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ABSTRACT

A VARIATIONAL METHOD

FOR

APPROXIMATE SOLUTIONS TO LAMINAR FLOW PROBLEMS

by

John Mitchell Reynolds, III

Submitted to the Department of Mechanical Engineering on
January 26, 1961 in partial fulfillment of the requirements
for the Degree of Doctor of Science.

The variational formulation of the Navier-Stokes and
Energy equations is developed. It is found that, in the
variational form, the physical velocities and temperature
must be considered simultaneously with certain auxiliary
variables which are not directly identified with the
physical problems. The auxiliary variables are identified
through the Euler equations and boundary integrals obtain-
ed by extremizing a Lagrange density in which the physical
and auxiliary variables are mixed.

It is shown that, under certain broad restrictions,
approximate solutions to problems of laminar fluid motion
may be obtained through a computational procedure closely
related to Galerkin's method.

One simple example and three more serious applications
of the technique are presented. These three are: the
Graetz problem of heat transfer from a constant temperature
pipe to a laminar flow; the boundary layer over a semi-
infinite flat plate; and the first approximation to the
boundary layer over a flat plate.

Thesis Supervisor: Stephen H. Crandall

Title: Professor of Mechanical Engineering
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I. INTRODUCTION

This investigation has been undertaken to develop a

technique by which approximate solutions to the problems

of fluid mechanics may be generated with a minimum of

computational effort. More specifically, a computational

framework is sought whereby reasonably accurate predictions

of viscous fluid motions and energy transport rates may be

obtained in cases for which no analytical solutions exist.

Integral formulations of the problem are particularly well

suited to this objective. Within the general franework o'

integral techniques which may be applied to the non-linear

equations of motion of fluids one surmises that an algorithm

based on the calculus of variations promises to yield

results which are at least comparable to those derived by

existing techniques.

The problem of applying Hamilton's Principle or some

other statement based on the Calculus of Variations to flutd

mechanics has interested a number of prominent investigators

ir the past and a considerable recent effort has produced a

number of alternative approaches in recent years. Although

a number of investigators have studied the general inviscid

flow problem (refs. 1, 2, 3), the solution of the viscous
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flow problem is sufficiently more complicated to be treated

entirely separately. The definitive work on the viscous

problem may be considered as beginning with the demonstration

by Helmholtz (ref. 4) of the fact that viscous dissipation is

a minimum for motions of incompressible fluids in which

accelerations may be neglected. Rayleigh (ref. 5) elaborated

this somewhat by noting that the minimum exists eveL when

there are appreciable accelerationis provided that t W = 0

where W is the vorticity vector. In 1929, C. B. Millikan

(ref. 6) demonstrated that it is not possible to generate the

.Navier-Stokes equations as the extremizing condititons for an

integral which contains only the fluid velocities and ti.eir

derivatives. H. Bateman, noting Millikan's result succeeded

in deriving the Navier-Stokes equations from a variation

through the introduction of auxiliary variables (ref. 7), a

method which he discussed more generally in ref. 8. Recently,

a. Feschbach (ref. 9) has derived the governing equations for'

number of dissipative pihysical phenomena by a methiod which

is essentially the more general technique of Bateman.

K. Washizu (ref. 1) has used tae Fesibach te-hAique in

a.tually geL.e.ating approxinate sclutions to a trens.Lenit Lieat

conIuction problem.
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One other recent line of development of the problem is

worth noting. Herivel (ref. 11) and Rosen (ref. 12) have

shown that it is possible to derive the Navier-Stokes

equations from a restricted variational method in which the

acceleration term is held constant during the variation.

This interesting and apparently simpler approach to the

problem is discussed in the body of this report. It is

sufficient to note here that this method presents formidable

computational difficulties when a Ritz-Rayleigh method is

employed to generate approximate solutions.

II. THE VARIATIONAL STATEMNT

In spite of the fact that Millikan has demonstrated the

impossibility of deriving the Navier-Stokes relations as the

extremizing condition for some integral involving only the

velocities and their derivatives, it is by no means certain

that a useful variational statement of the problem cannot be

d.iscovered which involves other physical variables, e.g.

thermodynamic properties, and possible restrictions on the

variations other than the obviously necessary continuity

restriction. Considerable effort has been expended in this

study in an attempt to discover such a variationial statement.
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This effort, however, has yielded little of interest and it

is the conclusion of this study that the use of the auxiliary

variable technique is, apparently, the only rigorous means of

generating the equations of fluid motion in a sufficiently

general form to be of any real engineering use.

A. The Auxiliary Variable Technique

Suppose that it is desired to determinie a definite integral

over a region for which the condition that the integral be

extremized (maximum, minimum, or saddle point) is that some

function % satisfy the equation

'YX) = 0(1)

where 2 is some differential or integral operator. If

'0 = 36. , - - -' Xx) and the volume element under con-

sideration is c//, dly, . . . ,then it is

apparent that the variational statement

fJ Yz /V =. O (2)

will have equation (1) as an Euler equation. Here )Y is the

"auxiliary variable,", an arbitrary func.tion which is not

necessarily simply related to the variable of interest, f0 .
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Disregarding surface integrals, equation (2) may be written

0()/ (rV // JV (2a)

where is some integral or differential operator. Therefore,

it is seen that the variation of the auxiliary variable yields

the desired Euler equation

ol(6) =o

while the variation of the (physical) variable of interest yields

an additional Euler equation

{7/)=- 0 (3)

This technique, therefore, provides a means by which any

differential equation may be considered au Euler equatiou

resulting from the extremization of some integral. The

difficulty in the general case is, of course, that a second

Euler equation or set of Euler equations must also be satisfied

by the auxiliary variable. For the case in which the des:.red

equation (1) is linear, it c..an be shown (ref. 9) thiat / is

tie adjoint to 92 and satisfied the equation aid bouidary

conditions which are the adjoint of those satisfied by #6
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For linear physical problems it is therefore possible to

identify the auxiliary variables as the adjoints of the

physical variables. In the special case of self-adjoint

operators, the physical and auxiliary variables are

identical. In general, however, it is necessary to identify

the auxiliary variable from the equation it must satisfy

(e.g. equation (3) and the natural boundary conditions im-

posed by the variational process.

A simple example of the auxiliary variable technique

will serve to clarify the method. Consider the case of the

damped linear simple harmonic oscillator (ref. 10). The

equation of motion is

?W :C/- " -1 -A k(4)

where "Mr , . , and /k are tne constants of the system.

From the above discussion, it is possible to derive

equation (4) as an extremizing condition of the integral of

the Lagrangian

is an arbitrary auxiliary variable.where
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However, since it is desired to identify the auxiliary

variable as closely as possible with the physical variable,

a Lagrangian which is symmetrical in the two variables is

desirable. Consequently, a more desirable Lagrangian is

L ' = M1 v i | [g ->j) - xy(6)

It is apparent that expressions (5) and (6) are equivalent

with regard to the Euler equations generated and differ

only in the boundary integrals obtained. Expression (6) is

more desirable in general, although not necessarily for all

specific sets of boundary conditions, since the order of the

highest derivative is reduced and the expression has a

desirable symmetry in the two variables. The Euler equations

generated from the Lagrangian (6) are

'I (7)

the. boundary terms which result from the variation are

t, d- . (8)
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where t, and e.t are the values of the independent

variable i at the extremes of the interval of interest.

The physical initial conditions

Y(J=e2 0(9)

may be chosen to provide a specific problem for consideration.

Then the expression (8) becomes

Y, A ) sy,(8a)

It is, of course, desirable that these boundary terms which

were derived as a consequence of the statement

£ (10)

vanish. A convenient means of insuring that these vanish is

supplied by the fact that the boundary conditions on the

auxiliary (non-physical) problem have not been specified

and may be chosen as
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The auxiliary variable is then completely specified by

equation (7) and the final conditions (11). That is,, the

auxiliary variable satisfies the time-reversed equation of

the physical process with prescribed final conditions rather

than initial conditions.

The procedure employed above to generate the Lagrangian

for the harmonic oscillator may be generalized somewhat

although it should be recalled that the most general

statement of the awiliary variable technique is equation

(2). If attention is confined to systems described by

differential equations with constant coefficients

ZNc of 0(12)

where Ca

and a 6+- - -- t.

Then those terms for which >i is even (including zero)

may be generated from a Lagrangian of the form

(13)D
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where Y 'is the auxiliary variable and P4 , 8 ,

are not necessarily equal to 4t , A , , a fact which

may be used to build symmetry into the expression. Also,

A -A 8+.., = G4 V+H +-A -- = '10/1

and 4 , , z, , y- are indices in the set / 2, *-S-

Those terms for which '> is odd may be generated from

a Lagrangian of the form

(14)

L -.----

where 5 , , are again indices contained in tiie

original set 1 , 2 ,- --

and Ci. O + .-

while . 4 ,%
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In the more general case of variable coefficients, it

is not always possible to form a symmetric Lagrangian, for

example, if

3Y~)CZ )e i (15)

where Pi- . X,,

the form of the Lagrangian terms must be

(16)

which can be made symmetric in Xf and 3 only if e:. * Pt

If these rules of formation are followed for all problems,

those for which the auxiliary variable method is unnecessary

will be detected from the fact that the Euler equation in the

auxiliary variable is either identical to that for the physical

variable or may be identified with some other relation pertinent

to the physical system e.g. conservation of energy or mass.



-12-

The remainder of this report will be concerned with the

application of the auxiliary variable technique to the more

complicated relations governing momentum and energy trans-

port in fluids.

B. The Laminar Flow Problem

Confining attention to incompressible flows for the

present, the equation of fluid motion is

Dt
.2 vp
'Y

where the acceleration term is given by

V IV;;A
Wa ~4MOMt V X (VF i7)

The continuity equation for incompressible flow is

oneV (18)

The momentum equation (17) includes the nonlinear

acceleration or inertia term. It is due to this term that

the Navier-Stokes equations present such formidable resistaace

to exact solutions and, as might be anticipated, it is due to

the inertia term that the variational form of the problem

(17)%

t) W -
U--- - 0
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presents difficulties which necessitate appeal to the auxiliary

variable technique. Since the momentum relation is comprised

of three essentially separate terms, it is appropriate to

consider them separately in devising the variational statement

of the problem. Consequently, the component of the proposed

Lagrangian which applies to the inertia term -may be considered

separately.

The familiar lack of uniqueness of the Lagrangian which

generates a given Euler equation occurs in this nonlinear

inertia term. That is, there is more than one Lagrangian

which will yield DV as an Euler relation. The
Dt

difference between the various Lagrangians, of course, Lies

in the natural boundary conditions associated with the Euler

expression. In self-adjoint problems this apparent lack of

uniqueness in the Lagrangian is illusory, since in every case

of interest the physical variables have a specific set of

boundary conditions associated with them. When the auxiliary

variable technique is employed, the system comprised of the

physical and auxiliary problems is not completely defined

since the boundary conditions on the auxiliary problem are

arbitrary to a great extent. In general, it is desirable to

attempt to cast the auxiliary problem into a form which
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corresponds to some physical problem or even the same

physical problem as occurs in the physical system. This

latter alternative would occur in self-adjoint systems.

However, it is not generally possible to force the auxiliary

system to correspond to a physical problem. In the general

case, then, the only possibility which suggests itself is

that the Lagrangian be chosen so that

a.) the complexity of the result is minimized,

suggesting that the order of the highest

derivative occuring in the Lagrangian be

kept as low as possible, and

b.) the resulting auxiliary set of equations and

boundary conditions be related as closely as

possible to the physical system. This latter

goal is realized by making the Lagraugian

symmetrical in the real and auxiliary variables.

These goals were easily fulfilled in tie simple harmonic

oscillator example given above. The purpose here is to show

that similar concepts are applicable to the nonliear

expression - .
Dt
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The inertia term is written in terms of the velocity

components as

OQ7t (u+ U + i- rw() (19)

where subscripts denote partial differentiation with respect

to the indicated variable.

Consider, for the present, the case of steady incom-

pressible flow; since this flow exhibits the non-linearity

of the more general flow. The auxiliary variable method

indicates that a Lagrangian of the form

->D VDV0 (23)

twe(4t i4 u +wuj) + p(&{+uv ar.+-r Ha-v

+ Y6' (&A t. r 1  U--A

is appropriate provided that only those fuinctLons are admitted

to the problem which satisfy the coatAiulty restri..tioni

ale AZ/A~ 1-r



-16-

Here )?/ 2 OL + Y% is the auxiliary variable

corresponding to the phys ical ve locity V + I V4 iL4.

Extending the discussion of the auxiliary variable method

applied to linear problems, ond suspects that the symmetric

Lagrangian

# I (21)

Dt O

will also yield the desired Euler relation. Here the

auxiliary variables are also required to satisfy a continuity

relation, i.e.

7e 6 + o3( + Y (22)

if the desured symmetry is to be preserved.

The fact that the variation

(23)

does yield the desired Euler equations for the physical varlable

may be verified by applying the algorithm of the Calculus of

Variations to equation (18). The resulting Euler equations are:

from variations of

0 '- -r .. (24)-"N WIyND -
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which is the desired expression if appeal is made to

continuity. The Euler equation resulting from variations

of V is

7mom V (77 *(25)

which must be satisfied by the auxiliary variable,

if the integral (23) is to be e'xtremized.

It is seen, then, that the term of the Lagrangian

corresponding to at may be taken as expression (21).

In addition, it should be noted that variations of either of

the two components of (21) will also yield in the

Euler equation. Consequently, there are at least three farms

of the Lagrangian corresponding to in the Euler

expression.

If the boundary integrals resulting from the indicated

variations are included these are:

a) .- .a) AA'* (26)

b) ( dode V * A (27)

c) J t* Dbi (28)

' ~~ )iJ V}Vf/
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where cfl' refers to the surface element with the outward

direction taken as positive.

These three forms are, of course, not exactly equivalent,

but involve different boundary integrals. In each of these

expressions boundary conditions need only be prescribed over

those surfaces across which there exists a flow. On these

surfaces, expression (a) requires that It vanish wherever

V is not prescribed; expression (b) requires that

be prescribed over all such surfaces; and expression (c)

requires that be prescribed over all surfaces across

which there is a flow and vanish on all such surfaces on

which the physical velocity is not prescribed.

The three alternative Lagrangians for the acceleration

term which differ only in the natural boundary conditions

imposed by the variation may each be applied to specific

problemis. The criterion of choice between them is simply

which set of natural boundary conditions best reflects the

nature of the particular problem at hand. Of the three, the

third alternative (c) is symmetric in the two sets of

variables and compares to the functions used by Morse and

Feshbacle in their application of the auxiliary variable

technique to linear dissipative systems. From a computational

standpoint,
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however, the first and second alternatives, being simpler,

are attractive, Between these two, the first (a) requires

homogeneous boundary conditions for the auxiliary variable

while the second (b) does not. This difference is often

sufficient to determine the choice of the Lagrangian term

since it is desirable to have the auxiliary problem be as

closely related to the physical problem as possible.

The viscous term of the Navier-Stokes equations is, for

flow with constant viscosity usually taken as (see, for

example, ref. 13):

,# 17 / #-7(V

This may be derived from a variational statement by

simply minimizing the dissipation function for the flow, e.g.

(29)

where = 2a 4
and the velocity is varied with suitable regard for continuity.

For incompressible flows in two dimensions such a variation

leads to the well known equation of motion for two dimensional
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"creeping" motion (inertia terms negligible) i.e.

where ",/ is the stream function defined by

,14 )

(30)

(31)C- V

This formal statement of the problem of "Creepig" flow

may be directly related to the Onsager (ref. 14) theory of

minimum dissipation. The dissipation property of this flow

has been established by Helmholtz ard extenided to the ;ase

for hic ( Vbut -
Ot

by Rayleigh

(see ref. 15). These proofs do not involve the variational

formation but rely on the positive definite character of the

dissipation function.

Rayleigh's analysis may be put into the variational

framework if it is noted that the followLig identity

(32)
VX X ) A~ x

results from taking the curl of tne Navier-Stokes equation

for incompressible flow. Rayleigh's restriction then implies

that

V, a -

f or which

(33)
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where I is a scalar. This being the case, it is apparent

that the variational statement

SW7 (34)

where 0 V- +

will yield the equation of motion for this case as an Euler

equation if admissible functions satisfy continuity.

For more general flows, however, one is forced to employ

the auxiliary variable technique. It is suggested that a

suitable term for generating the viscous component of the

equation of motion is

(35)

for incompressible flow. This is simply a construct utilizing

the form of the physical dissipaticn function. It is, iowever,

symmetric in the real and auxiliary compoients and automatically
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reduces to the dissipation function for creeping flows since

in that case the two Euler equations resulting from

variations of are identical and f -V .

One notes, however, that it is possible to determine

alternative expressions for the Lagrangian of the viscous

term just as it was in the case of the inertia term

C. The Suggested Form

Keeping in mind the foregoing remarks on the lack of

uniqueness of the Lagrangians for the various terms in the

Navier-Stokes equations when the auxiliary variable technique

is used, the following statement is suggested for the problem

because of its symmetry and reducibility to known results in

special cases. For incompressible flow, then

"fFor variations of the real and auxiliary velocities,

Vf and N , the condition that the following Lagrangian

have an extremum is that the Navier-Stokes equations and a

"similar" set in the auxiliary velocity be satisfied."

+3 / +1(~E I Ir. #i. )41V*
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where a -l A /- r

and L

The result of setting S L = o is then

olo
cff )$s Z 0- N.(37)

.IL OVe V 7$ 7 }0eV V oc-P.

where S refers to the surface surrounding the volume in

question and 5 is the outward normal to that surface.

The initial and final times for the problem are j-

respectively.

Expression (36) differs from those considered previously

in two respects. First, the partial time derivatives are

included in the inertia terms; that is, a term
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has been included in the inertia term. In view of the

preceding discussion of the auxiliary variable technique,

it is seen that the form of this additional term follows

directly from the discussion of the general linear problem

(page 11). Second, the restriction that the functions

admissible to the variation satisfy continuity has been

dropped. This is accomplished through the familiar

Lagrange-multiplier technique (see ref. 16) in which the

arbitrary functions and are introduced into

the Lagrangian to insure that variations of the real and

auxiliary velocities satisfy continuity. In this

connection, it is important to note that unless V A

are prescribed everywhere the Lagrange multipliers must

be eliminated from the boundary terms or must be identified

physically. The obvious identification is to let fd1=-P

the pressure, and an auxiliary "pressure."

This relationship of pressure with the Lagrange multiplier

enforcing incompressibility has already been noted by

Sommerfeld (ref. 3).

Since the notation used above is quite compact, the

nature of the Euler equations will be clsarer if they are

written out for two-dimensional steady incompressible flow.
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For this case (employing the identification of with

described above), the Euler equations are:

IlyY" *&P1 -0 VaU ao (38)

A ''*'v~r 2)V0&'=o (39)

yr (h ,0)

It is seen that the equations ii tie auxiliary variable,

while linear if UI and 2/~ are presumed known, are very

complex. These relgions can be cast into the form derived by

Bateman (see Appendix A) by the addition of a surface term.

In the two dimensional case, at least, a third alternative

form for the auxiliary relations offers some advantage in tiat

it is a simple matter to determine the physical conditions under

which the auxiliary system corresponds to the tltte-reversed

physical system. This would be the interpretation if the

auxiliary equations are giveni by

(42)
ot f
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This third form which differs from equations (39) and (40)

by a boundary term is

y. g -iy

A y,|l o 1

9- )- 5d . . .o

6 4d ~--o

which can be put into the form of equation (41) i

(44)

This pair of relations has a non zero solution for oL and

only if

(45)

which is equivalent to the condition that

(46)

This may be verified by taking the divergence of the avier-

Stokes relation for the steady two dimens ional incompless ible

flow under consideration. No such simple physical interpretation

(40a)

(41a)

V 2 .. 4 P IAf
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of the condition under which the auxiliary equations are the

time reversed physical equations can be made for more general

flows.

This restriction on the pressure is not satisfied by any

but the most specialized flows. The only class of flows for

which it holds generally true is for creeping flows for which,

as discussed previously, the auxiliary variable technique is

not necessary. However, there is one important exception,

this restriction is met by the problem of the boundary layer

over a semi-infinite flat plate with zero pressure gradient.

D. Comparison with the Method of Rosen and lerivel

In recent years a technique developed independently by

Rosen (ref. 12) and Herivel (ref. 11) has received considerable

attention. The essence of the method is to hold the inertia

term constant during the variation. The Lagrangian

for incompressible flow then takes the form

-Z 41 (47)

when is again the dissipation function. This can be seer

by inspection to yield the wavier-Stokes equations if )t
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in the first term (i.e, e is not varied. However,

there are not a sufficient number of degrees of freedom

present to permit the variation to be formally restricted

by a Lagrange-multiplier term JOe added to the

Lagrangian. Therefore, only those functions for which

vanishes identically are admissible to the

variation. In a computation for generating approximate

solutions, such a restriction presents virtually insur-

mountable computational difficulties for all but the most

specialized flows.

E. The Energy Equation

Since it is possible to generate any differential

equation from a variational statement if the auxiliary

variable technique is employed, it is possible to dete:nmine

a Lagrangian whose Euler equation is the energy relation for

incompressible viscous flows, i.e.

ft'D - k,9 fj=- (48)

bt

where Cir is the specific heat at constant volume

,k is the thermal conductivity

49 is the fluid temperature

is the dissipation fuutin
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and Cy and k have been assumed to be constant.

If I is the auxiliary variable then, for variations

and t the Lagrange density

a e br

yields the desired Euler equation.

The variation

f a
joff 4 4 C/ 

rev '0ot V" vio*

wi]] *Jc44~ fI ef
*Jd1J /,

where the "'C have the same meaning as in the case of the

equations of motion.

In this case, the auxiliary variable satisfies the Euler

equation

de -L49 t % 7rY -f = 6 (51)

of 'T

(49)

yields

(50)

~O4r

2.

L =' ISr
+>ek v,a-vp r +fttv ix

I C/ ( Y/

F y4,9-9 S.0 qRSO k Aa ( vp r) * Sr ( v& )] I a3->
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This relation may be interpreted either as representing

a time reversed temperature field, or as the temperature

associated with a flow having negative viscosity (dissipation)

and thermal conductivity (reversed heat flow at the boundaries).

F. Compressible Flow

Compressible flow is , of ;ourse, more general than has

been considered above since density variations are admitted.

The fact that the density is a function of the coordinates

and has a variation indicates that another relation must be

added to those of the incompressible case. Under this heading,

the variational statement for the complete compressible,

time-dependent, three dimensional flow will be derived.

Discussion of the procedures will be omitted where the previous

discussion of the incompressible or steady flows are applicable.

For compressible flow the continuity relation is given

by

-r+ fYv -O (52)

A suitable continuity restriction for the auxiliary system

is

D~(53)
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where the fluid density in the auxiliary system is taken to

be the same as that in the real system and

- ~ -w-~(54)

The equations of motion are given by

t * (55)

A ,,V 7 j" t7 V\ (6)

f) 3 -{fg) -((8

A suitable Lagrangian for the system (55), (56), (57) with

the continuity restrictions is (if the applied body force Is

given by the gradient of a scalar, i.e.

-V ---- + *

- u++4 +)( 4- r
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Then the statement

fY 4(60)

has the equations of motion as three of its Euler equations if

%e % &(61)

V.L z 'x +1 Y* le ?

The additional Euler equations are

Dal
(4 Ay#y 4( -" aM' Y.Y) (62)

[ + ' + (e ) (64)

%no[ ''w + + (U-') P +-(V o(

eg ~ V* +i L I v..) +{f2.) =c
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/ '- D;> '>
Dt V J I) (65)

where the last relation is a consequence of the variations of

the density. This relation may be considered as a relation

between the physical and auxiliary velocities. If the flow

is steady Dl1s/0 t and - may be evaluated from the

other six equations and equation (65) becomes

[D (66)4- d .i ) v ./-3

Therefore, in the absence of a body force and pressure gradient

since

(67)>--- O D x

the auxiliary velocity satisfies. This relation indicates

that under these conditions that component of the auxiliary
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equation which is parallel to the physical velocity, the

"working" component, satisfies the time-reversed equation

of motion.

Returning to the general problem, the integrated terms

resulting from equation (60) are

77%J~4O > ".{ L (68)

) '*fl'~?)

where S is the surface of iiterest and 5 the outwa:rd

normal to that surface.

The complete variatonal statement is then

ffLZ/ S d7 ^- a
(69)

7L (11, _A)g V

t* Is N 4> a V 1/""V

7L x 7P i. ) j r x, sv*'4' xi4

%a I ( TV) CIS'
3 1
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where g is the Lagrangian for the general problem given

by equation (59).

While considering the topic of compressible flows, it

is appropriate to note that the use of the Galerlkin

procedure (see ref. 15) for generating approximate solutions

from the variational statement will, in general, be consider-

ably less reliable than in the incompressible case siice the

velocity may exhibit discontinuities which caiot be

.4
approximated by a finite number terms. For this reason, the

application of the approximate technique to compressible

flows will be the subject of a separate study.

G. Boundary Layer Flow

The Boundary Layer Equation (see ref. 18) may be derived

as the extremum conidition for the Lagrangiai used to derive

the Navier-Stokes equations by considering the orders of

magnitude of the various te.ms involved.

At the outset, orders o. ragnitad'e ust be assigned to

the real and auxiliary variables. Based oi experience L

the solution of flow problers with tne auxilary varLable

technique, the auxiliary varl-ables may be said to be closely

related to their couniteiparts in taLe physLal systeLa. That

is, d, may be taken to be of the sane order of nagnitude
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as U4 and d of the same order of magnitude as Z/ .

The boundary layer equation for steady, two-dimensional

incompressible flow may then be derived as follows.

Let , g , , and be the previously used

dimensional variables and ( , It, e/ , and 1 be the

corresponding dimensionaless variables.

Following Prandtl, let

o.U _.. . .L. (70)

fS %AA. EL6 )) /

Vt2.

- P

(71)

For this discussion, it is convenient to choose the form given

by equation (26) for that component of the Lagrarnge deiisity

which yields the inertia term in the Navier-Stokes equation.

The statement for the Navier-Stokes equation In two dimensions

is then

S .[. +r a+ {2, 4- - - - .. .. .(72)

7 ,(a i; 4; 1da+ ) 2 a- Ni

Ii /O {I Li(5 ) cicy=
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which becomes for the dimensionless variables (80)

In th oun1dy la a xi*a + ter 4 Z/ fJ

4-6 6-13 U - c J a21 Z51& 14 ~3+ ox.dy (73)

In the boundary layer approximation the term 6 OT

is considered small. That is the boundary layer approximation

is valid at high Reynolds Numbers. Following the technique

described by Kuo (ref. 17) the variables may be approximated

as

foj e . , (7

(0i , , , (7

to) ,' 9. , , N (7

4)

5)

6)

(77)
/3 =< (4 a) 4LeO . C- ) (ti74.) 0
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where 6 is used as a perturbation parameter. Inserting

these expressions into equation (73) yields

l'* ~~~~4 y''(,'+O'!$')jt

(78)

-/ /1,(4f s) ,y 1 ., ''t- ~ '')

(,*j zrFJ (0

(.Jzrfr)

(oJ

]O

4/ so%%0
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It can be seen that the Euler equation resulting from

variations of t is

10) 101py( (Oj. (*) (9
U~ '8 U:' r'~ (79)

The zero order terms constitute the boundary layer equation

with the Lagrange multiplier ( being equated to the

term p . The term of order & is the first order

boundary layer equation.

It is interesting to note that the first approximation

in the physical system is the result of variations of the

zero order term in the auxiliary variable. The variation of

the first order auxiliary variable i.e. S.101yields

which is the zero order boundary layer equation. Consequently,

it is not necessary to include the el terms in the Lagrangian
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designed to yield the first two approximations to the Navier-

Stokes equation. In practice, the face that the term

may be considered without the OP term is a great

simplification of the computations involved in the Galerkin

procedure. This fact will be illustrated in Example C.

A similar symmetry exists in the auxiliary system.

That is, the zero order auxiliary equation is produced both

by variations of l in the zeroth approxirration and by

variations of in the first order approximation. This

behavior of the auxiliary system is completely analogous to

the occurence of the zero order physical equation in

equations (79) and (80).

H. Working Form of' the Lagrangian

The purpose of this study is to provide an integral

technique for the approximate solution of problems in fluid

mechanics through a variational statement. This is equivalent

to attempting to generalize the Galerkin technique (see ref.

17) to this aonlinear problem. For linear self-adjoint

systems, Galerkin's method is equivalent to the variatioaal

method and is used as a re.erence tec hinique nere because the

specific form proposed by Galerkin is analogous to that



obtained by the auxiliary variable method. From a purely

mechanistic viewpoint, the Galerkin scheme is to use the

individual trial functions as weighting functions to

generate the approximate solutions to a given problem.

For example, if the equation of motion is

1)= 0

when XZ is some differential operator and

a = Ct ( X)

then the true solution may be approximated by

4 =g

where the 0-',3 are functions of Y satisfying the essen

boundary conditions.

The Galerkin method provides relations from which the

constants may be evaluated as follows:

4'S 6 a * ;;g =.

I

(81)

(82)

(83)

tial

(84)

A/ Z (a -4) d-V -0- 0
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One notes that this technique is equivalent to a

variational method only if the problem is self-adjoint.

For the general linear pr.blem Galerkin's method must be

modified to

(U 0";(85)

where X (86)

and .1 is the adjoint of .

This statement may be generalized to include the non-

linear, non-self-adjoint problems of fluid mechanics.

Consider a problem to which the variational technique em-

ploying auxiliary variables has been applied. The resulting

Euler equations, natural boundary conditions, and the

physical boundary conditions often indicate that the form

of the approximating functions must differ with regard to

only one coordinate or independent variable. For such a

problem the physical variable may be approximated by

(87
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and the auxiliary variable by

(88)

f t2'

If the are specified functions, then

(89)2i~ ~&r~)

2~i ~(t~~)
(90)

and computations following the variational procedure will be

of the form

(91)
d"Cl). 0 0 #=O

'r4 dX 3 of =6

9 6

J]N ~( u*) £ 4 L&/)3' w.

and

fI
J9.

( U
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from which Al' differential equations in the 4' will
result. This extended form of the Galerkin method is

illustrated in example A of this report.

The specific purpose of going through the variational

procedure is to determine the weighting functions to be

used in the Galerkin-type of computational procedure. In

the general fluid problem it is not possible to identify

the auxiliary variables with the physical variables in a

simple manner. Bateman (ref. 7) has pointed out that the

auxiliary equations are the adjoints of the perturbation

equations for the fluid motion; a relationship which is

too complex to be of real aid in identifying the weighting

functions to be used for computational purposes. The

precise form of the auxiliary variables to be used will

therefore have to be tailored to each specific problem.

The emphasis on a physical or pseudo-physical inter-

pretation for the auxiliary variables stems from the fact

that as the Galerkin procedure is applied using successively

more refined approximations to the velocities, the solution

to the auxiliary systems must also be approached more closely.

That is, since the Lagrangian involves both V and 'iA.



if a close approximation is made to V but 'rt is

relatively far from a solution to the auxiliary problem, the

integral will not be extremized. In the limit, a bona .fide

extremum is attained only by the exact solutions to both the

physical and auxiliary problers. The degree of success

attained with the variatio.al technique is depeiident on

qualitative knowledge of the behavior of both the physical

and auxiliary variables.

In reducing the problem to a computationa1 procedure,

one should not lose sight of the fact that the basis of the

method is a variational one and relies upon the statement:

"Of all the possible functions satisfying the essential

boundary conditions of the problem, those which render the

term f X ct C1 stationary will also be solutions

of the Euler equation."

From a computational standpoint this requires that a

complete set of functions satisfying certain boundary

conditions be tested to determine what combination of these

functions renders f I Jz 6 stationary, that

combination then also satisfies the Euler equation. In

practice, a small number of functions are used in the approximate

expression and it is necessary that the greatest care be taken

-45-
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to insure that it is possible for the particular functions

chosen to describe the behavior of the physical variable

being approximated. In other words, sufficient knowledge

must be at hand so that the general behavior of the

solution can be expressed by the terms used in the approxi-

mation.

The auxiliary variable which has been introduced into

the present problem complicates this computational procedure

for two reasons:

a.) variables in both the physical and auxiliary

systems must be approximated, increasing the

computational effort required to solve the

problem.

b.) while it is often possible to anticipate im-

portant characteristics of the physical

variables from purely physical reasoning, this

aid in determining the approximating functions

is not generally available for the auxiliary

system.

When using the auxiliary variable technique it is, there-

fore important to relate the physical and auxiliary systems
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as closely as possible so that maximum insight may be applied

to the approximations to the auxiliary variables. It is

often possible to reduce the eff6rt in applying the auxiliary

variable technique to the same order of magnitude as that

involved in more conventional methods. In fact, in many

problems the computational form simply represents an extension

of the Galerkin technique.

The question arises, "when is it possible to consider

the approximate solution to be sufficiently accurate for

engineering purposes?" This question has been considered

often (ref. 20) with no generally applicable result. The

often stated assumption is that for sufficiently regular

problems an increased number of parameters in the approximation

results in a more accurate approximation. For the case in

which the integral can be proven to be minimized (or

maximized) rather than merely stationary, the value of the

integral for any given approximation yields a numerical guide

to the excellence of the approximation and can therefore be

used as a check on the assumption that an increase in the

number of parameters improves the approximation. For the

general case, it is possible, in theory at least, to compare
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the profiles generated with approximations of increased com-

plexity and to consider the point at which the profile does

not change appreciably with a further increase in complexity

as a termination point. quite aside from the obvious logical

difficulty inherent in such an assumption, this method

requires that the approximation include at least one more

term than is required for an adequate description of the

solution. This will, of course, significantly increase the

computational effort involved.

An alternative method of evaluating the accuracy of the

approximation is to use a "yardstick" which is separate from

the variational formulation. For example, a least squares

criterion could be used in which the value of ff(.)J A

(where .t =o is the equation of motion) would

indicate the accuracy of the approximation.



-49-

III. Examples of Approxinrte Solutions:

A. Formation of Couette Flow.

This is the simplest problem which includes any

portion of the inertia terms although the non-linear

terms are excluded. The governing equation is the

diffusion equation , i.e.

-'k Lk (Al)

with the boundary conditions

Lk ' 0 O t D (A 2)

t4 :O CA =

The formulation in terms of auxiliary variables may

be obtained by specializing the Lagrangian for the

Navier-Stokes equation.

(03)
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If possible, one chooses boundary conditions for the

auxiliary variables which will cause the associated boundary

integrals to vanish.

Taking the variation

(A4)

Considering the integrated terms which do not vanish because

of the boundary conditions on . , i.e.

indicates that

(A5)
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insures the vanishing of these terms. Here Lt satisfies

a final condition rather than an initial condition. This is

in keeping with the interpretation of at as a time reversed

velocity as indicated by the Euler equation in 6.4.

Since it is desired to cast the problem into a com-

putational form similar to that of the Galerkin method, it

is desirable to choose forms for the approximations to U,

and oL which differ in a single coordinate. A suitable

approximation is

(A6)

where 0., 6 {)

(A7)

96,o) =% e)O- 10

This approximation satisfies the boundary conditions at

and approximately satisfies the initial condition. The initial

profile, Vf- , will satisfy the initial condition exactly

only for /V= O . The approximation to the initial profile
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is, however, assumed to be adequate for large but finite-

values of A**

Since & has the same dependence as LA. , let

where { U)

and.t)= *(t) =.... = ge

and, in general

(A8)

(A9)

then

fAef

-6f ff,

(AlO)

[: +7 1 [4s6 ~ -vj ]+Pto
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or

s ff {rr1w4)
+/ICLzr /~ *r]

but

and

Therefore, after performing the integration these results

- P pp-

~ * wo

(A12)

7L /I ja [Z 9 (m --zro] j cie 6

kit 
It

lid 0
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Now, since

interest are

is arbitrary, the Euler equations of

(A13); ;- -L P - O

The values of ) and /3 to be chosen merit some

discussion. In the first place, it is apparent that the

initial condition of IA = 6 everywhere but at the point

z. L where u-.=V' can be satisfied only approximately.

If one assumes a three term approximation, i.e.

(A14)

then if g(a) z f, (o) = o and f , {0 ) = tra the

initial and boundary conditions will be satisfied in the limit

as " -- * . In practice, '>1 is chosen so as to

contribute something to the profile at time t . The closer

the f' of interest is to zero, the larger the Mt that is

appropriate. Let us try two cases ' 3 and )4

for comparison.

A. O *. l

0W4 k

Cr 9V
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The Euler equations are, then, three ordinary differ-

ential equations in

P (t),
(A15)

for 'h-.: lk
9 )*2-.

for i : .'

4-2-

%0

for ' ZI+ '. + +--

may be eliminated from these yielding

kN 4 4"
9(P

/~~~~7 __________? _

2. w MIE

4- 
ZU

k)-

20

"fM -2

vr6t #,I)

(A16)

1- 1-I

$I1

K?4

V2. (t) -) as4j Aot ( 0

( fi ** V- 41 2; 1 p Od3 )

it 
It'J"4- 't

It/
-- .._

+)-+-

+u)nt)
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but, from the boundary conditions

A'

4- 0 "4A ) + A* 1

I I

~I1c
U-7)Iz '-+

For -.3

(

, these are

/3

I7

(Ale)
+1)

40
+- v

is the operator

'L /2!-

C-,

(A17)

b

/MMW )/+3)2 .+

43-)

x, uc

Oft!

so

e (M w)t -)

3 k?

7P Bd

where D



Then f~J2I
*aow

but since

0%3 =Z r,, e

the relations may then be solved for ( where O to) =0

and, s ince -

.V
-W/0 -9..st] (A21)

~~1.2

and finally

(A22)

'-t) A0

eL j -( -3! .1 )-I

for the case of m 03 .

-57-

3 ). tra

1W)/Z
(A19)

-Vt I j (A20)

9
4of 11

V ).0- =0
3

0
9 ( 3 "* e e
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For I=4 P the solution of equations (A17) is

-0 V.2-.,l -O /7' -t (A23)

The analytical solution to the same problem is given in

ref. 21 as

OU _ _ 4(A24)

These three solutions are compared in figures 1 and 2 for

different values of . From figure 1, it is seen that

:4 3 does not yield satisfactory results for .

while the 7%4 =P solution lies within ten percent of the

analytical result. Figure 2 compares the approximations at

't.. At this value of time ),t is no
k 

tt

longer adequate but deviates from the analytical result by as

much as thirty percent. Moreover, the % m0g profile assumes

negative values near the stationary wall indicating that the

two-parameter system cannot follow a physically reasonable
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profile at the shorter time. Improvement of the approximate

result in the small time range must come from an increased

number of parameters and an increase in the value of 't.. .

The )u r . approximation does, however, yield a value of

the time constant of the starting motion which is in

excellent agreement with the analytical result. That is,

for large t the approximation predicts a time variation

while the exact solution gives .

From inspection of equation (AlO), it is seen that the

corresponding solutions in the auxiliary variable will be

exactly the same as those for the physical velocity if t

is replaced by "u"'- t . Therefore, for " - 3

as would be expected since & has been previously idenltified

as the time-reversed velocity.
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1. Galerkin's Method Applied to the Problem

In the Galerkin method (see ref. 17 or 22) for generating

approximate solutions one assumes that the problem is self-

adjoint and uses the various terms in the approximation to the

unknown variable as weighting functions with which to integrate

the Euler equation. In the present problem it has been assumed

that

where A 3

so that " *d3LR VI 7

in order to obtain differential relations in the . 's by

Galerkin's method, the coefficients of the ) 's are used as

weighting functions for the equation of motion and

(A26)

(Ot
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An identical form can be obtained directly from the

variational method. If only the solution for the physical

velocity is considered, expression (A4) is

since the boundary integrals vanish for the approximations

(A6) and (A8). In the three term )4 :- 3 approximation

A*,Vpc 3

(A27)

Therefore,

(A28)SOL + S*(~) 1(-kL) 1-4 3 * (1 3

and (A27) becomes(29

t Oh A9

4/ & (L') ,In (Ut-vu~3~~L

Since and are independent arbitrary functions,

the Galerkin statement (A2') must be true.
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B. The Incompressible Boundary Layer on a Flat Plate

This classic problem of Boundary Layer Theory (see ref. 18)

is a popular testing area for approximate techniques. The

simplest integral method for approximating the solution of

this problem consists of approximating the velocity profile

by a polynomial in terms of the variable j/6 where

is the height from the surface of the plate and 4 (V ) is

the boundary layer thickness and determining A by requiring

the boundary layer equation to be satisfied on the average

over the region of V/ from zero to unity. For example,

the velocity profile may be approximated by

/V

where the 4%, are all constants determined by the boundary

conditions on the problem. The function d is then deter-

mined by requiring that

(j~U Ipti -9l ( B2)

where V'lis determined from the stream function associated

with LA .



The method requires that sufficient boundary conditions be

"invented" to provide relations among the ax so that a

different problem in the mathematical sense is being solved

each time the number of coefficients is increased. This

technique will be referred to as the "conventional" integral

method hereafter.

Recently, there have appeared two papers (refs. 23 and

24) using a variational method to generate approximate

solutions for this problem. In the first it was assumed

that the principle of least dissipation is applicable to

the problem and the coefficients in (Bl) were determined by

the variational technique. The boundary layer thickness,

however, was not determined. In the second paper, the method

of Herivel and Rosen (refs. 11 and 12) was applied in place

of equation (B2) of the conventional method. That is, the

coefficients of the approximation (Bl) were determined by

the boundary conditions as in the conventional method, but

the boundary layer.thickness was determined by the Hertvel-

Rosen method rather than by (B2).

In none of these techniques are the boundary conditions

held fixed and both the remaining coefficients of the
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approximation and the boundary layer thickness computed from

a single scheme. The method discussed below will determine

both the constants and the boundary layer thickness using a

single set of boundary conditions.

As noted previously (p.35ff ) the variational expression

for the Navier-Stokes equations may be modified to yield the

Boundary Layer equation through an argument based on the

orders of magnitude of the various terms involved. The

statement to the first order is (see equation 83) for the

present problem

t (it v, tul 4.1l (B3)

4Uit 4 - jC)

where the velocities have been normalized with respect to

the free-stream velocity, TJo , but the coordinates are

dimensional.

It is apparent from inspection oif (E3) that the com-

putational effort will be reduced if the Lagrange multiplier

enforcing the continuity restriction is avoided. Consequently,
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it is advantageous to insist that the admissible functions

satisfy continuity. In that case (B3) may be written in

terms of the stream function as,

S(B4)

Before taking this variation, it is worth noting that

at this point it is important to devise a form which will

minimize the computational effort involved in determining

the approximate solution. The result of the variation will

be an Euler equation which is the boundary layer equation

and another in the auxiliary variable, at . In addition,

certain boundary terms involving both the real and auxiliary

variables will result. The goal here is to choose the

boundary conditions on the auxiliary variable in such a way

that the real and auxiliary variables differ in their

dependence on only one of the two coordinates involved as

in Example A above. This caiinot be accomplished in geieral;

however, if such an interpretation is consistent with the

auxiliary Euler equation and the natural boundary conditions,

it may be done.
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The variation of (B4) yields

(B5)

+4t 4- V y d-v + %MO 64

where J( is some distance downstream of the leading edge

at which the problem is terminated and . : ALJ is the

boundary layer thickness.

Considering the " integral first, the boundary

conditions

I V y:. O d.(B6)

tA ::. Tro OA
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insures that vanishes at both limits and that $N

vanishes at the lower limit. There remains only the

coefficient of S to be evaluated at the upper limit,

that is the term

7? am too-(B7)

The physical nature of the problem indicates that

lA. a (B8)

=4 . of g =4

the second and third terms of (B7) indicate that

'Ot 4(D9)

I V1

are appropriate boundary conditions to impose on 4 ,
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The final term of (B7) will be allowed to remain non-vanishing

for the present.

Considering the integral of (B7), the bounldary

condition

- b (Bi)

indicates that

(B11)

Consequently, there remains only the integral at lt=.

Here it is impossible to make any statement regarding the

behavior of the physical variable and it is appropriate to

introduce the auxiliary boundary condition

0 (B12)

Finally, it is noted that the Euler equations resulting

from the statement (B5) are of such a nature as to permit the

identical dependence of the physical and auxiliary variables
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so that

oLt L ~--O (B13)

Relations (B9), (B12), and (B13) constitute a set essential

boundary conditions on the auxiliary variable

There remains one point to consider. Since it is

desired to vary 4 as well as the coefficients of the

approximations to the real and auxiliary variables, the

upper limit of the integral is to be varied. According

to the theory of the Calculus of Variations (see ref. 25),

the statements made above remain valid under this variation

provided that the boundary term

X Aly.( ) ( B14)

is added. Equation B14 has not been written in terms of the

stream function to facilitate its interpretation and use has

been made of the fact that

(B15)
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which in turn depends on the fact that

6)A 
(B16)

in view of boundary conditions (B6) and (B9).

Because of the physical boundary conditions (B6) and

(B8), it is seen that the term (B14) reduced'to

(B17)

The variational statement then becomes

(B18)

where admissible functions satisfy continuity and the boundary

conditions listed previously and variations of d are per-

missible.

The approximation

U, (Y 1d).1 (B19)

v3e)
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where the d- are constants and

(B20)

satisfies the physical boundary conditions and qualitatively

provides a good approximation to the anticipated form of the

solution. Since the auxiliary variable satisfies conditions

at the boundaries which are identical to those satisfied

by the real velocity, an appropriate assumption for the

auxiliary variable is

(&V Qd)
t /

where the are functions of X only and

Substituting these values into the integral to be

varied in (B18) yields

J ap

_hT ~ I 4Z im

(B21)

(B22)

(B23)

-I1)

AM o&L

pal Coo PIT.1 % r. j
'h A ' 1-6 2-6

I="
(9" 2A

+ INOWV EE
W
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B23)

Ld

cont.

m1))T1
2.6

( I-P)~a 
A f

+ vK
urn (Co (~+p) ~aJ

This expression may be integrated with respect to

If it is recalled that the >1, P ' ' s are all odd numbers

and that a vanishing argument for the cosine results

zero term of

OR),

the integrand, the integrated form is

Er
p

+P

V)

C4a4

from a

(B24)
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In addition to (B24) a term may be included to enforce

the restrictions (B20) and (B22). This term is

4 -! d(B25)

where and are Lagrange multipliers.

In these expressions the terms to be varied are the

and . If variations of the 's are to

furnish sufficient Euler equations to evaluate the 4's and

, that is to evaluate the unknown parameters in the

assumption for the physical variable, the approximation to

the auxiliary variable must be carried out to one more term

than that for the physical variable. If the approximation

for k is terminated at the N th term, the variational

statement (B18) becomes

(B26)
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(B26) cont.

P4-- ;-P ~- )

),g0"

onyara Tn Of + mutbItkntodtrmn)h
LX, -N3- X

approximation to the velocity £4. Taking only this

variation and not including terms which do not involve

yields the appropriate Euler equations since the coefficient

of under the integral must vanish due to the arbitrary

character of .

Thus, if N is taken to be 3, that is if the a. '5

are taken to be a, c&,f ; three Euler equations result

from variations of . These equations and equation (B20)

constitute a system of four equations in the four unknowns
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. If is eliminated, this set of

equations becomes

ct Ct -/. - -V) TT Is
/ O. .a 

(S 21 ( 7 )

at7 -v (D2

, A (P29)

The solutions of these equations are

a, T7r- Os 4~/I .9) P . /I"/ (E30)

and the corresponding , 's are //, F / *,

These three possibilities, all positive real numbers,

brings to the fore the problem of uniqueness. Often, the

engineer circumvents this problem by appealing to physical

intuition. That is, if the problem possesses a unique

physical solution and if the system of equations accurately

describes the essentials of the physical phenomeina, then

the system of equations is expected to have a unique (real)

solution. In the above development, however, the i-on-

physical auxiliary problem ias been introduced so that the
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mathematical system is not exclusively related to the

physical problem. Consequently, the fact that the solution

is not unique implies nothing regarding the physical

problem only that there are three real solutions to the

problem of minimizing the integral (B18).

It is often possible to eliminate solutions by appeal

to their "physical reasonableness". That is, by comparing

them qualitatively to the known or anticipated physical

result. For example, the first of (B30) i.e., a = 0.575

yields a negative shear stress at the plate and a negative

component at the edge of the boundary layer. Since

these results appear impossible from the physical standpoint,

this solution may be disregarded as a solution to the physical

problem. The other two solutions of (B30) are not eliminated

so simply since both yield reasonable velocity profiles.

A formal means of choosing between the remaining two

solutions would be to form the expressiLon

X a 'Z (T,31)
At I C, U + L

fc~fc/juj,
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using each of the two results. The one which yields the

smaller numerical value of the expression (B31) would then

be taken as the better solution of the physical problem.

A more intuitive approach would be to recognize that,

from a mathematical standpoint, the boundary layer thickness

is that distance above the plate at which the velocity

becomes exactly unity (i.e. &A = TVo ) . Consecuently, a

very close approximation to the true velocity profile would

yield a large value of the boundary layer thickness, and the

profile which yields the larger bouidary layer thickness

(at the same level of approximation, of course) would be

expected to be the better of the two. Note that the

boundary layer thickness used here would actually have a

value of infility in the Blasius solution of the problem.

The conventional boundary layer thickness is arbitrary since

it is defined as that distance above the plate at which the

velocity attains the arbitrary value of 0.99 V* .

Based on either of the above approaches the result of

the computations is that

-,. (B32)

V ''
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where

d '(B33)

The two profiles associated with the physically plausible

solutions (B30) are shown in Fig. 3. Figure 4 shows the first

approximation with the variational method along with the

0, = 1.151 second approximation profile and the Blasius

profile. The first approximation is

.'(r~34)

where A is evaluated by requiring that the integral in

(B18) be stationary. That is

7v-, (r-)35)

It is seen that the profile corresponding to C = 1.151

provides a reasonable approximation to the Elasius solution

somewhat beyond the computed value of the boundary layer

thickness. In fact, the profile remains above the value

0.99 to a value of 9.50 rather than -=

7.08 which is the edge of the boundary layer defined by .
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Since the curves of figure 4 do not provide sufficient

spread for the relative behavior of the various profiles to

be seen in any detail, values of Efea are presented in

Table Bl.
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TAPIJE Bl

0.349

0.655

0.878

0.990

1.000 ( 6, )

(.977)

1

2

3

4

4.4

5

6

7

7.08

8

9

9.5

10

0.347

0.641

0.848

0.963

1.003

1.005

1.000

1.000 ( 62.)

(1.004)

(1.006)

(0.993)

(0.974)

In Table B1 the profi'Tles should be terminiated' at the edge

of the boundary layers aII A . however, the profiles are

extended to illustrate their behavior until they deviate from

the exact solution by one percent.

Blasijus

0.330

0.630

0 .576
0.956

0.992

0.999

1.000

1. "D

1.000

1.200
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The boundary layer parameters which are of interest in

comparing these profiles are:

1.) Displacement Thickness ( d *) defined by

L4 (rE36)

2.) Momentum Thickness ( ) defined by

I L( 'A d I(E 37)

3.) The Plate Shear Stress ( ) defined by

(138)

or ( 7.) which may be comptted. from tie integrel

(B37)

The values of these bounda:y layer' a::ameters are given

in Table (B2) below.
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T/ TAE B2

Velocity
Distribution

to (
1/4 ;~VDo

I4 2za 1.59 0.612 0.357 0.3C6

V , = S -v 4 b dM
Fe 1.66 0.65 0.356 0.333

+ * IS.4:. 3 #
ad

31asius Profile 1.729 0.664 3.332 0.332

The values of Table B2 indicate an adequate approx'mation

has been attained for most practical purposes. It is to be

expected that the wall shear stress computed from the slope of

the profile at the wall would be inferior to that computed by

the integral method since the profile is generated from an

integral statement. The displacement thickness is low by a

matter of 4% which leaves something to be desired altuiough

not enough to warrant the lengthy computations whtich would be

involved were a third approxiration to be mac'e.

to
ore, e Ful ;



Satisfaction of the boundary conditions on the auxiliary

velocity at X = )( is possible if, for the two term

approximations,

S(B40)

and (1 1

where A and 8 are constants. The feasibility of this

assumption is tested by determining 0 . If B is

finite, the assumption yields a reasonable result. The first

order assumption for the physical velocity is

(B41)

where

and ! is the (constant) parameter to be varied in taking

If (B40_ and (B41) are inserted into equation (B26)

then,

I
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which when integrated yields

2. 83 ~~4. 603 ' / 2(B42)

- - .4 -- + - - 0

311" / r 7. I 4 X'L.

Taking the limit of (B42) as p4 approaches infinity

results in an equation in 3 whose solution is

46 =/, /2 (B43)

Therefore,

~ J (B44)
A -> VO9 f0

a reasonable result. In fact, for all ' < ) this result

indicates that the auxiliary velocity closely resembles the

physical velocity. A true time-reversal that is, reversed

dependence on x , is not exhibited here due to the fact

that the auxiliary variable was forced to have the same

boundary layer shape as the physical velocity.
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First Order Approximation to the Boundary Layer on a Flat

Plate at Zero Incidence.

The relation describing the flow over a flat plate is,

of course, the Navier-Stokes equation. However, due to the

difficulties in solving this equation in all its splendor

certain approximations are commonly made which are supposed

to be valid in various physical flow regimes. The present

problem is usually considered from the point of view of the

Prandtl boundary layer approximation which is valid for

large values of the Reynolds modulus. However, considerable

effort has been expended in studying the problem from the

point of view of the Oseen approximation which is valid at

low values of the Reynolds Modulus. Little has been

reported in the flow region between these extremes, however,

Kuo (ref. 19) has ingeneously determined the solution of the

first order boundary layer approximation to the flow over a

finite flat plate. Since this problem is sufficiently new

to merit interest, this section will be devoted to a demon-

stration of the variational method applied to the first

order boundary layer over a flat plate with zero pressure

gradient.
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Before considering the details of the first order

solution, it is important to establish the fact that the

first order problem is of the boundary layer type with

its attendant simplifications. To establish this consider

the first order term of equation (78).

(4 * ) * ) o *a (C1)

6- (u:j ow p 4 ,4Y

At this level of approxina tion the zero order velocities are

known and the variations yield the following Euler equations

in the physical variables

1.)
For ' p - (C2)

For --- 6(C3),
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For X.1 * > )9 e ,4 (C4)

For c t ', J: (C5)

Equations (C2) and (C3) are automatically satisfied by the

zero order solution. Equation (C4) is the governing equation

of the first order solution. Equation (C5) gives the important

result that the first order pressure does not vary in the y

direction, consequently the pressure in the first order problem

is determined by the external (potential flow). One concludes

that, since a first order potential flow is required and the

orders of various derivatives are the same as for the Prandtl

equation (C2), the problem remains of the boundary layer type

in the first order approximation. A suitable potential flow

must then be determined to provide the boundary conditions at

the first order boundary layer.

Following Kuo, one notes that at the edge of the zero

order boundary layer

Tr W (C6)

(0). ~
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Where the variables are those of expression ( 70 ) and

K = 1.73 for the Blasius solution. If the velocity field

in the potential region is expanded in terms of thickness

parameter 6 , then in the potential region

V '(,) +--'(C7)

From (C6) it is seen that

(0) (C8)

The first order potential flow is then given as that

for which Y -. ) at the plate surface and the velocities

vanish at infinity. Such a flow results from a line source

at the surface of the plate with the source strength varying

as /v- where is the dimensionless distance along the

plate. The velocity potential for the flow is then

a,~ T # 1-1 ( ? -5) .

where ;Z denotes X1 + t' . The first order

velocities are then

(r)
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V- -21 Arr OF ti -S-)g

The appropriate boundary condition for the first order

boundary solution is then

a ' 4P) (Vp)

The solution to the first order equation (C4) for flow

over a finite flat plate (boundary condition C10) was obtained

by Kuo. The solution of this problem by means of the present

variational technique is greatly complicated (as it is

analytically) by the fact that the potential flow exhibits a

logarithmic singularity at the trailing edge ( x = 1). The

pressure gradient then, is also singular at the trailing edge.

it is found that, under these conditions, the variational

technique yields differential equations in the parameters of

the assumed solution which are as involved as those solved

by Kuo.

These computational difficulties, coupled with the fact

that the trailing edge condition imposed by (C10) does not
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seem physically reasonable when applied to viscous flows,

led to the rejection of this problem in favor of the first

approximation to the boundary layer over a semi-infinite

flat plate. For this problem the trailing edge condition,

of course, vanishes.

The boundary condition for the semi-infinite plate is

determined by taking the limit of (C1O) as the plate length

approaches infinity, i.e.

f (C1l)

Thus the boundary condition for the semi-infinite plate is

( J __ (C12)

The other physical boundary conditions follow those of the

zero order problem

ait C) (I) (C13)

~~ci=6

ad be
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Since u -. at the edge of the boundary layer, the

variational statement in terms of the stream function is,

from (Cl)

(61 Lai ('I iWA (C14)
C(C 14

which is seen by inspection to require that satisfy the

same boundary conditions as in the zero order case.

Considering U(*) the interesting result in this

computation is to be the shear stress at the surface of the

plate since there exists no solution of the Blasius type by

which velocity profiles may be compared. The first and second

approximations to the zero order solution are seen to differ

insignificantly in the vicinity of the plate, and, consequently,

the first approximation is chosen to simplify the computation.

So here

(C15)

where '-. 9-D, y
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The form (C15) is, however, inconvenient for the present

problem due to the fact that there are two boundary layer

thicknesses involved, 6 and . Consequently,

should it become necessary to include both of these in the

integral to be varied, trancendental expressions in

will result. To avoid this potential difficulty (C15) may

be accurately approximated as

3 (C15a)

and o0 as

d :: e s ->) (C16)

where the 's are functions of 3Y. The restrictions

4 4 + r=I(C17)

and 3 + T0 =e

insure that 0j" )goes to unity and of vanishes at the edge

of the zero order boundary layer.
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The rather unimaginative assumption

1A fj 4 13.1 -t 3(C18)

YN 
ej & 13

may now be made for the first order solution. Here, the

restrictions

+ i- ed= (C19)

insure that the essential boundary conditions are satisfied.

At this point the question of the two different boundary

layer thicknesses must be considered. Since the integration

in the variational method is to be performed over the entire

region of interest, the upper limit of integration must always

be the greater of and .60J This question regarding

the upper limit coupled with the discontinuous nature of the

velocities at their respective A 's greatly complicates

the computations involved. Consequently, it would be

desirable to consider A = -4 as a first approximation.

Inspection of the first order boundary layer equation indicates

this to be a reasonable approximation. Since the zero order

velocities are the coefficients in this equation, it does

not seem reasonable to expect the first order solution to
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approach a constant value while the coefficients in the

equation are varying appreciably, i.e. for <

On the other hand, physical reasoning indicates that the

potential flow solution from which the first order

boundary condition is obtained would be expected to occur

soon after the value r ' is reached. Consequently,

it seems improbable that can exceed 4(4")

significantly.

The test of such an assumption is, of course, the

physical reasonableness of the results obtained by incor-

porating it into the computations.

Proceeding, then, with & 4 and taking

U (C20)

equation (C14) becomes

' 1 .,.. (C21)
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where and /b enforce the relationships between the

0 is given in (C17).

After performing the integration this is

(C22)

+zjzj+%1 ) +%

Taking the variations of the d
for assumption (C16) and eliminating

's, i.e.

y1e. and 'j6
in a single algebraic equation for the undetermined coefficient

in assumption (C18). This expression is

3

2::
(C23)3

K
L 4"

61401642 -"0

results

00 as., kp 'I'M.Now ---&*
P 0 +4-

oil

13
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Solution of (C23) and equations

Q, 3) t Z =- 3. a2 3 =a

(C19) yields

approximately

The approximate solution for (A" L4,

3A-3( [

where to) &

*7~f~7
aay

Evaluating If from (Cl5a) gives

-(a= /, /t/

which compares with the value of 1.73 for the exact (Blas ius)

solution of the zero order problem.

The drag coefficient for the plate for both the zero and

first solutions may be evaluated from the velocity

(C27)to7

The drag coefficient is evaluated from the expression

L --

(C24)

(C25)

(C26)
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Inserting (C27) into this expression yields

.. /-C/ /, 36 (c28)

This prediction of is shown in figure 5. It is

seen that the, predicted values of CD effectively joins

those of the Blasius solution and those of the Oseen solution

to the flat plate problem. The curve shown for the Oseen

solution is that of Piercy and Winny (ref. 26) whose solution

of the problem has recently been corroborated by Tomotika

and Yosinobu (ref. 27).

The fact that the first order solution should, in fact,

join the Blasius and Oseen solutions has been pointed out by

Kuo. Kuo showed that higher approximations to the boundary

layer problem will not change the values of shear stress:-at

the plate surface.

It should be pointed out that Kuo's solution for the

finite flat plate gives

/933 1" 3 3
+11 -
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which is greater than the Oseen solution at =0
by approximately 300%. However, Kuo's result does follow

some data taken by Janour (ref. 28) extremely well. The

present solution (C28) lies some 30% below the Janour

data at & = jo , the lowest value attained by Janour.

This is, of course, the maximum deviation from the data

taken.

The difference between Kuo's result and the present

solution stems from Kuo's predicted singularity in pressure

and velocity at the trailing edge. Since this boundary

condition appears physically questionable, and the present

solution does join two known solutions, relation (C28)

constitutes an acceptable approximate solution to the problem

in the absence of experimental data in the very low Reynolds

number region
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D. The Graetz Problem

The problem of determining the temperature of a liquid

stream which is flowing through a cylindrical tube having a

constant temperature wall was first investigated by Graetz

in 1885. In particular, the problem to be considered here

assumes a fully developed laminar velocity profile through-

out the constant temperature section and neglects viscous

dissipation.

This appears to be a fruitful area for application of

the present approximate technique because, in addition to

the fact that the analytical solution is involved, the

series solution determined by Graetz presents formidable

computational difficulties if one wishes to extend it into

the region of normal engineering flows.

This problem is described by the energy equation

(Dl)

where, in addition to the above assumptions, the curvature

of the temperature profile in the stream direction ( X )

has been neglected in comparison to the curvature in the

normal ( , ) direction. The velocity, g , in equation (Dl)
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is taken as that corresponding to fully developed laminar

flow, i.e.

(i = ., Ao- (D2)

where /W, is the mean flow velocity and is the pipe

radius.

The transformation of the Lagrangian for the energy equation

to cylindrical coordinates is straight forward yielding

T 3(D3)

where ' is the auxiliary temperature.

Performing the indicated variation yields

rff r k
JO~~dlSYfa e.L0 ~J

O, .t r

(D4)

WJ-t, e4
4

+6

fAX fE6



-106-

If " in (D4) is replaced by

and ' by

the first boundary integral of (D4) will vanish. The second

boundary integral vanishes automatically since p is pre-

scribed on the wall and VA must also be prescribed there.

The boundary condition at the inlet section is similar

to the initial condition encountered in problem A above and

will be handled in a similar manner. Let us assume that

r X%. (D5)

where

In order to satisfy the boundary conditions as well as

possible within this assumption let

and{ .. (D6)

and
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Then the larger the value of /V taken, the greater

will be the accuracy in fitting the boundary condition at

the inlet to the constant temperature section.

Similarly let

Al

.-- (D7)

where

For purposes of determining the physical temperature, ,

equation (D3) may be written

/R X (D3a)

which becomes after combining with (D5) and (D7) but dropping

the 94,.terms since they are constant and not varied

z('+Pj) 3 ZP43

aA46tZ1 IP ~"~'
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Performing the integration and taking the variations

of the auxiliary variables yields the following three

equations for = 1, 2, 3

(D9)

where -7 + *

The first two approximations to the solution, i.e. )N =

1, 2 and = 1, 2, 3, are contained in (D9) . These

solutions are
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for 'pf = J O

= -.2.O05'g8u [ . .s7/'X j (DlO)

o.72 e - / 729 

and for

- .s e-27.OPX (Dl)

- 3.6 7rx.g e4.7pe -7.7 e

= -9krb

Computing the mean temperature from

/JyI rR' j9 ( ? irA lofv

yields, finally

(D12)

/- o.7 7e

f,

it

I, [ j

7
Ile73

i37#w~~~7

,-/03t9/'!
- 3.4j7/1*.m

-ft [ 9V
-?.'Y- 0

-67PX9re -2 a

&4r
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and for -_ 3

which may be compared with the Graetz solution

A"-*#- /r, -69.r, - 164/4,/ -0. .20 -.e97 2 C/4- oe *(Dl4)

where

These relations are compared in figure 6 in which it

is seen that expressions (D12) and (D13) are significantly

in error in the region near = 100. Beyond this value of

the Graetz modulus, expression (D14) also deviates from

observed values of mhg/str . This deviation reflects the

fact that the value of the predicted mean temperatures

remains greater than zero at Y = 0 or Cy = a .

This deviation does not, of course, reflect on the accuracy

of the Graetz solution but is due to the limited number of

terms which can be computed without the use of a digital

computer.

Extension of the present method to >A = 4 would involve

a significant computational effort since the sixteen

coefficients involved in the solution of equations (D9)
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where ur -o -L=7PA

These relations are compared in figure 6 in which it

is seen that expressions (D12) and (D13) are significantly

in error in the region near D = #O . Beyond this

value of the Graetz modulus, expression (D14) also deviates

from observed values of *w,/9r . This deviation reflects

the fact that the value of the predicted mean temperatures

remains greater than zero at ).= 0 or .= 00 . This

deviation does not, of course, reflect on the accuracy of

the Graetz solution but is due to the limited number of

terms which can be computed without the use of a digital

computer.

Extension of the present method to ) = 9f would involve

a significant computational effort since the sixteen

coefficients involved in the solution of equations (D9)

would have to be determined. An alternative approach to

the form of the approximation (D5) appears in order. One

alternative which would accurately reflect the boundary

condition at = C would be

}{(D15)
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where all the vanish at . = 0 . Such an assumption

loses physical meaning if the temperature gradient at the

wall is considered, but may yield meaningful values of the

mean temperature. Performing the variation (D3a) yields

GMo/- Y 4 . .O 7 C em/4 (D16)

for 1 = 1 2.

From figure 6 it is seen that this approximation

provides reasonably good agreement with the Graetz solution

over its range of validity ( 1 2.100). The extension of

the Graetz solution by Leveque (see ref. 20 ) provides a

means of evaluating the solution (D16) in the range

The Leveque curve was not developed as a solution to (Dl)

for this problem but was determined from a solution for

flow over a flat plate. This extension has been confirmed

experimentally and hence it provides a criterion for

comparison of (D16) with experiment. It is seen that the

simple approximation (D16) lies within 15% of the Graetz-

Leveque curve in the range q, < fao .
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APPENDIX A

BATEMAN'S METHOD

H. Bateman (ref. 7) developed a Lagrangian in terms of

auxiliary variables which yields the same Euler equations

as the present method applied to the equations of motion of

an incompressible fluid. His formulation is presented as a

fact without indication of the means used to determine the

particular form chosen. Consequently, it is simply presented

here in terms of the variables of this paper. The Bateman

Lagrangian is, in its original form

Le7 *(p = z', (t4)+/, + -ry)
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which may be written as

This is seen to be identical to the Lagrangian proposed

in this report. It is surprising that, in a field in which

analyses are so difficult, this result has not been exploited

during the thirty years since its development by Bateman.
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