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Abstract

In producing a stop consonant, a soft tissue articulator, such as the lower lip, the tongue
tip, or the tongue body, is raised to make an airtight closure. Stevens [I] pp 32 9-3 30

hypothesized that the interaction of the air pressure with the yielding soft-tissue wall
would lead to a plateau-shaped release trajectory, and the duration of the plateau is
progressively longer for bilabial, alveolar, and velar (Fig. 1-1). This thesis analyzes the
pressure-wall interaction when a stop closure is released. Three flow models are
implemented to derive the release trajectory: quasi-steady incompressible, unsteady
incompressible, and unsteady compressible flow. Results from the models confirm
Stevens' hypothesis. In the unsteady flow models, this thesis contributes a new method -
deformable control volume analysis - to the pressure-wall interaction for small openings.
This method may also be applied to quantify the unsteady effect during the closing and
opening of the vocal folds and during the initial transient phase of a stop consonant, when
the cross-sectional area is small. Indirect means of measuring an unknown parameter in
the pressure-wall interaction analysis is discussed with the aid of a closure model which
derives the condition of retaining a complete closure against air pressure buildup. In
comparison with real speech data, an acoustic measure is defined for determining the
duration of the frication noise of voiceless alveolar and velar stop consonants in syllable-
initial positions. This newly defined measure is based on the time variation of the average
FFT magnitude in the whole frequency range and the magnitude in a 50-Hz-wide
frequency band containing the front cavity resonance for the signal in every 5
milliseconds (a moving 5-ms window). This measure is found applicable to 25 releases
out of 32 releases from TIMIT database. The means of the collected durations are found
closest to the estimated duration calculated with the unsteady compressible flow model.
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Chapter 1

Introduction

1.1 Research background

Speech is the most convenient way of human communication. A person may not

realize any difficulty in speaking his/her own native language, but when he/she starts to

learn a foreign language, production problem occurs. Some patients with diseases such as

Parkinson's and ALS (Amyotrophic lateral sclerosis), take even greater effort in

producing an understandable speech sound. He/she needs to know how and be able to

produce the correct sound so that others can understand the word being expressed.

Speech is also the most convenient means of man-machine communication. In

this task, a computer is expected to recognize human speech accurately, which is called

automatic speech recognition; and also to "speak" as naturally as a human speaker, which

is realized by speech synthesis.

Human speech is powered by the pulmonary pressure in the lung. The air coming

out of the lung interacts with various structures along the vocal tract (the air way from the

throat to the lips), and generates the sound sources, which are then filtered by the cavity

resonances determined by the shape of the vocal tract when the particular speech sound is

produced. Both generating the sound sources and shaping the vocal tract require the

coordination of multiple respiratory and articulatory structures.

As a special type of sound, speech is the subject studied in speech production, a

discipline under acoustics. Acoustics studies the generation, propagation, and reception

of sound. Similarly, speech production studies speech sound generation and propagation

along the vocal tract of a human subject. The perception of speech sound is studied in

speech perception, or psychoacoustics. Based on the physics of speech sound generation

and propagation, mathematical models are developed as tools for quantifying the

physiological activities involved in producing a speech sound.



Speech production models also provide a knowledge-based approach to identify

features of the speech sound for speech recognition [21, and supply rules for speech
[31

synthesis

Speech sounds are composed of two primary categories: vowels and consonants.

In the production of a vowel, vocal fold vibration is present and the sound source is

located at the laryngx. In producing a consonant, the vocal folds do not vibrate, or vibrate

in a more moderate mode compared with the vibration in producing a vowel.

Speech sounds

Consonants Vowels
(English) 9

Stops Fr catives tpFcate Nasal Approximants
kStop. +Fricatve S

English

Labial /p,b/
Alveolar /t,d/-

Velar /k,g/ Obstruents
(70% of English consonants)

Fig. 1-1 Concept Map - Speech sounds are composed of vowels and consonants. English
consonants can be sub-categorized into stops, fricatives, affricates, nasals, and approximants,
according the manner of articulation. Among them, stops, fricatives and affricates are also called
obstruents, and this name implies obstruction of air in their production. In English, 70 percent of
consonants are obstruents.

Effective use of the vowel models started from Chiba and Kajiyama [41 in 1941 for

the Japanese language, and the vowel models for the English language were first reported

by Jakobson, Fant, and Halle [51 in 1952. Later, Fant's work in 1960 [6], "Acoustic Theory

of Speech Production", established the theoretical framework widely and currently used.

Compared to the vowel models, slow advance has been made in the consonant

models [7] pp2930. One of the obstacles, considered by Fant, is the difficulty involved in

modeling all the relevant factors in the acoustic production process.



According to the way of producing the sound (also called manner of articulation

by phoneticians), English consonants can be further grouped into stop consonants,

fricatives, affricates, nasals, and approximants, as shown in the concept map in Fig. 1-1.

Among them, stop consonants, fricatives, and affricates are also called obstruent

consonants. The name "obstruent" means that obstruction of air exists in their production.

In English, 70 percent of consonants belong to obstruent consonants.

In this group with the largest number of consonants, stop consonants (/p, b, t, d, k,

g/) and fricatives (/f, v, s, z, f, 3, 0, 6/) comprise the majority, and the remnant of two

affricates (/f, d3/) can be taken as the combination of a stop consonant and a fricative.

The articulation and the acoustics of a stop consonant /t/ and a fricative /s/ are

compared in Fig. 1-2. The midsagittal profile of the vocal tract in producing the closure

interval of /t/ is shown in Fig. 1-2a, and the profile in producing /s/ is shown in Fig. 1-2b.

A complete closure is made with the tongue tip for /t/ and a constriction is made for /s/,

both at the alveolar ridge. Air pressure is being built up behind either the closure or the

constriction.

The acoustic waveform of utterance /ata/ and /asa/ are shown in Fig. 1-2c and

Fig. 1-2d respectively. The closure interval in the acoustic waveform of /t/ is indicated in

Fig. 1-2c, corresponding to the articulation profile shown in Fig. 1-2a. No sound is

supposed to be produced during this interval, and the signal recorded in the acoustic

waveform belongs to the background noise. When the closure is released, a brief interval

of turbulence noise is generated immediately from the air stream coming out from the

released closure. This interval is labeled as "/t/" in the acoustic waveform in Fig. 1-2c. In

producing the fricative /s/, an air stream goes through the constriction shown in Fig. 1-2b,

and creates continuous turbulence noise. This interval is indicated by the label "/s/" in the

acoustic waveform in Fig. 1-2d. Both acoustic waveforms demonstrate that turbulence

noise is characteristic of obstruent consonants. A stop consonant distinguishes itself from

a fricative at the onset of the turbulence noise, where an initial transient is generated first.

The transient looks like an impulse in the waveform (Fig. 1-2c) at the beginning of the /t/

interval.
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Fig. 1-2 (a) Midsagittal section of the vocal tract when a stop consonant /t/ is produced [ll. The
tongue blade is making a complete closure at the alveolar ridge. (b) Midsagittal section of the
vocal tract when a fricative /s/ is produced [1. The tongue blade is making a constriction at the
alveolar ridge. (c) Acoustic waveform of the utterance /ata/. The closure interval, the interval of
the /t/ sound, and the impulse-like transient are labeled. (d) Acoustic waveform of the utterance
/asa/. The interval belonging to the /s/ sound is labeled.

As the name "obstruent" suggests, obstruent consonants are produced with

obstruction of air in the vocal tract. In the course of obstructing the air, a soft tissue

articulator (it is often the primary articulator utilized in producing the consonant) such as

the tongue blade, the tongue dorsum, or the lower lip, is always involved to make a
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complete closure with the target surface in producing a stop consonant, or to create a

constriction in the airway in producing a fricative. Air pressure is then built up in the

vocal tract, and this increase in air pressure is necessary for generating the turbulence

noise characteristic of these consonants.

Stevens discussed the role of the yielding surface of soft-tissue articulators in the

articulatory models of stop and fricative consonants [1] pp 325, 328-329, 382 respectively. He

created a model of the interaction of steady flow with the yielding wall in fricative

production, which showed that the compliant surface makes it easier for the speaker to

generate the turbulence noise with the maximum intensity at the supraglottal

constriction[' 1 10-111. He also considered the pressure-wall interaction during the release

of a stop closure, and his hypothesis serves as the motivation of this thesis, as discussed

in the next section.

1.2 Motivation: Stevens' hypothesis

Stevens [II pp 329-330 suggested that the pressure-wall interaction would lead to a

plateau-shaped release trajectory shown in solid line in Fig. 1-3a. He also illustrated

schematically in the panels in Fig. 1-3b the hypothesized sequences of events after a velar

closure is released.

The mechanism underlying his hypothesis was that the pressurized air behind the

closure may cause the closure to be released (in solid line) earlier than the time when it

would be without the influence of the intraoral pressure buildup (in dashed line). After

the release, owing to the decrease in intraoral pressure, the compliant tissue surface

would bounce back, and a plateau in the release trajectory could be retained for a while

when the tongue dorsum keeps moving downward. The slower this downward motion,

the longer the plateau could be retained.

Hanson and Stevens 18] found perceptual evidence for this hypothesis: the stop

consonants were perceptually more "acceptable" when they were synthesized with a

plateau progressively longer for labial, alveolar, and velar in the release trajectories, and

they had acoustic characteristics matching better to normal speech.
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Fig.1-3 (a) The plateau-shaped release trajectory under the influence of the intraoral pressure
(solid line) and the straight release trajectory without the influence of the intraoral pressure
(dashed line). The labels with arrow indicate the time corresponding to the release sequences
showed in the panels in (b)[11 pp329. (b) Hypothesized sequences before and after the release of a
velar closure under the influence of the intraoral pressure (solid line) and without the influence of
the intraoral pressure (dashed line). Owing to the intraoral pressure, the closure could be
released before the time when the tongue dorsum leaves the palate without the influence of the
intraoral pressure [1] pp329

However, it is difficult to measure this plateau-shaped release trajectory directly

because (1) the pressure-wall interaction may last for very short time, on the order of tens

of milliseconds; (2) the dynamic range of the displacement of the yielding wall is so

small that a good space resolution at the tissue boundary is required; (3) the systems

capable of tracking articulatory movements with X-ray or EM-waves can not capture the

release trajectories right at the closure, as the sensors are intentionally placed away from
[9]the location of the closure, in order to prevent interference with speech production

This situation fits what Fant [7] pp29-30 commented about the slow advance in

consonant models compared with vowel models. He considered that "the obstacles are

our lack of reliable data on the details of the vocal tract and reliable physiological data



with respect to consonants, and also the difficulty involved in modeling all relevant

factors in the acoustic production process".

1.3 Objective and thesis outline

We initially aim to test Stevens' hypothesis by developing a mathematical model

of the pressure-wall interaction during the release of a stop closure. This effort would

contribute to a more complete scientific pursuit of the physiology of consonant

production.

Relevant knowledge in speech production is introduced in the next section, which

includes speech aerodynamics, mechanical properties of the compliant tissue walls,

turbulence noise source in speech production, the place of articulation, and the acoustics

of stop consonants.

Previous studies on the pressure-wall interaction in speech production are

reviewed in Chapter 2. Stevens' fricative model mentioned in Section 1.1 is introduced

first, which studied the type of consonants closest to stop consonants. Another consonant

model, McGowan's tongue tip trill model, is introduced next, which studied the

interaction of an unsteady flow the yielding wall. At last, vocal fold models are

introduced.

New models developed in this thesis for the pressure-wall interaction in stop

consonant production are discussed in Chapter 3. The results calculated with these

models are presented in Chapter 1. Comparison of the model results and relevant acoustic

data are discussed in Chapter 5, and also an unknown parameter in the models is

discussed.



1.4 Relevant knowledge in speech production: speech aerodynamics,
compliant walls, turbulence noise source, the place of articulation, and
the acoustic pattern of stop consonants

In this section, some concepts and knowledge in speech production theory are

introduced. They are referred to in the following chapters.

1.4.1 Speech aerodynamics and compliant walls

Speech aerodynamics studies the pressure and flow along the vocal tract, the air

way between the throat and the lips, which can be simplified as a tube with cross-

sectional area variable both in time and along its axis (Fig. 1-4a). The configuration of

the vocal tract is determined by the positioning of the articulators such as the tongue, the

lips, and the jaw, which move continuously during speech production.

As the most active articulator, the tongue functions not only to modify the shape

of the vocal tract, or the acoustic characteristics in the radiated sound, but also works as a

valve for either inhibiting or stopping the flow of air in the mouth. Working together

with the teeth, alveolar processes, and the palate, the tongue is a part of the noise

generator in the vocal tract. [10]

The pressure and flow in the vocal tract has been studied with a circuit model

shown in Fig. 1-4b. 111 Pressure P is represented as potential and volume velocity U is

represented as current. Lumped elements in the circuit model represent aerodynamic

properties along the vocal tract and relevant physiological activities such as forming a

supraglottal constriction or full closure, adducting or abducting the glottis, adjusting the

stiffness of the vocal tract walls, and active expanding or contracting the vocal tract.

Below the glottis (the space between the vocal folds which is shown as an elliptic

circle located at the inferior end of the vocal tract in Fig. 1-4a), a constant pressure P, is

assumed during speech production. This pressure is represented as a voltage source with

magnitude P, in the circuit model shown in Fig. 1-4b. Z, is the resistance of the

supraglottal constriction and Z9 is the resistance of the glottis.



For constrictions with the dimensions encountered in speech production, an

1 U
empirical pressure-flow relation AP = p( )2 [1 pp can be applied. This relation comes

2 A

from an average of the coefficient kL (in AP = k -p( )2) measured by Heinz 12 and Jw.
2 A

van den Berg et al. 13] Subsequently, resistance Z, and Zg are obtained from

APl1
Z- A=- pU at the particular location, and they are nonlinear elements in the circuit.

U 2

The movement of the jaw and some laryngeal structures can actively expand or

contract the volume of the vocal tract. This volume change is represented as a current

source Ua in the circuit.

z Z

wR C

--S Z(b)

C w
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(a)

Fig. 1-4 (a) Midsagittal profile of the vocal tract when a supraglottal constriction is formed with

the lips. Z9 and ZC are the impedance at the glottal and supraglottal constriction.11

(b) Equivalent circuit model for the air flow in the vocal tract configuration in (a): the voltage

source P, represents the subglottal pressure; Current source U, represents active expansion or

contraction of the vocal tract volume; C, is the compliance of the air in the vocal tract volume;

and RW , M, and C,, are the resistance, mass, and compliance of the vocal tract walls

respectively. [1]



A significant deviation from common duct flow is caused by the massive yielding

walls of soft tissue surfaces along the vocal tract, with only a small portion of hard wall

along the teeth and the hard palate. The yielding walls can be put into motion by pressure

variations in the vocal tract, and the degree of mobility is described by the inverse of their

mechanical impedance per unit area [I pp26, which is defined as the ratio of the pressure

acting on the wall over the resulting velocity. The impedance in the frequency range up

to 100 to 200 Hz is the combination of a compliance C,, a mass M, , and a resistance

1
R,in series, Z, = + 0jM, +R, .

ja>C, i

Based on the impedance measured on cheek tissue conducted by Ishizaka, et al.
[141 , the ranges of the three elements (in per unit area) were estimated as

C, ~.0x10-5 to3.Ox i- 5 cm3 dYne

M, ~ 1.0 to 2.0 gm/cm2

R, - 800 to 2000 dyne -s/cm'

Svirsky et al. [15] also measured the in-vivo compliance C, of the tongue surface

by tracking the displacement of a flesh point during the closure portion of voiced and

voiceless stop consonants. The recorded displacements were averaged to derive the

surface compliance, which showed the same order as the impedance estimated by

Ishizaka et al. [14] Additionally, they found that the surface compliance was about 3 times

larger for a voiced than for a voiceless stop consonant. The more compliant tongue

surface in producing a voiced stop consonant had been considered as a means of

maintaining voicing at the glottis .16]. In a pressurized tank model of making a stop

closure later discussed in Appendix B, the difference in stiffness also results from the

force balance required under difference levels of intraoral pressure buildup.

The impedance in per unit area introduced above is used to derive the elements

Cw, Mw , and R, in the circuit model shown in Fig. 1-4b. For a surface area S of the



walls between the glottis and the supraglottal constriction, multiplying C, by the area S

gives C,, and dividing M, and R, by the area S respectively gives M, and R, .

The last element C, in Fig. 1-4b represents the volume compliance of the air in

the vocal tract. As a small quantity compared with the wall impedance, this element is

often neglected.

1.4.2 Turbulence noise source and the place of articulation

The acoustic signal of obstruent consonants is characterized by the dominance of

wideband noise, which is generated by the jet coming out from a narrowing called

constriction in the vocal tract. This type of sound source is also called turbulence noise

source because it is generated by the turbulence in the jet.

The turbulence noise source in obstruent production is located near to a

constriction in the vocal tract. Once the pressure and flow along the vocal tract have been

derived with the circuit model introduced above, the intensity of the turbulence noise

sources can be estimated from empirical equations. Experiments with mechanical

modelsr1 71 found that the sound power in the middle- and high- frequency range of the

turbulence noise source generated at the constriction is proportional to the third power of

the pressure buildup behind a constriction. For a given cross-sectional area A and a

pressure drop APm across the constriction, the magnitude of the turbulence noise source is

3!1

derived as: p, = KAP,,IA 2 (K is a constant determined by the flow rate and the specific

configuration of the constriction).

The turbulence noise source at the constriction is then filtered by the front cavity,

which is the space between the constriction and the lips, and the spectrum of the radiated

sound usually has a prominence at the frequency corresponding to the lowest natural

frequency of the front cavity, also called the front-cavity resonance. As this resonant

frequency is inversely proportional to the length of the front cavity, it gives information

about the location of the constriction.



The location of the constriction is also called the place of articulation by

phoneticians, as it is the'place where an articulatory closure or constriction is made. The

frequency of the front-cavity resonance has been found an important cue for identifying

the place of articulation of obstruent consonants [183-20], [i]

1.4.3 The acoustic pattern of stop consonants

The acoustic events following the release of a stop consonant have been described

by Fant [61. The sequence starts with a brief pulse of volume velocity, which is called the

initial transient. The transient is then followed by a burst of turbulence noise source

called the frication noise, which locates at the constriction; and then a possible brief

interval of turbulence noise source called the aspiration noise, which is generated at the

glottis.

During the first 1-2 ms of the release, the air flow is accelerated by the pressure

gradient across the released closure. This transient flow generates a sharp impulse at the

released closure. The impulse contains the most accurate information of the place of

articulation without any smearing from noise, and it could be a perceptually important

cue to the place of articulation. However, with weak energy, this impulse was often found

buried in the frication noise. [22]

Following the transient, the frication noise is generated by the air stream coming

out of the released closure. The frication noise also contains the front-cavity resonance,

thus providing information about the place of articulation.

Following the frication noise, the aspiration noise may be generated by the air

stream at the glottal constriction, when the glottis is adducted for voicing. The aspiration

noise does not contain salient information of the front cavity; because it is located at the

glottis.

In English, a stop consonant may be produced at three different places of

articulation: bilabial (at the lips, /p/ and /b/), alveolar (with the tongue tip and at the

alveolar ridge, /t/ and /d/), and velar (with the tongue body and at the soft palate, /k/ and

/g/).



Chapter 2

Literature review: previous studies on the pressure-wall
interaction in speech production

At present, only two models have been found in the literature addressing the

pressure-wall interaction in consonant production: McGowan's sprung-trap-door

model 23 1 for tongue-tip trills and Stevens' 2-section modeli Ipp 109-112 for the influence of

steady flow on the yielding wall in the vicinity of a constriction in fricative production. In

contrast, a large number of mathematical models have been developed for the vibration of

vocal folds in the presence of air stream. [24][301

The relation of these models to speech sounds is indicated in the concept map in

Fig. 2-1. The model developed in this thesis is also included.

Fig. 2-1 Concept map: the pressure-wall interaction models in relation to speech sounds.

As Steven's model addresses fricatives, which is the type of consonants closest to

the subject of this thesis, stop consonants, his model is discussed in more details.

McGowan's tongue tip trill model focused on the role of the compliance of the vocal tract

wall in sustaining the tongue-tip vibration. English does not have trill sounds. They are

.................... ..... 11 1-- - ....... ... ..... .111 .. ............ ............................. -- - -- -_:- - - -- - - - - - - - - - - - _ _



special consonants in some languages such as Italian and Russian, and they can be

categorized as approximants.

Both consonant models did not treat the collision of the primary articulator with

the target plane, because collision is negligible in their cases; however, in stop consonant

production, the motion of the primary articulator starts from a collided condition - the

primary articulator in contact with the target plane, so the collision cannot be neglected.

The collision leads to a contact force between the primary articulator and the

target plane, and in Section 5.3 a proper amount of contact pressure is demonstrated to be

a necessary condition to retain a complete seal when air pressure is built up. The

importance of the contact force in making a complete closure was also suggested by

L6fqvist A. et al. [31] The contact force needs to be treated in a more complete stop

production model.

In contrast to the small number of consonant models addressing the pressure-wall

interaction, a larger number of models have been developed for the pressure-wall

interaction in vocal fold vibration, and some of them have also treated the collision.

The vocal fold models are not going to be covered in details because of the large

amount. As the new model developed for stop consonants in this thesis is similar to the

famous two-mass vocal fold model251 in many aspects, more details about this vocal fold

model is introduced in the next chapter.

As regards the type of flow in these models, Stevens' 2-sectional model deals

with steady flow; while in both McGowan's model and the two-mass vocal fold model,

the flow is unsteady, which is also characteristic of the flow in the release of a stop

closure.



2.1 Steven's 2-section model for fricative production

Stevens [I] 0 used a 2-section model ( Fig. 2-2 Left (b) ) to represent the

yielding wall in the vicinity of a constriction in fricative consonant production. The tube

with two sections of height di and d2 respectively, represents a typical tapered

constriction with yielding wall shown in Fig. 2-2 Left (a), The section with

height d2 corresponds to the region with the minimum cross-sectional area.

V OA-z
(a) pU

IL
0

d,~__jd2 0.10
b0

(b) CMd-0

When0- 0 I0,.P -0.1" 0 . .2 a3s a

hen.= P,,andnoairflowgoes RESTING WIDTH OF FRONT SECTION d20 (cm)

through the constriction, d,= d2,.

Fig. 2-2 Left: Diagram of Stevens' 2-section model. (a) A typical tapered constriction with yielding

wall. P,, is the intraoral pressure and U is the volume velocity coming out of the constriction 1]. (b)

The 2-section model used to represent the compliant constriction . di and d2 are the height of

the two sections respectively. Fig. 2-2 Right: The final height of the front section d2calculated

with the 2-section model versus its initial resting height d,, 1. d2, is the height of the front

section when P P, .

For such a compliant tube, the initial height of the front section is d20 without air

flow, and the height becomes d2 when a steady air flow goes through the tube after the

intraoral pressure P,,, is established upstream. The cross-sectional area of the section



with height d2 determines the intensity of the turbulence noise, and it is also referred to as

the size of the constriction.

The 2-section model has two parameters: the surface compliance per unit area C,

and the difference Ad between the height of the front section (d 2 ) and that of the

adjacent upstream section (d,), indicating the degree of tapering. They are assumed to be

constant in producing a fricative.

The model calculated the final height d2 versus the initial height d20 , and the

result is plotted in Fig. 2-2 Right for different degrees of tapering Ad. This result showed

that the presence of the air flow enlarged the size of the fricative constriction and the

amount of increase depends on the degree of tapering Ad, and the initial size of the

constriction.

The model results also suggested that a yielding wall also makes it easier to form

a supraglottal constriction whose cross-sectional area is optimal for generating turbulence

noise with the maximum intensity at the constriction. Based on the pressure-flow relation

and the empirical equation of the intensity of turbulence noise source introduced in the

previous chapter, it has been found that when the cross-sectional area of the supraglottal

constriction is i/N5d times the glottal constriction area, the maximum turbulence noise

intensity can be achieved at the supraglottal constriction"1 P410-111, for a constant

subglottal pressure and fixed glottal constriction area.

As the glottal constriction area is estimated to be in the range of 0.1 ~

0.3 cm 2 when a male speaker produces a voiceless fricative 11 NP4-11, the optimal

supraglottal constriction area for the voiceless fricative is in the range of 0.04-0.13 cm2 .

For a constriction width of 2 cm, the height is 0.02-0.065 cm in the vertical dimension.

To achieve this small range of constriction area, precise control over the positioning of

the primary articulator is required. However, from Fig. 2-2 Right, we know that this

range of d2corresponds to a wider range of d20 up to 0.1 cm because of the pressure-wall



interaction, thus it becomes easier for the speaker to adjust the constriction size to be

within the optimal range ".

Additionally, the optimal range includes negative initial heights. A negative initial

constriction area means that a complete closure is initially made because of a

displacement intruding the roof of the constriction. The resultant contact pressure and the

rich distribution of sensory receptors along the palate and the tongue could also

contribute to the ease of control over both the vertical and axial positioning of the

primary articulator.

Stevens' model suggested that an initial complete closure is allowed in producing

a fricative; however, it also has a limitation which suggests that a negative initial height

can always go above zero as long as there is any tapering in the shape of the constriction

(Fig. 2-2b), and it is impossible to make a complete closure against air pressure buildup.

As we know from the production of a stop consonant, when the initial height of a

constriction is negative enough, the intraoral pressure will not be able to open it, and a

complete closure can be retained before it is released.



2.2 McGowan's sprung trap door model for the tongue tip trills

Trill is a special type of speech sound presented only in some languages such as

Italian and Russian. They are produced by sustained vibration of a soft tissue articulator.

The model introduced here addressed the trill sounds produced with the tongue tip, but

other articulators such as the lips and other parts of the tongue can produce trill sounds

too.

McGowan [23] created a model of the tongue tip interacting with unsteady air flow

in a sustained vibration, and quasi-steady flow was assumed (Fig. 2-3). The tongue-tip

articulator was treated as a sprung trap door, moving under the combined action of the

Bernoulli force in the air flow and the intraoral pressure P behind the "door".

The tongue tip model has a moment of inertiaI, and it is hinged on the rest part

of the tongue by springs, with a rest angle 0 relative to the vertical direction. In deriving

the moment of inertiaI , the tongue tip is modeled as a rectangular beam with height hT ,

thickness le and breadth (dimension into the paper) bT. The parameter AC represents the

cross-sectional area of the constriction between the tip of the tongue and the palate, and

UC is the volume velocity coming out of this constriction.

The constriction area AC and the intraoral pressure Pc are related in a nonlinear

differential equation governing the motion of the "door":

d2 9 rd9 K V
-+ -- + -(1+ 102 )0 =

dt2  I dt I I

In this equation, 0 is the rest angle; I = PTcbr (hT /3); AC = bThT[i - cos(0)]; K and

7/K are linear and cubic spring constants; r is the resistive constant in the tongue tip;

and pT is the density of the tongue tip. r is the torque exerted by the air pressure, derived

2

as1r = bThT2 P - K is the density of the air, and K is a parameter that
as2v = - - P



quantifies the reduction in static pressure surrounding the tongue-tip surface because of

the Bernoulli effect.

Pc

Axis of rotation

Fig. 2-3 McGowan's sprung trap door model for the tongue-tip trill. P is the intraoral pressure

upstream of the constriction; 0 is the rest angle; A, represents the cross-sectional area of the

constriction formed with the tongue tip and the palate; U, is the volume velocity at the

constriction; and L. is the thickness of the tongue tip.

The intraoral pressure P is then related to the compliance and other lumped

mechanical properties of the vocal tract wall behind the tongue tip by means of electrical

circuit analogy. In order to solve these governing equations, McGowan had to estimate

the order of magnitude of quite a few parameters with and without the aid of

simultaneous intraoral pressure and volume flow data.



2.3 Vocal fold models

Small deformation Large deformation
during collision P9] during collision [4

Fig. 2-4 Concept map: vocal fold models

The vocal folds have been simulated with lumped-element models, such as the

one-mass modelt 241,[32], two-mass modelt251 and multi- mass models[26], and also the

continuum models[ 27j,[28],[29j,30,[72] (Fig. 2-4).

Most vocal fold models treat the pressure-wall interaction under the quasi-steady

assumption, which validates the application of the flow variables obtained on a static

vocal fold model to the vocal folds in motion [331, [341, except for a short time before the

vocal folds are collided and after they are separated apart.[351,[361,[371

Some models [381,[391,[401 do not require the quasi-steady assumption to apply the

empirical relations. They calculate the deformation of the vocal folds and the air flow

between them simultaneously before coupling the solutions in both domains together.

This process is also called FSI (Fluid-structure Interaction). Among these FSI vocal-fold

models, Tao and Jiang [381 did not treat the collision; Luo et al.[39] treated small

deformations caused by the collision; and an FSI continuum model capable of treating

large deformations during the collision has recently been developed by Zhang et al. [40.

The famous two-mass model developed by Ishizaka and Flanagan [25] is a widely

used lumped-element model. It can deal with the collision regardless of the degree of

resultant deformation; however, it requires the quasi-steady assumption.



With similar method applied to the two-mass model, we first formulate a model

devoted for the release of a stop closure in the next chapter. The stop consonant model

differs in that the two masses representing the yielding surface of the primary articulator

have an additional uniform rigid body motion. In vocal folds vibration, the rigid body

motion of the folds is negligible. Moreover, at the time of release, an initial deformation

due to the contact pressure at the time of release exists in the stop model.

Like the two mass model, quasi-steady flow is assumed in the first stop consonant

model. The model is then further improved by relaxing the quasi-steady flow assumption,

and two unsteady flow models are developed: unsteady incompressible and unsteady

compressible flow.





Chapter 3

Analyses of the pressure-wall interaction during the
release of a closure

A stop consonant is produced by creating a complete closure in the air way with

the primary articulator, and then air pressure is built up behind the closure. During the

closure interval, a yielding wall in the vicinity of the closure is essential to prevent the air

from escaping, functioning as an O-ring seal used in tubing systems containing fluids.

Furthermore, a proper amount of contact pressure is required between the two

surfaces in contact for effective sealing. Both this contact pressure and the intraoral

pressure buildup during the closure interval act on the yielding wall as external forces.

Therefore, certain amount of elastic energy has already been stored in the wall before the

release starts.

After the closure is released, the contact pressure disappears and the air pressure

in the vicinity of the released closure drops suddenly, the yielding wall would move in

respond to this change in the external forces. The resultant motion would again change

the cross-sectional area of the released closure, and also the surrounding air pressure.

This interaction of the air pressure and the yielding wall is analyzed in this

chapter. Since releasing the closure is accompanied by a rapid airflow which produces a

burst of sound composed of a brief initial transient and turbulence noise, with duration of

a few tens of milliseconds, the pressure-wall interaction would affect the airflow, and

eventually influence the generated sound.

In order to analyze the pressure-wall interaction, a solid model of the yielding

wall and a flow model of the air flow going through the released closure are required, and

then the two models are solved simultaneously.



The goal of the analysis is to calculate the evolution of the cross-sectional area

Ac (t) after the closure is released, also called the release trajectory. Stevens

hypothesized a plateau-shaped release trajectory, as shown in Fig. 1-3a, so we first hope

to find out if a plateau really exists in the calculated release trajectory. If a plateau does

exist, we also hope to know how long it lasts during each type of release, as this duration

would determine the duration of the frication noise in the acoustic signal of the particular

type of stop consonant.

3.1 Solid model

A lumped-element solid model is developed to represent the viscoelastic

properties of the soft tissue surface of the primary articulator (the lower lip, the tongue tip,
or the tongue body in English). Like the two-mass model of vocal folds, this solid model

of the soft-tissue articulator is composed of two masses, three springs, and two dampers,
as shown in Fig. 3-la. The upper mass represents the part of the surface in contact with a

rigid target plane when a closure is formed, and the lower mass represents the part of the

surface exposed to the intraoral pressure.

Two masses are applied to represent the soft tissue surface in the vicinity of the

closure, as the part of the surface right at the closure and that upstream of the closure do

not move in phase because the pressure forces acting on them are different. Consequently,
different amount of potential energy is stored in them at the time of release.

The same per-unit-area value of the mass (m), spring constant (k), and damping

coefficient (r) are assigned to the elements belonging to the two parts of surface, as the

properties of the soft tissue surface can be assumed uniform in the vicinity of the closure.

These quantities are determined according to the experiments done by Ishizaka et al.

on the relaxed cheek tissue (refer to Appendix A for choosing the measured value of

relaxed versus tense cheek tissue), The spring constant k, connecting the two masses is

determined as 1.5k according to the convention used in the two-mass model of the vocal

folds [25]



The target plane is assumed to be rigid and it is represented by a straight dashed

line in the 2-D model shown in Fig. 3-1. This line represents the palate for alveolar and

velar stop consonants (refer to Section 1.4.3, and Fig. 1-I); and for bilabial stop

consonants, it represents a virtual plane of symmetry between the two lips.

During the release, the base of the two-mass system moves downward with a

constant velocity V, as shown in Fig. 3-1. The subsequent displacement of the upper

mass y, (t), with t representing the time, would lead to a change of y, (t) D in the cross-

sectional area of the supraglottal constriction (D is the length of the constriction along the

dimension perpendicular to the midsagittal plane.). The real-time cross-sectional area of

the released closure is thus

A,(t)= Vt - y, (t)D. (1)



Static pressure = Pm

y2 = 0

(a)

Static pressure = Pm

Pm

Static pressure = P1

Ac

(b) Downward movement with
constant velocity V

Fig. 3-1 Lumped elements representing the soft tissue surface in the vicinity of the closure. The

rigid target plane is represented by a straight dashed line above the lumped elements. The upper-

mass represents the part of surface in contact with the target plane and the lower mass

represents the part of surface right behind the closure. (a) The configuration of the lumped

elements during the closure interval, The force received on the lower mass is the intraoral

pressure Pm and the force received on the upper mass is the contact pressure. (b) The

configuration of the lumped elements when the closure is released. The force on the lower mass

is the intraoral pressure Pm and the force on the upper mass is P1.

y1 +
y2 +

............. ............................... . ...................



The governing equations of the motion of the two masses are formulated in

they, - and they 2 - coordinate respectively, as shown in Fig. 3-la. Both coordinates move

downward with a constant velocity V, so they are inertial coordinates. In each

coordinates, the position of the mass at the time of release is set as the origin.

According to Newton's second law, the governing equation of the upper mass

m, is formulated as:

m d2  dy, + k y1 - y = Fk + F (2)
dt ' dt

Fk, =-ky((Y -yq)-(y 2 )eq 2 (3)

Yeq, (4)

P
yeq 2 =- (5)

k

The initial conditions are t = 0, y = 0, 1 =0.
dt

In Equation (2), Fk, is the force generated by the spring connecting the two

masses, and F, is the average pressure force acting on the upper surface of massm, . As

the lumped elements are considered for unit area, the force F, equals the static pressure

P Yq and y,2 in Equation (3) are the equilibrium positions of the two masses

respectively.

P el in Equation (4) is the contact pressure at the time of release. If the two

contacting surfaces are separated in the absence of air pressure, the contact pressure is

zero and no deformation retains. However, because of the higher intraoral pressure

behind a stop closure, the primary articulator could be pushed apart from the target plane,

with some deformation retained in the yielding wall.



Although the value of P e is unknown, its range can be estimated from related

measurements. Matsumura, et a]J411 found that the maximum lingual-palatal contact

stress during alveolar consonant production was in the range of 5 to 6 kPa, which is over

5 times larger than the average subglottal pressure P,. The values obtained by McGlone

et al. 421 were lower, with an average of about 3 kPa for syllable initial /t/. Therefore, in

the models, this parameter is varied from 0.5P, to 5P,, and the corresponding release

trajectories are calculated. Indirect means of measuring this parameter is also discussed in

Section 5.3.

The governing equation of the lower mass m2 is:

m d2t +ry 2 dy2k- )=-F -Pm (6)
dt2  dt k

The initial conditions are t = 0, y2 = 0, dy 2 = 0. In this equation, P,. is the intraoral
dt

pressure, which is also the static pressure acting on the lower mass m2 .

In the two governing equations discussed above, the average static pressure acting

on the two masses, FP and P.,, are unknown flow variables. In order to derive them, flow

models are developed.



3.2 Flow models

A schematic configuration of the vocal tract is shown in Fig. 3-2. The subglottal

pressure P, and the cross-sectional area of the glottal constriction Ag are assumed

constant. The cross-sectional area of the supraglottal constriction Ac (t) is under the

influence of pressure-wall interaction, and the panels illustrating the release events

hypothesized by Stevens in Fig. 1-3b is also attached below the supraglottal constriction.

As the glottal constriction has a constant cross-sectional area A,, the empirical

pressure-flow relation Ap = I p( )2 for constrictions with the dimensions encountered in
2 A

speech production I4p 30 can be directly applied to the volume flow U, going through the

glottis. The intraoral pressure Pm can be thus derived as:

I.(t, y) = P, p * (7)
2 (A,

The flow going through the space between the upper mass m, and the rigid target

surface at the supraglottal constriction is in the region of pressure-wall interaction. This

space is indicated by a dashed circle in Fig. 2-4, and it is simplified as a short uniform

tube whose cross-sectional area changes with time.

As the length of this tube is short compared with both the wavelengths of the

acoustic wave in the air and the elastic wave propagating through the compliant wall, the

lower boundary of the tube moves uniformly; hence it is lumped as the upper surface of a

single mass. Consequently, the flow is simplified as going through a uniform tube with

length L, and with time-varying cross-sectional area A, (t), as shown in Fig. 3-3.



Ag Ac

Ps Pm

Fig. 3-2 Simplified configuration of the vocal tract for demonstrating the pressure-flow along the

vocal tract. P, is the subglottal pressure, Ag is the cross-sectional area of the glottal constriction,

Pm is the intraoral pressure, and A, is the time-varying cross-sectional area of the supraglottal

constriction at which the pressure-wall interaction occurs. The lower boundary of the supraglottal

constriction moves downward with a constant velocity V. The release events [1] pp329 hypothesized

by Stevens are also attached for illustrating the big picture along the whole vocal tract.

In order to calculate the flow variables along the vocal tract, three flow models

are established: 1) quasi-steady incompressible flow model, 2) unsteady incompressible

flow model, and 3) unsteady compressible flow model. In all the pressure-wall interaction

models discussed in the previous chapter, the flow was assumed incompressible. A

compressible flow model is developed in this thesis out of some considerations in

developing a fully unsteady flow,

Viscosity is included in the quasi-steady flow model, by using the empirical

pressure-flow relation; however, it is not treated in the unsteady flow models. Elaborate

. .. ... .................... . ......... ......... ..... ......... .............. ............................. _ ._ _ ......................... .... ........ ... ..... ..... ..................



treatment of the viscosity in vocal fold vibration can be found in Deverge et al. 4 and

Vilain, et alP"

3.2.1 Flow model 1: quasi-steady incompressible flow

In the two-mass model of vocal folds, the pressure drop AP across the

supraglottal constriction is related to the volume velocity U with an equation derived

dU
from electrical circuit analogy: AP=RU+L . In the first term on the left side, R

dt

represents the resistance, which is determined under the quasi-steady assumption. The

empirical pressure-flow relation for static constrictions Ap = p( U )2 [1 pp30 is applied to
2 AC

the supraglottal constriction with cross-sectional area A, at time t. In the second term, L

represents the inductance calculated as L = pLe , in which L, is the length of the tube.
At

With this pressure-flow equation applied to the flow through the supraglottal

constriction, the intraoral pressure P,, is derived as:

P = +LJ (8)
'"2 Ac dt

Substitute (9) in (7), and we have

p[C U +L7dU7= p U(9)
* 2 Ac dt 2 Ag

From this equation, the volume velocity U is derived first, which is then substituted in

Equation (8) to derive P . The initial condition for solving Equation (9) is t = 0, U = 0.

As the cross-sectional area at the time of release t = 0 can not be zero, an initial

area A s has to be assigned.



In order to derive Fp in Equation (2), the Bernoulli equation for unsteady flow is

applied to the uniform tube, and the static pressure is found to vary linearly along the

length of tube. The same result is obtained using the unsteady term (the second term on

the right side) in the electrical circuit analogy. As the static pressure at the outlet P,

equals the atmospheric pressure, and the static pressure at the inlet is close to the intraoral

pressure,the average static pressure acting on the mass m, F . =-.

2

3.2.2 Flow model 2: unsteady incompressible flow and deformable control volume
analysis

At the release of a complete closure, the air in the uniform tube above the upper

mass m, is accelerated from the state of rest, and the surrounding flow field is

intrinsically unsteady.

4-

(a )

P.

(b)

........... ............. ..... .......... .......

P >P



Time t

Time t+dtFlow in .. . . '-- ----- Flow out

v(t)

d ds-(system)= d(CV) + (Flow - out - (Flow -in)

Fig. 3-4 Illustration of a system property transporting within a deformable control volume and the

modified Reynolds Transport Theorem. The blue color marks the system occupying the control

volume at time t; the orange color marks the extra substance flowing into the control volume

from the environment during the time interval At.

Symmetry is a salient feature of this type of unsteady flow caused by a moving

boundary, and it helps to simplify the analysis (refer to Fig. 3-5). First, the velocity in the

middle of the tube can be set as zero. Second, only the velocity and pressure distribution

along half of the tube needs to be derived.

A deformable control volume of length (L,/2 - x) is then used to derive the

velocity and pressure distribution along the tube in the first type of unsteady flow (Fig. 3-

5). The left boundary of the control volume is at a location x inside the tube, with the

origin x = 0 sitting in the middle of the tube; the right boundary of the control volume is

at the exit of the tube. The control volume deforms as the cross-sectional area of the

tube A, (t) changes with time.

Applying the conservation of mass to this control volume, we have

0 = p4 (4/ L2 -x)||+, - p4 (L/ L2 -x)I, + puxAcAt - pueAAt

...... ............................ ...... ............. . ........................... ... .. ..... ..... ...........



Fig. 3-3 Two types of unsteady flow motion at the release of a complete closure: (a) the flow

caused by the change in the cross-sectional area; and (b) the flow induced by the pressure

gradient along the released closure.

Two types of unsteady flow motion can be identified after the release: (1) the air

flow caused by the movement of the lower boundary v (t) (Fig. 3-3a); and (2) the

starting flow due to the pressure gradient along the released closure (Fig. 3-3b).

The second type of unsteady motion can be well treated by the Bernoulli equation

dU
for unsteady flow, leading to the same unsteady term L -- in the first model. However,

dt

in the first type of unsteady flow, the boundary moves in the direction perpendicular to

the mean flow, which is not a common flow problem with one-dimensional analysis.

In order to treat the first type of unsteady flow, a deformable control volume

analysis is deployed to solve the moving-boundary problem. The name, "deformable"

control volume, suggests that it is a type of control volume which can deform, in contrast

to the "fixed" control volume commonly used in fluid dynamics.

A deformable control volume is illustrated in Fig. 3-4 with a rectangle of dashed

line. The lower boundary of the control volume moves at the speed ofv(t), which leads

to an increase in the volume at time t + At. The system occupying the control volume at

time t would occupy the area filled with the blue color in the diagram. The control

volume at time t + At also contains extra substance marked with the orange color, which

flows in from the environment.

The Reynolds Transport Theorem modified for the system in such a deformable

control volume is

d (system) _ d ( CV)
+( Flow -out)-( Flow -in )

dt dt

This analysis has also been discussed by White 4 P1.



For incompressible flow, the density p is constant. ux is the flow velocity at the location

x inside the tube, and ue is the flow velocity at the exit. Positive directions of the

velocities are indicated in Fig. 3-5. Let At -+ 0, and we have

u =Ue -2 ) dA" (10)
*A, dt

As the velocity at x = 0 is zero because of symmetry, we have

u L, dA,.u cA~(11)
*2A, dt

dIA
This equation suggests that when the tube is extended, i.e. > 0, the flow

dt

velocity at the exit is positive (in the positive direction indicated in the diagram) and the

dIAair is absorbed into the tube; while when the tube is contracted, i.e. -- < 0, the flow
dt

velocity at the exit is negative (opposite to the positive direction indicated in the diagram)

and the air is squeezed out of the tube.

Substitute (11) in (10), and we have the velocity distribution along the tube

Ax dA, (12)
A, dt

Next, the momentum equation is applied to the same control volume in order to

derive the pressure distribution p, .

L,/2 L,/2

(-p-,A, +PA)At = f puACdx|tA, - f pu, AdxI + PuxIuxI AcAt - pueueI AAt
x x

Let At --*0 , and we have



A- u, Adx +(U,uI-u,|u,|1) A, (13)

The static pressure at the exit equals the atmospheric pressure P, . Substitute (11) and (12)

in (13), and we have

(p.-Pe) _ 1 d2 A, (L X 2 x 2 dA dA, L| dAcA (14)
p ~2 A, di 4 A 2 dt dt 44 A dt dt

X =0
-+X x =L,12

x _x

LC!

At)

Fig. 3-5 A control volume (in dashed line) used for deriving the governing equations in the

unsteady incompressible flow model! in a uniform tube with length L, and time-varying cross-

sectional area A, (t) (not shown in the figure). The flow velocity at the inlet and the exit of the

tube are ui and u, respectively, and the static pressure at the inlet is Pi, and P at the exit. The
L

control volume shown in the diagram occupies a part of the tube with length 4 x . The left
2

boundary of the control volume is at the location x, whose origin is in the middle of the tube, and
the right boundary of the control volume is at the exit of the tube.



The average static pressure acting on the upper mass m1 is

4 ,/2
F 2  (p2 - P,) dx. From (14), we can integrate p, and obtain

P1L,/2

F = - pL 2 2 AC pL+ dA dA, 15)6A, dt2  34A dt dft

The label "(1)" on the upper right corner indicates that this pressure force results from

the first type of unsteady flow.

This type of unsteady motion does not directly change the intraoral pressure left

to the tube; instead, it creates a volume velocity L, dAC , which is counted as a current
2 dt

source in the electrical circuit analogy. This volume velocity, or current source, requires a

flow velocity of Lc dA, to be created at the glottal constriction upstream, thus inducing
2 Ag dt

a decrease in the intraoral pressure:

P ( =P pk e (16)S S 2 2 A, dt)

Now, both flow variables required in the solid model are derived for the first type of

unsteady flow.

In analyzing the second type of unsteady motion, a regular fixed control volume

analysis is applied to the tube with a constant cross-sectional area A, (t) at time t. The

velocity is the same throughout the length of the tube because viscosity is neglected, so

the conservation of mass is satisfied automatically. Applying the momentum equation to

a control volume of length x from the exit of the tube, we have

p, -P u (17)
dt



The static pressure at x = L, is close to the intraoral pressure P,,, so we have

(18)

P,, is the gauge pressure, which equals the absolute pressure minus the atmospheric

pressure.

L,

The average static pressure acting on the upper mass mi is F
L=

(p, - P,)dx.

Substitute Equation (17) in the integral, and we have the pressure force resulting from the

second type of unsteady motion:

(19)F( =

The volume velocity ue(,A also creates a flow velocity of ueAc at the glottal
Ag

constriction, thus inducing a decrease in the intraoral pressure:

p (1 (Ue" 
2

2 '0 2

g

Now, the governing equation of the upper mass is formulated as:

m +r +k(y, -y = Fkc -F,dt 2 +rdt e lk P

F. =-k ((y I- yel-(Y2 - Yeq2 ,

F =F(1)± (2) L2d L| dA dAC P
6A, d 2  3A 2 dt dt 2

PC q

P.., is synthesized from Equation (16) and (20):

(20)

(2)

(3)

(21)

p(2) = pLe --



2

p _ 1 k L dA + UeAc (22)
2 ( 2 A, dt A,

This equation also couples the two types of unsteady motion together.

The cross-sectional area of the supraglottal constriction is related to the

displacement of the upper mass.

d 2 A =-D d 2Y1 (23)
dt2  dt2

dA, =V - D (24)
dt di

A, (t) = Ac_, +Vt - y, (t) D (1)

A third governing equation of the flow velocity at the exit of the tube in the

second type of unsteady motion is added

di -- P (25)
dt pL,

The initial condition is t=O; ue = 0.

Solve the coupled ordinary differential equations (2), (6), and (25)

simultaneously, and then the evolution of the cross-sectional area A, (t) after the release

can be derived.

3.2.3 Flow model 3: unsteady compressible flow

When the closure is just released, the rate of change in the volume of the air

between the upper mass m, and the target plane is large. If the compressibility of the air

is considered, the density of the air could vary in time and also along the tube, thus

changing the pressure force acting on the upper mass.



Using the deformable control volume analysis and the procedure introduced in the

previous section, the density, velocity, and pressure distribution along the tube are

derived for the first type of unsteady motion. The deformable control volume analysis for

the second type of unsteady motion gives the same result as in the unsteady

incompressible flow model.

A deformable control volume of length x is defined in Fig. 3-6, which deforms as

the cross-sectional area of the tube A (t) changes with time. The left boundary of this

control volume is the location x inside the tube, with the origin of x at the exit of the tube.

This location of origin is different from the one defined in the incompressible flow

model, as here the flow field in the tube is approximated as perturbations about a

reference point at the exit of the tube.

Apply the conservation of mass to this control volume, and we have

0 = Jp,AdxIt+t - J pAAdx|, + puxAAt - peueAcAt

u, and ue are the flow velocity at the location x and at the exit of the tube respectively,

and p, and pe are the density of the air at the location x and at the exit of the tube

respectively. Let At -. 0, and we have

d x

pf Aedx + (p'u, - Peue) Ac =0 (26)
0

As the velocity at x = -c is zero because of symmetry, we have
2

1 d L
Ae ~ p, Aedx (27)

Apply the momentum equation to the same control volume, and we have



(-pxA, + PAc) At = J p.,u.Adx |,,, - f puAedx | + pu\ lu I AcAt - pue u, AAt
0 0

Let At -> 0 , and we have

(P -p,)A, = d,1,Adx +(pXuJuJ|-- euu)A, (28)
0

The static pressure at the exit equals the atmospheric pressure P,, and p, is the static

pressure at the location x.

x =L,/2 \x =O

L

X 0

I
Ui Ue

v(t)

Fig. 3-6 A control volume (in dashed line) defined in a uniform tube with length L, and time-

varying cross-sectional area. The control volume has length x, with the left boundary at the

location x and the right boundary at the exit of the tube. The flow velocity at the inlet and the exit

of the tube are u and ue respectively; the static pressure at the inlet is P; and the static

pressure at the exit is P. The static pressure and the flow velocity at the location x are p-, and

ux respectively.

Apply the energy equation to the same control volume, and we have

( d AA = p J Aed - p 2Adx + 2 A
(AUet- pxAuxAt) - F, __A p - +AtP1yjD dt 0 2 2c



In this equation, F,, = f pxdx, which represents the total pressure force that the air in the
0

control volume acts on the upper mass, and the term F, 1 dA, t represents the work
D dt)

that is done to the upper mass during the time interval At by the air in the control volume.

Let At -+ 0 , and we have

(Px - pxu) A - FD d p x Aedx
0

As the tube is very short, with length of about 1 cm, it is assumed that the air in

the tube goes through an isothermal process, and we have

PX=e 2 1
( 0)JI

p, p

Up to now, we have acquired four equations for three unknown variables p,, P,

and u,, which are functions of both the time t and the space x. An additional unknown

variable u,, varies only with time t.

2 ",12
In order to deriveF 1  2 (p P)dx , some approximations are made. As the

tube is short, x is a small variable in this problem; therefore, a perturbation series can be

used to approximate the unknown variables. The density of the air p (x, t) is first

approximated as p (x,t)= a, (t):+ a (t) xa()x 2 +a3 (t)x3 +---, then p(x,t) can be

derived directly from Equation (30).

Now we consider a tube of length Lc = 1cm, then we have x 0.5cm, so we can

further simplify the density of the air as p (x, t) = a, (t) + a, (t) x by neglecting all the

terms of order equal to and higher than x2 . A perturbation analysis is then implemented

to derive a. (t) and a, (t) from the governing equations (26) - (30) (refer to Appendix A):

-p2 (29)!L2+ A , P"
2



d d (A ao L' + a
dt dt " 2 * - A e"- ao dA" + +peu p,u dal 1 dA, +I dao

, a. AC dt dt ) a2 AC dt ao dt

aA.

(31)

The density of the atmosphere is taken as the density of the air at the exit of the

tube, i.e. x = 0, p = p, , so we have ao = p,. Equation (31) then becomes a second-order

ODE of the unknown variable a, (t) . At t = 0, as the density is uniform at any location in

the tube, we have al = 0; the velocity is also zero at any location. From the conservation

d
of mass, we have-(pA) = 0

dt

dia pdA,
,which gives- = -- --- at t =0.

dt Ae di

This ODE of a, (t) can be solved simultaneously with the governing equations of

the two masses, which are also coupled to the second type of unsteady motion via the

equations listed below.

F, eL'al-' (32)
4p e 2

(33)
2

P,,= P, p0 () +u, Ue())
2 ((A

due P2

dt pL,

u I= 1d (A, p
"p,A, dt 2

(34)

(35)+a L

All the primary equations discussed in the three models are summarized in Table
3-1.



Table 3-1 Equation set
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Chapter 4

Results

The primary equations in the solid model and the three flow models summarized

in Table 3-1, are solved using a multi-step solver in MATLAB, and the release trajectory

- the evolution of the cross-sectional area of the released closure A. (t) - is calculated.

The three flow models are applied to two case studies and the results are

compared. In one case, the starting cross-sectional area of the released closure A, , ,, is

varied (Section 4.1); in the other case, the length of the released closure L,, is varied

(Section 4.2).

The typical release trajectory of voiceless English stop consonants /p, /t/, and /k/

(belonging to three places of articulation respectively) are calculated according to the

typical release velocity V of the consonant. The contact pressure at the time of

release P, is also varied. These release trajectories are a function of V and P, i.e.

Are(t= f (VPr,,).

4.1 The starting cross-sectional area of the released closure

The starting cross-sectional area of the released closure A,-,,,,, appears in the

initial conditions explicitly only in Model 3 (unsteady compressible); in the other two

models, it affects the solution by prescribing the initial cross-sectional area of the uniform

tube in which air flow is initiated.

In order to investigate the influence of the starting cross-sectional area, the

release trajectory of a single case is calculated with the three flow models. In this case, a

closure is released at a downward release velocity V = 50 cm 2/s, with the subglottal

pressure P, = 8 cmH 20, the glottal constriction area Ag =0.2 cm2 , the length of the



released closure L,=lcm, and the contact pressure at the time of release P ,,, = 3P,

The starting cross-sectional area A, ,,a,,is decreased from 0.1 cm2 to 0.0000001 cm 2

0.8-
0.7 Ac start 0.1 cm2

0 0.5
0.4-

0.3 .Acstart.01Tme

o Or Model I
0.1

0 Ac start =0.0000001-0.0001 cm 2

- 0.005 0.01 0.015 0.02 0.025 0.03
Time a

Fig. 4-1 The release trajectories of A,,,,r, =0.0000001 cm 2 to 0.1 cm 2 calculated with Model 1

(quasi-steady incompressible flow). The release trajectories change little when A, 0.01cm 2

Shortly after the release starts, a plateau appears in the release trajectories

calculated with all the flow models (Fig. 4-1 to 4-3). Only when Ac t,,r. < 0.00 1cm 2 , the

release trajectory calculated with Model 2 (unsteady incompressible flow) deviate from

the plateau pattern.

The release trajectories calculated with Flow model 1 (quasi-steady

incompressible flow) show little difference when the starting cross-sectional area Ac,,,,, is

smaller than and equal to 0.01 cm 2 (Fig. 4-1). However, the release trajectories calculated

with Flow model 2 (unsteady incompressible flow) (Fig. 4-2) and 3 (unsteady

compressible flow) (Fig. 4-3) continue to change when A,- ,. <0.01cm 2 , but the pattern

of variation is different.

For Model 2 (unsteady incompressible flow), when 0.00001cm 2 < Ac start

<0.001cm 2 , the plateau gradually becomes a peak, and the magnitude of the peak



increases when A, sa,. is further decreased. When A, ,, 0.0000 1cm2 , the system

becomes so stiff that computation stops at a very short time after the release. Matlab

indicates that it is "unable to meet integration tolerance without reducing the step size

below the smallest value allowed." In Fig. 4-2, it is shown as a straight line on the

vertical axis.

0.030.015
Time s

Fig. 4-2 The release trajectories of A, s,a, =0.00001 cm 2 to 0.1 cm 2 calculated with Model 2

(unsteady incompressible flow). The plateau becomes a peak when

0.00001cm 2 < A, _stt < 0.001cm 2 , and a straight line when A. ,,a,, > 0.00001cm 2 .

Unlike Model 2 (unsteady incompressible flow), Model 3 (unsteady compressible

flow) continues to derive a plateau whose magnitude decreases with

decreasing A ,,a,,until the solution is collapsed ( A, becomes zero and the computation

stops.) at t 2 milliseconds when A, ,,,,, = 0.00005cm2 . When A, ,,,,, is further reduced,

the same pattern remains. In general, the release trajectories are closer to each other when

A, ,, ,, 0.0001cm 2 .



0.14 ivioa i -i
0.12

0.1 (_
0.08 Ac starta0.0001 cm

Ac start*0.01 cm
0.06 Ac tact0.001 c oange line -

004 Ac start -0.000001 cm2
0.04 blue line --

0.02 Ac start =0.0000001 cm2

dashed line ----
Ac start =0.00005 cm

-0.02 Ac start=0.00001 cm2

- 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Time a

Fig. 4-3 The release trajectories of Acsr, =0.0000001 cm2 to 0.1 cm2 calculated with Model 3

(unsteady compressible flow). The magnitude of the plateau decreases with decreasing

Ac start until a zero cross-sectional area is reached at around 2 millisecond

when A, start = 0.00005cm 2 .

. ............. . ............... ...



4.2 The length of the released closure L

The influence of the length of the released closure L is evaluated next. The case

studied also has the downward release velocity V = 50 cm 2 /s , the subglottal

pressure P, =8 cmH 20, the glottal constriction area Ag =0.2 cm 2 , and the contact

pressure at the time of release P,_, = 3P,.

First, the three flow models are used to calculate the release trajectories for L,= I

cm, and A,_,,t, =0.001 cm 2 (Fig. 4-4). The release trajectories calculated with Model 2

(unsteady incompressible flow) and Model 3 (unsteady compressible flow) are closer to

each other than to the trajectory calculated with Model 1 (quasi-steady incompressible

flow), and they both have a plateau longer than the one calculated with Model 1.

1.6

1.4 Model 1
(Quasi-steady incompressible)

E 1.2

. 0.8 Model 2

06 (Unsteady incompressible)

0 0.4

0.03
Time a

Fig. 4-4 The release trajectories of length L

three models

= 1cm and A, ,tar, =0.001 cm2 calculated with the

Next, the length of the released closure L. is varied in each model (L, = 1,0.5, and

0.1cm ), and the starting cross-sectional area A, . = 0.001cm2 . The release trajectories

are found insensitive to the length in all models, although the degree of insensitiveness



differs in each model. Fig. 4-5 shows that the release trajectories from model 1 (quasi-

steady incompressible flow) overlap. In Fig. 4-6, the release trajectories calculated with

model 2 (unsteady incompressible flow) only deviate a little bit from each other during

the time t = 3 -13 milliseconds. The results from model 3 (unsteady compressible flow)

in Fig. 4-7 deviate even less but they are less overlapped compared with the trajectories

from model 1 in Fig. 4-5.

.35

0.3

.25-

0.2

.15

0.1 -Model 1

.05

t1ii
0.005 0.01 0.015

Time s
0.02 0.025 0.03

Fig. 4-5 The release trajectories of a closure with length L = 0.1,0.5 and lcm and

Ac start = 0.001cm 2 calculated with Model 1 (quasi-steady incompressible flow).
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Fig. 4-6 The release trajectories of a closure with length L, = 0.1,0.5 andlcm and

Ac ,,,, =0.001cm 2 calculated with Model 2 (unsteady incompressible flow).
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Fig. 4-7 The release trajectories of a closure with length Lc = 0.1,0.5 and lcm and

A, ,,,, = 0.001cm 2 calculated with Model 3 (unsteady compressible flow)

However, when the starting cross-sectional area A_ is further reduced, the

dependence of the release trajectory on the length diverges in each model. The release

trajectories calculated with model 1 (quasi-steady incompressible flow) remain

insensitive to the difference in the length; the trajectories calculated with mode 2

Lc = 0.5 cm

Lc I cm

-c L 0.1 cm
Model 2



(unsteady incompressible flow) and 3 (unsteady compressible flow) show larger

difference for differentiated lengths (Fig. 4-8 and 23).

For model 2 (unsteady incompressible flow), when the starting cross-sectional

area A, ,,,, is smaller than a critical value determining the change of the release pattern

from a plateau to a peak (discussed in the previous section.), the dependence of the length

becomes significant. Fig. 4-8 demonstrates the release trajectories for two lengths

L, =1, and 0.5cm , with a common Ac,,,, =0.00005cm 2 . Ac_,,,, is chosen for both

lengths to fall into the peak-pattern. The calculated release trajectories deviate from each

other with the maximum difference of around 1.4 cm 2 , and the longer closure releases

with a peak of greater magnitude.

The release trajectories calculated with model 3 (unsteady compressible flow)

also show greater dependence on the length when Acs ta = 0.0001cm 2 (Fig. 4-9).

However, different from model 2 (unsteady incompressible flow), the cross-sectional area

is smaller during the plateau region in the release trajectory of longer closure.
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Fig. 4-8 The release trajectories of a closure with L, = 1 and 0.5cm and A, = 0.00005cm2

calculated with Model 2 (unsteady incompressible flow)
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Fig. 4-9 The release trajectories of a closure LC = 1,0.5, and 0.lcm and A, = 0.0001cm2

calculated with Model 3 (unsteady compressible flow).



4.3 The release trajectories of /p/, /t/, and /k/: the release velocity V,
contact pressure at release P,r,,, and collapse of the released closure

The typical release trajectories of English voiceless stop consonants /p/, /t/, and

/k/ are calculated with Model 1 (quasi-steady incompressible flow) and 3 (unsteady

compressible flow). Model 2 (unsteady incompressible flow) is not applied, as it derives

releases trajectories with unrealistically large cross-sectional area (the peak pattern) when

the starting cross-sectional area is small.

A /p/-release is represented by the typical release velocity of the lower lip of

100 cm2 /s. In a typical It/-release, the tongue tip moves downward at the speed of

50 cm2 /s , and the tongue body moves downward at 25 cm2 /s in a /k/-release (Stevens,

1998).

The contact pressure at the time of release P ,,, is unknown, but the range of its

magnitude must be smaller than 5-6 kPa, the maximum lingual-palate contact pressure

measured in alveolar consonant production (Matsumura, et al. 1994). We are going to

show in Section 5.3 that P,_r.,,is dependent on the intraoral pressure during the closure

interval, or the subglottal pressure P, Therefore, P,,, is varied from 0.5 P, to 5 P,

and, = 8cmH 20.

The /p/-release trajectories calculated with Model 1 (quasi-steady incompressible

flow) are shown in Fig. 4-10; the /t/-release trajectories in Fig. 4-11; and the /k/-release

trajectories in Fig. 4-12. The starting cross-sectional area Ac ,,t,, is 0.0001 cm 2 . They

show that for larger contact pressure at the time of release (P,,, =5 P in the /p/-releases,

P, re 3 P in the /t/-releases, and P, ret 2 P in the /k/-releases,), a plateau exists in all

places of articulation.
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Fig. 4-10 The /p/-release trajectories calculated with Model 1 (quasi-steady incompressible flow)
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Fig. 4-11 The /t/-release trajectories calculated with Model 1 (quasi-steady incompressible flow)

For slower releases, collapse of the released closure occurs at a smaller P ,,. No

collapse is found in the /p/-releases. In the /t/-releases, it occurs when P> ret 4 P, ; and in

the /k/-release with the smallest release velocity, it occurs when P, ret 3 P, . Among the

....... ...........



releases with the same downward velocity, collapse occurs at an earlier time for

greater P eK .
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Fig. 4-12 The /k/-release trajectories calculated with Model 1 (quasi-steady incompressible)

The /p/-release trajectories calculated with Model 3 (unsteady compressible) are

shown in Fig. 4-13, the /t/-release trajectories in Fig. 4-14, and the /k/-release trajectories

in Fig. 4-15. The starting cross-sectional area A,_,,a,, is 0.000 1 cm2 for /p/-, /t/-releases,

and the /k/-releases with smaller P ,,, = 0.5, and IP,. For the /k/-releases with larger

P ,ret AC _sta is reduced to 0.00000 1 cm2 so that a smooth release trajectory can be

calculated.

The release trajectories calculated with Model 3 (unsteady compressible) for each

place of articulation show a longer duration of plateau than those calculated with Model 1

(quasi-steady incompressible). The durations of the frication noise estimated from the

released trajectories calculated with both models are labeled in each figure and they are

also listed in Table 4-1 for each place of articulation.

. .. ............ ....... ........ ...... ......
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Fig. 4-13 The /p/-release trajectories calculated with Model 3 (unsteady compressible)
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Fig. 4-14 The /t/-release trajectories calculated with Model 3 (unsteady compressible)
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Fig. 4-15 The /k/-release trajectories calculated with Model 3 (unsteady compressible)

Table 4-1 Duration of the plateau of voiceless stop consonants calculated with Flow model 1 (quasi-
steady incompressible) and 3 (unsteady compressible)

Place of Duration of the frication noise Duration of the frication noise

articulation estimated from the release estimated from the release

trajectory calculated with Model 1 trajectory calculated with

(quasi-steady incompressible) Model 3 (unsteady

compressible)

/p/ 6.3 8.3

/t/ 10 11.9

/k/ 14.6 23

. ......... - - . . ....... ... . ... . ...



Chapter 5

Discussion

Results from the physical-analytical models that we have obtained for the

pressure-wall interaction during the release of a stop closure, demonstrate that a plateau-

like lingering does show up after the release, as Stevens portrayed, and the duration of

this "plateau" gets longer with slower release movement of the primary articulator.

In developing the flow model for the pressure-wall interaction, we noted the

limitation of the quasi-steady approximation in the two-mass vocal fold model, and

improved it with an unsteady incompressible flow model, and then went further with an

unsteady compressible flow model.

The release trajectories calculated with the quasi-steady incompressible and

unsteady compressible flow models are then compared with the duration of the frication

noise that is measured from the acoustic data of real speech.

In the analysis, the contact pressure at the time of release is an unknown variable,

and we can only roughly estimate its range from the literature. Real-time measurement

techniques for the lingua-palatal contact pressure during speech production are reviewed,

and a static model is then discussed for the condition of retaining a stop closure. From

this model, an indirect means of measuring the contact pressure at the time of release is

proposed. A related physiological variable, the tongue strength, is also discussed in the

same section.

5.1 Comparison of the flow models: quasi-steady versus unsteady;
incompressible versus compressible

In a pressure-wall interaction model, a fundamental flow problem is to relate the

pressure drop to the flow velocity or volume velocity through a constriction with time-



varying cross-sectional area. This pressure-flow relation in an unsteady flow is different

from that in a steady or quasi-steady flow.

In Stevens' fricative model, steady flow was assumed because it is the

equilibrium position of the yielding wall that needs to be examined, so the pressure-flow

relation for steady flow Ap = I p(-) was applied.
2 A

In both McGowan's trill model and the two-mass model of vocal folds, the flow is

intrinsically unsteady, and both models used this equation, AP=RU+L -i-, which
dt

originates from electrical circuit analogy, with R representing the resistance and L

representing the inductance.

In determining the resistance R in the first term, as flow resistance is most

conveniently measured on static constrictions[45 '[ 1 , the measured flow resistance can be

applied to a constriction whose cross-sectional area changes with time, if quasi-steady

flow is assumed 33 .

The second term takes the form of an unsteady term, and it was applied to address

the issue that "in the time-varying condition of the cords, the inertance of the air masses

involved should be taken in account"[251 pp1240. The parameter "L" in the unsteady term

pL,
equals , ,with the same form as an acoustic mass, indicating that the second term

represents an inertance.

dUHowever, the origin of the second term L lacks an explanation in the view of
dt

fluid dynamics. This term may represent a linearized unsteady flow, as it has the same

form of an acoustic mass. The acoustic wave is a type of linearized unsteady flow with

zero mean flow, and the fluctuations in the flow variables are so small that the governing

equations can be linearized.



We also note that L -=k pLC d( u) - pL (d + A, du1J, so it can capture
dt A, dt A, dt dt

the changes induced by the variations in both the flow velocity and the cross-sectional

area. Massey [221 also applied this term in the analysis of the transient source during the

dA,
initial 1-2 ms after the release of a stop closure; in this case, is a significant driver

dt

for the unsteady flow.

dU
Although the term L does not accurately represent the unsteady flow effect,

dt

this error is disguised by the fact that the quasi-steady approximation is valid in the near

field expect for a short time before and after the constriction is closed [35],[36],[37. Zhang,

et al. 3 1 also verified that the quasi-steady approximation is valid in the far-field.

Since the unsteady flow effect is more significant in the near field during a short

time when the cross-sectional area is small, its influence is mostly in the high-frequency

range. For the voicing sound generated by vocal fold vibration, the frequency range of

interest mostly locates in the fundamental frequency, so the unsteady effect may not be

important in most cases. However, for stop consonants, the frequency range up to 5 kHz,

is perceptually important (refer to Section 5.2), and this is why we are considering the

release of a stop closure in such a small time scale - tens of milliseconds after the release.

The unsteady flow effect should be considered for the evolution of the cross-sectional

area after the release.

Flow model 2 and 3 are derived in the view of fluid mechanics, and by means of

deformable control volume analysis. They address the unsteady flow effect more

completely than Flow model 1, which is established on the quasi-steady assumption and

an unsteady term from electrical circuit analogy discussed above.

As discussed above, the unsteady term in Flow model 1 (quasi-steady

pL u dA du
incompressible) can be separated into two terms, " C + pL, -- . The first term

A, di Cdt



pL~u dAc is related to the first type of unsteady flow motion illustrated in Fig. 3-3, and
A dt

the second term addresses the second type of unsteady flow. The term for the second type

of unsteady flow has the same form in all the three models, but the first type of unsteady

flow is treated differently in each model.

The term most similar to 'L4u dAt in Flow model 2 (unsteady incompressible) is
A, dt

f uO , which comes from j2_ d f uAedx =f du A, +u dA" . In Flow model
Ac dt Aedt A, dt" dt

1 A3 (unsteady compressible), the most similar term is +Jpu §I dx, which comes out of
A, dt

Sd ~ 1 d p du dAeI puAedx = I uA +pA -- + pu dx . The extra terms in Model 2 and 3
Adt Ac dt dt dt

show that the first type of unsteady flow motion is only partially treated in Model 1.

Next, when compressibility is considered, the first type of unsteady flow motion

provides a stabilizing force for the variation of the cross-sectional area of the tube. When

the cross-sectional area A4 increases, the air density in the tube tends to decrease, and the

static pressure drops consequently. The lowered static pressure would hold the moving

boundary so that the cross-sectional area A, would not increase as rapidly as before. This

effect is more significant when A, is small, because of the greater rate of density change.

This stabilizing force may also provide the second bouncing-back mechanism for

the upper mass (at the beginning in Chapter 1, we only noticed the potential energy

initially stored in the yielding wall as a bouncing-back mechanism), and this mechanism

only exists in Flow model 3 (unsteady compressible).

Flow model 2 (unsteady incompressible) gives a complete representation of the

first type of unsteady motion; however, it induces a destabilizing force as an

incompressible model, especially for small cross-sectional area. This destabilizing force



accounts for the peak pattern replacing the plateau when the starting cross-sectional area

Acstart 0.001cm2 (Fig. 4-2).

In Fig. 4-5 of Section 4.1, the release trajectories calculated from Flow model I

(quasi-steady incompressible) demonstrate the least variation in the duration of the

plateau when the length of the released closure L, is changed. This insensitivity may

result from an incomplete treatment of the first type of unsteady flow motion.

The release trajectories calculated with the three flow models for the same L, and

Ar show the same pattern in Fig. 4-4. However, when the starting cross-sectional area

is further reduced, the release trajectories calculated from flow model 2 (unsteady

incompressible) (Fig. 4-8) and flow model 3 (unsteady compressible) (Fig. 4-9) show

larger variations for closures with different length. This greater sensitivity to L, for small

cross-sectional area is believed to be an indication of the significance of the first type of

unsteady motion for small cross-sectional area.

Among the release trajectories calculated with Flow model 1 (quasi-steady

incompressible) and 3 (unsteady compressible) for the /p/-, /t/-, and /k/- releases with

varied contact pressure at the time of release Pc ,c (Section 4.3), the plateau starts to

appear at a largerP_rl in the trajectories calculated with Flow model 1, compared with

those calculated with Flow model 3. This trend can be explained by the additional

bouncing-back mechanism provided in the unsteady compressible flow model. A plateau

may exist even though the potential energy initially stored in the upper mass is not larger

enough to counteract the downward movement of the base.



5.2 The acoustic effect of the pressure-wall interaction in a syllable-
initial voiceless stop consonant

The pressure-wall interaction makes it possible for a supraglottal constriction to

retain a small cross-sectional area for a while - the plateau in the release trajectory W.

Acoustically this plateau would lead to longer frication noise in the release bust,

according to the articulation-to-acoustics theory about stop consonant production and

Stevens' hypothesis [1]

In this section, we define an acoustic measure for the duration of the frication

noise (in order to separate it from the remainder of the release burst), and apply this

measure to some syllable-initial voiceless stop consonants /t/ and /k/ contained in

sentences in TIMIT database[46 1, Bilabial releases are not included because their spectra

lack prominences.

This acoustic measure is illustrated in Fig. 5-1, in which the waveform of a /t/-

release is plotted in blue line, the average FFT magnitude for every 5 milliseconds in

black line, and the magnitude of a frequency band (bandwidth of 50 Hz) containing the

front cavity resonance for every 5 milliseconds in red line. The duration of the frication

noise is defined as the time between the start of the release and the time when the average

FFT magnitude of the resonant band (in red line) starts to drop rapidly; at the same time,

the ratio of the average FFT magnitude of the resonant frequency band is at least twice of

the average FFT magnitude in the whole frequency range (in black line). The FFT

window effect is then corrected by adding the window length of 5 milliseconds to the

duration just defined. For the /t/-release shown in Fig. 5-1, the duration of the frication

noise is measured as 23 ms.

Two samples of the /k/-releases that the newly defined acoustic measure is

applicable are also shown in Fig. 5-2 and Fig. 5-3. The duration of the frication noise is

measured as 45ms and 38 ms respectively.
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Fig. 5-1 The waveform of a /t/-release (in blue line) from the sentence "Don't ask me to carry an

oily rag like that." (TIMIT\train\dr2\faemO\sa2). The average FFT magnitude Av in the whole

frequency range (in black line), and the magnitude Ap in a frequency band containing the front

cavity resonance (in red line). The duration of the frication noise is indicated as 23 ms, which is

measured from the start of the release to the time when Ap (in red line) starts to drop rapidly; at

the same time, Ap is at least twice of Av, and then corrected by adding the window length of 5

milliseconds.
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Fig. 5-2 The waveform of a /k/-release (in blue line) from the sentence "Don't ask me to carry an

oily rag like that." (TIMIT\train\dr2\fcajO\sa2). The duration of the frication noise is 45 ms.

I I

0 Average magnitude of the
, .frequency band containing

0I the front cavity resonance
0 

.

0. Avrage magnitude
0t

0 .

0

.......... -............. ---------

fill



38 ms
Fig. 5-3 The waveform of a /k/-release (in blue line) from the sentence "Don't ask me to carry an

oily rag like that." (TIMIT\train\dr2\ faemO\sa2). The duration of the frication noise is 38 ms.

This newly defined acoustic measure can not be applied to all stop releases. In

some stops consonants, the average FFT magnitude of the resonant frequency band

increases after an initial drop, or remains large in the entire duration of the release burst.

An example of such a /k/ release is shown in Fig. 5-4. Hanson and Stevens [47] also

discussed this type of stop release, They found in the acoustic data collected from eight

subjects that some subjects followed the phases described by Fant [61 (refer to Section

1.4.3), but other subjects produced a mixed frication and aspiration noise during the third

phase.

Since the glottal constriction area Ag is assumed constant in the analysis, the

calculated duration is not applicable to the entire duration of the stop consonant. In the

later part of the release signal, the glottal constriction area Ag has to be reduced in order

to prepare for the vibration of vocal folds.

....... ........
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Fig. 5-4 An examples of a /k/ release with dominant frication noise throughout the release burst.

We have looked at 32 voiceless stop consonants in syllable-initial position, and

found that the newly defined measure can be applied to 25 releases. The mean of the

frication noise for the /t/-releases is 19.4 ms with std of 10.2 ms, and the mean for the /k/-

releases is 25.9 ms with std of 15.2 ms. The means of both types of release are closer to

the duration of the frication noise estimated from the calculated release trajectories with

Flow model 3 (unsteady compressible flow) (11.5 ms for a /t/-release, and 23 ms for a /k/

release). From Flow model 1 (quasi-steady incompressible), the duration of the frication

noise is estimated to be 10 ms for both /t/- and /k/- releases.

Stevens also estimated from acoustic data the duration of the plateau for labial

and velar releases. "This duration can be as short as 5 milliseconds for a labial release,

and can be 20 milliseconds or longer for a velar release. These durations are apparent in

the length of the burst that occurs at the consonant release"1481. The mean of the /k/-

releases we have measured is also close to this estimation.

The durations measured in the acoustic signal (the mean), calculated with Flow

model 1 (quasi-steady incompressible flow) and 3 (unsteady compressible flow), and

estimated by Stevens [48] are listed in Table 5-1 respectively. The durations calculated

with Flow model 3 is found closest to those measured in the acoustic signal.



Table 5-1 Comparison of the durations measured in the acoustic signal, calculated with two flow
models models, and estimated by Stevens [48

Place of The mean of the Duration of the Duration calculated Duration

articulation duration frication noise with Model 1 calculated with

measured in the estimated by (quasi-steady Model 3

acoustic signal Stevens (2001) incompressible) (unsteady-

(millisecond) (millisecond) (millisecond) compressible)

(millisecond)

/p/ 5 6.3 8.3

/t/ 19.4 10 11.9

/k/ 25.9 20 14.6 23

In general, the pressure-wall interaction during the release of a stop closure causes

a longer duration of the frication noise in the acoustic domain. This extended duration

may enhance the perception of the place of articulation of a voiceless stop consonant in

syllable-initial positions.

For a stop consonant in syllable-initial positions, the release burst [18]-[21] and

formant transitions in the vowel r49H541 have been recognized as containing salient

acoustic cues to the place of articulation.

To listeners, the release burst could be more important for voiceless aspirated

stops than their voiced cognates, as the other cue, formant transitions, may not exist in the

vowel"]' [6] . The waveform and spectrogram of an utterance /uhtA/ containing a

voiceless stop consonant /t/ is shown in Fig. 5-5a, and an utterance /uhdA/ containing its

voiced cognate /d/ is shown in Fig. 5-5b. Traceable formant movements are visible after

the onset of voicing in /uhdA/, but not in /uhtA/. The formants after the onset of voicing

in /uhtA/ are in straight lines and have no observable movement. Hence, for voiceless

aspirated stop consonants, when formant transition cues are not present, listeners'

perception of place relies on the release burst only. In support of this claim, the



perceptual effect of the amplitude of the release burst relative to vowel in classifying the

place of articulation, was also found greater on voiceless stops than on voiced ones [573.
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Fig. 5-5 (a) Waveform and spectrogram of utterance /uhtA/; (b) Waveform and spectrogram of

utterance /uhdA/. Formants are tracked automatically with a code written by Mark Tiede, and are

shown in the spectrogram in blue, green, and read thick lines. The onset of release starts around

400 ms in both /t/ and /d/. In (a), the formants are straight without any apparent movements after

the voicing onset following /t/; while formant movements are observable right after the release of

/d/.

....... ....... ...... .....



As a short interval of explosive noise at the onset of a stop consonant, the release

burst contains a vertical line in the spectrogram, whose spectral content [181,19,[581 and

amplitude relative to the vowel[57 1 have been found to carry cues for the place of

articulation. Moreover, temporal cues could also exist in the release burst, as the auditory

processing is both in the time and frequency domain. As correlates to the place of

articulation with both temporal and spectral features, Kewley-Port [20] proposed the time-

varying spectral play of the release burst.

It has been well understood that the place of articulation is reflected in the spectral

content of the release burst by the prominences resulting from the filtering of the front

cavity. However, temporal cues in the release burst have not been well studied in relation

to the place of articulation.

The perceptual sense of both the amplitude and the duration of the release burst

could be related to its physical duration T. First, the perception of the amplitude of a burst

of noise has been found to depend on its duration 5 93. Second, the JND (Just Noticeable

Difference) for changes in duration is approximately proportional to the square root of T
[60] when the duration T of a burst of noise is less than about 100 ms. Therefore, the

shorter is the duration of the burst, the shorter JND the ear can sense. Listeners are thus

expected to be able to discriminate at least between the duration of the burst of /p/ and

that of /t, k/. The categorical boundaries could be determined by playing to listeners

synthesized CV (consonant-vowel) syllables with varied duration of the release bursts

whose amplitude is properly controlled.

The model results and tentative experimental results from real speech data show

that the duration of the frication noise in the release burst is different for syllable-initial

voiceless stop consonants with different places of articulation. Based on this fact and

other observations introduced above, we would suggest investigating whether the

duration of the release burst is a possible temporal cue or not for the place of articulation.



5.3 The contact pressure at the time of release

The contact pressure at the time of release is an unknown parameter in the model

analysis. For alveolar and velar stop consonants, this contact pressure is between the

tongue and hard palate, also called the lingua-palatal contact pressure (LPCP). This

parameter is hard to be measured accurately in real time.

LPCP has been considered as an important parameter for evaluating the dynamic

properties of the tongue during palatal consonant production [41. It has been studied for

various reasons: speech physiology, sensory-motor feedback system, and articulation [61].

Measuring the magnitude of LPCP during speech production has been attempted by

several groups and with different methods [42],[41],[621

McGlone et al. 421 used resistance strain gauges to measure the contact pressure at

three locations (left, center, and right) along the palate during the production of alveolar

consonants by 10 young adults. The frequency response of the pressure recording system

is linear up to 180 Hz, which means the time resolution is more than 5 ms. This dynamic

response is slow for real-time LPCP during the release of a stop closure.

Matsumura, et al. 411 used five piezoelectric strain gauges to measure the LPCP

and contact pattern for an adult male speaker in producing /t/, /d/, and /n/. The dynamic

response of their force sensor is adequate: in 0.28 ms, the output changes from 90% level

to 10% level when a load of 5-gram weight is released. The measured temporal pattern of

the LPCP in /t/ is very different from the pattern in /d/ and /n/. This approach could be the

most promising method for measuring the contact pressure at the time of release.

Tiede, et al.[62 applied capacitive sheets for pressure sensing, and measured the

LPCP differences in English lingual obstruent production for one subject. However, in

this latest study, real-time measurement was found not reliable because of pervasive

noise and the lack of a means of calibration over the full range of expected pressure limits.



In order to better understand the contact pressure at the time of release, statics is

employed to analyze the force balance when a complete closure is retained against

intraoral pressure buildup.

Palate

Fig. 5-6. A portion of the tongue making a complete closure of length Lc. The soft tissue surface

of the tongue is represented as a layer of springs with stiffness k per unit area. Part of the tongue

surface is in contact with the palate and part of it is exposed to the intraoral pressure P, . The

intraoral pressure presses the tongue surface downward of height he and also applies a

horizontal force of fp on the part of the tongue in contact with the palate. This force is balanced

by the frictional force f, between the surfaces in contact. Shear forces inside the tongue tissue

are neglected.

Fig. 5-6 shows a portion of the tongue making a complete closure of axial

length Lc with the palate. The dimension perpendicular to the midsagittal plane is

considered in unit length. The yielding wall of tongue surface is represented as a layer of

springs with stiffness constant per unit area of k. Air pressure is built up behind the

closure, with magnitude P. This intraoral pressure causes a downward displacement of

h= P, /k on the tongue surface upstream of the closure, and also applies a horizontal

force of ffp on the part of the tongue in contact with the palate.

To satisfy the horizontal force balance,



fP = Phe = f, f,,.

f, is the static frictional force between the tongue surface and the palate, which is

smaller than or equal to the maximum static frictional force f,,,,, for closures of fixed

location. The maximum frictional force f,,, is determined from the equation

,= pP, , in which Pc is the contact pressure; p, is the maximum static frictional

coefficient; and the contact area equals Lc.

In case the location of closure keeps moving during the closure interval["], the

static frictional force would be replaced by the kinetic frictional force f, = pkIPLC, in

which fk is the kinetic frictional force and pk is the kinetic frictional coefficient.

For a closure with fixed location, we have

/mPcLc Pmhc-

Ashc= mc ,we also have
k

pmkLc

This inequality shows that in order to make an air-tight closure, the contact pressure

needs to be larger than or equal to the quantity on the right hand side. This quantity is the

minimum contact pressure required to retain a complete closure, and also is the contact

pressure at the time of release in the analysis discussed in Chapter 3.

P 2
As the minimum contact pressure required to retain a complete closure " is

proportional to the square of the intraoral pressure, a greater contact pressure is required

to seal the closure for voiceless stop consonants than for voiced ones, and this has been

reported by McGlone et al.1421 and Matsumura et al. 41



From the minimum contact pressure required to retain a complete closure, we can

P 2
also calculate a negative displacement of the primary articulator, - . In Chapter 2,

pmLck 2

we discussed that Stevens' 2-section model of fricative production does not give the

lower limit of an initial positioning of the primary articulator in making a constriction.

This lower limit missing in the fricative model is exactly the negative displacement just

derived.

In causal speech, stop consonants have been observed to be occasionally produced

as fricatives, and vice versele3 ,[641,.[s We can now explain this phenomenon: when the

contact pressure is lower than the minimum amount required for retaining an air-tight

closure, a fricative consonant is produced instead of a stop consonant. On the other hand,

when the contact pressure resulted from an initial negative positioning is larger than the

minimum amount of retaining a complete closure, or when the initial negative positioning

has passed the lower limit of a fricative constriction, a stop consonant is produced in

stead of a fricative.

The form also suggests that the contact pressure at the time of release
p,,lkLC

could be measured indirectly by measuring the intraoral pressure P, , the maximum static

frictional coefficient p,,, the stiffness of the wall k, and the length of the constriction L,.

These parameters are not dynamic, so they may be acquired more easily than the real-

time LPCP.

P 2
The form ' also indicates that the contact pressure at the time of release is a

p.,kLc

function of the length of the constriction. However, this correlation was not implemented

in the analysis in Chapter 3.

At last, a relevant physiological variable of the tongue is discussed, the tongue

strength. Tongue strength is evaluated by measuring the maximum pressure that a person

can produce in an air-filled bulb which is pressed against the hard palate. It can be



measured with an instrument called IOPI, the Iowa Oral Performance Instrument 66 . The

measured tongue strength is the maximum lingua-palatal contact pressure a person can

produce, but not during speech production.

Tongue strength is an important parameter for evaluating the chewing and

swallowing disorders. Adequate lingual pressure is essential for bolus clearance. Potter

and Short[671 measured the tongue strength in 150 children and adolescents at 3-16 of age.

Their tongue strength was in the range from 20kPa to 90kPa, and increases with age. The

measured tongue strength values are all far above the 5-6kPa maximum LPCP during

adults' alveolar consonant production introduced above.

Tongue weakness is presumed to contribute to reduced articulatory precision and

speech intelligibility, but studies of dysarthric speakers did not consistently find a

correlation between tongue weakness and perceptible speech deficits 68 l. Solomon, et al.
[68] measured the tongue strength of 16 Parkinson's patients, and found a mean of 48.lkPa,

compared with the mean of 55.5kPa on a control group of 16 neurologically normal

adults.

Parkinson's patients have reduced tongue strength compared with the normal

group; however, they still have the ability to produce the adequate maximum lingua-

palatal contact pressure required for consonant production, which is only 12.5% of the

mean tongue strength they have. This is a plausible explanation for the lack of correlation

between tongue weakness and perceptible speech deficits.

Although the tongue strength in Parkinson's have not been found to be weakened

to the extent that alveolar consonants would be degraded, significant positive correlations

between severity of dysarthria and tongue strength in ALS (Amyotrophic lateral

sclerosis) have been reported[691 , [70](measured force in Newton, not pressure in Pa). The tongue strength

of an ALS patient with severe dysarthria may be lower than the maximum LPCP required

in consonant production.





Chapter 6

Conclusions and future work

The pressure-wall interaction at the release of a stop closure is analyzed with a

lumped-element solid model and three flow models (quasi-steady incompressible,

unsteady incompressible, and unsteady compressible). Analyses with the three models are

summarized in Table 6-1.

Table 6-1 Comparison of the models
Models Assumptions Results Conclusions
Flow model 1 dU 1.Insensitive to A,-,ta, when Good for
(quasi-steady dt start < 0.02cM2 (for one larger cross-
incompressible) 2. P dt sectional area.

C case study)
2.Insensitive to L.
3.The predicted duration of
frication noise is shorter than
the measured value on real
speech

Flow model 2 1. p = const. 1.The plateau becomes a peak Good for
(unsteady 2. P rl when A,- ,,, < 0.001cm 2 (for larger cross-
incompressible) one case study) sectional area

2.Sensitive to L. for small

( t start

Flow model 3 1. p p (tx) 1.Release trajectories are Also good for
(unsteady 2close to each other when small cross-
compressible) 2' e A,, < 0.0001cm 2 (for one sectional area

case study)
2.Sensitive to L for small

cA start

3.The predicted duration of
frication noise is closest to
the measured value on real
speech among all estimates.



The calculated release trajectories confirm Stevens' hypothesis that a plateau

would emerge right after the release, and the duration of the plateau would be

progressively longer for labial, alveolar, and velar (Section 4.3).

An acoustic measure is defined to estimate the duration of frication noise in the

release bursts of real speech. The means of the measured durations of the frication noise

in 25 releases from TIMIT database agree better with the durations of the frication noise

estimated from the release trajectories calculated with the unsteady compressible flow

model, compared with those calculated with the quasi-steady incompressible flow model

(Section 5.2).

Perception test is suggested to find out whether the duration of the frication noise

could be an enhancing perceptual cue or not for identifying the place of articulation of

voiceless stop consonants in syllable-initial positions.

In developing the unsteady flow models, a new analysis method - deformable

control volume analysis - is introduced. It lays the foundation for analyzing the physical

processes in the initial phases of a stop consonant (both the transient and the frication

noise). Current speech production theory has defined these phases according to their

salient acoustic feature, but lacked proper means to quantify them. For example, a

previous analysis of the transient had to use an incomplete theoretical modelE221. Hence,
analysis of the transient phase is recommended as the most immediate future work related

to stop consonant models.

The deformable control volume analysis also contributes a new method to treating

the unsteady effect during the closing and opening of the vocal folds [711,[36],[371

Implementing this analysis in the two-mass model would dismiss the quasi-steady

assumption.

At last, because of the instrumental difficulty in measuring the real-time LPCP, an

indirect means of measuring the contact pressure at the time of release, an unknown

parameter in the analysis, is suggest: by measuring the intraoral pressure P., the



maximum static frictional coefficient p,,, the stiffness of the wall k, and the length of the

P 2
constriction L. , the contact pressure at the time of release could be acquired as "' .

PpI,,L
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Appendices

A. Derivations of the perturbation approximation in Flow model 3

If we consider a tube of length 1 cm, then the maximum value of x is 0.5cm, and

we further simplify p(x, t) = a0 (t) + a, (t)x by neglecting all terms of order equal to and

higher than x2

Substitute p (x, t) in Equation (27), and we have

1 d 1c d (Au= peA, - f (a + ax)AIdx =

Form Equation (26) and Equation (27), we have

a. +8a- .I2

pu= euI d p A -d = pAu 1 xA pdxPu = Pe~e A, dt AeUe -+A,. dt f0 01
A

(36)

(37)+ A d0p dx

0 dt

Substitute p (x, t) = ao (t) + a, (t) x in this equation, and we have

Pe - aO dA"
* A, dt

+ daO _ a, dAt
dt) ( 2A, dt

+ 1 da1 ' 2

2 dt)

a. + aix

By neglecting all terms of order equal to and higher, u is approximated as

u = Pu_ (peu a+ 1 dAC 1 daO x>
a0  ao A, dt a, dt )

u eu, peua + 1 dA ldao x
a0 a0 A2 dt a0 dt
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(38)

(39)

(40)

u =



pu a dA da xPu A, di' dt )

PuJu =PU__u,_ pu (aO dA, d ao
a0 a0 YA, d dt)

peu2ai + dA
PeUe ao2 Ad + x (42)

a0 dt )

fpuAdx = A p - f(aO+ a x) Adxj dx

a.x + jx J dx

ao +±x

Neglect all terms of order equal to and higher than x2,

approximated as x d (Ap u).
d'

(P, -p,) A,= =pxuAdx+
di0

and then dt f puAdx is
0

( U. u u|- PeUe ,uI) Ac

From Equation (30), we have p - p = 0(a0 ± a1x)

Now the right-hand side of Equation (28) is approximated as

xd (Acpeue) - peulue I|+

aao A, dt

dao
dt)

+ peu a, 1 dAC 1 daO X

I ao2 A, dt ao dt
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(41)

= AJp U -

= rA, peUeX -

I A

AKA

(43)

(44)

A, PeU"



and the left-hand side is approximated as P, " (a, + a x) A,. For this equation to
pe,

hold, the coefficients of the x" -term requires that

and the coefficients of the x' -term requires that

A a A,.
=a .

- + a,- A
AC dt

a) PUeal 1 dA,
+ +PeUe ?+ _

dt )ao 2 AC dt

(46)
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B. The stiffness of the yielding wall

Note that although the effect of muscle recruitment is known to increase the

Young's modulus of the tongue, the tense cheek tissue measured by Ishizaka has a

smaller stiffness, 3.33 x 10 dyne/cm, compared with the relaxed cheek tissue whose

stiffness is 8.45 x 103 dyne/cm. The mechanical properties corresponding to the larger

stiffness value is used in the analyses in Chapter 3, and the reason for this choice is

provided here.

Intraoral pressure is an important parameter in stop consonant production, and the

respiratory and articulatory structures have been found constrained to act together toward

the common goal of retaining an adequate level of pressure for consonants. 731. Moreover,

receptors sensitive to the changes in the aerodynamic environment have been found in

human lungs, trachea, larynx, nasopharynx and oral cavity [74].

When a complete closure is made against increased intraoral pressure during the

closure interval of a stop consonant, the soft-tissue articulator involved can be also

considered as a part of the wall of a pressurized tank, which has a circular radius of R and

thickness of d, and is filled with air which has the intraoral pressure P,, as shown in Fig.

B-Ia. Such a pressurized tank could be a model of a bilabial closure shown in Fig. B-lb.

The tissue near to the closure is compressed in making a complete closure, but further

away from the closure, the tissue is under tension owing to the expanding effect of the

intraoral pressure.
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(a) (b)

Fig. B-1 (a) Pressure Pm inside a circular tank with radius R and thickness d, and with tension o-,

inside the wall. (b) The tissue wall during the closure interval of a bilabial stop consonant /p/ can

be taken as part of the wall of the tank shown in (a).

The tension in the soft-tissue articulator can be calculated from the force balance

of an element in the wall. It can be shown that the circumferential stress U in the wall is

related to the pressure P,,, , radius R, and thickness d as:

0t 
P mR

d (47)

The circumferential tensile force in the wall is then

F = utd = PmR (48)

This equation suggests that higher intraoral pressure would demand larger

circumferential tension in the wall. As a tensed wall also exhibits larger surface stiffness,

the stiffness of the wall would be found higher when the intraoral pressure is built up

during the closure. This analysis agrees with what was found for the in vivo compliance

C, of the tongue surface by tracking the displacement of a flesh point during the closure

portion of voiced and voiceless stop consonants 5 1 The surface compliance was about 3

times larger in producing a voiceless stop consonant.
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The pressurized tank model also suggests that the tissue properties of the yielding

wall could be adjusted according to the level of the intraoral pressure, which is

considered as equal to the subglottal pressure. Therefore, the stiffness of the wall might

be a function of the subglottal pressure.
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C. Matlab algorithms

The transcript file for the analysis with flow model I (quasi-steady incompressible):
clear all
rho= 1. 14e-3;
global Acstart
Acstart=0.000001;
Ps=7840;
k=84500;
yO=Ps/k;
global V
V=50; %cm^2/s
D=2;

[T,Y]=ode 15s('two massnew_b', [0,1 00e-3],[0,0,0,0,0]')
Ac=(V*T+Ac start-Y(:, 1)*D);

figure(1)
plot(T,Ac,'k')
xlabel('Time s')
ylabel('Cross-sectional Area cmA2')

function [Ydot]=two massnew b(t,Y)
Ag=0.2; % Length scale is in cm.
D=2;
Ps=7840; %1OcmH20 in dyne/cmA2
Pc min=3*Ps;
rho=1.14e-3;
Lc=1;
m=2. 1;
r--800;
k=84500;
rm=r/m;
km=k/m;
kc m=1.5*km;
y_c=Pc_min/k;
yO=Ps/k;
global V
yleq=y_c;
y2eq=y0;
global Acstart

Ac=(V*t+Acstart-Y(1,:)*D);
L=rho*Lc/Ac;
F-kc=-kc-m*((Y(1,:)-ylIeg)-(Y(3,:)-y2eq));
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Pm=Ps-rho/2*(Y(5,:)/Ag)^2;

Ydot=[Y(2,:);...
-rm*Y(2,:)-km*(Y(1,:)-yleq)+F-kc-Pm/2;...
Y(4,:);...
-rm*Y(4,:)-km*(Y(3,:)-y2eq)-F-kc-Pm;...
(Pm-rho/2*(Y(5,:)/Ac)A2)/L];

The transcript file for the analysis with flow model 2 (unsteady incompressible):
clear all
rho= 1.14e-3;% density of the air in human vocal tract
global Acstart
Ac start=0.00004;
V=50; %cmA2/s
D=2;

[T,Y]=ode15s('final b',[0,100e-3],[0,0,0,0,0]);

Ac=(V*T+Acstart-Y(:, 1)*D);

figure(2)
plot(T,Ac,'k')
xlabel('Time s')
ylabel('Cross-sectional Area cm^2')

function [Ydot]=final b(t,Y)
V=50; % the release velocity

rho=1.14e-3;
Lc=0.5;% length of the constriction
Ag=0.2; % Length scale is in cm
D=2;
Ps=7840; %cmH20 to dyne/cm^A
Pcmin=3*Ps;
m=2. 1;
r-800;
k=84500;
kc=1.5*k;
y_c=Pc min/k;
yO=Ps/k;
y 1 eq=yc;
y2eq=yO;
global Ac _start
Ac=(V*t+Acstart-Y(1,:)*D);
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Addy1 =rho*D*Lc^2/Ac/6;
Myl=m+Add_y1;
F_kc=-kc*((Y(1,:)-y leq)-(Y(3,:)-y2eq));
dAcdt=V-Y(2,:)*D;
ue1=Lc/2/Ac*dAc dt;
ue2=Y(5,:);
Pm=Ps-rho/2*((uel+ue2)*Ac/Ag)^2;
F_air right=(-rho/3*LA2/Ac^2*dAc_dt*abs(dAcdt)-Pm/2);
d2ydt2=(-r*Y(2,:)-k*(Y(1,:)-y 1 eq)+F kc+F air right)/M_y 1;
d2Acdt2=-D*d2ydt2;
due2_dt=Pm/rho/Lc; %ue

Ydot=[Y(2,:);...
d2ydt2;...
Y(4,:);...
(-r*Y(4,:)-k*(Y(3,:)-y2eg)-F_-ke-Pm)/m;...
due2_dt];

The transcript file for the analysis with flow model 3 (unsteady compressible):
clear all
rho=1. 14e-3;
global V
V=50; %cmA2/s
D=2;
global Acstart
Acstart=0.0001;

[T,Y]=ode 15s('compressible b',[0,100e-3],[0,0,0,0,0,-rho*V/Ac-start,O]);
Ac=(V*T-Y(:, 1)*D+Ac start);

figure(3)
plot(T,Ac,'k')
xlabel('Time s')
ylabel('Cross-sectional Area cm^2')

function [Ydot]=compressible-b(t,Y)
yl=Y(1,:); dy1_dt=Y(2,:);
y2=Y(3,:); dy2_dt=Y(4,:);
al=Y(5,:); dal_dt=Y(6,:);
ue2=Y(7,:);
global V
rho e=1.14e-3;
P e=1e6;
Lc=1;% length of the constriction
pIair--P-e/rho_e*a1 *Lc/4;
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F airright=-p 1air;
Ag=0.2; %cm^2
D=2;
Ps=7840; % dyne/cm^2
Pcmin=5*Ps;
m=2.1;
r-800;
k=84500;
kc=1.5*k;
y_c=Pc_min/k;
yO=Ps/k;
yleq=yc;
y2eq=yO;
global Acstart
Ac=(V*t+Acstart-Y(1,:)*D);
F_kc=-kc*((Y(1,:)-yleq)-(Y(3,:)-y2eq));
dAcdt=V-Y(2,:)*D;
d2y-dt2=(-r*Y(2,:)-k*(Y(1,:)-y 1 eq)+F-kc+F-airright)/m;
d2Acdt2=-D*d2ydt2;
ue1=l/(rho e*Ac)*(dAcdt*(rhoe*Lc/2+al *LcA2/8)+Ac*Y(6,:)*LCA2/8);
d2aldt2=(-P_e/rho e*Y(5,:)*Ac-d2Ac dt2*(rho_e*Lc/2+Y(5,:)*LcA2/8)...
-(abs(ue 1)*rho e*dAcdt+rhoe*ue 1 *Ac*abs(ue 1 *al/rho_e+dAc_dt/Ac)))/(Ac*LcA2/8);
Pm=Ps-rho-e/2*((ue1+ue2)*Ac/Ag)A2; %ue
d2y-dt2=(-r*Y(2,:)-k*(Y(1,:)-yleq)+Fkc+F_air-right-Pm/2)/m;
due2_dt=Pm/rho e/Lc;%ue

Ydot=[Y(2,:);...
d2y-dt2;...

Y(4,:);...
(-r*Y(4,:)-k*(Y(3,:)-y2eg)-F_ke-Pm)/m;...
Y(6,:);...
d2al dt2;...
due2_dt];
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