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ABSTRACT

A numerical technique has been developed for the solution
of the Orr-Sommerfeld equation for a boundary layer flowing
over a general class of compliant boundaries. Sample calcula-
tions are worked out in detail for several types of models of
compliant boundaries. It is shown that a compliant boundary
can have a significant influence on the stability of the
laminar boundary layer, both by delaying the appearance of un-
stable disturbances until higher values of the Reynolds number
and by reducing the total spatial amplification of any fre-
quency band.

The general requirements for materials of the boundary
are that the equivalent shear modulus should be of the order
of the dynamic pressure, the density of the order of the
density of the fluid in the boundary layer, the thickness
should be large compared to that of the boundary layer, and
there should be as little dissipation as possible in the
boundary. These parameters also influence types of insta-
bilities other than those that appear for a boundary layer
over a rigid surface, but examples are shown of significant
stabilization without the introduction of new instabilities.



The methods are described in detail, including an out-
line of a technique to reduce the parasitic errors that oc-
cur in the numerical integration of certain types of differ-
ential equations. The results are favorably compared with
those of other authors and experiments, and the generality
of the technique is demonstrated by a sample computation of
the stability of a two-dimensional jet and an adverse pres-
sure gradient profile. Detailed spatial amplification rates
are worked out for all cases.
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Chapter 1

INTRODUCTION

1.1 History of the Problem

There are several methods of influencing the transi-

tion of the boundary layer of a fluid flowing over a general

solid surface. Engineers learned quite early that a smoothly

finished surface, free from large-scale roughness, exhibited a

later transition to turbulence than a roughened surface. Care-

ful planning of the pressure distribution on an airfoil af-

fected the location of the transition point as well as the

separation point. Suction of the fluid in the boundary layer

through the wall was also known as a technique for delaying

transition, and is the basis for present studies of laminar

flow aircraft.

At the present time, additional techniques for

boundary layer control are being investigated. These include

the addition or injection of non-Newtonian fluids into the

boundary layer, cooling the boundary layer of compressible

fluids, and the use of various kinds of compliant surfaces.

The realization that compliant boundaries might have

an effect on boundary-layer transition began with a paper by

M4O. Kramer (1957).* In a later paper (1960), Kramer pre-

sented the results of some provocative experiments that indi-

cated a reduction of drag on bodies towed in water by coating

the surfaces of the bodies with a compliant material. Kramer's

contention was that the coating delayed the transition of the

laminar boundary layer by introducing added dissipation into

the combined system by coupling the boundary layer and the

dissipative coating.

* References are indicated by the author's name followed by
the year of publication.



However, Kramer did not perform the necessary analy-

sis of the situation to support his claim, but based his argu-

ments on an intuitive physical understanding of the role of

dissipation on the motion of physical systems. Other investi-

gators did perform analyses and came up with explanations for

this phenomenon that did not agree with the reasoning used by

Kramer.

Benjamin (1960) undertook an investigation of this

phenomenon as an extension of the theory of stability of par-

allel flow. Benjamin investigated linear disturbances in a

boundary layer flowing over a membrane and concluded that one

must consider several types of disturbances, which he classified.

The disturbances that are found in the boundary layer in the ab-

sence of a compliant boundary (Tollmien-Schlichting waves) ap-

pear modified by the presence of the flexible surface. These

are characterized as Class A. Disturbances in the boundary,

modified by the presence of the boundary layer were character-

ized as Class B, and can be compared to aeroelastic flutter of

the material in the boundary. Violent disturbances occurring

when restoring forces in the surface were insufficient to main-

tain the motion (later named Class C) were shown to be analo-

gous to Kelvin-Helmholtz instability.

Benjamin showed that Class B disturbances are

stabilized by the addition of dissipation to the system, Class C

disturbances are unaffected, while Class A disturbances are ac-

tually destabilized by an increase of the dissipation in the

boundary. Since the Class A disturbances are those that are

thought to precede the transition of the boundary layer,

Benjamin's results directly contradicted the explanation Kramer

used for his measurements.

The investigations of Landahl (1962) were based along

lines similar to the approach taken by Benjamin, and in addition,

introduced some concepts from acoustics to help characterize the

properties of the flexible surface. By using the traveling wave



admittance of the membrane, Landahl succeeded in finding stabil-

ity boundaries for several membranes. He found both Class A and

Class B disturbances, located stability boundaries for these dis-

turbances, and gave a physical interpretation for the differences

in behavior of these two types of disturbances by considering the

energy needed to bring the boundary layer and surface up to its

state of motion. Landahl found that the Class A disturbances

were "energy deficient" in the sense that added dissipation in

the system necessitates an increase in the intensity of the dis-

turbance to maintain the reduced energy level. Furthermore,

Landahl gave simple examples of the existence of Class A dis-

turbances. Benjamin (1963) later showed that the occurrence of

Class A waves is not restricted to this problem but is always

an important consideration in the stability of coupled systems.

In view of these criticisms of Kramer's explanation

and the potentialities of his discovery, interest in the effect

of the compliant boundaries spread, and other authors engaged

in determining their effect on the stability of laminar flow.

Tokita and Boggs (1962) investigated the requirements for the

properties of the surfaces, as did Nonweiler (1961). Linebarger

(1961) considered the effect of compressibility of the boundary

layer, and Hains (1963) investigated the effect of flexible sur-

faces on Poiseuille flow. All of these investigations indicate

that the Class A disturbances can be favorably influenced by

the action of a compliant boundary, but that new instabilities

may occur.

1.2 Purpose of this Investigation

The previous computations in this area have been based

on asymptotic solutions of the Orr-Sommerfeld equation, which

governs the perturbations in the boundary layer. However, these

computations are very tedious except in simple limiting cases,

and for the range of phase speeds of disturbances that can occur



in the presence of these compliant boundaries, can result in

significant inaccuracies. A numerical solution of the Orr-

Sommerfeld equation was sought to first remove any of these

restrictions. It has the further advantage of performing

the tedious calculations involved very rapidly, and does not

introduce any approximations into the solution that may be

difficult to justify for these new cases.

The applications of this technique to problems that

have been already completely treated allows sufficient chances

to prove out the new methods, and leads directly to the study

of closely related problems that have so far defied analysis.

The membranes investigated by Landahl, Benjamin, and others

can be replaced by other, more realistic models for a compli-

ant boundary. Classes of problems that are impossible to

perform efficiently using the asymptotic analysis, and other

types of problems that have defied analysis to date can now

be considered by use of this technique, such as the stability

of two-dimensional, asymmetrical shear flows at arbitrary

values of the Reynolds number.

It is recognized that the determination of stability

does not explain the transition of the flow. Theoretical con-

siderations of Benney (1961) and experimental work by Klebanoff

et. al. (1962) indicate that three-dimensional phenomena are

very important in the breakdown of the laminar flow. While no

complete three-dimensional analysis of the situation is at-

tempted, three-dimensional effects such as those considered

by Criminale and Kovasznay (1962) are of interest and must be

carefully investigated.

A very instructive approach to determining the ef-

fect of compliant boundaries on the stability problem is

offered by considering the spatial growth of disturbances.

Calculations of the spatial amplification rates can be made to

determine typical length scales that govern the growth of dis-



turbances. In the same vein, a discussion of the require-

ments of the dimensionless form of the stability equation

relative to the determination of spatial amplifications is

given. This type of calculation is needed before a general

discussion of spatial growth can be undertaken. Further-

more, new knowledge about the group velocity of the dis-

turbances is presented to aid in spatial amplification

criteria. The effect of the compliant boundary on these as-

pects of the stability problem needs to be made for complete-

ness.

Numerical results for a variety of compliant bound-

aries are presented, including a detailed study of the appro-

priate loci of eigenvalues for those boundaries that are in

some sense optimum. Calculations are also made of some re-

lated problems in the stability of parallel flow and on a

simple model that introduces a linear coupling between modes

of instability. The calculations are compared to existing

experiments as a final test of their validity.

The general formulation used in this paper provides

a useful technique for solving a greater range of parallel

flow stability problems than more specialized methods. Once

the similarity of the flow of a boundary layer over a compli-

ant boundary and more general unbounded shear flows is

recognized, then this formulation can be used to great ad-

vantage in their solution. The same techniques can be as

useful for the solutions of related problems that are based

on modifications of the Orr-Sommerfeld equation, and for un-

related problems that cause the same kind of analytical dif-

ficulties.



Chapter 2

SMALL PERTURBATIONS ON A PARALLEL SHEAR FLOW

2.1 The Orr-Sommerfeld Equation

Small disturbances on a parallel shear flow must

satisfy the basic dynamic equations, the Navier-Stokes

equations. For reasons that will be discussed more fully

later, it is sufficient to consider two-dimensional motion.

For a two-dimensional, viscous flow, the Navier-Stokes equa-

tions are equivalent to the vorticity equation which can be

written (* denotes dimensional quantities)

+_ (2.1)

where is the vorticity and the stream function

- A- (2.2)

For the purposes of linearization, assume that

where is small and satisfies the inequality

< 0(2.4)

for some which is a measure of a typical length in the



shear flow (for instance, the boundary-layer thickness).

The function U represents the steady parallel shear

flow directed along the x-axis of coordinates (Figure 1)

and (2.3) yields velocity components

(2.5)

Equation (2.1) can be regarded as written in di-

mensionless form by normalizing all velocities with re-

spect to the reference velocity 0J , all lengths with re-
spect to the reference length o, and all times by the
reference time . Further aspects of this nondimension-

alization will be discussed in Section 2.2. The direct re-

sult of this procedure is to replace the kinematic viscosity

J) by the dimensionless ratio 2UN , the inverse of the
Reynolds number R.

Inserting (2.3) into (2.1), dropping the *, and.

linearizing, one finds

(2.6)

Assuming that the Reynolds number R is a constant, solutions

to (2.6) can be found of the form

P_ (2.7)

Equation (2.7) represents traveling wave dis-

turbances of wave number a and phase speed c. Substi-



tuting (2.7) into (2.6) yields the familiar Orr-Sommerfeld

equation

( - -I -L0( O (2.8)dj4  8 JLf6 1

A full justification of the terms retained in

(2.8) requires that the oscillatory solution _) represents a

more rapid variation in the x-direction than .that caused by

the growth of the boundary layer. This is equivalent to the

assumption that the Reynolds number is a constant (i.e.,

nearly-parallel flow). For further discussions on this

point, the reader is referred to Lin (1955) and Dunn (1953).

Equation (2.8) is a linear, fourth order ordinary

differential equation with variable coefficients UL YJ
0(3)/j . It refers to one physical parameter, the Reynolds

number, and to two parameters characterizing the wave under

investigation, a .and c. A general initial value problem

may be solved by considering a superposition of all modes by

a Fourier integral when appropriate initial and boundary

values are specified. Boundary conditions for will be

discussed in Section 2.4.

The solution to (2.8) is a challenging problem in

analysis. A survey of some methods of solution appear in Lin

(1955). The approximate analytical solutions of (2.8) make

use of the fact that in general, the Reynolds number is a

large parameter in problems of the kind under consideration.

Thus solutions for large values of R may be sought. An

example of an analytic solution appears in Appendix A.

2.2 Dimensionless Variables

The dimensionless Reynolds number characterizes the

nature of the fluid dynamics in (2.8), namely that of a nearly

inviscid flow for large values of R. As stated in the text



(2.9)

and was assumed to be a constant in x. However, it is

necessary to consider how the Reynolds number may vary.

Hains (1963) engages in a similar discussion for the

Poiseuille flow. Inspection of (2.9) indicates four practi-

cal methods for changing the Reynolds number

(a) Vary \j for fixed c

(b) Vary co for fixed UoP/

(c) Vary 2) for fixed de
(d) Vary U.S' for fixed 2)

For the boundary layer over a semi-infinite flat

plate, both U. and l) are fixed and the boundary-layer thick-
ness CS varies with the square root of the distance from the

leading edge of the plate as shown by (2.10)

X (2.10)

Selecting as the point at which the velocity in

the boundary layer is 99.9% of the free-stream velocity

yields a value for K of 6.02. The Reynolds number based on

the distance from the leading edge of the plate is related

to the Reynolds number based on O by

0 - K (2.11)

Thus for the simplest boundary-layer flow, the

conditidn that R be independent of x is not met. However,

(2.8) is still valid if



namely, for sufficiently large R.

The total problem that is under consideration in-

volves more than reference to the boundary layer. A correct

characterization of the dynamics of the compliant boundary

requires that appropriate dimensionless coordinates be avail-

able. Since the Reynolds number is to be varied by changing

4 , and since 0 is the only length scale available for the

boundary layer, some care must be taken to insure that the

dimensionless parameters of the surface do not reflect the

growth of the boundary layer. It is for this reason that the

dimensionless parameters describing the surface must vary

with the Reynolds number.

.If the surface has a typical y dimension H, this

scheme requires that

H........ - - ( 2 .1 3 )

where is the proper non-dimensional representa-

tion of this length that is independent of the boundary-layer

growth. A convenient scheme for determining H is to set

H = Ho at R = Ro, so that

H (2.14)

Any dissipation in the compliant boundary which is

represented by a dynamic term of the form

has an operational representation of



by use of (2.7). Even though 2c)i , the effect of the

length scale appearing in Zb requires that d vary as

(2.15)

where the notation is the same as in (2.14).

The appearance of a resonant or cutoff frequency

requires a similar variation with Reynolds number, namely

(A) -K(2.16)

Analogous to this, the dimensionless frequency 0 of the per-

turbation in the boundary layer is found to be

0 (2.17)

and should be compared to Pr in Lin (1955) and Schlichting

(1935).

It must be mentioned that the characteristic

velocity of the boundary layer has a well-defined form,
and does not have to be modified for the Blasius flow. Of

course, when considering the flow in a pressure gradient,
the velocity itself changes with position, and any propaga-

tion velocity in the boundary must be varied accordingly.

When pressure gradients are considered, both Uo

and vary (slowly) in space and the preceding arguments

must be modified. No general statement can be made about the

best technique for selecting the most suitable dimensionless

variables, for of course there is none. In complicated situ-

ations that might arise, the technique used by Landahl (1962)

is recommended wherein the parameters of the surface are re-



garded as constants. This simplifies the handling of the

parameters but has the unfortunate result that the actual

surface under consideration may vary with the Reynolds

number. As Hains points out, Landahl's technique corres-

ponds to choice (c) above, and the difficulty is shifted to

the interpretation of the final results,for they represent a

variety of physical situations.

2.3 Boundary Conditions

The solution of (2.8) is determined by the speci-

fication of appropriate boundary conditions. These boundary

conditions are typical for perturbations in a viscous fluid.

Two of the necessary four conditions require that the ve-

locity perturbations vanish far from the surface, while the

other two express compatibility of the motion in the boundary

layer with the motion of the surface. This compatibility

condition requires that the fluid adhere to the surface.

The first of these conditions can be stated mathe-

matically as

-wow C)As -0 (2. 18)

Since the coefficients of the Orr-Sommerfeld

equation approach constant values far from the boundary,

the limiting solutions of (2.8) exhibit an exponential de-

cay for large values of y (see Section 4.1). The determina-

tion of this limiting form is discussed fully later.

The compatibility of the flow with the boundary

can be dealt with by considering the response of the compli-

ant boundary to traveling wave pressure disturbances, of the

same general form as specified by (2.7). The present in-

vestigation shall be limited to models of compliant bound-

aries for which the stress tensor is determined by the in-



stantaneous strains and strain rates in the boundary. In

view of the linearization, this is not a severe restriction

although materials that exhibit a pronounced hysteresis are

excluded from consideration. If Us)\,s .S are the tangenti-

al and normal velocity and pressure perturbations, respective-

ly, at the surface of the compliant boundary, they may be ex-

pressed in the following forms for traveling wave solutions

A L

VS ~(2.19)

The velocities are related to the strains on the

surface uniquely since only this special type of traveling

wave disturbance is being considered, so the functions

(2.20)

are determined by the wave number a, the phase speed c, and

the parameters that characterize the dynamics of the sur-

face. The functions are called the normal and tangential

traveling wave admittances of the compliant boundary. The

admittances in (2.20) are considered to be dimensionless

and are related to the dimensional admittances as follows

'/
where the notation was defined in the preceding section.

Assuming that the pressure perturbation in the

boundary layer is the cause of the motion in the compliant

Ond



boundary, compatibility between the two systems is insured if

the velocity perturbations of the surface match the velocity

of the fluid in the boundary layer at the interface.

The shape of the surface is defined to be (see

Figure 1)

(2.21)

The normal velocity of the surface is equal to the V velocity

perturbation in the boundary layer

(2.22)

or in operational notation after linearization

I A (2.23)

where the subscript w refers to quantities defined in the

boundary layer evaluated at the mean position of the sur-

face y = 0.

In the matching of tangential velocities, one must

consider the mean value of the U velocity in the boundary

layer at the displaced position of the surface .

US (XI.L: -- C (2.24)

Expanding U () around y 0, noting that U(0
vanishes, and using (2.23), one finds

( .-
$ ..-- (2.25)



after linearization. Finally, using (2.20) to introduce the

tangential admittance and recognizing that the pressure per-

turbations in boundary layer and surface are identical, one

finds
- /

12 % (2.26)

Equation (2.26) is equivalent to matching the

tangential admittance of the boundary layer Xo to the

tangential admittance of the surface 12

7- (2.27)

Referring to the linearized x momentum equation,
A

p is shown to be

-W s vi (2.28)

Inserting (2.28) into (2.26), one arrives at the

general condition of compatibility that the perturbation in

the boundary layer must satisfy as it disturbs the compliant

boundary.

(I&4-j~ NIML 0 (2.29)

For some applications, Equation (2.28) is dif-

ficult to evaluate, since an estimate of the size of the

leading term on the right-hand side might be difficult to

make. In these cases, one can apply the y momentum equa-

tion which gives the alternative expression



t- d,. (2.30)

R
It should be noted that consideration of membranes,

for which Y12 = 0, yields a simpler expression for the pressure

by inspection of (2.29) and (2.28). This of course is a

special case of the present result.

The application of boundary conditions (2.18) and

(2.29) determine the function to within a (complex) con-

stant-multiple. Using this function, one can determine the

normal admittance Yo of this boundary layer.

(2.31)

With this boundary layer admittance Yo set equal

to the normal admittance of the compliant boundary, the dis-

turbance in the boundary layer is insured to be the cause

of the motion of the surface.

For completeness, it must be mentioned that it is

usually unnecessary to consider the response of the compli-

ant boundary to shear stress in the boundary layer, but an

example of a technique to handle this occurrence is con-

sidered in Chapter 3.



2.4 The Characteristic Value Problem

The requirement that the normal admittance of the

boundary layer YO match the normal admittance of the compli-
ant boundary Y can be stated as one of the following equiva-

lent mathematical equations

L"NZ0(2.32)

All of these take the form

6 (Q . = 0 (2.33)

which implicitly states that

cd(1
or

(2.34)

or

Thus, Equation (2.32) is the mathematical expression that

determines the eigenvalues a, c of the problem. This

eigenvalue problem may be solved by the following algorithm

(i) Select R, a, and c

(ii) Evaluatey-l2(a, c)

(iii) Solve the Orr-Sommerfeld equation and find

o(a, c, R)



(iv) Evaluate \1/(a, c) and determine (S (a, C, R)

(v) Vary c so that ^ vanishes. The resultant

value of c is the desired eigenvalue.

The traditional approach to this problem is to consider
a as a real parameter and permit c to take complex values.

The reasons for this choice will be discussed more fully in

Section 2.6. If cr' ci are the real and imaginary parts of

the phase speed, then (2.34) can be stated as

Cr = cr (a, R) (2.35)

c= c (a, R)

where the locus of points ci = 0 is the neutral curve and
specifies the only possible values for (a, c, R) for which

waves can exist neither amplified nor damped in time. Of

course, the eigenvalue relationship (2.33) is a complex func-

tion of (a, c, R).

Thus for fixed (a, R), the eigenvalue problem re-
duces to that of determining the zeroes of some complex func-

tion 6 , where the functional relationship is not known in
closed form. A numerical technique for determining these

zeroes with a minimum of computation is discussed later.

2.5 Oblique Disturbances in the Boundary Layer

In Section 2.1, discussion was limited to the study

of two-dimensional disturbances. The justification for the

restriction to two-dimensional disturbances was given by Squire

(1933) who demonstrated that any three-dimensional disturbance

of the form
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/-

(X)

x (o~~(

(2.36)

can be transformed to an equivalent two-dimensional disturbance.

Squire's transformation can be written as

o~~kJ %Pj A t~..'
\/= \./

cC (2.37)

refers to the three-dimensional flow)

Using this transformation, a theorem can be proved

which states that the minimum critical Reynolds number occurs

for the two-dimensional disturbances. This theorem was first

stated by Squire and is valid for incompressible flow over a

rigid boundary.

When a compliant surface influences the boundary con-

ditions of the Orr-Sommerfeld equation, a theorem similar to

Squire's theorem cannot be proved in general. Squire's trans-

formation can be regarded as a mathematical transformation to

recover the two-dimensional equations from the three-dimensional

ones, or as a rotation of coordinates to investigate oblique

(



waves. Since the transformation affects only the velocity, as

detailed below, the mathematical and physical interpretations

coincide.

When the compliant boundary is present, only the

formal aspect of the rotation remains, for it must be recog-

nized that the scaling for the physical properties of the sur-

face vary with the direction of the oblique disturbances.

Thus oblique waves must be considered to exist over a series

of different but related compliant boundaries.

This rotation of coordinates preserves the length

scale 8 ,the magnitude of the effective wave number a, and

a , a, R < R, and p ) p. In particular, the effective pres-

sure perturbation for the two-dimensional flow is greater than

that for the three-dimensional flow. One can state an equiva-

lent transformation by considering the appropriate scaling

variables so that the properties of the compliant boundary

can be transformed to measure the response of the boundary

to these oblique disturbances.

(2.38)

where

The equivalent wave speed c can be shown to trans-

form in the same manner, where

O +0 = 5(2.39)

It must be recognized that 'c in (2.36) is not the phase ve-

locity of the three-dimensional waves. The actual phase

speed of the waves transforms in the same manner implied by

(2.38) for the same effective phase speed of the equivalent
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two-dimensional disturbance. This transformation is the same

as the inverse of the transformation of the normalizing ve-

locity U0 .

When computing the dimensionless parameters char-

acterizing the compliant boundary, a new parameter, the angle

of the disturbances, must now be considered. Following the

results given in Section 2.2, one must have

(2.40)

00

These transformations of the effective properties

of the surface demonstrate that the equivalent surface has

greater stiffness and is more highly damped when reacting to

the three-dimensional waves, as compared to its reaction for

two-dimensional waves.

2.6 Spatial Amplification of Disturbances

In the formulation of the eigenvalue problem

(Section 2.4), it was mentioned that one generally considers

the disturbances to be amplified (or damped) in time. This

was stated in the text preceding Equation (2.35) as consider-

ing a to be a real parameter, and accepting complex values of

c. This viewpoint of considering temporal amplification of

disturbances has produced theoretical predictions that agree

very well with experimental observations.

However, ,it is recognized that the actual physical

situation noted by various observers is one of combined spatial



and temporal variation of disturbance amplitudes. For example,

Brown's (1963) observations of the breakdown of the laminar

flow in a boundary layer, and the sequence of events leading

to the transition of the layer to a turbulent state include a

series of combined spatial and temporal growth of small, wave-

like disturbances. The forced transition experiments of

Schubauer and Skramstad (1947), and Klebanoff, Tidstrom, and

Sargent (1962) give illustrations of a purely spatial growth

of disturbances.

These observations force a closer look into the ade-

quacy of the description of the growth of small disturbances

as merely a process of temporal amplification. There are two

fundamentally different approaches for bridging the difference

in the theoretical and observed description of the phenomenon.

The first of these are discussed in detail in a note by Gaster

(1962). In this note a relation between the spatial and tem-

poral amplification rates is derived under the assumption that

these rates are small. This transformation states that the

spatial amplification rate a . can be determined by knowledge

of the temporal amplification rate ac by the equation

c = C /c O(c) (2.41)

where

+ (2.42)

c g is identified as the group velocity of the disturbances.

From comments appearing in his paper, it appears that

Schlichting (1935) knew of this result, but presented no proof

of his statement.

The interpretation of the group velocity of a dis-

persive wave system is that it represents the speed at which



the energy of the disturbance is convected. For fixed fre-

quency disturbances, one must recognize that although accr is

fixed, its variation with wave number does not vanish and
energy may still be carried by the disturbance at a velocity

different from its phase speed.

The other approach to spatial amplification is a

direct attack on Equation (2.33) by regarding a as a complex
parameter and considering only real values for c or restricting

c to be proportional to the complex conjugate of a so that the
frequency W is real. In this approach, no restriction on the

size of a need be made as it was in the case of Gaster's

transformation.

It must be recognized that complex a introduces

amplification terms of the form

'by virtue of the fact that there is a complex portion of the

wave number in (2.7). However, a term of this form causes

exponential growth of the disturbances at either ± oo for the

case of nonzero a,. Thus, to develop a stability criterion,

one must consider separately whether the disturbances grow

as they travel in the upstream or downstream direction.

In Table 2.1, criteria for the stability of
traveiing wave disturbances are formulated for spatial ampli-

fication by considering not only the direction in which the

wave is amplified, but also the direction in which energy is

carried by the disturbance, determined by the sign of the

group velocity. In the same table, the temporal criterion

for stability is also presented for comparison.

The inclusion of the group velocity in the stability

criterion for spatial growth of disturbances is an effective

application of a radiation condition. By means of this con-
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dition, disturbances are classified as unstable if they con-

vect energy in the same direction as their spatial growth.

By means of Gaster's transformation (2.41), it is seen that

there is agreement of the two criteria from Table 2.1. In the

neighborhood of the neutral curve determined temporally and

for the regions of temporal amplification of disturbances,

the amplification rates c are very small and.Gaster's trans-

formation is unquestionably valid. The only question that

might arise is that of whether there are additional regions,

far removed from this neutral curve for which the spatial cri-

terion predicts an instability that is not covered by the tem-

poral criterion. This constitutes a detailed investigation

that is beyond the scope of this paper.

Temporal Growth Spatial Growth Stability

c. > 0 a. < 0 c > 0 unstable
19 (amplified)

a > 0 c < 0

c. = 0 a. = 0 neutral
1 1

c < 0 a > 0 c > 0 stable

a < 0 c9 < 0 (damped)

Table 2.1. Comparison of the Stability Criteria

Both of these criteria, as formulated, deal only with

the local amplification of the disturbances because of the ap-

proximations involved in the derivation of the Orr-Sommerfeld

equation. The interpretation of the Reynolds number of an

almost parallel flow given in Section 2.2 can entirely invali-

date the consideration of the Orr-Sommerfeld equation as the
equation that governs the growth of small disturbances since

the separation of variables of (2.7) is not valid for R a
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function of position. However, the interpretation of spatial

stability given above implies an investigation of phenomena

occurring at long distances (a radiation condition) for which

the present analysis should be invalid. Furthermore, important

non-linear effects become of interest when the linear disturb-

ances reach a finite size, which occurs rather rapidly in a

short spatial range even for the small amplification rates

predicted by the temporal stability criterion. Thus any analy-

sis that considers a spatial criterion for stability should un-

questionably take the non-linear and three-dimensional phenomena

into consideration to be a contribution to existing knowledge of

the stability of boundary-layer type flows.

In this paper, only spatial amplification as given by

Gaster's transformation will be investigated. As stated above,

Gaster's result can be expected to have a high degree of ac-

curacy for amplified disturbances as predicted by the temporal

criterion. However, since the eigenvalues a, and c are functions

of R, the interpretation of the growth predicted by (2.7) must

be made very carefully, in view of the interpretation of R pre-

sented in Section 2.2.

One can make a rough estimate of the amount of spatial

amplification by using eigenvalues obtained from calculations

based on a temporal criterion, applying Gaster's transforma-

tion, and interpreting (2.7) to give

o~dAX (2.43)

where A is some measurable property of the disturbance, such as

the magnitude of the u' velocity, and K is defined in (2.10).

The first term arises from a generalization of (2.7) applied

locally,

25
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where a is made dimensionless in a different manner than a.

Henceforth, the superscript + will be omitted and a. will be

considered to be made dimensionless with respect to 2)/U 0 .

The second term in (2.43) is an attempt to account for

the variation of Reynolds number with x by considering ex-

plicitly the growth of the boundary layer with advancing dis-

tance downstream. This growth causes the streamlines to slope

at a small angle, so that the ordinate y is in reality a

similarity variable y/ c (x). This term is meant to represent

the error that exists by consideration of the first term alone.

No completely satisfactory estimate of the error can be made,

since any model more detailed does not yield the Orr-Sommerfeld

equation as a first estimate when boundary-layer growth is

considered.

The important consideration, however, is the distinc-

tion between two length scales in the physical problem. The

first is of the order of the local boundary-layer thickness

and is the length over which a small disturbance grows ap-

preciably, or over which the wave number of the disturbance

changes significantly. The second and longer length is that

for which the boundary-layer thickness changes appreciably.

The fact that this second length is much longer than the

first is the prime contributor to the accuracy of parallel

flow theory for nearly parallel flow.
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Chapter 3

DYNAMICS OF THE COMPLIANT BOUNDARY

3.1 Admittance of a Compliant Boundary

The dynamics of a general compliant boundary, in

which traveling waves of wave number a and phase speed c

exist, can be characterized by normal and tangential admit-

tances. Only materials for which the stress strain laws ex-

hibit a marked hysteresis or non-linear behavior are ex-

cluded from this discussion.

The concept of normal and tangential admittance pro-

vides a measure of the response of the compliant boundary to

a traveling-wave pressure disturbance. The definition of the

quantities appear in (2.19) and (2.20). Defining 19 ,Y
as the horizontal (x) and vertical (y) deflections of the

material in the compliant boundary, solutions for traveling

waves are of the familiar form

A

OUX- -4:)(3.1)

The deflections are related to the velocities used in (2.19)

by the operational relations

A A

(3.2)

The materials that are to be considered have a linear

stress-strain law with no hysteresis, so that the stresses are

instantaneously related to the local strains and strain rates.



The pressure on the surface, related to the negative of the

noraml stress G~ , has a general form

(3.3)

The following sections are devoted to some sample

calculations of the normal and tangential admittances by

solving the dynamic equations for some selected examples of

compliant boundaries. The examples treated in these sections

by no means exhaust the possibilities for models of compliant

botndaries, but serve only to illustrate the general tech-

nique.

3.2 Admittance of a Spring-Supported Membrane

Consider a membrane of mass/unit length m, damping-

unit length d, under a constant tension T, and supported

along its length by a spring of constant k. A deflected

portion of the membrane is shown in Figure 2(a). The dynamic

equation of this simple configuration is

-- + - (3.4)

One defines

(3.5)

as the propagation speed of disturbances and cutoff fre-

quency of the membrane. Introducing the complex amplitudes
AA
, p into (3.4), and using (2.19) and (2.20), one finds

(3.6)



The parameters appearing in (3.6) shall be considered

dimensionless as described in Section 2.2. In particular, d

and ) 2 must be varied with Reynolds number as described in0

(2.15) and (2.16) to model a semi-infinite geometry. In ad-

dition, the mass/unit length m is made dimensionless with

respect to of the boundary layer, so that for a uniform

membrane

showing that the surface appears to become heavier as the

boundary layer gets thinner. The cutoff frequency and damping

also appear proportionally greater as the Reynolds number de-

creases, showing an implicit variation of the surface admit-

tance with Reynolds number because of the non-dimensionaliza-

tion. If this variation of properties is not maintained,
the surface must be regarded as specially tailored or de-

signed for the task at hand. Examples will be shown illus-

trating the effect on the stability of the boundary layer of

"normal" surfaces and those that have been specially

"Itailored."

The normal admittanceY 1 1 is nearly purely imagin-

ary for real values of c, having a real part proportional

to damping and ci which are small. The imaginary part changes

sign as the effective wave speed c2+ )O/a2 is passed. A

physical explanation for the effect this admittance has on

the stability of the laminar boundary layer will be pre-

sented later.

The tangential admittance for this case vanishes

because no tangential motion is considered in this particular

model of a compliant boundary.



3.3 Admittances of a Rubber Surface

The following model is an illustration of a possible

rubber surface. It yields a better physical representation

of the dynamics of some practical boundary structure than that

of the previous section. The general equations of motion for

an elastic solid are

(3.8)

-a -+

Following the suggestion of Nonweiler (1961), the

following form of stress tensor is assumed to exist in the

boundary

(3.9)

where standard tensor notation is used. P5 is the density of

the material in the boundary, E and G represent the tensile

and shear moduli, respectively, and dl, d2 represent struc-

tural damping coefficients giving rise to stresses propor-

tional to strain rates. This model as described is a Voigt:
solid. The constants used are assumed to be known constants

of the material used in the boundary.

General solutions for the complex displacement ampli-

tudes , are
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where the following abbreviations have been adopted

I.

2.
(3.11)

(C,

in dimensionless form.

The perturbation velocities at

are found by inspection of (3.10)

At\s -: - i r- (A + A )

the surface

N

Manipulation of (3.9)

sure p5 can be expressed as

shows that the surface pres-

A

A
(3.10)

(y = 0)

(3.12)

.4 \ 4 cos \ fL C I

Ced4/ps

Ez: k ICkf-(a -Ozk) ( C

I.to(

I - (OC



or

Ali A

where c c2 are defined in (3.11). Thus

kL (jz(jL+ A (3.14)

The admittances Y 1 and Y12 are specified by the
I A A

ratios of us v s to p5 , and the four constants A determine

these admittances when three boundary conditions are speci-

fied to determine the constants.

Two boundary conditions that provide reasonable ap-

proximations to those that are expected at the interface be-

tween a rubber surface and a water boundary layer are that

the shear stress vanishes at this interface and that the

normal displacement vanishes at the lower boundary. These

conditions can be stated mathematically as

(i) (I - - at y 0

(3.15)

(ii) at y =-H

An additional boundary condition must be stated at

the lower boundary of the surface. A boundary condition

that leads to a simple result for the admittances is that

the shear stress also vanishes at this boundary; i.e., the

W_ Mi!killll - - - -



lower surface slides without friction on a rigid substructure.

at y = - H (3.16)
~j- ~/

In terms of the four constants A introduced above,
these boundary conditions specify three ratios

~-\ 1

(3.17)

I +r~\ A

From (3.17), (3.12), and (3.14), one can deduce

I '''.1

(3.18)

where

i#±f>+W~X 2 \\LA (3.19)
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It is sometimes convenient to regard the disturbances

that contribute to the admittances in (3.18) as shear waves

propagating in an incompressible medium. This can be effected
2

simply by letting c- 00 so that r1 = 1. This simplification

reduces the relevant parameters to four, namely (, d, PS, and

H, where

eL.

- f. (3.20)

Note that these parameters are functions of the

Reynolds number as discussed in Section 2.2.

One can consider alternative boundary conditions to

replace the assumption of (3.16). By requiring that both the

normal and tangential displacement vanish at the lower bound-

ary, the ratios specified in (3.17) are changed to

L 14 ri.L (3.21)

The corresponding expressions for admittance can be

deduced from (3.12) and (3.14). The final expression is

rather long, and since no computations were made for a sur-
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face with these boundary conditions, will not be written here.

3.4 Matching of Surface Shear Stress

It is generally sufficient to assume that the response

of a compliant boundary, such as the rubber surface model con-

sidered previously, to the oscillating component of shear stress

acting on the surface is negligible. If it is felt that this

shear stress should be matched at the interface between boundary

layer and compliant boundary, a simple iterative scheme can be

proposed that will accomplish the matching.

This scheme is based on the premise that the shear

stress at the interface is small. The first estimate considers

the shear to vanish, permitting the computation of the tangential

admittance Y 12 . With this admittance, the eigenfunction w
may be found satisfying (2.29). Using )w one can compute the

dimensionless shear stress at the boundary

r + . A(3 .22)

This value for ' is then inserted as an inhomogeneous term in

(3.15i). After suitable normalization, this new boundary con-

ditionwill effect (3.17) and give rise to a better estimate

for Y 12. This process is repeated until adequate convergence

of either Y12 or T is obtained for two successive trials. At

this time, both Yo and Y(1 may be computed and the eigenvalue

criterion E may be evaluated.

It is not felt that the inclusion of surface shear

will reveal any new effects, so no results of this computation

will be presented.
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3.5 Inviscid Liquid with Zero Mean Motion

Another simple example of a compliant boundary is a bed

of inviscid liquid, such as a body of water. Defining ( as the

velocity potential of the disturbances in the water, and using a

linearized Bernoulli equation

=- _ i . (3.23)

where

- .(3.24)

one can easily verify that

(3.25)

for deep water, and

(3.26)

for water of a finite depth.

The vanishing of the denominator of (3.26), which

yields an infinite admittance, is the condition usually ap-

plied for water waves; namely, a zero pressure perturbation

on the surface, for which the wave speed is

(3.27)



One expects wave speeds of interest to be in this range.

Note that g here is expressed in dimensionless terms, and is di-

rectly related to the Froude number F of the boundary layer over

the body of water

2 7
(3.28)

The effect of surface tension can be represented by a

simple modification of the Froude number, by including the in-

verse of the Weber* number in the following

fashion

F = F +QV (3.29)

A decision should be made as to the manner in which

the Reynolds number of the boundary layer is to vary in this

case. Contrary to the arguments given in Section 2.2, the

concept of a semi-infinite plate may not be very important for

this configuration. A more realistic model would be to let

the boundary-layer thickness and viscosity be fixed, and let

the Reynolds number (and the Weber and Froude numbers) vary

with the velocity.

The inviscid example presented here provides a good

model for the generation of water waves by a shear flow,

particularly in deep water where viscous effects have little

importance.

3.6 Admittance of Coupled Helmholtz Resonators

A final example of the calculation of the admittance

of a compliant boundary is that of the coupled Helmholtz

resonators. This configuration was used by Meyer-Piening

Defined in Section 12-5 of Ipsen (1960)
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(1963) in a series of experiments on this flow. One can consider

a two-dimensional array of Helmholtz resonators (small resonating

chambers of fluid) that are coupled to each other and the fluid

in the boundary layer by small openings (see Figure 3).

Each resonant cavity of compressible fluid behaves like

a spring while the fluid in the small apertures represent the

masses on which the springs act. There are several possible

approaches to derive approximate solutions for this system. The

analysis done by Meyer-Piening will be followed.

The motion of the fluid in each cavity must obey the

wave equation for small disturbances. Using the numbering

system of Figure 3, the pressure in the ith resonator must satisfy

(3.30)

for these essentially vertical oscillations. The parameter a

is the speed of sound in the cavity and is assumed to be con-

stant for these small disturbances. The pressure is assumed

to be uniform across the section of the resonator. A velocity

potential exists and is related to the pressure by the

linearized Bernoulli equation

(3.31)

where ~ is the mean density in the cavity. Solutions to

(3.30) exist in the form

A - . (3.32)

where the vertical velocity vanishes at the base of the cavity

(y = 0 in this coordinate system).

By averaging 9 over the cross section of the cavity,
38
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one can neglect the effects of the side walls. The only other

consideration is the effect of the pressure perturbation set

up in the cavity on the motion of the small masses of fluid

in the apertures. Since these small slugs of fluid have a

finite mass, their acceleration causes a pressure difference

across the apertures.

For the sake of the analysis, it will be assumed that

the acceleration of the masses of fluid in all the apertures

is proportional to the time rate of change in vertical ve-

locity at the top of the cavities. This assumption approxi-

mates reality for small geometries at the top of the cavity.

Thus the following constraints must be satisfied at the top

of the cavity, using the notation of Figure 3.

upper hole -

(3.34)

left hole

right hole

solid boundary

Averaging the boundary conditions at y H, to ac-

count for the amount of boundary that is a rigid wall and

that part that can communicate with regions at a different

pressure, one finds

(3.34a)



where 52.

Regarding the last term on the right-hand side of

(3.34a) as written in finite difference form, one can go to

the limit of a second x derivative by introducing the dis-

tance between cavities L, and letting L approach zero

(3.35)

At this point recall that a traveling wave dis-

turbance is causing the perturbation p so that the second

x derivative can be replaced by its operational equivalent

- a2 yielding

\ W C- N( - -z.k+ C- (3.36)

Using (3.36) and the definition of the normal admittance

(2.20), one finally arrives at the admittance of this con-

figuration

(3.37)

This can be compared to (3.6) if one realizes that

there is only small x coupling (that provided by the tension

in the membrane) and (,) is replaced by ac. There is no

provision for dissipation in this model, but it could be

taken into consideration in a qualitative manner. Expanding

the tangent for small values of its argument completes the

comparison of these resonators with the membrane, showing the
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principal effect to be that of the supporting spring of

Section 3.2.

So similar are these cases that no calculations will

be made for this configuration. It must be recognizedthough,

that a geometry such as this is a fruitful model for future

investigations of the influence of a compliant boundary, but

a more thorough analysis would have to be performed.
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Chapter 4

COMPUTATION OF THE BOUNDARY LAYER ADMITTANCE

4.1 Solution of the Orr-Sommerfeld Equation

far from a Boundary

In Chapter 2 it was shown that the Orr-Sommerfeld equation
(2.8) governs the behavior of linear disturbances in a viscous
shear flow. A technique for the numerical solution of the Orr-

Sommerfeld equation is to be developed in subsequent sections.

This technique is based on the observation that the equation
takes a very simple form far from a boundary where the velocity
U approaches a constant value.

For these regions where U(y) = Uo, Equation (2.8) has
constant coefficients and may be written

0(o-+f )~I+oj~ .. P (4.1)

where

N- f~ (4.2)

This constant coefficient equation has four solutions
expressible in terms of exponential functions

(4.3)

where the real part of P > 0.

Referring to the boundary condition (2.18), which

states that 0, 6 tend to zero as y -+ w, one must reject

#2 and 0 for large positive y, and for cases where the
flow extends to - m, one must reject 0 1 and for large
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negative y. Between these two extremes, there exists either a

boundary or an unbounded shear flow for which (4.3) are not

valid solutions. In the work that follows, it shall be con-

sidered that a boundary is located at y = 0 and the problem of

interest is that of perturbations in a boundary layer lying

above this boundary.

Since $1, 3 are the most general pair of bounded

solutions that satisfy (2.18) outside of the boundary layer,

at the outer edge* of the boundary layer a general solution

of the Orr-Sommerfeld equation can be expressed as a combi-

nation of these two solutions.

Anticipating a numerical integration of (2.8) from

the outer edge of the boundary layer (defined as y = 1) to

the wall (y = 0), one can use this form of the solutions- 01
and 3 to specify initial values for two numerical integra-

tions of (2.8) to find the most general solution. These

initial values are

(4.4)

The given initial values are then integrated from

y = 1 to y = 0. The two solutions ,l' 3 should be

linearly independent for a different from . The details

of this integration are discussed in the next section.

* Since the outer edge of the boundary layer is not precisely

determined, it was located empirically for these computations.
The point in the velocity profile was selected as the outer
edge of the boundary layer if the integrations of the Orr-
Sommerfeld equation starting at points farther removed from
the wall yielded the same results.
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4.2 Numerical Integration of the Orr-Sommerfeld Equation

When the coefficients of (2.8) vary (in the range

1 g y < 0) no exact closed form solutions exist. In this in-

terval, a numerical integration is used to solve the two initial

value problems posed by (4.4). The use of these initial values

insures that the final solution has the correct asymptotic be-

havior far from the surface, and that these are the only solu-

tions of the four solutions possible that need to be considered.

The integration schemes that were considered were all

single-step integration techniques suitable for this fourth order

equation. This technique regards (2.8) as an algebraic equation

for the fourth derivative

(4.5)

Since at a station y, and its derivatives are known, the in-

tegration scheme can proceed to determine the desired quanti-

ties at the next station, y-h. This process continues until

the wall (y = 0) is reached, and is schematically illustrated

in Figure 4.

Several integration schemes were tried before the

final form was selected. A trapezoidal, iterative integration

formula provided reasonable results when approximately 250 in-

tegration steps were used. A non-iterative scheme based on

the Taylor series expansion of the function about the point y

still needed about 200 integration steps to yield satisfactory

results. An iterative, modified Milne-Obrechkoff integration

scheme provided excellent results which varied by less than

one per cent when the number of steps was varied from 500 steps

to 12 steps. The scheme that was finally selected was a modi-

fied Runge-Kutta integration that used 64 integration steps to

perform the desired calculation. A description of the latter

two techniques appears in Appendix B.
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The selection of the Runge-Kutta integration scheme as

the final form used in the computation of results was based on

two considerations. It provided calculations of the eigen-

function at the wall sufficiently accurate to determine four

digits of the wave speed c, and exhibited the most rapid speed

of computation for this accuracy. One integration of the Orr-

Sommerfeld equation is performed in 31/60 seconds on the

IBM 7094 computer with the present FORTRAN coded computer pro-

gram. This computational time could definitely be improved by

the reprogramming of the numerical integration in appropriate

machine language. It was felt that the simplicity of the

present program outweighed the saving in time to be achieved

from rewriting the program.

The accuracy of the scheme was verified by direct

comparisons of the results with those of the Milne-Obrechkoff

scheme, which was determined to have an exceptionally high

accuracy, and by variations of the integration step size over

several octaves above and below the finally accepted 64 step

integration. Both of these comparisons indicated that the in-

tegration scheme provided the necessary accuracy for this

type of calculation.

To determine whether the method itself was accurate,

a comparison was made of the eigenfunction g (y) with that

found by Kurtz (1962). This comparison was performed by

Mr. S. Chan* who reported excellent agreement of the test

cases. It is felt that this comparison is significant be-

cause the technique used by Kurtz to solve the Orr-Sommerfeld

equation is radically different from that described herein.

The results of these two independent checks show that both

the technique and the numerical integration used give valid

solutions of the Orr-Sommerfeld equation.

It was observed that the solution 9 3 behaves the

* M.I.T. Electronics Systems Laboratory, unpublished communica-
tion.
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same as the viscous asymptotic solution of (2.8), and hence-

forth will be referred to as the viscous solution. By ap-

propriate combinations of 3, one can calculate the

Tietjen's function (z) (Appendix A) which is tabulated in

Miles (1962). Agreement was found to the number of digits

presented in the tables.

In the range of Reynolds numbers that is important

for boundary-layer stability, it is estimated that four

decimal digits of complex c can be maintained. In the final

form of the integration scheme, the relevant Reynolds number

and wave number are limited by the inequality aR < 10 .
Above this limit, an overflow of the viscous solution may

11' 38develop for some phase speeds c: i.e., J 93 > 10 . It

is possible to program around this occurrence without too

much difficulty, but it was felt that smaller steps should be

used for integrations at these high values of a, R. Further-

more, it was felt that Reynolds numbers beyond 104 were not
of interest* so this restriction caused few limitations in

the present computations.

4.3 Parasitic Growth of Truncation Errors

There is one feature of this numerical integration

that causes significant problems when performing the actual

computations. This difficulty arises because the "viscous"

solution 3 has a much more rapid growth than the "inviscid"
solution /1. By this statement, it is meant that

(4.6)

for all finite intervals Ly in the range (1,0).
* 4 6For R > 10 , R > 3 x 10 , above which natural transition is
observed to occIr for the smoothest flow conditions of the
external stream. (cf. Schubauer and Skramstad (1947)).



Initially,the two solutions are linearly independent

as shown by (4-4), but as the numerical integration proceeds,

this independence is observed to disappear rapidly. Since the

differential equation is of such a simple type (linear and

non-singular) in the range of interest, it is certain that

this loss of linear independence, which is impossible for an

exact solution, arises because of the approximate nature of

the numerical integration.

There are two possible sources of error that must be

investigated. The first is an actual integration error caused

by a poorly implemented numerical integration formula. The

other type arises because of the nature of a digital computer

operating in a floating point mode. A computer carries only

a specified number of significant digits plus an exponent

when representing a real number. From time to time, trunca-

tion or round-off of a result occurs, and this error is char-

acterized as a truncation error.

The effectof integration errors is greatest on 03'
since this function exhibits a very rapid growth as the in-

tegration advances. As stated in the preceding section, it

has been determined that the integration of 03 is within

satisfactory limits. Judging from the behavior exhibited

for y > 1, 1 should exhibit a slower growth than 3 and

consequently the same integration scheme should be more than

adequate to describe the variation of

However, it is noted that as the integration pro-

ceeds, I starts growing more rapidly than anticipated.

This type of behavior is illustrated for a real function in

Figure 5. It is regretted that an actual example of this phe-

nomenon cannot be presented graphically, but is a complex

function that typically exhibits a growth in excess of 101,

while is observed to grow by a factor of (approximately)

105. Figure 5 is used only to suggest the behavior of these
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two functions. The point is that at y = 0, 1 is proportional

to 3. Since 0 3 is a solution, then 01 is still propor-
tional to a solution of (2.8). The difficulty is that 0 1 satis-

fied boundary conditions at y = 1 that should have yielded a
solution that is independent of 03. It is also observed that

the factor of proportionality that relates the resultant 01 to

3 exhibits a rapid variation when the initial conditions are

changed slightly.

The conclusion is that quite arbitrary initial condi-

tions at y = 1, when used for a numerical integration of (2.8)
yield a solution proportional to 3, and that the factor of

proportionality is very sensitive to small changes in the

initial data. It must be stressed that this factor of pro-

portionality is a complex number, so at first glance, this de-

pendence is not obvious if a comparison of only the real parts

(or imaginary parts) is made.

This is an unfortunate occurrence, because other

techniques of solution of the Orr-Sommerfeld equation indicate

that the final eigenfunction remains of the same order through-

out, so that the combination of 0l and 03 will probably re-

sult in the small difference of two very large numbers. If

this technique for solving the Orr-Sommerfeld equation is to

be a useful tool, the cause of this behavior must be explained

and understood.

The explanation for this unusual phenomenon is based

on two observations. The first of these is that 03 is the

most rapidly growing solution of this equation by several orders

of magnitude. When this is coupled with the second feature, the

rather irregular number system used by the digital computer,

the answer becomes clear.

Computation retaining only a fixed number of digits re-

quires that 1 can be specified initially only to this number

of significant figures. At the initial step then, one can re-
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gard 1 as having a small portion of its initial conditions

that provide suitable initial conditions for . If by some

rare circumstance, this small portion is not present initially,

after one integration (and its accompanying truncation error)

this portion will definitely be present.

It is this small initial error portion that is a com-

plex multiple of and eventually dominates the solution that

started off as if the integration proceeds far enough. It

must be stressed that this error is not the result of any in-

stability of the equation or numerical integration scheme as

discussed by numerical analysts such as Urabe (1961) or

Dahlquist (1962), but is an actual solution of the differential

equation. This portion of the solution $l is called the para-

sitic error.

An analogy might be drawn between the Orr-Sommerfeld

equation and a noisy electronic circuit, which provides the

same undesired output for an arbitrary noisy input. The tech-

niques that can be used to remove this difficulty for the

Orr-Sommerfeld equation have analogous techniques in elec-

tronics, as will be discussed in the next section.

As a consequence of this noise sensitivity, one can

envision an analog computer solution of the Orr-Sommerfeld

equation which always saturates the output for any arbitrary

input, even the case for a shorted input.* This seeming para-

dox is explained by the infinitesimal contact noise at the

shorted input that provides sufficient initial conditions for

the viscous solution to grow to saturation. It is exactly

the same phenomenon that causes the numerical (as opposed to

analytical or mathematical) linear independence to be lost.

* Cf. Bismut (1963)
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4.4 Parasitic Error Purification Scheme

A technique for removing or controlling this source of

error must be found if this method of solution for the Orr-

Sommerfeld equation is to be successful. There are two possible

techniques that can be used to resolve this difficulty.

The first of these corresponds to improving the quality

of the analogous electrical signal by improving the quality of

the electrical network. On the digital computer, this corre-

sponds to carrying more significant figures in the computation

of . Double precision arithmetic can increase the number

of significant decimal digits to 16 and requires a growth of

S3 on the order of 1025 before this problem again becomes

important. Furthermore, modern digital computers such as the

IBM 7094 have provision for automatically performing these

double precision operations by means of built-in hardware.

In Table 4.1 an estimate is given of the penalties in

computation time imposed by double precision arithmetic. The

operation time for sample single and double precision arithme-

tic operations is given for the IBM 7090 and 7094 digital com-

puters.
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Floating Point Machine Machine Cycles
Operation Instruction 7094 7090

Addition FAD(FSB) 12 15
(Subtraction) DFAD(DFSB) 13** 61*

Multiplication FMP 5 13
DFMP 9** 69*

Division FDP 9 13
DFDP 19** 90*

Table 4.1. Execution time in Machine Cycles for Se-
lected Floating Point Arithmetic Instruc-
tions on the IBM 7090-7094 Computers.

Note: Prefix D signifies double precision operation

*Double precision operations for the 7090 are
available only as specially-coded subroutines.
The times quoted are approximate times for the
FORTRAN II double precision arithmetic package.

**Double precision operations are automatic on
the 7094 only through an assembly language such
as FAP.

Core storage cycle time: 7090 2.18 microseconds
7094 2.0 microseconds

It is obvious that even for a laborious, hand-coded

numerical integration utilizing double precision arithmetic

for every arithmetic operation appearing in the numerical

integration, this alternative is costly in computation time,

with execution times typically 40% slower. If it is desired

to keep the programming in a simpler, compiler language, such
as FORTRAN II, the time loss is prohibitive. However, it must

be stressed that inefficiency and high investment in pro-

grammer time are the only disadvantages to this means of

solving the problem, and this technique definitely will work.

To continue with the electronic analogy, the second

technique that can be used to control the parasitic solution

corresponds to the utilization of selective filters. By using



this technique, the parasitic solution can be filtered from the
more slowly growing solution 0 1. In other words, 01 is to be

purified of its parasitic error.

The root of this technique is based on the introduction

of controlled amount of the viscous solution 3 into the slowly

growing solution. If sufficient care is taken about the amount

of parasite that is permitted to grow, it can be insured that

the part of the slowly growing solution that is linearly inde-

pendent of 0 3 is never truncated from .l* In this technique

it is recognized that since both and 3 are solutions* of

(2.8), a combination of these two solutions is also a solution

Assume that 1 (y) is a solution of (2.8) at station

y and that any parasite in does not dominate the solution;

i.e., there is an arbitrary number of digits in l independent

of 3. Then one can write as an independent part and

a parasite

-Y Y (4.7)

After a numerical integration to (y-h), the parasite is larger

relative to than at station y. Define a new function

at (y-h) in the following manner

If E were known, one could select the constant A

so that the contribution ( C -A) 3 would exactly vanish (ex-

cept for a small numerical truncation error). However, it is

not necessary to totally discard the parasite, but merely to

By "solution" it is meant that at station y, the four complex
numbers 0 , # , g 5 , g 0"' are values of a function that
satisfies (2.8) and that approaches 0 as y -+ co.
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insure that it does not dominate 1(y-h). This can be done

with the aid of an operator F that expresses some relation-

ship between and its derivatives

(4.9)

For the moment, regard F as an arbitrary operator involving

and one derivative with the restriction that

F ( - )- o(4.10)

The only restriction on F other than that pre-

sented by (4.10) is that the solution of the differential

equation

F() o
has a solution that always behaves much differently than the

rapidly growing solution 3 in that it does not have such

rapid growth.

For example, a possible choice for the auxiliary

constraint F is the inviscid equation (the Orr-Sommerfeld

equation for infinite Reynolds number)

It must be stressed that A 1 is not a "solution" of (4.11),
but is a solution of (2.8) that merely satisfies the re-

lationship between its derivatives as shown by (4.11). Any

auxiliary differential constraint provides this kind of re-

lationship between the derivatives of 1, but the fact

that and three derivatives are given at station (y-h)

means that any initial value problem for a relationship like

(4.11) is over-specified.



With the aid of this auxiliary relationship, one can

continuously filter out part of the parasitic solution at every

stage of the numerical integration, since the constant A can

now be determined to be

...- (4.12)

The "solution" that had part of the parasitic solu-

tion filtered out at every integration step is called the

"purified solution." It is not a true solution of Equation

(2.8) in the sense that no analytic solution would take on

the values of the "purified solution" at the points of inte-

gration. It is rather the value of a different combination

of the two independent solutions ( l and 0') at every in-

tegration station. If the purification constants A have

been saved after their evaluation, a single solution can be

constructed at every integration station (Y=nh) by use of the

following formula

y(v4K' { 9 (w (w ) (4.13)

It must be stressed that this recombination must

take place in a reverse order than that for which the A's

were computed. If a direct combination were attempted,
small errors in the values of the initial A at (Y=) would

cause large errors in the value of A at (y = 0), because the
magnitudes of the purification constants descend very rapidly.

It is exactly this difficulty that the purification scheme

tends to correct in the integration of the more slowly growing

solution.
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4.5 Numerical Determination of the Eigenvalue Criterion

To solve the eigenvalue problem numerically, one

does not need to know the functions 1(y), 0 3(y) but only

their values at the wall. Thus the results of the numerical

integration are eight complex numbers defined at (y = 0).

Because of the purification scheme, these two pairs of four

numbers are numerically linearly independent. The value of

the eigenfunction ( is found by letting

- (4.14)

where B is selected from consideration of the requirement

that satisfy (2.29), which is rewritten below

(4.15)

The previous two equations determine B to be

~Si)(4.16),
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It is this final eigenfunction I that is used to

determine the boundary-layer admittance Yo from its de-

fining equation (2.31).

4.6 Construction of the Eigenfunction

Although it is not necessary for the computation

of the boundary-layer admittance, it still may be of in-

terest to investigate the actual behavior of the eigen-

function ( (y). The use of the purification scheme re-

quires that some thought be given to the method of combina-

tion. It can be easily shown that the correct combination

of the two solutions of (2.8) is

(4.17)

This should be compared with (4.13) in which only the "inviscid"

part of the solution was required. The notation is that used in

the previous sections.

With the use of this eigenfunction, one may compute

the distribution of amplitude of the velocity components

(4.18)

and also the vorticity and Reynolds stress distributions



(4.19)

T

where * indicates the complex conjugate.

These are useful in the study of the physical

phenomena represented by the mathematical solutions. The

distribution of the disturbance amplitudes can also be

compared to the available measurements of disturbances in

the boundary layer. This will be discussed in Section 10.2.

57



Chapter 5

DETERMINATION OF THE EIGENVALUES

5.1 Selection of the Eigenvalue Criterion

The techniques described in Chapters 3 and 4 exist

in the form of subroutines written for a digital computer.

Examples of these routines are shown in Appendix C. Given

a value of a, R, and c, these routines numerically determine

Y i, Y12 , and Yo so that the eigenvalue criterion 8 can be
evaluated. In this section, both R and a will be regarded

as fixed and the details of the computation of the eigen-

value c will be considered.

With this limitation in mind, it is sufficient to

take E as- a function of c alone, so that the eigenvalue ce
is a solution of the following equation

6(Cc) = O(5.1)
This function is known numerically in the sense that, given

a value for c, S (c) can then be determined. Furthermore,

it is anticipated that the functional relationship is

analytic even though no closed form solution is known.

The selection of the exact form of the various

possible relations for £ (c) is important, for numerically

the only test that is made is that

E (5.2)

for some arbitrarily small tolerance 6 . It is generally

sufficient to use the simple form

ti (5.3)



when investigating the Class A disturbances, since both Yo

and Yll are of order unity. However, the Class B dis-

turbances are generally located in the neighborhood of the

poles of Y so that in this case, it is more useful to

consider

or alternatively, the difference in impedances

(5.5)

In general, (5.4) is preferable to (5.5) since it

may also be used for computations of the Class A waves. It

goes without mentioning that these functions all have the

same desired roots, so that the manipulations can be re-

garded as a readjustment of the topology near these roots.

Furthermore, it is desirable to consider only

analytic functions of the admittances, since they are in

general analytic functions of c. Thus, it is wise to reject

such non-analytic relations as

(5.6)

although it might work in some cases.

If both E and c were real, the eigenvalue problem

would degenerate into a trivial exercise of finding the roots

of a real function, as illustrated in Figure 6. There are

several well-known techniques for determining the roots of

functions using numerical methods. Only the simplest of these

methods can be generalized for complex variables.

Landahl (1964) discusses in detail the effect of



the location of the zeros of a complex function , (c) on the

form of the curve c = 0 in an Argand diagram of ( vs L r
(As before, subscripts r and i refer to the real and imagi-

nary parts, respectively, of a complex variable.) By correct

interpretation of these curves, Landahl is able to evaluate

the marginal stability of dynamic systems. The basic idea

of this technique can be used to great advantage in this prob-

lem.

In Figure 7, an example of this Argand diagram is

shown for a case of a boundary layer over a compliant boundary.

The loci plotted are for constant real and imaginary parts of

c on an r' - plot for Figure 7(a), and the real and

imaginary parts of E on a cr. ci plot in 7(b). The zeros of

this function are well separated, and the diagram is de-

tailed only for the sheet on which the zero at c = 0.87 i

0.06i lies. A branch point is observed near c = 0.72 - 0.01i.

The important feature is that in the neighborhood of the

zero, & (c) is single-valued, and the branch points indicated
on the sketch correspond to saddle points in the c plane. The

existence of these saddle points can cause some numerical dif-

ficulties, as is discussed in the next section.

5.2 The Inverse of the Eigenvalue Criterion

While the method mentioned in the preceding section

is useful for locating one or two eigenvalues, it does not

provide the most efficient procedure for use in an automatic,

numerical computation, because of the human judgment that

must be provided to make it successful. It does provide a

useful technique for making estimates of the initial locations

of eigenvalues, and also suggests a basis for a more refined

technique to perform the actual computations.

In the neighborhood of an isolated zero, the simplest

form of the eigenvalue criterion is
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where g(c) is a slowly varying function of c in the neigh-

borhood of the zero, ce. One can approximate g(c) by g(ce)

so that

&(C FV-vSc~ (5.7)

Two estimates of the eigenvalue, c1 and c2 are

sufficient to determine the constants A and B so that the

next estimate c3 can be made.

M (5.8)
F.(C C -c

The value of the criterion at c3 is then calcu-

lated. If it is within tolerance, then c=ce. If not,

then one must determine whether it is a better estimate

than c, or c2 . If it is not, further computation is use-

less with this method. The third estimate generally is

better than one of the first two.

One can proceed by using c and the better of
.3

c and c2 to calculate a fourth estimate, and so on until

the evaluated L (c) is within tolerance.

It should be recognized that this method discards

the results of previous calculations and thus does not pro-

ceed in the most efficient manner. It would be better if

all preceding estimates could be used in making the next

estimate. The use of three points requires the assumption

that

Uci= ~+T+ (5.9)
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which corresponds to the following form for E (c)

O = 3 -0 (&CCQ(yC-Cai (5.10)

However, there are two solutions to (5.9), and these solutions

are not complex conjugates since in general (5.9) has complex

coefficients. Thus there is no criterion to determine which

of these solutions is the desired eigenvalue.

It is at this point that a simple observation can

be made; namely, that the inverse function c( E, ) is simpler

to solve than any general function &(c), and is as easy to

evaluate. By inspection of Figure 7, it is seen that the

possibility exists that c( E, ) may be double-valued, but for
the bulk of calculations of interest, it behaves locally as

a single-valued function. Then it is of interest to con-

sider the inverse of the eigenvalue criterion

c~ ,(5.11)

and the associated eigenvalue

.= r.C ) (5.12)

If there are k estimates for the eigenvalue, then

the next estimate may be found by the use of the Lagrangian

interpolation formula

(5k k.
CCt (5.13)



There is no ambiguity about branch points with this

form of higher order curve fitting, but it must be stressed

that this technique will work only when the eigenvalues are

well separated and the actual branch point is removed from

both eigenvalues. If the eigenvalues are located close to-

gether, one can still use (5.9) as the basis for an estimate,

and it should work quite well, except for the possibility of

jumping from one eigenvalue to the next on successive esti-

mates.

It should be noted that (5.9) would be of little

use for the configuration shown in Figure 7, for which the

branch point is remote from a zero of & (c). It should also

be stressed that if an estimate from (5.13) is in the neigh-

borhood of the branch point, then this procedure also will

fail. In general, however, when two roots are located close

together, the physical situation is very unstable, and the

entire configuration would probably be rejected if the de-

sired goal is to find boundaries with improved stability

characteristics. If a thorough investigation of the in-

stability is needed, it can be found manually, by the tech-

niques outlined in Landahl's paper and in Section 5.1.

It is generally found that proper convergence can

be obtained with three to four estimates using this method,

whereas it takes nearly a hundred calculations to map out

Figure 7 and on the average, five to six using formula (5.8).

5.3 Calculation of the Group Velocity

The computation of the spatial amplification rates

by Gaster's transformation (2.41) requires the knowledge of

the group velocity defined in (2.42). This necessitates a

numerical differentiation, one of the most inaccurate numeri-

cal operations.
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However, in this problem, c r(a) is a very well be-

haved function, so that generally the differentiation proceeds

without too much difficulty. The technique used first re-

places the values of cr with those found by a least squares

fit of a quadratic through seven neighboring points. The

original eigenvalues are retained in performing the fit and

the new values substituted only after those points are no

longer needed to calculate the other smoothed points. The

values of these new points are given in Table 5.1 for the

case of equally-spaced abscissas.

After the function is smoothed in this manner, a

standard difference formula is used to compute the deriva-

tives, using central differences where possible. In these

formulas, x represents the abscissa, y the ordinate, and

the points are numbered consecutively from 1 to N. In

practice, these formulas are modified to handle unequally-

spaced abscissas, but the calculations were generally per-

formed for equal intervals of a. The spacing is indicated

here by h.)

The differentiation formulas are

- (interior point)

- (first point)

(last point)
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5.4 Prediction of the Eigenvalues

The root-seeking techniques discussed in Sections 5.1

and 5.2 will work only when provided with at least two initial

estimates as to the location of the eigenvalues. It is clear

from that discussion that these estimates need to be reasonably

near the actual root so that the possibility of finding an

estimate on another sheet is reduced.

Usually, an educated guess is sufficient for the lo-

cation of the first eigenvalue sought. The computer is pro-

grammed to go on to the next desired value of a at a fixed R.

The eigenvalue last calculated is used as a first estimate of

the location of the next eigenvalue, while a small constant
is added to provide the second estimate. After two roots have

been found, they are extrapolated to give an estimate for the

next value of a and at this first value of R, this small con-

stant is added to give a second estimate. This prediction

process proceeds using as many previous estimates as are avail-

able for that value of R.

As the computation moves to a new value of R, pre-

diction becomes available now from extrapolation on R and a.

One new estimate for the second Reynolds number considered

is the root at the same a with a small constant added to
bring it closer to the values expected at the new R. The

prediction then proceeds as in the preceding paragraph. At

the third and subsequent value of R, the extrapolation can

be attempted for both a and R.

Although the results of an extrapolation can often

be inaccurate, it is sometimes found in this problem that one

of the two initial estimates is within tolerance. If not,
the third estimate generally is within tolerance, except in

certain exceptional cases where the topology of the inverse

eigenvalue criterion becomes more complicated as the calcula-

tion proceeds. Generally though, this process of using all
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of the previously determined information about the stability

loci helps to shorten considerably the time needed to locate

a total stability diagram, and is an important feature of the

efficiency of the root-seeking technique.
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Chapter 6

STABILITY OF A LAMINAR BOUNDARY LAYER OVER
A RIGID SURFACE

6.1 Eigenvalues for the Blasius Boundary Layer

The numerical techniques described in the preceding

sections were first used to calculate the eigenvalues for the

Blasius boundary layer over a rigid surface. This selection

was the obvious one because of the abundance of both theo-

retical and experimental studies of this configuration. Using

the general formulation of the boundary conditions for flow

over a general flexible surface by means of the traveling

wave admittances, it is seen that this case is a simple .special-

ization, and can be used to verify the numerical techniques and

results.

The boundary conditions at a rigid surface are that

both tangential and normal velocities vanish at the boundary.

Since Y12 then vanishes, Equation (2.29) can be simplified to

-- /
(6.1)

The boundary-layer admittance Yo is then simply

(6.2)

The eigenvalue criterion is then that Yo vanishes.

This occurs for

9J9 O W(6.3)
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Equation (6.3) is exactly the condition that the velocity per-

turbations vanish, so the boundary conditions are exactly the

same as those normally considered. It is felt that this formu-

lation has distinct advantages over the approach taken by

Kurtz (1962) wherein pressure infinities are sought. There is

no difference in results, but the restoration of the usual

boundary conditions is comforting.

The values of the velocity profile I(y) and U (y)
were made available for the numerical integration in the form

of a table containing the computed values at every integra-

tion station. This table was prepared from a direct numerical

integration of the Blasius differential equation.

The eigenvalues were located using the techniques

described in Chapter 5. It generally took less than five tries to

locate an eigenvalue, and three were usually sufficient when

enough previous points were located to attempt an intelli-

gent prediction of the eigenvalue at the point under con-

sideration.

In Figure 8, the loci of constant cr and c. are

presented on a conventional aj R plot. In this presenta-

tion, the abscissa is the Reynolds number based on boundary-

layer thickness Ci, as defined by (2.10), and the ordinate

is the dimensionless wave number a. In all of these compu-

tations, a is regarded as a real parameter.

Figure 8 is limited to the following range of a,

R.

SOOO s 49Oo (2.8o00o d(:yo00

It is felt that in this range, the significant amplification

occurs, and it is this range that is influenced significantly

by compliant boundaries. Although it is not evident from



Figure 8, both the loci of c. and c are double-valued in a.

The c curves form open loops at high R (as is seen from

the drawing) and the cr curves form loops open at low R. All

computations that yielded Class A waves (Tollmien-Schlichting

waves) for the Blasius boundary layer never showed a value for

cr that exceeded 0.51. It is observed that this is slightly

beneath the point in the velocity profile for which U is

a minimum, which corresponds to the point of maximum produc-

tion of vorticity by the mean flow. (For a parallel flow,

U corresponds to the vorticity and U is the Laplacian

of the vorticity, analogous to a vorticity source term.)

This is merely an observation and no reason has been determined

as to why the Class A wave speed should be bounded by this

value.

Using the results of Section 2.6, one can compute

the spatial amplification rates a. 2 / Uo, which are pre-

sented in Figure 9. The ordinate of this figure is now the

dimensionless frequency of the disturbance kr( W* 2) /U2
The justification that this is the most significant form of

the results is implied in Section 2.2, for it is this form

alone which has no reference to the growth of the boundary

layer for the semi-infinite flat-plate problem. The spatial

amplification rates were computed using the group velocity

as described in Section 5.3.

It is noted that the curves of constant a. are

closed, and reach a maximum value on the figure.

This maximum considered together with the critical Reynolds

number
R = 1804. a = 1.1.
c c



might be regarded as providing a simple measure of the stabil-

ity of the boundary layer.

However, when considering the effect of the compli-

ant boundary on the stability of the laminar boundary layer,

it is found that there is no simple measure of the stabilizing

(or destabilizing) influence of the boundary. For this reason,

it is felt that Figure 9 in its entirety provides the best

means of comparison of the effectiveness of compliant boundaries

in altering the stability of the system, and that any other pre-

sentation contains less significant information about the sta-

bility. Since the conventional a, R plot is so well known and

understood, this will always be shown for comparison purposes.

6.2 Comparison of the Stability of the Blasius Boundary Layer

with Experiments and with other Theories

It is traditional to compare the results of new cal-

culations with previous work done in the same area, and this

paper is no exception. In Figure 10, a summary of this com-

parison is given. Selected points from the neutral curves of

other authors are plotted on the a, R plane. The results of

Lin (1945) and Schlichting (1935) are analytical results based

on the asymptotic solutions of (2.8). (By analytical it is

meant that they are based on analytical, not numerical solu-

tions of the Orr-Sommerfeld equation.) The other authors all

used solely numerical techniques and were selected because

they represent recent significant contributions to the know-

ledge of these eigenvalues.

A detailed comparison of the results shows general

agreement on the location of the lower branch of the neutral

curve but a wide discrepancy in the neighborhood of the criti-

cal Reynolds number. In this region there is satisfactory

agreement between the present results and those found by

Kurtz and Crandall (1962) and Brown (1959). Since the other
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authors generally used the displacement thickness as their length

scale, alternative scales based on displacement thickness are pro-

vided along the edges of the figure. The numerical factor re-

lating the Reynolds number and wave number is given by

to the accuracy of the sketches.

It should be noted that there is general disagreement

as to the location of the upper branch of the neutral curve at

the low Reynolds presented in this figure. In Brown's report

where a comparison is made of several solutions of an earlier

vintage, the same feature is obvious. At the present time, there

are several solutions that yield distinct upper branches at these

Reynolds numbers. The present calculations yield an upper branch

that lies slightly below the other calculations and slightly

above the experimental points.

Part of this comparison is detailed in Figure 11,

which presents the neutral curve in the 4A, R plane. Neutral

curve measurements by Schubauer and Skramstad (1947) are pre-

sented on the same figure. It is seen that there is excellent

agreement on the location of both the upper and lower branches

for Reynolds numbers in excess of 2500. At lower values of R,

there is considerable scatter in the experimental results,

and several points were observed at frequencies higher than

those predicted by the present calculations. It must also be

mentioned that the data was taken from a small figure in

their report, and some inaccuracies might have resulted in the

transfer, perhaps requiring a fourfold increase in the diameter

of the experimental "points."

It is not felt that the low Reynolds number dis-

crepancies cast doubt on the numerical results in this area.

The experimental error can be very high for measurements of

this kind at such low values of the Reynolds number. In the

region of the minimum critical Reynolds number, the slope of



the streamlines is of order 0.01. From the other information

available in their report, one can deduce that the product of
velocity and boundary layer thickness at the critical Reynolds
number is

Uo = 0.328 ft 2/sec

For the low air speed of 32.8 ft/sec, a boundary-

layer thickness of 0.12 in. would be observed. A hot wire

of 0.001 in. would occupy about one per cent of the velocity

profile, which is roughly the same ratio as the streamline

slope. Thus the relative position of the hot wire would have

to be determined to within a wire diameter as the wire is

traversed downstream. If the wire is located in the region

of the fluctuation profile where u' is decreasing with dis-
tance from the wall (past the maximum of the fluctuation)

and the wire is not properly positioned to account for bounda-

ry-layer growth, an apparent amplification might be measured,

while on the other side of the maximum, an apparent damping

might appear. These effects are suggested in (2.43) as an

apparent error term in the determination of spatial ampli-

fication from parallel flow theory. Both calculated and

measured disturbance distributions show that there is a

very rapid variation in the neighborhood of the maximum.

(See Figure 14).

While it cannot be determined from the description

given in their report, at which location in the profile the
experimental measurements were made, to locate a neutral dis-

turbance Schubauer and Skramstad would have to traverse the

wire several inches downstream to get a measurable change in

amplitude. During this traversal, the wire would have to be

accurately positioned upward a distance of the order of the

wire diameter to achieve the same similar distance from the

surface. It is not clear that any amplification or decay



measured under these difficult experimental conditions can be

solely attributed to parallel flow amplification or boundary-

layer thickening. Later measurements at Reynolds numbers for

which the boundary-layer growth is not as rapid do not exhibit

this discrepancy, as shown in the next section.

6.3 Calculation of Spatial Amplification

In their report, Schubauer and Skramstad performed

some calculations to deduce the conventional amplification

rates ci (see their Fig. 28). These, and the corresponding

theoretical predictions are presented in Figure 12 plotted

versus a for two values of the Reynolds number. It is seen

here that the agreement between theory and experiment im-

proves as the Reynolds number is increased, with almost per-

fect agreement for a Reynolds number of 7702.

From the description given in their report, there

seem to be two sources of inaccuracies in the reduction of

the experimental data. The first source of difficulty is

performing the measurements at low Reynolds numbers, as dis-

cussed in the last section. The second is more basic as re-

gards their use of the measured phase speeds to transform

the measured spatial amplification to c .

As explained in Section 2.6, the group velocity

should be used for this transformation. However, the

group velocity cannot be measured directly and although it

is possible to measure the phase speed cr as a function of

cx, the wave length of a constant frequency disturbance

changes so rapidly with Reynolds number, that a derivative

of experimentally determined values measured under these

conditions would be very inaccurate. The difference between

the phase and group velocities at the higher of these two

Reynolds numbers is less than 15%. However, the agreement

between these two curves is exact for all practical purposes,



and the reason for this exact agreement must be regarded as un-

known.

An added check on the validity of these results was

made from an earlier figure in their report (Fig. 23). In

this figure, Schubauer and Skramstad presented actual measured

spatial amplification, in other words their raw data. An at-

tempt was made to duplicate the experiment on the computer by

using (2.41) and (2.43) to calculate amplification rates and

amp'lification from the computed eigenvalues.

The results of this calculation are presented in

Figure 13 and are compared to selected experimental points.

The experiment consisted of vibrating a ribbon at a fixed fre-

quency (),))/Uo2 (listed on the right of the figure) and

measuring the amplitude of the disturbance at several down-

stream locations. The theoretical points were determined

from the area under a curve of a 1 ) /Uo versus R for con-

stant frequency. There was excellent agreement for all values

checked, even those that do not appear on the figure.

The agreement between these results leaves no doubts

that the observed phenomena were those described by the theory

of stability of parallel shear flows, and that the accuracy of

these calculations is high when compared to these experimental

results. Furthermore, since of all available theories, these

computations yield the lowest value for the location of the

upper branch of the neutral curve, and since the experimentally

determined upper branch is at most only slightly lower than

that predicted by these calculations, it is felt that they are

inherently more accurate than preceding work.
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6.4 Stability of the Boundary Layer under an

Adverse Pressure Gradient

As a further example of the stability of the boundary

layer over a rigid surface, a similarity profile representing a

boundary layer in an adverse pressure gradient was selected.

The velocity profile used was one of the Falkner-Skan family of

similarity solutions for an external velocity proportional to

x-005 A sketch of this profile and its second derivative ap-

pears in Figure 15. An inflection point appears in the profile

for y = 0.255 at a mean velocity of 0.41.

It is felt that a similarity solution represented a

more meaningful example than a profile from the Karman-

Pohlhausen family (for instance) since the similarity solution

satisfies the boundary-layer equations and thus has a more ac-

curate representation for its second derivative, whereas an

approximate solution usually satisfies only some integral of

the boundary-layer equations and thus can present inaccurate

second derivatives. Of course) a calculation on any desired

profile could be performed with an expenditure on the order of

three to five minutes on the computer to completely map out the

eigenvalues.

The two stability loci appear as Figures 16 and 17.

Figure 16 presents the loci of constant phase speed on the a,

R diagram, while Figure 17 presents the more meaningful Or' R

plot.

Comparisons with the zero pressure gradient case show

that amplification rates, phase speeds and frequencies are

higher for the adverse pressure gradient, and that the critical

Reynolds number is decreased. Thus by any criterion, an ad-

verse pressure gradient is clearly destabilizing. Furthermore,

it must be recognized that the frequencies, spatial amplifica-

tion rates and phase speeds are independent of the choice of

length scale used, although it is felt that this length scale



corresponds to the same boundary-layer thickness used before.

It should be stressed that the decrease in critical

Reynolds number tells only a small part of the destabilizing

influence of the adverse pressure gradient, and the magnitude

of the total destabilization can only be determined by a

complete comparison of Figure 17 with Figure 9. Although con-

clusions as to relative stability are easy to draw in this ex-

ample, the same conclusions are seldom as clear cut for the

examples of compliant boundaries.
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Chapter 7

STABILITY OF THE LAMINAR BOUNDARY LAYER OVER
SELECTED COMPLIANT BOUNDARIES

7.1 The Three Classes of Disturbances

As mentioned in the Introduction, one expects three

possible types of disturbances to arise when investigating

the stability of the laminar boundary layer over compliant

boundaries. The first of these disturbances is named Class A,
and is essentially a Tollmien-Schlichting wave modified by the

presence of the compliant boundary. It is observed that the

amplification of this class of disturbances is moderately in-

fluenced by variations of the type of boundary considered and
the parameters of the boundary. Since a rigid surface is the

limiting case of an arbitrarily stiff compliant boundary, the

Class A eigenvalues approach those of the rigid surface as

the stiffness is increased. Thus the results of this chapter

should always be compared to the corresponding situation for
a rigid surface; namely, the discussion of the Blasius bounda-

ry layer presented in the last chapter.

When it is said that the Class A eigenvalues are
only moderately sensitive to variations of the surface pa-

rameters, it is only by comparison with the behavior of the

other two types of possible eigenvalues. The Class B dis-

turbances are waves that exist principally in the boundary,

influenced (and excited) by the presence of the boundary

layer. They generally occur for higher values of both a and

c than do the Class A waves. The investigations to date

generally reveal pairs of Class B disturbances, one that has

always been observed to be damped in time traveling upstream,

and a downstream moving wave that may be either amplified or

damped, depending upon the parameters of the problem. Hains

(1963) calculated unstable upstream traveling Class B dis-



turbances for the Poiseuille flow over membrane boundaries, but

these always seemed to occur for unrealistic choices of physi-

cal parameters.

In these investigations, the parameters were selected

with the aim that they represent a realistic range of values

that might be anticipated for a boundary layer of water traveling

over a boundary with properties similar to those of a rubber mat.
While no attempt was made to perform an exact physical modeling,
it is expected that the range of parameters investigated will not
produce misleading results. In particular, when a four-parameter

surface is studied, all four parameters are selected to have

realistic, non-zero values as might be found in the laboratory.

The price that is paid is the neglect of interesting but un-

realistic results that some investigators have observed.

It is for this reason that no Class C disturbances are
presented as numerical results. Class C disturbances were found

for very compliant surfaces when the restoring forces in the

boundary were insufficient to maintain an undamped oscillation.

The amplification rates for these disturbances were observed to
be quite high and appeared to arise from a merger of the Class A

and Class B disturbances.

This conclusion was reached from the circumstances

under which these Class C disturbances appeared. All of the

calculated Class C waves were found in the search for Class A

disturbances. It was noted that the wave speeds were high

compared to the other Class A waves found, and at first they
were thought to be Class B disturbances. However, the ampli-
fication rates were much higher than either Class A or Class B

amplification rates. All of the disturbances found in this

family were unstable and there was no apparent dependence of

the amplification rates on the wave number. Furthermore,

the flexibility of the membranes for which these disturbances

appeared was very high which, together with the other observa-



tions, tends to support their classification as Class C dis-

turbances. No stability boundaries could be presented for

these disturbances since no neutral disturbances were located.

It was also observed that small changes in the damping had

negligible influence on the stability of these eigenvalues,

as predicted by Landahl (1962).

In the following sections, the results of some sample

calculations of eigenvalues of Classes A and B are presented

for two types of compliant boundaries. The important features

of these disturbances are discussed, including the spatial am-

plification rates, oblique disturbances, and the effect of the

compliant boundaries on the group velocity of the waves.

7.2 Effect of a Membrane on Boundary-Layer Stability -

Class A Waves

A desired goal is to design boundaries that will de-

lay the transition of the laminar boundary layer. Thus in-

terest focuses on the influence of the compliant boundary on

the Class A disturbances which appear to lead to the transition

of the boundary layer over a rigid surface. In this section,

the effect of the type of membrane discussed in Section 3.2 is

considered. The parameters describing the physical properties

of the surface were varied with Reynolds number in the manner

specified in Section 2.2, and were selected as representative

of the range of values expected to be phsyically significant.

In Figure 18, the influence of disturbance propaga-

tion speed co (in vacuum, as is sometimes described) of the

membrane is presented. The true extent of the effect of the

boundary, and the variation of its parameters is best illus-

trated on an 0 r, R plot. As the wave speed co is decreased,

the neutral curve gradually shifts to lower frequencies. The

slight increase in critical Reynolds numbers is not due to the
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wave speed co, for it is noted that when co is decreased from
0.90 to 0.80, the critical Reynolds number decreases slightly.

Thus the chief effect of this wave propagation speed is to re-

duce the frequency of the band for which instabilities occur.

As additional calculations were made at values of

co lower than those shown on Figure 18 (with the other pa-

rameters held fixed), it was observed that other types of dis-

turbances appeared. Thus, for this example of a relatively

compliant boundary, the range of co over which an improvement

in stability characteristics was noted was from infinity down

to about 0.75. Below this value (for this surface) other

types of disturbances became unstable, so the question of the

Class A waves becomes moot. In general, wave speeds on the

order of unity had the most significant effect on reducing

the frequency of the unstable disturbances.

The influence of the cutoff frequency (WOo can be

discussed in the light of the results presented in Figure 18.

The inclusion of C3o reduces the compliance of the membrane

at low wave numbers, for which a simple, infinite membrane is

obviously unstable (i.e., a = 0 is the only member of the
discrete eigenvalue spectrum for an infinite membrane). It

further causes a decrease in compliance at lower Reynolds

numbers by (2.16). Its only dynamic effect is to add dis-

persion to the membrane by increasing the effective wave

speed to qC'o+WJ/o' . Thus it is desirable to keep the

cutoff as low as possible (but a zero value is unrealistic) so

that the frequency band of instability can be brought to lower

values. A constant value of )o = 0.10 at Ro = 5000 was used

throughout the calculations, corresponding to a dimensionless

frequency o02) / Uo2 = 20 x 10-6. This might seem a low

frequency but for a 30 ft/sec boundary layer in water,

corresponds to a cutoff frequency of about 300 c/sec, which

is easily obtainable with known materials. Reductions below
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this value have little effect on the stability of the Class A

disturbances in these examples.

The most significant effect of the membrane on the

critical Reynolds number is the relative value of the damping

coefficient d, as shown in Figure 19. The value of the damping

coefficient d varies with Reynolds number as shown in (2.15).

Damping has an adverse effect on the stability of Class A ~

waves in the sense that an increase in the value of the damping

causes an increase in the extent.of the unstable region, either

in the width of the unstable frequency band or the unstable

Reynolds numbers.

The example shown in Figure 19 is for a relatively

stiff membrane, yet the effect is readily apparent, and be-

comes more pronounced as the compliance of the boundary is

increased. The three neutral curves presented in Figure 19

illustrate the expansion of the unstable region very clearly

for a variation in damping coefficient over three octaves.

The case of zero damping is purposely not shown since it is

felt that lack of dissipation would provide misleading re-

sults for a true physical situation; i.e., it is impossible

to construct a boundary of this type free from dissipation.

It is difficult to describe with any measure of

certainty what is meant by a value for d of 0.05, except some

intuitive notion that it represents a small quantity, and one

expects that the decay of disturbances in the boundary under

vacuum conditions should be correspondingly small. For the

membrane, it is unclear exactly what mechanism provides this

damping or how to proceed to measure it. All that is certain

is that it is present, and that it must be kept as small as

possible.

The best description of the influence of compliant

boundaries on the stability of the Class A waves is given in

Figure 20. This figure presents the local spatial amplifica-



tion rate a V / Uo as a function of R2 (which is proportional

to x for the Blasius boundary layer, as discussed in Section

2.2). This curve is shown for constant frequency ( W9,'/ Uo2

disturbances for a rigid surface and two membranes. It is de-

rived by cutting a relief map of Figure 9 or 21(b) at constant

frequency. The membranes cause not only a reduction of the

distance over which the disturbance is amplified, but also a

decrease at the magnitudes of the spatial amplification rates.

The natural logarithm of the total amplification of this fre-

quency is proportional to the area under one of these curves,

as shown by (2.43).

It is also significant to note that the critical

Reynolds number for these surfaces is actually lower at this

frequency than for the rigid boundary, but that the total

amplification is far less. This same type of phenomenon was

noted by Karplus (1963) in his studies of transition of

channel flow with membrane walls. In his report it is stated

that for some cases, transition occurred earlier in the chan-

nel for the compliant boundaries than for the rigid boundaries,
but that the level of the turbulence appeared to be lower.

This indicates the same general trend, but should not be taken

as a parallelism in view of the different physical circumstances

investigated and the tentative nature of his results.

This phenomenon is a perfect example of misleading

conclusions that might be drawn if the critical Reynolds

number is the sole criterion of relative stability.

Figure 21 presents the details of the eigenvalues

for one of the membranes shown. Only the Class A waves are

shown in this figure, and the two presentations should be com-

pared with Figures 8 and 9 to detail the differences caused by

the compliant boundary.
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7.3 Modifying the Membrane to Improve its Performance

Up to this point the effect of the mass per unit

length parameter m has not been discussed for the membrane.

This is because the mass is a"passive"parameter; i.e., its in-

fluence does not depend on the value of a or c. However, m

itself must vary with R according to (3.7), which indicates a

decrease in compliance at low values of the Reynolds number

where the boundary layer is thinner. In view of the non-

dimensionalization used, the choice of m = 1 at Ro = 5000

should be justified. For a boundary layer moving at 30 ft/sec

in water, if the membrane is composed of a material of twice

the specific gravity of water, then it needs to be 0.01-inch

thick to have this value for the mass parameter m. This is

clearly possible to consider, but a final judgment of this

model will be reserved until a realistic look at the dynamics

of a better rubber surface model is taken (Section 7.6).

A simple technique for improving the performance of

this membrane model for Class A waves involves the variation

of the mass of membrane. One can make the parameter m in

(3.7) independent of Reynolds number by "tailoring" the sur-

face so that its moving thickness* (and thus its physical mass

per unit length) varies in the same manner as the boundary-

layer thickness. This technique makes the surface as compli-

ant at low Reynolds numbers as at high values. The surfaces

that were considered by Landahl (1962) should be considered

as these "tailored" membranes.

In Figure 22 the effect of this "tailoring" is pre-

sented for a sample membrane. The advantage of maintaining

the same low level of compliance at low Reynolds numbers is

evident for R below the normalizing value R0 , and of course

the effect is reversed above Ro. The tailoring has a

favorable effect on the stability of the Class A waves, if
*
This corresponds to an interpretation of the membrane as a
thin coating on a spongy substructure (the spring) free to
perform only vertical oscillations.
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other parameters are held constant.

However, it might be difficult to maintain the other

parameters constant while tailoring the mass of the membrane.

Figure 23 shows the effect of a variation in the damping of

the membrane, The stability boundaries are now radically

altered by changes in the damping. Needless to say, the main-

tenance of low damping is more critical for the case of the

tailored membrane, and since the damping is probably the most

difficult property to specify, this method of improving the

performance of the boundary for the Class A waves is not

recommended. Furthermore, this type of tailoring can be ex-

pected to have an adverse effect on Class B waves. The very

critical nature of the damping noted by Landahl (1962) was

due to the fact that he used just this kind of surface model.

The locus of eigenvalues are shown only for cr, ci
and should be compared to Figures 21(a) and 8. The loci in

the (Or, R plane can be deduced from Figures 22 and 23.

7.4 Class B Waves in a Membrane

The existence of other types of disturbances was

predicted by Benjamin (1960) and some examples of these dis-

turbances were found by Landahl (1962). These Class B

disturbances are fundamentally different from the Class A

disturbances. Undamped Class B waves appear only for very

compliant boundaries, and the damping in the boundary tends

to stabilize Class B disturbances.

Examples of Class B eigenvalues are shown in

Figure 25 and can be compared directly to the corresponding

Class A Waves. It is immediately apparent that Class B waves occur



at much higher values of both wave number and frequency than

Class A waves, that the phase speeds are higher than the

Class A phase speeds and decrease with wave number so that

the group velocity is less than the phase velocity. The con-

tour lines of constant ci or a are more widely spaced for

the Class B disturbances, but in this example, the critical

Reynolds number of the Class B waves is greater, so that the

amplification begins farther downstream than for the Class A

waves. A small increase in the danping can be expected to

move all unstable Class B waves off Figure 25, but this, of

course, would have an adverse effect on the Class A waves.

The biggest difficulty encountered in finding Class B dis-

turbances is the determination of stability boundaries;

either no unstable waves existed or the violently unstable

Class C disturbances were found.

The results shown in Figure 25 differ markedly

from those of Landahl (1962). The main reason for this dif-

ference is the interpretation of the Reynolds number in

Section 2.2. As mentioned before, Landahl's dimensionless

parameters are consistent with an interpretation of the vari-

ation in Reynolds number arising from varying I. , so that

his surfaces were more compliant at lower values of R than

are these membranes. The result is that at low values of

R, both dimensionless m and d appear larger, which tends to

delay the onset of unstable Class B waves.

As shown from the examples in Figure 19, it is

possible to specify surfaces for which no unstable Class B

waves could be found (they were sought for values of a up

to 3, and no trend of instability was noted at even that

large value of a).

The differences in the perturbation distribution

for the two types of disturbances is indicated in Figure

26, while the difference in variation of phase and group
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velocities is indicated in Figure 27. Comment on these two
figures is reserved until a later section (Chapter 10).

7.5 Oblique Disturbances

In Section 2.5, the justification for consideration
of two-dimensional disturbances was given by a detailed in-
spection of Squire's transformation (2.37). In view of the
improved stability characteristics that have been found for
the membranes under consideration, it is necessary to in-
vestigate the oblique disturbances to insure that they are
not more unstable than the two-dimensional distrubances; thus
partially negating these improvements.

If it is assumed that the tension in the membrane
is uniform in all directions, the transformations given by
(2.40) are valid and govern the variation of the two-
dimensional parameters. In Figure 28 are shown the results
of this calculation as a series of neutral curves for dis-
turbances traveling at some angle G to the direction of
flow. These should be compared to Figures 8 and 21(a).
For this particular case, the two-dimensional disturbances
happen to be most critical, but it is felt that this is
fortuitous.

In Figure 29, the critical Reynolds number is
plotted as a function of the angle of the disturbance. This
is compared to the manner in which rigid surface critical
Reynolds numbers vary with the direction of the disturbances,
and with the variation of flexible surface critical Reynolds
numbers if Squire's theorem were valid.

Thus, Figure 29 demonstrates that Squire's theorem
is definitely invalid and that three-dimensional disturbances
are unquestionably more important than they are in the rigid
surface case. While this example does not indicate any ob-
lique disturbance more unstable than the two-dimensional dis-
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turbance, the possibility clearly exists.

Furthermore, this consideration need only apply to
the Class A waves, for the oblique Class B waves are definitely
more stable than the two-dimensional disturbances. This is be-
cause the membrane is less compliant for three-dimensional dis-
turbances, as demonstrated in Section 2.5. In addition, the
"tailored" membrane surface is probably more sensitive to ob-
lique disturbances because of its extremely low compliance and
because of its strong dependence on the damping.

It is clear that these three-dimensional effects
are an important consideration to be studied before deciding
whether any given model of compliant boundary will yield im-
proved stability characteristics.

If a detailed analysis of the three-dimensional
growth of an initial disturbance is considered in detail,
as was done by Criminale and Kovasznay (1962), one would find
that disturbances over a compliant boundary spread more
rapidly in the third dimension than do those over a rigid
surface. Furthermore, since the second order spanwise terms
found by Benney (1961) have only small pressure perturbations
associated with them, the present approach should provide a
sufficient start for the more complete analysis of three-
dimensional effects.

7.6 Effect of a Rubber Surface on Boundary-Layer Stability

Investigation of the rubber surface model dis-
cussed in Section 3.3 introduces a new degree of freedom into
the motion of the compliant boundary; namely, the boundary is
free to move in the tangential direction. It can easily be
shown that tangential motion at the boundary does not alter
the stability problem for the Class A waves to any signifi-

cant degree. The analysis in Appendix A derives the asymptotic



solutions of the Orr-Sommerfeld equation given both tangential

and normal admittances.

Since the spring-supported membrane was taken as a
model for just this type of surface, it is not surprising

that there are few differences in the effect of these models

on the stability problem. Since the speed of compression waves
is generally much higher than the shear wave propagation speed,
the effect of the latter only is investigated in this section

by regarding the compressive wave speed cI as infinite. The

same reactions to variations of shear wave speed c2 and damp-

ing d2 are as evident for this model as for the membrane; name-

ly, a decrease of c2 reduces the frequency of the unstable

region, and an increase in damping tends to cause the neutral

curve to expand to lower R and higher W0 (and a).

A significant difference noted in the rubber model

is the absence of an explicit cutoff frequency and the presence

of a length H. The effect of the thickness of the surface H on

the neutral curve is shown in Figure 30. It is clear that sur-

faces thicker than the boundary layer have more favorable stabil-

ity characteristics.

This result appears to contradict the interpretation

of the "tailored" membrane given in Section 7.3, where it was

assumed that the mass per unit length of the membrane was pro-

portional to the thickness. However, the total moving mass of

the membrane was assumed to be known, and the spring support

had to be regarded as massless. In this case, since the bot-

tom of the surface is constrained to have no vertical motion,

the moving mass of rubber is in a thin layer near the top.

One can easily see that in the limit as the product

aH approaches zero (ie., zero thickness), the expressions for

the admittances simplify to
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Since at y = - H no vertical motion of the boundary was permitted,
the normal admittance of the surface approaches that of a rigid
surface, while the tangential admittance remains finite. The

latter occurs because the lower surface could slide freely on

the substructure (3.16).

Also note that wave propagation speed becomes non-

dispersive as the "shallow" surface wave speed approaches twice

the "deep" surface wave speed c2, in a manner analogous to water

wave theory. It is readily seen that (7.1) are exactly the same

as (3.26), the equations for the admittances of water of finite

depth in the limit as aH -+ 0. It should be recalled that shallow

water theory predicts a non-dispersive propagation of disturbances

compared to dispersive deep water waves.

There is no simple analogy between deep water waves and

the case of large thickness except the observation that for H > 3

thickness effects cease to be important. Furthermore, some numeri-

cal difficulty is experienced when (3.18) is used to calculate the

admittances in the Class A wave regime when r2 -+ 1 (c << c2). In

this case, both numerator and denominator involve the difference

of numbers close to unity, causing a bad numerical scatter in

these admittances. In the absence of a simple limiting form that

does not suffer from this numerical defect, double precision

techniques should be used to numerically calculate the admittances

for these limiting cases.

The behavior of the Class A disturbances for this surface

model is different only in detail from those investigated in pre-
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ceding sections. In Figures 31 to 34 examples of Class A response

are shown. It should be noted that this behavior is reminiscent

of the behavior of the "tailored" membrane surface of Section 7.3,
rather than the dimensionally correct membrane model. However,
damping is not as critical for these examples as it is for the

"tailored" membrane. It should also be noted that the parameters

are lower to achieve a comparable stabilizing effect on the bound-

ary layer, which implies that the membrane model is inherently

more compliant than the present model, and that the appearance of

transverse admittance seems to cause a slightly destabilizing ef-

fect. This point will be discussed further in Chapter 10.

In Figure 34, the u velocity perturbations and Reynolds

stresses are again plotted for the rubber surface model. Note

that now the Reynolds stress does not fall to zero at the boundary

since the boundary is free to move tangentially.

It should be stressed that the results presented are

only as good as the model used to calculate them, and this model

was selected mainly for convenience. These calculations should

be repeated to determine the nature of the eigenvalues for more

realistic models of actual design configurations, if that is the

desired goal.
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Chapter 8

JETS, WAKES, AND SHEAR FLOWS

8.1 Compliant Boundary Model for the Stability of

Jets, Wakes, and Shear Flows

Apart from the use of the Orr-Sommerfeld equation

there appears to be little similarity between the compliant

boundaries investigated in the preceding sections and un-

bounded jets, wakes, and shear flows. Actually, the same

techniques, including the same computer programs, can be

used to analyze these seemingly different situations.

The point of similarity is quite simple. The un-

bounded flow is divided into two sections, one extending to

+ o the other to - m. Either section can be regarded as a

boundary layer (in the same sense that it has solutions

that die off at m, and must satisfy additional conditions

at some finite point) and the other as a compliant boundary.

If the mean flow is neither purely symmetric nor anti-

symmetric, then the Orr-Sommerfeld equation must be satis-

fied in both sections, but there are important simplifications

that can result when symmetry (or antisymmetry) exists.

One can regard the two sections of the shear flow

as being separated by an imaginary membrane which is mass-

less, infinitely flexible, and infinitely extensible. Across

this imaginary boundary, there can exist no discontinuities

in or its derivatives. Since there are three disposable

constants in the system, the matching of o, 0', (f can

easily be performed. However, p9''' will in general still

be discontinuous, which gives a criterion analogous to £
in (2.33). The values of a, c, R for which the discontinuity

in G vanishes are eigenvalues of the problem.
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8.2 Stability of Symmetric and Antisymmetric Profiles

There are significant simplifications that result in

the analysis of stability of a symmetric or antisymmetric un-

bounded shear flow. In these cases, it is necessary to inte-

grate only over one half of the profile and use symmetry to

formulate the eigenvalue criterion.

In cases of this kind, one can investigate either

symmetrical (varicose) or antisymmetrical (sinuous) perturba-

tions. The sinuous disturbances are the most critical and

are observed experimentally. For these disturbances, the fol-

lowing boundary conditions are satisfied at the plane of sym-

metry.

(8.1)

For symmetric profiles, for which U vanishes,

one can easily recognize the type of compliant surface

that models these boundary conditions. Inspection of (2.29)

reveals that setting Y12 = 0 will cause the first equation
of (8.1) to be satisfied. With this simplification, (2.31)

becomes

C1 ' C (8.2)

To satisfy the second equation in (8.1), one has

a boundary model of zero normal impedance (i.e., an in-

finitely compliant surface or a free streamline) and yet

of zero tangential admittance.

A suitable eigenvalue criterion for the symmetric

case is then
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For antisymmetric profiles, the interpretation is not

as simple, since U 4 0. For this case one expects both Y
and Y to vanish, corresponding to a free boundary, but both11
of these conditions are equivalent. Thus (8.1) itself is the

only consistent technique to achieve this end, and one must

recognize that this will also satisfy the requirements for a

surface with no impedance.

8.3 Asymmetric, Unbounded Shear Flows

When there is no plane of symmetry, one needs to

solve the Orr-Sommerfeld equation for the entire shear flow.

This can be done by dividing it into two distinct sections,

and performing the integration of the Orr-Sommerfeld equation

separately for both sections. The results of these two in-

tegrations are four sets of complex numbers, two from the
"upper" portion of the profile, and two from the "lower"

portion, that are solutions of the Orr-Sommerfeld equation

at y = 0 (with the correct asymptotic behavior as y -- ±).

Recognizing that the division of the profile into

two sections was an artificial process which could have been

done at any location in the profile, one cannot permit a dis-

continuity in the final eigenfunction or in any of its

derivatives at the junction point.

This condition requires that for a continuous solu-

tion, the four sets of complex numbers cannot be independent.

Labeling the upper portion a and the lower portion b, the

eigenvalue criterion can be simply stated as
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It is obvious that when (8.4) is satisfied, if the

upper portion is regarded as a boundary layer and the lower

portion as a compliant boundary, both normal and tangential

admittances will be matched.

This process is much less straightforward than the

requirements of Section 2.3 and equation (2.31), for the ad-

mittance of the "compliant boundary" is dependent upon the

actual solution in the boundary layer. In some respects,

this problem is similar to that considered in Section 3.4,
but the iterative analysis is made unnecessary by the exist-

ence of (8-4).

It should also be noted that both (8.4) and (8.3)

may not be sufficiently normalized to permit a simple judg-

ment of when the eigenvalue criterion is zero numerically.

For use in an automatic root-seeking scheme, one needs to

specify some size that is acceptable as zero. For the com-

pliant boundary, this tolerance was small compared to unity.

This is not always the case in these computations, as is dis-

cussed in the next section.

8.4 Stability of the Two-Dimensional Jet

Numerical results were obtained for the two-dimen-

sional similar jet
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which has also been investigated by Tatsumi and Kakutani

(1958). This profile arose from a similarity solution of

the boundary-layer equations, and is discussed in detail in

the above reference.

The results of these calculations are presented in

Figure 35. Since the computer programs were not originally

written to perform this type of calculation, it is satisfying

to note that the results appear consistent with those of previ-

ous investigators along the upper branch of the curve, even

for low values of R.

There is some doubt as to the accuracy of the re-

sults for the lower branch because small errors in the initi-

al conditions at y = 1 can cause large errors in the solu-
tions for small values of a. It should be noted that Uo in

(4.2) is now zero, so the initial integration step takes the

solution from the asymptotic form of zero velocity and second

derivative to finite values of both quantities. It is felt

that this is a possible source of error for small values of c.
2

Initially, calculations were made for sech (3y),
and as a -+ 0, it was noted that ac approached a finite, nega-
tive limit. For high values of R, cr is in the range of

U(y), and this limit appears in error. More refined calcula-

tions of sech2 (6y) and sech2 (9y) show that the position of the

zero crossing of cr can be postponed to lower and lower values

of a, but it was always observed to occur.

This error has three possible causes. The first,

initial errors (which imply that the initial values do not

represent solutions that decay as y -+ m) are alleviated by

moving the start of integration further out in the profile,



as discussed in the preceding section.

The second source of error might be the purification

scheme, which is superfluous for small aR. To remove this

doubt, cases were run with the purification scheme disabled,
and no changes in eigenvalues were noted.

An additional source of error, and one that is very

difficult to remove in the limited time available, was that

mentioned at the end of the preceding section: namely, a satis-

factory normalization of the eigenvalue criterion was lacking.

Attempts were made to check this by tightening the tolerance

as a -+ 0, but since it is essential to compute for as many

values of R and a as possible to insure efficient use of the
available computer time, both R and a usually were varied over

several orders of magnitude. Thus the present location of the

lower branch on Figure 35 must be regarded as tentative.

It is felt that these computations are in substantial

agreement with those of Tatsumi and Kakutani (1958), within the

limits imposed by their expansion technique, for points near the

critical Reynolds number and, furthermore, give a more complete

picture of the unstable region, including those frequencies that

might be expected to appear in the natural transition of a two-

dimensional jet.
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Chapter 9

BOUNDARIES EXHIBITING A SPATIAL VARIATION OF PROPERTIES

9.1 Occurrence of Spatial Variation of Boundary Parameters

The simple models for compliant boundaries considered

in Chapter 3 had one feature in common. This feature was that

the parameters characterizing the dynamics of the boundary were

not functions of position. The "tailored" membrane surfaces of

Section 7.3 exhibited a variation in thickness of the same nature

as the growth of the boundary layer, which is within the limits

of this theory.

The reasons for this restriction are clear. The

separation of variables used for the perturbation stream

function (2.7) is valid only if the coefficients and boundary

conditions of the Orr-Sommerfeld equation are independent of

x. Equivalently, these sinusoidal traveling waves are solu-

tions for the motion of a compliant boundary only if the coef-

ficients in the equation for the boundary are independent of

x.

However, the experimental configurations investi-

gated by Kramer (1957) (1960) exhibited a periodic variation

of the structure of the boundary with space. Other phenomena,

such as panel flutter, are based on the ordinary construction

practice of providing some extra support for the structure at

regular intervals.

One must determine whether this spatial variation

of the properties of the boundary have an important influ-

ence on the resultant stability problem. The possibility

also exists of some kind of resonance phenomena between traveling

waves in the boundary layer and the period structure of the bound-

ary. This periodic structure will cause a coupling between wave

numbers, thereby providing a linear mechanism for the transfer of
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disturbance energy to adjacent wave numbers, and must therefore

be carefully investigated.

The type of variation to be investigated in the fol-

lowing sections is a small sinusoidal perturbation in the

stiffness and damping of the membrane model for the compliant

boundary. This model should provide all the essential features

of the influence of the periodic variation of properties, and

still not introduce undue complications into the analysis.

The analysis used will take a slightly different ap-

proach to the stability problem than that of the previous sec-

tions. Since a pure sinusoidal wave is not in itself a solu-

tion of the equation of motion of the boundary, an expansion

in terms of sinusoidal traveling waves will be sought. Be-

cause the problem remains linearized, one can still use every

Fourier component of this expansion to provide a relationship

between the pressure perturbation of the boundary layer and

the motion of the boundary.

Thus the problem to be solved is the equation of

motion of the membrane with periodic coefficients and a

driving term caused by the pressure perturbations in the bound-

ary layer. This should be compared to the approach taken in

Section 2.3 in which the only reference to the dynamics of the

boundary appeared in the boundary conditions of the Orr-

Sommerfeld equation,

9.2 Membrane Supported by a Spring of Varying Stiffness

As an example of the analysis of a structure exhibiting

a small sinusoidal spatial variation of properties, consider the

membrane of Section 3.2 with the following changes
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(9 .1)

The first equation in (9.1) represents a small (E << 1) periodic
variation in the stiffness of the supporting spring with a wave-

length 'i/cto. It will be seen that the damping can be regarded

as having a similar periodic variation, and allowance is made

for an arbitrary phase lag)K between the damping and spring

variations.

Since the solution of (3.4) for E = 0 are known to be

sinusoidal traveling waves, the solution for e # 0 can be ex-

panded about this known result. The factor of two in the argu-

ment of the cosine in (9.1) appears as a result of Floquet's'

theorem, quoted in Stoker (1950) and Morse and Feshbach (1953),

which states that equations with coefficients periodic in 2r

can have solutions periodic in either 2r or 4r. With this

fact in mind, one seeks to expand the solution of (3.4) in the

following form

vd -oo (9.2)

A A
where it is anticipated that the wn and pn are of higher order

AA
in E than wO, po, the solutions of the zeroth order problem.

It is also known from the discussion of Chapter 2
A

and the linearity of the problem, that each component pn is
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related to each wn by the normal admittance of the boundary

layer.

L % o(( ~ (9-3)

The interpretation of (9.3) is that Zn is the

Fourier transform of a Green's function relating the ve-
AA

locity of the wall (- iA) wn) to the pressure ( pn) The

function Zn can be regarded as a known function of (a, O )

for a given boundary-layer profile at a given Reynolds

number. It is found in the manner described in Chapter 4.

Inserting (9.2) into (3.4), and using the new

definitions given in (9.1), one arrives at the equation

(0(+ \ LO (9.4)W

AA

Equation (9-4) is satisfied only if the coeffici-

ent of every component of the Fourier series is set equal

to zero. This yields a three term recursion formula for

w , w , and wn+2 It should be noted that the added terms

are periodic in 2r (or rather ir/ao), since no reference to

odd powers of e appear for an expansion around E = 0.

The three term recursion formula of (9.4) can be

solved by the following infinite determinant, analogous to

Hill's determinant.
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One can approximate the solution of this determinant
by the following sequence of equations

IF0 = (40 Or0T 6 L $)

~~~&LCN( v~+F2'P 0

IPt - EkI (~2.
(40

(9-.7)
6L( k t

102

= 0

-EH

F4

(9.5)

O\rc, e r 64)

-1 -1 - I -i
' F tIFF
L A z 4

F4 ( F,4 F2+ ( 4 " L",I-At r E 6)



The first equation in this sequence poses the same

eigenvalue problem as (3.6), while the second equation pro-

vides the lowest order correction term that takes the peri-

odic variation of the coefficients into account. Since the

solution is aperiodic, the correction terms effect only those

components with wave numbers differing by 2ao.

Consider for the moment the same approach to the

eigenvalue problem taken previously; namely, a is regarded

as a real, fixed parameter and one attempts to find the com-

plex frequency U) corresponding to this a. Solutions for

(.) can be found from the series

~ (9.8)

This expansion shows that the lowest order estimate

0(a) can be found from

F ((: ) y (9.9)

and the next estimate for the eigenvalue is found to be

_ _ __ __ __,__ __ _(9.10)

Succeeding estimates require the solution of a

quadratic, but for small E, (9.10) provides a sufficient

trend. Thus, (9.10) demonstrates that the correction in

the amplification rate CO will be of order E 2 for aperiodic

solutions and can be found in a straightforward manner.
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9.3 Parametric Resonant Conditions

When a = nao, a condition of resonance exists, and
the assumptions made in the derivation must be carefully in-

vestigated. The reason for the caution is as follows. Be-

cause of the substitution of (9.1) into (3.4), and the in-

sertion of a sinusoidal time dependence, one expects that the

resultant equation can be transformed into Mathieu's equation

(9.11), and that results analogous to those found from the

stability of Mathieu's equation are valid.

4 ± P- (9.11)

All of the critically stable solutions of (9.11) have an

eigenvalue relationship similar to (9.10), except for the

subharmonic resonant solution, which yields a correction

proportional to E E. The possible existence of such sub-

harmonic solutions must be investigated for this case in which

only periodic solutions are considered.

One seeks periodic solutions of (9.11) in the form

(9.12)

where

(9.13)

Cos$

One expects the correction in f to be expressible

in a Fourier series, and to be found (along with the correction

terms in ) from a consistent expansion of (9.11) in powers
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of E This is the approach described by Stoker (1950).

Starting from the basic solutions in (9.13), one re-

quires that the corrections also be periodic in r/aoor

2r/ao, which will determine the lowest order correction to

The criterion for all of the corrections is that a solution

that grows in a manner proportional to x is excluded. For

instance, the expansion of the cross terms for n = 1 are

COS D(OX COS 2.(OX CD ( 0(o X + CoS C X )

(9.14)

Writing the expansion of (9.11) to order E, to get the basic

equation for fl, one finds

or (9.15)

from which the first-order correction for can be found by

excluding secular growth of f

- |(9.16)

For all other basic solutions (n 7 1), l vanishes.

Thus, it is only for the subharmonic response of Mathieu's

equation that the perturbation in the eigenvalue is of order E.

By appropriate manipulation, equation (3.4) can be

written in the following form
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where

~J (LX

(9.18)

and g(x) represents the pressure excitation from the boundary

layer

Cy) 'OMCo2Z (9.19)

The pressure term is completely determined by the motion of

the boundary in the following form

/
X

(9.20)

where G(x) has as its Fourier transform, the impedance of the

boundary layer. Thus (9.17) and (9.20) are in the form of a

modified Mathieu equation with an integral of the Volterra

type over a known kernel; i.e., an integro-differential equa-

tion.

The solutions derived in the last section are found
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directly from the Fourier transform of (9.17), and will yield

the same eigenvalue problem for n > 1.

Applying Stoker's technique to (9.17), one defines

z~ { + ~ kE ±~ (9.21)

The differential equations that must be satisfied are then

0x

Eo 0 (9.22a)

o -- O, %K (9 .22b)

6~~~ x~+~J c

oX (9 .22c)

To evaluate the perturbation in the eigenvalue at the

subharmonic, set the basic solution

E + q Q (9.23)

This form satisfies (9.22a) since the pressure is simply re-

lated to the displacement for sinusoidal motion (9.3). It is

for this subharmonic that an inhomogeneous term arising from
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the product of fo with the sinusoidal coefficients is also

a solution of the homogeneous equation. This will yield

solutions similar to those of (9.15) unless the coefficient

of that term vanishes. Thus for this case the perturbation

in the eigenvalue is

(9.24)

Introducing an expansion for L)

(9.25)

gives a new condition for the perturbations in amplification

rates valid at the subharmonic

(.O 2 (9.26)

where C)(o) satisfies (9.9). Note that there is no ref-

erence to the fluid dynamics in (9.26) except implicitly

through the value of W'(0). This is because the sub-

harmonic resonance, and the supression of secular instabil-

ity, is essentially governed by the inhomogeneous equation

and the lowest order mode.

9.4 The Altered Stability Problem

The preceding two sections have demonstrated the

manner in which the eigenvalue W) is affected by a small

periodic variation in the properties of a membrane both

for aperiodic solutions and for the subharmonic case. The

occurrence of "normal" harmonics can easily be handled by

108



(9.10), if one recognizes that for ca = nao, the term F-n is

singular, but enters into the eigenvalue problem only as

Fn , thereby causing no substantial difficulties.

Furthermore it must be stressed that the change

in amplification rate A) i can be substantial, since the

change in Q3 is a complex number and is small compared only

to the actual magnitude of the complex number. Thus E2 (2)

may actually be large compared to GO.(0) and still represent

a valid expansion.

Sample calculations were made to determine the

first correction to the frequency 0(2). These calculations

were performed for two eigenvalues; the first an amplified

Class A wave and the other, a neutral Class B wave for a given

compliant boundary.

In these calculations the wave number ao was varied

from 0.03125 to 5.0. The ratio of the sinusoidal variation in

damping to the sinusoidal variation in cutoff frequency was

varied from 0 to 1000 and the phase angle 2X was varied from
0 to 180 degrees.

For the Class A disturbance, two cases were noted.

Below the subharmonic resonant value of ao, the phase angle

( that demonstrated the largest stabilizing effect was

zero degree, while above the resonance, it was 180 degrees.

The ratio of damping variation to frequency variation for

greatest stabilization was small in the neighborhood of reso-

nance (most variation in the spring) and large away from

resonance (all damper).

For the Class B wave, the computations showed that

the perturbation in damping should be very small, while the

phase angle )K was around zero degree for greatest stabiliza-

tion below subharmonic resonance, with the opposite being true

above resonance.
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However, these results must be regarded as very
tentative, for the choice of sinusoidal variation in proper-
ties that is stabilizing at one wave number can be very de-
stabilizing at different wave numbers. Much more extensive
parametric studies of this situation are needed. The studies
can easily be based on the present techniques.
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Chapter 10

CONCLUSIONS

10.1 Boundary-Layer Stabilization with Compliant Boundaries

The results presented in the preceding chapters indi-

cate that the stability of the laminar boundary layer can be

altered by the use of compliant boundaries. In general, the

more compliant the boundary, the more pronounced is its stabil-

izing (or destabilizing) influence on the boundary layer when

compared to a similar situation in the presence of a rigid sur-

face.

The general effect of the variations of the param-

eters of the boundary has been discussed in Chapter 7. The

most interesting feature is the adverse effect of damping, or

dissipation terms in the boundary, on the stability of the

Class A waves. Both Landahl (1962) and Benjamin (1963) dis-

cuss the reasons for this behavior at some length on the

basis of the models for the dynamic systems that they have

selected. This fact will be demonstrated additionally here

for a boundary with both normal and tangential admittances.

To show this, it is necessary to refer to a result

from the asymptotic theory as outlined in Appendix A. Using

the notation defined in the appendix, the eigenvalue criterion

for neutral disturbances can be written from (A.31) as

(+.\t -- ( (10.1)

The result quoted is the simplified form suitable for large

aR, but small a and c, and will suffice for the following

discussion.
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One can approximately separate the normal and

tangential admittances into two portions

(10.2)

where the factor d is retained to demonstrate how the (small)

damping coefficient enters into this relationship (for neutral

disturbances). The coefficients Xr' i' Yr Yi are all posi-
tive for Class A disturbances, and may be either positive or

negative, depending on whether c is less than or greater than

the propagation speed in the boundary. The following dis-

cussion is accurate only for Class A waves, for the asymptotic

theory itself can be expected to fail for the Class B waves.

Upon insertion of (10.2) into (10.1), the left-

hand side becomes

UL- -\L ( lC+C (10.3)

The imaginary part v is determined by the curvature of the

velocity profile at the critical point. In the graphical

solution of (10.1) described by Landahl (1962), one can see

that an increase in v for fixed a and c will cause the low

Reynolds number intersection to move to a higher value of

aR. This is the principal stabilizing effect of a favorable

pressure gradient. The small imaginary corrections to v are

negative, thus demonstrating that an increase in damping

acts to decrease v and thus aR at fixed a and c, therefore

decreasing the critical Reynolds number.

Arguments of this kind can be made on the basis of

v alone, since u is generally large compared to v. Further-
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more, (10.3) shows that a partial cancellation of the effective
real part of the admittance results since the effects of normal

and of tangential admittance have opposite sign. Since it is

normal admittance that causes the motion of the unstable region

to lower values of a or of W) , tangential admittance tends to

reduce this phenomenon. In this sense, the tangential admit-

tance can be regarded as having a slightly destabilizing in-

fluence, but since it is physically impossible to construct a

boundary that only moves vertically, this characterization is

meaningless. It is more accurate to say that the results de-

rived for a membrane show a greater influence on the boundary-

layer stability than could be achieved with an actual boundary

of the same compliance.

However, the repeated emphasis throughout this paper

has been that critical Reynolds number alone is an insufficient

criterion for comparisons of relative stability, and it has

been suggested that spatial amplification rates presented in a

frequency Reynolds number diagram give a greater depth of un-

derstanding to the results.

Inspection of Figure 27 reveals that a primary re-

sult of the presence of the compliant boundary is an increase

in the group velocity of the disturbances. Since the energy

is convected with the group velocity in a dispersive system,

this is interpreted to mean that the disturbance energy passes

through the unstable region in space (a finite Reynolds number

band) more rapidly in the presence of a compliant boundary.

Thus for a given temporal amplification rate (which was not

altered greatly by the presence of the boundary) there is

less time for the wave to be amplified before passing to higher

stable Reynolds numbers.

Furthermore, the wavelengths of the unstable dis-

turbances are greater and the frequencies lower for a boundary

layer in the presence of a compliant boundary. It must be
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stressed that for a given mass and damping, this downward shift

of the unstable region is a function of the propagation speed

only. It must be concluded that the dispersion in the system

is increased by a low value (within limits) of the propagation

speed.

By means of the numerical solutions and analytical

arguments, the effect of the compliant boundary may be quali-

tatively and quantitatively described. One can specify optimum

ranges of parameters for configurations under specific con-

straints only after extended parametric studies of the desired

configurations. The general notions discussed in this paper

can be used. to evaluate these studies intelligently, but the

actual specification of an optimum configuration will still
require much judgment.

10.2 The Mechanisms Causing Instability

In a system as complicated as that under consideration,

it is dangerous to state unequivocally that any specific factor

is the cause of the instability. It is generally agreed that a

basic contributor to the unstable behavior is the small but

finite viscosity of the boundary layer. Lin (1955) discusses

the effect of the Reynolds stresses (shown in Figures 26 and 34

for both Class A and B disturbances) acting "on the wall in the

direction of propagation of the disturbance wave" as revealing

a mechanism for the conversion of energy in the mean flow into

the disturbance. Landahl (1962) further remarks that the Class A

waves are energy deficient in the sense that an increase in dis-

sipation in a compliant boundary causes an increase in the dis-

turbance amplitude to recover the dissipated energy from the

mean flow, and the mechanism for this recovery can only be the

Reynolds stresses. Benjamin (1963) amplifies on this argument

for his descriptions of a more general class of coupled systems.

Figures 26 and 34 indicate that the Reynolds stresses
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appearing for Class A waves are relatively unchanged from the

picture that can be obtained from the boundary layer traveling

over a rigid surface. One can then conclude that the essential

mechanism for the instability of the Class A disturbances is

essentially as summed up in Lin's monograph.

However, the story is entirely different for the

Class B disturbances. Consider first the two plots for Class B

waves in a membrane, shown in Figure 26. Note that the Reynolds

stress at the surface of the membrane must vanish by (2.29)

However, these approximately neutral disturbances show a peak

in amplitude for the Reynolds stress in the region immediately

adjacent to the wall. There is unquestionably a conversion of

these stresses into pressure work (pressure in phase with the

vertical velocity) at the wall.

The Class B example in Figure 34 is for the rubber

surface model, in which the Reynolds stresses at the wall do

not vanish. In the example of the highly damped disturbance,

the sign of these stresses changes at the wall, supporting

Lin's contention of the effect of their action. The chief

feature that one notes in the calculations is that the Class B

waves do not have a small real part of the Reynolds stresses

as do the Class A. The phase shifts that are the factor that

determines the relative size of the real and imaginary parts

of the Reynolds stresses (the imaginary part has no physical

significance but is generally large compared to the real part)

are very large for Class B waves, indicating that their be-

havior is radically different from that of the Class A waves.

It must be concluded that the action of compliant surface in

a Class B wave is a more effective mechanism for generating
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Reynolds stresses than the phase differences across the critical

layer.

Thus it is demonstrated that the mechanism of the in-

stability of the Class A disturbances is the same as that for

the boundary layer over a rigid surface, thus justifying their

consideration as Tollmien-Schlichting waves. The mechanism

for the generation of Class B waves is the phase shifts that

generate large Reynolds stresses, originating from large sur-

face admittance. Finally, the Kelvin-Helmholtz (or Class C)

instability is caused by too compliant a boundary and is es-

sentially an inviscid phenomenon.

10.3 Suggestions for Future Investigation

It is felt that future study is needed to determine

optimum parametric relationships for realistic models of com-

pliant boundaries. The chief expenditure for these studies

would be computer time and careful judgment in evaluating the

results, but it is hoped that the techniques presented in this

report will make these costs slight. It would also be de-

sirable to have experiments in this area of the same high

caliber as those performed by the National Bureau of Standards

group, but the difficulty in performing such experiments is

recognized. It might be more efficient to attempt to correlate

the spatial amplification criteria of these stability calcula-

tions with actual measurements of transition points for a

variety of pressure gradients and surface models. It is ex-

pected that the spatial amplification calculations will aid

in the formulation of such transition criteria.

Along this line, further investigation is needed into

the justification of these spatial amplification techniques and

a direct calculation of the imaginary parts of wave number

would be desirable. This study in depth is needed because of

the utility of these results in providing relative stability
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criteria, and the reasons mentioned in the preceding paragraph.

The techniques used to solve the Orr-Sommerfeld

equation can be adapted to handle a variety of other fluid dy-

namic stability problems, such as the compressible flow bound-

ary layer, or the addition of nonNewtonian fluids. The in-

herent speed of these calculations would provide a distinct

advantage in computations of boundary-layer stability at super-

sonic Mach numbers, if the techniques can be successfully

adapted.

It is also felt that the remarks on the observed

boundedness of cr for Class A waves (Section 6.1) should be

carefully investigated. At the present, this is only set

forth as an observation, but it may have more general valid-

ity.

Finally, the calculations of the stability of jets,

wakes and shear flows should be extended, perhaps to include

compressibility effects. One can consider the formation of

a wake (or a high-speed jet) as a laminar core surrounded by

a rapidly expanding asymmetric shear flow. Thus studies of

two-dimensional calculations might be used to shed some

light on the large-scale breakup of these configurations.

Further extensions to axisymmetric geometries are probably

possible using the present techniques, and definitely war-

rant more complete study. The problem of wave generation

by wind can also be investigated in a straightforward manner

as the problem of an asymmetric shear flow with a density

discontinuity at the interface, or in the manner suggested

in Section 3.5.
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APPENDIX A

Asymptotic Solution of the Orr-Sommerfeld Equation

To solve the Orr-Sommerfeld equation (A.1)

i v- 
-2O

gzlo i for an expan(U-C)(o the) for

one looks first for an expansion of the form

...

where (0) satisfies the "inviscid" equation

-/ C/ -( - U (=)

(A.1)

(A.2)

(A.3)

As described by Lin (1955), solutions of (A.3)

can easily be obtained as convergent series in a2

yc Z (y)
V\= 0

(A.4)

Inserting (A.4) into (A.3) one finds the set of

equations

%±IWA12U (u-Q-) (U-cS~
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which yields two sets of solutions

and (A.6)

giving two independent solutions

as series in a2
(o) co)

Let the combination of #a and Ob that vanishes

at oo be . It is seen that is well behaved except

near y = y where

U(yc) = c (A.7)

for real values of c. Lin discusses the correct technique

for bypassing this singular point by considering c to have

a small positive imaginary part.

It must be noted, however, that in the region near

yc, this solution 1 will not be a good approximation to

the solution of the full equation. In order to examine the

region around the critical point more closely, one must per-

form a stretching of coordinates around the critical point

C. 6 (A.8)

and expand in the series

+ .(A.9)
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With this substitution, the Orr-Sommerfeld equation becomes

Iv .~. 4+ D~'q5 (A.10)

where it is noted

U(V)- C

If C ~ (U
C
aR)

-1/3

-+ |

, the leading terms in this equation are

(A.12)

The solution to this equation that dies at + c is called

3

0 y)z
(A.13)

6t = (c~ ~ , f - \,l)
Tollmien gave an improved solution,

valid for all y,

uniformly

of similar form (see Lin (1955))

3
~/2.

(A.14)

E 2. Jy~>
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where the arguments go through as before only with more care

in the definition of and in the interpretation of (A.ll).

Both and are solutions of the Orr-

Sommerfeld equation that decay as y -+ oo, correct to order

(aR)-1/3. They must be combined to satisfy the conditions

of dompatibility at y = 0.

(A.15)

so that
-/

(A.16)

where

(A.17)

(A.18)

(A.18) is derived from a partial integration of (A.3) dis-

cardinig higher order terms.

Thus one finds that the combination

2 .... (A.19)
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will satisfy (A.16).

S-(I+X) FC) (A.20)

in which

'D/

C?L+ i~Z(C-0)1/ ca - L (A.21)

(A. 22)7 ~ z

LL 1
(A.23)

(

I+Ii)FP(z) (A.24)

I
By the definition of boundary-layer admittance

A
UI~A/ +
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IO'%
~~1

+i
(A.25)

Introducing

+ \Ow (A.26)

one can write

N'Y

Finally,

~IoL

defining

is reduced to

(A.29)
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(A.28)
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As discussed by Landahl (1962), X is less than 0.05

for-c _ 0.7, and z differs from (aR)/ 3 -c~U$~' by less than

3 per cent for c & 0.7; one may neglect )\ in (A.29) to get

the simplified equation (A.30):

- (A.30)

Setting the admittance of the boundary layer to the

normal admittance of the surface, one gets

jQLI
or

Z =QU,

The right-hand side of (A.31) is a function of

(a,c) alone. For higher values of c, 6ne may retain the cor-

rection terms \(c) to get

(A.32)

A simple technique for the solution of (A.32) is

given by Landahl (1962). One can plot the function 4 (z)

on an Argand diagram (-3 i vs 0 r) with Z a parameter along

the curve. Since the right-hand side is a function of (a,c)

alone, one can plot it for constant a letting (real) c be a~
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parameter on these curves. Intersections with : (z) are de-

termined for a given a, Z and c by interpolation. This is

sufficient to determine the Reynolds number R and describe

the neutral curve. A similar technique is described by

Schlichting (1955).

A table of c9 (z) is provided by Miles (1959).

Lin (1955) provides formulas

--I

L3 (1, (A.33)

or

40U) (A.34)

for small c, a.

These ideas can be used to give estimates on the size

of eigenvalues to be expected, but are insufficient for accurate

computation unless more accurate representations for u, v are

used.
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APPENDIX B

Numerical Techniques

The numerical integration of the Orr-Sommerfeld equa-

tion is a difficult task because of the rapid growth of the

"viscous" solution. Several numerical schemes for performing

this integration have been attempted and all have been success-

ful when sufficient care is taken to control parasitic errors.

A very accurate technique, which is a modification

of a numerical scheme proposed by W. E. Milne and N. Obrechkoff

as given by Hildebrand (1956), uses a one-step formula

(B.1)

where

(B.2)

Equation (B.1) is valid for sufficient iteration

between the derivatives at y-h to permit convergence to

within acceptable tolerances. Equation (B.1) is written for

Ce with V related to

the lower derivatives. This is best illustrated by the

following definitions.
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I~j~

Itf ,-

4-
2~

~) -V\ ( )

I,(QLj)

(B.3)

S4 =9 ( )

%s

C

~c7~

(B.3) in four sets of (B.1), one finds

4+75+435)+- S

VLI3Th +27$~
A (T,+)

A (B.4)

+V (Ti+5-)

K (Tst Ss)- (T6.S -
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where in (B.4)

(B .5)

The results of -f - -are tested for con-
vergence on successive iterations. If convergence is not ob-

tained to the desired accuracy, new values for T5 " T7 are

used and (B.9) is recomputed. The calculation of Sf"-s S6
gives excellent first estimates for the new values at (y-h),

so no predictor formula is used.

However, the computation proceeds rather slowly,

partly due to its iterative nature, and partly because of

the large number of multiplications involved. Furthermore,

knowledge of G and G'' required the added derivatives U

U , U of the velocity profile, which information is

generally not available.

In spite of these objections, the results of the

integration showed excellent agreement with other methods

of solutions of the Orr-Sommerfeld equation, validating the

basic hypothesis. Furthermore, the efficiency of the purifi-

cation scheme as verified by using a technique where the

numerical integration was, for all practical purposes, exact.

The accuracy of the integration scheme was such

that the results of the integration were changed by less than

0.01 per cent by a changing step size by a factor of 10. It

was found that 50 integration steps gave the most rapid com-
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putation time, and successful integrations were performed with

as few as 12 steps. However, for fewer than 50 steps, any

direct savings in the number of computations was negated by

added iterations to convergence. In these tests, convergence

to four digits in the third derivative was the only iteration

check required. Typical computation time was ten seconds on

the IBM 7090 digital computer.

The next successful integration scheme used (and the
form used in the final version) was a standard Runge-Kutta in-

tegration for fourth order equations as presented by Collatz

(1951). The accuracy of this scheme was checked by comparing

the integrations with the former scheme, other authors, and

varying step size. The scheme used is shown in Table B.l.

\I1

\A

at y-h/2
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/A, + 2\2+ 3, 0 +4 kt

n +3\/3 + o k

= 4/24 F(

II,

\/~) ~

z
.mpw-f

+ .*

Table B.1
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Computations of the effect of the placement of the

outer edge of the boundary layer were made by Powers, et. al.

(1963). They computed results by varying \ / Uo/2 x for

the Blasius profile selecting values of 5, 6, 10. The results

for Uo/i) x =6 were indistinguishable from those for

10, and the smaller number was selected for these calculations.

The Runge-Kutta scheme used has sufficient accuracy

for aR L 104 with the selected step size of 0.016 (64 integra-

tion steps). The time for integration averages to 31/60 of a

second on the IBM 7094, 47/60 on the IBM 7090. The integra-

tion routine is programmed in 7090/94 FORTRAN II using a

FORTRAN complex arithmetic package. Additional savings would

result by programming in an assembler language such as FAP,

or by writing out all of the complex operations.

1l1
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APPENDIX C

Computer Programs

C.1 Use of the Computer Programs

The calculation of the eigenvalues of the Orr-
Sommerfeld equation is performed by a series of computer pro-

grams written in the IBM FORTRAN and FAP computer languages.
A description of these programs and sample listings of the
more important subroutines is given in following sections.

From these descriptions, interested users can supply their
desired velocity profiles, compliant boundary models, and
eigenvalue criterions, either from the described programs

or from their own (compatible) programs.

Input to these programs is in the form of five
standard IBM punched cards (detailed in Table C.1 below)

which specify the parameters of the boundary, the wave ~
number and Reynolds-number range to be investigated, initial

estimates for the eigenvalues, and the desired tolerance.

Output from the programs is a buffered printout of

the eigenvalues calculated at the desired wave numbers and

Reynolds numbers, and includes computations of additional use-

ful values such as the complex frequency, the group velocity,

and the spatial amplification rates. In addition, a series

of auxiliary programs have been written to interpolate the
calculated eigenvalues to assist in the plotting of the stab-
ility loci.

These subroutines print identification labels on
the output to specify the velocity profile, type of boundary

and its parameters, and the eigenvalue criterion used. Pro-

vision is also made to accept a 5-digit sequence number to

aid in identifying the output, and the date and time of the
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run. All of the results are presented in a clearly readable and
labeled form, so no difficulty should be experienced in their
interpretation.

Data Card
Number Column Information Format*

1 1-80 Surface Parameters 8F10.4
(up to 8) (See Table C.2)

2 1-80 Wave numbers (up to 8) 8F10.4

3 1-80 Reynolds numbers (up to 8) 8F10.4

4 1-20 First estimate of c , c. at 2F10.4
R , a, (1,1)

21-40 Second estimate of c , c. at 2F10.4
(1,1)

41-60 Estimate of increment of 2F10.4
cr' ci at R1 , a2 from (1,1)

61-80 Estimate of increment of 2F10.4
cr' Ci at R2, a1 from (1,1)

5 1 Number of a's on Card 2 Il

2 Number of R's on Card 3 Il

3-7 Identification number I5
(less than 32628)

8-15 Tolerance for eigenvalue E8.1
criterion (order of 0.005)

Table C.l. Format of Input Cards for Computer Programs

Note: Additional data may be supplied for additional cases
peating the format of Cards 1 - 5.

*
IBM FORTRAN II format specification

re-
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Type of Surface Variable Column

Membrane co 1-10

mo 11-20

do 21-30

not used 31-40

(Ao 041-50
not used 51-70
Ro 71-80

Rubber Surface c2  1-10

ps 11-20

d 2 21-30

Ho 31-40

not used 41-70

Ro 71-80

Shear Flows k - Note 1 1-10

s - Note 2 11-20

Note 3 21-30

not used 31-80

Table C.2. Details of First Input Data Card

Note 1: For profiles
for f(y)

Note 2: If non-zero,
but argument

that are f(ky) - results are presented

03 integration starts at e-(aR)s
of the exponential must be < 80

Note 3: If non-zero, results of every estimate are printed
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C.2 Description of Computer Programs

All of the following programs are written for compatibil-

ity with the IBM FORTRAN II Monitor System (FMS). The instructions

are in general compatible with the IBM 709/7090/7094 computers

with specific exceptions as noted below. A short description of

the function of each program follows, with the more important

options detailed. Sample listings are presented in the following

section.

(MAIN) Executive program labeled SEEKn. This program reads
the input data, allocates storage for the eigenvalues,
and directs the calculation of the eigenvalues. There
is provision for complete recovery of all buffered re-
sults if overflow occurs in the integration routine, if
convergence is not obtained for a specific eigenvalue
within a prescribed number of estimates (30), or if in-
sufficient time remains to complete another calculation.
(MAIN) provides for labeling and printout of all of the
eigenvalues, and calls the interpolation subroutines.
The available options of main are:

SEEK7 - The current result option with the above features,
FORTRAN II coded.

SEEK5 - MAD coded program to test compatibility of the
two programming systems. (obsolete)

SEEK9 - For use with shear flows. This program provides
the feature listed in Note 1 of Table C.2.

UNTRAP This routine is a FAP coded modification of the MIT
(FPT) version of IBM (FPT), the floating point trap routine.

The UNTRAP option permits recovery and printout in
case an overflow condition is detected in a floating
point calculation. If UNTRAP is not called, the execu-
tion of the routine halts further calculation and re-
turns control back to the monitor. The argument of
untrap is a statement label in MAD or FAP, or a variable
previously appearing in a FORTRAN II ASSIGN statement.

ADMIT The numerical integration routine is called ADMIT, and
its options are labeled ADMITn. This performs the numeri-
cal integration of the Orr-Sommerfeld equation, getting
the velocity profile from subroutine PROFIL. It features
the purification scheme, and outputs the real and
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imaginary parts of the boundary-layer admittance.
The arguments of ADMIT are (R, a, cr' Ci' for' oi

ADMITl -

ADMIT2 -

ADMIT8 -

ADMIT7 -

ADMIT9 -

A FORTRAN coded routine that uses a modified
Milne-Obrechkoff integration scheme to inte-
grate through the boundary layer in 51 steps.
This routine makes extensive use of FORTRAN II
complex arithmetic subroutines.

Same as above except (1) FAP coded, (2) Uses
MACRO FAP operation, and (3) Blasius profile
is built in.

A Runge-Kutta integration scheme of 63 steps
is used. Handles arbitrary flexible surfaces
by calling SURFX to provide transverse admit-
tance. Execution time 31/60 sec on IBM 7094.

Similar to ADMIT8 except uses 64 steps to
integrate for sinuous disturbances of jets
and shear flows.

Similar to ADMIT8 except saves results of the
numerical integrations in a buffer for use
in constructing eigenfunctions.

These are the multiple entry points to one FAP coded
subroutine that provides the varied functions of (1)
storing the velocity profile for the ADMIT routine
by using the arguments shawn in the listing. (2) IDAD
is an identification entry that printout the type of
integration routine, velocity profile, and the time
and date of the run by calling GETTM. (3) OUTER pro-
vides the option for using profiles that asy totically
do not reach the normalizing value Uo, and (4) WALL
provides the slope of the velocity profile at the wall.
The available options of this routine are

BLASBL - The Blasius boundary layer for ADMIT8-9.

FS-.05 - The Falkner-Skan similarity profile for an
adverse pressure gradient flow for ADMIT8-9.

KLEB - A profile measured experimentally by Klebanoff,
Tidstrom, and Sargent (1961) for ADMIT8-9.

SECHn - Jet profile of the form sech 2(ny) for ADMIT7

TANHn - Shear flow of the form tanh(ny) for ADMIT7

PROF1 - Blasius boundary layer for ADMIT1

166

PROFIL
IDAD
OUTER
WALL



COMBIN This routine is a two entry point FAP subroutine that
IDCOMB provides the eigenvalue criterion that is used by

(MAIN). It accepts arguments of the form (a, cr' ci,
Y or Yi ) calls the surface normal admittance
routine SURFY, and returns an appropriate combination
of Yo and Yli in place of Yo. IDCOMB identifies the
combination used at object time. The options of this
routine that have been used are

COMBIN1 Yo -11

COMBIN2 (Yo - Y 1)/ I YI|

COMBIN3 Yo/Yll - 1

COMBIN4 Yo

COMBIN5 Yo - Y.

EIGEN This subroutine is a FORTRAN coded program to determine
the next estimate for the eigenvalue. Its arguments
are found in the listings. Its options are

EIGEN1 - A linear estimation formula

EIGEN2 -

EIGEN3 -

EIGEN4 -

Uses all previous estimates of the eigenvalue
to compute the next try by a Lagrangian ex-
trapolation formula of the inverse eigenvalue
criterion.

Similar to EIGEN2 except that if convergence
is not attained after 6 attempts, the estimates
are put in order (best guess last) and the
smallest four values are used for-subsequent
calculations.

A direct calculation of the next guess using
the smallest three previous guesses and a
quadratic formula. This routine does not
work well due to the multivalued solution it
provides.

This is a three entry point FAP coded routine that gives
the tangential and normal admittances, and identifies
the type of surface model used and its parameters.
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SOLID - Rigid surface admittance (i.e., zero)

SURFl - Provides calling sequence for FORTRAN coded
routine SURF2 according to the following list

SURFX(a,cr 'ci' 12r' 12i) = SURF2 (a,cr,ci,Yl2r' Y1211)

SURFY(a,cr ,c Yllr' lli) = SURF2 (a,cr,ci,YllrYlli)2)

IDSURF = SURF2(0,0,0,0,0,3)

For any given a and c, SURFX must be called before SURFY
for correct results.

The options of SURF2 are

WATER1 - inviscid liquid with no surface tension

MEMBR2 - spring supported membrane surface

MEMBR3 - "tailored" membrane surface

RUBBR2 - rubber surface model

EXTRAP A FAP coded subroutine that provides the first two
estimates of the next eigenvalue. The logic for
the prediction is in (MAIN).

SMOOTH A FAP coded program that provides FORTRAN calling
sequences for SMOOT. This program is called by
(MAIN) to smooth and differentiate the phase speed
to determine the group velocity. It will only work
given at least 7 values of a in the input list.

SMOOT Modified version of IBM SHARE subroutine CL SMD3
(SHARE listing #331)

ORDER This short FORTRAN coded subroutine rearranges the
eigenvalues stored in the Buffers of (MAIN) in the
correct sequence needed by POINTS

POINTS This routine provides calling sequences for a series
of FAP coded subroutines that interpolate the eigen-
values and print out the results of the interpolation
in a form suitable for plotting. These are a very
specialized series of subroutines, useful only in con-
junction with the storage and calling sequence shown
in (MAIN). They include several novel programming
features, but can be used only on the IBM 7094 com-
puter, for they use instructions peculiar to that
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machine. All routines are programmed in 7094 MACRO-
FAP. The other routines in this package are called

MINMAX, LOADER, ODD, SAVE, POUT.
Listing of these programs are very long and will not
be included in this report. Storage requirements
are 928 lower core locations plus approximately 14500
locations in COMMON for buffers.

There is a series of other routines called that are
either used for debugging purposes or peculier to the MIT
version of the FMS system. Acceptable dummies for these
routines are shown below written in the FAP language.

FAP
COUNT 17
ENTRY RSCLCK
ENTRY STOPCL
ENTRY TIMLFT
ENTRY GETTM
ENTRY DUMPIT
ENTRY FTNPM
ENTRY UNTRAP Note 1

RSCLCK TRA 1,4
STOPCL TRA 2,4
GETTM TRA 3,4
TIMLFT CLA = 3000B17

STO* 1,4
TRA 2,4

DUMPIT EQU RSCLCK
FTNPM EQU STOPCL
UNTRAP EQU STOPCL Note 1

END

Note l: only if standard IBM (FPT) is used.

C.3 Listing of the Important Computer Programs

While it is recognized that it is very difficult to

follow the programming techniques of another, the following

listings are provided as examples of the programming performed.

All of the subsequent programs are reproductions of decks that

have been successfully compiled and run. Only samples of the

most important programs are presented in this section, since it

is felt that a complete listing of all options would not be of

general interest.
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*

*

CSEEK7
C

LIST8
LABEL

ROOT SEEKER PROGRAll

DIMENSION C(60),Y(60),AMP(30),A(8),R(8),CR(8,8),CI(8,8),OMR(8,8),
1 OMI(8,8),AM(8,8),KT(8,8),BR(8),BI(8),ARG(8)
DIMENSION CG(8,8),AI(8,8)
DIMENSION ERASE(2)
EQUIVALENCE (ERASE(1),C(1))
COMMON ARGARE

C UNTRAP INSURES PRINTOUT IN CASE OF OVERFLOW IN ADMIT
ASSIGN 298 TO LP
CALL UNTRAP(LP)

C ERASE CLEARS OUT ALL STORAGE LOCATIONS BEFORE YOU START
999 DO 601 1=1,694
601 ERASE(I)=0.

C
C INPUT OF DATA ** 8- ARGIS TO COMMON FOR SURFACES
C 8 ALPHA'S AND R'S, 8 VALUES OF C TO HELP FIND NEXT EVIS
C JM IS NUMBER OF ALPHAS, KM NUMBER OF R'S ICASE LABELS OUTPUT
C ETA IS TOLERANCE

READ 1,(ARG(I),I=1,8),(A(1),I=1,8),(R(1),1=1,8), C1R9C1IC2R,
1 C21,CRWACIWACRWRCIWR, JMKMICASEETA

1 FORMAT(4(8F10.4/)92Il1I5#E8.1)

SET UP INITIAL ESTIMATES ON EIGENVALUES
C(1)=C1R
C(31)=C1I
C(2)=C2R
C(32)=C21
START OF LOOP OVER ALL ALPHAS AND ALL R'S
DO 292 K=19KM
DO 291 J=1,JM
CALL RSCLCK
1=1
ARE=R(K)
ALPHA=A(J)
101 AND DOWN FINDS Y(ALPHA*CR) TO WORK WITH

101 SEAR=C(1)
SEAI=C(1+30)
CALL ADMIT(AREALPHASEARSEAI.YEARYEAI)
CALL COMBIN (ALPHA,StARSEAI.YEARYEAI)
AMP(I)=SQRTF(YEAR**2+YEAI**2)
Y(I)=YEAR
Y(I+30)=YEAI
IF AMP(Y) IS WITHIN TOLERANCE, C IS AN EIGENVALUE
IF (AMP(I)-ETA)200,200,102
NEED AT LEAST TWO ESTIMATES BEFORE AUTO-PREDICTOR

102 IF(I-2)103,104,104
103 1=2

GO TO 101
SUBROUTINE EIGEN COMPUTES THE NEXT ESTIMATE FOR C

104 CALL EIGEN (C,YtAMPI)
1=1+1

CAN BE USED
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. ONLY STORAGE FOR 30 TRIES
IF(I-30)101,299,298
CONTROL GOES TO 200 IF A EV IS FOUND

200 AM(KJ)=AMP(I)
CR(KJ)=SEAR
CI(KJ)=SEAI
OMR(KJ)=ALPHA*SEAR/ARE
OMI(KJ)=ALPHA*SEAI/ARE

201 CALL STOPCL (JT)
KT(KJ)=JT
CALL TIMLFT(LT)
TEST TO SEE IF ENOUGH TIME IS LEFT FOR ANOTHER CASE
IF(JT-LT+1500)290,297,297
FROM NOW TILL 292 -- TRY TO PREDICT FIRST ESTIMATES FOR NEXT PT

290 IF(J-1)500,400,401
400 C(1)=CR(KJ)

C(31)=CI(KJ)
GO TO 403

401 DO 402 L=1,J
BR(L)=CR(KL)

402 BI(L)=CI(KL)
C(1) =EXTRAP(BRAA(J+1),J)
C(31)=EXTRAP(BIAA(J+1),J)

403 IF(K-2)405,406,407
405 C(2) =C(1)+CRWA

C(32)=C(31 )+CIWA
GO TO 291

406 C(2)=CR(1,J+1)
C(32)=CI(1,J+1)
GO TO 291

407 DO 408 L=1,K
BR(L)=CR(L#J+1)

408 BI(L)=CI(LJ+1)
C(2) =EXTRAP(BRRR(K),K-1)
C(32)=EXTRAP(BIRR(K),K-1)

291 CONTINUE
IF(JM-7)414,415,415

415 DO 416 L=lJM
416 BR(L)=CR(KL)

SMOOTH TAKES THE DERIVITIVE
VELOCITY AND ALPHA-I
CALL SMOOTH(ABRJM,1,2,0)
DO 413 L=1,JM
CG(KL)=CR(KL)+A(L)*BR(L)

413 AI(KL)=-OMI(KL)/CG(KL)
414 IF(K-1)500,409,410
409 C(1)=CR(K,1)

C(31)=CI(K,1)
GO TO 412

410 DO 411 L=1,K
BR(L)=CR(L,1)

411 BI(L)=CI(L,1)
C(1) =EXTRAP(BRRR(K+1),K)
C(31)=EXTRAP(BIRR(K+1),K)

412 C(2)=C(1)+CRWR
C(32)=C(31)+CIWR

292 CONTINUE

D(CR)/D(ALPHA) TO GET THE GROUP
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C PRINTOUT OF THE RESULTS
300 CALL IDAD

CALL IDCOMB
CALL IDSURF
PRINT 6, ICASE
PRINT 4,((R(L),A(M),CR(L.M),CI(LM),0MR(L.M),0MI(LM),CG(LM),

1 AI(LM),AM(LM)KT(LM),M=1,JM),L=1,KM)
C SUBROUTINE ORDER REARRANGES THE ARRAY FOR SUB. POINTS

CALL ORDER (RtA,CRCIOMROMI,CGAIJMKM)
DO 600 LL=lo6
IF (LL-4)602,600,602

602 CALL POINTS(CRCI,0MR,0MICGAIRKMAJMLL)
600 CONTINUE
500 GO TO 999

C BACK TO START TO TRY ANOTHER CASE
297 PRINT 8

GO TO 300
298 PRINT 9

GO TO 300
299 PRINT 10

GO TO 300
C OUTPUT FORMAT STATEMENTS

4 FORMAT(OPF1O.1,2F12.4,F13.6,1P5E13.3,110)
6 FORMAT(6H- R9X5HALPHA8X2HCR9X2HCIllX3HOMR8X3HOMI12X2HCG12X2HAI
lllX4HAMPY1OX4HTIME /120X4HCASE 15)

8 FORMAT (16H-**OUT OF TIME**)
9 FORMAT (22H-**OVERFLOW IN ADMIT**)

10 FORMAT (34H-**NO CONVERGENCE AFTER 30 TRIES**)
END

* LIST8
* LABEL
CMEMBR2 MEMBRANE ROUTINE

SUBROUTINE SURF2 (ACRCIYRYII)
I DIMENSION C(1),Y(1),B(1)

COMMON COREMODEALOOMO,B,RO,R
GO TO (100,200,300),I

100 YR=0.
YI=0.
RETURN

200 IF(RO)202,201,202
201 RO=R
202 RATIO=RO/R

C(1)=CR
C(2)=CI
CO=COR**2
D=DE*RATIO/A
OM=OM*OM*RATIO*RATIO/A**2
EM=EMO
IF(A-ALO)203,204,204

203 EM=EMO*(A/ALO)**2
1204 Y=(0.,1.)*C/(EM*(CO-C*C-(O.,1.)*C*D+OM))

YI=-Y(2) /RATIO
YR=-Y(1) /RATIO
RETURN

300 PRINT 301,COREMOALODE,0MORO
RETURN

301 FORMAT(18HOMEMBRANE WITH CO=F7.4,4H, M=F7.4,10H AT ALPHA=F7.4,9H,

lAND DE=lPE8.1,6H, OMO=OPF7.4.8H, AT RO=F8.1,12H MASS VARIES)
END

172

=" 4- ."ii OF I



* LIST8
* LABEL
CADMIT8 RUNGE-KUTTA, COMPLEX ARITH. VERSION OF ADMITTANCE ROUTINE

SUBROUTINE ADMIT (RALPHACRCIYRYI)
C
I DIMENSION 5(4,2),VO(3,2),V1(3,2),V2(3,2),V3(3,2),BETA(1),GKl(2),

1 GK2(2),GK3(2),GK4(2),D1(1),D2(1),CEE(1),X(1),W3(1) ,Z(4),C1O(1),
2 Cl1(1) ,C12(1),C20(1),C21(1),C22(1),Y(1)

C
H1=-0,16E-01
H2=H1*H1/2.
H3=H1*H2/3,
H4=H1*H3/4,
HH=H4/H2
SM=1.E-15
HIS=H1*SM
H2S=H2*SM
H3S=H3*StA
A=ALPHA
A2=A*A
A4=A2*A2
AA=2.*A2
AR=A*R
HAR=HH*AR
AAR=A2*AR
HAAR=H4*AAR
HHAR=HAR*H2
CEE(1)=CR
CEE(2)=CI
C10=(AA+AR*CEE(2))*HH
C11=C1o
C12=C10
COI=-HAR*CEE(1)
C20=-H4*(A4+AAR*CEE(2))
C21=C20
C22=C20
COJ=HAAR*CR

C
C START OF INITIAL CONDITIONS
C

CALL OUTER(UO)
BETA(1)=A2+AR*CEE(2)
BETA(2)=AR*(UO-CEE(1))

I BBETA=-SQRTF(BETA)
I VO(1,1)=SM
I VO(1,2)=SM
I Vl(1,1)=-A*HlS
I V2(1,1)=A2*h2S
I V3(1,1)=-A*A2*H3S
I Vl(1,2)=BBETA*HIS
I V2(1,2)=BETA*H25
I V3(1,2)=BBETA*BETA*H3S
C
C END OF INITIAL CONDITIONS--NUMERICAL INTEGRATION FOLLOWS
C

DO 111 T=1,12592
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CALL PROFIL (Uo9U1,U2*D2UOD2U1,D2U291)
C1O(2 )iCOI+HAR*UO
Cli (2 )=COI+HAR*U1
C12 (2) =COI+HAR*U2
C20( 2) =COJ-HHAR*D2U0-HAAR*UO
C21 (2) zCOJ-HH~AR*D2U1-HAAR*U1
C22 (2) =COJ-HHAR*D2U2-HAAR*U2
DO 108 J=192
GK1(J)=C1O*V2(1 ,J)+C20*VO(19J)
DO 105 K=J9492
VO(2,K)=VO(1,K)+.5*Vl(1,K)+.25*V2(1,K)+.125*V3(1,K)+e0625*GK1(K)
Vl(2,K)zgVl~lK)+V2(1OK)+.75*V3(1,K)+@5*GK1(K)
V2(2,K)=V2(1,K)+1.5*V3(1,K)+1.5*GK1(K)

105 V3(29K)=V3( 19K)+29*GKL(K)
GK2(J)=C11*V2(2*J)+C21*VO(29J)
DO 107 K=J9492
VO(3,K)=VO(1,K)+VI(1,K)+V2(1,K)+V3(1,K)+GK2(K)
Vl(3,K)=VI(1,K)+2.*V2(1,K)+3.*V3(1,K)+4i*GK2(K)
V2(3,K)zV2( 1,K)+3.*V3(lK)+6.*GK2(K)

107 V3(39K)=V3(1*K)+49*GK2(K)
GK3(J)=C12*V2 (3#J)+C22*VO(3#J)
DO 108 K=J*492
HK5=2**GK2(K)
HK1WiO53333333*GK1(K)+0.26666667*HK5-00066666667*GK3(K)
HK2u1.8*GK1 CK)+1.2*HK5-O.2*GK3(K)
HK3=2*(GK1 (K)+tiK5)
HK4=0.66666667*(GK1CK)+GK3(K))+1e3333333*HK5
VO( 1#K)zVO(3,K)-GK2(K)+HKL
V1(19K)=V1(3oK)-4**GK2(K)+HK2
V2(1#K)=V2(1#K)+3**V3(19K)+HK3

108 V3(19K)=V3(19K)+HK4
C
C END OF NUMERICAL INTEGRATIONS -- PURIFICATION FOLLOWS
C

D1-U2-CEE (1)
Dl(2)u-CEE(2)
D2=-A2*Dl-D2U2
D2(2).-A2*D1C2)
Dl=D1/H2
Dl (2)=lui(2) /H2

I TOP=D1*V2(191)+D2*VOC1,1)
I BOT=D1*V2(1#2)+D2*VO(1,2)
I P=-TOP/BOT
IVOC 1,1)zVO(l1,1)+P*VQ( 192)
IV1( 1,1)=V1(l1.1)+P*V1( 1,2)
I V2C 191)=V2( 1.1)+P*V2(1#2)

I 111 V3(1,1)=V3(191)+P*V3(192)
C
C COMPUTATION OF CORRECT COMBINATION OF SOLUTIONS
C

DO 112 K=1#4
S(1*K)=V0(1,9K)
S(2oK)=V1 (1.K)/H1
S(3#K)=V2( I K )/H2

112 S(4*K)=V3(19K)/H3
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* CALL WALL (DUW)
I W1=CEE*S(2,1)+DUW*S(1,1)
I X1=CEE*S(2,2)+DUW*S(1,2)

CALL SURFX (ACEE(1),CEE(2),X(1),X(2)
I 120 W2=(1.,0.)-CEE*X
I W3=(0.,1.)*CEE*X/AR
I W4=S(4,1)-A2*S(21)
I X4=S(4,2)-A2*S(2,2)
I W5=W1*W2+W3*W4
I X5=X1*W2+W3*X4
I BA=-W5/X5

125 DO 126 K=1,4
I 126 Z(K)=S(K,1)+BA*S(K,2)
1 114 Y=-A*AR*Z(1)/(Z(4)-A2*Z(2)+(O.,1.)*AR*(CEE*Z(2)+DUW*Z(1)))

YR=Y(1)
YI=Y(2)
RETURN
END

* LIST8
* LABEL
CEIGEN2 MULTI-POINT EIGENVALUE ESTIMATE

SUBROUTINE EIGEN (CYAMP,1)
I DIMENSION C(30),Y(30),AMP(15)
I SUM=(0.,0.)

DO 4 K=1,I
I TERM=(1.,O.)

DO 3 J=1,I
IF(J-K)2,3,2

I 2 TERM=-TERM*Y(J)/(Y(K)-Y(J))
3 CONTINUE

I 4 SUM=SUM+C(K)*TERM
I C(I+1)=SUM

RETURN
END
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FAP
COUNT 110
SUBROUTINE PROFIL (U+U1 ,U2oD2UtD2U1,D2U2I)
ENTRY PROFIL
ENTRY IDAD
ENTRY WALL
LBL BLASBL

PROFIL SXD *-294
SXA RET91
CLA* 794
PDC 91
CLA U+1,1
STO* 394
CLA D2U+1l
STO* 6,4
CLA Usl
STO* 2,4.
CLA D2Ul
STO* 5,4
CLA U-191
STO* 1,4
CLA D2U-11
STO* 4,4

RET AXT 91
TRA 8,4

IDAD SXD PROFIL-2,4
TSX SGETTM,4
PZE DATE
PZE TIME
TSX $(SPH)94
PZE FMT,,1
AXT END-START94
LDO END94
STR
TIX *-294#1
TSX S(FIL)94
LXD PROFIL-2,4
TRA 194

WALL SXD PROFIL-2#4
CLA =2.
STO* 194
TRA 2,4
TITLE

FMT BCI 29((20A6))
START BCI 91RUNGE-KUTTA INTEGRATION SCHEME * H=0.016 ** BLASIUS PROFILE

BCI 39 * DATE OF RUN IS
DATE PZE

BCI 3, AND THE TIME IS
TIME BCI 29
END EQU *
U OCT 201400000000,200777375702,2007773373729200777275636 PROFL

OCT 2007772304249200777157260,200777101665,200777017535 PROFL

OCT 200776730330,200776633470,200776530617,200776417325 PROFL

OCT 200776276761,200776146700,200776006377,200775635142 PROFL

REM ADDITIONAL CARDS UP TO NUMBER 64
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* FAP
COUNT

* SUBROUT
ENTRY
ENTRY
LBL

COMBIN SXD
CLA
STA
CLA
STA
CLA
STA

SUB TSX
PZE
PZE
PZE
PZE
PZE
TXI
PZE
LXD
CLA
STO
CAL
SLW
CLA*
STO
CLA*
STO
STR
PZE
CLA
FSB
STO*
LDQ
STQ*
CLA
STO
TRA

BIN PZE
IDCOMB SXD

TSX
PZE
TSX
LXD
TRA

FMT BCI
A BSS

COMMON
TOP COMMON

END

52
INE COMBIN3 (AL
COMBIN
IDCOMB
COMBIN3,PLEASE
*-2 94
1,4
SUB+1
2.4
SUB+2
394
SUB+3
$SURFY,4
**

**

**

A
A+1
*+2,0,1
COMBIN-2#966
COMBIN-294
2
BIN
$(IFDP)
2
4,4
TOP
5,4
TOP-1
A
A+1
TOP-2
=1.
4,4
TOP-3
5,4
BIN
2
6,4
0,0,0
COMBIN-2,4
$(SPH),4
FMT ,p 1
$(FIL) 94
COMBIN-2,4
1,4

PHACRCIYRYI)

8,(42HOCOMBIN3 COMPUTES YO/Yll -1.0 FOR CLASS B.
2
-206
4
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-- -Jgll

* FAPCOUNT
CALLING
ENTRY
ENTRY
ENTRY
LBL

SURFX SXD
CLA
STO
TRA

SURFY SXD
CLA
STO
CLA
STA
CLA
STA
CLA
STA

SUB CALL
LXD
CLA
STO*
CLA
STO*
TRA

I BSS
IDSURF SXD

CLA
STO
CALL
LXD
TRA
END

33
SEQUENCE FOR FORTRAN PROGRAM
SURFX
SURFY
IDSURF
SURF1
*-294
=1B17
I
*+4
SURFX-2.4
=2817
I
194
SUB+1
2.4
SUB+2
3,4
SUB+3
SURF29,,,I+191+29I
SURFX-2.4
1+1

5,4
694
3
SURFX-2,4
=3B17
I
SURF2......l
SURFX-2.4
194
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* FAP
COUNT 50

* FUNCTION EXTRAP(X,YYOI)
ENTRY EXTRAP
LBL EXTRAP

EXTRAP SXD *-2,4
SXA RET,1
SXA RET+1,2
CLA 1*4
STA 1+2
CLA 2,4
STA CALC
STA CALC+l
STA CALC+4
CLA 3,4
STA CALC+3
CLA* 4,4
SUB =1B17
STD I
STD RET-1
STZ SUM
AXT 0,1

OUT CLA =1.
STO TERM
AXT 0,2

IN SXD COMP,1
PXD 92
CAS COMP
TRA CALC
TRA *+9

CALC CLA **,1
FSB **92
STO HOLD
CLA **
FSB **,2
FDP HOLD
FMP TERM
STO TERM
TXI *+1,2,1

I TXL IN,2,**
LDQ TERM
FMP **1
FAD SUM
STO SUM
TXI *+1,1,1
TXL OUT,1,**

RET AXT **,1
AXT **,2
TRA 5,4

COMP PZE
HOLD PZE
TERM PZE
SUM PZE

END
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