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Abstract

An important problem in speaker recognition is the degradation that occurs when
speaker models trained with speech from one type of channel are used to score speech
from another type of channel, known as channel mismatch. This thesis investigates
various channel compensation techniques and approaches from missing feature theory
for improving Gaussian mixture model (GMM)-based speaker verification under this
mismatch condition. Experiments are performed using a speech corpus consisting of
"clean" training speech and "dirty" test speech equal to the clean speech corrupted
by additive Gaussian noise. Channel compensation methods studied are cepstral
mean subtraction, RASTA, and spectral subtraction. Approaches to missing feature
theory include missing feature compensation, which removes corrupted features, and
missing feature restoration which predicts such features from neighboring features
in both frequency and time. These methods are investigated both individually and
in combination. In particular, missing feature compensation combined with spectral
subtraction in the discrete Fourier transform domain significantly improves GMM
speaker verification accuracy and outperforms all other methods examined in this
thesis, reducing the equal error rate by about 10% more than other methods over
a SNR range of 5-25 dB. Moreover, this considerably outperforms a state-of-the-art
GMM recognizer for the mismatch application that combines missing feature the-
ory with spectral subtraction developed in a mel-filter energy domain. Finally, the
concept of missing restoration is explored. A novel linear minimum mean-squared-
error missing feature estimator is derived and applied to pure vowels as well as a
clean/dirty verification trial. While it does not improve performance in the verifica-
tion trial, a large SNR improvement for features estimated for the pure vowel case
indicate promise in the application of this method.

Thesis Supervisor: Thomas F. Quatieri
Title: Senior Staff, MIT Lincoln Laboratory
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Chapter 1

General Introduction

In this chapter the problem of speaker recognition is introduced along with various

subareas of research and associated terminology. This leads into a description of the

currently most commonly used statistical speaker model, the Gaussian mixture model,

as well as the type of speech representation typically used by this model. Finally, the

general problem addressed by this thesis is described.

1.1 Introduction to Speaker Recognition

The goal in speaker recognition is to recognize a person from his or her voice. Within

this broad description are two specific problems: speaker identification and speaker

verification. Speaker identification attempts to associate an unknown voice with a

particular known voice taken from a known set of voices. Speaker verification, on

the other hand, tries to determine if an unknown voice matches a particular known

voice. The speech used for these tasks can be either a known phrase, termed text-

dependent, or can be a completely unconstrained phrase, termed text-independent.

Typical applications for speaker recognition are reconnaissance, forensics, access con-

trol, automated telephone transactions, speech data management, etc.

Both speaker identification and speaker verification tasks can be thought of as

consisting of two stages: training and testing. In training, the goal is to efficiently (in

terms of both computational complexity as well as a minimum of information redun-



dancy) extract from the speech signal some values that represent characteristics that

are as unique to that speaker as possible and contain very little of the environment's

(the "channel") characteristics, since the acoustic environment in which the speech

was recorded might otherwise be falsely included into the speaker models. While to

humans the identity of the speaker of a given utterance appears through a complex

combination of both high-level cues (such as semantics and diction), mid-level cues

(such as prosodics), and low-level cues (such as the acoustic nature of the speech

waveform including its frequency domain behavior, pitch, etc.), automatic speaker

recognition systems have so far been unable to efficiently and effectively take advan-

tage of any information other than low-level acoustic cues since these have been the

easiest to automatically (without human supervision) extract and apply. The most

commonly employed acoustic cues are spectral features such as formant trajectories,

the resonant frequencies of the vocal tract, and the speaker's pitch.

In describing the performance of speaker ID and verification systems there are

typically two types of error measures that are focused on. The first, the miss prob-

ability, represents the case where a true claimant, the speaker who is "claiming" to

have produced the test utterance, is incorrectly rejected by the system. The second

error measure, the false acceptance probability, represents the case where an impos-

tor, a speaker who falsely claims to have produced the test utterance, is incorrectly

verified by the system as having produced the speech. The relative amounts of both

types of errors that occur is determined by the threshold setting used in a maximum

likelihood ratio test, which is applied in a manner similar to its use in detection prob-

lems in digital communications theory. In a manner similar to how receiver operating

characteristic curves are used in communications, in speaker verification problems de-

tection error trade-off (DET) curves are used in which false acceptance probabilities

are plotted versus miss probabilities for a wide range of possible threshold settings,

indicating all the different operating points of the system that are achievable. While

the overall behavior of DET curves is of interest, the equal error rate (ERR) point,

where the two types of errors are equal, is often focused on as a good representative

measure that does not bias the system towards a particular type of error in comparing
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In most modern speech systems, features are extracted from speech windowed with

a 20 ms window and the window is typically advanced at 10 ms intervals. To avoid

extracting features of the channel and its noise characteristics, it is essential that

a speech detector be used to estimate and indicate which of the windowed frames

contain mostly speech and which contain mostly channel noise. For frames that
are labeled as speech, the system takes the windowed sfrm speerforms short-time

Fourier transform (STFT) based analysis on the segment. This is a filterbank analysis

which reduces the spectral representation, typically to the commonly employed mel-

cepstral coefficients, which will be described in the following section. Following this,

there will often be a channel equalization stage to mitigate the effect of the channel.

Common equalization techniques, which will be described later, are RASTA and
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Figure 1-2: Example: Distribution of features from states "A" and "B".

cepstral mean subtraction.

It is of interest how these speech features (typically mel-cepstral features) are

associated with different speakers in a quantitative and statistical manner, allowing

the construction of mathematical speaker models. In answering this question, speech

researchers have depended on much of the work previously done in the area of statis-

tical pattern recognition. Since the primary speaker-dependent acoustic information

employed is taken from the spectrum reflecting vocal tract shapes, it is preferred to

create speaker models that in some way capture those shapes as manifested in the

speech features. To understand what approach is taken, assume that there are two

states "A" and "B" (either distinct speakers or vocal tract states of a single speaker)

and that each class produces features vectors with a certain probability distribution,

as shown in figure 1-2 1.

If we assume that the underlying distributions of the feature vectors in each class

are Gaussian, then it is possible to train the model parameters of the underlying prob-

ability density functions (pdf's) in an unsupervised manner not requiring any human

supervision by using the expectation-maximization (EM) algorithm [10]. Using the

state models, a new feature may be classified as follows

x is from state "A"
p(x|A) Z p(x|B),

x is from state "B"

assuming equally likely classes "A" and "B". It is thus seen that this is essentially a

hypothesis testing problem.

'Figures 1-2, 1-3, and 1-4 were kindly provided by Doug Reynolds.



In the statistical speaker model, the speaker is regarded as a random source pro-

ducing the observed speech feature vectors X and it is the "state" that the speaker's

vocal tract is in, as in the example using states A and B above, that determines the

general distribution of these vectors. While it is understood that the probability of

the speaker being in any one of the states describing his or her speech production

mechanism nor that the transition probabilities between the different states is clearly

not uniform, for computational ease an assumption of uniform state and state transi-

tion probabilities is made. With this assumption, it may be shown that the pdf of the

observed speaker is a Gaussian mixture model (GMM)[10]. If an M-state statistical

speaker is assumed, the resulting GMM speaker model is given by

M

p(XIA) = Ep ib(X)
i=1

where

b(X) = (27r)D/2IE.I1/2 exp-(X - pi ) -

In the above expression ptL and EIj are the mean vector and covariance matrix for

speaker state i, D is the dimensionality of the feature vectors, and pi is the probability

of being in state i. Note that the set of quantities

A = (pi, pi, Ej), for i = 1,...,M

represents the parameters for each state of the speaker model for speaker A, and hence

constitutes a speaker model. This concept is shown graphically in figure 1-3. It is

thus observed that in this model the probability of the observed feature vector X

from speaker model A is the sum of pdf's for each of the hidden and unknown states,

appropriately weighted by the probability pi of the speaker being in that state. Given

this resulting speaker model p(X|A), a quantitative score for the likelihood that an

unknown feature vector was generated by a particular speaker may be calculated. The

model parameter estimates (pi, pi, Ej), i=1,...,M are obtained by the EM algorithm
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Figure 1-3: Graphical representation of speaker models.

mentioned earlier.

Although the speaker verification task requires only a binary decision of whether

the claimant should be accepted or rejected, it is a more involved problem than the

simple identification task[10]. This is a result of the fact that the class of "not speaker"

is not very clearly defined. In the case of speaker identification there is a known well-

defined set of speaker models which the characteristics of the test utterance may be

compared against. However, in the speaker verification task there are two competing

classifications: "claimant", which has a clearly defined model, and "not claimant",

which is very vague and poorly defined since it could be any speaker other than the

claimant. Essentially, the speaker verification system must decide if the unknown

voice belongs to the claimed speaker, with a well-defined model, or to some other

speaker, with an ill-defined model. This latter model is typically referred to as the

background model. Because it is a binary decision there are two types of errors as

mentioned earlier: false rejections (misses) in which case the system rejects the true

speaker and false acceptances where an imposter is accepted. A model of the possible

imposter speakers must be used to perform the optimum likelihood ratio test that

decides between "is claimant" and "is not claimant". For an unknown speech file

XT = [X 1 X 2 ... XTI, T representing the number of frames or speech vectors Xt in

the speech file, a claimant with model Ac, and a model that encompasses all possible

nonclaimant speakers Abkgd, the likelihood ratio is given by

Pr(XT is from claimant) Pr(AIXT)
Pr(XT is not from claimant) Pr(AbkgadXT)
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With the application of Bayes' Rule and the assumption of equally likely prior prob-

abilities for the claimant and background speakers, the above expression may be

simplified with the help of the logarithm to

A(XT) = log[p(XTIAc)] - log[p(XTIAbkgd)].

The likelihood ratio is compared with a threshold 0 and the claimant is accepted if

A(XT) > 0 and rejected if A(XT) < 9. The likelihood ratio measures the degree

by which the claimant model is statistically closer to the observed speech XT than

the background model. The decision threshold 9 is determined by the desired trade-

off between the false acceptance and false rejection rates. The components of the

likelihood ratio test are computed as follows: for the likelihood that the speech came

from the claimant, the likelihood is calculated from the frames from XT by

log[p(XTIAc)] = T E log[p(XtIAc)],
t= 1

where the t subscript is used to indicate the speech features associated with the tth

frame, T is the total number of frames, and the 1/T term is used to normalize to

account for varying utterance durations. The likelihood that the speech file is from a

speaker other than the claimant (i.e. the background model) is constructed by using a

collection of representative speaker models, chosen to "cover" the space of all possible

speakers other than the claimant. With a set of B constituent background speaker

models {A 1, A2 , ... , AB}, the overall background speaker's log-likelihood is computed

as

B

log[p(XTIAbkgd)] = log[ Zp(XTIAb)],
b=1

where p(XTIAb) is calculated as above. Neglecting the 1/B factor, p(XTIAbkgd) is

the joint pdf that the test utterance comes from one of the constituent background

speakers, assuming equally likely background speakers.

The motivation for using a ratio of the pdf's of the claimant speaker and the



background speaker, as opposed to just using the claimant speaker's pdf as might seem

appropriate initially, is that this normalization has been found to help minimize the

nonspeaker-related variations in the test utterance scores[11]. Because the claimant

model's scores are likely to be effected in the same manner as the background model's

scores, dividing the claimant model pdf by that of the background helps to stabilize

the system. This results in a more accurate system that requires less calibration

(varying 9) for different environments.

1.3 Mel-Cepstrum and Mel-filter Energy Speech

Features

The most common feature vector used in speech systems is that of the mel-cepstrum[8].

For this feature type, every 10 ms the speech signal is windowed by a Hamming win-

dow of duration 20 ms to produce a short time speech segment x, [n]. The Discrete

Fourier Transform (DFT) of this segment is then calculated and the magnitude is

taken, discarding the phase which research has shown to have limited importance in

speech. The resulting DFT magnitude X[m, k], where m denotes the frame number

and k denotes the frequency sample, is passed through a bank of triangular filters

known as a mel-scale filterbank, as shown in figure 1-4. The filterbank used is assumed

to roughly approximate the critical band filtering that research has suggested occurs

in the human auditory system within the outer stage of processing. It is important

to note that the Mel-filters do not convolutionally process the DFT magnitude, but

rather effectively window the data, weighting each element of X[m, k] by an associ-

ated weight provided by the envelop of the Mel-filters. These filters (windows) are

linear in their bandwidths from 0 to 1 kHz and are logarithmic above 1 kHz. The

centers of the filters follow a uniform 100 Hz Mel-scale spacing and the bandwidths

are set such that the lower and upper passband frequencies lie on the center frequen-

cies of the adjacent filters, giving equal bandwidths on the Mel-scale but increasing

bandwidths on the linear frequency scale. The number of filters is typically chosen
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Figure 1-4: Triangular Mel-Scale Filterbank.

to cover the signal bandwidth [0, f,] Hz, where f, is the sampling frequency. In most

cases the speech being used is telephone speech, in which case f, = 8 kHz and there

are 24 filters.

Assuming that there are K Mel-filters and that M[k] represents the values of the

lth filter, the linear mel-filter energy (MFE) at the output of the lh filter is given by

U,

Mlin[m,l] = ( Mi[k]X[m, k]
k=L1

where L, and U, are the lower and upper frequencies of the 1th filter, respectively. In

this expression A, is a normalizing factor used to account for the varying mel-filter

bandwidths and is defined as

U

A,= Mi[k].
k=L

The linear mel-filter energies Miin[m, 1] from the outputs of all K of the mel-filters

gives a reduced representation of the spectral characteristics of the mth speech frame

and can be used as a feature vector for speech recognition system. Various techniques

discussed later in this thesis operate in this domain.

Due to various advantages involving homomorphic filtering and its ability to lin-

early filter (lifter) in the frequency domain distortions convolved into the speech in

the time-domain as well as certain decorrelating properties of the resulting feature

elements, it is common to further process the linear mel-filter energies to produce

mel-cepstrum features. The mel-cepstrum features Meep[k] are computed by taking



the logarithm of the linear mel-filter energy features and taking their inverse Fourier

transform:

Mcep[m, k] = ( log(Muin[m, l])ej(27xl/N)lk.
=1

The decorrelating property is due to the high amount of statistical independence

resulting from the mathematical similarity of the combination of the log and DFT-1

operations to the optimal orthogonalizing Karhunen-Loeve transformation[8]. In ad-

dition, the mel-cepstrum representation has been shown in practice to generally give

better performance than other feature types in speech related tasks.

1.4 The Speaker Mismatch Problem in Speaker

Verification

As discussed in section 1.1, speaker recognition and verification tasks require two

stages or processing: training and testing. Both of these require speech and in typical

scenarios the speech used for training will be different than the speech used in testing,

both in terms of the utterance itself as well as the channel environment in which the

speech is produced and recorded. A representative example might be in a banking

scenario where a person goes to his or her local bank to open a checking account and in

the process has their voice recorded for account access control purposes later. When

he or she goes to Hawaii sometime thereafter and tries to withdraw some money from

the branch office there, the person will perhaps state some phrase for identification

purposes into a recording device quite different from the one used to originally record

speech used in making their speech model. Although many channel compensation

techniques exist for the purpose of'removing the influence of the channel from the

features derived from a given utterance, these techniques are not perfect and are often

unable to handle all the various complex linear and nonlinear noise processes embed-

ded into the speech signal. Due to such insufficiencies in our available compensation

techniques, the speaker models will usually contain characteristics not only derived



from the nature of the speaker's voice, but also from the spectral characteristics of

the noise and distortion in the speech, resulting in a mismatch condition between the

speaker model and a test utterance that reflects more of the environment than the

actual underlying speech. Work in speaker identification and recognition tasks has

shown that an existence in such a mismatch condition between training and testing

speech can often drastically reduce performance. It is very interesting to note that in

most cases a mismatch involving clean training data and corrupted testing data, or

vice-versa, will perform worse than a scenario where both training and testing data is

corrupted. This shows how significant the presence of the channel in the speech fea-

tures and models can be. This thesis looks into some methods, both existing and new,

to help alleviate the performance degrading effect of a mismatch condition between

training and testing data.

1.5 Problem Addressed

In this thesis, speaker verification within the setting of the TSID (Tactical Speaker

ID) corpus, a collection of realistic recordings made of military personal at Ft. Bragg

during spring 1997, is investigated. In total there were 35 speakers involved and

recordings were made of soldiers reading sentences, digits, and map directions over a

variety of very noisy and low bandwidth wireless radio channels. In this thesis these

recordings are referred to as dirty speech files. For each dirty recording a low noise

and high bandwidth reference recording was made simultaneously at the location of

the transmitter with a microphone. These are referred to as clean speech files. In

figures 1-5 and 1-6 are shown the time and frequency domain representations for the

clean and dirty recordings of a representative utterance in the corpus. As may be

seen from these plots, the waveform is subject to various types of nonlinear distortion

as well as background ambient noise.

As would be expected given the discussion of the training/testing mismatch con-

dition above, some verification tasks using both clean and dirty data for model train-

ing and for testing has shown that the clean/clean and dirty/dirty cases do signif-
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Figure 1-5: Representative "clean" (top) and "dirty" (bottom) speech time-domain wave-
forms from the TSID corpus. Both are from the same utterance.
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Figure 1-6: Representative "clean" (top) and "dirty" (bottom) speech spectrograms from
the TSID corpus. Both are from the same utterance.
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and dirty/clean, which have been found to perform nearly identically. These results

are given in the DET curve in figure 1-7. It is seen that while the EER values for

the clean/clean and dirty/dirty scenarios are approximately 4% and 9%, for the mis-

matched cases it drops to nearly 50%. Note that since the decision being made is

binary, an EER rate of 50% is equivalent to making a random guess for every test.

The focus of this thesis research is to study the effect of the mismatch condition on

this database (training on clean and testing on dirty, or vice-versa) and to investigate

ways of improving performance via the application of concepts in missing feature

theory and spectral subtraction. missing feature theory recognizes the fact that due

to noise it is possible that some speech features could be corrupted to the degree that

they no longer contain accessible speech information and that their inclusion in the

statistical scoring mechanism could reduce performance. This requires the detection



of which features are missing and then their removal from scoring, done in such a

way as to be consistent with the existing GMM model. This technique, known as

missing feature compensation, is investigated along with the ability to accurately

predict missing features. In addition, this thesis proposes a new manner to deal

with the missing feature problem, time-frequency linear minimum mean-square error

(MMSE) feature estimation, in which the missing feature is detected, estimated, and

then restored. This system is described along with some experimental results. Finally,

a technique for subtracting out additive noise effects, known as spectral subtraction,

is evaluated as is a new variation on this technique that is proposed in this thesis, to

be termed soft IDFT spectral subtraction. In this thesis each of these techniques are

examined individually and in various combinations. In order to be able to control the

evaluation and development of these techniques, throughout most of this thesis the

clean TSID data files have been corrupted with known artificial additive noise. It is

hoped that an understanding of the techniques explored in this thesis can be most

readily achieved by first studying them in a controlled additive noise environment,

making the transition later to unknown noise sources, such as the dirty TSID files,

more feasible.

1.6 Contribution of Thesis

This thesis contributes to the body of knowledge in speaker recognition, specifically

the train/test mismatch problem, in a number of ways. First, the performance of

several established channel compensation techniques are applied to the clean/dirty

verification problem in the context of the TSID database, thus extending our knowl-

edge of how well these techniques can perform. Second, this thesis investigates the

application of spectral subtraction in the IDFT domain, in contrast to the more

common linear mel-filter energy domain, for the purpose of speech feature enhance-

ment. It is demonstrated that the application of spectral subtraction in the |DFT

domain is greatly superior for the type of additive noise channel being considered.

Third, the application of missing feature theory, namely missing feature compensa-



tion, is studied and shown to improve performance over the baseline case for certain

noise levels. In the process of this study, it is shown that the detection of missing

features can be done non-ideally and still produce results highly correlated with an

ideal detector. Forth, many of the channel compensation and missing feature meth-

ods are combined to study recognition performance when these systems are applied

in series. It is found that the combination of |DFT domain spectral subtraction and

missing feature compensation performs very well, outperforming the baseline case

and all other methods examined in this thesis. Finally, the concept of missing fea-

ture estimation and restoration is explored. A linear minimum mean-squared error

missing feature estimator, that operates in both the time and frequency domain, is

derived and applied to both pure vowels as well as a TSID clean/dirty verification

trial. While it does not improve performance in the verification trial, very promising

results regarding the pre- and post-SNR levels for features estimated for the pure

vowel indicate promise in the application of this approach.

1.7 Organization of Thesis

This chapter has introduced the general theory and problem of speaker verification,

the statistical speaker model and speech features used, and the problem being ad-

dressed within this framework along with some of the more important results within

this thesis. In Chapter 2 various methods of channel compensation and a method for

adding temporal information to the speech feature vectors are discussed along with

results using these techniques on the TSID data in the mismatch scenario. Chapter

3 explains in detail the concepts of spectral subtraction and the proposed method of

soft |DFT domain spectral subtraction, followed by a description of missing feature

theory and missing feature compensation in chapter 4. Both of these methods are

evaluated using speech from the TSID corpus with a mismatch condition imposed

through the addition of AWGN to the test data. Chapter 5 investigates what perfor-

mance benefits are possible when the individual techniques in chapters 3 and 4 are

combined in various combinations. The general method of missing feature restora-



tion, which tries to predict missing features rather than discard them as in missing

feature compensation, is addressed in Chapter 6 along with the proposed technique

of time-frequency linear MMSE missing feature estimation. These techniques are also

evaluated with AWGN corrupted TSID speech. Finally, Chapter 7 summarizes the

results presented in the thesis and suggests possible areas of future research.



Chapter 2

Channel Compensation and

Techniques for Robust Speaker

Recognition

The overall goal of speech feature selection in automatic speaker recognition is to ex-

tract from a given speech waveform the most linguistically related signal components,

while hopefully omitting unwanted elements such as noise and distortion imparted

into the signal via both the channel and the speech apparatus itself. These degrada-

tions may be additive, linearly convolutive, or nonlinear in nature and may contain

modulation frequencies in part of or perhaps across the entire bandwidth of the speech

signal. This is especially important in cases where speaker models are trained and

tested in different environments, since leaving the channel characteristics in the train-

ing speech will bias the speaker models in a way that will be uncompensated for in

the testing speech. In essence, the speaker models will reflect not just characteristics

of the speaker, but also those of the microphone, recording equipment, etc., result-

ing in a mismatch condition brought about not by the underlying speech, which is

important, but rather by the environment in which the speech was recorded.

The following sections describe two methods for removing channel distortion from

the speech features, cepstral mean subtraction and RASTA, as well as a method used

to make the features somewhat more robust by including temporal feature informa-



tion. First the methods are described, followed by experimental results using these

techniques in clean/dirty verification tasks.



2.1 Cepstral Mean Subtraction

Cepstral mean subtraction (CMS) attempts to remove from cepstral coefficient speech

features convolutional distortion from a linear time-invariant channel[8]. Consider

a scenario where a clean speech signal x[n] is passed through an LTI system h[n]

producing a filtered output y[n]. Let this output y[n] be windowed by a time-limited

function w[n] in order to extract segments of the signal for short time frequency

analysis, producing the sequence yw [Min], where m denotes the short time segment

and n denotes time

Yw Im, n] = (h[n] * x[n])w[m, n].

Given ywi[m, n], we would like to be able to recover x[n] without having to first

estimate the system transfer function h[n]. This is known as blind deconvolution.

Continuing from the above expression, if we assume that the nonzero duration of

w[m, n] is long and relatively constant over the duration of the channel response h[n],

then the following approximation may be made in the Fourier domain

F{yw[m, n]} = F{(h[n] * x[n])w[m, n]}

~ F{(x[n]w[m, n]) * h[n]}

=X[m, k]H[k]

which, for a fixed discrete frequency value k, is a time-trajectory in the parameter m.

Applying the log operator then gives

log{Yw[m, k]} = log{X ,[m, k]H[k]}

= log{X,,[m, k]} + log{H[k]}.

We see then that each k indexed time-trajectory is the sum of a term that varies with



m given by log{X,[m, k]} and a constant term given by log{H[k]}, representing the

channel. Since this channel term is a constant (DC), it may be removed by subtracting

the mean value from each time-trajectory. Because typical speech has zero DC, this

may be done without disturbing the speech term. This may be done by homomorphic

liftering each of time-trajectories in the cepstral domain

c[m, k] = F-1 (log{X,[m, k]} + log{H[k]})

= x[m, k] + h[k]

- x^[m, k] + hk6[m].

Applying a cepstral lifter l[n] = 1 everywhere except for 0 at the origin will extract

the hk6[m] function representing the channel.



2.2 RelAtive SpecTrA

2.2.1 Introduction and Basic System

Research has found that, much like the other sensory systems in the body, the auditory

system tends to be sensitive to relative changes in an input signal, rather than absolute

levels. Along these lines, there is evidence that the auditory system does not value

signal components of all modulation frequencies equally [8]. Rather, there seems to

be a peak in sensitivity to modulation frequencies around 4 Hz, with the relative

sensitivity gradually decreasing as the frequency is decreased or increased. This

modulation frequency of 4 Hz is sometimes referred to as the "syllabic rate". In

addition, experiments conducted by van Vuuren and Hermansky[15] suggest that

modulation frequencies below 0.1 Hz and above 16.0 Hz do not tend to be very

relevant in determining the various speaker scores in automatic speaker recognition.

These findings were further supported by Summerfield et al.[13] who showed that

the perception of "speech-like" sounds depends strongly on the spectral difference

between adjacent sounds, i.e. the temporal fluctuation of spectral components.

RelAtive SpecTrA (RASTA)[4] makes use of these findings by homomorphically

filtering (liftering) the time-domain trajectories of the logarithmic cepstral speech

features by an IIR bandpass filter with corner frequencies of about 0.26 Hz and 12.8

Hz and a peak at approximately 4 Hz (at the syllabic rate), with sharp notches at

28.9 Hz and 50 Hz. The transfer function for this filter is given by

0.Z2 + z- 1 - z-3 - 2z -4H(z) = 0.1z 2  
- - z

1 - 0.98z 1

The high-pass denominator portion of this filter is to alleviate the convolutional noise

introduced by the channel, while the low-pass portion is added to help smooth out

the fast "instantaneous" spectral changes present in the short-term spectral estimates.

The associated frequency and impulse responses are given in figures 2-1 and 2-2.

It is thus seen that RASTA suppresses speech feature components with modu-

lation frequencies outside H(z)'s passband while keeping those seen as being most
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Figure 2-1: The frequency response of the RASTA filter H(w).
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Figure 2-2: The impulse response of the RASTA filter h[n].



relevant to automatic speaker recognition. Due to the spectral nulling at DC and

other low frequencies below 0.26 Hz, we see that RASTA filtering will remove any

time-invariant, similar to cepstral mean subtraction, as well as slowly time-varying

linearly convolutive channel effects for each separate speech feature time-trajectory.

The result is a reduction in the sensitivity of the new spectral feature estimate to

slow and overly rapid variations in the short-term spectrum, brought about by static

or slowly varying channels, noise, and unnecessary speech content.

2.2.2 Lin-Log RASTA

When performed as described above on cepstral features in the logarithmic domain,

RASTA processing is most effective in diminishing the effects of time-invariant or

slowly time-varying convolutional channel effects that are purely additive or nearly

so (since an LTI channel will map to a linear additive term in the log spectral or

cepstral domain). However, uncorrelated additive noise components that are additive

in the log-magnitude domain, prior to the log operation, become signal dependent

after the logarithmic operation is performed. To see this, consider in the frequency

domain the output Y(w) of a linear system H(w) that is excited by a speech signal

S(w) and is corrupted by additive noise N(w):

Y(w) = H(w)S(w) + N(w)

log Y(w) = log [H(w)S(w) + N(w)]

= log {S(w)[H(w) + N(w)/S(w)]}

= log S(w) + log [H(w) + N(w)/S(w)]

It is observed that by the N(w)/S(w) term the noise is signal dependent and hence

nonlinear, making RASTA processing by a fixed linear IIR filter as before not entirely

appropriate for its removal from the speech signal.

In order to make RASTA processing more amenable to the removal of this sort of



uncorrelated additive noise, a family of alternative nonlinear transforms are employed

instead of the standard logarithm. These nonlinear transforms have the property that

they tend to be linear-like for small spectral values while log-like for large ones. The

transform is parameterized by the single positive constant J and is given by

Y = log (1 + JX)

where X is the linear-domain speech feature and Y is the nonlinear transform of this

feature. To gain some insight into the nature of this operation, it helps to rewrite the

above expression slightly:

Y = log(1 + JX)

= log[J(1/J + X)]

= log(J) + log(1/J + X).

Upon the application of the RASTA filter h[n], the first term (a constant) is removed

due to the high-pass portion of the filter. It is then seen that lin-log RASTA may be

seen as a form of noise masking in which a fixed amount of additive noise is added

prior to the RASTA processing in the logarithmic domain. This is somewhat similar

to a technique employed in generalized spectral subtraction, which is described in

chapter 3, in which additive noise is added to help mask musical tones[8].

To return to the linear domain, the following inverse is applied

X =y .
J



2.3 Delta Cepstral Coefficients

Delta cepstral coefficients (DCC) are used to impart temporal information into the

speech feature vector. In computing the coefficients, a low order polynomial is fit to

to the features within a given window length over successive frames for each feature

trajectory. The parameters of the derivative of the polynomial are used as an extra

feature, appended to the end of the usual feature types discussed in section 1.3. In

this sense, the use of this technique allows the speech features to contain information

regarding the rate of change of formants and other spectral characteristics, possibly

unique to a given speaker [12].



2.4 Results with TSID Corpus

To evaluate how well these techniques perform on real data, each of them was applied

to the train clean/test dirty mismatch scenario with the TSID corpus. In this case,

the actual narrowband noisy cellular data is used for the dirty test data. In all of

the tests done in this section, the speech features used were cepstral coefficients and

the sampling rate was 8 khz, resulting in 24 features. GMM speaker models were of

order 1024.

As a means of comparison to what is possible in an ideal matched clean/clean

case without any equalization applied (trials performed without any form of channel

compensation of other noise management technique will hereafter be referred to as

the baseline case), it was found that the corresponding EER was 4.2%. In contrast, it

was found that the baseline mismatch case of train clean/test dirty 1 had an EER of

approximately 50%, signifying that in the baseline mismatch case for the TSID data

the system is essentially flipping a coin to make its accept/reject decisions.

In applying the techniques of CMS, RASTA, and DCC, both individually and in

combination, the results in table 2.4 were found.

EQUALIZATION EER
Baseline + CMS + DCC 23%

Baseline + CMS + RASTA 28%
Baseline + CMS 28%

Baseline + RASTA 34%
Baseline + DCC 43%

Baseline 49%

Table 2.1: Results applying various channel compensation techniques to TSID data for
train clean/test dirty case.

The corresponding DET curve is given in figure 2-3.

'Results throughout this research have shown that the performance in many cases of the train
clean/test dirty case is nearly identical to that of the train dirty/test clean case. Due to this
observation and the fact that the most likely scenario is clean data during training and dirty data
during testing, this thesis focuses on the train clean/test dirty case.
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Figure 2-3: Comparison of various equalization techniques.

Important points to note are that the Baseline + RASTA + CMS case produced an

EER of 28%, which is the same as the Baseline + CMS case, without RASTA being

applied. As discussed in the introductory part of this chapter, RASTA has been

developed for the purpose of removing slowly varying convolutional distortion, hence

its removal of small quefrencies 2 from 0 to 0.1 Hz. CMS, on the other hand, is only

able to remove strictly time-invariant convolutional distortion through the liftering

out of the 0 th cepstral coefficient for each temporal trajectory. The fact that the EER

values for the systems of CMS + RASTA and CMS alone perform the same at 28%

indicates that for the TSID corpus that the most corruptive convolutional distortion

is likely to be of a time-invariant nature, hence the lack of additional improvement

from RASTA when CMS is already applied. It is also observed that DCC alone

does not help performance very much, while adding DCC on top of CMS improves

performance slightly from 28% to 23%, producing the best performing system that

2 Frequency in the cepstral domain is frequently referred to as "quefrency", noting the reversed

role played by time and frequency in this domain. This also explains the the motivation for the

terminology "cepstral" (spectral) and "liftering" (filtering).



improves the baseline EER by 26%.



Chapter 3

Spectral Subtraction

This chapter investigates a general methodology to deal with the corruption of speech

features with additive noise. It is a well established and intuitively reasonable fact

that as speech is degraded by ambient background noise that the resulting automatic

speaker recognition performance decreases dramatically. One approach to alleviating

this effect is to devise speech features that are sufficiently robust to the noise types

and levels so as to make estimation of the noise characteristics unnecessary. The

approach discussed in this chapter, spectral subtraction (SS), makes the assumption

that the type and level of noise affecting the speech is amenable to being effectively

estimated attempts to derive a spectral characterization of the additive noise process

effecting the speech such that it may be subtracted from the spectral magnitude of

the corrupted speech waveform. While this operation is typically done in the IDFT

domain, applications in the speech recognition and verification for the purpose of

cleaning up speech features have focused on performing the spectral subtraction in

the linear Mel-filter energy domain. This thesis proposes that it be done one stage

earlier in the calculation of the speech features at the |DFT stage prior to the

application of the Mel-filters. This provides a "softer" form of spectral subtraction

that will be shown to be superior to traditional spectral subtraction. This chapter

concludes by reporting several results obtained when these techniques were applied

to the TSID corpus in a clean/dirty mismatch scenario, the dirty data being a result

of additive white Gaussian noise.



3.1 Mel-Filter Energy Domain Spectral Subtrac-

tion

First we will consider the spectral subtraction in the domain in which is has typically

been applied when the goal is to enhance speech features, in the linear mel-filter

energy domain.

Consider a speech signal x[n] that has been corrupted by additive stationary

ambient noise a[n], producing a noisy speech signal y[n]

y[n] = x[n] + a[n],

the spectral magnitude of which is

|Y(w)| 2 = IX(w) + A(w)| 2

= [X(w) + A(w)]*[X(w) + A(w)]

= IX(w)12 + IA(w)12 + X*(w)A(w) + X(w)A*(w).

If we make the reasonable assumption that x[n] and a[n] are uncorrelated wide-sense

stationary (WSS) processes, then taking expectations gives us

E[|Y(w) 12] = E[IX(w)12 + IA(w)12 + X*(w)A(w) + X(w)A*(w)]

= E[IX(w) 12] + E[IA(w) 12] + E[X*(w)A(w)] + E[X(w)A*(w)]

= E[IX(w) 12] + E[|A(w) 12] + E[X*(w)]E[A(w)] + E[X(w)]E[A*(w)]

= E[IX(w) 12] + E[IA(w) 12]

since the complex spectra of both the speech and the ambient noise will typically

be zero mean. If the spectral magnitude IY(w)|2 is then input to the mel-filterbank,

composed of filters M[k], then on the average the resulting linear mel-filter energy



features M in,[m, 1] will be composed of a signal component and an additive noise

component

Min[m, 1] = Mt.rue[m, 1] + NAin[m, 1],

where Mtrue[m, 1] denotes the true underlying linear mel-filter energy that we would

like to recover. If the non-speech parts of the utterance which only contain the

ambient noise are isolated, then an estimate of the power spectral density E[IA(w) 12]

can be made and similarly processed by the mel-filterbank to produce an estimate

of the linear mel-filter energies for the noise, Rii[m, 1]. The true value of the signal

component of the corrupted linear mel-filter energy features is then estimated as

'1true[m, 1] = Mi[m, 1] - gin[m, 1].

It is thus seen that while instantaneously we may not be able to subtract out the

linear mel-filter energy of the noise and recover the linear mel-filter energy of the clean

speech signal, given that a good estimate of the spectral magnitude of the ambient

noise is available and that the statistical conditions are met, we may approximately

do so in an average sense'.

Given that the estimate for the linear mel-filter energy of the noise will often

instantaneously exceed that of the noisy speech signal, practical frame-by-frame im-

plementations of spectral subtraction are usually given as

Min[nl1] - in[m,l], if Min[m,l] > RAin[m,l]

0, otherwise.

This is done to avoid physically impossible negative energy estimates.

Due to issues involving artificially created musical tones in re-synthesized speech

when spectral subtraction is used in the IDFT domain, to be studied next, the

'This distinction between instantaneous and average results is an important one which will have
implications later



operation of spectral subtraction in the linear mel-filter energy domain is typically

parameterized by two parameters, a and # as spectral subtraction applied in the

IDFT domain does. Although this motivation is not directly relevant to the linear

mel-filter energies, a similar formulation has been adapted in this domain as well. The

relationship for this perceptually motivated form of spectral subtraction, referred to

as generalized spectral subtraction[1], is given by

D[m, 1] = Mi,,[m, 11 - axii. [M, 11

and

M'true[m, 1] { D[m, 1], if E[m, 1] > #Afjijn[m, 1]

391j,, [m, 1], otherwise,

where a > 1 and 0 < 3 < 1. a is used to overestimate the linear mel-filter energy

of the noise, and 3 determines the level of the spectral flooring as a fraction of the

estimated noise linear mel-filter energy. The motivation for the use of these parameter

will become clearer in the following section.

3.2 Soft IDFT Domain Spectral Subtraction

In the previous section the development of generalized spectral subtraction, as applied

to the linear mel-filter energies, was discussed. While this technique does have the at-

tractive characteristic of removing the additive noise in an average sense, as discussed

above it instantaneously may result in a physically impossible negative clean mel-filter

energy estimate. To avoid this scenario a nonlinearity is applied that essentially zeros

any clean energy estimates falling below the threshold #jiinIm, 1].

While this may seem to be the most appropriate thing to do in this situation, it

raises the issue of there being possible additional performance reductions resulting

from this highly nonlinear flooring operation being applied to instantaneous values,



rather than to averages. If the values involved were long-term averages of the signal

and noise spectral densities, then perhaps this method of handling negative estimates

would be always valid since at least the resulting estimate after the flooring would

always be closer to the true value. Instantaneously however, the interpretation needs

to be a bit more careful. For example, even if the noise is additive white Gaussian noise

and hence has a flat power spectral density, at a given frequency its instantaneous

power may actually be very low. In this case the spectral subtraction algorithm is

overcompensating for the noise and, if the instantaneous signal power is low enough,

may result in the flooring to take effect and the estimate being set to a near zero

value, #XA5j,[m, 1]. When this occurs a potentially clean mel-filter energy has been

replaced with the near zero value since the instantaneous noise power density was

less than its average, a potentially very common occurrence. It is thus seen that the

application of the flooring operation, while necessary to avoid physically impossible

negative power estimates, will likely instantaneously result in many poor resulting

estimates for the clean mel-filter energy features.

It is this consideration that makes the application of spectral subtraction-based

feature enhancement in the JDFTJ domain a potentially more attractive option than

the way it is currently being pursued, i.e., in the linear mel-filter energy domain[1].

Because the nonlinear flooring operation is now applied to the IDFT values, prior to

the mel-filterbank, the error component of each spectrally subtracted value X[m, k]

may be decreased through the averaging that occurs as these values are put through

a weighted sum via the mel-filters M, [k]. To make this clearer, consider the following

two equations that show the resulting linear mel-filter energy Mjj"[m, 1] when spectral

subtraction, symbolized by the operator , are applied in the JDFTJ domain and in

the linear mel-filter energy domain:

MDFT[7m, 1] =E M[k] I2{X[m, k] - NDFT[m, k]
k

and



MMEL[m,] = L[{ Mi[m, k]X[m, k]} - NMEL[m, k]],
k

where MDFT[m, 1] is the linear mel-filter energy when spectral subtraction is applied

in the IDFT domain, MMEL m, 1] is the linear mel-filter energy when spectral sub-

traction is applied in the linear mel-filter domain, NDFT[m, k] is the noise spectral

estimate in the IDFT domain, and NMEL[m, k] is the noise spectral estimate in the

linear mel-filter energy domain. It is seen in this these two espressions that while

MMEL[m, 1] is exposed to a single nonlinearity operation L, MDFT[m, 1] is computed

by summing the outputs of large number of weighted nonlinear operations L. It is

reasonable to think that this may allow for some of the error introduced by the non-

linearity to be averaged out. A study of the fundamental differences between SS in

these two domains is needed to better understand any peformance differences.



3.3 Results for Spectral Subtraction

Experiments were run to evaluate the performance of both linear mel-filter energy

and IDFT domain spectral subtraction. These tests were done for the clean/dirty

case where, as has been the noise scenario used during this paper, the corruption was

AWGN. Because in all of the tests in this thesis it was found that relative performance

at all miss and false acceptance probability levels was reflected in the relative EER

differences, for clarity, results will be reported in terms of EER2 . In all of the tests

done in this section, the speech features used is scoring are logarithmic mel-filter

energies and the sampling rate was 8 khz, resulting in 24 features. 1024 mixtures

were used in each GMM speaker model.

The performance for linear mel-filter energy domain SS, shown in figure 3-1, is

seen to depend on the level of noise corrupting the speech. For SNR values below

approximately 13 dB application of SS in this domain was found to improve perfor-

mance over the baseline by about 4%, while for higher SNRs performance was hurt,

by roughly 5%.

In contrast to this result, we see in figure 3-2 that for spectral subtraction applied

in the IDFT domain that performance is improved substantially at all SNR levels

over baseline. At high SNRs above about 15 dB the EER is improved by about 5%

and this improvement increases by close to 10% at low SNR levels. To emphasize the

imrovement this form of SS gives, results for RASTA processing are also included in

the figure. It is seen that |DFT domain SS provides substantially lower SNR than

RASTA in an AWGN environment.

2Although it has been observed that relative performance differences between two systems as

reflected in EER often reflects relative performance at all the different possible threshold levels
described by the DET curve, this is not always the case and care must be taken to not make
overgeneral conclusions based on EER.
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Figure 3-1: Plot showing EER vs. SNR (AWGN) for both the baseline case as well as with
linear mel-filter energy domain spectral subtraction. It is seen that the performance relative
to the baseline depends on the SNR of the additive noise, gains over baseline occuring at
lower SNR levels.
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Figure 3-2: Plot showing EER vs. SNR (AWGN) for both the baseline case as well as with

IDFTI domain spectral subtraction. The application of spectral subtraction in this domain
is seen to improve performance over the baseline case significantly at all SNR levels, going
from about a 4% improvement at high SNRs to a near 10% improvement at low SNRs. For

comparison, results for RASTA processing are also shown.



Chapter 4

Missing Feature Theory

This chapter investigates missing feature theory, which takes a approach different

from that seen in chapter 3 in addressing the problem of handling noisy speech. This

method attempts to estimate which features are most heavily corrupted and labels

them as "lost", to be either removed from scoring or replaced with a new estimates

of their true values. This is opposed to being "present", in which case it is estimated

that the speaker related information has not been masked out by the noise so as to be

unusable. There are two basic techniques related to this concept that will be studied

in this thesis. The first of these, known as missing feature compensation (MFC)

involves dynamically modifying the GMM in order to remove terms associated with

the missing features and is the topic of this chapter. The second method is known as

missing feature restoration (MFR) and will be developed in chapter 6.

This chapter finishes by reporting several results obtained when these techniques

are applied to the TSID corpus in a clean/dirty mismatch scenario, the dirty data

being a result of additive white Gaussian noise.



4.1 Missing Feature Theory

In any speaker recognition system in practice, the speech being analyzed almost un-

avoidably is subject to noises that naturally degrade performance. While there are a

wide range distortion types that can be encountered, a common model of distortion

is additive noise, specifically additive white Gaussian noise (AWGN). While there are

many techniques such as RASTA and cepstral mean subtraction have been developed

to preprocess the speech and reduce the influence of convolutive noise, these tech-

niques often fail to adequately remove the noise in time-frequency regions dominated

by additive noise. While often it is possible to perhaps remove the noise, this may be

necessarily accompanied by an amount of speech distortion that nulls out any possible

performance gain.

Missing feature theory addresses the topic of corrupted speech features and essen-

tially recognizes the fact that the above mentioned noise reduction/speech distortion

trade-off exists and that at times a feature may be too corrupted to be able to use

effectively. The idea is that while there may be useful speech information contained

within a given speech feature, it is possible that the amount of noise in that time-

frequency region is high as to effectively bury any useful speaker dependent spectral

information. In this case the inclusion of this highly corrupted feature in the scoring

mechanism of the GMM may only worsen performance. The question then becomes

how the automatic speech recognition system should handle the missing feature once

it is found.

4.2 Missing Feature Compensation

One manner discussed by Lippman in [6] as well as Drygajlo and El-Maliki in [1]

to deal with a missing feature is to dynamically adapt the GMM stochastic speaker

models to remove it from inclusion in scoring. This method is referred to as missing

feature compensation and uses generalized spectral subtraction to classify features as

"missing" or "present", rather than as a speech enhancement preprocessor. Recalling



the expression for generalized spectral subtraction in 3.1, a similar relation is now

used to detect missing features:

Dm(w) = |Ym(w)| 2 - IAm(w)| 2

and

"present", if Dm(w) > 3Am(W)| 2

"missing", otherwise,

where a > 0 and 0 < # < 1.

As discussed in the introduction, the speaker verification system used in this

thesis was based on GMM speaker models, which are probability density functions

comprised of a linear combination of multi-dimensional Gaussian densities, each of

which describes a particular speech "state" of the speaker

M

p(XIA) = [p i (X, pi, E)
i=1

where pi is the is the probability of the speaker being in state i, 1 is a multi-

dimensional Gaussian pdf for that state with mean paL and covariance matrix Ei,

and M is the number of speech states. Although the off-diaganal terms in E are

typically nonzero, for the order of most GMMs keeping all those terms would lead to

an excessive computational burden. To alleviate this problem, Ej is often assumed to

be diagnol and its off-diagonal terms are forced to 0. Because of this assumption each

of the multi-variate Gaussian pdf's 4 may be rewritten as a product of single-variate

Gaussian pdf's as follows

M D

p(XIA) = Zpi1 i(xk, Pi, Ui)
i=1 k=1

where D is the dimension of the feature vectors and p4i and oAi are the mean and

variance of feature element Xk. Given our Spectral Subtraction based missing feature

detector, we may label each of our feature elements Xk as being either "present" or



"missing" and hence divide our overall speech feature vector X = {x 1 , x 2 , ... , IXD

into two sub-vectors, Xpresent and Xmisinq. With this regrouping our above equation

becomes

M Dpresent Dmissing

p(XIA) = Epi fJ x, 171 I(X, 7kiI, oi)-
i=1 j=1 k=1

Missing Feature Compensation then proceeds by removing the second product term

representing the sub-vector Xmissing and leaving only the data associated with Xpresent

M Dpresent

pmfc(X|A) = E pi 11 41i(zj, Ip-ji, Uji)

i=1 j=1

This new pdf pmfc(XIA) is then used in place of the full multivariate GMM p(XIA).

One potential problem with the missing feature compensated speaker model is

the fact that this new probability density function is by no means guaranteed to be

properly normalized to represent a valid probability space, and in most cases it will

not. For example, while it may be true that the original pdf p(XIA) would integrate

over its constituent feature space to 1, there is no reason to think that the same will be

true for Pmfc(XIA). While this may appear to be a potentially detrimental flaw with

missing feature compensation, it has been found experimentally that in the case of

speaker verification that this does not tend to be the case. The reason for this seems

to be that the use of a background speaker model to normalize the likelihood scores

in speaker verification not only helps normalize for any variations in the channel, but

also provides a degree of probability space normalizing in the case of MFC. Several

speaker verification tasks were run and the speaker scores versus time were looked

at along with the corresponding scores for the background model. As discussed in

chapter 1, in speaker verification tests the speaker scores are normalized in the log

domain by the corresponding scores of a background model, in other words

A(XT) = log[p(XTIAc)] - log[p(XT|Abkgd)].

It is hoped that the inclusion of the background model in the expression above will



allow for variations in the speaker score caused by missing feature compensation

to be compensated for by similar variations in the background score, such that the

difference seen above will remain relatively constant. To investigate this, a controlled

experiment was run in which a predetermined feature was declared missing for every

frame and the corresponding normalized (by the background model) scores for a given

speaker were compared to the same normalized scores for the same test but with no

features declared to be missing. This was done with clean data. Plotting these two

sets of normalized scores for the case where only the 10 "h feature was declared missing

every frame resulted in the plot seen in figure 4-1. This linear relationship between

these two sets of scores demonstrates the fact that the speaker and background scores

tend to vary together, and as a result the component of the speaker scores that is

attributable to the inclusion or removal of mixtures associated with the present and

missing features is normalized by a similar component in the background scores. This

is a result of the fact that decisions made regarding present and missing features hold

for all speakers, including the background model as well, resulting in similar missing

feature compensation in both. It should be noted, however, that this will not hold

for any number of features declared missing. As was may be seen in figure 4-3, EER

performance will be generally maintained given that the number of missing features

declared and removed is below a certain threshold (roughly equal to 15 in figure 4-3),

beyond which the loss of speaker dependent spectral information begins to dominate

performance.

To investigate in a controlled manner the potential performance benefit that miss-

ing feature compensation can offer, a few experiments were done in which additive

noise and feature nulling were used in combination with MFC. ditive noise and fea-

ture nulling were used in combination with MFC. The first point was the question of

how much performance degradation might occur if a single feature was truly missing,

in the sense that it was perhaps subject to tonal distortion in its associated spectral

range during a given frame. To simulate this condition, a test was run in which the

1 0 th linear mel-energy feature for every frame (out of 24 features) for an otherwise

clean/clean case. Every other feature was uncorrupted. The choice of the 1 0 th feature
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Figure 4-1: This plot shows the background model normalized log probability scores with-
out MFC versus the corresponding values with MFC. The hope is that normalization of
speakers' log probability scores with the background model's score will help to properly
normalize the probability space in cases where MFC is applied. In this plot, the scores
where MFC was applied resulted from removing the 1 0 th feature from every frame. It is
seen that corresponding scores with and without MFC tend to be highly correlated, support-
ing the claim the background model normalization helps correct for improperly normalized
pdf's when MFC is applied. Similar results were seen when slightly more features were
removed in a controlled fashion as well.
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Figure 4-2: Illustration of DET performance with oth linear mel-filter energy feature
floored and with the same feature removed via MFC. MEG is seen to recover the baseline
performance. DET curves with 20 dB of additive noise are given for reference.

was made since it has been experimentally shown to represent information in a rela-

tively important spectral band[15]. The resulting EER point was found to be 32%, in

comparison to an EER of 3.26% in the uncorrupted clean/clean case. This indicated

that even a single feature, if heavily corrupted, could severely impact recognition

performance. Given that even a single heavily noise masked feature per frame would

have this effect, it is of interest to see the impact that removing that feature from

every frame via MEG would have. To this end another test was run in which MEG

was applied to the loth feature in every frame, resulting in an BER of 3.39%, only

slightly worse that the ideal clean/clean baseline result. These results suggest that

significant performance gain can be potentially realized through accurately detecting,

and removing, missing features. The DET curve for these tests is in figure 4-21.

One important concept regarding the use of MEG is that with any feature that

is removed from scoring, not only is the masking noise being discarded but so is any

speech information contained in the feature. It is conceivable that in some cases

the removal of a given feature's noise from the scoring mechanism via MFC may

1 The blocks seen in this figure represent confidence/significance intervals assuming an underlying
binomial distribution.



compensate for the associated loss of speech information, but at a certain quantity

of removed features the absence of speech information will likely become too great to

make further application of MFC beneficial. To investigate this question and develop

an understanding of the trade-off involved, another set of experiments were done

which involved the corruption of randomly chosen features every frame for the clean

test data. The number of corrupted mel-filter energy features was fixed, although the

particular features these would be was determined randomly every frame, each frame

independent of the others. The corruption was additive white Gaussian noise at 20

dB. One test simply looked at verification performance using this randomly corrupted

data. For comparison, another test was done in which for each frame a certain

predetermined number of features were chosen randomly to be removed by MFC. In

addition, a third trial was run where 20 dB of noise was added to all features and a

fixed number of features in each frame were randomly chosen to be removed by MFC.

The resulting EER points may be seen in figure 4-3. One very interesting result seen

in these results is that the application of MFC has the property of maintaining EER

performance up to the removal of about 15 mel-filter energy features, outperforming

the case of no MFC up to the removal of about 20 features. It is thus seen that,

as expected, the application of MFC in these controlled experiments does help to a

certain point, beyond which the noise removal cannot compensated for the loss of

necessary speech information to do effective speaker verification and the performance

starts to worsen rapidly.

4.3 Missing Feature Detection

One underlying assumption in the work discussed thus far has been that the identity

of which features are missing and which are present is known. Not only does this

entail an ability to reasonably detect or estimate the amount of corruption in a given

feature, but it also requires an assumption about what it means to be "missing".

There are many ways of measuring error, some typical definitions being mean-square

error and absolute error. In addition, for each possible manner by which the error

A
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Figure 4-3: Trade-off between corrupted features and removing speech information in MFC.
This curve shows EER performance with and without MFC for an increasing number of
randomly corrupted or removed mel-energy features.

may be measured, there are a range of possible threshold values that may be chosen

to divide between features classified as present and those classified as missing. In this

work the assumption made is that error distance is the criterion of importance. As

is suggested by Drygajlo and El-Maliki [1], the missing feature detector used in this

thesis is generalized spectral subtraction, which in the linear mel-energy domain is

given as follows

usi.[m,1] "tpresent"
Ml;n[m, 1] - ag 1in[m, l] Z #Miin[m, 1],

Mui,[m,1 "missing"

where Mlin[m, 1] and Ain,[m, 1] are the jIh corrupted feature and estimate of the noise

component of that feature for the m"h frame, respectively2 . Because the motivation

for the inclusion of # is that in speech enhancement applications of GSS in the IDFT

domain it partially determines the amount of noise added to the enhanced speech,

2 Although not strictly true do to nonlinearities in the steps leading to the linear mel-filter energies,
the assumption will tacitly be made here that the signal and noise components of the features add
to produce the resulting corrupted feature.



in the aim of reducing the amount of perceived musical noise. In the application

discussed in this section this motivation for having a nonzero # is gone, and hence #

will typically be set to zero since it only contributes noise to the enhanced features.

Given the assumption that the criterion for detecting missing features above is

correct, a "perfect"3 missing feature detector is available for cases where artificial

additive white noise is added since both the true clean linear mel-energy feature as

well as its corrupted version are available. Hence Krui[m, 1] may be found by finding

the difference between the two and then used in the detection formula above. In

contrast to this is what will be referred to as the "nonperfect' detector, in which case

the expressions above still hold but where the noise estimate Afi [im, 1] is derived from

averaging the features that result during silence frames4 . In all of the experiments

discussed in this thesis, this noise estimate in, [Im, 1] was a result of averaging a very

large number of silence frames such that it is very close to the true value. As in the

perfect detector, # is normally set to zero.

3This detector is perfect given the assumption stated earlier in this section.
'Speech/silence decisions necessary for all the various experiments done during this thesis were

produced by a program called "Xtalk", written by Doug Reynolds at the MIT Lincoln Laboratory.
Xtalk operates by tracking the minimum and maximum energy levels in a given utterance and
estimating that frames with an energy level above some percentage of the difference between these
values is speech.



4.4 Results for Missing Feature Compensation

One of the first issues addressed with regard to techniques that require missing feature

detection is the question of how to calibrate the detector, or rather, what value of a

results in the best performance. To answer this question, several initial experiments

were run in which various levels of noise from 5 dB to 20 dB were added and en-

hancement using linear Mel-filter energy domain spectral subtraction was done with

a values ranging from 0.5 to 5.0. As before, logarithmic mel-filter energies were the

selected feature type for scoring and the sampling rate was 8 khz, resulting in 24

features. GMMs were of order 1024. Performance was judged in terms of EER, and

at each noise level the value of a = 3.0 was found to result in the best performance.

A similar set of tests were done in which the perfect detector was used in conjunc-

tion with MFC, in which case a = 3.0 was again found to be the optimal value.This

is interesting in that a value of a = 3.0 suggests that it is preferred to somewhat

overestimate the amount of energy in the noise during the subtraction. This tends to

agree with the result associated with figures 4-2 and 4-3, which suggest that there is

indeed a trade off between removing noise and removing speech information and that

it is detrimental to try to remove all noise. From these results it may be said that it

is only the features that are effected most heavily that should be removed as doing

otherwise would potentially remove too much speech information. Based on these

results all missing feature detection was performed with values a = 3.0 and # = 0.0.

In any real application of spectral subtraction and MFC, naturally perfect instan-

taneous knowledge of the noise component of Mu2 [m, 1], ju [m, 1] will be unattain-

able and the best that can be hoped for is an estimate that is close to the average of

this process:

Sunim Yl] 4 u[m,1].

In order estimate this average, features resulting from nonspeech frames may be

averaged, either globally if the noise is stationary or adaptively if the noise is non-

stationary. One question of interest then is how close the missing feature decisions
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Figure 4-4: Average correlation between the perfect mf detector (a it3.0) and nonperfect
mf detectors (a = 1.0 and 3.0). Shows that the average correlation for the a = 3.0 nonper-
fect detector is > 0.7 for most of the features, close to 0.9 for the highest ten features. The
nonperfect detector with a = 1.0 has been shown for reference.

made by the nonperfect detector, using only an estimate of Ai [i, 1], are to those

made by the perfect detector, which is fortunate to be able to use the actual instan-

taneous noise component Aruh[l, 1]. To address this issue the correlation between the

perfect and nonperfect missing feature detectors for each feature was studied in an

AWGN environment at SNR levels from 10 dB to 20 dB, the average correlations of

which are shown in figure 4-4. For comparison, the correlation results for the a = 1.0

nonperfect mf detector has been shown as well. This figure demonstrates that for

the majority of features (roughly features number four and greater) the correlation

between the perfect and nonperfect (a = 3.0) mf detectors is rather high, greater

than 0.7 and closer for 0.9 for the majority of features. The result of this is that

it may be somewhat reasonably expected that at various SNR levels the nonperfect

estimator's decisions regarding present and missing features will match those of the

perfect mf detector rather closely for most features.
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Figure 4-5: Plot showing the average number a particular feature is declared missing per
frame by the perfect mf detector(a = 3.0) and nonperfect mf detectors (a = 1.0 and 3.0).
The perfect and a = 3.0 nonperefect detectors are seen to have produced almost identical
results. Results are for 20 dB AWGN.

It is also of interest to know how well the perfect and nonperfect missing features

detectors correlate with respect to other aspects of missing features detection, such

as the average number of times a particular feature is declared missing per frame as

well as the total number of missing features declared missing per frame. These were

also measured experimentally for the perfect mf detector and the two nonperfect mf

detectors at various SNR values in an AWGN environment. The results showed again

that the correlation of the a = 3.0 detector with the perfect detector is quite high.

The results for an additive noise level of 20 dB may be seen in figures 4-5 and 4-6.

Using these two MF estimators, experiments were run to evaluate the performance

of both linear mel-filter energy and IDFT domain spectral subtraction as well as MFC

in comparison to the baseline case. All tests are clean/dirty, where as has been the

noise scenario used during this paper the corruption was AWGN. Because in all of

these tests it was found that relative performance at all miss and false acceptance
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Figure 4-6: Plot showing the frequency per frame that a given total number of missing

features are detected by the perfect mf detector(a = 3.0) and nonperfect mf detectors

(a = 1.0 and 3.0). The results for the perfect and a = 3.0 nonperefect detectors are seen

to be almost identical. Results are for 20 dB AWGN.
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probability levels was reflected in the relative EER differences, for clarity results will

be reported in terms of EER5 .

Results comparing the performance of MFC, with missing features detected with

both the perfect and nonperfect estimators, with the baseline case is given in figure

4-7. One important thing to notice regarding the two curves for the MFC case is that

they are nearly overlapping, with the maximum deviation being less than 1% at lower

SNR values. It is seen that while the application of MFC at lower SNR values tends

to hurt EER performance somewhat, at higher SNRs of roughly 17 dB or more the

MFC begins to outperform the baseline case. At noise levels greater than roughly 18

dB the improvement over baseline rises to approximately 4%. The reason for a lack of

uniform improvement at different SNRs using MFC is likely to be due to the noise vs.

speech information discussed earlier in this chapter and highlighted in figure 4-3. In

this study it was noted that starting from the case where no corruption is added, as

noise is increasingly added to features MFC tends to outperform the case in which no

processing is done up to a certain level of corruption, beyond which the application of

MFC will begin to hurt performance more than it helps. The explanation for this is

that at high SNR levels the amount of speech information retained in the system after

MFC is still high enough to effectively do speaker verification; there is an amount

of "redundancy" of speech information and the fact that removal of poor features

removes some of the noise in the scoring mechanism helps to improve performance.

At a point however, the amount of corruption has become high such that more features

are being declared as missing and more speech information is being thrown away. At

this point the loss of needed speech information degrades performance beyond any

improvement resulting from noise removal.

5Although it has been observed that relative performance differences between two systems as
reflected in EER often reflects relative performance at all the different possible threshold levels
described by the DET curve, this is not always the case and care must be taken to not make
overgeneral conclusions based on EER.
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Figure 4-7: EER vs. SNR for MFC with both perfect and nonperfect applications of MFC

as well as the baseline case. Both the nonperfect and perfect missing feature detectors are

shown to have nearly identical results at all SNR levels. At lower SNRs MFC is seen to

degrade performance slightly (< 1%), while at higher SNR levels above approximately 17

dB it starts to improve performance by close to 3.5%.



Chapter 5

Cascade Noise Handling Systems

In the earlier chapters of this thesis various methods of channel compensation and

missing feature concepts were presented. The techniques examined have been cepstral

mean subtraction, RASTA, spectral subtraction (both linear mel-filter energy and

DFT domain varieties), and missing feature compensation. For each approach, the

effect of the technique was investigated individually.

The natural question, given the earlier results, is what additional performance

gains are available if these techniques are combined. Each of these methods is designed

to address a particular channel compensation or noise handling need, the underlying

assumptions and techniques being different and non-overlapping. In this chapter

various combinations of these four building block techniques is investigated. The

ability of the separate techniques in each combination to complement each other,

paying attention to the noise reduction vs. speech distortion trade-off, determines

how well they do when combined. Each system is used in a clean/dirty speaker

verification task in which the dirty data was clean speech corrupted with levels of

AWGN varying from 5 to 20 dB. In addition, in all cases the selected feature type is

logarithmic mel-filter energies and the sampling rate is 8 khz, resulting in 24 features.

All GMM speaker models are of order 1024.



5.1 RASTA with Spectral Subtraction

In this section the performance of a system combining RASTA feature trajectory

filtering with both linear mel-filter energy and DFT domain forms of spectral sub-

traction is considered. The results for these two systems, as well as plots for the

baseline and constituent systems individually, may be seen in figure 5-1. It is seen

that the system combining RASTA with the IDFT domain spectral subtraction does

the best of the two combination systems considered. Compared to the pure IDFTI

domain SS system, it only does slightly better (~ 2%) at low SNR values. As the noise

level increases above 15 dB, the system equals and then begins to underperform the

pure IDFTI domain SS system. One possible explanation for this is that at low SNR

levels the more narrow bandpass RASTA filter may do a better job removing high

power noise, necessary to improve performance, while at high SNR values this may

eliminate spectral speaker information than noise. Hence the observed performance

could be a result of the noise removal vs. spectral speaker information retention

trade-off discussed earlier.

5.2 RASTA with Missing Feature Compensation

This section investigates at the performance when RASTA is combined with missing

feature compensation. In order to do the MFC, both the perfect and nonperfect

missing feature detectors are used, with nearly identical performance. The results are

shown in figure 5-2, where it is seen that combining RASTA with MFC either almost

equals the performance of pure RASTA (at SNRs greater than 20 dB), or does worse

by close to 4% (at all other SNRs). At lower SNR levels, the combination system is

seen to actually underperform the baseline case.
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Figure 5-1: EER performance as a function of SNR for cascade systems using RASTA and
one of linear mel-filter energy or |DFT SS systems. For comparison the baseline system,
the RASTA system, and the |DFT| system are plotted as well. It is seen that when linear
mel-filter energy SS is used with RASTA that performance is worse than straight RASTA
at all SNR levels except than the lowest, at 5 dB. This is in contrast to the system using
RASTA with |DFT| SS, which is seen to do better than either RASTA or |DFT SS used
alone at almost all SNRs. For this system EER performance is typically 8% better than
the baseline system.
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Figure 5-2: Performance with a system combining RASTA with missing feature com-
pensation. Performance curves for the baseline and pure RASTA systems are shown for

comparison. It is seen that the RASTA+MFC system underperforms both the baseline and

pure RASTA systems, particularly the pure RASTA system. Only at high SNR levels of 20
dB and above are any benefits seen, but then only by about 1%.

A



5.3 |DFT| Domain Spectral Subtraction with Miss-

ing Feature Compensation

Earlier it was seen in section 3.3 that the pure SS system in the IDFT domain

outperformed the performance of SS when applied on the linear mel-filter energies.

This section investigates how the performance of these systems changes when they

are combined with missing feature compensation. The results are seen in figure 5-3.

It is seen that the combination of |DFT domain SS and MFC greatly outperforms

the pure SS systems, the linear mel-filter energy SS and MFC combination system, as

well as the baseline. The observed performance improvement holds at all SNR levels

and is able to achieve a reduction in EER by an average of as much as approximately

15% at the various SNR levels tested. The second best performing system in this set

of trials was the pure IDFT domain SS system itself, which was outperformed by

the combination system at all SNR levels by about 10%.

Of all the various techniques described in this thesis, for the particular channel

and training/testing conditions assumed, the system combining IDFT domain SS

and MFC has been shown to perform the best. The resulting performance gain is

equivalent to a significant 13 dB gain in improvement as measured by equivalent noise

power. Note that it was found that performance was nearly identical for both perfect

and nonperfect missing feature detectors.

5.4 RASTA with Spectral Subtraction and Miss-

ing Feature Compensation

Finally, this section investigates combining RASTA with spectral subtraction and

missing feature compensation. Both IDFT| domain and linear Mel-filter energy do-

main SS are employed, with results seen in figure 5-4. It is observed that, as has been

a trend throughout these results, the IDFT version of SS significantly outperforms

that of the linear mel-filter energies. For the particular channel being considered
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Figure 5-3: Combination systems of IDFTI domain SS + missing feature compensation

and linear mel-filter energy SS + missing feature compensation. Also shown are the baseline

and pure SS systems' performance for comparison. The |DFTI domain SS + MFC system

substantially outperforms the linear mel-filter energy SS + MFC system as well as the other

systems shown, at all SNR values. It is seen to perform better than the baseline system

by approximately 15%. The linear mel-filter energy SS + MFC system, on the other hand,

only achieves performance roughly halfway between these two.
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Figure 5-4: RASTA processing in combination with missing feature compensation and
linear mel-filter energy SS or IDFT domain SS. The system with the IDFT domain SS
is seen to do better than the other system as well as baseline for at all noise levels. The
system with linear mel-filter energy SS only improves over the baseline at low SNR values,
hurting performance at the higher ones.

however (AWGN), the system combining IDFT domain SS with MFC is seen to do

best without additional RASTA processing. For this channel it may be assumed that

RASTA processing produced more speech distortion than useful noise reduction. This

is in accordance with the intended purpose of RASTA filtering, which is to remove

convolutional distortion, not additive noise.



Chapter 6

Missing Feature Restoration

In the previous section the theory of missing features and the technique of missing fea-

ture compensation were introduced. In missing feature compensation, the approach

in dealing with speech features declared missing is to adapt the automatic speaker

recognition system around that void in available speech information to ensure that

it does not get included in the scoring mechanism. It is assumed that any speaker

information present in the feature is so heavily masked by the noise/distortion that

its usefulness or recoverability is negligible and hence should simply be eliminated

from consideration in the scoring stage. Missing feature restoration takes a differ-

ent approach in this scenario by attempting to take advantage of various auto and

cross-correlation properties inherent in the different speech feature trajectories and

use them to estimate the value of the missing feature. Once the feature's values has

been estimated, the estimate may be used in place of the corrupted missing feature.

This concept of missing feature restoration is a new concept in robust speaker

recognition and as such is largely unexplored. To date, only one study in this[2] has

appeared in the literature. This chapter briefly qualitatively describes the approach

and results thus far and then describes the missing feature estimation method that

is researched in this thesis.



6.1 Previous Work in MFR

In their paper on missing feature estimation[2], El-Maliki and Drygajlo propose two

different ways in which missing features are estimated. This section briefly outlines

these two methods and their corresponding results.

6.1.1 Integrated Speech-Background Model

This first method begins with the assumption that the corrupting noise process vec-

tor Nt degrades the underlying clean speech feature vector Xt in a component-wise

fashion producing a noisy feature vector Yt through the function f, i.e.,

Yt = f(Xt, Nt).

in the linear domain. When transformed to the logarithmic domain, denoted by the

1 superscript, the MAX model assumed states that the observed feature vector Y' is

equal to the greatest of the logarithms of Xt and Nt, X and N' respectively, such

that

Y' = log(Xt + Nt) ::::: max(X , N')

in which case f -+ max. It is also assumed that the ambient noise may be modeled

by a GMM in the same manner as the speech, given by

D\,

p(X|An) = pD<}(X, I, E).
i=1

Given this model, the integrated speech-background model (ISBM) missing feature

estimator takes the following form

Zi E(X'IY', i, A) = X p(XIY , i, An)dX'dCn

where C is the contour of integration defined by the range of Xt as determined by

the MAX model as well as the assumed underlying noise model An. Note that this



estimator is not equivalent to the optimal minimum mean-square error estimator.

6.1.2 Mean Estimation

As mentioned in the section on missing feature theory and compensation, after missing

features have been detected the speech feature vector X may be thought of as being

composed of two sub-vectors, denoted by Xpesent and Xmissing, which represent the

present and missing features. With regards to the speaker model parameters, a similar

grouping may be done as follows

p = (lppresent [Lmissing )T , - PM

For the purpose of missing feature estimation, an additional GMM model for each

speaker is constructed composed of a single Gaussian density. The first method of

mean estimation (ME) missing feature estimation simply replaces any missing features

Xmissing with their corresponding mean values present from the single Gaussian pdf

speaker model, i.e.,

Xmissing -- ymissing-

The second estimation method performs a conditional mean calculation via linear

regression using the parameters of the single Gaussian density model:

Xmissing = E(XmissinglXpresent, A)

= Imissing + E mp(Xpresent - ppresent )EPP-

It is important to note that this estimator is also not the optimal minimum mean-

square estimator.



6.1.3 Results

In [2], with speech taken from the NTIMIT database, a collection of clean phone

quality speech, was used to evaluate the above techniques. 400 speakers were selected

and for each speaker two sentences were used. The speaker models were 32-order

GMMs and the noise added was AWGN.

At SNRs ranging from 0 to 18 dB, both the Integrated Speech-Background Model

and Mean Estimation estimation methods were shown to perform worse than Miss-

ing Feature Compensation while much better than the case where no missing feature

related processing is applied. Compared to MFC, at all SNRs the ISBM estimator

resulted in EER values about 2% higher while the conditional mean and mean substi-

tution variants of ME estimation resulted in EER values respectively about 1% and

5% higher. For comparison, MFC alone had EER values typically 15% lower than

the baseline case.

6.2 Time-Frequency Linear Minimum Mean-Squared

Error Missing Feature Estimation

In considering the ISBM and ME methods of missing feature estimation, it is impor-

tant to note which values are being used in making the estimates. If a given frame

has been detected to contain a missing feature, the two methods above attempt to

estimate its value using present features from the same frame. While this is use-

ful in that it makes avail of potential correlations and dependencies in the mel-filter

energies across the frequency axis, they completely neglect any sort of time-domain

correlations that may exist along each feature's time-trajectory as well as correlations

across different features' time-trajectories that may exist. In this section a new ap-

proach to missing feature estimation, time-frequency linear minimum mean-squared

error (MMSE) missing feature estimation is developed. It is most strongly differenti-

ated from the two methods above by its use of present features in both the time and

frequency domains, as well as its use of a linearly constrained estimator.



To develop the motivation for the approach being developed in this thesis, it is

useful to begin with a short derivation of the optimal mean-square estimator. To

set up the problem, consider xmiss and smis, to be the underlying true value of a

speech feature declared to be missing and that feature's estimate, respectively. Let

R = [ri, r2 , ... , rL] be the inputs, whichever features they may be, to be used by the

estimator. Assume that R and xmiss are both zero mean. Defining the estimation

error by

6 = Xmiss - Xmiss

and the cost function of our estimator as

C(xmiss, Xmiss (R)) = E2

= (xmiss - Xmiss(R))2

the expected risk in the estimate may be defined as

E[R] = E[C(xmiss, miss)].

Expanding out E[R] gives

E[R] = E[C(xmiss, smiss(R))]
= j0 C(xmiss, smiss(R))Pxmis,R(xmiss, R)dxmissdR

(xmiss - Xmiss(R)) 2 xmiaa,R(xmiss, R)dxmissdR

(Xmiss - miss (R) )2PR(R)PxmisslR(XmissjR)dxmissdR

j p(R)dR j (xmiss - Xmiss (R) )2 PxmiR(Xmiss |R)dxmiss.

The estimator Smiss(R) will be chosen so as to minimize R. In other words



smiss(R) = min E[C(xmiss, smiss(R))].
Xmiss

Because the terms in the first integral above are non-negative for each value of R, the

expected risk R may be minimized by minimizing the second integral. Taking the

partial derivative of the second integral with respect to smiss and setting expected

risk R equal to 0 gives

E[] 2 + 2
=Xms (x2 2mimisxmiss + )mis)p,, R(Xmiss|R)dxmiss80'miss axmiss -oo0
= -2 xsp00 XmissPxmnas IR(Xmiss IR)dxmiss + 2i- miss [00 Pxmisa IR (Xmiss IR)dxmiss

= -2 XmissPXmisasR(Xmiss|R)dxmiss + 2 Xmiss

=0

and finally rearranging this produces our optimal estimate for the missing feature

Xmiss

Xmiss = 0 XmissPXmi, IR(XmiSS IR)dxmiss

= E[xmissIR],

which is the well-known minimum mean-square error (MMSE) estimator[14], in this

case stated in terms of estimating a missing feature xmiss from some number of inputs

R.

While being able to calculate this estimate is the ideal scenario due to its opti-

mality for the adopted cost function, it is often going to be impossible (or at least

extremely difficult) to do so. In order to calculate E[xmissR] it is required that

PxmiasIR(Xmiss |R) be reliably known, which is very difficult to do in that it requires

knowledge of all moments of the elements of R and their joint statistics with xmiss.



In most cases getting reliable estimates for these values will be hard to achieve.

In order to limit the estimator to one that requires estimation of only first and

second moments and hence may be more realistic, as well as computationally simple,

to implement, the estimator will be limited to one that is a linear combination of the

inputs. The estimator now has the following form

L

Xmiss = Z wkrk = RTW.
k=O

Using the same MSE cost criterion R = E(E 2 ) = E[C(xmiss, smiss(R))] as before, as

well as the assumption of a zero mean R and xmi,,, the calculation of the optimal

estimator reduces to finding the optimal set of weights W,t

W,, = min E[(xmiss - Smiss(R)) 2]

= min E[(xmiss - RTW) 2].
w

Expanding out the cost function C gives

C(xmiss, -immss(R)) = (xmiss - Xmiss(R))
2

= X24,,+WTRRTW - 2xmissRTW.

If we assume that e, xmiss, and R are WSS', then our expected risk takes the following

form

E[R] = E[E2

= E[(x 2i + WTRRTW - 2xmissRTW) 2]

= E[x 2,]+ WTE[RRT]W - 2E[xmissRT]W.

'A constraint that will be worked around shortly via an adaptive linear MMSE estimator.



Redefining the correlation matrices in the above expression as

T = E[RRT]

<D = E[xmisRT]

allows the expected risk to be simplified to

E[Z] = E[X2is,] + WT WW - 2<}W.

To find the optimal choice of weights Wot, the partial derivative of E[R] is taken

with respect to the scalar weights w1 , w2 , ... , WL and set equal to 0

OE[Z]
aW opt

= 2 TWopt - 2<D

= 0

and then solved to give an expression for Wopt

Wot = -14b.

The optimal linear MMSE estimator is thus given by

Xmiss = RTWOt,,

where

Wopt = X-1<},

assuming that T is non-singular. This equation is often referred to as the Wiener-Hopf

equation[3].

Earlier an assumption was made that both xmi,, and R are zero mean. To accom-



modate the more general case of xmiss and R having nonzero means, the following

variables may be defined:

N AR-R

and

Xmiss - xmiss ~ Ymiss,

where the bar notation represents the mean. These variables, defined in terms of R

and zmiss, as well as an estimate of the mean of xmiss, xmis, allow the final linear

MMSE estimator may be given as

Xmiss = Xmiss + NTW.



6.3 Proposed System for Missing Feature Restora-

tion

In section 6.2 it was shown that the optimal linear MMSE missing feature estimator

had the following form

Xmiss = Xmiss + NTVpt,

where

wopt = T-1<>

and where now = E[NNT], <D A E[xmissNT], A = [fi f2 --- fL] is the vector of

inputs to the estimator minus their means, and zmi,, is the missing feature to be

estimated and restored, minus its mean. In the missing feature estimators developed

by Drygajlo and El-Maliki[2], R represented only frequency domain features. In this

thesis a missing feature estimator is developed in which both frequency as well as

temporal features in a time-frequency space around the missing feature are used.

What makes an approach such as this feasible is the existence of correlations

between the true values of the feature labeled as missing and the other features around

it in its time-frequency neighborhood, on the same trajectory as well as surrounding

trajectories. In other words, it depends on the availability of statistical relationships

between the speech features in both time as well as frequency.

To investigate the presence of such correlations in the mel-filter energies both the

auto and crosscorrelations from various trajectories and their adjacent trajectories for

typical clean speech was studied. By observing a typical 3-D plot of speech features

as they vary with time and frequency for a typical utterance it can be seen that at

certain points in the time-frequency space that the features tend to vary with their

neighbors in a manner that suggests correlation between them. Such a 3-D plot is

given in figures 6-1 and 6-2 for both linear and log features. A representative linear

mel-filter energy feature trajectory is also given in 6-3. It can be seen that in many

mo.- __ - -__ - - __ __ wommi
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Figure 6-1: 3-Dimensional plot of linear mel-filter energy feature trajectories from a clean
speech file.

areas of the plots that if a given point were missing that one might be be able to

reasonably extrapolate its value from its surrounding features. It is the hope of MFE

to automate this in a mathematically precise way.

Further indicating the correlations in the feature trajectories are several plots

which show the autocorrelation functions for four of the mel-filter energy feature

trajectories as well as for the crosscorrelation functions between them and their next

higher (in frequency) neighbor. These were calculated with clean speech taken from

the TSID corpus and are given in figures 6-4 and 6-5.

It is seen in each of the autocorrelation plots that that the features tend to have

a hight correlation (> 0.7) within a few frames for each given trajectory. An impor-

tant point to note is that except for the first mel-filter energy feature trajectory all

trajectories display a tendency for a "bump" at a frame lag of typically ±27 frames

or so. Given that the frame rate is 10 ms, 27 lags represent a period of 3.7 Hz, which

is very close to the 4 Hz syllabic rate that is speculated in the research community to

underly most speech. In looking at the crosscorrelation plots it is seen that correlation
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Figure 6-2: 3-Dimensional plot of logarithmic mel-filter energy feature trajectories from a

clean speech file.

x 10

2.51-

0.5 F-

Figure 6-3: Example clean linear mel-filter energy time trajectory. It is seen that the

waveform is far from random, having the property that features close in time tend to have

similar values and a perceivable underlying deterministic nature.
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Speaker 52 (file s521wt06)

Figure 6-4: Representative autocorrelation function

features. Speech is taken from a clean speech file.

Speaker 52 (file s521wt06)
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Figure 6-5: Representative crosscorrelation function for several linear mel-filter energy

features. Speech is taken from a clean speech file.
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of varying amounts also exists across adjacent feature trajectories.

In looking at the auto and crosscorrelation plots it may be seen that the correlation

behavior exhibited by the first mel-filter energy is different than the others, in its

lack of a syllabic rate "bump" for example. While the true reason for this behavior

is unclear, it is likely a result of the bandpass frequency response typical of audio

microphones, which was how the clean TSID data was recorded. A small amount

of speech energy in the low frequency regions of speech, accompanied by electronic

recording noise, would account for the less structured plots for this feature.

While these correlation plots do show correlation that suggests that the proposed

missing feature estimator is potentially viable, it raises the question of how the dif-

ferent parts of speech, such as vowels and fricatives, contribute to these overall av-

erages. To explore this question isolated vowel and fricative regions of some typical

clean speech files were taken and the corresponding feature trajectories were analyzed

for auto and crosscorrelations. The vowel region displayed a high level of auto- and

cross-correlation, as may be seen in figures 6-6 and 6-7. In comparison, the correlation

plots for the fricative regions demonstrated very little correlation. Those plots are

given in figures 6-8 and 6-9.

Given the difference in the nature of voiced and fricative speech regions, it is not

surprising that this difference in feature correlation exists. Typically vowels can be

thought of as being produced by passing an impulse train with a certain pitch period

through a linear system representing a glottal pulse and the vocal tract. Hence vowels

may be seen to be periodic and deterministic waveforms with a period equal to the

pitch period. Thought of in this way it is almost expected that enough structure

exists in voiced regions as to produce the correlations seen above. On the other

hand, fricatives are usually modeled by a linear vocal tract model being excited by

an AWGN input, resulting in a stochastic colored Gaussian signal. Given this model,

the fact that auto and crosscorrelations exist in the corresponding feature trajectories

is not outside of reason.

Given that the necessary correlations tend to exist primarily in voiced regions it

is clear that the missing feature estimator should be used only for prediction features
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Figure 6-6: Representative autocorrelation function for several linear mel-filter energy

features from a pure vowel (/e/). It is seen that the amount of autocorrelation for each

trajectory is rather high, compared to the overall average.
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Figure 6-7: Representative crosscorrelation function for several linear mel-filter energy

features and their neighbors from a pure vowel (/e/). It is seen that the amount of cross-

correlation for each trajectory is rather high, compared to the overall average.
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Pure Unvoiced Fricative (/sh)

Figure 6-8: Representative autocorrelation function for several linear mel-filter energy
features from a pure fricative (If /). It is seen that the amount of autocorrelation for each
trajectory is rather low, compared to the overall average and the pure vowel.
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Figure 6-9: Representative crosscorrelation function for several linear mel-filter energy
features and their neighbors from a pure fricative (If/). It is seen that the amount of
crosscorrelation for each trajectory is rather low, compared to the overall average and the
pure vowel.



in such regions of corrupted speech. In order to do this it will be necessary to detect

when in a speech file voiced frames are being encountered and when they are not.

To this end a voicing detector is employed which essentially fits a harmonic set of

sine waves to the input speech frame using a MSE criterion[7]. The accuracy of the

harmonic fit indicates the voicing state and is used to define a "voicing probability" 2

that is between 0 and 1, where 1 indicates a voiced region. If the voicing probability

is above a given threshold, the underlying frame is said to be voiced and hence we

may use that data for either estimating T and 4 or xmis, as the case may be.

Another point to consider is the degree of stationarity of the speech. In the deriva-

tion of the optimal linear MMSE estimator an explicit assumption was that xmiss, R,

and the error e are all stationary processes. In reality speech is very nonstationary

and varies considerably as the speaker weaves in and out of the sounds and transitions

between sounds in typical speech. To address this reality of nonstationary speech, the

estimation of P and T is made to be adaptive such that at any point at time they will

reflect as best as possible to most current statistics in the speech features. Initially

all voiced frames are pre-processed to develop global estimate 4Dglobal and Tglobal. In

subsequent processing P and T are initialized to these global values at the beginning

of each speech file or when a certain number of unvoiced speech frames have been

encountered, done in order to avoid having 4 and T represent outdated statistics,

in which case the global estimates would be closer to the current state and a better

point to start from when moving into a new voiced region.

Regarding the input vector R, up till now there has been an implicit assumption

that all elements of this vector [r1 r2 ... rL] will always be available, i.e. present.

However, just as the feature being estimated could be missing, so could any of the

features being used as inputs to the estimator. In order to deal with this issue, when

estimating T and 4 in voiced frames the available inputs are used to improve the

estimate. However, in the estimation phase whenever missing inputs are encountered

2This in not a true "probability" in the sense that 0 indicates no chance of being voiced or that
a 1 means that it is sure to be voiced. It is more of a loose term indicating the degree of confidence
and is not to be interpreted in terms of more exact probability theory.



the subset of present inputs from R are used instead to form a new input vector R'

and new correlation matrices I' and V' are formed by taking the appropriate elements

from T and P. In this case the estimator operates as before, but with the primed

elements:

Xmiss ~ Xmiss + ]iRTW'

where

Another issue related to the issue of missing estimator inputs is the question of

how many of those inputs are needed in order to make an effective estimate. To

address this, a parameter representing the minimum number of inputs needed before

the estimator will attempt to estimate and replace a missing feature is incorporated

into the system.

Finally, it is important to note that the types of auto- and cross-correlations that

exist differ depending on the trajectory in question, as evidenced by the correlation

plots seen earlier. For this reason there will be different estimation systems, and thus

a different T and D, for each feature trajectory.



6.4 Results Using Linear MMSE Missing Feature

Restoration

To evaluate the performance of the linear MMSE missing feature detector, two types of

studies are performed. All work was done using dirty test speech artificially corrupted

with known additive white Gaussian noise. Features used in scoring are logarithmic

mel-filter energies and the speech is sampled at 8 khz, resulting in 24 features per

frame. All GMM models have 1024 mixtures. The features chosen to be the inputs

R for the estimator are two features in the past and two features in the future in a

given missing feature's trajectory as well as the three features symmetric with the

missing feature in its two adjacent trajectories were also used. Hence, there is a total

number of ten possible inputs.

In the first study, the signal to noise (SNR) ratio of the speech features declared

missing and restored was measured both before and after the restoration. Given that

both the clean and corrupted linear mel-filter energy features are available, the pre-

restoration SNR of all the features both declared to be missing em and able to be

predicted may be calculated as

SN pre = T E= 1 EEmi,,[t] Mtrujt7 1]
zt 1 Zi4m..[t] [true [t, 1] - Mcorr [t, l]]2

where Mtrue[t, 1] and Mco,[t, 1] are the lth true and corrupted (artificially) linear

Mel-filter energy features for frame t, T is the total number of frames, and (miss[t] is

the set of features declared by the missing feature detector to be missing in frame t.

The corresponding post-restoration SNR, SNR0 ,8 t, is calculated in the same manner

with Mcorr[t, 1] being replaced with the feature value estimated by the linear MMSE

missing feature estimator, Mtrule[t, 1]. It is the goal of linear MMSE missing feature

restoration to be able to accurately predict missing features such that SNR,0 t >

SNRpre.

As discussed in section 6.3, preliminary studies of the linear mel-filter energy

feature trajectory correlations suggest that the proposed linear MMSE MF detector



should perform better for voiced vowel regions of speech than fricatives or other types

of unvoiced speech. An initial study of the performance in unvoiced regions of speech

quickly indicated this to be the case, with SNRp08 t typically being less than SNRpe,

indicating that doing nothing at all would have been preferable. To see how well

performance can be improved when applied to pure vowel regions, a few recordings of

long stationary vowels were artificially corrupted with additive white Gaussian noise

and missing feature estimation and restoration was applied. Representative results

may be seen in table 6.4.

SNR MF Det. MF Pred. Pred. MF Pre-SNR Pred. MF Post-SNR

5 dB 88.05% 4.89% 9.36 dB 32.03 dB
10 dB 85.9% 6.4% 9.69 dB 35.04 dB
15 dB 82.0% 13.24% -3.54 dB 15.17 dB
20 dB 70.0% 10.5% 3.41 dB 18.93 dB
25 dB 63.0% 10.11% 4.49 dB 19.3 dB

Table 6.1: Results of applying proposed linear MMSE missing feature restoration system
to a pure vowel /e/. Columns indicate additive noise level, percentage of speech features
declared to be missing out of all speech features, percentage of features restored out of
all speech features, the SNR of all features restored prior to restoration, and the SNR of
all features restored after restoration. Results are for an artificially corrupted clean vowel
recording.

It is seen in the results that although the particular parameters used in the missing

feature detector (a = 3.0 and # = 0.0) resulted in a high percentage, typically close to

80%, of all the speech features being declared missing, due to the voicing and minimum

number (4 in these experiments) of estimator inputs available requirements, only 10%

of the total number of speech features are actually declared missing, estimated, and

replaced. For these features, however, the linear MMSE estimator proved to be very

effective in replacing the missing features with estimated features that resulted in

considerably higher SNR values.

Given these SNR based performance results with pure stationary vowels, the

next investigation was how an actual speaker verification task would score using this

method. To this end, the same system (same adaptive time constant, etc.) as was
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Figure 6-10: EER values for clean/dirty speaker verification task where missing features are
detected and replaced, when possible, by using the linear MMSE missing feature estimator.
Performance is seen to degrade considerably in comparison to the baseline case.

used to produce the results with the pure vowels was used to also process features in

a clean/dirty verification trial, where the dirty test data was a result of corrupting

clean speech with artificial Gaussian noise. The results, however, shown in figure

6-10, indicate that when applied to speech, as opposed to a steady voiced vowel, the

linear MMSE estimator does not do as well. In fact, it is seen that in most cases

performance is degraded significantly.

Hence we see that while the technique does offer a great deal of promise when

applied to the pure vowel, in a more realistic scenario of real speech it tends to hurt

performance. This is in spite of the fact that the estimation of both <D and T is being

done adaptively and that their estimation as well as the missing feature estimation

and replacement is only being done in regions of speech estimated to be voiced. At

the time of this writing, the reason for this is still being investigated, but the most

likely cause for this discrepancy is that in real speech utterances the voiced regions

are possibly too short for the current system to be able to ever acquire adequate



estimates of 4 and T. In the successful pure vowel cases, there was an abundance

of data, mostly stationary, by which these correlation matrices could be effectively

estimated. With actual speech, however, the vowel regions themselves may not be

quite as stationary nor long enough to develop a good estimate. Work needs to

be performed to develop better ways of estimating <> and T in order to realize the

potential performance gain that the current results with the pure vowel suggest.



Chapter 7

Conclusions

7.1 Summary of Thesis

The goal of this thesis is to analyze and develop methods for reducing the drastic

performance degradation that occurs when the speech used for training and testing

in speaker recognition are from different channels. For the TSID speech corpus,

in which the "clean" speech was recorded with a microphone near the speaker and

the "dirty" speech was a highly corrupted narrowband radio transmission, the train

clean/test clean and train dirty/test dirty matched conditions were found to have

equal error rate performances of 4.2% and 7.3%, respectively. On the other hand,

the mismatched cases of train clean/test dirty and train dirty/test clean both have

an equal error rate close to 50%. Given that the decision is binary, this is equivalent

to flipping a coin. The purpose of this thesis is to develop methods to bring the

performance of the mismatched trials closer to that of the matched trials.

To address this problem, first in chapter 2 several established methods of channel

compensation as well as a method for imparting temporal information into the speech

features were applied to the train clean/test dirty case1 . The methods applied were

cepstral mean subtraction, RASTA filtering, and delta cepstral coefficients. These

methods were applied individually as well as in combination. The best individual

'This case is found to perform identically to the train dirty/test clean case.



method was found to be cepstral mean subtraction, which improved the equal error

rate from 49% to 28%. The best combination system was the mixture of cepstral

mean subtraction and delta cepstral coefficients, which improved the equal error rate

to 23%. It was noted that the combination of cepstral mean subtraction and RASTA

filtering did the same as the system with only cepstral mean subtraction. One possible

interpretation for this is that the largest source of the poor mismatch performance

was an invariant convolutional distortion, which either cepstral mean subtraction or

RASTA would be able to remove.

Chapter 3 then investigated the theory of spectral subtraction and how this

methodology for alleviating the effects of signal corruption, namely additive noise,

could be used to help mismatch performance. Because there is a significant amount

of additive noise in the dirty TSID data, an ability to reduce the influence of additive

noise on the speech features is very beneficial. In order to focus on this type of noise,

as well as have control that would allow for a more exact study, clean TSID data was

corrupted with known amounts of additive white Gaussian noise to create the dirty

data used in testing. Spectral subtraction was applied in both the |DFT and linear

mel-filter energy domains. It was argued that the nature of the nonlinear flooring

operation is such that the averaging of this operation offered by the IDFT domain

implementation of spectral subtraction should offer a sort of averaging of this effect,

effectively reducing the error component in the values produced by the nonlinearity.

Experiments demonstrated that while linear mel-filter energy domain spectral sub-

traction did offer improved performance over baseline at low SNRs, this was balanced

by worse performance at high SNRs. In comparison, the IDFT domain implementa-

tion of spectral subtraction was found to outperform both the linear mel-filter energy

version, as well as baseline, at all SNR levels. The equal error rate (EER) was found

to be typically 7% lower than for the baseline case.

Chapter 4 discussed missing features theory and the method of missing feature

compensation. Missing feature compensation, unlike the previous methods that en-

hance noise corrupted features, estimates which features are highly corrupted during

a given frame and then removes those declared to be missing from being included



in the GMM based scoring mechanism. One concern with this method is that re-

moving the features without doing any proper re-normalization may result in speaker

scores varying in a manner uncompensated for by the scoring mechanism, leading

to artificially poor performance. It was found that this concern is partially removed

by use of background models in normalizing the log probability scores, since both

tend to vary together, keeping the normalized score relatively constant. This section

also introduced the necessary concept of missing feature detection. While it is not

well established that the mean square of the error is the correct value to determine

a feature's presence, this metric was assumed to be appropriate throughout this the-

sis and a spectral subtraction based detector was developed. Through correlation

studies it was found that a nonperfect missing feature detector, operating through

the estimation of the background noise, produced decisions very close to those of the

perfect missing feature detector. It was found that the missing feature compensation

system, like the linear mel-filter energy domain spectral subtraction system, produced

results that depend on the SNR. At low SNR values it was found that the system

underperformed the baseline by about 1%, while at high SNRs it improved the equal

error rate by close to 4%.

Chapter 5 next investigated combinations of the previous two chapters, again in a

clean/dirty verification task where the dirty speech was clean speech corrupted with

AWGN. While it was found that most combinations did better than the baseline,

combinations involving IDFT domain spectral subtraction were found to do consid-

erably well. In particular, the combination of IDFT domain spectral subtraction and

missing feature compensation was found to outperform all other systems considered

in this thesis. At all SNR levels it was found to outperform the baseline case with

respect to equal error rate by approximately 15%.

Finally, the technique of missing feature restoration was considered in chapter

6. This approach attempts to detect which missing features are missing and then

predict their value using other features surrounding it in both frequency and time.

Through a study of the auto- and cross-correlations of linear mel-filter energy fea-

ture trajectories, it was observed that significant auto- and cross-correlation exists



across features in voiced regions of speech and a linear minimum mean-squared error

feature estimator was developed which uses as inputs to the estimator features in

the same trajectory, as well as features on neighboring trajectories. Although the

pre- and post-SNR results for features that were estimated in this fashion indicated

excellent improvements in the case of steady vowels, when applied to regular speech,

performance deteriorates dramatically. This occurs even with the use of a voicing de-

tector and adaptive estimation of the correlation matrices used in by the estimator.

It is reasoned that a likely source of this error is an inability in the current system

to gather enough statistics in each short voiced segment of speech to build reliable

correlation matrix estimates. Initial results, however, are promising and more work

needs to be done on this problem.

7.2 Suggestions for Future Research

Throughout this research it has been demonstrated that missing feature theory and

the related technique of spectral subtraction have value in helping to solve the problem

of training and testing mismatch when the the testing data has been corrupted with

additive noise. Several future potential advances using these techniques stand out.

Parallel Implementation of Speaker Verification System

In chapter 5 the performance of several noise/channel compensation methods is con-

sidered when they are used in combination. In each of the four basic combination

systems considered, the constituent systems are acting in series, in which the first

system's output becomes the second system's input. This raises the question of what

sort of performance might be possible if, rather than operating in series, the con-

stituent systems were instead operated in parallel, with the decisions and/or features

from the different systems somehow being combined to make a verification decision.

Being in series, it is very possible that systems earlier in the series may process the

speech or speech features in such a way as to hurt the ability of later systems in the



series to perform their processing optimally. In other cases, it may instead enhance

the processing abilities of later systems. To better understand these relationships

parallel system configurations need to be studied.

Preprocessing via Wiener Filtering

Although software compatibility issues made it difficult to study in-depth, one ex-

periment was performance using adaptive Wiener filtering[9] on noisy test data at an

SNR of 20 dB for a train clean/test dirty speaker verification task. In this case, the

resulting EER was found to be 17.4%, in contrast to the IDFT| spectral subtraction

method that had an EER of 18.07% at that SNR. While it is not possible to draw

conclusions from a single data point, this experiment as well as well as greater speech

quality from Wiener filtering do indicate potential for performance gains equal to or

greater than what was seen with the systems involving IDFT spectral subtraction.

In addition, speech data preprocessed with Wiener filtering may smooth out the data

such that the performance at later stages of processing, particularly missing feature

estimation, may improve.

Missing Feature Estimation in the Log Domain

This thesis implemented the proposed linear MMSE missing feature estimation sys-

tem on the linear mel-filter energy features. However, it may be shown that the

logarithmic mel-filter energies tend to have statistics that are Gaussian-like[5] and,

hence, have most statistical relevance in their first and second moments. Given that

the linear MMSE estimator only takes advantage of the first and second moments,

it may perform better in the logarithmic mel-filter energy domain than in the linear

one. In addition, the logarithm's compression may lend itself to smoother feature tra-

jectories and possibly higher correlations. These may lead to improved performance

for the missing feature estimator.



Definition of "Missing Feature"

This thesis has defined a missing feature according to the spectral subtraction derived

method discussed in section 4.3. However, this is only one way of defining a missing

feature, as there are potentially many different and possibly better ways to find which

features are most hurting performance. It would be very interesting to investigate the

performance differences of the systems described in this thesis with different missing

feature detectors to determine the most relevant criterion.
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