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ABSTRACT

A VARIATIONAL METHOD
FOR
APPROXIMATE SOLUTIONS TO LAMINAR FLOW PROBLEMS

by
John Mitchell Reynolds, III

Submitted to the Department of Mechanical Engineering on
January 26, 1961 in partial fulfillment of the requirements
for the Degree of Doctor of Science.

The variational formulation of the Navier-Stokes and
Energy equations is developed. It is found that, in the
variational form, the physical velocities and temperature
must be considered simultaneously with certain auxiliary
variables which are not directly identified with the
physical problems. The auxiliary variables are identified
through the Euler equations and boundary integrals obtain-
ed by extremizing a Lagrange density in which the physical
and auxiliary variables are mixed.

It is shown that, under certain broad restrictionms,
approximate solutions to problems of laminar fluid motion
may be obtained through a computational procedure closely
related to Galerkin's method.

One simple example and three more serious applications
of the technique are presented. These three are: the
Graetz problem of heat transfer from a constant temperature
pipe to a laminar flow; the boundary layer over a semi-
infinite flat plate; and the first approximation to the
boundary layer over a flat plate.

Thesis Supervisor: Stephen H. Crandall

Title: Professor of Mechanical Engineering
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I. INTRODUCTION

This investigation has been undertaken to develop a
technique by which approximate solutions to the problems
of fluid mechanics may be generated with a minimum of
computational efiort. More specifically, a computational
framework is sought whereby reasonably accurate predictiors
of viscous fluid motions and energy transport rates may be
obtained in cases for which no analytical solutions exist.
Integral formulations of the problem are particularly well
suited to this objective. Within the general framework ol
integral techniques which may be applied to the non-linear
equations of motion of fluids one surmises that an algorithm
based on the calculus of variations promises to yield
results which are at least comparable to those derived by
existing techniques.

The problem of applying {amilton's Principle or some
other statement based on the Calculus of Variations to fluid
mechanics has interested a number of prominent investigators
ir. the past and a considerable recent effort has produced a
number of alternative approaches in recent years. Although
a number of investigators have studied the general inviscid

flow problem (refs. 1, 2, 3), the solution of the viscous
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flow problem is sufficiently more complicated to be treated
entirely separately. The definitive work on the viscous
problem may be considered as beginning with the demonstration
by Helmholtz (ref. 4) of the fact that viscous dissipation is
a minimum for motions of incompressible fluids in which
accelerations may be neglected. Rayleigh (ref. 5) elaboratec
this somewhat by noting that the minimum exists evern when
there are appreciable acceleratious provided that viw=o
where lz? is the vorticity vector. 1Iu 1929, C. B. Millikan
(ref. 6) demonstrated that it is not possible to genevate thLe
JJavier-Stokes equations as the extremizing couditions for an
integral wiiich contains only the fluid velocities and tieir
derivatives. H. Bateman, noting Millikan's result succeeded
in deriving the Navier-Stokes equations from a variation
through the introduction of auxiliary variables (ref. 7), a
method which he discussed more generally in ref. 8. Recently,
d. Feschbach (ref. 9) has derived tue governirg equatious fou
¢ number of dissipative puysical phenomena by a metuod which
is essentially the more general technique of Bateman.

V., Wasuizu (rel. 1lu) uas used tue Feshbach te huaique iu

actually ge.erating approxinate sclutions to a trens.eut ueat

conduction problem.
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One other recent line of development of the problem is
worth noting. Herivel (ref. 11) and Rosen (ref. 12) have
shown that it is possible to derive the Navier-Stokes
equations from a restricted variational method in which the
acceleration term is held constant during the wvariation.
This interesting and apparently simpler approach to the
problem is discussed in the body of this report. It is
sufficient to note here that this method presents formidable
computational difficulties when a Ritz-Rayleigh method is

employed to generate approximate solutions.

ITI. THE VARIATIONAL STATEMENT

In spite of the fact that Millikan has demonstrated the
impossibility of deriving the Navier-Stokes relations as the
extremizing condition for some integral involving only the
velocities and their derivatives, it is by no meawus certain
tnat é useful variational statement of the problem caanot be
d:lscovered which involves other physical variables, e.g.
thermodynamic propertles, and possible restrictions on the
variations other than the obviously necessary continuity
restriction. Counsiderable effort has been expended in this

study in an attempt to discover sucn a vaviatioual statement.
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This effort, however, has yielded little of interest and it
is the conclusion of this study that the use of the auxiliary
variable technique is, apparently, the ouly rigorous means of
generating the equations of fluid motion in a sufficiewntly

general form to be of any real engineering use.

A. The Auxiliary Variable Technique

Suppose that it is desired to determiune a definite integral
over a region for which the condition that the integral be
extremized (maximum, minimum, or saddle point) is that come

function ﬂf satisfy the equation

Jig) =0 (1
where JZ is some differential or integral operator. If
B=O08, %, - )Ln) and the volume element under con-

sideration is V= &/&7J a(ya co 'c¥4¥n , then it is

"apparent that the variational statement

Sfysid)olv=o (2

will have equation (1) as an Euler equatioa. Here )V is the
"auxiliary variable', an arbitrary function which is not

necessarily simply related to tlie varieble of interest, ;ﬂ
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Disregarding surface integrals, equation (2) may be written

J/ﬁ(ﬁ)f//+h7lel¢/a/v (2a)

where 777 is some integral or differential operator. Therefore,
it is seen that the variation of the auxiliary variable yields

the desired Euler equation

J(?) =0

while the variation of the (physical) variable of interest yields

an additional Euler equation
h7(;ﬂ}=o (%)

This technique, therefore, provides a means by which any
differential equation may be considered an Euler equatlown
cesulting from the extremization of some integral. The
difficulty in the general case is, of course, that a secoud
Euler equation or set of Euler equations must also be satislied
by the auxiliary variable. For the case in which the des.red
equation (1) is linear, it can be shown (ref. 9) tnat ¥ 1is
tne adjoint to ¢ and satisfle€ the equation and bouudary

conditions which are the adjoint of those satisfied by &
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For linear physical problems it is therefore possible to
identify the auxiliary variables as the adjoints of the
physical variables. In the special case of self-adjoint
operators, the physical and auxiliary variables are
identical. In general, however, it is necessary to identify
the auxiliary variable from the equation it must satisfy
(e.g. equation (3) and the natural boundary conditions im-
posed by the variational process.

A simple example of the auxiliary variable technique
will serve to clarify the method. Consider the case of the
damped linear simple harmonic oscillator (ref. 10). The

equation of motion is

MY rax rk¥=0 (4)

wvhere 77 , . , and / are the constants of the system.

From the above discussion, it is possible to derive
equation (4) as an extremizing condition of the integral of
the Lagrangian

[’-:J/wi'r‘—/z_}": Fhlx) (5)

waere g is an arbitrary auxiliary variable.
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However, since it is desired to identify the auxiliary
variable as closely as possible with the physical variable,
a Lagrangian which 1s symmetrical in the two variables is

desirable. Consequently, a more desirable Lagrangian is

L'-"-mij—f/gi-}oj} —kry ©
It is apparent that expressions (5) and (6) are equivalent
with regard to the Euler equations generated and differ
only in the boundary integrals obtained. Expression (6) is
more desirable in general, although not necessarily for all
specific sets of boundary conditions, since the order of the
highest derivative is reduced and the expression has a
desirable symmetry in the two variables. The Euler equations

generated from the Lagrangian (6) are

MLtz 2 =0 (&)

Wj'—ﬂg' +/E’g_:.0 (N

the boundary terms which result from the variation are

[Jg[m;éffy)]:l%/,j,szj_fg%z’tb (8)
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where i} and fi are the values of the independent
variable ? at the extremes of the interval of interest.
The physical initial conditions
y[?f/)'-’-O (9)
72[51) =0

may be chosen to provide a specific problem for consideration.

Then the expression (8) becomes

//wz’ f;ffx)cfg +{>«j-.§ #)5,4]{#1 (8a)

It is, of course, desirable that these boundary terms which

were derived as a consequence of the statement

T2
([ it o
g

vanish. A convenient means of insuring that these vanish is
supplied by the fact that the boundary conditions on the
auxiliary (non-physical) problem have not been specified
and may be chosen as

j (7.{-'3.)':-0 (11)
j (t2)=0
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The auxiliary variable is then completely specified by
equation (7) and the final conditions (11). That is, the
auxiliary variable satisfies the time-reversed equation of
the physical process with prescribed final conditions rather
than initial conditions.

The procedure employed above to generate the Lagrangian
for the harmonic oscillator may be generalized somewhat
although it should be recalled that the most general
statement of the auxiliary variable technique is equation
(2). If attention is confined to systems described by

differential equations with constant coefficients

il
g (12)
2 Co Svmgxmaye = ©
=0

3

where (),
and Aa+b+.ith=n
Then those terms for which % is even (including zero)

may be generated from a Lagrangian of the form

Y dMay (13)
whanf . J\awddnt

L. =-C

heve,v
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where ) ‘is the auxiliary variable and 4 , 8 ,
are not necessarily equal to @ , 4 , , a fact which
may be used to build symmetry into the expression. Also,
AsBries = GFEH L0 =M/y
and 4 , g s s v are indices in the set /4, &,*°**J.

Those terms for which 77 1s odd may be generated from

a Lagrangian of the form

(14)

L, = Gff 2= \/ 3%v
Yo0s 2 ax;'azéo. v EEIAR

2% 4
T oawml A ;rs"c)x

where § , ¢ , w , 2 are again indices contalned in tue

original set 7 , 2 ,.¢0 §
and C#+D # ¢+ = Y

Y
while J4 W4+ o0 = 2’-’7_-'



-1]=

In the more general case of variable coefficients, it
is not always possible to form a symmetric Lagrangian, for

example, if

" ” (15)
I(0) =] simszmme { R szois
YRRV AT >3 BUR I P RP AN
2

where /:,’- s /:: /Z,, Xy, o oo 253)

the form of the Lagrangian terms must be

(16)
3’7 ™Y
JeFoxoxd JL yprant. oy

Nn_'l
L. =)~ 1R

?

which can be made symmetric in £ and ¥ only if 3wz 1

If these rules of formation are foilowed for all problems,
those for which the auxiliary variable method is unnecessary
will be detected from the fact that the Euler equation in the
auxiliary variable is either identical to that fdr the physical
variable or may be identified with some other relation pertinent

to the physical system e.g. conservation of energy or mass.
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The remainder of this report will be concerned with the
application of the auxiliary variable technique to the more
complicated relations governing momentum and energy trans-

port in fluids.

B. The Laminar Flow Problem

Confining attention to incompressible flows for the

preéent, the equation of fluid motion is

ov ,

o7 }f vp = yorv (17)

where the acceleration term is given by

-d -3 e - -
DV _ YV L oW(vv) = Y 1 p ¥ - Vx(vxV
E{'at"'v'(v") YA )

The continuity equation for incompressible Ilow is

y-+QW

g 3

The momentum equation (17) includes the nonlinear

..é__LL 9 = O (18)
Vev =5 3

acceleration or inertia term. It is due to this term that
the Navier-Stokes equations present such formidable resistaace
to exact solutions and, as might be anticipated, it is due to

the inertia term that the variational form of the problenm
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pfééents difficulties which necessitate appeal to the auxiliary
variable technique. Since the momentum relation is comprised
of three essentially separate terms, it is appropriate to
consider them separately in devising the variational statement
of the problem. Consequently, the component of the proposed
Lagrangian which apﬁlies to the inertia term may be considered
separately.

The familiar lack of uniqueness of the Lagrangian which
generates a given Euler equation occurs in this nonlinear
inertia term. That is, there is more than one Lagrangian
which will yield %_;:” as an Euler relation. The
difference betwéen the various Lagrangians, of course, Lies
in the natural boundary conditions associated with the Euler
expression. 1In self-adjoint problems this apparent lack of
ﬁniqueness in the Lagrangian is illusory, since in every case
of interest the physical variables have a specific set of
boundary conditions associated with them. When the auxiliary
variable technique is employed, the system comprised of the
physical and auxiliary problems is not completely defined
since the boundary conditions on the auxiliary problem are
arbitrary to a great extent. In general, it is desirable to

attempt to cast the auxiliary problem into a form which
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corresponds to some physical problem or even the same
physical problem as occurs in the physical system. This
latter alternative would occur in self-adjoint systems.
However, it is not generally possible to force the auxiliary
system to correspond to a physical problem. In the general
case, then, the only possibility which suggests itself is

that the Lagrangian be chosen so that

a.) the complexity of the result is minimized,
suggesting that the érder of the highest
derivative occuring in the Lagranglan be
kept as low as possible, and

b.) the resulting auxiliary set of equatious and
boundary conditions be related as closely as
possible to the physical system. This latter
goal is realized by making the Lagrauglan
symmetrical in the real and auxiliaxy variables.

These goals were easily fulfilled in tke simple harmonic
oscillator example given above. The purpose here is to show

that similar concepts ave applicable to the noulluear
-
. DV
expression — .

Dt
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The inertia term is written in terms of the velocity

components as

oV 3
.D_ = (u'é"’uug"‘v—u;,'f'wué)

t (19)

+ P (i ruvy + vy surny)

t I (wi +uw, Frusy ywrwsy)
where subscripts denote partial differentiation with respect
to the indicated variable.

Consider, for the preseut, tue case of steady incom-
pressible flow; since this flow exhibits the non-linearity

of the more general flow. The auxiliary vawciable method

indicates that a Lagrargian of the form

L= ¥ (23)

= oL Uprutey $vily +wridy) +B(hravy &L }'l.d'lfé)

+ Y(uw; ruwy +ruy -I—w*w:})

is appropriate provided that only those functions are acmitted

to the problem which satisfy the coatlauity rvestriction

Uy /“U-y /"wé -0
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Here )}-7: zo +j>ﬂ + "? Y is the auxiliary variable
corresponding to the physical velocity \7: i’u+f’v+ﬁ.’w‘.

Extending the discussion of the auxiliary variable method
applied to linear problems, oné suspects that the symmetrlic
Lagrangian

R
>

A I oV_ 7, (21)
=3 ) M bt

DA
Dt
will also yield the desired Euler relation. Here the

auxiliary variables are also required to satisfy a contiauity

relation, i.e.

- 22
if the desured symmetry is to be preserved.

The fact that the variation
S [er oo oly ot @3

does yield the desired Euler equatious fcr the puaysical varleble
may be verified by applying the algoritim of the Calculus of
Variations to equation (18). The resulting Euler equations ave:

-3
from variations of )1

Dv /v =y (24)
ot 224 )
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which is the desired expression if appeal is made to
continuity. The Euler equation resulting from variations
of V  is

OF 4 [{9i)e V(77 R ] + 5 F(veP)se @
which must be satisfied by the auxiliary variable, ‘;i),
if the integral (23) is to be extremized.

It is seen, then, that the term of the Lagrangian
corresponding to D‘?/D* may be taken as expression (21).
In addition, it should be noted that variations of either of
the two components of (21) will also yield D‘;Zot- in the
Euler equation. Consequently, thiere are at least three forms
of the Lagrangian corresponding to DV/pe in the Euler
expression.

1f the boundary integrals resulting from the indicated

variations are included these are:

a) Jf D"c/w/é ﬁ/z{[{n SV ) Veds” (26)
b) -JfJ’.g_fZ/ua/ffﬁfj//J’-Jﬁ’) Vedds” (27)

c) Jf“[}t,__’--a pn]c/vo/z‘ .
p [t [ 524 S 7] et
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‘where Cl.;’ reférs to the surface element with the outward
direction taken as positive.

These three forms are, of course, not exactly equivalent,
but involve different boundary integrals. In each of these
expressions boundary conditions need only be prescribed over
those surfaces across which there exists a flow. On these
surfaces, expression (a) requires that 'i? vanish wherever

67 is not prescribed; expression (b) requires that
be prescribed over all such surfaces; and expression (c)
requires that J;’ be prescribed over all surfaces across
which there is a flow and vanish on all such surfaces on
which the physical velocity is not prescribed.

The three alternative Lagrangians for the acceleration
term which differ only in the natural boundary conditions
imposed by the variation may each be applied to specific
prbblemémﬂ The criterion of choice between them is simply
which set of natural boundary conditions best reflects the
nature of the particular problem at hand. Of the three, the
third alternative (c) is symmetric in the two sets of
variables and compares to the functions used by Morse and
Feshbacle in their application of the auxiliary variable

technique to linear dissipative systems. From a computational

standpoint,
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however, the first and second alternatives, being simpler,
are attractive, Between these two, the first (a) requires
homogeneous boundary conditions for the auxiliary variable
while the second (b) does not. This difference is often
sufficient to determine the choice of the Lagrangian term
since it is desirable to have the auxiliary problem be as
closely related to the physical problem as possible.

The viscous term of the Navier-Stokes equations is, for

flow with constant viscosity usually taken as (see, for

example, ref. 13):

//V"V +§ V(Vov")j |

This may be derived from a variational statement by

simply minimizing the dissipation functiomn for the flow, e.g.

S (2 Fetv=o &

x 3 > 1 -»)&
ere B opf 2§05 )iy 5 5% g v 3 (0o
and the velocity is varied with suiltable regard for continuity.
For incompressible flows in two dimensions such a vawiation

leads to the well known equation of motion for two dimensional
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"creeping' motion (inertia terms negligible) 1i.e.

vi¥=o0 (30)

where ]P is the stream function defined by

w = w ve - Q.l/ (31)
oY ) ¥

This formal statement of the problem of “‘creeping’ £flow
may be directly related to the Onsager (rei. 14) theory of
minimum dissipation. The dissipation property of this Ilow
has been established by Helmholtz ard extended to the case
for which vx(v*V)=zo but %—‘E"-‘F o by Rayleigh
(see ref. 15). These proofs do not involve the variational
formation but rely on the positive definite character of the
dissipation functiom.

Rayleigh's analysis may be put into the variatlonal

framework Lf it is noted that the following Lcdeutity
-’ - - 7> 32
Ux (V% Cunl V) =_pe VX (92V) (>2)

results from taking the curl of tue Navier-Stokes equation
for incompressible flow. Rayleigh's restriction tiuen implies

that
V3 el V= 9 Y (33)
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where !r is a scalar. This being the case, it is apparent

that the variational statement

J/(/V-,’V"’*f f]a/zfzo (34)

VA L2 +X

where ¢5 3 ?

will yield the equation of motion for this case as an Euler
equation if admissible functions satisfy continuity.

For more general flows, however, one is forced to employ
the auxiliar& variable technique. It is suggested that a
suitable term for generating the viscous component of the

equation of motion is

, (35)
g = f A Uydet 29 0y LAWE N + (25 04) (83 rly)

+/u§ﬂ§)l Yy +ﬁ3) F (U FUWi ) (o5 +Y'x)}
for incompressible flow. This is simply a coustruct utilizing

the form of the physical dissipaticn function. It is, however,

symmetric in the real and auxiliary compouents and automatically
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reduces to the dissipation function for creeping flows since
in that case the two Euler equations resulting from
variations of J' are identical and ’ﬁ-’z v

" One notes, however, that it is possible to determine

alternative expressions for the Lagrangian of the viscous

term just as it was in the case of the inertia term

C. The Suggested Form

Keeping in mind the foregoing remarks on the laék of
uniqueness of the Lagrangians for the various terms in the
Navier-Stokes equations when the auxiliary variable techmnique
is used, the following statement is suggested for the problem
because of its symmetry and reducibility to known results in
special cases. For incompressible flow, then

"For variations of the real and auxiliary velocities,

V> and ‘ﬁ? , the condition that the follcwing Lagrangian

have an extremum is that the Navier-Stokes equatious and a

"similar" set in the auxiliary velocity be satisfied.”

N N Y il.-)
l:/d‘élyé/f/:{[hog{-l/og—; (V,V) (36)
+ A (vor) # U[luyvly  dvy By k2w g +(Vyridy)(Bytely)

+ (g ray )(oLy 1) F(wy +3)( */35)]]
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where 0’: 2 U+ j’r,ﬂ- R L
and 72?5 i?eL‘+“j§{3-+-E?¥”

The result of setting SL = O is then

/;44 4 J}z/ Y-y 7/:.] -
-Jve Z/V)h--(V)t) V+UV'K+V?I:D

+./”/"’/<‘1°(J 3 [nos\/ - \/aS*n]‘:l

+f,,(f[[é[,;z;i’- SRV A, SV + 4, ST

-+z{/j$(7i./§7>iz+ui’c{) +‘§)Z°(/V’;?f'C?G<Z]Jz°clgq=<:

where 8 refers to the surface surrounding the volume in
question and 3: is the outward normal to that surface.
The initial and final times for the problem are f,'a»«o/t;_
respectively.

Expression (36) differs from those comnsideired previously

in two respects. First, the partial time derivatives are

included in the inevtia terms; that is, a term

) [0,V _ ?.l?}'
s # {7575



-2~

has been included in the inertia term. In view of the
preceding discussion of the auxiliary variable technique,
it is seen that the form of this additional term follows
directly from the discussion of the general linear problem
(page 11). Second, the restriction that the functions
admissible to the variation satisfy continuity has been
dropped. Thils is accomplished through the familiar
Lagrange-multiplier technique (see ref. 16) in which the
arbitrary functions /7, and ﬂ& are introducéd into
the Lagrangian to insure that variations of the real and
auxiliary velocities satisfy continuity. In this
connection, it is important to noté that unless ;iauz/iz>
are prescribed everywhere the Lagrange multipliers must
be eliminated from the boundary terms or must be identified
physically. The obvious identification is to let FA,=-P
the pressure; and f’ﬂ,==~ép an auxiliary ''pressure.”
This relationship of pressure with the Lagrange multiplier
enforcing incompressibility has already been noted by
Sommerfeld (ref. 3).

Since the notation used above is quite compact, the
nature of the Euler equations will be clezarer if they are

written out for two-dimemnsional steady incowmpressible flow.
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For this case (employing the identification of {ﬂ with P

described above), the Euler equations are:

Wiy +ruy + ’.’; -V P o (38)
al&fﬂ@ *é- -VVty=o (39)
| 1 &
Udy +Voly =3 (Llly +0V; ~Ldy-Vfiy) - F +o7Rz0 ()
u,dff/i‘"/d“ By - usty-viay)- G *
\ #978y 3+ WVPy) FHIVEBao 4

It is seen that the equations ia tlie auxiliary variable,
while linear if W and ¥~  are presumed known, are very
complex. These relakions can be cast into the form derived by
Bateman (see Appendix A) by the acddition of a surface term.

In the two dimensional case, at least, a third alternative
form for the auxiliary relations offers some advantage in taat
it is a simple matter to determine the physical conditions undex
which the auxiliary system corresponds to the time-reversed
physical system. This would be the interpretation if the
auxiliary equations are giveu by

‘2-’-?-\-7-@4-1)‘7‘%’:0 (42)
D¢ Y
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This third form which differs from equations (39) and (40)

by a boundary term is

Udy +Voly ~ollly ~-BVy = L +) Vil =0 (40a)

+ U V"fi =0 (41a)

Ufss r oSy =ity =3 -

< D

which can be put into the form of equation (41) if

Luy ¥ BV =2 (43)

d%’f'ﬂug,:o (44)

This pair of relations has a non zero solution for el and ‘3

only if

uyv-g -Ma]};{_ =0 (45)

which is equivalent to the condition that

V’-P =0 (46)

This may be verified by taking the divergence of the Navier-
Stokes relation for the steady two dimensional incompressible

flow under consideration. ilo such simple physical interpretation
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of the condition under which the auxiliary equaéions are the
time reversed physical equations can be made for more general
flows.

This restriction on the pressure is not satisfied by any
but the most specialized flows. The only class of flows for
which it holds generally true is for creeping flows for which,
as discussed previously, the auxiliary variable technique is
not necessary. However, there is one important exception,
this restriction is met by the problem of the boundary layer

over a semi-infinite flat plate with zero pressure gradient.

D. Comparison with the Method of Rosen and Herivel

In recent years a technique developed independently by
Rosen (ref. 12) and Herivel (ref. 11) has received cousiderable
attention. The essence of the method is to hold the inertia

ov’
term 4/Dt' constant during the variation. The Lagranglan
for incompressible £low then takes the form

= £ vyt L 4-.;2:
VA *T’) 7 (47)

Dt 2

when ‘é{. is again the dissipation function. This can be seern

-
by inspection to yield the llavier-Stokes equations il DV/Dt‘
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-

5 D
in the first term (2',6, Ve Dt ) is not varied. However,
there are not a sufficient number of degrees of freedom
present to permit the variation to be formally restricted

bV’

-3
by a Lagrange-multiplier term )} eJ D added to the
Lagrangian. Therefore, only those functions for which

~.J>
S 2%’_ vanishes identically are admissible to the
01
variation. In a computation for generating approximate
solutions, such a restriction presents virtually insur-

mountable computational difficulties for all but the most

specialized flows.

E. The Energy Equation

Since it is possible to generate any differential
equation from a variational statement if the auxiliary
variable technique is employed, it is possible to cete.mine
‘a Lagrangian whose Euler equation is the energy relation for

incompressible viscous flows, i.e.
fe B -n oo o

wvhere Cv is the specific heat at constant volume
A is the thermal conductivity
] is the fluid temperature

ér is the dissipation fuuction
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and (W and k have been assumed to be constant.
If Y is the auxiliary variable then, for variations

of Y and §& the Lagrange density

fc'u-[r ¢ -903’} Fl(VEVY) +§'/a+x) (£9)

yields the desired Euler equation.

The variation Jfl-o&al,cladf cy yields
/;464/3&/{/5;([(’(?%-* vord ] 50)
-S&[revg—{ +h VY -g]]*/péagag 5[3'49-&53’}:'
+/‘/{/5/£zq"’(ﬁ9'953') -'/eﬁa(vx)wr(va)]],‘zs

’
where the 1?5 have the same meaning as in the case of tae

equations of motion.

In this case, the auxiliary variable satisfies the Eulex

equation

eev 2 1k vir - F =o 1
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This relation may be interpreted either as representing
a time reversed temperature field, or as the temperature
associated with a flow having negative viscosity (dissipation)

and thermal conductivity (reversed heat flow at the boundaries).

F. Compressible Flow

Compressible flow is , ol course, more general than has
been considered above since density variations are admitted.
The fact that the density is a function of the coordinates
and has a variation indicates that another relation must be
added to those of the incompressible case. Under this heading,
the variational statement for the complete compressible,
time-dependent, three dimensional flow will be derived.
Discussion of the procedures will be omitted where the previous
discussion of the incompressible or steady flows are applicable.

For compressible flow the continuity relation is given

by
D¢ ~>
— + C(wev’) =
e ( ) =o (52)
A suitable continuity restriction for the auxiliary system
is
D’f -3\ 53
— + P(ver’) =0 (33)

Dt
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where the fluid density in the auxiliary system is taken to

be the same as that in the real system and

o'’ _ W tv (54)
oz = BrU VY by

The equations of motion are given by

f%‘% = X =Py +_,u/v‘u+-§ (V¢V’)y} (55)
v _ 3 7> >
i VR rufvrsb (o) e

fDW - 2- 1 5

Rimlvertony) o

0 9

9: 3 (fu) +§:} (fU')+ 3 (‘(’w-) (58)

A suitable Lagrangian fox the system (55), (56), (57) with
the continuity restrictions is (if the applied body foice is

given by the gLadlelt of a sbalaL, i.e.

Z—lp[ '701’ -an }_‘1[Q’_’.f+\p(voi>):/
+ 72 '/' f(v"‘/)]’}”/lf%féh/‘ ALY %) SR

ey ;.u,)/ﬂ,,;—o(;})f'( +)(Vyt 83 ) s vury )y 1)
._3 [w+2fa+w})(‘l" *)/-{77"\"5)}
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Then the statement

Jflé‘/é“;afgo(t =0 (60)

has the equations of motion as three of its Euler equations if

o
£1, P o1

Vo = F = TX +3 Yth Z

The additional Euler equations are
€2 L (udy+vpy sy -ty -5 - vur) (62)
2o [V #3 (0 )y ]+ (PT2)y =0
(63)
p2-L Ly v, - -
£z J“’ﬂ;*“’y 2 Uy ﬂvg-vw:})
/] -9
,L/a[v"/s-fi'(!?-)‘l)a]-l—/‘(’ﬂz) =0 (64)

ra Py

bt T T (g Tyt gty - vy v )

%[VlY'*'i" (V‘i’)é] + (‘(11)3 = ¢
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_,__ ) D\;) ~>
T (P -R0)-2 (100,20 ©

where the last relation is a consequence of the variations of
the density. This relation may be considered as a relation

between the physical and auxiliary velocities. If the flow

is steady Dﬂ'/Di' and D;"‘/o-t- may be evaluated from the

other six equations and equation (65) becomes

D (WrHP) + v v‘m’-\?)j (66)

r2 o [veit-v) | =

Therefore, in the absence of a body force and pressure gradient

since

Vo Z'Q-L-: [V‘n +l 2472 ri’)]] i

the auxiliary velocity satisfies. This relation indicates

that under these counditions that component of the auxiliary
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equation which is parallel to the physical velocity, the
"working' component, satisfies the time-reversed equation
of motion.

Returning to the general problem, the integrated terms

resulting from equation (60) are
/7:/6444 6/5 At /-Z’f[)ivél?;L Vod ﬁ’_] (68)
bl e)st ]y Jue | E[rar-isR] 7
FVU(A,37)8C + P (A 8v+0.8%)
tu [$70o (VP4 77) #5874 (037157w)

- g'— [(Vo\?’))?+ [vert’) \7’] } ocds”

where § is the surface of iuterest and § the outwaz

normal to that surface.
The complete variatonal statement is then

J/ﬂf?‘“é%”‘”]""

(69)
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where Lﬂ is the Lagrangian for the general problem given
by equation (59).

While considering the topic of compressible flows, it
is appropriate to note that the use of the Galerlkin
procedure (see ref. 15) for generating approximate solutions
from the variational statement will, in general, be consider-
ably less reliable than in the incompressible case siuce the
velocity may exhibit discontinuities which ca..iot be
approximated by a finite numberoterms. For this reason, the
application of the approximate technique to compressible

flows will be the subject of a separate study.

G. _Boundary Layec Flow

The Boundary Layer Equation (see ref. 1€) may be derived
as the extremum coudition for the Lagrangian used to derive
the Navier~Stokes equations by counsidering tue orders of
magnitude of the various teims involved.

At tue ouatset, orders ol magnituacde must be assigned to
the real and auxiliacy variables. Based on experience iu
the solution of flow problewrs with tne auxiliaxy va:iable
teciuiique, the auxiliary variables may be said to be closely
related to their counte:iparts in tue puysical systeu. That

is, ol may be takeun to be of the same orcer of maguituce
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as U and /3 of the same order of magnitude as ¥~

The boundary layer equation for steady, two-dimensional
incompressible flow may then be derived as follows.

et &, S » of » and /‘; be the previously used
dimensional variables and WU , VvV, oL , and f5 be the
corresponding dimensionaless variables.

Following Prandtl, let

= d i LTV a1l 8 70
£ T oY, Vie v e /3 E U 70
- - 5
-x - = —
o
(71)
Vv o_ L
lll‘&&d- 613"7_ "‘a‘

For this discussion, it is convenient to choose the form given
by equation (26) for that component of tne Lagraunge deunsity
which yields the inertia term in the Navier-Stokes equation.

' The statement for the Navier-Stokes equation Iin two dimensions

is then
(72)
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which becomes for the dimensionless variables (80)

5[ [atus iy iyt b 4 crp13) 13y 1)

(73)

+ e’-[,’é[m/;sz{?)maxg #2Vy By + Vidy +ily /5”]

-»Lé'/[”;tﬂx)] cly_d., =0

In the boundary layer approximation the term &€ ‘l/ﬂ‘
is considered small. That is the boundary layer approximation
is valid at high Reynolds Numbers. Following the technique

described by Kuo (ref. 17) the variables may be approximated

as
Uz P retsr ettt . -0 (74)
v =2 VY e VP e 5Py o (75)
°L=’°L(o)+é¢(u+_6_z°£h)*.. . (76)
(77)

ﬂ-‘-ﬂIO)-}—éﬂ"J'f 63ﬂ(1)7‘_ s e
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where € is used as a perturbation parameter. Inserting

these expressions into equation (73) yields

J / / (o) [ ) ax(o.z 4 Vw‘ﬁ( J] L d"(")

# (4" @8y7) F AT (¥ ®

(78)

7L é- OL(I) /u/w“/o.l + U “1(0_)) 4 I/‘(‘u d(g

~ /7)(0) (@liifﬂall)) 4 72(0)/%0);‘ yifu)

LA 050 4 A 6% )

©) 0. (e
* i (u )u/d) f-u ux) f @) (IJ* .v. u(o_/) +¢(0) L(,(J]

rer/ ]+-~]oama,=o
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It can be seen that the Euler equation resulting from

variations of d(” is

ulo) (’3) £ V(v (c)_al _ }7 (o) (79)

0, (@ (al (u ), , (0 (e, ,(_ ( 1y _ (I
+é[u U +u +vu J) + U -y, ,,]

+é7‘[ ]-ﬁ»»-":-a

The zero order terms constitute the boundary layer equation
with the Lagrange multiplier ( Z'{”) being équated to the
term - ~—- p The term of order &  is the first order
boundary layer equation.

It is interesting to note that the first approximation
in the physical system is the result of variations of the
zero order term in the auxiliary variable. The variation of

the first order auxiliary variable i.e. Jolw yields
é'[ &Ja(’f VIO)L{56)" L/}(‘J - 2 (0)] + é [ ]* ve T o (80)
¢

which is the zero order boundary layer equation. Consequently,

d(u

- it is not necessary to include the terms in the Lagrangian
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designed to yield the first two approximations to the Navier-
Stokes equation. 1In practice, the facé that the v torm
may be considered without the ol‘” term is a great
simplification of the computations involved in the Galecrkin
procedure. This fact will be illustrated in Example C.

A similar symmetry exists in the auxiliary system.
That is, the zero order auxiliary equation is procuced both

by variations of tla”

in the zeroth approximation ard by
variations of u(" in the first order approximatiomn. This
behavior of the auxiliary system is completely ar.alogousg to

the occurence of the zero order physical equation in

equations (79) and (80).

H. Working Form of the Lagrangian

The purpose of this study is to provide an integral
technique for the approximate solution of problems in fluid
mechanics through a variatiornal statement. This is equivaleat
to attempting to generalize the Galerkin technique (see ref.
17) to this nonlinear problem. For linear self-adjoint
systems, Galerkin's method is equivalent to the varlatioual
method and is used as a relerence tecaulqgue nere because the

specific form proposed by Galerkin is analogous to tuat
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obtained by the auxiliary variable method. From a purely
mechgnistic viewpoint, the Galerkin scheme is to use the
individual trial functions as weighting functions to
generate the approximate solutions to a given problem.

For example, if the equation of motion is

d (w)=0 (81)

when Jf is some differential operator and

u=ulx) (82)

then the true solution may be approximated by

V.4
u*= 2 C: & (83)

‘=1

where the gﬁfs are functions of ¥ satisfying the essential
boundary conditions. ’
The Galerkin method provides relations' from which the

constants may be evaluated as follows:

Xa
le B, J(u?)cle=0 (84)

fx 2, d “");&4 =0

/
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One notes that this technique is equivalent to a
variational method only if the problem is self-adjoint.
For the general linear preblem Galerkin's method must be

| modified to

X |
f W,I(u"’);& o, £, (85)

%

M
where ¥ = Z (’i Ve (86)
2

and of *is the adjoint of u* |

This statement may be generalized to include the non-
linear, non-self-adjoint problems of fluid mechanics.
Consider a problem to which the variational technique em-
ploying auxiliary variables has been applied. The resulting
Euler equations, natural boundary conditions, and the
physical boundary conditions often indicate that the form
of the approximating functions must differ with regard to
only one coordinate or independent variable. For such a

.problem the physical variable may be approximated by

AUANDRPETCOL HENVNRIE “r
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and the auxiliary variable by
»
X, o)) T Z . ‘ | 88
ol /Z-l; 2 ) . Al{l')ji[xzdld;") (88)
If the 31'. are specified functions, then

Sur = g0 5e0) @)

and Jao¥ = ZJ: Slhi)

(90)

and computations following the variational procedure will be

of the form

/j’ 07(“’95/)"14(;3,”:0 (91)

/34 J(“’) 0‘14-1.0[1‘3~" =0

jj” J[U*) él\az,clis-” =)
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from which A differential equations in the -;e;' wi‘ll
result. This extended form of the Galerkin method is
illustrated in example A of this-report.

The specific purpose of going through the variational
procedure is to determine the weighting functions to be
used in the Galerkin-type of computational procedure. 1In
the general fluid problem it is not possible to identify
the auxiliary variables with the physical variables in a
simple manner. Bateman (ref. 7) has pointed out that the
auxiliary equations are the adjoints of the perturbation
equations for the fluid motion; a relationship which is
too complex to be of real aid in identifying the weighting
functions to be used for computational purposes. The
precise form of the auxiliary variables to be used will
therefore have to be tailored to each specific problem.

The emphasis on a physical or pseudo-physical inter-
pretation for the auxiliary variables stems from the fact
that as the Galerkin procedure is applied using successively
more refined approximations to the velocities, the solution
.to the auxiliary systems must also be approached more closely.

-2

->
That is, since the Lagrangian involves both V and M
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if a close approximatien is made to V but M is

relatively far from a solution to the auxiliary problem, the
integral will not be extremized. 1In the limit, a bona fide
extremum is attained only by the exact solutions to both the
physical and auxiliary problems. The degree of success
attained with the variational technique is dependent on
qualitative knowledge of the behavior of both the physical
and auxiliary variables.

In reducing the problem to a computatiornal procedure,’
one should not lose sight of the fact that the basis of the
method is a variational one and relies upon the statement:
"of all the possible functions satisfying the essential
boundary conditions of the problem, those which rencez the
term fz o/v'- 0‘1‘ stationary will also be solutiomns
of the Euler equation."

From a computational standpoint this requires that a
complete set of functions satisfying certain boundary
conditions be tested to determine what combination of these
functions renders jl dv dt stationary, that
combination then also satisfies the Euler equation. 1In
practice, & small number of functious are used in the approx’mate

expression and it is necessary that the greatest care be taken
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to insure that it is possible for the particular functions
chosen to describe the behavior of the physical variable
being approximated. 1In other words, sufficient knowledge
must be at hand so that the general behavior of the
solution can be expressed by the terms used in the approxi-
mation.

The auxiliary variable which has been introdﬁced into
the present problem complicates this computational procedure
for two reasons:

a.) wvariables in both the physical and auxiliary'
systems must be approximated, increasing the
computational effort required to solve the
problem,

b.) while it is often possible to anticipate im-
portant characteristics of the physical
variables from purely physical reasoning, this
aid in determining thé approximating functions
is not generélly available for the auxiliary
system.

When using the auxiliary variable technique it is, there-

fore important to relate the physical and auxiliary systems
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as ciosely as possible so that maximgm insight may be applied
to the approximations to the auxiliary varilables. It is
often possible to reduce the effort in applying the auxiliary
vagiable technique to the same order of magnitude as that
involved in more conventional methods. 1In fact, in many
problems the computational form simply represents an extension
of the Galerkin technique.

The question arises, ''when is it possible to counsider
the approximate solution té be sufficiently accurate for
engiﬁeering purposes?”’ This question has been considered
often (ref. 20) with ﬁo generally applicable result. The
often stated assumption is that for sufficiently regular
prqblems an increased number of parameters in the approximation
results in a more accurate approximation. For the case in
which the integral can be proven to be minimized (or
maximized) rather than merely stationary, the value of the
integral for any given approximation yields a numerical guide
to the excellence of the approximation and can therefore be
used as a check on the assumption that an increase in the
number of parameters improves the approximation. For the

general case, it is possible, in theory at least, to compare
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the profiles generated with approximations of increased com-
plexity and to consider the point at which the profile does
not change appreciably with a further increase in complexity
as a termination point. Quite aside from the obvious logical
difficulty inherent in such an assumption, this method
requires that the approximation include at least one more
term than is required for an adequate description of the
solution. This will, of course, significantly increase the
computational effort involved.

An alternative method of evaluating the accuracy of the
approximation 1s to use a "yardstick' which is separate from
the variational formulation. For example, a least squarés
criterion could be used in which the value of f[[(“—)] yvo!t
(where ftu—) =0 is the equation of motion) would

indicate the accuracy of the approximation.
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IIT1. Examples of Approxim te Solutions:

A. Formation of Couette Flow

This is the simplest problem which includes any
portion of the inertia terms although the non-linear
terms are excluded. The governing equation is the

diffusion equation , i.e.

%_v&( - (A1)
Y . e;a‘- -

with the boundary conditions

muzo at t=o0 (A2)
Uus=o at 3:0

The formulation in terms of auxiliary variables may
be obtained by specializing the Lagrangian for the

Navier-Stokes equation.

L=z (tte-uty) +J ey u, (&3)
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If possible, one chooses boundary conditiohs for the
auxiliary variables which will cause the associated boundary
integrals to vanish.

Taking the variation

crfl/gc/f :[j%‘:‘f/;d/[{f'ﬂu‘]z)-é'u (¢£+ U“ga)}

(A4)

+‘[247[%[44u-u5x)]:t+ 1)_[:({[44,&!7“&7 5“];‘

Considering the integrated terms which do not vanish because .

of the boundary conditions on & , i.e.

f;% 3 [‘z““'““}fzr + fa’z ( 1y §a )ok

indicates that

(A5)
ad = o ax.l t=7

d:oajg‘:-a
aC';UoJ&jJ:l\
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insures the vanishing of these terms. Here ol satisfies
a final condition rather than an initial condition. This is
in. keeping with the interpretation of o as a time reversed
velocity as indicated by the Euler equation in e

Since it is desired to cast the problem into a com-
putational form similar to that of the Galerkin method, it
is desirable to choose forms for the approximations to W
and ol which differ in a single coordinate. A suitable

approximation is

V4
u= &, (4)" a9)

where 2 = @, (¢)
V.4
) 2. v (A7)
7

¢”(0) = Ve
B (0) =gy l0)= - -=@, (6)=0

This approximation satisfies the boundary conditions at g:q,k

and approximately satisfies the initial condition. The initial
4\ . o o

profile, U',{h) , will satisfy the initial condition exactly

only for W=o00 . The approximation to the initial profile
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is, however, assumed to be adequate for large but finiter
values of W '

Since &/ has the same 3 dependence as WU , let

.t-.fp;*(%)“ (A8)

fﬁ-: - Us (29)

BHT)= BT (T) = - = Bar, (T)=0
and, in gemneral

B (t) X &.X(¢)

then

LI -garyayee o

" L Mrpet
pY wpaig (2)7]

i [Far-u] + 1, [La, -] ] etttz
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or r' l‘ ,‘A’-
Jj: [ / Z;Zp:[f”»";fp'/ £) ifm;:ﬁ:g(% )',‘*P‘“Aln
I [Ed50] + 7, (2, -u] |t ds
h
"5[ 'ZI'[Z,:Z; A (£)" fdg .

Therefore, after performing the l} integration these results

J/o(f/Z_-Zg( (__QE_. +__1 __E_Q'_e.) (A12)

)\f’P"’ H,_P )

P [Tar-w) 47, [Zo-u] | =0
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* »
Now, since J'd,. is arbitrary, the Euler equations of
interest are

@ J M ? A
/j“'."; W}ﬁ_f; *h"ﬁ” .hf'P-l)“:'o (413)

The values of 3 and [ to be chosen merit some
discussion. 1In the first place, it is apparent that the
initial condition of W =0 everywhere but at the point.

3 = L where L e VU, can be satisfied only approximately.

If one assumes a three term approximation, i.e.

wed £+t () A (£)7 (a14)

then if %(d):¢z(0)=oand Bru (0) = 05 the
initial and boundary conditions will be satisfied in the limit
as W —>e3 | In practice, 7 is chosen so as to
contribute something to the profile at time Z° . The closer
the Z“’ of interest is to zero, the larger the W that is
appropriate. Let us try two cases W= 3 afid M= §

for comparison.
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The Euler equations are, then, three ordinary differ-

ential equations in

%[t)) ¢z(f-)) owed &, ()

(Al15)

mie

for he)! /7«+é +..r +L+'IF- (2, +4, *4,) =0

Mm+J3

for 32! /'Lu"é-* B b (A EA g, )=0

U I S _Bm_ + Zm mt
for mam’ Aa* M+L w3 me T (ﬂ *urs Pt 5 Pu) =0

;4¢k may be eliminated from these yielding

, (416)
ﬁo, ﬁ‘& d‘“ - y ¢
+ + h?. ('-5!'— L iy M+ %’n) =

72 20 (31+2)(wrd) -

‘/(mn) ¢ s"hu+3) A+ {»+3)(?-M*') ?!”‘

- 2 2(m=2) ¢ 3= 3w y2m & ]-
Wl 30w+ (».u)(zm-:) wm =
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but, from the boundary conditions

& =Ue-&.-4,.. (A17)

A ¢ —
3; "'¢>u[l?. {»wz,)(m-ra)] +h"— ""1"" u, dm

_é"'""l)(m-?—) + d I (wmer)(2mbe3m -§)
¥ Tolme)(m+Y) M Y mr)(me) (2 ti)

J [Z[W") WM 3w 2m T o

‘P;ﬁ' 3l e+)) (m+) (2w =s)

For 3= } , these are

(3'3 * 573‘)¢ +( zu"—) g3 =0 e

[GD éh”) P + {9.w /oh‘)%-d

d

where D is the operator ;i-t:



Then
D L v\ r
(qzo LTI ,) ¢3 =0
g2 X
and ds=C¢€ g2t
but since ¢3 (o) = Vo
Y
¢3 - DZ& ~-4e h"t (A19)

the relations may then be solved for dL where dz lo) =0

v v
3 -102 ¢ -vr .t (A20)
dz_ - z Uo[@ W " e ]
and, since ¢, = ’V,,-;!z—ﬁjs
K2 v
3 -ep;t 1 _-vafat (A21)
&, =V [ -3 € +3E

and finally

v (422)

for the case of =3 .
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For M =&  the solution of equations (Al7) is

< .1 1.35’1 - 2. qs T Lo 8E Vet P IC Gt (a23)
4 ( 15 )e

)
+ [/’3rl l '/‘ -}-I.I, PP) e-&%aa hz,'é

The analytical solution to the same problem is given in

ref. 21 as

0 T el
u 2 Z (-n™ “v" ™t /. (A26)
VD iT =) )‘ l‘\

These three solutions are compared in figures 1 and 2 for

Jt

different values of —‘:_L . From figure 1, it is seen that
')14: } does not yield satisfactory results for y‘%,, = O.]

while the M =& solution lies within ten percent of the
analytical result. Figure 2 compares the approximations at
7{.%; ,O08 . At this value of time Mt =& 1is no
longer adequate but deviates from the analytical result by as
much as thirty percent. Moreover, the M4 =@ profile assumes

negative values near the stationary wall indicating that the

two-parameter system cannot follow a physically reasonable
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profile at the shorter time. Improvement of ﬁhe approximate
result in the small time range must come from an increased
number of parameters and an increase in the value of ‘w
The m = ¥ approximation does, however, yield a value of
the time constant of the starting motion which is in
excellent agreement with the analytical result. That is,
for large ‘f‘ the approximafion predicts a time variation
'7',{%)'* while the exact solution gives 8-""‘%‘?
From inspection of equation (A1lQ), it is seen that the

corresponding solutions in the auxiliary variable will be

exactly the same as those for the physical velocity if t

is replaced by 'Z"-— ¢ . Therefore, for W= 3
v
_gL_ - l _ '_3_ 1('- }_) e—za ';-.,('C'-t) (A25)
o h 2 W n

FE [1-3F 42 131)8-—%-‘,‘.-.(?'—7&)

as would be expected since &k has been previously identified

as the time-reversed velocity.
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1. Galerkin's Method Applied to the Problem

In the Galerkin method'(see ref. 17 or 22) for generating
approximate solutions one assumes that the problem is self-
adjoint and uses the various terms in the approximation to the
unknown variable as weighting functions with which to integrate
the Euler equation. In the present problem it has been assumed

that
U .
v AL rh (3) 4 (£)

where ﬂi *"ﬂ; +.¢%? =)

so that t_f_o.. + ¢z.[{2')"’ .‘.z.] +¢3[/_2_) _'?_]

in order to obtain differential relations in the g 's by
Galerkin's method, the coefficients of the }d 's are used as

weighting functions for the equation of motion and

[h[(f')t /,1] (U= lyy)ely =0 (A26)
[ 2] - ey
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An identical form can be obtained directly from the
variational method. If only the solution for the physical

velocity is considered, expression (A4) is .
h pT
// Jelue-vuU,,)icdtedy =0 (427)
o Jo 11 4

since the boundary integrals vanish for the approximations

(A6) and (A8). 1In the three term M4 =3 approximation
¢:*""Vo "¢2.*"¢3*
Therefore,
Sa=SE*(E)+SAF(£)+5a2 (L) o
- SW[(R)- 5] FSH13)  £]

and (A27) becomes

/ogé"*/ZY/f)l'%](u*_vu“)"@}démg)
4/01:;;53’2{[7/%)?. %] (u.t-vu”)a/a}dt‘

Since Sd.&* and cg¢3*'a::e independent arbitrary functions,

the Galerkin statement (A25) must be true.
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B. The Incompressible Boundary lLayer on a Flat Plate

This classic problem of‘Boungary Layer Theory (see ref. 18)
is a popular testing area for approximate techniques. The
simplest integral method for approximating the solution of
this problem consists of approximating the velocity profile
by a polynomial in terms of the variable ‘4/6 there ‘3,
is the height from the surface of the plate and 8 (% ) is
the boundary layer thickness and determining A by requiring
the boundary layer equation to be satisfied on the average
over the region of 3-/5 from zero to unity. For example,

the velocity profile may be approximated by
NV
n
= 2+ (B1)
u ;—' a. (£)

where the Q. are all constants determined by the boundary
conditions on the problem. The function A is then deter-

mined by requiring that

/A(U“u +W’UJ—))H3‘})5[} -0 (B2)

o

where VYV is determined from the stream function associated

with WA
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The method requires that sufficient boundary conditions be
"invented" to provide relations amoﬁg the aQ,, so that a
different.problem in the mathematical sense is being solved
each time the number of coefficients is increased. This
technique will be referred to as the "conventional" integral
method hereafter.

Recently, there have appeared two papers (refs. 23 and
24) using a variational method to generate approximate
solutions for this problem. 1In the first it was assumed
that the principle of least dissipation is applicable to
the problem and the coefficients in (Bl) were determined by
the variational technique. The boundary layer thickness,
however, was not determined. In the second paper, the method
of Herivel and Rosen (refs; 11-and 12) was applied in place
of equation (B2) of the conventional method. That is, the
coefficients of the approximation (Bl) were determined by
the boundary conditions as in the conventional method, but
the boundary layer.thickness was determined by the Herivel-
Rosen method rather than by (B2).

In none of these techniques are the boundary condltions

held fixed and both the remaining.coefficients of the
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approximation and the boundary layer thickness computed from
a single scheme. The method discusseé below will determine
both the constants and the boundary layer thickness using a
single set of boundary conditions.

As noted previously (p.35ff ) the variationsl expression
for the Navier-Stokes equations may be modified to yield the
Boundary Layer equation through an argument based on the
orders of magnitude of the various terms involved. The
statement to the first order is (see equation 83) for the

present problem

J'fxfﬁohcl-] [ct(uawt!ru.,);léu%.z} 33
+ 7(”1& 4-7/5)} =0

where the velocities have been normalized with respect to
the free-stream velocity, Vo , but the coordinates are
dimensional.

It is apparent from inspection of (B3) that the com-
putational effort will be recuced if the Lagrange multiplier

enforcing the continuity restriction is avoided. Consequerntly,
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it is advantageous to insist that the admissible functions
satisfy continuity. In that case (B3) may be written in

terms of the stream function as,

J:[Z‘;‘l’[‘lfi(ﬂ.%«,'%%)*% 2 yz,”} co

(B4)

Before taking this variation, it is worth noting that
at this point it is important to devise a form which will
minimize the computational effort involved in determining
the approximate solution. The result of the variation will
be an Euler equation which is the boundary layer equation
and another in the auxiliary variable, o . In addition,
certain boundary terms involving both the real and auxiliary
variables will result. The goal here is to choose the
boundary conditions on the auxiliary variable in such a way
that the real and auxiliary variables differ in their
dependence on only one of the two coordinates involved as
in Example A above. This caunot be accomplished in geuneral;
however, if such an interpretation is consistent with the

auxiliary Euler equation and the natural boundary couditions,

it may be done.
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The variation of (B4) yields

[Z:"‘“I[“(’%%&'V" Yiu =55 Pauy)

+§1,V[;J-5 (u.ozy +-u-.z3 + %“"L‘J'&) b Ly V‘ag

4
-y %3]} +/flbt [<(0 0 -,y W)]ax
X
ot 59 ( <ty pim-anyy, )
+4Y, (%“3_“‘%) }: =0

where X  is some distance downstream of the leading edge

(B5)

at which the problem is terminated and A = AR is the

boundary layer thickness.

Considering the ¥ integral first, the boundary

conditions

u=v=o0 ok y =o (B6)

usz="o aX 3 = A
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insures that J‘% vanishes at both limits and that J#’
vanishes at the lower limit. There remains only the
coefficient of § ?’ to be evaluated at the upper limit,
that is the term

(“L‘yv; 4--1331/ ~oy ’}'3 - 43})3=4 (B7)

The physical nature of the problem indicates that

(B8)
Uy = 7/));3 =0 a/\" } = A
bl..& =0 a/f 3, =4
the second and third terms of (B7) indicate that
(89)

oy =o d}:A
ol-v =0 af%zd

are appropriate boundary couditions to impose on ol -
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The final term of (B7) will be allowed to remain non-vanishing
for the present.
Considering the lé_ integral of (B7), the boundary

condition

A=o ot %=0 (B10)

indicates that

P=u=0 af ¥=0 (B11)

Consequently, there remains only the integral at ¥ =X
Here it is impossible to make any statement regarding the
behavior of the physical variable and it is appropriate to

introduce the auxiliary boundary condition
d=zo af =X (B12)

Finally, it is noted that the Euler equations resulting
from the statement (B5) are of such a nature as to permit the

identical 3' dependence of the physical and auxiliary variables
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o zo a)( g‘-‘—‘b~ (B13)
ol=Vo X 3:4

Relations (B9), (B12), and (Bl3) constitute a set essential
boundary conditions on the auxiliary variable o

There remains one point to consider. Since it is
desired to vary A  as well as the coefficients of the
approximations to the real and auxiliary variables, the
upper limit of the E} integral is to be varied. According
to the theory of the Calculus of Variations (see ref. 25),
the statements made above remain valid under this variation

provided that the boundary term

X a
[04; /Ja[ol (cetdy +vety --;}o u”)] ;

is added. Equation Bl4 has not been written in terms of the

(B14)

stream function to facilitate its interpretation and use has

been made of the fact that

/dzuzp&al_l = - fc‘ u,;&a&a(’

(B15)
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“

. which in turn depends on the fact that

X
: A ‘
[ fayu] o
o Lt do

in view of boundary conditions (B6) and (B9).
Because of the physical boundary conditions (B6) and

(B8), it is seen that the term (Bl4) reduced to

X 4
v (B17)

The variational statement then becomes

s [[ [yt vy 03]

= [,,i‘%[[““v‘a"“],d*["‘n ”']ré}

(B18)

|

where admissible functions satisfy continuity and the boundary
conditions listed previously and variations of /A are pex-
missible.

The approximation

N
U - A, A MY (B19)
Vo ,Z 24 (0 oetet )
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where the dk“ are constants and
ne
Z(-) *a, =) . (B2C)

satisfies the physical boundary conditions and qualitatively
provides a gbod approximation to the anticipated form of the
solution. Since the auxiliary variable satisfies conditions
at the ll boundaries which are identical to those satisfied
by the real velocity, an appropriate assumption for the
auxiliary variable is

M
_ol,_, - . _ (B21)
S =l A, (o)

where the ¢" are functions of ¥ only and

,f(-)n%’¢u =)

Substituting these values into the integral to be

(B22)

varied in (B18) yields
(B23)

[[ Lo % =g ez

+%§§a‘.d,(%’)"m “_gzﬁ M%}]a’%&[};‘-



// [ZZ—Z_;auaH,';( [M ($+p+~,1;3313'-)1 cont.

FAu (34p1) B 4l (3P0 T doui(g-pon) Ty

- 244~'~(3+P) g - A [?-p) ’.3!\

o Z,:Z;“““; [etgf)[%/rm a -?oo(wp) '3]}04«

This expression may be integrated with respect to
If it is recalled that the ¥, § 'S are all odd numbers
and that a vanishing argument for the cosine results from a

zero term of the integrand, the integrated form is

(B24)

+(§-}7, cnmm m +_L_73 m(?-,a)gg j]

$
23
.;_Z—‘v—f;%;é? Lﬂ-}

? A
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In addition to (B24) a term may be included to enforce

the restrictions (B20) and (B22). This term is
” e -
o&[ﬂ [ )= _]-} [ e -] (B25)
/d @ Zz— ¢1 ;,b Z"( ) ¢u It A4

where 2‘,_ and ﬂb are Lagrange multipliers.

In these expressions the terms to be varied are the
a's) @'y and A . 1If variations of the ¢ 's are to
furnish sufficient Euler equations to evaiuate the Q_'s and

4 , that is to evaluate the unknown parameters in“ the
assumption for the physical variable, the approximation to
the auxiliary variable must be carried out to one more term
than that for the physical variable. If the approximation
for U is terminated at the N th term, the variational

statement (Bl8) becomes

[w LD e en) rlzpon,

(3+P) 2] (g -PrEn?] "

(B26)




(826) cont.
#[yf;-ﬁao(pp)gg Hipeolg-p)m |
+Z ALY L—- +')]“A[)—l) ¢?-/]

4 ?,,A[Zf(-) T O - _7}

S [[E D0 e (s )4
4-%/}4[2% )A»%—;[é[_aw (1-toom :2)]3;0

This equation has been arranged in such a manner that
only variations of §5 must be taken to determine the
approximation to the velocity ({ . Taking only this
variation and not including terms which do not involve
yields the appropriate Euler equatiouns since the coefficient
of 5’5 under the integral must vanish due to the arbitrary
character of

Thus, if N is taken to be 3, that is if the a's
are taken to be a, ol as ; three Euler equations result
from variations of ¢ .  These equations and equation (B2C)

constitute a system of four equations in the four unknowns
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a,)aajdlw 70.' If ;Ik is eliminated, this set of

equations becomes

) )

s 7 ) 3,: 3y T QUoAA' [a' +9a3) (r27)
YL z 3490 _J292 3

- 2% a,qa. - T - VIT 8
Jos &1 T 79 T3 T 3¢ A oaa & (528)

a,-cay =] (p29)

The solutions of these equations are

a,= 0.5'75") 0.989 , ).75) (E30)

and the corresponding A 's are /[ ) , Y. 10, 7,08,

These three possibilities, all positive real numbers,
brings to the fore the problem of uniqueness. Often, the
engineer circumvents this problem by appealing to physical
intuition. That is, if the problem possesses a wiique
physical solution and if the system of equations accurately
describes the esseuntials of the physical plhienomena, thein
the system of equations is expected to have a unique (veal)
solution. 1In the above development, however, the noci-

physical auxiliary problem nas been intvocuced so thiat the

Wi 5 e
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mathematical system is not exclusively related to the
physical problem. Consequently, éhe fact that the solution
is not unique implies nothing regarding the physical
problem only that there are three real solutions to the
problem of minimizing the integral (B18).

It is often possible to eliminate solutions by appeal
to their ''physical reasonableness'. That is, by comparing
them qualitatively to the known of anticipated physical
result. For example, the first of (B3C) i.e., @, = 0.575
yields a negative shear stress at the plate and a negative

component at the edge of the boundary layer. Since

these results appear impossible from the physical standpoint,
this solution may be disregarded as a solution to the physical
problem. The other two solutions of (B3(C) are not eliminated
so simply since both yield reasonable velocity profiles.

A formal means of choosing between the remaining two

solutions would be to form the expression

fo;h/oiﬁ[uuy+vua _vu%}]l (F31)
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using each of the two results. Thg one which yields the
smaller numerical value of the expression (B31l) would then
be taken as the better solution of the physical problem.

A more intuitive approach would be to recognize that,
from a mathematical standpoint, the boundary layer thickness
is that distance above the plate at which the velocity
becomes exactly unity (i.e. K = Up ). Consequently, a
very close approximation to the true velocity profile would
yleld a large value of the boundary layer thickuness, arnd the
profile which yields the larger bouudary layer thickness
(at the same level of approximation, of course) would be
expected to be the better of the two. Note that the
boundary layer thickness used here would actually have a
value of infinity in the Blasius solution of the prdblem.
The conventional boundary layer thickness is arbitrary since
it is defined as that distance above the plate at which the
velocity attains the arbitrary value of 0.99 Up .

Based on either of the above approaches the result of
the computations is that

u _ T . 3 (Rr32)
Vo-/.lﬂm A + 0. 15) An =2



where

A= 7,08 ‘v 2.‘;3': (£33)

The two profiles associated with the physically plausible
solutions (B30) are shown in Fig. 3. Figufe 4 shows the first
approximation with the variational method along with the

Q, = 1.151 second approximation profile and the Blasius

profile. The first approximation is

U . e my (B34)
Do A

where A 1is evaluated by requiring that the integral in

(B18) be stationary. That is

It is seen that the profile corresponding to @, = 1.151
provides a reasonable approximation to the Elasius solution
somewhat beyond the computed value of the boundary layer

thickness. In fact, the profile remains above the value

'%% = 0.99 to a value of 7( = 9,50 rather than '71 =

7.08 which is the edge of the boundary layer defined by A
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Since the curves of figure 4 do not provide sufficient
spread for the relative behavior of the various profiles to
be seen in any detail, values of" Lﬁ%ﬁ, are presented in

Table Bl.
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TATLE Bl

n:"‘ll—;gg %:M g%' E;. (632) Blasius
1 0.349 0.347 0.330
2 0.655 0.641 0.630
3 0.878 0.848 0.845
4 0.990 0.963 0.956
4.4 1.000 ( 4, ) = =====  eme--
5 (.977) 1.003 0.992
6 1.9C5 0.999
7 1.000 1.000
7.08 1.000 (A  ===--
8 (1.004) 1.000
9 (1.006) 1.000
9.5 (0.993) 1.000
10 (0.974) 1.200

In Table Bl the profiles should be terminated at the edge

of the boundary layexrs A’ and AL'

llowever,

tiie profiles ore

extended to illustrate their behavior until they deviate Tvom

the exact solution by one percent.



The boundary layer parameters which are of intarest in

comparing these profiles are:

1)

2.)

3.)

(B37)

Displacement Thickness ( /A *) defined by

#* ! |
&= (-5)2(2)
a o °
Momentum Thickness ( & ) defined by

2= [El-8)d 8

A

The Plate Shear Stress ( Z"o) defined by

- Iny
Z: ,/u ['—3_5 ‘}':o

(P36)

(r37)

(D3&)

or ( 'Z"o,;) which may be computed from tue integrel

Z\’oi = Pl

Q,VQ.
Riv

(n39)

he values of tiese boundavy leyer pawametews ave gilven

in Table (R2) below.



TARTE B2
Velocity A",";}’L"- e AL r t, 7;;& ?_;3 ’2.1‘
Distribution | vx S Ve ¥ Te MUV Ve
-—u- = A, T
Vo 2a
1.59 0.612 0.357 0.3C6
g:ﬁlflM?g
o 1.56 0.5665 0,356 0.323
+.157 40 3y
LY.
2lasius Profile 1.729 0.664 1.332 0.332

The values of Table B2 indicate an adequate approx’'mation

has been attained for most practical purposes.

It is to be

expected that the wall siiear stress computed €rom the slope of

the profile at the wall would be infevior to tuat computed by

the integral method since the profile is generated from an

integral statement. The displacement thickness is low by a

matter of 4% which leaves something to be desired altuough

not enough to warrant the lengthy computatiowns which would be

involved were a third approximation to be mace.
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Satisfaction of the boundary conditions on the auxiliary

velocity at X = X 1is possible if, for the two term

approximations,

g = A /3[/-/——-)"'_7 (840)

] ~> 0°
w g Lo (;3-,)[/—/3?)"’]

where 4 and [3 are constants. The feasibility of this

assumption is tested by determining /3 . If 3 is
finite, the assumption yields a reasonable result. The first
order assumption for the physical velocity is
U= A T2 (B41)
.
where - VY
AzCq % (¢= y.4/)

and (! is the (constant) parameter to be varied in taking

Ju - If (B4O_ and (B41) are inserted into equation (B26)
then,

' (v 4~
[ % S¢ /rr(é"?’)/ ) -

Al 7w Fann[ (2 ) ecereo
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which when integrated yields

- /J 4
[2.803 (—_,’3-,_ —/6.603 ‘%—ﬁ] (2 T A h ) (B42)

— _0_4_9_ +I4(5-,)] ! - 0
37 18T A+

Taking the limit of (B42) as »4 approaches infinity

results in an equation in /3 whose solution is

B=/)2 (343)

Therefore,

(B44)

24

otz Luin [/- (-E)”]Z[/./zm; Z4 + 0.12 A LT3

a reasonable result. In fact, for all ¥ < X this result
indicates that the auxiliary velocity closely resembles the
physical velocity. A true time-reversal that is, reversed
dependence on X , is not exhibited here due to the fact
that the auxiliary variable was forced to have the same

boundary layer shape as the physical velocity.
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First Order Approximation to the Boundary Layer on a Flat

Plate at Zero Incidence.

The relation describing the flow over a flat plate is,
of course, the Navier-Stokes equation. However, due to the
difficulties in solving this equation in all its splendor
certain approximations are commonly made which are supposed
to be valid in various physical flow regimes. The present
problem is usually considered from the point of view of the
. Prandtl boundary layer approxima;ion which is valid for
large values of the Reynolds modulus. However, considerable
effort has been expended in studying the problem from the
point of view of the Oseen approximation which is valid at
low values of the Reynolds Modulus. Little has been
reported in the flow region between these extremes, however,
Kuo (ref. 19) has ingeneously determined the solution of the
first order boundary layer approximation to the flow over a
finite flat plate. Since this problem is sufficiently new
to merit interest, this section will be devoted to a demon-
stration of the variational method applied to the first
order boundary layer over a flat plate with zero pressure

gradient.
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Before considering the details of the first order
solution, it is important to establish the fact that the
first order problem is of the boundary layer type with
its attendant simplifications. To establish this consider

the first order term of equation (78).

J /oé‘ﬁ / (u(u(o) (0)* V(o)ua(u + o(} b( (O] (Cl)

Gy
- @ / @) @)) _ (a( 1) 7"/63('))

@ [ ¢ "
+ L (U 6, , (1 +a(1ax@J # ?f{u”?(tv* ?/_(GJL( (n) +d (,,

“
= f [ux -/-l/’“) PU (oz,f’ +ﬂaw)]

At this level of approximation the zero order velocities are
known and the variations yield the following Euler equations

in the physical variables

éd?) : Io)a Io) 4 7,-,’)&{ [é’- (;,}"' Px = 0 (C2)

For & ﬁw ' Pgl”':‘. Fa) (c3)
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For Jd@) N u(a;”’f) 2 ul’uuz(o.s + y(o)tlv(ojfy(o)dad (c4)

Q) (*)
- T P =0

For J,G(w" P‘; =6 (c5)

Equations (C2) and (C3) are automatically satisfied by the
zero order solution. Equation (C4) is the governing equation
of the first order solution. Equation (C5) gives the important
result that the first order pressure does not vary in the vy
direction, consequently the pressure in the first order problem
is determined by the external (potential flow). One concludes
that, since a first order potential flow is required and the
orders of various derivatives are the same as for the Prandtl
equation (C2), the problem remains of the boundary layer type
in the first order approximation. A suitable potential flow
must then be determined to provide the boundary conditions at
the first order boundary layer.

Following Kuo, one notes that at the edge of the zero

order boundary layer

® (Cc6)

)y 7Y g

V= = *fa=
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_Where the variables are those of expression ( 70 ) and
K = 1.73 for the Blasius solution. If the velocity field
in the potential region is expanded in terms of thickness

parameter € , then in the potential region

\ c?n
U= | +¢ V()(X,;) F—.
V=o0 +eV(”(x,.})+.. .
From (C6) it is seen that
(c8)

(3]

- 0
V' =iz
The first order potential flow is then given as that
for which Y= y{? at the plate surface and the velocities
vanish at infinity. Such a flow results from a line source
at the surface of the plate with the source strength varying

as '/.',3 where S 1is the dimensionless distance along the

plate. The velocity potential for the flow is then

dﬁ-‘-g%-.«&.(z-s)?!ﬁ{

where 2 denotes ¥ +7 Y . The first order

velocities are then

(f‘“ 2 )



U(',—-z. Vll) - _l_f_ r olf (Cg)
27 f, Ys(2-3)
= -t , N 1+ VE

The appropriate boundary condition for the first order

boundary solution is then

) 10
at y=a, us g L 2 .
7= V%

The solution to the first order equation (C4) for flow
over a finite flat plate (boundary condition C10) was obtained
by Kuo. The solution of this problem by means of the present
variational technique is greatly complicated (as it is
analytically) by the fact that the potential flow exhibits a
logarithmic singularity at the trailing edge ( x = 1). The
pressure gradient then, is also singular at the trailing edge.
It is found that, under these conditions, the variational
technique yields differential equations in the parameters of
the assumed solution which are as involved as those solved
by Kuo.

These computational difficulties, coupled with the fact

that the trailing edge condition imposed by (C10) does not
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seem physically reasonable when applied to viscous flows,
led to the rejection of this problem in favor of the first
approximation to the boundary layer over a semi-infinite
flat plate. For this problem the trailing edge condition,
of course, vanishes.

The boundary condition for the semi-infinite plate is
determined by taking the limit of (Cl0) as the plate length

approaches infinity, i.e.

b K [L JC+ %
- e — = L~ (c11)
Ueo = L-—vea 2T VX JT- 1%

Thus the boundary condition for the semi-infinite plate is

’ 12
,ﬁrfg:zlw) M()'-'-Iﬂ':'_ (c12)

The other physical boundary conditions follow those of the

zero order problem
ot @
¢ =4

(c13)

)
) L‘}, =0

' =0
ot F=¢) u =v®=o

cz)f X=o0, U = o
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Since u('i =¢ at the edge of the boundary layer, the
variational statement in terms of the stream function is,

from (C1)

)
[ /“ Sy gy @

o 0) '”
FUoOPy B Ue ¥y ) =0

which is seen by inspection to require that aZDJ satisfy the
same boundary conditions as in the zero order case.

Considering (4(®? the interesting result in this
computation is to be the shear stress at the surface of the
plate since there exists no solution of the Blasius type by
which velocity profiles may be compared. The first and second
approximations to the zero order solution are seen to differ
insignificantly in the vicinity of the plate, and, consequently,
the first approximation is chosen to simplify the computation.

So here

s - bl 15
W = Ao Zd(” (C15)

where 4 = 4 ‘//ﬁ
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The form (Cl5) is, however, inconvenient for the present
problem due to the fact that there are two boundary layer
thicknesses involved, A@ and A " . Consequently,
should it become necessary to include both of these in the
integral to be varied, trancendental expressions in
will result. To avoid this potential difficulty (Cl5) may

be accurately approximated as

Xyt (Cl15a)
u(ﬂv 1,57 z% 0,67‘ -2',;,3 +0.07 %7:)(

(c16)

where the ¢ 's are functions of y . The restrictions

g+ 8+ fs= | (@

and #, + 383 +5Pr=0

)
insure that o["J goes to unity and OLIS, vanishes at the edge

of the zero order boundary layer.
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The rather unimaginative assumption

(2] +
lf'_.-a,i .,.):,.L. +¢-‘33—3 (C18)
Vlu - A(u AUJ 1 4 A"’

may now be made for the first order solution. Here, the

restrictions

a+ b+ d =/ (C19)
a+ab+3e=9

insure that the essential boundary conditions are satisfied.

At this point the question of the two different boundary
layer thicknesses must be considered. Since the integration
in the variational method is to be performed over the entire
region of interest, the upper limit of integration must always
be the greater of A(‘” and AY . This question regarding
the upper limit coupled with the discontinuous nature of the
velocities at their respective A s greatly complicates
the computations involved. Consequently, it would be
desirable to consider v o “é(” as a first approximation.
Inspection of the first order boundary layer equation indicates
this to be a reasonable approximation. Since the zero order
velocities are the coefficients in this equation, it does

not seem reasonable to expect the first order solution to
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approach a constant value while the coefficients in the
equation are varying appreciably, i.e. for 3 < A(” .
On the other hand, physical reasoning indicates that the
potential flow solution from which the first order
boundary condition is obtained would be expected to occur
soon after the value 3 = 4%  is reached. Consequently,
it seems improbable that Al can exceed 4@
significantly.

The test of such an assumption is, of course, the
physical reasonableness of the results obtained by incor-
porating it into the computationms.

Proceeding, then, with A(" = &°’° and taking

ulo) :Z—bp(%)l’ (C20)
=X A (3)F
L(,w ':Z-au (%)K

equation (Cl4) becomes

Y- - nEpr
J/d; ‘IJ[[Z-Z_““'A”‘;? o' (54 5%) %7*7’—*%*' ©2h
(R’ »r 7

vi[Ta 1 AT ] <L Lo 2t = |-
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where 2« and 7’6 enforce the relationships between the
¢ 's given in (C17).

After performing the integration this is

/m/Z—ZZ 71+,>;-1,.., ;;";‘7 ‘*7;?".;.‘;) (c22)

+ilrt]+ 1 (E4) + L 2 350 55

Taking the variations of the ¢ 's, i.e. ¢'l s ﬂa , ﬁ!’
for assumption (Cl1l6) and eliminating 7]“_ and fﬂb results
in a single algebraic equation for the undetermined coefficient

in assumption (C18). This expression is

(c23)
3
Z Z !“I’ 4 wH p+!)('h+]3+z+'h+p+6 %+ p+ef
f =7

™ an
+Z("*")"(’ %79~ mtx ) =O

“’I
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Solution of (C23) and equations (C19) yields

Qa,-= 3) a, =-3, Ay =| approximately

The dpproximate solution for u’ w

ut = ”;?@[3 % - 3(2) "+ (‘3"”)3]

) .
wh )y €K :

- 24Z
(o .
Evaluating K '~ from (Cl5a) gives

K& = ).874

(c24)

(c25)

(c26)

which compares with the value of 1.73 for the exact (Blasius)

solution of the zero order problem.

The drag coefficient for the plate for both the zero and

first solutions may be evaluated from the velocity

=y ) ! ——
U 1%

The drag coefficient is evaluated from the expression

c27)
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Inserting (C27) into this expression yields

(c28)
Cn) - .92 +

"

This prediction of C:D is shown in figuée 5. It is
seen that the predicted values of (:D effectively joins
those of the Blasius solution and those of the Oseen solution
to the flat plate ﬁrobiem. The curve shown for the Oseen
solution is that of Piercy and Winny (ref. 26) whose solution
of the problem has recently been corroborated by Tomotika
and Yosinobu (ref. 27).

The fact that the first order solution should, in fact,
join the Blasius and Oseen solutions has been pointed out by
Kuo. Kuo showeéd that higher approximations to the boundary
layer problem will not change the values of shear stress-at
the plate surface.

It should be pointed out that Kuo's solution for the

finite flat plate gives

CUD‘=
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which is greater than the Oseen solution at 61, = Jo~t

by approximately 300%. However, Kuo's result does follow
some data taken by Janour (ref. 28) extremely well. The
present solution (C28) lies some 307 below the Janour

data at o = JO , the lowest value attained by Janour.
This is, of course, the maximum deviation from the data
taken.

The difference between Kuo's result and the present
solution stems from Kuo's predicted singularity in pressure
and velocity at the trailing edge. Since this boundary
condition appears physically questionable, and the present
solution does join two known solutions, relation (C28)
constitutes an acceptable approximate solution to the problem
in the absence of experimental data in the very low Reynolds

number region
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D. The Graetz Problem

The problem of determining the'temperature of a liquid
stream which is flowing through a cylindrical tube having a
constant temperature wall was first investigated by Graetz
in 1885. 1In particular, the problem to be considered here
assumes a fully developed laminar velocity profile through-
out the constant temperature section and neglects viscous
dissipation.

This appears to be a fruitful area for application of
the present approximate technique because, in addition to
the fact that the analytical solution is involved, the
series solution determined by Graetz presents formidable
computational difficulties if one wishes to extend it into
the region of normal engineering flows.

This problem is described by the energy equation

(D1)

oT Ty 3T\ _
€hu Ty - k(AL 30) =0

where, in addition to the above assumptions, the curvature
of the temperature profile in the stream direction ( X )
has been neglected in comparison to the curvature in the

normal ( » ) direction. The velocity, 4 , in equation (p1)
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is taken as that corresponding to fully developed laminar

flow, i.e.

L('::lblm(l-%, (02)

where UM is the mean flow velocity and /2 is the pipe
radius.
The transformation of the Lagrangian for the energy equation

to cylindrical coordinates is straight forward yielding

(D3)

J[dx[on[ % (Ta5-1.T) F.ektrnrw}n%c&-w

where T is the auxiliary temperature.

Performing the indicated variation yields

[ orfen-by

-ST[uTy & (f..- 2}:)]}**&4‘
+fdﬂu[jr($T) —T(SX)J:.&&/A

b [ [2(mss s

(D4)
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If J~ in (D4) is replaced by

e = 7—’7;3

and 'r by

= f = -T X=X
the first boundary integral of (D4) will vanish. The second
boundary integral vanishes automatically since & 1is pre-
scribed on the wall and g"‘ must also be prescribed there.
The boundary condition at the inlet section is similar
to the». initial condition encountered in problem A above and

will be handled in a similar manner. Let us assume that

O = pur + Z_fk / 2;\ (D5)
where fv - }o“ (%)

In order to satisfy the boundary conditions as well as

possible within this assumption let

ﬂ[&) :-f;/d) - . .. ’:'f;,,/é)zé

(D6)

and ﬁ/fa)’-”gw"‘
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Then the larger the value of /P’ taken, the greater
will be the accuracy in fitting the boundary condition at
the inlet to the constant temperature section.

Similarly let
N
9% n
¥ _ ¥ " (D7)
& =B, +Z f, /- /.‘,u)
’
where L) - -
£ W= = Our

For purposes of determining the physical temperature, & ,

equation (D3) may be written

RrX
P
f/{;/ 2ty Oy 6 f,,%&,,a,‘],waagl

which becomes after combining with (D5) and (D7) but dropping

(D3a)

the 42“,—terms since they are constant and not varied

J[Zx 7. Z;Z—;szn'f;k{j -Z‘P‘,'J“*' (D8)

2fnsp-1) 3 2P*3 pne3 zn-n.p*S)

+J -() +a +

é ” dniip=s
frg LL Ly s
whi y=%
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Performing the 5 integration and taking the variations
of the auxiliary variables yields the following three

equations for )7 =1, 2, 3

(D9)

3
0,2 4 _J .
Z;[-‘ru[:” TR TR h-ﬁv]*ﬁfnm 0
] ) )
Z:[f Ti-i-:l M+3 +1c+7.";,';,'q L ii}-_—o

h ye1

I / /

/
P lnln s e -
{fu Jo Y+ hFY . s a,+g']+/"£' Y )

A
PG th, R

where

The first two approximations to the solution, i.e. Y =
1, 2 and \7 =1, 2, 3, are contained in (D9). These

solutions are
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for h: /) .Z
- 3.e72/ "2 e -36.3/’1_7 (D10)

f; = -.Z.oa’&,.,[e

fz _ gw[0.7z9€°3"7"’_ , 7296-36'.3/’1]

and for )7= /)2, 3
~3.672x «22.07% e-/.)?/’i] (D11)

£ =-.9,,[/.228 ~4sp € 4 3.3y

~3a‘7pz -22.07
fl: -9.‘,[0.988 F6.79€ 27? 57,75 e”’””z_]

~3:67/X -2/ -
f= ‘9w[“0'96"¢9 227907075 e "”"f]

Computing the mean temperature from

Je
/
9;,, = ”hﬂ_kt‘[MQIzIT)AJA/

yields, finally

#‘- m :-l’?— (DIZ)

Xy - 27%/,

Cur
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and for = 1, 2, 3

Xy -
g;._“. - /" 007’3 e /"‘_ 0-10/ e ’y"/‘x - 0.01‘ 9_93‘/63 (D13)
W

which may be compared with the Graetz solution

ao. -1/:8 - ), ~/éé
s, S/-0.820 € /"“- 0.0972 € €Sax _ 0.0/35€ /6’(D14)

where
2

These relations are compared in figure 6 in which it
is seen that expressions (D12) and (D13) are significantly
in error in the region near Gx = 100. Beyond this value of
the Graetz modulus, expression (D1l4) also deviates from
observed values of au/pw. . This deviation reflects the
fact that the value of the predicted mean temperatures
remains greater than zero at X = O or Cy,, = 00 .
This deviation does not, of course, reflect on the accuracy
of the Graetz solution but is due to the limited number of
terms which can be computed without the use of a digital
computer.

Extension of the present method to M = 4 would involve

a significant computational effort since the sixteen

coefficients involved in the solution of equations (D9)
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where ng‘g; fg:SE' , w= TR U,
b x

These relations are compared in figure 6 in which it
is seen that expressions (D12) and (D13) are significantly
in error in the region near 6¥= Joo . Beyond this
value of the Graetz modulus, expression (D14) also deviates
from observed values of &m/@,, . This deviation reflects
the fact that the value of the predicted mean temperatures
remains greater than zero at X= O or ze 09 . This
deviation does not, of course, reflect on the accuracy of
the Graetz solution but is due to the limited number of
terms which can be computed without the use of a digital
comp‘uter.

Extension of the present method to # = & would involve
a significant computational effort since the sixteen
coefficients involved in the solution of equations (D9)
would have to be determined. An alternative approach to
the form of the approximation (D5) appears in order. One
alternative which would accurately reflect the boundary
condition at ¥ = O would be

- 2 (D15)
o i[Ot (- LR %)
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where all the ﬁn vanish at X = O . Such an assumption
loses physical meaning if the temperature gradient at the
wall is considered, but may yield meaningful values of the

mean temperature. Performing the variation (D3a) yields

X v i
Om T /-073¢€ /4’- 0.27€ 5 (D16)
Ow
for 71 = ’, 2—

From figure 6 it is seen that this approximation
provides reasonably good agreement with the Graetz solution
over its range of validity ( G; Lloo ). The extension of
the Graetz solution by Leveque (see ref. 20 ) provides a
means of evaluating the solution (D16) in the range
The Leveque curve was not developed as a solution to (D1)
for this problem but was determined from a solution for
flow over a flat plate. This extension has been confirmed
experimentally and hence it provides a criterion for
comparison of (D16) with experiment. It is seen that the
simple approximation (D16) lies within 15% of the Graetz-

Leveque curve in the range Gz < o0 -
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APPENDIX A

BATEMAN'S METHOD

H. Bateman (ref. 7) developed a Lagrangian in terms of
auxiliary variables which yields the same Euler equations
as the_preéent method applied to the equations of motion of
an incompressible fluid. His formulation is presented as a
fact without indication of the means used to determine the
particular form chosen. Consequently, it is simply presented
here in terms of the variables of this paper. The Bateman

Lagrangian is, in its original form

Lg=oly (P-2uct) 4y (p-200 %)
+y3(P-2euy) = (Vo1 P3) wy 3v3)
s () 1Yy )ty 103) e (Bt oty ) (Vi redy)
Pt ar sy oty +1y 1) v
Fls+ ) uaw + (Purelyduv + nu,

+7/"/ft.+w-)’}.7 + @{uy +Vy +af})
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which may be written as

lﬂB - f91;z E%g? j/;u 2/:2 ‘ézﬂqz + 2 bslab +2 603 VE

+[/j, Fely Y Varey) 4 (on 1y )( Uz Fw)

-— -—
+ (r;} r@y)(wy+vy) +p(vei) +6 (- 9,
This is seen to be identical to the Lagrangian proposed
in this report. It is surprising that, in a field in which
analyses are so difficult, this result has not been exploited

during the thirty years since its development by Bateman.
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