be used to

gain insight into the performance of the airport.
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Chapter 4

Taxi Time Prediction

4.1 Introduction

4.1.1 Motivation

A significant portion of total flight delay is absorbed on the airport surface, before

departure. Therefore, reduction of taxi-out times has the potential to substantially re-

duce delays and fuel consumption on the airport surface. Prediction of taxi-out times

is a necessary component of any proposed algorithm to reduce departure delays [18].

Previous studies have used regression techniques [21, 22] or queuing models [17, 23]

to predict taxi-out times. These methods make use of Aviation System Performance

Metrics (ASPM) data [15]. This data set lists only the gate-out and wheels-off times

for each aircraft, and consequently, it does not offer any opportunity to investigate

the interaction between aircraft on the surface. In addition, it is not accurate for gen-

eral aviation flights. Other systems, such as NASA’s Surface Management System,

are capable of real-time tracking of surface movement, but still use logit models built

from aggregated data to predict taxi-out times [24]. Besides the characterization of

airport operations, ASDE-X data can also be used for prediction purposes, as detailed

in this chapter.
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4.1.2 Prediction Model Overview

The algorithm described here predicts taxi-out times based on a network model of

the airport surface. Such models have been previously proposed for urban Operations

Research problems, and there exists literature that deals with solving optimal route

problems in this context [25, 26]. The urban transportation network concept has been

adadpted in this chapter, to handle aircraft taxi-out operations, by modeling the time

taken by aircraft to taxi over each taxiway link as a random variable. A set of theo-

retical distributions is fitted to the observed empirical data on link travel times: the

modeled distributions are determined so as to minimize the Kullback-Leibler distance

(an information-theoretic measure of the ‘distance’ between two probability distribu-

tions) between the modeled and observed probability distributions. This theoretical

model, augmented by knowledge of the current state of traffic on the surface, is then

used to predict taxi-out times for each aircraft. All the results presented here use

20 days of ASDE-X data for training the model, and 20 different days of data for

validating the model.

4.2 Model Development

4.2.1 Model Structure

Figure 4-1 shows the set of runways and taxiways on the airport surface that are

represented in the network model. The taxiways form the links of the network, and

their major intersections are marked as the nodes. The taxi-out phase for an aircraft

is defined to be from the time an aircraft leaves the gate to the time it starts its takeoff

roll from the runway threshold. Therefore, the potential source nodes in the network

are the ones adjoining the gates, while the potential terminal nodes are the runway

thresholds. The objective is to predict the time required by each departing aircraft to

travel from its source node to its terminal node. An abstraction of the resulting model

is shown in Figure 4-2. Note that Figure 4-2 shows the union of the networks for all

possible airport configurations (allocations of runways to landings and takeoffs). In
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Figure 4-1: Layout of the airport surface at Boston Logan. Nodes in the network
model are marked with white boxes. The configuration-specific network for departures
from Runway 33L has been highlighted.

practice, only one configuration is active at a time, and each aircraft has only one

source node and one terminal node. BOS typically operates in configurations with

only one primary departure runway, but the proposed model can be easily extended

to other airports with multiple runway queues. Figure 4-3 shows the specific network

for departures from Runway 33L. In any specific configuration, aircraft maintain a

flow from the terminal to the runway, and generally do not taxi in cyclic paths.

Consequently, the configuration-specific networks are directed acyclic graphs with

random link travel times.

Figure 4-2: Abstraction of the airport surface as the union of all configuration-specific
networks, with link directionality marked. Green nodes are potential sources and red
ones are potential terminal nodes.
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Figure 4-3: Network layout for departures from Runway 33L.

4.2.2 Analysis of Empirical Data

Figure 4-4 shows the procedure adopted for determining the empirical distributions

of travel times for each individual link. The time required to travel from node to node

by each flight in the training data set was logged. The set of travel times between each

ordered pair of nodes was used to generate the aggregate empirical distributions. It

should be noted that ‘link travel time’ was calculated from the instant a flight exited

one node, to the instant it entered the next node on its path. The distribution of

time spent within each node was tracked separately.

IF (# STOPS == 0) 

Figure 4-4: Flowchart for measuring empirical distribution of link travel times.

From the instantaneous velocity information in the data, each instance of link

transit was classified as impeded or unimpeded. A flight was defined to have passed

‘unimpeded’ through a link if the velocity of that flight never dropped below 2 m/s

on that particular link. The velocity threshold was based upon the full distribution of

taxi velocity over each link, which showed a marked distinction at 2 m/s. Figure 4-5
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shows an example for the link 1→2. It can be seen that the most frequent velocity

values are below 2 m/s, or in a band around 7 m/s. The instances of unimpeded

transit were used to generate the unimpeded taxi-time distribution over each link.

The flights that were impeded were further analyzed to extract the distribution of

number of stops during the transit, and also the distribution of stop times.
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Figure 4-5: Distribution of taxi velocity over the link 1→2.

4.2.3 Link Travel Time Model

The resulting empirical distributions were analyzed with a view to fitting explanatory

theoretical models. The unimpeded travel time distribution over each link was mod-

eled by an Erlang random variable, with parameter λ and order n. The distribution

of number of stops on each link was modeled as a geometric random variable with

parameter p, while the time distribution of each stop was modeled as an exponential

random variable with parameter µ. Figures 4-6 to 4-8 show a comparison between the

theoretical and empirical distributions for the link 1→2. The parameters of the ran-

dom processes underlying each link were tuned by minimizing the Kullback-Leibler

(KL) Divergence [27] between the empirical and theoretical distributions. KL diver-

gence is a measure of the ‘distance’ between two probability densities, and minimizing

it is one way of ensuring a good fit between the theoretical model and empirical ob-

servation.
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Figure 4-6: Unimpeded travel time over the link 1→2.
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In summary, the model generated by the estimation procedure implies that the

travel time over a link A→B, eAB, is given by the sum of an Erlang random variable

and a geometric number of exponential random variables. The Erlang denotes unim-

peded travel over the link. In addition, there is a delay term containing a random

number of stops, each of which is distributed like an exponential random variable

with parameter µAB. The probability of each additional stop is pAB. The resulting

model is given by Equation (4.1), where m = {0, 1, ...} is a geometric random variable

with parameter pAB.

eAB = Erlang(λAB, nAB) +
∑

Exp(µAB)︸ ︷︷ ︸
m instances

(4.1)

Taking expectations of both sides of (4.1), and noting that the number of stops

is independent of the individual stop times, we get Equation (4.2), which gives the

mean travel time over each link.

E[eAB] =
nAB
λAB

+
pAB

1− pAB
· 1

µAB
(4.2)

4.3 Results

4.3.1 Aggregate Predictions

As mentioned before, the parameters of the travel time distribution model were tuned

for each link. The range of parameters observed over all links is listed in Table 4.1. To

calculate the full distribution of link travel times using Equation (4.1), it is necessary

to carry out a convolution of the Erlang and the random number of exponential

random variables. Note that the parameters of the unimpeded Erlang and the stop-

time exponentials are different, which means that the convolution is not an Erlang of

higher order and has to be done numerically. However, conditioned on the number of

stops m, the exponentials among themselves form an Erlang with parameter µAB and

order m. Therefore, the net distribution could be calculated as a weighted sum of

the individual distributions, conditioned on the number of stops. For computational
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Table 4.1: Parameter ranges for theoretical distributions.

Link-specific variable Value Range

Stopping probability pAB [0.1, 0.5]

Mean number of stops pAB

1−pAB
[0.11, 1.00]

Stop time parameter µAB [0.012, 0.025]

Mean time of stop (sec) 1
µAB

[40, 83]

Unimpeded Erlang rate λAB [0.16, 0.45]

Unimpeded Erlang order nAB [12, 30]

Mean unimpeded time (sec) nAB

λAB
[60, 120]

purposes, this number m was limited to a maximum value of 3, since the probability

of stopping more than 3 times on any single link is very small.

The component travel time distributions for link 1→2, conditional on the number

of stops on the link, are shown in Figure 4-9. Each empirical conditional distribution

is compared with the corresponding model prediction in Figures 4-10 to 4-12. The

sum of these theoretical distributions, each weighted by the probability of stopping

on the link for the corresponding number of times, is the full predicted distribution of

travel time over the link. A comparison of the model prediction and the actual realized

distribution, from the test data, is shown in Figure 4-13. It should be emphasized

that the model parameters were tuned using the training data set, while the realized

distribution in Figure 4-13 is from a separate set of test data. It can be seen that the

model prediction is close to the realized distribution, and is especially good in the

tail region.

The tuned values of distribution parameters for each link offer interesting insights

into the operational characteristics of the airport. Some sample values are given in

Table 4.2. For example, the mean unimpeded travel time over each link, given by

the ratio n/λ, can be thought of as the ratio of a distance metric (n) to a velocity

metric (λ). This is borne out by the parameter values, with long links tending to have

higher-order Erlang distributions than short links. In addition, the final links leading

to runway thresholds, which is when pilots finish the final checks before takeoff,
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Figure 4-10: Comparison of travel time distributions with 0 stops
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Figure 4-11: Comparison of travel time distributions with 1 stop
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Figure 4-12: Comparison of travel time distributions with 2 stops
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Figure 4-13: Comparison of full travel time distributions over link 1→2

generally have lower λ values than links deep inside the network. This means that

the model has recognized, from the training data, that unimpeded velocities on the

links leading to the runway threshold tend to be lower than those near the terminals.

The parameters of the exponential random variables offer insights into the trend of

stop times on each link. Specifically, the quantity 1/µ is the mean time of a stop on

the link. This tends to be between 20 and 100 seconds. Again, µ values tend to be

lower on the final links, which means that the links that contain departure queues

have longer stops than others.
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Table 4.2: Parameter values for some sample links.
Link λ n µ p
1→2 0.35 21 0.018 0.14
2→3 0.31 18 0.016 0.11
8→3 0.31 21 0.022 0.11
4→5 0.26 20 0.019 0.23
5→6 0.22 27 0.016 0.48
9→10 0.20 18 0.016 0.50

4.3.2 Traffic-dependent parameters

The average probability of stopping on each link varies between 0.1 and 0.5, which

means that on any link, between 10% and 50% of flights stop at least once. Since the

distribution is geometric, the probability of stopping again remains unchanged even

if a flight has already stopped once. This is intuitively consistent, considering that

aircraft usually have to stop during taxi-out because of conflicts with other aircraft.

Given that an aircraft has had to stop to let another aircraft cross its path should

have no bearing on the probability of encountering another aircraft while on the same

taxiway. Although the parameter pAB is constant for a given flight, it turns out that

its value is a function of the current state of traffic on the surface. For example, Figure

4-14 shows the variation of mean travel times over link 1→2, with the traffic on the

surface. The X axis denotes the number of active departing aircraft (those that have
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Figure 4-14: Variation of travel times over link 1→2 with traffic on the surface.
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pushed back from the gate but have not taken off) at the moment an aircraft left

node 1 for node 2. The Y axis is the mean travel time for all flights that traveled

from node 1 to node 2 when the traffic was at the corresponding level. It can be seen

that there is a clear increase in travel times as congestion on the surface increases.

Therefore, we modeled the stopping probability as a function of the number (N) of

active departing aircraft on the surface. This was calculated by assuming that the

other parameters in the distribution (unimpeded travel time and time for each stop)

remain constant, while the stopping probability varies. By measuring the left-hand

side of Equation (4.2) conditioned on N , we can solve for the conditional stopping

probability:

pAB,N =
µ(E[eAB,N ]− nAB/λAB)

1 + µ(E[eAB,N ]− nAB/λAB)
. (4.3)

Here, the expectation value is measured empirically. Figures 4-15 and 4-16 show

the variation of calculated stopping probability with surface traffic for two links. Link

1→2 is near the gates, while link 5→7 is near Runway 33L (refer Figure 4-1). Note

that the values have been smoothed using a heuristic such that only points that have

sufficient data are used for curve fitting. It can be seen that for link 1→2, stopping

probability is very low when traffic is sparse. On the other hand, a significant fraction

of flights tend to stop on link 5→7 even during light traffic conditions. When traffic

is heavy, an aircraft using the link 5→7 is likely to stop on it at least once with

high probability, and quite likely more than once. This behavior can be explained by

the observation that the link holds the departure queue when runway 33L is active.

During heavy traffic conditions, there is a large queue of aircraft waiting to depart,

thereby causing every flight to move in a stop-start fashion.

4.3.3 Taxi-out time predictions

Once the distributions of travel times over individual links are available, it is possible

to make predictions of full taxi-out times for each aircraft. These predictions are

based on knowledge of the proposed taxi path, and the current state of traffic on

the surface. The proposed taxi path is assumed to be available before the start of
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Figure 4-15: Variation of stopping probability over link 1→2 as a function of the
departure traffic on the surface.
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Figure 4-16: Variation of stopping probability over link 5→7 as a function of the
departure traffic on the surface.

taxi, based on observations carried out in the Air Traffic Control Tower at Boston

Logan. The current state of surface traffic is tracked using ASDE-X data. The model

makes predictions of taxi-out times using the expectation values based on Equation

(4.2), in which the value of stopping probability pAB for each link is the conditional

value estimated using Equation (4.3). For every additional aircraft in the departure

queue, a fixed time penalty is imposed on all the aicraft expected to be behind it.

The algorithm for real-time predictions is described below:

Start

1: for all time instants t do

2: for all aircraft i detected in any node n at time t do

3: if

4: Aircraft i detected for the first time then
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5: Calculate expected arrival time at departure queue (tai) by adding the

expected travel times over each link and node on its path, except last link

6: Using expected number of aircraft already in queue at tai, predict departure

time tdi of aircraft i

7: Augment expected departure queue length between tai and tdi by one

8: else

9: Subtract 1 from the expected departure queue length between tai and tdi

10: Update expected tai by adding the expected travel times over all remaining

links and nodes on its path, except last link

11: Using expected number of aircraft already in queue at the new tai, update

departure time tdi of aircraft i

12: Augment expected departure queue length between new tai and tdi by one

13: end if

14: end for

15: end for

End

The update steps (10) and (11) adjust for two stochastic factors in the taxi-out

process: (i) the time taken by the aircraft to travel over the previous link may be

different from the prediction, and (ii) the expected queue arrival times of other aircraft

on the surface (and hence the expected queue size seen by the current aircraft) could

have changed, based on their own prediction updates. Figures 4-17 and 4-18 show

the results from this algorithm over an entire day. The X axis in the plots on top

is the local time at Boston, while the Y axis is the taxi-out time (predicted and

actual) in seconds. The plots on the bottom show the distribution of prediction error

over the whole day. Each red circle is the taxi-out time for a real flight on that

day, with the X coordinate denoting its departure time. The green circles at the

same X locations are the corresponding predictions. In Figure 4-17, all calculations

are carried out assuming that link travel times are independent of the current traffic

level. The predicted link travel times are thus equal to their static or unconditional

means. Since the expected queue size seen by each aircraft is still calculated, some of
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the effect of congestion is accounted for by larger predicted times in queue. However,

this does not account for all the additional delay absorbed by aircraft on the surface.

Specifically, the ‘static means’ prediction method does not compensate for the effect

of the greater probability of conflicts on the surface. Consequently, it can be seen that

during peak times, the predictions do not track actual taxi-out times very well. This

leads to a significant increase in the proportion of under-predicted taxi-out times, as

shown in the bottom plot of Figure 4-17. On the other hand, Figure 4-18 shows the

predictions produced by assuming that the parameter pAB varies with surface traffic.

This method, which uses dynamic or conditional means, can be seen to track actual

taxi-out times much better in the peak periods.
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Figure 4-17: Prediction of taxi-out times on Nov 24, 2010 using static means. The
expected travel time over each link up to the departure queue is assumed independent
of current traffic level.
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Figure 4-18: Prediction of taxi-out times on Nov 24, 2010 using dynamic means. The
expected travel time over each link up to the departure queue is a function of current
traffic level.

4.3.4 Prediction accuracy for complete taxi-out times

Aggregate prediction results from the model are shown in Figure 4-19 for departures

from Runway 33L. It shows the distribution of prediction errors over 20 days from an

independent test data set. The prediction values used were the ones generated upon

first detection of each aircraft, that is, around time of pushback. The mean error is

an under-prediction of 39 seconds, with a standard deviation of 192 sec. It was found

that 70% of all predictions were within ±3 minutes of actual taxi-out times. This

level of performance is typical across all configurations, and is better compared to an

error standard deviation of 5 minutes (300 sec) reported in literature [23].

Figure 4-20 shows the improvement in prediction accuracy from successive nodes

on a particular taxi path. The plot shows the distribution of prediction error from

each node, based on all flights that used the particular taxi path over the 20 days of

test data. It can be seen that the error variance decreases, and the prediction becomes

more accurate, as the flights move closer and closer to their terminal nodes. Another

point of note is that the distribution tails on the negative side (under-prediction) are

fatter than the ones on the positive side (over-prediction). The positive errors are a
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Figure 4-19: Distribution of full taxi-out time prediction error from 20 test days, for
departures from Runway 33L.

result of the stochastic nature of the taxi-out process, which is captured well by the

prediction model. On the other hand, unusually high taxi times may be the result of

external events, such as delays due to runway closures, fixed departure times due to

constraints in other parts of the National Airspace System, etc. These events are not

captured by the current model formulation.
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Figure 4-20: Improvement in error variance along successive nodes on a taxi-out path

4.3.5 Recommendation of taxi-out start times

It is possible to use the taxi-out time prediction model for recommending taxi-out

start times (that is, pushback times) for individual aircraft. Figure 4-21 shows a

simple version of the procedure devised to make suggestions for specific flights. The

X axis shows the range of times over which the search for the best start time was

carried out. These are within ±5 minutes of the actual start time for that flight. The
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Figure 4-21: Recommendation of taxi-out start time for a sample flight.

height of the black bar corresponds to the actual taxi-out time for the flight. The blue

bars represent the full gate-to-runway predictions, corresponding to the start times

on the X axis. Since the state of traffic on the surface is constantly changing, the

model produces different taxi-out time predictions for different proposed start times.

Looking at the full set of predictions makes it possible to identify the best taxi start

time for the flight. In the example shown, leaving at 8:52 am instead of 8:50 am

would have potentially reduced the taxi-out time by 150 seconds.

4.4 Summary

In this chapter, a model for prediction of aircraft taxi-out times based on detailed

surface surveillance data, was presented. It was showed that abstraction of the airport

surface as a network facilitates the definition of a theoretical model to explain the taxi-

out process. The link travel times were modeled as a sum of two random variables: an

unimpeded travel time and a delay component. The parameters of the distributions

of the random variables were determined so as to minimize the Kullback-Leibler

distances between the model and the empirical distributions. The model works very

well as a prediction tool in the aggregate sense, matching the observed empirical

distributions of link travel times with high accuracy. Full taxi-out time predictions

are made, with an error standard deviation of approximately 3 minutes.

72



Chapter 5

Fuel Burn Modeling

5.1 Introduction

Estimation of aircraft fuel burn plays an important role in determining the envi-

ronmental impact of air traffic operations as well as in estimating the benefits of

efficiency-enhancing procedures, and has been a topic of interest to the research com-

munity for several years [28]. Taxi-out fuel consumption is most often determined

using the fuel burn indices presented in the International Civil Aviation Organization

(ICAO) engine emissions databank [29]. The ICAO fuel burn indices provide fuel

burn rates for only four engine power settings (corresponding to 7% or taxi/idle, 30%

or approach, 85% or climb-out, and 100% or takeoff), and are based on estimates pro-

vided by engine manufacturers [30]. Recently published studies [31, 32] have shown

that the ICAO estimates can be quite different from the actual fuel burn, when con-

sidering the departure flight phase in the terminal area. The terminal area fuel burn

considered in these studies includes the fuel consumed during taxi-out as well as the

initial part of the climb. In contrast, in order to estimate the benefits of surface traffic

management strategies [17], it is necessary to have accurate estimates of the taxi-out

(on-surface) fuel burn. Since fuel flow rates in the airborne flight phase are much

higher than during taxi-out, total departure fuel burn may not be a good indicator of

surface fuel burn. Also, a large part of total flight delay is absorbed on the ground,

before departure. To quantify the impact of this delay, it is necessary to have an
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estimate of the fuel burn associated with surface trajectories of departing aircraft.

Previous studies on this topic [2] have used the ICAO fuel burn indices (augmented

with physical models) to translate the surface trajectories into fuel burn estimates,

and may therefore not be representative of operational aircraft. It appears that this

work is the first attempt to develop models of surface fuel burn using Flight Data

Recorder archives from an actual, operational fleet.

5.1.1 Problem Description

The high-level objective of this work is build a model that, when given the surface

taxi trajectory of a flight (for example, from a surface surveillance system such as

the Airport Surface Detection Equipment - Model X, or ASDE-X) [1], can form an

accurate estimate of its fuel burn. This model can then be utilized in a taxi-out

departure tool with the objective to minimize the total fuel burn impact of surface

operations at an airport. Since the results of any optimization process hinge upon

accurate estimation of all the involved variables, it is necessary that the fuel burn

model be as close to the actual fuel burn as possible. In order to build such a model,

we need to estimate fuel consumption from estimates of aircraft position, velocity and

acceleration. One method for doing so is to divide the surface trajectory into different

taxi phases (for example, stops, turns, constant velocity taxi, etc.), to estimate the

engine power settings for each of these phases (using physics-based models and pilot

surveys), interpolate/extrapolate ICAO fuel burn indices to these power settings,

and to use these estimated fuel burn indices to determine the fuel consumption of the

trajectory [2].

However, several factors confound such an estimation using ICAO data alone.

Firstly, the ICAO fuel burn estimates provided by engine manufacturers may not

reflect the characteristics of the engines in the operational fleet which are subject

to frequent use. Secondly, the engines are staged and tested only at four power

settings, and in particular, 7% may not be representative of the typical power setting

during taxi. Thirdly, pilot behavior is a critical factor in determining the power

settings during the different taxi modes: for example, some pilots may not change
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their power settings when they stop, or when they accelerate from a stop, choosing

instead to “ride the brakes”. Idealized models of taxiing cannot capture this behavior,

or even the average. Finally, several studies have shown a nonlinear dependence of

fuel flow rate on engine power settings, and the relationship at low power settings

is not well-understood. Therefore, caution must be extended in interpolating or

extrapolating fuel burn indices at low power settings (such as near ground idle). In

order to overcome these challenges, we adopt a data-driven approach to estimating

the fuel burn of surface trajectories, using Flight Data Recorder (FDR) archives.

5.1.2 FDR Database

The Flight Data Recorder (FDR) is a device onboard commercial aircraft that stores

the history of several parameters such as aircraft position, velocity, fuel flow rate,

ambient and engine temperature, and so on. FDR archives from over 2300 flights

belonging to a former international airline were used for the purposes of modeling

and validation in this study. The dataset included flights originating from the US,

Europe, Asia and Africa. Aircraft types included in the dataset were the Airbus A320

family (A319, A320, A321), the A330 family (with Rolls Royce and General Electric

engines) and the A340, the Avro RJ85 and Boeing’s B757, B767 and B777. A full list

of aircraft and engine types, along with their Maximum Takeoff Weight (MTOW), is

shown in Table 5.1.

Table 5.1: Aircraft types and Engines
Type Engine Number Number MTOW (kg)

of Engines of Flights
A319 CFM56-5B5-2 2 140 64,000
A320 CFM56-5B4-2 2 238 73,500
A321 CFM56-5B1-2 2 174 83,000
A330-202 CF6-80E1A4 2 224 230,000
A330-243 RR Trent 772B-60 2 237 230,000
A340-500 RR Trent 553-61 4 260 372,000
ARJ85 LF507-1F 4 263 44,000
B757 RR RB211-535E4 2 178 106,600
B767 P&W 4060 2 285 186,900
B777 GE90 2 364 344,550
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A total of 105 parameters were available in the dataset, of which the ones of

primary interest to us were the fuel flow rate, throttle setting, velocity, position

(latitude/longitude), ambient temperature, thrust and engine fan speed (N1). It is

believed that some of these quantities, such as the thrust, were derived estimates and

not actual measurements.

5.2 Data Analysis Algorithms

5.2.1 Preprocessing

Raw data was run through multiple preprocessing algorithms for the purposes of anal-

ysis. These steps included sorting of flights, removal of the airborne phase, filtering

of the velocity estimates, and the extraction of events of interest such as stops and

turns. The velocity as derived from position required filtering due to the relatively

low data update rate during taxi-out (Table 5.2). Since the noise level was low, a

linear Kalman filter was found to be sufficient.

Finally, the taxi-out phase was separated by extracting the portion of the surface

trajectory after pushback from the gate and before commencement of the takeoff

roll. Identification of pushback was carried out using a combination of fuel-flow rate

and speed conditions, and the start of the takeoff roll was determined using a speed

cut-off.

5.2.2 Baseline Fuel Consumption

The ICAO procedure for estimation of taxi-out fuel burn assumes that taxi operations

occur entirely at idle thrust (the 7% power setting), and thus proposes the use of

Table 5.2: Dataset update rates
Flight Phase Update Rate
Taxi 5 sec
Takeoff/Landing Roll 1 sec
Climb/Descent 10 sec
Cruise 150 sec
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constant rated idle thrust fuel flow for all calculations [29]. It defines the fuel burn

index to be the fuel flow rate per engine at idle thrust. The version of the ICAO

database used for this study was from December 2010 [33]. To compare these numbers

to actual data, the average fuel flow rate for each available aircraft type in the dataset

was calculated, by dividing the taxi-out fuel burn by the taxi-out time and the number

of engines, and averaging this over all aircraft of a given type. As seen from Figure

5-1, the ICAO fuel burn index is not necessarily a reflection of the true per-engine fuel

burn rate. The comparison shown in this figure is in agreement with the results from

a previous study [32], where a comparison of total average fuel flow rate is available.

It can be seen that in several cases, the ICAO method produces an overestimate of

fuel burn. This result is important from the point of view of estimates that drive

environmental policy, such as the quantification of total CO2 emissions at airports.

There are several possible reasons for the differences observed here. These include

the fact that the ICAO numbers are produced from testbed engines in idealized

conditions, while the FDR data is from mounted and operational engines. Ambient

conditions also affect fuel consumption. In addition to this, there are human factor

elements such as pilot behavior. Since the objective is to estimate fuel consumption

for real-world taxi operations, it is important to account for such effects as best as

possible.

 A319 A320 A321 A330−202 A330−243 A340−500 ARJ85 B757 B777  
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Aircraft type

F
ue

l B
ur

n 
In

de
x 

(k
g/

s 
pe

r 
en

gi
ne

)

Comparison of fuel burn index

 

 

Result from FDR data
ICAO estimate (Dec 2010)

Figure 5-1: Comparison of fuel burn index as calculated from FDR data and that
obtained from ICAO.
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5.2.3 Events of Interest during Taxi-out

The surface trajectory is composed of periods of constant velocity taxi in a straight

line, interspersed by events such as stops and turns. The results of any estimation

procedure that incorporates these events will likely be influenced by their exact def-

initions. Therefore, the algorithms used to detect the number of turns and stops

during taxi-out, as used in this study, are discussed below.

Detection of number of turns during taxi-out

The number of turns made by an aircraft taxiing on the ground was expected to

affect the fuel burn. One reason is because the aircraft may slow down during its

turn and have to speed up again after completing it, and the other reason might be

the use of differential thrust for turning. A ‘turn’ was defined to be a heading change

of at least 30 degrees, that was held over at least 30 seconds. Figure 5-2 shows the

heading variation during taxi-out for a sample flight. Each time instant was tagged

by a binary flag representing detection, or otherwise, of a turn in progress. Each set

of contiguous non-zero flags was counted as one turn. The results from automatic

detection were compared with visual inspection across several flights and were found

to correctly count the number of turns in almost all cases.
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Figure 5-2: Plot of heading history for one flight
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Detection of number of stops during taxi-out

The number of stops made by an aircraft was also expected to be a determinant

of fuel burn, because of the throttle adjustments necessary during the stop-go event.

Usually, an aircraft has to stop during a handoff from one ground controller to another,

because there is passing traffic on an intersecting taxiway/runway, or in the runway

departure queue. There are two ways in which an aircraft can be brought to a halt:

one way is to apply the brakes while reducing the thrust to idle, and the other is

to apply the brakes while keeping the thrust constant. There are fuel burn tradeoffs

involved with both methods. Reduction of the thrust while stopping reduces fuel

consumption if the duration of the stop is long. However, thrust has to be increased

to start taxiing again (breakaway power), and this is accompanied by a spike in the

fuel consumption. Also, aircraft engines exhibit some time lag while spooling up,

leading to slow response times when starting from a standstill. On the other hand,

if the aircraft is stopped using only the brakes, fuel flow rate remains high, and can

lead to significantly higher total fuel burn if the stop is prolonged. However, there

is a performance benefit on restart as previously outlined. Consequently, pilots tend

to use one of the two methods depending on personal preference and operational

considerations. In this study, an aircraft was defined to have stopped during its taxi

phase if its velocity dropped and stayed below a stop threshold of 2.25 m/s for at least

20 seconds, and then subsequently increased above a start threshold of 6.25 m/s. The

results from the stop detection algorithm are shown in Figures 5-3 and 5-4 for two

sample cases. Note that event logging takes place only if the aircraft has already

taxiing, which means that the initial start is not counted.

5.3 Estimation of Taxi-out Fuel

Having extracted the different taxi phases, we now investigate two possible linear

regression models that estimate the fuel burn (normalized by absolute temperature)

as a function of different independent variables.
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5.3.1 Model 1: Taxi time, number of stops and number of

turns as independent variables

Formulation: Model 1

According to our initial hypothesis, total fuel burn on the ground would be a function

of the taxi time, number of stops and number of turns made by the aircraft. It is easy

to see that taxi time would be a determinant of fuel burn. In addition, given that

the engines run at constant thrust for a large part of the taxi-out process, we would

expect the effect of taxi time on fuel burn to be linear. Stops were expected to affect

fuel burn because of the breakaway thrust required to start moving once an aircraft

was stopped. This should add a relatively fixed fuel penalty per stop, resulting in a

linear effect of the number of stops on fuel burn. Similarly, turns would require some

adjustment of the power setting, but assuming that the adjustment would be similar

for each turn, this effect should also be approximately linear. Finally, we know from

available literature [34, 35] that engine sfc (specific fuel consumption) is proportional

to the square root of ambient temperature. Therefore, we normalized for the effect

of ambient temperature experienced by each flight, by formulating the regression as

follows:

f√
Tamb

= a1 + b1 · t+ c1 · ns + d1 · nt (5.1)

Here, f is the total fuel consumed, t is the total taxi time, ns is the number of stops,

and nt is the number of turns made by the aircraft during taxi. The quantities a1, b1,

c1 and d1 are the parameters to be estimated. The coefficient b1 will be the baseline

fuel consumption rate of that aircraft type during taxi. Note that actual variation

of temperature in the available data was only 17 K, which would not significantly

impact the regression results, even if we had not normalized the fuel burn by ambient

temperature.

81



Constant Taxi Time # Stops # Turns Corr. St. Dv.
Type a1 pa1 b1 pb1 c1 pc1 d1 pd1 ρ σ

(kg/K0.5) (kg/s-K0.5) (kg/K0.5) (kg/K0.5) (kg/K0.5)
A319 -0.01 0.94 0.0124 0 -0.01 0.82 -0.02 0.48 .99 7.82
A320 -0.26 0.05 0.0125 0 0.1 0.1 -0.02 0.31 .99 9.8
A321 -0.19 0.19 0.0133 0 0.15 0 -0.05 0.03 .99 7.34

A330-202 0.98 0 0.0192 0 0.94 0 -0.02 0.8 .97 19.29
A330-243 -1.6 0 0.0265 0 0.24 0 0.09 0.01 .99 12.15
A340-500 -1.56 0 0.0371 0 0.25 0.27 0.07 0.46 .99 38.31
ARJ85 -0.28 0 0.0103 0 0.08 0.02 0.01 0.28 .99 4.67
B757 0.24 0.18 0.0175 0 0.19 0.06 -0.1 0.02 .98 9.58
B767 -0.22 0.48 0.0178 0 0.73 0 0.15 0.01 .95 23.32
B777 -1.71 0 0.0338 0 0.19 0 -0.01 0.8 .99 11.54

Table 5.3: Regression Results: Number of Stops and Turns

Results: Model 1

Table 5.3 lists the results of the parameter estimates calculated using least-squares

regression. The estimates are accompanied by corresponding statistical p-values. A

threshold of 0.1 was assumed for inferring statistical significance of each variable,

i.e., variables with p-values below 0.1 are assumed to be statistically significant. The

aircraft types for which one or more of the variables are statistically insignificant have

been highlighted. Note that some outliers with unusually long taxi times were ignored

in the estimation procedure. There are no more than one or two of such points for

any single type of aircraft, constituting approximately 0.5% of all data. Note also

that the parameters a1, c1 and d1 have units of kg/K0.5, while parameter b1 has units

of kg/s-K0.5. In fact, b1 should correspond to the fuel burn index for the aircraft

type, multiplied by the number of engines and divided by the square root of ambient

temperature. A comparison with Figure 5-1 shows that this is indeed the case. Some

important points to note, regarding Table 5.3, are listed below:

• p-values for the parameter b1 are uniformly zero, which means that taxi time is

certainly a determinant of fuel consumption. This was, of course, expected. It

also contributes the most to total fuel consumed.

• The statistical significance of the number of stops depends on the aircraft type.

Some types show a definite relationship, while others show almost none.

• The coefficients of the number of turns are very small, even in comparison with

the coefficients of number of stops. Given the dominance of taxi time in the
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regression, the effect of turns on fuel burn can be said to be negligible.

• The statistical significance of the number of turns also depends on aircraft type.

In addition, the significance of stops and turns does not appear to be related.

• ρ is the correlation coefficient between the estimated fuel burn and the actual

fuel burn. These values are uniformly high.

• σ is the corresponding standard deviation of the residuals. Note that the reason

that some of these values are larger than others is because the aircraft themselves

are large (Table 5.1), which means that the total fuel consumed is more as well.

The ratio of σ to average total fuel consumed is more or less the same for all

types of aircraft.

Variability in statistical significance of stops and turns

The differences in p-values across aircraft types led to an investigation of the stopping

process in more detail. As seen from Figures 5-5 and 5-6, a start from having stopped

was accompanied by a spike in fuel consumption in some cases, and by none in other

cases. This variation was noticed between flights of the same aircraft type, across

different aircraft types, and sometimes even within two different stop events on the

same flight. No common characteristic was found to explain this difference across

aircraft types. Possible factors considered were aircraft size, engine manufacturers,

locations of operating airports, aircraft weight class and period of initial introduction

of the aircraft. However, when considering the thrust setting profile, we found that

acceleration events after stops that were not accompanied by an increase in the fuel

burn rate, were not accompanied by a change in thrust setting either. Therefore,

the logical conclusion was that the difference in results was due to differences in pilot

behavior (whether reduction of thrust when stopping was more or less prevalent for the

given aircraft type). A similar argument would hold true for thrust characterization

during turns. Since the aim was to model the effect of stops as executed by the

average pilot, specific reasons for this variation were not investigated.
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Figure 5-5: Simultaneous plot of velocity, fuel consumption rate and engine thrust
settings for an Airbus A320: Increase in velocity (after stops) accompanied by spikes
in fuel flow rate

5.3.2 Model 2: Taxi time and number of acceleration events

as independent variables

Formulation: Model 2

The model discussed previously produced good estimates of the total fuel burn, as

seen from the values of the standard deviation of residuals. However, the differences in

statistical significance of the explanatory variables suggested that other factors might

be more important determinants of fuel burn. Therefore, it was decided to drop the

number of stops and number of turns from the regression, and instead add the number

of acceleration events as an independent variable. The logic behind this decision was

that fuel flow rates were seen to increase for aggressive starts from standstill, as

84



0 50 100 150 200 250 300 350
0

5

10

15

Type of aircraft: A319 (sample flight)
Parameter History

V
e

lo
c
it
y
 (

m
/s

)

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

F
u

e
l 
F

lo
w

 R
a

te
 (

k
g

/s
)

0 50 100 150 200 250 300 350
0

10

20

30

T
h

ro
tt

le
 S

e
tt

in
g

 (
%

)

Time from start of flight (sec)

 

 

average engine throttle setting

Figure 5-6: Simultaneous plot of velocity, fuel consumption rate and engine thrust
settings for an Airbus 319: No change in fuel flow rate during acceleration from some
stop events.

opposed to gradual ones. An acceleration event was logged if the aircraft accelerated

at more than 0.15 m/s2 for at least 5 seconds. In Equation (5.2), na is the number of

acceleration events. The other variables have the same definition as before.

f√
Tamb

= a2 + b2 · t+ c2 · na (5.2)

Results: Model 2

The results from parameter estimation for Model 2 have been listed in Table 5.4. It is

seen that both independent variables are statistically significant for all aircraft types

but one. Even for the Boeing 757, the p-value for the number of acceleration events

is not very large. Comparing the results with those from Table 5.3, we can also see

that the correlation coefficients are higher and the standard deviation of residuals is

consistently lower for Model 2. Figures 5-7 and 5-8 compare the fuel burn estimates
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Constant Taxi Time # Acc. Events Corr. Std. Dev.
Type a2 pa2 b2 pb2 c2 pc2 ρ σ

(kg/K0.5) (kg/s-K0.5) (kg/K0.5) (kg/K0.5)
A319 0.0811 0.31 0.0122 0.0 0.0965 0.0004 0.9938 6.85
A320 -0.0896 0.24 0.0124 0.0 0.1174 0.0000 0.9924 8.90
A321 0.0942 0.37 0.0129 0.0 0.0832 0.0184 0.9858 8.14

A330-202 0.2904 0.02 0.0217 0.0 0.3809 0.0001 0.9816 14.44
A330-243 -0.0903 0.25 0.0265 0.0 0.1007 0.0312 0.9965 9.12
A340-500 0.3626 0.10 0.0375 0.0 0.3984 0.0137 0.9918 30.59
ARJ85 0.0973 0.00 0.0102 0.0 0.0366 0.0203 0.9928 4.12
B757 0.2133 0.03 0.0173 0.0 0.0699 0.2007 0.9861 8.83
B767 0.1584 0.20 0.0202 0.0 0.1929 0.0012 0.9795 16.50
B777 -0.1223 0.02 0.0335 0.0 0.1385 0.0093 0.9985 8.75

Table 5.4: Regression Results: Acceleration events

to actual burn for two aircraft types. It is clear that the prediction accuracy of Model

2 is very good. Figure 5-9 shows a scatter plot of the residuals for the Boeing 777.

The whiteness of these residuals was tested by calculating the autocorrelation of the

residuals vector within each aircraft type [8, 9]. A sample plot of the result is shown

in Figure 5-10. It is quite clear that the residuals are white, which means that optimal

use of the information in the dataset has been made.
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Figure 5-7: Regression for the Avro-RJ 85 using number of acceleration events
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Figure 5-8: Regression for the Boeing 777 using number of acceleration events
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Figure 5-9: Residuals from the estimation of fuel consumption for the B777
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5.4 Summary

5.4.1 Discussion of results

The two regression models for taxi-out fuel burn provide us with several interesting

results. The first one is that the total taxi time is by far the main driver of fuel

consumption. In other words, an accurate estimate of the fuel burn index along with

the taxi time can provide a reasonably accurate estimate of the fuel consumption of a

surface trajectory. The analysis also shows that for some of the aircraft types studied,

the ICAO engine databank overestimates the fuel burn indices.

The FDR analysis also suggests that contrary to assumptions made in prior studies

[2], stops or turns by themselves may not necessarily result in an increase in fuel burn

rate, and therefore do not contribute much information beyond the total taxi time.

This can be explained by the variability in pilot behavior (since there may not be

significant thrust changes accompanying stops or turns), the inherent variability in

the thrust settings during taxi (which may be significantly different from the ICAO

7% assumption), and the dominance of the total taxi time as a driver of taxi fuel

burn. However, acceleration events (defined as the aircraft accelerating at more than

0.15 m/s2 for at least 5 seconds) have a small but statistically significant impact on

the taxi fuel burn. The inclusion of these effects will provide a more accurate estimate

of surface fuel consumption, and will also need to be considered in surface traffic flow

optimization.
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Chapter 6

Estimation of Surface Trajectory

Fuel Burn

6.1 Introduction

It was indicated in Section 5.1.1 that the fuel burn model developed using FDR data

can be used to estimate the fuel burn associated with surface surveillance flight tracks.

Since ASDE-X data contains all the information required to populate the right-hand

side of Equation (5.2), it is possible to associate a fuel consumption estimate with

each detected flight. This process is most useful when applied to departures, as it

can then be used to quantify expected benefits from congestion-mitigation strategies.

While post-analysis of the costs and benefits of such strategies is useful, a predictive

measure of expected fuel-burn savings would be even more valuable. An initial idea

to carry out such an exercise is also described in this chapter.

6.2 Fuel Burn Estimates from ASDE-X Tracks

One of the challenges involved with estimation of fuel burn for a host of ASDE-X

trajectories is that there are bound to be some aircraft and engine types which are

not available in the FDR data. In such instances, exact estimates of fuel burn cannot

be obtained. To obtain approximate estimates, it is assumed that the coefficients
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estimated for one aircraft and engine type are valid for other similar aircraft/engine

combinations not available in the FDR data.

As an illustrative example of the fuel burn estimation procedure, consider Figure

6-1, which shows a track obtained from the ASDE-X equipment at Boston Logan

International Airport. The aircraft type was the Boeing 767-300. Figure 6-2 shows

the corresponding velocity-time chart. The methodology from Model 2 (Section 5.3.2)

when applied here, indicates that the total taxi time was 840 seconds, and that the

flight experienced two ‘acceleration events’. From historical weather data [36], the

mean ambient temperature at Boston Logan on the day of this flight (Nov 24, 2010)

was 279K. Looking up the fuel burn coefficients for the B767 from Table 5.4, the

taxi-out fuel burn for this flight may be estimated from Equation (5.2) as follows:

f√
297

= 0.1584 + 0.0202 · 840 + 0.1929 · 2 =⇒ f = 292.5 kg

Figure 6-1: Sample ASDE-X flight track from Nov 24, 2010
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6.3 Fuel Burn Prediction

In order to estimate the potential fuel burn benefits from congestion mitigation strate-

gies, the independent variables in Equation (5.2) need to be estimated. The total

taxi-out time may be estimated using methods such as those described in Chapter

4. To estimate the number of acceleration events, we need some way of relating the

level of surface traffic to the expected number of acceleration events. The following

discussion is limited to behavior in the departure queue, since a reduction in queue

size is an important objective for most congestion control methods. A similar analysis

may be carried out for the entire taxi-out path.

Figure 6-3 shows the empirical variation of the average number of acceleration

events encountering by a departing aircraft. The results are from Boston Logan. The

X axis is composed of the departure queue size encountered by each aircraft. As seen

in the figure, the number of acceleration events increase approximately linearly with

the queue size, at the rate of 0.4 events for each additional aircraft in queue. The
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Table 6.1: Summary: Regression from departure queue size to number of acceleration
events in queue

Runway Intercept Slope
All 0.56 0.44
15R 0.63 0.37
22L 0.87 0.75
22R 0.64 0.36
27 0.25 0.60

33L 0.45 0.61

nonlinearity in the latter part of the plot corresponds to very few observations, as seen

from the lower plot. We note that the slope of the line is less than 1, which means that

an increase in queue size does not relate to an increase in acceleration events in the

same proportion. This is a significant fact to consider when designing strategies that

try to control the queue size. Similar behavior corresponding to departure queues for

a single runway have also been seen. Figures 6-4 and 6-5 show the results for two

specific runways, while Table 6.1 lists the values for all runways at Boston. Note that

different runways may have different slopes. It is interesting to note that departures

from runways 27 and 33L, which involve an active runway crossing, have a slope

of 0.6 acceleration events for each additional aircraft in queue. On the other hand,

departures from runways 15R and 22R, which do not involve active runway crossings,

have a slope of 0.36. Runway 22L is not often used for departures, and usually only

handles aircraft that have requested it specifically (it is longer than 22R) or have a

controlled departure time.

Were we to do benefits assessment for a strategy to control departure queue size,

we could use this data to estimate the potential reduction of fuel burn. On average,

a unit reduction in the departure queue size seen by an aircraft at BOS would reduce

its acceleration events by 0.44, which would translate to a proportional reduction in

fuel burn. Exact values would depend on the fleet mix (Table 5.4). In this way, the

total fuel savings could be calculated. Note that the current analysis would be an

estimate of the benefits accrued in the departure queue only. A similar method could

be applied to look at benefits on the surface in general.
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Figure 6-3: Regression from departure queue size to number of acceleration events in
the queue (includes all queues)
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Figure 6-4: Regression from departure queue size to number of acceleration events in
the queue (departures from Runway 33L)
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Figure 6-5: Regression from departure queue size to number of acceleration events in
the queue (departures from Runway 22R)

6.4 Summary

In this chapter, the model developed in Section 5.3.2 was applied to estimation of

fuel burn of ASDE-X aircraft trajectories. It was shown that the post-hoc estima-

tion procedure is quite straightforward. Finally, a methodology that can be used to

produce first order benefit estimates from congestion reduction was proposed.
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Chapter 7

Conclusions

This thesis gradually developed a framework for analysis of airport surface operations.

The process for filtering out the noise in surveillance data was described, which in-

cluded automatic classification of aircraft taxi mode (straight, turning, stopped, etc.).

This was followed by a description of current operations at Boston Logan International

Airport, using directly measurable quantities such as queue size and also performance

metrics such as average taxi-out times, runway utilization and departure spacing ef-

ficiency. It was shown that the performance metrics as defined in consultation with

the Air Traffic Manager at BOS could be used to gain insights into potential areas of

improvement.

This was followed by a probabilistic treatment of taxi-out time predictions. A

network model of the airport surface was developed, with travel times over the network

links modeled as random variables. The distribution of taxi times over these links

was derived, and it was shown to be an accurate predictor for taxi-out times in an

independent test data set. A simple algorithm used to predict taxi-out times for

each aircraft was described, which uses the current state of traffic on the surface

for improved estimation. The accuracy obtained by this method was shown to be

better than that found in available literature, which is based on queuing theory and

regression models. Finally, a procedure for estimation of taxi-out fuel consumption of

each aircraft was described. Actual Flight Data Recorder data was used to tune the

model, thus giving superior results as compared to the standard method recommended
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by the International Civil Aviation Organization. A simple method that could be used

to calculate the total surface fuel burn at an airport, along with potential benefits

from reduced congestion, was described.

Currently, the taxi-out time prediction model is being improved with a view to

obtain even greater accuracy. Specifically, ways to use more than the first moment

of the distribution are being explored. The final objective is to use the insights from

Chapter 3, combined with the prediction model in Chapter 4 and the fuel burn model

in Chapter 5, to develop a framework for producing optimal pushback times and

taxi-out paths for each aircraft.
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