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Abstract

Hoppers have recently emerged as a viable means for planetary exploration, and as with any
new vehicle, significant testing is required to validate guidance, navigation, and control
(GNC) algorithms. Furthermore, the structure, organization, and timing of the real-time
software must be planned before software development begins in order to design an
architecture which can match the needs and requirements of the vehicle as they evolve
throughout its lifecycle. These issues are compounded in an academic environment, where
software knowledge is not necessarily present and must be obtained and practiced before it
can be applied. In addition, high student turnover rates can result in difficulty retaining
institutional knowledge of the working software and causes further development delays while
new students are trained. These problems were addressed by the TALARIS software team by
implementing a flexible, modular software solution in LabVIEW on the National Instruments
Real-Time Input/Output (RIO) board. After a brief introduction to the TALARIS testbed, the
theory of flexibility and modularity is described as applied to the TALARIS software. In
particular, the unique FPGA + PowerPC architecture and its importance to precise, real-time
GNC execution are explored. Various software modules are isolated and analyzed, and
several test cases are presented to illustrate the benefits of modular software with regard to
development time, testing procedure, and debugging. Examples from software development,
actuator characterization, and test campaigns illustrate the gradual evolution of the prototype
software. Finally, a discussion of the conclusions from the work and future work is presented.
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Chapter 1

1 Introduction

Over the past two decades, rovers have been the primary vehicle architecture for

mobile ground-based planetary exploration. With the success of Sojourner in 1996 and the

Mars Exploration Rovers (MER) in 2003, NASA has gained valuable flight experience and

reliability with the rover architecture and plans to launch its largest rover yet, the Mars

Science Laboratory (MSL) in 2011. However, ground-based rovers depend on automatic

path-planning algorithms which are computationally expensive and require long calculation

times on radiation-hardened processors. For example, a typical 15m traverse for the MER

rovers took an average of three minutes of processing time from image acquisition to position

update, which limited the overall speed of the rover to approximately 10 m/hr [1]. The

calculation time coupled with the communication lag and rough terrain severely limited the

speed and range in which the rovers could operate. In 555 sols (1 sol = 1 Martian day = 1.02

Earth days), Opportunity traveled just 5974m [2]. These limitations of rovers have motivated

a desire to use a hopper architecture for mid-to-long range traversals, which is potentially

capable of traversing kilometers in a matter of minutes, instead of months or years. A

planetary hopper uses impulsive jets to launch itself into either a ballistic trajectory or a

fixed-attitude, rectangular flight profile and land softly in the desired location. By flying

over rough terrain, hoppers may visit scientifically interesting locations otherwise

unavailable to rovers, such as the interior of craters or valleys. Hoppers that use a fixed-

attitude flight profile can also perform science during the traverse, for example while scaling



a cliff to observe geologic features. In addition, a hopping system could be added to an

existing lander platform to augment the accuracy of its entry, descent, and landing (EDL)

system and potentially lower overall cost. Insertion from orbit could be performed with a

larger error ellipse than conventional EDL systems, using a small hop to fine-tune the final

landing site. Such planetary hoppers have already begun to garner interest for the

deployment of a seismic sensor network, which requires sensors to be separated by long

distances and would otherwise be costly and time-consuming for a rover to deploy [3].

Despite all their benefits, hoppers have little to no flight history and require

significant prototyping and testing to demonstrate flight maturity. TALARIS, or Terrestrial

Artificial Lunar And Reduced gravIty Simulator, was designed to be an Earth-based testbed

to prototype hopper technologies and test guidance, navigation, and control (GNC)

algorithms. Using TALARIS, hopper GNC algorithms may be validated in a relevant

environment on Earth for a fraction of the cost of a space-qualified vehicle. The Next Giant

Leaps team intends to use the results from TALARIS to develop its entry for the Google

Lunar X-Prize, a $30 million competition to travel to the moon, traverse a set distance, and

send back data, pictures, and video.

1.1 Motivation and Approach

The main value of TALARIS as a testbed is its ability to quickly adapt to a series of

different contexts and testing configurations. Rapid changes in vehicle configuration are

expected, and the architecture must be flexible enough to accommodate a variety of GNC

algorithms, flight profiles, acceleration and deceleration commands, gravity offsets, and test

stands. In order to achieve these goals, the need arose for a software architecture that is

flexible, easy to learn, and which facilitates a short development cycle. Modularity was

applied to the real-time software, allowing different components of the software to be

developed in parallel. Also, these modules were designed to be easily switched out

depending on the vehicle configuration, allowing a customized suite of sensors and functions

for each test campaign.



In addition to making the software flexible, the reliable, real-time execution of GNC

algorithms can be a challenging task. There is an inherent tradeoff between achieving faster

control cycles, and thus the possibility of finer control of the vehicle, and computation time,

communication delay, and actuator delay. Furthermore, most GNC algorithms rely on

precise timing information to determine the vehicle state and issue commands, but also

require complex calculations within a short control cycle. These problems were addressed

through the use of a field programmable gate array (FPGA) in conjunction with a PowerPC

processor to achieve both the timing needs and the calculation requirements for the hopper

GNC algorithms.

The objective of this thesis will be two-fold. First, it will detail the architecture of the

real-time software necessary for the robust and reliable execution of GNC algorithms,

resistant to jitter, communication delays, and other runtime irregularities. Second, it will

document the use of modularity in the development, operation, and maintenance of the

software and provide examples from each of the three phases to demonstrate the benefits of

modularity.

1.2 Literature Review

1.2.1 Flexibility Theory

Flexibility theory studies the ability of a system to respond to a change in the

environment of a system while minimizing the costs of such changes. Much of the literature

on flexibility is currently focused on large scale, capital-intensive projects, such as energy or

transportation infrastructure, where high investments make it essential to use flexibility in

systems design. Lin, et al. [4] noted four characteristics which make such systems difficult to

design: long lifetime, uncertain market conditions and performance, multidisciplinary scope

which could lead to emergent behaviors, and significant economic and societal impact.

Decisions about system architecture must be made at an early stage and under highly

uncertain environments, and high capital investment accentuates the risk. As an example,



Iridium and Globalstar pioneered space-based telephony in the late 1990s, investing millions

in a satellite communications network. However, neither company accounted for the rise of

ground-based cellular technology in the mid 1990s, which lowered demand for space-based

communication networks. The deterministic market predictions by Iridium and Globalstar as

well as the inability to downsize and reconfigure its network for a different purpose resulted

in losses of $5 billion and $3.5 billion respectively [5]. Instead, de Weck, et al. [5] suggest

using a staged deployment, starting with a smaller, more affordable network and adding

capacity by launching additional satellites and reconfiguring the constellation in orbit. In

such large-scale projects, flexibility is driven by the need to adapt to future uncertainty and

improves lifecycle value by mitigating downside risks.

Smaller academics projects, such as TALARIS, also benefit from employing

flexibility to mitigate uncertainty. However, while large-scale projects tend to focus on

changing stakeholder interest and market dynamics, uncertainty in smaller projects usually

stems from changes during the development process such as shifting requirements definitions

and budget and schedule constraints. Furthermore, academic projects often suffer from high

personnel turnover rates as student schedules shift, and keeping institutional knowledge of

the system can be a challenging task. This can be mitigated by maintaining rigorous

documentation, but fluctuations in student availability stills adds additional uncertainty to

future development potential.

The TALARIS theory of flexibility, first described by Cunio [6] and applied by

Olthoff [7], attempts to make flexibility theory applicable to small, advanced vehicle

development. Cunio describes several methods to impart flexibility to a system, each

designed to either maximize the system's ability to change or minimize the costs to the

system, whether they be monetary, schedule, personnel time, or complexity. These methods

will be discussed in further detail in Chapter 3.



1.2.2 Modularity

Modularity has been applied for years in engineering. In 1995, Ulrich wrote a

seminal paper exploring the connection between modularity in product architecture and

manufacturing firm performance [8]. Ulrich defined modular and integral architectures as

the following:

"A modular architecture includes a one-to-one mapping from functional

elements in the function structure to the physical components of the product,

and specifies de-coupled interfaces between components. An integral

architecture includes a complex (non one-to-one) mapping from functional

elements to physical components and/or coupled interfaces between

components" [8].

Ulrich explored the advantages of each architecture in several areas of "managerial"

importance, such as product change, product variety, component standardization, product

performance, and product development management.

More recently, both Gaillard [9] and Holtta [10] explored the impact of applying

modularity to the automotive assembly line. Gaillard urged automotive manufacturers to

adopt open standards on the assembly line and to reduce complexity through modularization.

Holtta explored the tradeoff between different levels of modularity and noted that modularity

may often come at a cost that engineers are not willing to pay. For example, light weighting,

tight packaging, and lower power consumption may drive engineers towards more integral,

less flexible architectures [10].

Software modularity is not a new idea, but the consistent application of modularity

can sometimes be a challenging process. Cai and Huynh [11] stated that both aspect-oriented

and object-oriented programming techniques were intended to allow one part of the software

to change independently of the rest of the system. In addition, a modularization technique

benefits a design only if future changes to the design can be accommodated by the technique.

Thus, the application of a specific technique should be evaluated against potential future

changes [11]. Tan [12] described a method which uses the Larch/C Interface Language (LCL)

to encourage modular style programming by developing a formal framework with specified

interfaces. LCL was used to specify modules in existing software and to drive a re-



engineering process which improved modularity and robustness without changing the base

functionality or performance [12].

1.2.3 FPGAs in Real-Time Software

In the past two decades, FPGAs have emerged as a viable means to program flexible

real-time software for small robotics. In 1995, Corba and Ninkov [13] implemented a 2D

real-time image centroiding algorithm on an FPGA, noting the high parallelism,

pipelineability, and modularity of the FPGA architecture. Several distinct filter

configurations were pre-compiled and stored on the FPGA allowing for quick swapping after

deployment. These characteristics also make the FPGA attractive for implementing GNC

algorithms on experimental small robotics, where the creation of customized embedded

systems can be costly and time consuming. Falsig and Soerenson [14] described a modular

architecture for low level control called TosNet, which implemented modular controllers over

a standard network in the FPGA to control up to 15 nodes. KrishnaKumar, Kaneshige, et al.

[15] used a FPGA in a similar way, describing a "plug and play" avionics system called

iPapa. The goal for iPapa was to allow new hardware to be plugged into the system and

automatically configured without the need for a manual setup procedure [15]. Again, this

type of architecture was valuable by avoiding the need to design individual avionics solutions

for different vehicles or configurations.

All of these examples stress the reconfigurability and parallelability of the FPGA to

design modular interfaces on a standard framework. However, the implementation of more

complicated GNC algorithms in a FPGA remains difficult and takes up an enormous amount

of resources in the FPGA. For example, an accurate divide operation consumes an immense

amount of resources in an FPGA compared to a traditional processor, and much research has

been done to develop an efficient division algorithm using the FPGA's fixed-point logic [16].

In addition, VHDL, the standard programming language used in FPGAs, is difficult to learn

and understand for inexperienced coders. In an academic environment, this translates to

valuable development and operation time spent on training new personnel. This thesis

presents a new software architecture which combines a FPGA and a traditional PowerPC



processor to take advantage of their respective strengths while minimizing their weaknesses.

In particular, the parallelism and reconfigurability provided by the FPGA will be used to

develop modular sensor and actuator interfaces, and the processing power from the PowerPC

will be used to execute GNC algorithms. The software will be written in the LabVIEW

environment, which is both easy to learn and understand, and the benefits of modularity will

be demonstrated in different phases of the vehicle development.

1.3 Thesis Overview

This thesis is divided into six chapters. Chapter 2 provides background information

regarding the Google Lunar X-Prize as well as a system overview of the TALARIS testbed.

Chapter 3 introduces the theory of flexibility and modularity as they have been applied to the

vehicle software and forms the theoretical foundation for the thesis. Chapter 4 begins with a

description of the TALARIS avionics hardware and a discussion of GNC algorithm execution

and timing, and finishes with an overview of the real-time software architecture as

implemented in LabVIEW. In particular, the unique FPGA + PowerPC architecture and its

importance to GNC execution will be explored in great detail. Chapter 5 focuses on the

application of the modularity principle to the TALARIS software architecture. Various

modules will be isolated and analyzed, and several test cases will be presented to illustrate

the benefits of the modular software with regard to development time, testing procedure, and

debugging. Examples from software development, actuator characterization, and test

campaigns will illustrate the gradual evolution from prototype to flight software. Finally,

Chapter 6 will conclude the thesis with a summary and recommendations for future work.
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Chapter 2

2 Background

2.1 Google Lunar X PRIZE

The Google Lunar X PRIZE (GLXP) is an international competition organized by the

X Prize Foundation and sponsored by Google to motivate privately funded teams to land on

the moon, traverse at least 500m, and send back high definition images, video, and data. The

first team to do so before the end of 2015 will receive a $20 million grand prize, while the

second team will get a $5 million second place prize. In addition, a number of bonus prizes

worth up to $4 million will be awarded for various extra goals, such as traveling ten times the

baseline requirement (5000m), verifying water ice on the moon's surface, surviving the lunar

night, and precision landing near the Apollo landing sites or other sites of interest [17].

To compete in the Google Lunar X Prize, the Next Giant Leap (NGL) team was

founded in 2007 by Michael Joyce. Its technical partners include the Sierra Nevada

Corporation, Draper Laboratory, Aurora Flight Sciences, and the MIT Space Systems

Laboratory. Unlike other teams competing for the GLXP, the Next Giant Leap team has

decided to use hopping technology, rather than the more conventional lander with a rover, to

achieve the GLXP requirements. Hoppers, which are not limited by rough terrain, have the

potential to traverse longer distances than rovers, but have no flight heritage and thus are

considered as a higher risk. The Next Giant Leap team is also interested in developing



hopper technology in the long term to "provide transportation and support for a variety of

science and commercial payloads to low gravity bodies such as our moon, the asteroids, and

Phobos" [18]. However, as an untested technology, prototype hoppers must first be

developed and tested, and Draper Laboratory, as a member of the NGL team, has been tasked

to develop the guidance, navigation, and control (GNC) algorithms for the NGL vehicle. To

test these algorithms in a relevant environment, the TALARIS prototype testbed was

developed at Draper Laboratory in conjunction with the MIT Space Systems Laboratory.

2.2 Introduction to TALARIS

TALARIS was originally conceived in Spring 2008 by the 16.89 Space Systems

Engineering graduate design course and represents an MIT/Draper collaboration to develop a

terrestrial testbed for testing hopper GNC algorithms. Using terrestrial testbeds such as

TALARIS, GNC algorithms may be tested for relatively low cost in a simulated environment

on Earth before deployment. Similar to the Apollo program's Lunar Landing Research

Vehicle (LLRV) and its successor the Lunar Landing Training Vehicle (LLTV), TALARIS

uses a dual propulsion system: one as the primary impulsive propulsion and a second to

provide gravity offset and simulate lunar conditions. In the case of the LLRV and LLTV, a

gimbaled turbofan jet engine was used to provide weight relief, and hydrogen peroxide

rockets were used to simulate the thrusters on the Lunar Module [19]. On TALARIS, four

electric ducted fans (EDF) are used to relieve 5/6 of the vehicle's weight, leaving the rest of

the vehicle to experience 1/6 th of the Earth's gravity, as it would on the Moon. The vehicle

uses nitrogen cold gas thrusters as the primary propulsion system to provide impulsive thrust.

A CAD model of the second generation vehicle can be seen below in Figure 1.



Figure 1: SolidWorks Drawing of TALARIS Testbed v2

In addition to simulating a lunar environment, the TALARIS platform was designed

to simulate other astronomical bodies, including Mars, Phobos, and asteroids, as long as they

have gravity lower than Earth. Furthermore, each of the propulsion systems can be switched

out for more powerful upgrades, such as gas-turbine engines to replace the EDFs or hydrogen

peroxide/hydrazine thrusters for the cold gas system (CGS). The avionics hardware was

designed to be flexible as well, to accommodate these configuration changes [7]. This thesis

will concentrate mainly on the development of real-time software to take advantage of the

hardware flexibility, allowing streamlined testing on a variety of platforms and test

campaigns.

By using the nitrogen cold gas thrusters with gravity offset from the EDFs,

TALARIS will perform a level horizontal hover hop of 30m. In a trade-off study, 30m was

chosen as a representative 1 g demonstration of a lunar hover hop [20]. The distance

traversed is much lower than the GLXP requirement of 500m because of higher gravity, air

resistance, and the lower specific impulse of nitrogen gas thrusters compared with hydrazine

thrusters. The hop will be performed in three phases. First, the vehicle will operate the EDFs

in steady-state to provide 5/6g offset. The four vertical gas jets will provide the necessary

thrust to ascend to 2m and obtain stable hover, while the four horizontal gas jets will provide



roll control about the vertical. In phase 2, the vehicle uses horizontal jets to perform straight

and level flight, providing the aggregate thrust to accelerate and decelerate laterally while

off-pulsing to maintain heading (roll). The vertical jets will provide the required aggregate

thrust to maintain altitude and will off-pulse to maintain pitch and yaw attitude. In phase 3,

the vertical jets will slowly throttle down to perform a controlled descent and touchdown [21].

A conceptual drawing of the hop profile can be seen below in Figure 2.

Velocity up to 10-15 mis Velocity up to 15-20 m/s

. Compressed I 2m I Hydrazine
i 2m Gas + Fans mTBR I

Figure 2: TALARIS (left) and GLXP (right) hop profiles

This hop profile is intended to recreate a lunar hop by providing similar forces and

torques on the vehicle, as well as allowing the GNC algorithms to perform a hover hop in a

controlled environment. It is important to note that the TALARIS vehicle is not the same as

the final NGL vehicle and was never intended to be flight hardware or sent to the moon.

TALARIS was meant for operation on Earth using analogues to the final vehicle to prove

GNC algorithms.



2.3 TALARIS Systems Overview

2.3.1 Structures

The TALARIS v2 structure is composed of a single flat sheet of carbon fiber

composite with additional ribbing on the underside for added strength and cutouts to reduce

mass. Custom machined EDF mounts are located on the four corners, canted at 150 for

controllability. The structure measures 99cm long by 76cm wide by 8.9cm tall (frame only).

A picture of the underside of the carbon fiber body can be seen below [21].

Figure 3: TALARIS v2 carbon fiber body (underside) [21]

The axis conventions on the vehicle are consistent with the Draper GNC axis

conventions, which are derived from the original Apollo coordinate system. In this

coordinate frame, +X is directly up from the vehicle, +Z is in the direction of the horizontal

thrusters, and +Y completes the right-handed coordinate system. "Roll" will be referred to as

rotation about the X axis, "Yaw" will be rotation about the Z axis, and "Pitch" will be

rotation about the Y axis. These axes will be referenced in later sections and are reproduced

below with respect to the body orientation.



Figure 4: TALARIS Axis Conventions

2.3.2 Electric Ducted Fans (EDFs)

The TALARIS test bed uses four Aero-Naut TF8000 electric ducted fans to provide

the 5/6 gravity offset. The EDFs are powered using Lehner 3060 fan motors and controlled

with Schultz 40.160 motor controllers. The motors have a max rated power of 8kW, with

max thrust at 6.37kW of power [20]. With an operating voltage of 45-50V from the lithium

polymer batteries, the max current draw of the EDFs is 150A. In addition to the motor casing,

custom inlets and fairings were designed to reduce turbulence and increase efficiency. These

were fabricated using stereolytographic (SLA) 3D rapid prototyping printing. With the inlet

and the fairing, each EDF produces about lOON of thrust at max thrust [20]. An exploded

view as well as a completely assembled EDF can be seen in the figures below.
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Figure 5: Exploded view of Aero-Naut TF8000 EDF with custom inlet and fairing [20]

Figure 6: Front and Back views of the assembled EDF 1201

2.3.3 Cold Gas System

The TALARIS Cold Gas System (CGS) provides the final 1/6g thrust required for

takeoff as well as attitude, altitude, and horizontal control. The liftoff requirement is to

traverse 2m vertically in 2s, which requires 486.4N with a 45kg vehicle. The EDFs provide

367.9N while the CGS provides 118.5N of vertical thrust [22]. Eight Omega SV128

thrusters are used on the vehicle overall, with four providing vertical thrust and four



providing horizontal thrust. The valves have a rated opening and close time of 30-60ms, but

through the use of a custom PCB, the open and close lag have been reduced so that the

minimum overall pulse on-time or off-time is 40ms [23]. The valves will be controlled at

5Hz. Pulse-width modulation (PWM) with pulsewidths between 40 and 160ms will be used

to control vehicle translation, roll during traverse, pitch, and yaw. The same range of

pulsewidths will be used along with a phase plane controller to control roll during vertical

rise, hover, and vertical descent; however, in this case a 200ms pulsewidth will be allowed in

order to make continuous firing over consecutive Control cycles possible. The Luxfer L65G

flight tanks will be filled to 4500psi, providing a flight time of 44 thruster-seconds (e.g. 4

thrusters for 11 seconds). During vertical firings on a load cell, the valves provided an

average of 58N per thruster, but this value can be affected by a variety of factors including

runtime, tank pressure, temperature, and multiple valve firings [22]. An Omega SV128 can

be seen below, as well as a figure showing the valve orientation and numbering on the

vehicle. The vertical thrusters (VTs, corresponding to valves 1, 3, 5, and 7) nominally create

upward thrust, while the horizontal thrusters (HTs, corresponding to valves 2, 4, 6, and 8)

nominally create lateral thrust (2 and 8 provide +z thrust, 4 and 6 provide -z thrust).

Figure 7: Omega SV128 solenoid valve [24]
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Figure 8: Valve orientation and numbering convention

2.3.4 Lithium Polymer Batteries

To power the EDFs, the vehicle uses ten Tanic 7S-lP 4500mAh lithium polymer

battery packs which are capable of discharging continuously at 135A. Two battery packs are

wired in series to provide a nominal voltage of 51.8V, and five sets are wired in parallel to

share the current draw. At full throttle, the high power system is capable of delivering 25kW

to the EDFs [20]. During testing sessions, runtime is generally limited to below 45s at full

throttle to prevent overheating of the batteries and motor controllers.

2.3.5 Altimeter

An Acuity AR1000 laser altimeter will be used to sense altitude and provide an

update of the vertical degree of freedom. The AR1000 has a range from 0.1m to 30m with an

accuracy of 3mm. It is being operated with a 10Hz update rate and communicates using the

standard RS-232 communication protocol [25]. In the software, altimeter packets are being



treated as asynchronous because the altimeter does not use a sync signal to the RIO, so it

does not send packets at exactly equal 1 Oms intervals.

Figure 9: AR1000 Laser Distance Sensor [251

2.3.6 Gladiator IMU

The Gladiator LandMark 30 IMU was chosen to navigate the vehicle due to its high

performance, low noise and bias characteristics, and small size. The IMU uses RS485 to

communicate data packets at a rate of 200Hz. These packets are synchronized to the RIO's

clock using a 1kHz square wave, generated by the RIO's FPGA.

Most degrees of freedom will be determined by dead reckoning, so the flight will

have to be kept short to prevent IMU noise from causing the state estimate to diverge.

Alternatively, two additional upgrades to the navigation algorithm are planned to improve

performance. The first will use four altimeters mounted at the corners of the vehicle to

provide an attitude update, and the second will use a downward pointing camera to

implement vision navigation algorithms. Both updates are currently being prototyped and are

not yet implemented on the vehicle.



Figure 10: Gladiator LandMark 30 IMU [261

2.3.7 National Instruments sbRIO-9642 Board

The National Instruments sbRIO-9642 (RIO) board handles all input/output functions

on the vehicle and communicates telemetry data to the Ground Station Computer (GSC).

This board was chosen for its low cost, small size and weight, high flexibility, and ease of

development with real-time LabVIEW. At its heart is a 400MHz Freescale MPC 5200, a

member of the PowerPC 5000 series of microprocessors. The processor runs the LabVIEW

real-time module on the Wind River VxWorks real-time operating system and is connected to

a 2M gate Xilinx Spartan-3 field programmable gate array (FPGA) through a high-speed PCI

bus. The FPGA is connected to a number of digital and analog input/output choices,

including 110 3.3V bidirectional digital input/output (DIO) channels, 32 24V digital input

(DI)/digital output (DO) channels, 32 ±1 OV analog input (Al) channels, and 4 ±1 OV analog

output (AO) channels [27]. A custom aluminum case was built for the RIO with standard D-

shell connectors attaching to the various input/output lines with ribbon cable. The RIO

measures 8.2" x 5.6" and weighs 292g [27].



Figure 11: National Instruments sbRIO-9642 [27]

The RIO was chosen for its inherent flexibility, given the numerous input and output

choices [7]. Of particular interest to this thesis is the ability to integrate c-code libraries into

the LabVIEW code and run them as enclosed blocks. This feature allowed for the

modularization of the Draper GNC code so that development could be done for each of the

separate GNC blocks. The separate algorithms could then be compiled together with an

executive and enclosed in a single LabVIEW block.



Chapter 3

3 Flexibility and Modularity

3.1 TALARIS Theory of Flexibility

"Flexibility is a property of a system by virtue of which the system changes to

gain maximum value in response to a change in the environment for the

system" [6].

Flexibility is mainly a tool to deal with uncertainty. Small advanced vehicles are

often affected by uncertainties in the development process, especially prototype vehicles,

where changes in requirements and the project environment occur frequently and

unexpectedly. In these projects, flexibility can add downstream value in two ways: by

maximizing the system's capability to change or minimizing the cost of a change, whether

the cost be monetary, personnel time, or schedule. As noted by Olthoff [7], software is

inherently flexible in the sense that any additional changes require no changes in hardware or

monetary costs. However, personnel and schedule costs must also be taken into account

when making a software change, and a flexible software architecture will make these changes

easy, quick, and seamless. Therefore flexibility in software will focus on minimizing the cost

of a change, namely in terms of personnel time and schedule.

The TALARIS Theory of Flexibility as written by Cunio [6] states three techniques

for imparting flexibility to small advanced vehicles. The first technique, maximum overhead



capacity, attempts to provide more of a specific resource than is minimally required,

essentially creating an overdesigned system. For example, the avionics system on TALARIS

has more than twice the number of I/O pins necessary for the current sensor suite. The small

amount of added mass from the extra pins must be weighed against the ability of the avionics

system to incorporate a larger and more varied sensor suite in the future. The second

technique, creating a defined expansion path, attempts to predict possible future development

paths to target system changes. By defining a discrete number of future possibilities, the

subsystems can be catered to adapt to the most probable choices or the widest possible subset

of choices, thereby minimizing future cost and maximizing utility. The third technique,

modularity, will be the focus of this thesis. In general, modules are designed to have

specified, de-coupled interfaces, making it easy to interchange modules to form different

configurations. If a change in the system function is required, this change can be isolated to a

few modules, leaving the rest of the system intact. In this way, the system is maximizing its

ability to change (e.g. incorporating a new sensor suite) while also minimizing the time and

complexity of this change. This technique is the easiest to apply to software, as there is no

"resource" to be maximized and future paths can be redesigned more efficiently with

modular software. In this way, modularity can be thought of as an "enabler for flexibility"

[7].

3.2 Modularity

"A modular architecture includes a one-to-one mapping from functional

elements in the function structure to physical components of the product, and

specifies de-coupled interfaces between components" [8].

Modularity provides a link between the physical structure and functionality of the

code, increasing organization and reducing complexity. The code is separated into modules,

which are defined from the rest of the system by de-coupled interfaces. Modules should have

little to no dependence on other modules, allowing them to be switched, replaced, and

omitted for different configurations. In some cases, having some coupling between modules



can be unavoidable. For example, the "Current Time" variable, which keeps a Ims timer,

must be shared by all FPGA modules for accurate timestamping. In the case of such

interactions, the couplings must be well documented so that the module may still be replaced

or removed without impacting the rest of the system.

When developing vehicle software with a large team, modularity can help maximize

utility by breaking up the software into smaller tasks. Each module can be tested and

validated individually, and several modules can be easily assembled into different

configurations. When debugging, the problem can be isolated to a single or group of

modules and debugged separately from the rest of the system. In this way, the development

of the complete software can proceed in parallel, with different groups or individuals working

on different modules. This scheme also decreases the complexity for students, since coders

don't necessarily need to understand the entire software to code their individual module.

In the operations phase, the development of prototype software, i.e. software that

encompasses only partial applicability or that has not been fully tested for flight reliability,

helps to demonstrate functionality early and buy down risk. For example, it is common on

TALARIS to separate the EDF and CGS propulsion systems for individual testing. Prototype

software can be quickly assembled using only the appropriate modules for each system to

allow for characterization tests to continue. By having prototype software ready and quickly

customizable, hardware and software work streams can proceed in parallel without one

stream causing delays with the other. In addition, software functionality for each propulsion

system can be validated individually, and the relevant modules can be later incorporated into

the final version of the software.

Finally, modularity can also help in later phases of vehicle development. By

increasing flexibility, modularity allows for the vehicle to undergo quick changes in

configuration and minimize setup times. For example, common modules such as the RS-232

interface can be repurposed or reused for similar functions. New compatible sensors can be

easily integrated by using a standard communication protocol such as RS-232. In the long

term, if the TALARIS testbed were to be upgraded to use more powerful propulsion systems,

such as hydrazine rockets or gas-turbine engines, the core framework of the software can be

left in place, with only the relevant modules being replaced.

The benefits of modularity are summarized in the list below:



* Increased organization

* Increased flexibility while not compromising base functionality

* Separation of responsibility - makes debugging easier and facilitates

development with large teams

* Reduced complexity - makes code easier to understand and is useful for

gaining experience in an academic environment

" Ability to easily switch out GNC algorithms speeds testing sessions

" Reusable - common modules can be easily modified for similar functions (i.e.

RS-232 interface)

The detriments to modularity are a bit difficult to quantify. It is usually difficult to

convert integral code to modular code a posteriori, which means a modular coding style must

be adopted before development begins. During development, it is unclear whether integral or

modular code requires longer development times. In some instances, the reduced complexity

of modular code may aid programmers, but it may also create some redundancy which

increases the runtime or amount of resources used. The tradeoff between performance and

development time is central to the decision of using integral or modular code.

3.3 Modularity in LabVIEW

The LabVIEW programming language was chosen for the TALARIS project due to

its ease of use and implementation for modular embedded systems. The intuitive graphical

interface is easy to learn and understand for new students, which is crucial for passing on

software knowledge to the next generation. In addition, the graphical interface is inherently

suited for modularity, as sections of code can be visually separated and further

compartmentalized through the use of sub-vi's. The graphical user interface (GUI) is

integrated into the creation of the code as a "front panel" which is paired with every vi block

diagram. However, there are also some tradeoffs associated with LabVIEW. As a graphical

programming language, all modules attempt to run as soon as inputs are available. Runtime

execution is implied by the passing of information between modules (i.e. a module will not



run until all inputs are defined) or explicitly through the use of sequences. This makes multi-

threaded programming relatively easy - by default, the code will run as many modules as

possible in parallel. However, this makes serial programming more difficult. The order in

which modules execute is often crucial to proper performance, but this is not specified by

LabVIEW unless explicitly controlled by the programmer. For many programmers used to

programming in text-based languages such as C or Matlab, serial programming may be taken

for granted, and some amount of adjustment may be required to enforce runtime execution

order. For the TALARIS project, LabVIEW acts as a higher level environment common to

both the FPGA and the PowerPC (PPC) and represents a compromise between usability and

complexity. For other projects, the traditional text-based methods for programming a FPGA

and PPC, such as VHDL and C, might be more attractive choices.

There are four main features of LabVIEW which make it especially suitable for

developing modular code. The first feature described below is the ability to create sub-vi's,

since it is possibly the most useful in terms of modularity. The other three features, described

in the other subsections below, are also helpful in this regard. The graphical nature of

LabVIEW makes clear the mapping between the functional and the physical structure of the

code. The availability of sequences eases organization of the various modules into a

cohesive body of code, and the Call C Library Function Node provides the capability of

seamlessly calling pre-compiled C code as separate modules.

3.3.1 Creating sub-vi's

A sub-vi is a section of code which has been compartmentalized and is represented by

a single icon on the block diagram of the top-level vi. Sub-vi's are most commonly used to

represent functions, where inputs and outputs are well defined, and may be copied to produce

multiple instantiations as needed. Sub-vi's can also be used to capture more complex code,

which is useful in making the top-level vi less complicated and more readable. Below is an

example of a sub-vi which handles the GNC execution in the PPC.



Figure 12: Capturing complexity with a sub-vi

Sub-vi's hide complexity from the top-level vi, increasing readability in both vi's,

while simultaneously modularizing the code. On the top level, the sub-vi can be thought of

as a black box with only inputs and outputs. When the code needs to be debugged, the bug

can be narrowed to a certain sub-vi and modified separately from the main code. Sub-vi's

also naturally specify module interfaces, as the inputs and outputs must be pre-determined to

pass information into the sub-vi (the sub-vi and top-level vi have different variable scopes).

Although a vi can often be thought of as a module, a module is not necessarily a single vi.

There may be several modules inside a single vi, as is the case in the FPGA software, where

all the sensor interfaces are contained within a single vi in separate modules.



3.3.2 Mapping functional and physical structure

Due to the graphical nature of LabVIEW, a block of code can be immediately

understood in terms of its relation to other blocks, and their interactions can be intuitively

seen. In text-based code, even if the functions are well-separated, they are still written

serially, and their execution order or tree is not immediately obvious. In the figures below, a

simplified example has been taken from the PPC code. The functional block diagram is

shown on the left while pseudo-code is shown on the right.

Functional Module Structure

I-
U

Physical Structure (text-based)

%MainPPC
%CalIGNCExec
%Log IMU telemetry
%Log FPGAtelemetry

%GNCExec
%Call IMUParse

%IMU Parse
%Return IMU telemetry

%FPGA Interface
%Return FPGA telemetry

Figure 13: Mapping Functional and Physical Structure (text-based code)
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Functional Module Structure Physical Structure (text-based)

%Main PPC
%Call GNCExec
%Log IMU telemetry
%Log FPGA telemetry

%GNC Exec
%Call IMUParse

%IMU Parse
%Return IMU telemetry

%FPGA Interface
%Return FPGA telemetry

Figure 14: Mapping Functional and Physical Structure (LabVIEW)

In this example, Main PPC acts as the main executable, calling GNC Exec and

receiving data from IMU Parse and FPGA Interface. In the text-based example, the

programmer must keep the functional diagram in mind while coding text serially; even if the

code is well-separated by function, their execution order is not immediately obvious. In

LabVIEW, the programmer may make the actual code visually resemble the functional block

diagram. Main PPC can be coded with an output which sends data to GNC Exec and two

inputs which receive data from IMU Parse and FPGA Interface. The color of the line

indicates the data type (e.g. double, int32, etc.) of the inputs and outputs, supplying further

information to the programmer. In this way, the physical structure in LabVIEW can be made

to closely resemble the functional structure, which is one of the defining qualities of

modularity.

Main PPC

FPGA Interface



3.3.3 Using sequences to organize code

In LabVIEW, sequences are used to explicitly define runtime execution order.

Sequences are composed of a series of frames which run in series and are arranged either

horizontally, as in a flat sequence, or one behind the other, as in a stacked sequence. Frames

also create natural boundaries which can be used to organize code and define modules.

Information can flow into and out of a frame in much the same way inputs and outputs are

defined in a sub-vi. All three of the above modularity techniques can be observed in the

example below, taken from Flight Shell.vi.

Figure 15: Overview of Flight Shell.vi

Flight Shell.vi is composed of a single flat sequence of four frames that are intended

to be run in order. This ensures that the variable initialization, which happens in the first

frame, happens before the PPC is called, which happens in the second frame. Logging

happens in the third frame, with each of five logging text files being created by their

respective sub-vi's. In the final frame, all the text files are closed and the PPC execution is

stopped. In this way, each frame is defined by a specific function and separated by

boundaries. Execution can be thought of as a block diagram: Initialization -> Start PPC ->

Logging -> Stop PPC, with the physical structure matching its functional counterpart. Sub-



vi's are used to hide the complexity of the logging routines, which are functionally simple but

take up a large amount of space. The goal of these techniques is to create code which is easy

to follow and understand while also easy to debug and maintain. Future software developers,

even with limited LabVIEW experience, can quickly review the entire code and understand

the different modules.

3.3.4 Call C Library Function Node

The fourth feature of LabVIEW that makes it useful for developing modular code is

its Call C Library Function Node, which is shown below.

TGNC_exec_vO.out:TalarisGNCexec

II 
InDEL DEL

C3 C3

C3 C3

IR It I

DBElL DBLT

Figure 16: LabVIEW Call C Library Function Node

This block allows pre-compiled C code to be run in LabVIEW as an enclosed module

with pre-defined inputs and outputs. On the TALARIS vehicle, this block is used to run the

Draper GNC code, which is coded in C, Matlab, and Simulink and auto-coded to C when

necessary. A "TGNC exec_vO.out" file is compiled for the RIO in advance and may be

easily switched out to test different algorithms. For example, several versions of the GNC

code with different control gains can be pre-compiled and switched during operation to make

the best use of testing sessions, which require long setup times and several personnel on staff.

Unfortunately, C encapsulation gives no insight into bugs and creates opaque crashes. Often

a bug in the C code will either freeze the entire LabVIEW software or in the worst case, crash

the RIO, requiring a reboot. However, insight into the GNC code can be provided by a

judicious choice of variables to be output as telemetry, and the frequency of opaque crashes

was low enough that it was outweighed by the benefits of encapsulation.



Chapter 4

4 Real-Time Software Architecture

This chapter is intended to familiarize the reader with the design of the real-time

software written in LabVIEW. The first three sections introduce the RIO hardware

architecture, the GNC algorithms, and the GNC timing. The flight software was developed

to meet the specifications summarized in these sections. The second three sections will

describe the three main components of the flight software: the FPGA, PPC, and GSC code.

The LabVIEW code will be discussed in detail, and the focus will be on providing a

functional overview as well as a detailed documentation of the software. The information in

this chapter will form the technical basis for the discussion of application of modularity to

TALARIS in Chapter 5.

4.1 Avionics Hardware Overview

The software is divided between three computing entities: the FPGA, the PowerPC

processor, and the GSC. This architecture is enabled by the use of the National Instruments

RIO board, which includes both a FPGA and a PowerPC, as well as a number of analog and

digital inputs and outputs. By implementing modular software, this architecture can become

heavily customizable and quickly reconfigured, and the high number of I/O pins allows for

many devices to be implemented at once. These capabilities aligned with the overall design



cues of TALARIS: ease of development, flexibility, and reliability. A diagram of the

avionics hardware architecture can be seen below.
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Figure 17: Avionics Hardware Architecture

The FPGA executes at the lowest level of the three computing entities and handles all

sensor and actuator interfaces. It is also the most heavily modularized, as each sensor or

actuator interface operates more or less independently, and can be separated, reorganized, or

omitted depending on the vehicle configuration. All sensor and actuator telemetry is

generated here and is timestamped on the FPGA's 40MHz clock. The data is then passed to

Altimeter

0060mim



the PPC by a Direct Memory Access (DMA) FIFO queue. This system ensures that all data

is recorded with respect to a single clock, eliminating any ambiguity with the timestamp, and

ensures that the data is recorded and read in the correct order through a FIFO queue. This is

perhaps the most important function of the FPGA; the FPGA, which is not efficient at

performing complicated computations, is able to execute all the interfaces in parallel, which

makes it ideal for timing. Having all the interfaces in one place is crucial for this

organization to be effective. The FPGA interacts with the real world in real-time, allowing

other processes which are not time critical to be executed at a later time by a different entity.

The PPC receives the telemetry generated in the FPGA and reads the data in packets

according to the control cycle frequency. The GNC code batch processes them and outputs

the actuator commands, which are then sent back down to the FPGA. In this way, the GNC

is executed in control "frames," with each frame lining up with the control cycle. This setup

allows extremely regular execution of actuator commands, as the FPGA has precise control

over actuator timing. The GNC code is only required to issue a command before the start of

the next frame to ensure proper execution. The GNC timing as well as the benefits and

detriments of this system will be discussed in section 4.3. The PPC code also contains the

flight controls on its front panel and passes the data to the GSC for logging.

The sole purpose of the GSC code is to log the telemetry data to text files. Since it is

the highest level computing entity, this logging process does not have to be done in real-time.

Buffers are used to store the telemetry from one frame, and as long as the data is written

before the next frame's data arrives, all data will be correctly written. The GSC

communicates with the RIO through a Linksys WGA600N wireless gaming adapter, allowing

the GSC and the pilot to sit away from the vehicle behind protective shielding.

This hardware architecture utilizes the advantages of each of the computing entities

while minimizing the impact of their weaknesses. The FPGA is excellent for real-time

applications. Its structure allows for several processes to run in parallel while tied to the

same clock. However, more complicated operations take up more resources in the FPGA.

For example, a divide takes a large number of logic gates, which would be executed much

more efficiently in the processor [16]. The real-time processor is better at handling more



complicated operations, but must rely on interrupts to obtain parallel processing [15]. The

combination of the FPGA and the real-time processor (in this case, the PPC) forms a suitable

solution for the vehicle's requirements. The FPGA handles timing, hardware interfaces, and

simple calculations, while the PPC executes GNC algorithms, packages data for logging, and

communicates with the GSC.

4.2 GNC Specifications

Even though the GNC algorithms were developed independently by Draper engineers,

there are a few fundamental parameters that are crucial to the development of the real-time

software. Based on the vehicle and CGS characteristics, a 5Hz pulse-width modulation

(PWM) controller was developed by Michael C. Johnson of Draper Laboratory. The

controller issues an "on-time" and a "delay-time" for each valve, and by using these two

parameters, the pulsewidth and location can be precisely controlled for each GNC frame.
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Figure 18: CGS Valve Timing

Pitch and yaw attitude control is obtained by "off-pulsing" the four vertical valves.

In one frame, the aggregate on-time for the four valves will provide the total vertical force

required for the desired acceleration. By then distributing the on-time (i.e. "off-pulsing") to

pairs of valves, an angular acceleration can be achieved on the vehicle. For example to create

a positive moment about the +z axis of the vehicle, valves 1 and 3 would fire longer than

valves 5 and 7 while keeping their aggregate on-time the same within one frame. Roll

control during traverse is achieved with a similar scheme using the two lateral valves on the

side of the vehicle opposite from the direction of the traverse. Roll control during vertical

rise, hover, and vertical descent is achieved using a phase-plane controller [28]. In this case,

if necessary, continuous firing can be obtained by commanding an on-time equal to the

control cycle.

Delay-time= Oms

'On-time= 1001ms
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Figure 19: Valve Off-pulsing for +Z Moment

For this PWM controller, 5Hz was found to be an appropriate control frequency. A

crucial parameter in this study was the CGS minimum on-off time of 40ms. A 20Hz

controller would require GNC frames of 50ms, which would not leave enough time for the

valve to close before the next pulse fires. Similarly, a 10Hz controller, or lOOms frames,

would require pulses between 40 and 60ms to accommodate the minimum on-off time, which

would not leave enough room for attitude control. Thus, a 5Hz controller was chosen and

verified in simulation to be stable and suitable for controlling TALARIS.

Given the controller frequency, the frames must be generated in the FPGA. This is

done by using the synchronous IMU measurements, which update every 200Hz, or 5ms.

Thus, 40 IMU packets are received in exactly 200ms, which defines the GNC frame

boundary. In addition, a Ims square wave is generated by the RIO and sent to the IMU as a

sync signal to ensure that the packets are aligned with the FPGA clock. As soon as this sync

signal is sensed by the IMU, it begins sending data packets synchronous with the signal's



rising edge. The frames could have been generated by a separate FPGA timed loop, but in

this way, we synchronize the FPGA's clock with one sensor as well as reduce the amount of

code needed. The altimeter returns packets at approximately 10Hz, but its data is treated as

asynchronous because the packets are not generated at exactly 1OOms intervals. In practice,

between one and three altimeter packets are obtained every 200ms frame.

The navigation algorithm uses accelerations and angular rates from the IMU to

propagate the state in six degrees of freedom with an Extended Kalman Filter. The altimeter

is pointed in the -x direction and provides a periodic update to the altitude state. Thus, the x-

axis has a fairly accurate estimate, but the other degrees of freedom are determined by dead

reckoning. Their accuracy depends on the IMU drift and bias, so IMU calibration before

flight is essential for a stable state solution. The navigation algorithm, designed by Paul J.

Huxel of Draper Laboratory, is called at the same frequency as the control code and batch

processes one frame's worth of data at a time. The state is then fed to the guidance algorithm,

which was designed by Thomas J. Fill of Draper Laboratory. Guidance is called at 1Hz, that

is, once every five times the control and navigation algorithms are called. Using the current

state and knowledge of the target, the guidance algorithm commands an inertial thrust vector,

which becomes the setpoint in the control algorithm. See below for a timeline of the GNC

updates.
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Figure 20: GNC Update Timing Diagram



There are two functions in the FPGA code which are independent of the main GNC

execution above. The first is the CGS manual control, which connects the valves directly to

switches on the flight controls and allows them to be fired at any time. This mode is useful

for non-GNC tests such as debugging valves, CGS characterization, scripted demos, or as an

emergency dump of the gas tanks.

The second function that is completely independent of the main GNC execution is the

EDF module. In 6-DOF testing, the EDFs will be set to a constant RPM which provides a

thrust equal to 5/6 th of the vehicles initial weight, to allow the GNC and CGS to operate

within a close approximation of the lunar environment, which has 1/6 th the gravity of Earth.

More complicated controllers are planned for the future which account for the gradual

consumption of gas and the vehicle's attitude. The Schultz 40.160 motor controllers take a

square wave input every 20ms to determine the throttle of the EDF. The square wave can be

between 1 ms and 2ms, with 1 ms indicating 0% throttle and 2ms indicating 100% throttle.

However, throttle percentage does not vary linearly with RPM or thrust, so extensive

characterization must be performed to deliver a relatively constant 5/6g weight offset.

4.3 GNC Timing

Most, if not all, GNC algorithms rely on precise timestamps on sensor data to

determine the vehicle state. This is not the same as synchronous data, i.e. updates at regular

time intervals. Some navigation algorithms can deal with asynchronous sensor updates, as

long as the time which the data was taken is recorded and relayed to the navigation algorithm.

Similarly, control algorithms require knowledge about the precise timing of actuator firings.

It is not necessary that the firing happen immediately after the command is issued, so long as

that actuator delay is known and accounted for by the control algorithm. Thus, precise

timing information is fundamental to the proper and reliable execution of GNC algorithms.



The GNC cycle begins with gathering of sensor data in the FPGA. Both IMU data

and altimeter data are added to DMA FIFOs for passing up to the PPC. The PPC triggers

when forty IMU packets have been written to the DMA FIFO, which is one GNC frame's

worth of data. The PPC then reads the altimeter data, which can vary from one to three

packets per frame. This data is passed to the GNC module, which outputs on-times and

delay-times for the valves as well as GNC debug telemetry. The on-times and delay-times

are passed back to the FPGA using a LabVIEW FPGA Read/Write Control, which overwrites

local variables in FPGA Main.vi. If this write doesn't happen before the next frame

boundary, the CGS loop will execute with the previous frame's pulse values.

1) Gather sensor
data

2) Send data
through DMA F

3) Process data with
GNC algorithms

UPG5) Execute CGS loop
with updated pulse
widths

4) Send pulse width
information to FPGA

Figure 21: Software GNC Execution Block Diagram

The frame boundary in the FPGA can be thought of as an absolute runtime

requirement for the PPC. The DMA FIFO and FPGA Read/Write Control have stochastic

communication delays which would normally hinder the ability to implement closed-loop



control. The communication delay would add a stochastic lag which would have to be

carefully characterized and accounted for in the controller margins. This setup eliminates

that jitter and replaces the stochastic delays which we have no control over with a known

maximum runtime requirement. It doesn't matter when the GNC issues its next command, as

long as it happens before the next frame boundary. The figure below shows a timeline of

GNC tasks as they are executed in the FPGA, PPC, and CGS.

Time GNC Timeline

FPGA C
Gather data 1 Gather data 2 Gather data 3

PPC
Process data 1 Process data 2

CGS

Execute data 1

200ms

Figure 22: GNC Execution Timeline

In this way, the tasks of gathering data and processing the data are split between the

FPGA and the PPC, and parallel processing can be used to utilize the maximum amount of

resources. However, in this setup, the actuators are firing off of data that is up to 0.4s old,

which adds much unneeded delay. After running benchmark tests, it became apparent that

the GNC algorithms ran very quickly, in about lms, and that most of the time in the PPC was

being wasted waiting for the command to be executed. To mitigate this delay, Christopher J.

Wardman of Draper Laboratory suggested that the CGS loop be offset from the main GNC

loop by a set number of milliseconds. By tailoring this delay to the GNC algorithm run time,

the lag between the end of GNC calculation and the valve firing can be minimized, and the

valves can fire much sooner after the command is issued. The updated timing scheme is

shown below.
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Figure 23: GNC Execution Timeline 2

This offset time must be carefully set to ensure that the GNC code still has time to

complete and send the command to the FPGA. Although the actual algorithm runs on the

order of 1ms, the DMA FIFO read and FPGA Read/Write Control took on the average of

22ms to complete. Benchmark tests were run to determine the average and 3(a times for three

points: after the IMU read, after the altimeter read, and after the command was issued. These

points happen in series in the PPC, with the first two being DMA FIFO reads and the

command issue being an FPGA Read/Write Control.

Gather data 1FPGA

PPC

CGS

200ms

Time

M - - - - - - - - - - - - -
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Figure 24: GNC Execution in PPC

The timing benchmark points are shown above in red, with (0) being the baseline

time that the other three points are compared against. Point (2) refers to the point that the

DMA FIFO read completes and information is sent to the GNC algorithm. Point (3)

represents the total time it takes for the PPC to finish calculation and send the command to

the FPGA. The benchmark was run for 10 minutes, or 3000 frames, and the average time and

standard deviation for each point is summarized in the table below.

(1) IMU Read (2) Altimeter Read (3) Command issue (total)

Average 6.21ms 14.30ms 22.46ms

Standard deviation 2.92ms 5.52ms 5.97ms

Table 1: GNC Timing Benchmark Results

The 3a point for total execution was 40.37ms. Out of 3034 frames, 12 violated 40ms,

but none violated 50ms. Thus, 50ms was taken as the CGS frame offset to ensure that no

commands are missed.

IMU Read
Send

Command
GNC

Algorithm



4.4 FPGA Software

The FPGA software is almost solely composed of sensor and actuator interfaces in a

single vi called "FPGA Main.vi." By using a single vi, local variables can be utilized to pass

information between modules when needed, and FPGA Read/Write Controls can be used by

the PPC code to directly access these variables. For time-sensitive telemetry, e.g. the IMU

and altimeter data, DMA FIFOs are used to communicate the information to the PPC. For

other sensors that are polled less frequently, e.g. voltage and pressure sensors, a FPGA

Read/Write Control can be used by the PPC to pull this information.

A few simple design principles were followed when coding the FPGA. First, the

code was kept as simple as possible, to reduce both resource utilization and compile times.

Divide operators were avoided when possible, because a divide operation is much more

efficiently and accurately performed in the PPC [16]. The reason for this is because divide

often results in a rational number which an FPGA cannot accurately express with fixed-point

variables. The result is an approximation of the real answer, and the implementation of

larger fixed-point numbers needed to improve this approximation increases the number of

logic gates, power consumption, and delay time required [16]. For these reasons,

complicated calculations involving divides were kept to the PPC to minimize FPGA

resources used and compile times. Next, each of the modules was developed independently

and integrated at a later date. Besides being able to split the labor between multiple

programmers, this also made each interface fairly independent, encouraging flexibility and

different reconfigurations. Even though simplicity was stressed in the development of the

FPGA code, the compile times could still reach over an hour for the full software, which was

another reason to separate development into smaller pieces of code.

The FPGA code is fairly difficult to debug for a number of reasons. First, the front

panel is not visible during execution, which prevents the programmer from monitoring

variables during runtime. Second, bugs in the FPGA code usually cause catastrophic failures,



often crashing the program, LabVIEW, and/or the RIO without any warnings or error

messages. Third, any changes made to the FPGA code will require a recompile, which takes

over an hour with the full testing software. With such long compile times, there is always a

tradeoff between the number of changes and the number of recompiles. The tendency is to

avoid long compile times by making several changes at once, but this risks running into an

opaque bug which will require several recompiles to determine and fix. Finally, one of the

most common errors when coding the FPGA is implementing timed loops correctly. If the

loop is too complicated and cannot be completed in time, the loop will just skip the next

iteration and attempt to execute as quickly as possible. This runtime violation is not caught

by the compiler, so it is the responsibility of the programmer to ensure and verify that the

loop is running at the rate it was intended.

The FPGA code currently consists of six modules: the main timer, altimeter transmit,

altimeter receive, IMU receive, sensor acquisition, and the CGS loop. This version of the

software was intended for GNC tests using the CGS only and does not include the EDF

module. A separate version of the code, called the Force Balance code, includes two

additional modules which interface with the EDFs and the load cell. These modules will be

described below but they do not appear in the overall screenshot for FPGA Main.vi.



Crossbow IMU Receive

(disabled)

Gladiator IMU Receive

Altimeter Send Command

-Timer Lo

t ....... ... Loop

-0G

ic "F$,Ui E
_4 EM

Altimeter Read

Sensor Acquisition

CGS Loop

Figure 25: LabVIEW Block Diagram for FPGA Main.vi

61



4.4.1 Timer Loop

1. Wlck

Figure 26: LabVIEW Block Diagram for FPGA Timer Loop

The main purpose of the timer loop is to create a timer variable based on the FPGA

clock and generate a Ims square wave to send to the IMU as a sync signal. The loop toggles

the sync signal every 500ps and increments the variable "Current Time" on every rising edge.

The "Current Time" variable will be used to timestamp all sensor data.

4.4.2 Altimeter Transmit
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Figure 27: Altimeter Transmit
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The altimeter uses the RS-232 8N1 communication protocol to send and receive data.

To send commands to the altimeter, the RIO uses a dedicated DIO 3.3V pin, which it sends

high to indicate standby. This occurs outside the timed loop, which happens only once and at

the beginning of execution. When the "Command Sent" boolean is set to true by the PPC,

the FPGA generates the bits according to the command from the boolean array "Altimeter

Command." The bit width must match the baud rate of the altimeter, which is set to 9600 by

default. The baud rate is related to the bit width by the equation below.

S = f T, = Bit duration

f= Baud rate

In addition, the LabVIEW loop timer must be wired with a value in "ticks," which are

number of 40MHz clock cycles. Using this information, the bit width in ticks can be

calculated.

1/9600 = 104.17is/bit

1 tick = 1/40MHz = 25ns

104.17ps/bit 1 25nstick = 4168 ticks/bit

The 8N1 refers to 8 data bits, no parity bit, and one stop bit. The first bit, or the start

bit, is always 0 to indicate a command is about to be sent. This is followed by 8 data bits and

a stop bit, which returns the transmit pin to high. Commands are converted to ASCII

numbers and sent using the 8N1 protocol. For example, the character "D" = 68 in ASCII,

which equals 0010 0010 in binary (LSB first). Thus the full command would be ten bits

including the start and stop bit: 0001000101.
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4.4.3 Altimeter Receive

Figure 29: Altimeter Receive

The top half of the altimeter read code is composed of a timed loop and is concerned

with detecting a falling edge, which indicates the start of a data packet, and populating the

byte buffer. To capture the falling edge, the DIO pin must be sampled at a much faster rate

than the baud rate, so the timed loop runs approximately five times faster, at 840ps. An eight

boolean-wide buffer is numbered 1 through 8, and every iteration, indexes 1 through 7 are

shifted to indexes 2 through 8, and a new sample is written to index 1. A falling edge is

detected when the pattern "01" goes through indexes 7 and 8.



Falling edge

1 2 3 4 5 6 7 8 1

New data 1 1 0 0 0 1 Old data

One bit width

Figure 30: RS-232 Falling Edge Detection

When a falling edge is detected, the value at index 5 is read and written to the byte

buffer. Index 5 is used because it represents the middle of the next bit. Five iterations are

passed before index 5 is read again and added to the byte buffer. This is repeated for ten bits,

which represent the start bit, the eight data bits, and the stop bit. When the byte buffer is full,

it is passed to the bottom half of the code, which writes the byte to the DMA FIFO. All flags

are reset, and the loop is ready to detect another falling edge.

The altimeter typically sends nine bytes at a time, each representing an ASCII

character. For example, to send the altitude "0.934," the altimeter would send the characters

"48 48 48 46 57 51 52 13 10" which translated to "0 0 0 . 9 3 4 <CR> <LF>." The altimeter

will send a carriage return and a line feed to indicate the end of a measurement. The FPGA

will insert a timestamp before every nine characters, so a typical altimeter measurement will

be ten bytes long: one timestamp + nine data bytes. In one 200ms frame, we expect 1-3

altimeter packets, depending on how the sensor timing is aligned with the FPGA clock.



4.4.4 IMU Receive

Figure 31: IMU Receive

The ITMU interface is similar to the altimeter interface in concept with a few key

differences. There is no need to send commands to the IMU except for the Ims sync signal,

so we have only a receive module. The IMU uses the RS-485 8E2 communication protocol,

with 8 data bits, an even parity bit, and two stop bits. The default baud rate is 115200, giving

us a bit width of 8.68ps. To oversample at five times the bit width, the timed loop must be

performed at 70 ticks per iteration. The edge detection is performed in exactly the same



manner as the altimeter receive, with the byte being compiled and sent to the bottom half of

the module to be added to the DMA FIFO. One full IMU data packet is composed of 18

bytes with values seen in the table below.

Index Number Data Value

1 Packet start (42)

2 Message counter

3-4 Gyro x

5-6 Gyro y

7-8 Gyro z

9-10 Accel x

11-12 Accel y

13-14 Accel z

15-16 Temperature

17 Test/status indicator

18 Checksum

Table 2: Gladiator IMU Data Packet [261

To ensure that the correct 18 bytes are added to the DMA FIFO, the FPGA will

ensure that the value of the first byte read is 42. This trips the boolean flag "First Byte?" and

the FPGA will write the time stamp, then add the next 18 bytes to the DMA FIFO.



4.4.5 Sensor Acquisition
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Figure 32: Sensor Acquisition

The pressure, voltage, and temperature sensors are connected to the analog input (Al)

pins of the RIO and are read at a rate of 5Hz. These sensors are mainly used for system

health and are output to the pilot interface in the PPC for monitoring. Since these

measurements are not as time critical to the GNC execution, they are read by FPGA

Read/Write Controls in the PPC code.
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Figure 33: CGS Manual Fire Loop

The CGS loop operates in two modes depending on the value of the "CGS Duty

Cycle" boolean. When set to false, the loop operates in manual fire mode, and eight boolean

variables are used to control the on/off status of the valves. These booleans are then

controlled by the PPC using FPGA Read/Write Controls. Every 2ms, the value of these

booleans is sent to their respective sub-vi's named "Actuate Valve #.vi" which activates the

correct digital out pins to actuate the correct valve. The stacked sequence on the right logs

the values of each of the booleans every 20ms, adding the timestamp, valve number, and zero

for the on-time and delay-time (to indicate a manual fire). This mode is most commonly

used for CGS characterization tests, demos, or dumping the low pressure gas from the tanks.

4.4.6 CGS Loop

CGS Execute



Figure 34: CGS Duty Cycle Fire Loop

The second mode of operation is the duty cycle fire mode, which is crucial to the

GNC execution. The code can be divided into four parts, indicated by the numbers above,

with one, two, and four executed in series and two and three executed in parallel.

1) The first section of the code determines whether a new 200ms frame has started.

If so, then "CGS Frame Boundary" will be updated to be offset from the start of the GNC

frame. This is how the frame offsetting discussed in section 3.3 is achieved.

2) The second section will trigger only if the current time is greater than "CGS

Frame Boundary." This condition indicates the start of the CGS frame. Only once at the

beginning of the CGS Frame, the "m" variables will be updated. The m variables, mDelay

and mOn for each valve, indicate the times between which the valve should be open.

Defined from the beginning of the CGS frame, the m variables are defined as:

mDelay 1 = CGS Frame Boundary + Delay-Time ]

mOn I = mDelay 1 + On-Time ]
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Figure 35: CGS frame offset and m variables

3) At the same time that the m variables are updated, the CGS telemetry is logged in

section 3 of the code. This logging routine is similar to the one used in the manual fire mode,

reporting four values for each valve: timestamp, valve number, on-time, and delay-time.

4) The fourth section of the code checks two conditions to determine whether the

valve will be actuated. In this mode, the valve boolean acts as an enable flag. If the flag is

false, set by the PPC, then the valve will never fire. If the flag is true and the current time is

between mDelay and mOn, then a value of true will be sent to "Actuate Valve #.vi" and the

valve will open.



4.4.7 Load Cell Receive
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Figure 36: Load Cell Receive

Like the system health sensors, the load cell interfaces to the RIO using Al pins.

Twelve Al pins are set up to take differential readings which are added to the DMA FIFO at a

rate of 500Hz. A timestamp is placed at the beginning of every 200ms frame, or 100 samples.



4.4.8 EDF Loop

Figure 37: EDF Initialization

The Schultz motor controllers require an initialization procedure at power-up to

calibrate the signals for no throttle and full throttle. This is done at the start of FPGA

execution, before any of the other modules begin. First, a 2ms square wave is sent to the

motor controllers to indicate full throttle. After 380ms, the signal is changed to a 1 ms square

wave to indicate no throttle. During this time, the motor controller will go through a series of

beeps to indicate that calibration has completed successfully. Caution is recommended when

using this initialization routine outside of normal calibration procedures. If the motor

controller is not in calibration mode, then a full throttle command will be sent to the EDFs,

which could be potentially hazardous to personnel.
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Figure 38: EDF Module

The EDF module can be separated into four EDF read timed loops, located on the left

side of the module, and one EDF send timed loop, which is the large loop on the right side.

The read loops monitor the RPM signal on an Al pin for a set amount of time. A LabVIEW

"Analog Period Measurement" block is used to approximate the period of the oscillating

signal. In the steady state, this period should be aligned with the RPMs of the EDF. The

period is normalized by the length of the loop so that the units of the period is

[iterations/revolution]. For example, a period value of 12 would mean that one EDF

revolution equals 12 loop iterations. To convert this to RPMs, use the following relation:

120000 [te"aions]
.o rterons = RPMs

PeriodRevolution]



This relation is for a loop frequency of 500ps. If the loop timer is changed, then the

scalar in the numerator will have to change as well. That scalar is calculated by:

1 6*107 ps [iterations

Loop Timer iter t ion 1 min L mmin

The command portion of the module is executed every 20ms. Commands are set by

the PPC through FPGA Read/Write Controls and range from 0 to 1000 ps. This is added to

the base ims pulse and sent to the motor controller in the sub-vi "Send pulse to ESC #.vi."

At the same time, EDF telemetry and some analog sensor data are written to the DMA FIFO,

to be later read by the PPC and logged.

4.5 PPC Software

The PPC software is primarily composed of three vi's. The first, "Main PPC.vi," acts

as the main executable. Its front panel consists of the main flight controls and is the primary

interface between the pilot and the vehicle. "GNC Exec.vi" is called from within "Main

PPC.vi" and contains the DMA FIFO Read blocks as well as the autocoded Draper GNC

code. After the GNC code runs, the CGS commands are sent to the FPGA using an FPGA

Read/Write Control. "FPGA Interface.vi" is also called from within "Main PPC.vi," and

sends the remaining commands with a single FPGA Read/Write Control. System health

sensors are also polled in this vi. Global variables are used to communicate information

between these three vi's, and their scope is only within the PowerPC. Shared variables are

used to send telemetry to the GSC for logging, and can be accessed in both the PPC and the

GSC.



4.5.1 Main PPC.vi

Figure 39: Main PPC.vi Front Panel

The front panel of "Main PPC.vi" consists of the main controls used by the pilot.

The controls are divided by function, with CGS controls on the left, GNC controls and

displays in the center, and system health sensors displayed on the right. Above the controls is

the all-stop button, which may be pressed at any time to shut down the vehicle, and a large

warning light which will flash when telemetry logging is not taking place, to remind the pilot.

These controls provide a variety of operating modes to the pilot. The CGS may be operated

in manual mode, duty cycle mode, or by automated scripts. The GNC has three automated

steps which must be pushed in sequence to properly activate the GNC: standby, calibrate, and

execute. Standby is depressed by default, calibrate is usually depressed for 30s, and execute

is depressed only when valves are clear to fire. When the GNC is activated, the CGS manual

controls are deactivated to prevent conflicting controls. System health sensors are provided



to the pilot and updated at 5Hz. These are useful for determrining whether the gas tanks need

to be refueled or the batteries recharged before the next test. Please refer to the Software

Operations Guide in Appendix A for detailed instructions on piloting the vehicle.

2 4

Figure 40: Main PPC.vi Block Diagram

1) This portion initiates "FPGA Main.vi", initializes all global variables to zero, and

starts the altimeter.

2) "FPGA Interface.vi" and "GNC Exec.vi" begin execution as soon as the FPGA is

initialized. Automated scripts are also executed inside a timed loop, which is controlled from

the front panel.

3) The three GNC modes (standby, calibrate, and execute) are monitored in this timed

loop and sent to "GNC Exec.vi" to be input into the Draper GNC code.

4) Global variables are written to local variables to be displayed to the front panel.

5) In manual control, the controls on the front panel are read and set to global

variables, which will then be sent to the FPGA in "FPGA Interface.vi." When automatic

scripts or the GNC code is activated, the front panel controls are set from the global variables

to reflect the current state of the CGS. In addition, when logging is not taking place (i.e.

when the GSC did not start Main PPC.vi), a warning light will flash on the front panel.



6) After the all-stop button has been pressed, the altimeter is deactivated, and the

FPGA is stopped.



4.5.2 FPGA Interface.vi

Figure 41: FPGA Interface.vi Block Diagram



"FPGA Interface.vi" sends commands through a single FPGA Read/Write Control

every 1Oims. In this version of the software, the valve enable booleans, on-times, and delay-

times are being sent, although EDF commands can also be sent here. When the all-stop

button is pressed, all the valves are closed before stopping the timed loop to ensure vehicle

safety after execution. The system health sensors are also read in this vi, converted from

volts to appropriate units, and written to global variables so that they may be accessed in

"Main PPC.vi." In the case of the pressure sensors, a 2 "d order Butterworth filter was also

added to smooth out the data. These sensors are also written to the shared variable "Pressure

Telemetry," which can be accessed in the GSC for logging.

4.5.3 GNC Exec.vi

Figure 42: GNC Exec.vi Block Diagram

1) The top portion of the code consists of a series of DMA FIFO Read blocks which

read the appropriate number of elements from the IMU, altimeter, and CGS telemetry queues.

The first DMA FIFO Read block is the IMU, which waits until 721 elements have been



written to the queue. This represents one 200ms frame's worth of IMU data (i.e. 1 timestamp

+ 40 IMU packets = 721 elements), and the rest of the code will not execute until this read

has completed. In this way, the timing of this loop is not reinforced by a loop timer, but

instead by the DMA FIFO that holds the IMU data. After the IMU data is read, it is sent to

"Convert IMU Array.vi" and the altimeter DMA FIFO Read block proceeds. Instead of

waiting for a certain number of elements, this read block simply reads the number of

complete altimeter packets (i.e. 10 elements) that are in the queue. Finally, all the complete

CGS telemetry packets (i.e. 4 elements each) are read from the CGS queue.

2) The raw data packets are processed, written to global and shared variables, and

input into the Draper GNC algorithm. The outputs of the algorithm consist of commands to

be sent to the FPGA and debug telemetry, which are written to shared variables for logging.

Please refer to the "Decoding Log Files" documentation [29] for more information regarding

the GNC log files.

4.6 GSC Software

-- - - - - 6 - - - - --- - - - - - - - - - - - -

ot.

L--------------

Figure 43: Flight Shell.vi Block Diagram
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The main executable for the GSC is called "Flight Shell.vi." Its main purpose is to

start "Main PPC.vi" and to write the information in shared variables to txt files on the GSC.

1) The shared variables are initialized to zero. "Main PPC.vi" is started.

2) Logging takes place from information from the shared variables. Separate log files

for the EDFs, CGS, IMU, altimeter, GNC, and pressure telemetry are created. The data is

written one frame at a time as it is being passed up from the PPC.

3) All text files are closed and "Main PPC.vi" is stopped.
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Chapter 5

5 Applying Modularity to TALARIS

Software

In this chapter, the application of modularity to the TALARIS software will be

explored. The benefits of modularity as stated in Chapter 3 are:

* Increased organization

" Increased flexibility while not compromising base functionality

* Separation of responsibility - makes debugging easier and facilitates

development with large teams

" Reduced complexity - makes code easier to understand and is useful for

gaining experience in an academic environment

* Ability to easily switch out GNC algorithms speeds testing sessions

* Reusable - common modules can be easily modified for similar functions (i.e.

RS-232 interface)

Nearly all these benefits will be applied in the three vehicle phases: development and

debugging, operation, and maintenance. In the development and debugging phase, modules

will be isolated and analyzed in the FPGA to map their couplings and demonstrate their

reconfigurability. Modularity in the PPC will be studied in terms of increasing organization

and implementation of sub-vi's to reduce complexity, and debugging examples will show

how modularity was utilized to modify GNC timing and aid in benchmark testing. In the



operations phase, a series of test campaigns from actuator characterization to GNC tests will

illustrate the gradual evolution of the prototype software. Each campaign will be

characterized by its main purpose, significant telemetry logged, and FPGA modules. Finally,

examples from sensor upgrades will demonstrate the ease of maintaining the modular

software and possibility for future expansion.

5.1 Modularity in Development

5.1.1 FPGA Development

The FPGA is characterized by several separate modules for actuators and sensors in a

single top-level vi. The FPGA code mainly benefits from the increased organization,

separation of responsibility, and increased flexibility. Each sensor or actuator module can be

developed and tested individually in a separate project and integrated into the full system at a

later time. This ability also increases the flexibility, where modules can be reconfigured into

a custom configuration for different test campaigns. For this reconfiguration process to be

performed smoothly, the modules must be fairly decoupled so that the removal or addition of

a module does not disturb the execution of another module. However, some interactions are

inevitable, such as access to a single clock variable. When these interactions occur, the

couplings must be thoroughly mapped and documented so changes can be made correctly.

The figure below shows the current FPGA modules and their interactions.
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Figure 44: N2 diagram of FPGA module interactions

There are currently 10 modules coded for the FPGA, and the matrix above shows

which modules exhibit coupled interactions. The matrix is relatively sparse, which indicates

that most interfaces are de-coupled. The blue entries indicate the variable "Current time"

being passed from the timer module to the relevant sensor and actuator modules for

timstamping telemetry. The three IMU modules, connected through the orange entries,

represent a special case. At any time, only one IMU is used on the vehicle, either the

Gladiator or the Crossbow. The Gladiator IMU uses a single RS-485 receive module and an

external sync signal generated in the timer block. The Crossbow IMU uses a standard RS-

232 interface similar to the altimeter. These IMU modules are intended to be swappable, so

they share a few common variables, namely IMU Packet Num and Byte Num, indicated by

the orange entries. The final category of interactions, shown in red, involves sharing GNC

Frame information. The IMU module generates 200ms frames based on the number of IMU

packets it receives (the IMU is synchronized using an external sync signal). This frame

boundary is passed to the CGS module in the variable "Cmd frame temp time." The desired

CGS frame delay is added to this boundary to form the "CGS frame boundary." The red
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entries indicate the interaction between the CGS module and the IMU module, either

Gladiator or Crossbow.

Depending on the test campaign, different modules may be chosen and compiled in

the FPGA software. By using only the modules necessary for the given test, the FPGA

compile time is minimized, reducing the turnaround time for software modifications and

customizations. For example, during vehicle integration, a series of isolated sensor tests were

compiled to test each of the sensors separately. For CGS characterization, only the timer,

CGS, sensor acquisition, and load cell receive modules were required. For EDF closed-loop

altitude tests, the timer, EDF, altimeter send, altimeter receive, and sensor acquisition

modules were needed. Section 5.2 will document several test campaigns, from actuator

characterizations to GNC tests, to demonstrate the evolution of TALARIS into a full 6DOF

testbed.

5.1.2 PPC Development

The PPC benefits from modularity through the use of sub-vi's to increase

organization and reduce complexity. A single flat sequence is used to divide execution into

three phases: initialization, execution, and shutdown. The execution phase consists of three

main modules: FPGA Interface.vi, GNC Exec.vi, and the user interface. Both FPGA

Interface.vi and GNC Exec.vi are sub-vi's to save space on the top-level. The figure below

shows an overview of the Main PPC.vi block diagram, with the phases and major modules

labeled.



Figure 45: Overview of Main PPC.vi

The sub-vi execution can be thought of as a tree, with Main PPC.vi acting as the main

executable and calling sub-vi's in lower levels. GNC Exec.vi in particular has a number of

lower level functions to aid in the conversion of raw sensor data, with each forming a

separate module. The Call C Library Node also resides in GNC Exec.vi and represents the

final benefit of modularity in the PPC code. GNC algorithms may be switched out while

keeping the rest of the software unchanged, minimizing the time required for GNC software

changes. A block diagram of the sub-vi execution may be seen in the figure below.
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Figure 46: PPC Sub-vi Execution Tree

5.1.3 GNC Timing

The timing modification mentioned in section 4.3 was able to be smoothly and easily

implemented through the use of modularity. For this modification, the IMU and CGS

modules need to be time-offset to allow time for the PPC to execute the GNC code and send

CGS commands back to the FPGA.
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Figure 47: Frame-locked vs. Frame offset execution

Because the CGS and IMU modules were already separated, the delay was

implemented using a single case statement. To further increase flexibility, the variable "CGS

phase delay" was created to provide a variable offset. This variable could be later tweaked

based on benchmark timing tests to minimize delay and maximize performance. The frame

offset code can be seen below, as taken from the CGS module. The case statement executes

upon the condition that a new 5Hz IMU packet has just been read. The variable "Cmd frame

temp time" is written to "GNC Frame Boundary" and "CGS phase delay" is added to it and

written to "CGS Frame Boundary." The CGS will then execute its next pulse when "Current

Time" passes "CGS Frame Boundary."

Time

------------------------------ I ------------------------------ f ------------------------------ I ------------
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Figure 48: CGS Frame Offset Code

Modularity was useful not only in implementing the frame offset, but also in running

the benchmark tests. Module boundaries were used to time intermediate points in the closed-

loop control to determine the module that caused the most delay. By sizing the CGS frame

offset based on this information, the actuator delay after the GNC command could be

minimized while also minimizing the uncertainty from communication delay. Control

commands are still executed at exact regular intervals as assumed by the GNC algorithm,

resulting in a system which actuates in a manner resembling the model simulations.

5.2 Modularity in Operation

The purpose of this section is to demonstrate the flexibility of the software by

providing a brief overview of the number of test configurations of the TALARIS testbed,

starting with actuator characterization and ending with GNC algorithm testing. Each test

campaign will have customized prototype software composed of only the appropriate FPGA

modules. By using only necessary modules, prototype software can be quickly assembled

and compile times can be kept low. Also, the FPGA contains only low-level functionality, so

all higher level functionality such as swapping controllers, user interface, and logging can be

customized in the PPC, which does not require a recompile after modifications. For example,

the FPGA will return range data from the altimeter, and the PPC will interpret this range

either as an altitude from the ground or translational displacement based on whether the



altimeter is pointed downward or horizontally during that test. This also minimizes the

number of compiles required for the FPGA code, lowering turnaround times for customized

prototype software. To create a discrete embedded system for each of these test campaigns

would be very expensive, especially for an academic project, but by utilizing modularity and

the flexibility of the RIO platform, a suitable embedded system for each campaign can be

created for a fraction of the time and money.

The two main hardware streams on TALARIS are the EDF and CGS propulsion

systems. These systems were split at an early stage to perform characterization tests and will

be integrated before the full six degree of freedom GNC test. By performing control tests

with only one propulsion system, functionality can be demonstrated at an earlier stage,

reducing downstream risk. As each propulsion system matures, the prototype software

develops as well until the two propulsion systems are combined to perform the final 6DOF

traverse. For each campaign below, the main purpose, telemetry, and FPGA modules will be

listed, as well as a short summary of the significant results.

5.2.1 Single EDF Testing

Purpose: Demonstrate functionality of single EDF using power supply or LiPo batteries.

Characterize RPM and thrust vs. throttle command.

Telemetry: EDF command, RPMs, force data, system health

FPGA Modules: timer, EDF, sensor acquisition



Figure 49: Single EDF Test Setup

The EDFs were the first of the two propulsion systems to be built and tested. The

single EDF stand was designed to hook up to either a power supply or the vehicle's lithium

polymer battery stack. Open loop control was tested using a 0-100% throttle command, and

an RPM vs. throttle curve and thrust vs. RPM curve were characterized.

5.2.2 Multi-EDF RPM Testing

Purpose: Integrate four EDFs onto the vehicle. Characterize open-loop RPM response to

delta throttle command at various operating points. Continue to characterize thrust vs. RPM.

Design and validate closed-loop proportional-integral (PI) RPM controller.

Telemetry: EDF command, RPMs, force data, system health

FPGA Modules: timer, EDF, sensor acquisition

An extensive series of tests were conducted, with all four EDFs installed on the

vehicle and the vehicle strapped down to characterize the open-loop response of the RPM to

changes in throttle. Then, further characterization of thrust vs. RPM was done, also with all



four EDFs installed on the vehicle. Using data from both of these tests, a closed-loop PI

RPM controller was designed with variable gains. A sample closed-loop response is shown

in the figure below.
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Figure 50: Closed-loop RPM Response

The overall profile is shown on the left and a zoomed view of the steady state can be

seen on the right. At the start of the ramp, a small spike in RPM can be seen when the motor

controller starts the EDFs. After that, during the rest of the ramp up (and subsequent ramp

down), the RPMs (blue) appear to nicely follow the commanded ramp profile (green).

However, when zooming in on the "steady state", a 200RPM deadband can be seen. The

command is varying by about half a percent, but the RPMs stay at discretized levels. The

integral action in the closed loop controller introduced behavior similar to dithering, in which

the average RPM over a period of time approximately follows the command. This

granularity will become important for later altitude tests.



5.2.3 Multi-EDF 1DOF Altitude Testing

Purpose: Integrate altimeter on the vehicle and perform a closed-loop altitude hop on the

1 DOF test stand.

Telemetry: EDF command, RPMs, altitude, system health

FPGA Modules: timer, EDF, altimeter send, altimeter receive, sensor acquisition

Figure 51: Multi-EDF Altitude Test Stand

For this test, a downward-pointing altimeter was integrated onto the vehicle and was

used to wrap a closed-loop PID controller around the RPM inner loop to control the vehicle's

altitude. The outer loop received height information from the altimeter and commanded an

RPM to the inner closed-loop PI controller based on current vertical position and velocity

estimates. For these tests, several outer-loop (altitude) controllers were pre-compiled with

different PID gains, ranging from a "gentle" controller to a relatively "aggressive" controller.

This streamlined the testing procedure, since prepping for a test requires a few hours and

several personnel, but running an altitude test only takes under two minutes of runtime.



Using this controller, a 30cm altitude hop was achieved in IDOF using the EDFs

only. During 6DOF operations, the EDFs will simply be maintained at a set RPM to provide

weight offset. However, although not currently in development, a 6DOF closed-loop

controller which uses only EDFs could be used as a "parachute mode" in case the CGS

system fails. In this case, the EDFs could act as an emergency descent system, controlling

both altitude and attitude for a safe landing.

5.2.4 CGS Single Stream

Purpose: Test integrity of flight tanks and plumbing system. Fire CGS valves and determine

thrust per valve.

Telemetry: CGS commands, force data, system health

FPGA Modules: timer, CGS, sensor acquisition, load cell receive

Figure 52: CGS Single Stream Test Stand

The CGS system was first built and tested inside a blast chamber for safety reasons.

The single-stream setup prototypes the plumbing system from the tanks to a single valve.



The purpose was to demonstrate CGS valve on/off functionality as well as take load cell data

on individual valves. At this point, only the "manual control" mode of the CGS module was

coded. The "duty cycle" mode was coded at a later date. In this way, CGS software matured

alongside the CGS hardware and was able to be used to test at significant milestones to

demonstrate intermediate functionality.

5.2.5 CGS Characterization and Load Cell Testing

Purpose: Integrate CGS hardware onto the vehicle, take force and moment data while on

static test stand.

Telemetry: CGS commands, force and moment data, system health

FPGA Modules: timer, CGS, sensor acquisition, load cell receive

Figure 53: CGS Static Test Stand

After single stream testing, the CGS was integrated onto the vehicle and attached to

the static test stand for force and moment characterization. Valves were fired as singles,

pairs, and quads to determine the forces and moments imparted onto the vehicle. Also, the



entire test stand was lifted two meters off the ground to prevent ground effects from

artificially affecting force telemetry. At this point, the CGS "duty cycle" mode was finished

and tested to determine the open and close lags associated with pulsing the valves. Of

particular interest were the opening and closing time of the valves. The opening time was

defined as the time between the commanding of the valve open and the moment maximum

steady-state thrust is achieved. The closing time was defined as the time between the off

command and time it takes for thrust to reach zero. These parameters determine the

minimum pulsewidth and granularity of the CGS controller. A diagram of these parameters

can be seen in the figure below.

Commanded Impulse = Tm * PW Opening Time

TW

thrst

Actual Impulse = Closing Time

Figure 54: CGS valve firing profile

This version of the software contained many non-flight sensors, such as the 6 DOF

load cell, which was returning data points at 500Hz. As such, the software became very

telemetry heavy, passing much more data than required for an actual flight. An example of a

force profile for a single valve can be seen in the figure below.
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Figure 55: CGS valve force profile

The valves averaged about 40N per valve. The blue measurement above represents

the raw force measurement, which displays a significant amount of oscillation. This was

determined to be caused by the dynamics of the static stand plus load cell. When applying a

notch filter at 7Hz, the fundamental frequency of the ringing, a much cleaner force signal was

achieved, as shown in green.

5.2.6 CGS Testing 1DOF Traverse

Purpose: Verify CGS operation in a 1 DOF horizontal traverse, assuming level attitude

Telemetry: CGS commands, altimeter telemetry, system health

FPGA Modules: timer, CGS, alt send, alt receive, IMU Gladiator receive, sensor acquisition
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Figure 56: GNC 1DOF Traverse Stand

The first GNC test was a horizontal 1 DOF traverse. The cradle from the CGS load

cell characterization stand was modified with wheels which were constrained to move only in

one direction. The vertical valves were disabled for this test, and EDF weight offset was not

required. This would simulate the hop stage after stable hover was achieved, where both

altitude and attitude were unchanging. An altimeter was pointed towards the wall to sense

position, from which velocity was also derived. This information was passed to a 1 DOF PID

controller designed by Joseph M. Morrow, a fellow graduate student and Draper Laboratory

Fellow, which closed the loop on range and commanded the horizontal thrusters to

successfully drive the vehicle to the target. This test validated that the CGS system delivered

the thrust expected, and that it could perform well in a closed-loop controller.

5.2.7 GNC Testing 3DOF Traverse

Purpose: Demonstrate a 3DOF roll plus horizontal traverse with Draper GNC software

Telemetry: CGS commands, altimeter telemetry, IMU telemetry, GNC debug telemetry,

system health
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FPGA Modules: timer, CGS, alt send, alt receive, IMU gladiator receive, sensor acquisition

Figure 57: GNC 3DOF Traverse Test Stand

After the success of the I DOF traverse, a 3DOF test stand was created. An air sled

replaced the wheels on the cradle, allowing the vehicle to slide with reduced friction along

the floor. First, the IMU was added for attitude and attitude rate about the vehicle's X

(vertical) axis, and the Draper GN&C software was loaded onto the vehicle. The vehicle was

then commanded to roll 900 without traversing, to mimic roll control during vertical rise,

hover, or vertical descent. It successfully rolled 900 in each of four consecutive closed-loop

tests. Then the altimeter was also mounted on the vehicle, but pointed towards the wall for

position and velocity updates. The vehicle was then oriented 450 away from the wall, and

was commanded to re-orient itself towards the wall and traverse 0.8m towards the wall. This

also was done successfully for four different closed-loop tests. Not only did these tests

successfully demonstrate a portion of the hop profile, but it was the first time the Draper

GNC code, which is written in C (Guidance and Navigation) and auto-coded from Simulink

(Control), was run in LabVIEW. Further modifications could be made to the Guidance or

Navigation C code, or modifications could be made to the Control Simulink model and then
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auto-coded. Then, the modified GNC C code could be re-compiled along with the executive

C code to upgrade the GNC module called by LabVIEW.

5.2.8 GNC Testing 1DOF Attitude

Purpose: Demonstrate ability to maintain stable attitude in IDOF using CGS pulsewidth

firing

Telemetry: CGS commands, altimeter telemetry, IMU telemetry, GNC debug telemetry,

system health

FPGA Modules: timer, CGS, alt send, alt receive, IMU gladiator receive, sensor acquisition

Figure 58: IDOF Attitude Test Stand

For altitude and attitude tests, a new test stand was built which allows the vehicle to

rotate about one axis and traverse upwards and downwards. For this test, the altitude degree
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of freedom was constrained, constraining the vehicle to only one degree of freedom in

attitude. IMU data was used to determine attitude and augmented by a downward-pointing

altimeter for regular updates. By firing pairs of thrusters, the vehicle successfully maintained

an attitude within 20. For subsequent tests, the vehicle was artificially weighted towards one

end to create a disturbance which the CGS system would have to overcome. Despite this

offset, the attitude control algorithm brought the attitude to within 3'. Euler angles from

balanced and unbalanced runs are shown in the figures below.
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Figure 59: Euler angles for balanced attitude test
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Figure 60: Euler angles for two unbalanced tests

5.2.9 GNC Testing 2DOF Attitude + Altitude

Purpose: Demonstrate ability to maintain stable attitude while performing an altitude hop

Telemetry: CGS commands, altimeter telemetry, IMU telemetry, GNC debug telemetry,

system health

FPGA Modules: timer, CGS, alt send, alt receive, IMU gladiator receive, sensor acquisition
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Figure 61: 2DOF Altitude + Attitude Test Stand

The next test freed the altitude degree of freedom, leaving the vehicle to control

altitude and one attitude degree of freedom. A weight offset was provided by a pulley system

and attached to the four sides of the vehicle. The vehicle was able to maintain a relatively

steady attitude, but friction in the rails introduced dynamics in other degrees of freedom

which were supposed to be constrained. In practice, the test stand performed more like a

3DOF stand (2 attitude, I altitude) rather than a true 2DOF stand. At the time of this writing,

the EDFs are being integrated onto the vehicle to replace the pulley weight offset system.

This will hopefully alleviate some of the external stand dynamics and result in a cleaner

flight. These tests will lead up to a full 6DOF test, where the vehicle will be supported only

by a safety harness that is slack during flight. This final flight would represent the full hop

profile as described in section 2.2 and is planned for late Spring 2011.
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5.3 Software Maintenance Using Modularity

In addition to the benefits in development and operational flexibility, modularity can

also have benefits during later phases of vehicle development. In particular, upgrading and

customizing the software are facilitated by narrowing the focus to a section of the code.

Modules can be exchanged without affecting the rest of the system, eliminating the need to

re-validate unrelated portions of the code. This section consists of a series of examples from

the TALARIS project demonstrating these benefits during the later stages of development.

5.3.1 Flexibility of the RS-232 interface

The RS-232 communication interface is one of the most prevalent interfaces, with

applicability to a wide range of sensors and actuators. On the TALARIS vehicle, both the

altimeter and the Crossbow IMU use the RS-232 communication interface, and once one

version of the module has been coded, additional sensors can be integrated in a fraction of the

time. For example, the Crossbow interface was modified from the altimeter module, as seen

below.
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Figure 59: Crossbow IMU Send Modules

The Crossbow IMU send module has additional logic relating to defining the GNC

frame and a slightly different command structure, but otherwise is identical to the altimeter

send module. Similarly, the RS-232 receive block for both devices is nearly identical,

differing only in the I/O pinout accessed, baud rate, and data packet format. In the future, the
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time to integrate a new device using the RS-232 communication interface is a fraction of the

time to code a new module from scratch.

5.3.2 Upgrading IMUs

The vehicle has used a number of IMUs, with the latest upgrade being from the

Crossbow IMU to the Gladiator IMU. According to their data sheets, the Gladiator IMU has

a higher update rate as well as lower gyro bias, noise, and a lower weight. However, the

Gladiator IMU uses the RS-485 protocol instead of RS-232 protocol that the Crossbow uses.

The RS-485 module was based off the RS-232 module, using the same falling edge detection,

bit read, and DMA FIFO procedure. The data packet of the Gladiator started with a set value

of "42," so this was added as an error checking case at the start of each packet read. In the

PPC code, the number of elements read from the DMA FIFO was changed to match the

Gladiator's data packet format. The logging routine was also updated. Even though the IMU

module was one of the most coupled modules, it was still exchanged fairly easily by using an

existing module as a baseline and taking into account all interactions with other modules.

The Crossbow module still resides in FPGA Main.vi as a disabled module, so the two

IMUs may be interchanged with minimal downtime. A list of changes is summarized in the

list below. To switch back to the Crossbow, simply reverse these changes.

In the FPGA:

1) Current time, IMU Packet Num, Byte num, and GNC frame data are

shared between the two modules.

2) Baud rate is changed from 38400 (Crossbow) to 115200 (Gladiator)

3) Additional error checking was added to check for a "42" as the first byte

in a data packet
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4) Gladiator IMU uses a sync signal generated by the RIO to return data.

Crossbow IMU requires a regular command to poll data at a synchronized

rate.

In the PPC:

1) Number of elements read from the DMA FIFO was updated.

2) Logging routine was updated to reflect new data packet format.

5.3.3 Upgrading RPM sensor

One of the latest upgrades to the vehicle was the RPM sensing circuit. Previously, an

analog signal was taken from one phase of the three-phase motor signal output by the motor

controls, and the period of the oscillating signal was estimated by the FPGA using zero

crossing logic provided by LabVIEW. There were a number of problems with this setup.

Theoretically, the period of the analog signal should be proportional to the RPM of the EDF.

However, this only holds true at steady state and not during ramp-up or ramp-down transients.

Also, the analog signal is prone to noise, especially if the wire carrying the signal was long or

was near other electrical lines. Inside the RIO box was especially prone to introducing noise,

as close interaction with other signal wires was inevitable. Finally, as mentioned in section

5.2.2, there was a 200RPM granularity apparent in the test data. It was unsure whether this

granularity was inherent to the motor controller, noise in the analog signal, or a combination

of the two. Several periods were averaged together to act as a rudimentary low pass filter,

but seemed to only alleviate, not solve the problem.

A digital RPM circuit was developed by the TALARIS EDF team which returned a

square wave with a period proportional to the EDF RPMs. The source of the signal still

comes from a single motor phase, but this circuit should reduce the noise inherent to the

analog signal. The software module also uses the same edge detection scheme from the RS-

232 modules, which has proved to be very accurate due to the FPGA's excellent timing
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characteristics. These features should make the digi-RPM circuit robust to external noise and

so that the RPM telemetry reflects the actual motor phases throughout the test.

5.3.4 Integration of new sensors

The past three sections have focused on upgrading or replacing certain sensors. This

section is intended to summarize the process of adding new sensors into the existing modular

FPGA code. Here are the appropriate questions to ask before integrating a new sensor:

1) At what frequency do you want to poll the sensor?

2) Does it use a standard communication protocol? At what baud rate do you want to

read data packets (digital only)?

3) What is the data packet format that the sensor returns?

4) What is the logging format (e.g. timestamp + 6 data elements) desired?

5) How will you communicate the data? FIFO or FPGA read/write?

6) Can you put it in an existing timed loop? For example, system health sensors log

data at 5Hz, which is suitable for plotting overall trends for tests under a minute.

7) Do you need to lock timing to the GNC or CGS frame?

Analog sensors are easily incorporated into one of the RIO's dedicated Al lines. If

exact timing is critical, then a DMA FIFO would need to be used to pass up the data at

regular intervals. However, the RIO has only three DMA FIFO channels in hardware which

are currently being used by the IMU, altimeter, and CGS telemetry. Additional telemetry

would need to be augmented onto one of these existing FIFO channels. For example, the

IMU channel, which is populated at 200Hz, could consist of a timestamp, one IMU packet,

and one data packet from the additional sensor. The PPC code would have to be modified to

take into account this extra telemetry as well. Digital sensors are a bit harder to incorporate,

but integration could also be very quick if the sensor uses a standard communication protocol.

Even if a custom interface is required, many of the basic tools, such as baud rate calculations

and edge detection, can be taken from the existing RS-232 modules. By using previous

models as a baseline, new modules can be coded in a shorter amount of time than their

predecessors, facilitating the learning curve as the software matures.
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Chapter 6

6 Discussion and Conclusions

6.1 Thesis Review

This thesis explored the use of an FPGA in conjunction with a PowerPC processor to

execute real-time GNC algorithms. By taking advantage of the FPGA's excellent timing

characteristics as well as the PPC's processing power, complex algorithms may be executed

without sacrificing precision timing. The negative effects from communication delay and

associated jitter are minimized through the use of a unique timing procedure which utilizes

frames to execute commands at regular intervals. Modularity is used to obtain functional and

operational flexibility, allowing the prototype software to mature as the vehicle hardware

matures. LabVIEW is used as a high-level programming language to program the FPGA and

PPC and is useful in an academic environment for quickly instructing new students to

become software developers for embedded systems. Draper GNC algorithms may be coded

in their native language and later incorporated as a module separate from the surrounding

support software.

After a brief introduction and literature review in Chapter 1, Chapter 2 provided

background information regarding the Google Lunar X-Prize as well as a system overview of

the TALARIS vehicle. Chapter 3 introduced the theory of flexibility and modularity and

discussed techniques to implement them in LabVIEW to facilitate development. Chapter 4

described the architecture of the real-time software with detailed discussions about GNC
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timing and benchmarking as well as the FPGA, PPC, and GSC code. Chapter 5 concluded

the thesis with several examples displaying the benefits of software modularity in the

development, operation, and maintenance of the vehicle.

6.2 Future Work

There are several areas of improvement for this study, summarized below:

1) The benefits of modularity are often hard to quantify. These benefits are usually

development time, performance, consumption of resources or the "-ilities" such as flexibility

and reusability. Estimating the increase in downstream value based on these -ilities can be

quite difficult and subject to bias. For example, how does one value the ability to switch

IMUs, if required? The personnel time savings for performing such a task could be estimated

for a modular and integral architecture, but such estimates will always be a stochastic

measure. Similarly, to determine the savings in development time, an integral and a modular

software could be coded and the development time recorded. Not only is this an inefficient

use of developer time, but such an endeavor would be subject to programmer skill, subtle

changes in programming style, and even variations in day-to-day mental fitness. It is clear

that formal specifications for determining the benefits of modularity need to be studied as

well as time-efficient ways of verifying these benefits.

2) Similarly, the detriments of modularity to a project are also hard to quantify. Modularity

may cause a performance hit, consume more resources, or increase initial development time,

but these detriments must also be weighed against future reduced development time and

platform flexibility. Thus, hard metrics need to be studied to determine the net value of

applying modularity to a project.

3) The current FPGA code requires over one hour to compile. While this may not sound like

a long time, compiles must be performed after any change in the FPGA code (i.e. any time

the "save" button is pressed, even if no functional change was made). This results in a

tradeoff between the numbers of changes one can make to the code and the compile time.
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For example, if there is a crash and many changes to the FPGA code had been made, the bug

cannot be easily narrowed to a single change, especially if the crash is opaque and doesn't

return an error code. The problem is somewhat alleviated through modularity, as modules

can be compiled separately and tested individually, but the long compile times still limits the

forward progress that can be made between compiles.

4) Bugs in the LabVIEW code often cause opaque crashes which don't provide any

information to the nature of the crash. This could come in the form of a software freeze,

where the pilot is locked out of the controls and must abort LabVIEW, or a full RIO crash,

where the RIO must be rebooted afterwards. This problem is especially problematic when

coupled with the long FPGA compile times, which provide a severe time penalty for

debugging code. The autocoded GNC module in the PPC often causes opaque crashes, as

LabVIEW is unable to provide an error code for an error in C. Thus, the GNC software

should ideally be debugged before implemented in LabVIEW.

5) The communication of telemetry between the PPC and GSC is handled through shared

variables, which are not meant for high frequency logging purposes. Shared variables often

write slowly, causes missed or repeated packets. In the past, this has not severely limited the

amount of telemetry that could be logged, but in the future, it is possible that the amount of

telemetry the vehicle requires exceeds the ability of shared variables to relay the information.

An alternative, such as real-time FIFO queues, should be researched and implemented.

115



116



References
[1] Mark Maimone, Yang Cheng, and Larry and Matthies, "Two Years of Visual Odometry

on the Mars Exploration Rovers," Journal ofField Robotics, vol. 24, no. 3, 23 March

2007.

[2] J.J. Biesiadecki and M.W. Maimone, "The Mars Exploration Rover Surface Mobility

Flight Software: Driving Ambition," in IEEE Aerospace Conference, Big Sky, MT,

2006.

[3] S.D. Howe et al., "The Mars Hopper: an impulse-driven, long-range, long-lived mobile

platform utilizing in situ Martian resources," Proc. IMechE, Part G: J. Aerospace

Engineering, vol. 225, no. 2, pp. 144-153, 2011.

[4] Jijun Lin, Olivier de Weck, Richard de Neufville, Bob Robinson, and David MacGowan,

"Designing Capital-Intensive Systems with Architectural and Operational Flexibility

Using a Screening Model," Complex Sciences, vol. 5, no. 1, pp. 1935-1946, 2009.

[5] Olivier de Weck, Richard de Neufville, and Mathieu Chaize, "Staged Deployment of

Communications Satellite Constellationsin Low Earth Orbit," Journal ofAerospace

Computing, Information, and Communication, vol. 1, no. 3, pp. 119-136, March 2004.

[6] Phillip Cunio, "TALARIS Theory of Flexibility," Massachusetts Institute of

Technology, Cambridge, MA 2010, (Unpublished, available on TALARIS file

repository).

[7] Claas Olthoff, "Application of Flexibility Principles and Strategies to the TALARIS

Avionics System," Massachusetts Institute of Technology, Cambridge, S.M. Thesis

2009.

[8] K.T. Ulrich, "The Role of Product Architecture in the Manufacturing Firm," Research

Policy, vol. 24, pp. 419-441, 1995.

117



[9] Christopher-Loic Gaillard, "An Analysis of the Impact of Modularization and

Standardization of Vehicles Electronics Architecture on the Automotive Industry,"

Massachusetts Institute of Technology, Cambridge, MA, SM Thesis 2006.

[10] Katja Holtta, Eun Suk Suh, and Olivier de Weck, "Tradeoff Between Modularity and

Performance for Engineered Systems and Products," in International Conference on

Engineering Design, Melbourne, 2005.

[11] Yuanfang Cai and Sunny Huynh, "An Evolution Model for Software Modularity

Assessment," in Fifth International Workshop on Software Quality (WoSQ'07: ICSE

Workshops 2007), 2007.

[12] Yang Tan, "Formal Specification Techniques for Promoting Software Modularity,

Enhancing Documentation, and Testing Specifications," Massachusetts Institute of

Technology, Cambridge, MA, PhD Thesis 1994.

[13] Massimiliano Corba and Zoran Ninkov, "Modular Architecture for Real-Time

Astronomical Image Processing with FPGA," Rochester Institute for Technology/Center

for Imaging Science, Rochester, NY, 1995.

[14] Simon Falsig and Anders Soerensen, "An FPGA Based Approach to Increased

Flexibility, Modularity, and Integration of Low Level Control in Robotics Research," in

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei,

2010, pp. 6119-6124.

[15] K. KrishnaKumar, J. Kaneshige, R. Waterman, C. Pires, and C. Ippoloito, "A Plug and

Play GNC Architecture Using FPGA Components," NASA Ames Research Center,

Moffett Field, CA, 2005.

[16] Jianua Liu, Michael Chang, and Chung-Kuan Chen, "An iterative division algorithm for

FPGAs," in ACM/SIGDA 14th International Symposium on Field Programmable Gate

Arrays, 2006.

118



[17] (2011, February) GLXP Website. [Online]. http://www.googlelunarxprize.org

[18] (2011, February) Next Giant Leap Website. [Online]. http://www.nextgiantleap.coim/

[19] G.J. Matranga, C.W. Ottinger, and C.R. Jarvis, and D.C. Gelzer, "Unconventional,

Contrary, and Ugly: The Lunar Landing Research Vehicle," Monographs in Aerospace

History #35 NASA SP-2004-4535, 2005.

[20] 16.89 Design Team, "16.89 Spring 2008 Design Document," Massachusetts Institute of

Technology, Cambridge, MA 2008, (Unpublished, available on TALARIS file

repository).

[21] Babak Cohanim et al., "Further Development and Flight Testing of a Prototype Lunar

and Planetary Surface Exploration Hopper: Update on the TALARIS Project,"

Massachusetts Institute of Technology, Pasadena, CA, AIAA Space 2010.

[22] Sarah Nothnagel, "Development of a Cold Gas Spacecraft Emulator System for the

TALARIS Hopper," in Space 2010, Anaheim, CA, 2010.

[23] Sarah Nothnagel, "New CGSE Circuit Documentation," Massachusetts Institute of

Technology, Cambridge, MA 2011, (Unpublished, available on TALARIS file

repository).

[24] Omega. (2011, February) Omega SV120 Series Data Sheet. [Online].

http://www.omega.com/Pressure/pdf/SV120 Series.pdf

[25] Schmidt Measurement Systems, Inc., "AR1OO Laser Distance Sensor Specification

Sheet," Portland, OR, 2008.

[26] Gladiator Technologies, Inc., "LandMark 30 IMU "LN Series" Data Sheet,"

Snoqualmie, WA, 2011.

[27] National Instruments Corporation, "sbRIO-96xx Factsheet," 2008.

119



[28] Michael C. Johnson, "A Parameterized Approach to the Design of Lunar Lander

Attitude Controllers," in AIAA GN&C Conference, Keystone, CO, 2006.

[29] Christopher Han, "Decoding Log Files," Massachusetts Institute of Technology,

Cambridge, MA 2010, (Unpublished, available on the TALARIS file repository).

[30] National Instruments Corporation, "sbRIO-96xx User Guide," 2008.

120



Appendix A: Software Operations Guide

A.1 Quickstart Guide

Before Test:

1) Run LabView as Administrator

2) Open LabView project file

3) Turn on RIO and plug in all sensors

4) Connect to RIO

5) Deploy MainPPC.vi

6) Open Flight Shell

During Test:

1) Start Flight Shell

2) Check for EDF calibration music

3) Run Test

4) Stop both Flight Shell and MainPPC

After Test:

1) Reinitialize Flight Shell and MainPPC to default values

2) Disconnect and power down RIO

3) Upload data to SVN
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A.2 Loading Software

1) Plug in any sensors you need and turn on RIO. For a list of connectors and pinouts, refer

to "RIO Pinout Documentation" on the svn under 3.4-Avionics -> Documentation

2) On the flight computer, run LabView as Administrator: Right click on the Labview icon in

the taskbar. Right-click Labview in the list that comes up, and click on "Run as

Administrator."
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You should see the following LabView window pop up:

file operate lools Belp

LabVI EW
New

Blank VI

Empty Project

Real-Time Project

& More...

Open
CA...\Force Balance Testlvproj

C:\...\Talaris Software.lvproj

C:\...\Force Balance Test v2\Main PPC.vi

CA...\Force Balance Test v2\DMA Read.vi

C:\...\FPGA Main.vi

C:\...\RPM Logging.vi

Browse...

Targets
FPGA Project T;Go

Lest from com

LabVIEW News (13)

LabVIEW in Action (15)

Example Programs (15)

Training Resources (6)

onie suppot
Discussion Forums

Code Sharing

KnowledgeBase

Request Support

Help

Getting Started with LabVIEW

LabVIEW Help

List of All New Features

q Find Examples...

3) Open "Force Balance Test.lvproj", or the appropriate project, which should be located on

the desktop. The project explorer should come up.

4) Right-click on the RIO icon, hit "Connect." The green LED in the RIO icon should light

upon successful connection.

5) Under the RIO tree, right-click on "MainPPC.vi." Hit "Deploy." Deployment should take

about 30 s.
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file Edit View Rroject Qperate lools Window Help

Items Files

E- Project: Force Balance Test.lvproj
My Computer

- Logging
Flight Shell.vi

* Dependencies
-- Build Specifications

- RT Single-Board RIO (192.168.1.2)
Test Scripts
T&C Library.lvlib
FPGA Target (RIOO, sbRIO-9642)

Open
--- T&C Inte Explore...

Show in Files Viewj.FPGA Intel

DMA Reac Print...

- Period to

7 Depende Run
-- Build Sp Find

Ctrl+E

Sae

Save As,,

Dejoy

Re4ove from Project

Rer

Rep

Pre
-'I

ame... F2

,lace with...

perties

__________________________ 1

Hit "Connect" Then "Deploy"

6) Under "My Computer," double-click on "Flight Shell.vi." You are now ready to run

software.
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A.3 Running Tests

A.3.1 Starting Software

1) Hit the white arrow on "Flight Shell.vi" to start the software. Switch to MainPPC.vi.

MainPPC should automatically start running.

Hit this white arrow

to start software

B
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2) The calibration light should come on. After 10s, time should start running.

Current time will start after

calibration 's complete.
This light should come on

for about 10s

CGS Controls EDF Controls

3) Manual controls are enabled by default. CGS controls on the left, EDF controls on the

right.
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4) For manual CGS control, select any number of valves and hit "Fire." They should click

on/off with the Fire button.

I I
Select valves Fire Button

5) For manual duty cycle CGS control, hit the switch "CGS Duty Cycle Fire." Flip the

appropriate number of valves, enter their "On-Time" and "Delay-Time" and hit Fire. They

should pulse according to the defined parameters.

6) For manual EDF, hit the buttons or enter a number to increase or decrease the throttle

command. The conversion is 1000RPM =1%.
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A.3.2 Running Scripts

1) To run scripts, enter the appropriate script number into the "Test Script Number" input.

The script will immediately start running. All scripts have a 5s delay before the first

actuation.

Test Script Input

2) To stop a test, you must hit the "Stop" button on BOTH MainPPC.vi and Flight Shell.vi.
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3) Log files are located under the C:\ directory. They are automatically dated and numbered

to avoid overwriting files.

Computer

Organize v Open

Favorites

N Desktop

. Downloads

Recent Places

Libraries

2 Documents

Jb Music
} Pictures

Videos

Computer

L Diablo (C:)

* Network

Diablo (C:) I

Print Burn New folder

Name
20100915_Test0l_ForceLog.txt
20100915_Test01_R PMLog.txt

20100915_Test2_CGS.Log.txt

20100915_TestO2_ForceLog.txt

] 20100915_Test02_RPMLogtxt

20100915_Test03_CGSLog.txt

0, 20100915_Test03_ForceLog.txt

._] 20100915_Test03_RPMLog.txt

Date modified

9/15/2010 2:24 PM

9/15/2010 2:24 PM

9/15/2010 3:08 PM

9/15/2010 3:09 PM

9/15/2010 3:09 PM

9/15/2010 3:12 PM

9/15/2010 3:12 PM

9/15/2010 3:12 PM

Type
Text Doc

Text Doc

p

Size
ument 17

ument 3

Text Document

Text Document

Text Document

Text Document

Text Document

Text Document

~ Lj 2P010091&101CGS-Log.tt 9/16/2010 11:37 AM Text Document
W II 20100916-TestOl Force Log.txt 9/16/2010 11:37 AM Text Document 2,0r
=]L 20100916.TesW10_RPMLog.txt 9/16/2010 1:37 AM Text Document 4

dellsdr

. eula.1028.txt

eula1033.txt

eula.1036.txt

eula.1040.txt

_] eula.1041.txt

0 eula.1042.t
eula.1049.txt

eula.2052.txt

, eula.3082.txt

g globdata.ini

5/22/2010 7:48 PM

4/11/2008 10:07 AM

4/11/2008 10:07 AM

4/11/2008 10:07 AM

4/11/2008 10:07 AM

4/11/2008 10:07 AM

4/11/2008 10:07 AM

4/11/2008 10:07 AM

4/11/2008 10:07 AM

4/11/2008 10:07 AM

4/11/2008 10:07 AM

4/11/2008 10:07 AM

SDR File

Text Document

Text Document

Text Document

Text Document

Text Document

Text Document

Text Document

Text Document

Text Document

Text Document

Configuration sett...

3 items selected Date modified: 9/16/201011:37 AM
Size: 2.43 MB

Date created: 9/16/201011:36 AM
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A.3.3 Resetting Software

1) On both MainPPC.vi and Flight Shell.vi, go to Edit -> Reinitialize values to default. All

switches and outputs should return to their normal settings.

if dii !(iw E-ject perate Iot W!midow MpW Fill~~
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Reinitialize on BOTH flight shell and MainPPC

A.4 Uploading Data to the SVN

1) Open the svn folder on the desktop. Navigate to the appropriate folder, which is probably

in 6-Testing.

2) Make a new folder for today's date if there is not already one.

3) Copy the data files to this folder.

4) Right-click on the folder you just made. Go to TortoiseSVN -> Add. A blue plus should

appear next to the folder.
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Show log

Repo-browser

Check for modifications

Revision graph

Resolved...

Update to revision...

Rename...

Delete

Revert..

Clean up

Get lock...

Release lock

Branch/tag...

Switch...

Merge...

Export...

Relocate...

Add..

Del e and add to ignore list 1

Cre e patch...

Ap patch...

Pro rties

Open
Open in new window

Open as Notebook in OneNote

Share with

i( SVN Update

O SVN Commit...

1 TortoiseSVN

Scan for threats...

Add to archive...

Restore previous versions

Include in library

Scan

Send to

Cut

Copy

Create shortcut

Delete

Rename

Properties

Stream

Vg

ing
art l8
t 11

Valve Initial Tests

ind CGSE Flight Testir

ization

Bum New folder

Date modified Type Size

Single Axis Force Balance

Six-Axis Load Cell Tests

CGS Initial Checkout

Six-Axis Load Cell Calibrati...

Balancing Talaris

CGS Steady State Tests

CGS Steady State Tests

Calibration Runs

000-Psi Pop Valve Check...

GS Steady State Test Part 2

GSE Steady State Test Par...

9/16/2010 11:31 AM

9/14/2010 8:29 PM

9/14/2010 8:27 PM

9/14/2010 8:35 PM

9/14/2010 8:29 PM

9/14/2010 8:35 PM

9/16/2010 9:12 AM

9/15/2010 5:01 PM

9/14/2010 8:42 PM

9/15/2010 5:58 PM

9/16/2010 9:11 AM

9/14/2010 11:48 PM

9/16/2010 9:15 AM

File folder

File folder

File folder

File folder

File folder

File folder

File folder

File folder

File folder

File folder

File folder

File folder

File folder

u ktMG Ctrl Cycle Firings P r .. 9/6/201010:14 AM File folder

j 2010-09-16 CGSE Min Pulse (all parts) 916/2010 10:14 AM File folder

C CGSE Operating Checklist r10.doc 945/2010 1233 AM Microsoft Office

q] CGSE Operating Checklist r11 (in prog... 9/15/2010 12:29 AM Microsoft Office.

Filling Capacity Calcs.xls 9/14/2010 8:42 PM Microsoft Office E..

T2testing..r3.ppts 9/14/2010 8:42 PM Microsoft Office P...

TL en_ r3.pptx

;E Ctrl Cycle Firings Part 1 Date modified: 9/16/2010 10:14 AM

"Add" is here.

5) Right-click the folder again, hit SVN commit. Type any comments you have, and hit

commit.
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Open

Open in new window

Open as Notebook in OneNote

Share with

;fj v1, TALA RIS SVN 6-Testi S

Organize - Open Include in T

4,TALARI5 SVN

.svn

.TemporaryItems
1-Management

2-Systems S
3-Subteams

4-Presentations

"j, 5-Share

0, 6-Testing C

,.svn

6, 6.00 Templates and Operations Dc

e. 6.11 EDF Testing

6, 6.)2 Integration Testing

6. 6.03 Flight Testing Part I F

r 6.04 Cold Gas Single Stream

6.05 Structural Testing

6.06 Composite Testing

6.07 Flight Testing Part II

P4 6.08 EDF Testing Part II

,i. 6.09 Cold Gas Mufti-Valve Initial Tests

e~, 6.10 Integrated EDF and CGSE Flight Testir

6,. 6.11 CGSE Characterization

2010-09-16 CGSE Ctrl Cycle Firings Part
File folder

VN Update

VN Coammit...
ort SVN

can rthreats...

Add t archive...
Lesto e previous versions

nclu in library

can

end

Cut

opy

reat shortcut

elett

.ena e

rope ties

fiolder

.e Balance ...

ell Tests

:kout

ell Calibrati...

is

te Tests

te Tests

5

ilve Check...

:e Test Part 2

ste Test Par...

Sc rh ICGSE Charaerization P

Date modified

9/16/2010 11:31 AM

9/14/2010 8:29 PM

9/14/2010 8:27 PM

9/14/2010 8:35 PM

9/14/2010 8:29 PM

9/14/2010 8:35 PM

916/2010 9:12 AM

9/15/2010 5:01 PM

9/14/2010 8:42 PM

9/15/2010 5:58 PM

9/16/2010 9:11 AM

9/14/2010 11:48 PM

9/16/2010 9:15 AM

Type

File folder

File folder

File folder

File folder

File folder

Filefolder

File folder

File folder

File folder

File folder

File folder

File folder

File folder

I i111 II I, rmnnS ir.. /16/01 10:14 AM re oder
2010-09-16 CGSE Min Pulse (all parts)

CGSE Operating Checklist r10.doc

CGSE Operating Checklist r11 (in prog...
Filling Capacity Calcsads

T2testingir3.pptx

9/16/2010 10:14 AM

9/15/2010 12:33 AM

9/15/2010 12:29 AM

9/14/2010 8:42 PM

9/14/2010 8:42 PM

Size

File folder

Microsoft Office.

Microsoft Office .

Microsoft Office E...

Microsoft Office P..

I
L Date modified: 9/16/2010 10:14 AM

"SVN Commit" is here.

6) If done correctly, a green check should appear in the folder icon.

7) When uploading video, open the video in Windows Live Movie Maker, edit to include

only the relevant test, and save as .wmv or .avi. Unless an abnormal event occurred during

the test, standard definition is preferred to keep file sizes down.

8) Rename the video to the corresponding test, which should agree with the log numbers.
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A.5 Troubleshooting

A.5.1 Software Troubleshooting

If you can't connect to the RIO

1) The RIO takes about 10-15s to boot up. Wait a little bit and try again.

2) Make sure the RIO is on and the Ethernet is plugged into BOTH the RIO and computer

3) Make sure the VPN client is not connected. The VPN uses the same port as the Ethernet,

so both cannot be on at once. Unfortunately, this means that at Draper, you cannot have

Matlab up while connected to the RIO.

4) When all else fails, restart computer and try again.

If software isn't running correctly:

1) Try re-deploying MainPPC. Any time you power down or disconnect from the RIO,

MainPPC must be re-deployed, even if it was deployed and working previously.

2) Something might have been changed in the code. Download the latest version from the

svn by right-clicking on the software folder on the desktop, and hit "SVN Update" and/or

"SVN revert."

If a read/write error pops up right when software starts running:

1) LabView is probably not running as administrator. Exit out of LabView completely and

start again from step 1 in the "Quickstart Guide."
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A.5.2 SVN Troubleshooting

When the local SVN on the flight computer is synced with the central SVN, there will be a

green check on the folder icon. If there is a red !, that means there have been some changes

made to the local SVN since the last update. It's a good idea to periodically update the local

SVN to make sure that both versions are synced.

To sync the SVN:

1) Identify the lowest level folder that has a red!.

2) If these are changes that you made and want to upload to the central SVN, right-click on

the folder and hit "SVN Commit."

3) If you would like to get the latest version from the central SVN, right-click and hit "SVN

Update." If there is still a red ! after updating, hit "SVN Revert." Be VERY CAREFUL

with this command; it will delete any local versions of the files, and they will not be

recoverable. Make sure you are ok overwriting the local version before reverting.

Sometimes the SVN locks, corrupts, or throws an error that prevents proper committing or

updating. When the SVN is having issues:

1) First COPY the data someplace else. The SVN sometimes gets hungry and has eaten files

on more than one occasion.

2) Hit "SVN Cleanup." If this completes successfully, try another commit/update.

3) If this doesn't work, isolate troublesome folders and move them somewhere else (like the

desktop).

4) Right-click the parent folder and hit "SVN Commit." Make sure the "missing" folders are

checked. This deletes the troublemakers from the central SVN.
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5) Hit "SVN Update" then "SVN Revert." Both should complete without having changed

anything. This confirms that the SVN is synced with all and only the files on the local

computer. Double check there is no missing data.

6) Go into the troublemaker folders and delete all .svn folders inside the troublemaker folders,

even in subfolders. They will be the transparent folders at the top of the list. This will make

them "clean" of SVN versioning. If you've done this right, there should be no SVN icon on

the folder (the little green check or red ! should not be there).

7) Copy the now cleaned and gutted folders back to the desired folder: try another add-

>commit cycle

8) If there are still problems, then repeat cleanup step or get a more senior person to take a

look.

A.5.3 Other Notes

1) The "Stop" button is equivalent to an e-stop. Pressing this button will immediately close

all valves, set the EDFs to zero, and prevent any additional commands from being sent to the

vehicle. This can be done at any time.

2) Script files must complete before MainPPC can be stopped. The Stop button will still shut

down all actuators and commands at any time, but MainPPC won't stop and be resettable

until the script is done. Operationally, this is not a critical issue, but good to be aware of.

3) Refer to the logging vi's (found in the project explorer) to determine format of logfiles.

4) Refer to test scripts (found in project explorer) to see/modify test scripts.

5) Be extremely careful after a software crash. There is a small possibility that variables will

retain their values from the last test, and in the worst case, a valve will click open at an

unintended time. Clear all personnel from flight zone, run software, and stop normally to

ensure all valves and EDFs are properly shut and reset.
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6) Five data files will be generated each time the software is run. Please make a note of

which test each data file refers to and upload to the svn with the original data files.

Always keep backups of data or files to be uploaded to the svn, in case there is an error.

7) Before performing a test with load data, it is customary to take one minute of standstill

data to determine the load cell bias values.

8) Before powering down the RIO, Disconnect by right-clicking and hitting "Disconnect" in

the project explorer. Not a big deal, but LabView will throw an error.

9) Please only upload relevant test video. Videos of the fill process or routine checks can be

deleted. If possible, clip the video to include only the relevant test.
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