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ABSTRACT

THE HELICAL CONFIGURATION OF THE POLYPEPTIDE CHAINS IN COLLAGEN

0arolyn Cohen
A.B. Bryn Mawr College, 1950

Submitted to the Department of Biology on May 17, 1954, in partial
fulfillment of the requirements for the degree of Ph.D.

The following evidence relating to the helical configuration
of the polypeptide chains in collagen has been presented in this
thesis.

I. It is shown that the polypeptide chains in collagen have
a helical configuration in the portions of the protofibril which
yield the wide-angle x-ray diffraction diagram.

Diagrams from dry tendon were indexed according to a 28.6 A.
period for unstretched material and about a 30 A. period for tendon
under tension. Diagrams from moistened tendon have intensity dis-
tributions which correspond to the transforms of individual proto-
fibrils.

In order to interpret these diagrams, a treatment was develop.-
ed based on the theory of Cochran, Crick, and Vand (1952) for helical
diffractors. This treatment uses 'helix-nets' and allows a simple
analysis of helical diffraction ambiguities.

By application of this analysis, it is shown that the genetic
helix in the collagen protofibril has ten scattering nodes in three
turns. The genetic helix is the simplest arrangement of equivalent
scattering groups and does not necessarily show true chemical
connections. Further restrictions on the specific atomic arrange-
ments in the polypeptide chains are derived from the x-ray diagram
and from chemical considerations.

A few observations on tendon and long-spacing collagen by
small and wide-angle diffraction and electron microscopy support
the suggestion that some portions of the collagen protofibril are
inaccessible to analysis by wide-angle x-ray diffraction.

II. A polarimetric investigation was carried out for the
first time on a soluble, non-denatured, 'pure' collagen fraction
(ichthyocol 'procollagen) which had been characterized by physical-
chemical measurements (Gallop, 1953, 1954).

'Procollagent is converted to 'parent gelatin' by heating to
temperatures greater than 300C. At the same time, the specific



rotation ((OL) changes from -350 to -110* This change is in-
terpreted as resulting from the loss of a specific collagen con-
figuration in the polypeptide chains of the protofibrils.

'Parent gelatin' gels and shows an increase of specific
rotation to about -280* upon cooling. This is the well-known
mutarotation phenomenon of gelatin. Rotatory dispersion measure-
ments of 'procollagen' at 11* C., and 'parent gelatin' at 41 C.
and 2* C., were obtained at concentrations from 0.02 to 0.3%. These
studies combined with information on gelatin films from x-ray dif-
fraction and polarimetry indicate that the mutarotation of gelatin
results from the gain and loss of the specific collagen configuration
in the polypeptide chains of the gelatin molecules.

III. The conclusions from the wide-angle x-ray diffraction
analysis and from the polarimetric study are correlated by the
following hypothesis; it is proposed that the high rotation value
found in 'procollagen' is due solely to the helical configuration
of the polypeptide chains in portions of the protofibril. Conse-
quently, the mutarotation of gelatin is ascribed to the gain and
loss of the helical configuration of the polypeptide chains in
the gelatin molecules.

It is also suggested that the observed rotation values of
globular proteins are related to a random or unfolded configuration
of the polypeptide chains in the denatured state, and to a con-
figuration in the native state in which a large cancelling of
rotation occurs.

(More detailed aspects of the helical diffraction prcblem
are discussed in the Appendices.)

Thesis Supervisor: Richard S. Bear
Professor of Biophysical Chemistry
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INTRODUCTION

Collagen has a unique biological and scientific role. It

is the most prevalent protein in the animal kingdom. Connective

tissue, skin, bone, tendon, and other protective and supporting struc-

tures are composed primarily of this material. Collagen is also a

protein which is particularly amenable to structure analysis. Infor-

mation about collagen, therefore, may have implications for other

fibrous and globular proteins whose structure is experimentally less

accessible.

In the structure analysis of collagen, various levels may

be considered. Microscopically visible fibers fray into successively

thinner units. One sub-division, called Ifibrils' (Klntzel, 1934) ,

reaches widths near the limit of resolution of light optics. The

structural details of the fibrils have been analyzed by small-angle

x-ray diffraction -(Bear, 1942) and electron microscopy (Schmitt et al.,

1942). Within the fibrils are bundles of polypeptide chains, probably

running in the direction of the fiber axis. Schmitt et al.(1942). have

used the term tprotofibril' to designate the unit of smallest cross

sectional area which contains all the molecular properties character-

istic of collagen. According to Bear (1952), the width of the proto-

fibril is about 12 A.,corresponding to no more than a few, and possibly

one, polypeptide chain.

The most powerful optical method to elucidate the configur-

ation of these protofibrils is wide-angle x-ray diffraction. Although

much effort during the past 30 years has been devoted to the interpre-



tation of the wide-angle diagram of collagen, only recently has sig-

nificant progress been made. One of the difficulties is that collagen

is a poor diffractor compared with other organic materials. The most

characteristic reflections are a 12 A. equatorial spot, a diffuse 4.5 A.

equatorial halo, and a sharp 2.86 A. meridional arc. Because of the

relatively few and weak reflections, the pattern is not easily ana-

lyzed by standard crystallographic procedures. Bear (1952) has des-

cribed early theories and models proposed for the protofibril.

During the past decade the general concept of helical config-

urations for the polypeptide chains has been developed (Huggins, 1943;

Bragg et al:..,950). As early as 1943, Huggins had proposed a helical

model for collagen. However, this was shown to be unsatisfactory

(Bear, 1952). During 1950 and 1951, the results of Pauling and Corey's

t synthetict approach to the protein structure problems were published

(Pauling and Corey, 1950), 1951; Pauling, Corey and Branson, 1951).

They proposed specifications for bond angles and distances of amide

residues based on crystallographic work with amino acids and peptides.

From certain stereochemical rules two helical models, named the of

and the W were derived. In addition, helical models for a number

of proteins, including collagen, were proposed. The model they sugges-

ted for the collagen protofibril consisted df a helix based on three

residues in parallel, and having an axial projection cf 2.86 A. per

residue. The equatorial structure factor gave excellent agreement

with observed intensities.on the equator.

In 1952, Bear proposed a different helical model for the

collagen protofibril (Bear, 1952). He placed three residues in serial



connection in 2.86 A.; this accounted for electron optical evidence

which suggested that the polypeptide chains were extensible. Stress-

ing the significance of the 20 A. meridional pesudoperiod which Paul-

ing and Corey had neglected, he accounted for this by placing 21 resi-

dues in 4 turns of the helix. The structure was a slightly modified W

helix. The equatorial structure factor for this * helix model and

some variations were calculated by the present author. The helix was

found to agree less well with regard to a weak 2.2 A. equatorial re-

flection than the three chain model proposed by Pauling and Corey

(Bear aid Cohen, 1952).

It is of interest to note that because of the difficulties

in extracting information from the x-ray diagram, particularly with

regard to near-meridional reflections, Huggins, Pauling and Corey,

and Bear invoked essentially indirect and independent arguments for

the existence of the helix in collagen. Thus, information from

stereochemistry and electron microscopy was of major importance in

the development of the helical concept for the collagen protofibril.

In 1952, Cochran, Crick and Vand published their work on

the Fourier transforms of helical diffractors, From the treatment

they derived, the interpretation of near-meridional intensities from

helical diffractors could be made. In this thesis, an analysis which

indicates that collagen is a helical diffractor is developed directly

from the x-ray diagram. Basic specifications for the helix are also

presented. In addition, some new wide--angle x-ray diffraction data

are given. A brief note (Cohen and Bear, 1953) has already been pub-

lished at an earlier stage of the analysis.



The other part of this thesis describes the application of

polarimetry to determine the configuration of the polypeptide chains

in collagen. Optical activity allows a sensitive measurement of

short-range structural detail, and, thus, complements the wide-angle

x-ray diagram. In addition, polarimetry permits the analysis of material

in solution. However, it is a more formidable method than x-ray diffrac-

tion from the point of view of interpretation. Since the classical work

of Fresnel (1825), Pasteur (1848) and van't Hoff (1875), progress has

been slow in attempts to correlate molecular structural with optical

activity. Many of the useful results of polarimetry studies in the past

have been based on empirical rules of optical rotation. Thus the van't

Hoff principle of superposition was used by Hudson (1909) to derive the

structure of sugars. Modern theoretical treatments are given in papers

by Kuhn (1930),Condon (1937), Kirkwood (1937), Kauzmann, Walter and

Eyring (1940). Such theories permit the prediction of the sign and value

of rotation only for very simple molecules.

For molecules as complicated as proteins, even an empirical

approach has been neglected. In recent years, however, optical rota-

tion has been used as a criterion for detecting the occurrence of con-

figurational changes in proteins (see, for example, Jirgensons, 1950,

1951, 1952 ab). Since the present state of knowledge of protein struc-

ture, while rapidly advancing, is still very incomplete, correlation of

rotations with protein configuration has been vague (Doty and Geiduschek,

1953; Kauzmann et al., 1953; Yang and Foster, 1954).

Gelatin, the degradation product of collagen, has proved to

be especially suitable for analysis by polarimetry. It is a very soluble

material with a high specific rotation, and undergoes a well-known and
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striking mutarotation phenomenon. When gelatin is cooled and changes

from the sol to the gel state, the specific rotation more than doubles,

going from about -120 to --300 and this change is reversible (Trunkel,

1910; Smith, 1919).

The fact that aggregation occurs as a gelatin sol is cooled

has led some investigators in the past to attribute the rotation change

to this effect (Kraemer and Fanselow, 1925). The proof of aggregation

in solutions too dilute to form stiff gels is seen from the increase

of viscosity and turbidity of these solutions upon cooling (Boedtker,

1953).

However, as long ago as 1919, Smith (on the basis of question-

able experimental data) suggested that two different molecular species

exist in the sol and the gel. The classical work of Katz proved that

such a configurational difference did in fact exist. He found that a

gelatin sol, either wet in a capillary, or evaporated to form a film

at a temperature greater than 40* C., gives an amorphous type x-ray

diagram in which the 2.86 A. reflection characteristic of collagen is

missing. The 10 A. reflection is present but diffuse. However, he

found that gelatin gel, either wet or evaporated to form a film, yields

the 2.86 A. reflection, and the 10 A. reflection is sharpened. (Katz,

Derksen and Bon, 1931; Katz, 1932; Derksen, 1932; Katz and Derksen, 1932)

The appearance of the 2.86A.spacing can only mean that there is a change

in the configuration of the sol upon gelling and that this change is due

to the formation of the characteristic collagen configuration in the

polypeptide chains.of the gelatin molecules.

Katzt own interpretation was that the two species proposed

by Smith corresponded to an amorphous (hot gelatin) form and a crystalline



(cool gelatin) form, and that the latter was similar to collagen.

More recent work has tended to favor the importance of

the configurational effect. Thus, from studies on the concentration

dependence of mutarotation, Ferry proposed that intramolecular changes

were the principal factor in causing mutarotation (Ferry and Eldridge,

1949). The work of Robinson has given the most specific correlation of

configuration with rotation (Robinson and Bott, 1951; Robinson, 1953).

He-found that films made from drying 'cold' gelatin had a high specific

rotation ( .o 2 -1000), and exhibited infrared absorption char-

acteristic of collagen. Films made from 'hot' solutions of gelatin

showed the absorption corresponding to an oc or e configuration of

proteins, and these films had a specific rotation of about -125*. Frcm

this work Robinson has ascribed the changes in rotation of solutions

of gelatin to the gain or loss of the specific 'collagen fold' of the

polypeptide chains.

It should be stressed that in the past no comparison was

made of the optical rotations of collagen and of gelatin, although the

wide-angle x-ray diagrams as well as the infrared absorption of these

two systems were campared. The work of Thaureaux (1945) on the rota-

tion of acid extracts of collagen is an exception, but the impurity of

the systems she examined prevented quantitative conclusions. Thus, the

specific rotation of a 'pure' collagen preparation was not available for

use as a standard of reference in the molecular interpretation of the

mutarotation phenomenon.

In 1948, Oekhovitch et al. (1948 ab) published their work

on a 'pure' soluble fraction of collagen which they called 'procollagen.'

This material has been studied by other investigators (Bresler et al., 1950;



Randall et alI.,1952).

In 1953, Gallop, in this laboratory, obtained 'procollagent

from ichthyocol and characterized, by physical-chemical methods, both

this material and the gelatin produced from it. By light scattering

and sedimentation he has shown that the unheated 'procollagent is pro-

bably a polydisperse system of weight average molecular weight about

1-2 x 106. He presented evidence that these units correspond to the

'protofibrils' of collagen. Using the Peterlin analysis of light

scattering and sedimentation data, he found an average contour length

of about 13,400 A. and mass per unit length of about 80-120 avograms

per A. When this material is heated to 40* C., a complete conversion

takes place, yielding a monodisperse system.of particles of molecular

weight 70,000 (as determined by diffusion and light scattering). This

product has been called 'parent gelatin' by Gallop (1953, 1954) and

that teminology will be maintained in this thesis. Analysis of data

from viscosity, sedimentation and diffusion studies gives an effective

length (root mean separation of chain ends) of 225 A. for the'parent

gelatin' molecule, if it is treated as a random coil; if it is charac-

terized as a prolate spheroid, the dimensions are about 20 x 400 A.

The present author has studied the optical rotation of

'procollagent and its derived gelatin. For the first time a 'puret

fraction of undegraded collagen, and a monodisperse gelatin were used

in investigating the mutarotation phenomenon. In addition, the optical

rotation and rotatory dispersion of gelatin at concentrations lower

than any reported previously have been measured. The results of these

studies are presented in this thesis and an interpretation on a mole-

cular basis is given for the observed optical rotation changes in



'procollagen' and 'parent gelatin'.

In the final chapter of this thesis an hypothesis is for-

mulated which relates the conclusions drawn from the x-ray diffraction

and optical rotation analyses. The author suggests a correlation of

the helical configuration of the polypeptide chains with the rotation

values observed in 'procollagen' and 'parent gelatin'. In addition.,

theories are suggested which relate the optical rotation and config-

uration of globular proteins in the native and denatured states.



CHAPTER I

The Structure of the Collagen Fibril

Wide.-angle diffraction and polarimetry are methods which

give information about the protofibril at a structural level of

atomic dimensions. Knowledge of higher structural levels in collagen

is necessary for the proper interpretation of data obtained by these

methods . Evidence from electron microscopy and small-angle x-ray

diffraction is valuable in establishing the structural identity of

material studied by the higher resolution optical techniques. Further-

more, such evidence is of aid in determining whether the wide-angle

diagram of collagen characterizes all, or only a portion of, the pro-

tofibril. This fact is important for the analysis of protofibrillar

structure. It is also of significance in the correlation of optical

rotativity with protofibrillar structure, since the specific optical

rotation of a substance relates to the entire structure.

In the following section a few experiments which are relevant

to these questions are reported and briefly discussed.

A. Experimental data

1. Small angle x-ray diffraction studies of tendon

The two small-angle cameras used in this investigation have

been described by Bolduan and Bear (1949). The cameras had pin-hole

collimation which allowed a resolution of 200 x 400 A. for one camera,

and 400 x 800 A. for the other, at about 15 cm. Filtered Cu K o4 radia-

tion was used.

a, Swelling experiments

The swelling of tendon at neutral pHt-s was investigated by

small-angle x-ray diffraction. The water uptake of kangaroo tail tendon



(hereafter, KTT) was determined as a function of the concentration of

LiCl, LiBr, and Lii. The swelling effects of the reagents increased

in that order. KTT samples (about 6 inches in length) were soaked in

distilled water, and stretched under high tension, until dry. Short

lengths of tendon, less than 1 mm. in diameter, were placed in thin

walled glass capillaries and various concentrations of Iil were added.

LiC1 was used since this had the smallest x-ray absorption coefficient

and also produced a large swelling effect. (KTT in 2.5 M LiCl absorbed

more than twice as much water by weight as KTT in distilled water.)

The tubes were sealed with a flame and the ends coated with paraffin.

The anall angle diagrams obtained were similar to those

yielded by KTT swollen with distilled water. (Bear, 1942; Bear, 1952;

Rougvie and Bear, 1953). See Figure I . The diagram has sharp meridional

reflections with odd orders strong and even orders weak. Periods ranged

from 673 A. with distilled water, to 654 A. with 2.5 M LiCl.

The wide-angle diagram of KTT in 2.5 M LiC1 showed the char-

acteristic 2.86 A. reflection.

b. KTT under tension

KTT was stretched by a method described in the section on

wide-angle diffraction (p.'1O ). The sample' was irradiated while under

tension in the small-angle camera. Figure A shows a pattern obtained

from a sample which had a 700 A. period. The meridional reflections

are sharp with odd orders strong and even orders weak. This is very

similar to the pattern from the hydrated specimen shown in Figure I

The pattern obtained from the most highly stretched specimens had a

period of about 703 A. and showed only h orders, of which the second and



Figure I
Small-angle x-ray diagram of

KTT swoflen in 2.5 M Lici

Figure Z

Small anle x-ray diagram of
KTT under tension



the third were almost equally intense.

The wide-angle diagrams of these highly stretched tendons

showed an increase in period which is discussed below.

2. Investigations of ichthyocol 'procollagen'

Solutions of ichthyocol 'procollagent prepared by citrate

extraction as described by Gallop (1953), were dialyzed against phos-

phate buffer (pH 8) or tap water and the precipitate examined with

the electron microscope. Typical collagen fibrils with the 640 A.

period were seen.

Following the directions of Schmitt et al. (1953) 0.2% so-

lutions of ichthyocol 'procollagent in 0.05% HAc were dialyzed in

the cold against an equal volume of 0.% ATP (free acid). The resul-

tant precipitate was fixed with phosphotungstic acid and examined with

the electron microscope, The precipitate was found to consist almost

entirely of 'segment long spacingt units (FigureI3 ). These results were

reproducible with other preparations of the ichthyocol 'procollagen.'

The length of the segments was about 1800 A. The widths varied from

thin segments to wider ribbon-like strips. Films of this material

gave poorly oriented, collagen wide-angle diagrams. Schmitt

et al. (1953) have previously reported the same results with x-ray

patterns of long spacing material.

When cool 'parent gelatin' in 0.05% HAc was dialyzed against

0.4% ATP, a light thermolabile precipitate was formed. This precipitate

dissolved upon reaching room temperature and reprecipitated when the

solution was cooled. Only a part of the 'parent gelatin' is involved in

this reaction since the same concentration of unheated 'procollagen'



Figure 3
Electron micrograph of segmental long spacing
precipitate of icthyocol 'procollagen' dialyzed
against ATP. Stained with PTA.
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yields a much more copious precipitate. Films of the ATI%!parent gel-

atin'precipitate prepared in the cold yielded the collagen wide-angle

diagram. Electron microscope pictures of this material fixed with

osmium tetroxide or phosphotungstic acid showed amorphous fibrous

masses.

B. Discussion

1. Small angle studies of tendon

Bear (1952) has summarized the evidence from small-angle

x-ray diffraction that within the 640 A. period of collagen there

are regions of order (interbands) and regions of disorder (bands).

The band-interband concept of structure was derived from

the characteristic fanning which is exhibited by meridional orders

in patterns, from dry tendon. This is especially marked in KTT. In

patterns from moist tendon (with periods up to 670 A.), the layer

lines do not show fanning (Bear, 1942). The interpretation of the

pattern from moist tendon was that band distortions are decreased by

the addition of water and this leads to the loss of fanning.

An intensity distribution of odd orders strong and even

orders weak is found in patterns from moist tendon. This was inter-

preted to mean that in the wet specimen a cosinusoidal variation of

electron density occurred along the fibril. Roughly half the period

had greater than average electron density, and half had less than the

average electron density (Bear, 1942). Because of the complication of

water the extrapolation of this aspect of the structure to the dry fibril

was not made.



This new evidence represents the first high resolution small-

angle diagrams of tendon under tehsion. These show that dry tendon

uhder high tension not only loses fanning, but has a variation of

electron density similar to that of hydrated specimens. This may be

interpreted to mean that both water and tension increase the intrafibrillar

orientation, thus permitting the appearance of this electron density

variation.

Data from electron microscopy are consistent with this con-

cept. Shadowed preparations and many stained and unstained preparations

show a 'scallpped' appearance along the fibril. This corresponds to

the cosinusoidal variation of electron density dividing the period into

halves as predicted from the small-angle x-ray diffraction data. It

should be noted, moreover, that both bands and interbands are present

in each half of the period.

Very high tensions will eventually have the effect of wiping

out the intensity of higher orders as slippage occurs within the fibrils.

This may explain the decrease of intensity in the third order relative

to the second which was observed in one pattern.

The loss of fanning and intensity changes which occur in the

small-angle diagram, without corresponding changes in the wide-angle

diagram, are data supporting the suggestion by Bear (1942, 1952) that

the wide-angle diagram relates only to portions of the protofibrils.

2. Experiments on ichthyocol 'procollagent

Two kinds of long-spacing modification have been described

for collagen (for references, see Schmitt et al., 1953). One is a



'fibrous long spacing' material which can be formed by the addition

of mucoprotein to acetic acid extracts of swim bladder. The periods

range from 1800 to 3000 A. in length and are unpolarized. The other

kind is 'segmenit- long spacing' which can be formed by the addition

of ATP to similar extracts. Two different sizes of polarized segmen-

tal units are formed depending upon the source and method of extraction.

One is about 1800 A. long and the other about 2500 A. The ability to

reconstitute these long spacing structures may be considered a cri-

terion for the identification of collagen.

Gallop (1953,1954) has described x-ray diffraction and elec-

tron microscope data which characterize ichthyocol 'procollagen' struc-

turally as a 'typical' collagen. On the basis of solubility, however,

this material is classified as a particular fraction of collagen. The

data presented above show that the ichthyocol 'procollagent fraction

is able to form the 'segment long spacing' modification.

In addition, the fact that the 2.86 A. reflection persists

in the wide-angle diagrams of such materials means that at least some

of the collagen protofibil remains intact during the conversion to

long~spacing material.

'Parent gelatin' does not seem to reconstitute material

showing large structural periods. The intramolecular configuration

of 'parent gelatin' described later in this thesis, can account for

these results.

3. The collagen molecule

We may briefly summarize an interpretation of the molecule

which is consistent with the experimental data. Bear (1952) has



suggested that the collagen molecule has a length of 640 A. along the

protofibril. He also proposed that this unit uncoils to form the long-

spacing modifications. Since the wide-angle diagram (chiefly the 2.86 A.

spacing) persists in the long-spacing modifications, this may mean that

the uncoiled protofibrils, perhaps by some rearrangement, can yield this

diagram. Or, the unfolding concept may be revised to specify that only

some portions of the protofibril change in the conversion to long-spacing

material. The- bands may be the regions of the protofibrils which take

part in this conversion. There is evidence that the bands do not contri-

bute greatly to the collagen wide-angle diagram (Bear, 1952) and any

configurational changes they undergo would not be detected by this method.

In addition, Bear has suggested that the amino acids with side chains

carrying polar groups are localized within the bands. These would be

expected to react with reagents causing long-spacing modification. How-

ever, a serious difficulty with such a picture is that if only the bands

uncoil, the three-fold increase of period would have to be accounted for

by a large difference in the amount of material in the bands and inter-

bands. At present, the relative proportion of material in these regions

is not known, The two different long-spacing modifications may both be

produced from the polarized 640 A. particle. It might be imagined that

in the presence of ATP the polarized long-spacing particle is oriented in

one direction only, whereas with mucoprotein acting as a cementing sub-

stance, the long-spacing particle is oriented in both directions and

forms an unpolarized unit (See Schmitt et al., 1953).

C. Conclusions

1. Small-angle diagrams of dry tendon under tension supplement



previous studies on hydrated tendon, and reveal that a fundamental pro-

perty of the collagen fibril is a cosinusoidal variation of electron

density. The period of from 640 to 700 A. is about equally divided

into a region having greater than average electron density, and one with

less than average electron density, the division being roughly in the

middle of the period.

2. An ichthyocol 'procollagen' fraction, used in the polarimetry in-

vestigation described below, is a 'typical t collagen in its ability to

form long-spacing material.

3, The experimental results which show changes occurring at small

angles, without corresponding changes at wide angles, support the con-

cept that portions of the protofibrils are inaccessible to analysis by

wide-angle x-ray diffraction.
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Chapter II

Wide Angle X-Ray Diffraction Analysis of Collagen

A. X-ray dif fraction data

The colla gen wide-angle pattern cons is ta of three strong

near-meridional reflections at spacings of 9.55, 3.76, and 2.86 A.,

and a strong equatorial reflection at about 11-12 A. A very character-

istic feature also is the difflse h.5 A. equatorial halo.

A more detailed description follows.

1. Patterns from dry specimens

Figure 4 shows a pattern obtained from KTT, with fiber axis

normal to the beam of filtered Cu KO(radiation.* Higher,.angle meridional

reflections were obtained by the use of a cylindrical camera (radius

4.7 cm) with specimens tilted at appropriate angles to the beam. Os-

cillation photographs were also taked. In addition to KTT, rat tail

tendon, tunic from carp swim bladder (ichthyocol), and demineralized

mammoth tusk were examined. These materials gave similar high angle

meridional reflections except that the 2.3 A. spacing (which is very

weak for KTT) was not observed. The observed spacings and approximate

intensity relationships for KTT are listed in Table I . Some of these

spacings (with one change) have been reported previously (Cohen and

Bear, 1953). Arcing and diffuseness of the higher.. order reflections

lead to the uncertainty noted in the table. All near-meridional re-

flections smaller than 2.86 A. were measured as meridional. Meridional

indices were assigned on the basis of a 20 A. pseudoperiod in Bear

(1952) and Cohen and Bear (1953). Although this is the smallest period

which accounts for the data, it is also an approximation. The Jarger



and more exact period is 28.6A. However, helical diffraction theory

shows that basically similar structures are prescribed by the two

periods (see page ' ). In Table j indices are assigned according to

the 28.6 A. period. Reflections obtained with Mo K oc and reported by

Perutz (1952) are also included in the table.

The pattern shown in Figure I may be considered the Iclassicall

collagen diagram. It was obtained by moistening the KTT and allowing

it to dry under tension. Then the fiber, released from tension, was

irradiated. In 1953, Cowan reported the work of North who obtained pat-

terns from rat tail tendon under high tension. Spacings up to 3.1 A.

were observed for the 2.86 A. reflection (Cowan et al., 1953). Attempts

were made by the present author to duplicate these results. Both KTT

and beef tail tendon were examined. In order to avoid the shearing caused

by clamps, the stretcher consisted of two opposing bars slotted at the end,

one of which could be moved by a fine adjustment. The ends of the tendon

were pulled through the slots and wrapped around the bars. Tendon was;

stretched in both wet and dry condition and irradiated while under tension

in the stretcher. The highest spacing obtained for the 2.86 A. reflec-

tion was 2.96 A. Figure S shows a pattern from dry KTT under tension.

Figure '7 shows the tracing over Bernal coordinates of a similar pattern.

In the patterns obtained from all specimens, the three prominent near-

meridional reflections maintained their indexing relationships within the

accuracy of the measurements (see Table 1 ). A correction should be
the

added to/h.2 A. spacing ( and a smaller one to the 2.95 A. spacing) to

account for the curvature of the sphere of reflection. This makes the

true period closer to 30 A.

Some other differences between the patterns in Figures 14 and

S are the decrease of meridional versus near-meridional intensity

of the third and seventh layer lines, in Figure 5 . This splitting of the
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Figure L4

Wide-angle x-ray diagram of KTT

Figure S

Wide-angle x-ray diagram of KTT
under tension

Figure 6

Wide-angle x-ray diagram of KTT
moistened, under tension



Figure 7
Tracing over Bernal coordinates (flat film, 5.0 cm.
specimen to film distance) of x-ray diagram of
KTT under tension I

Figure a
Tracing over Bernal coordinates (flat film, 5.0 cm.
specimen to film distance) of x-ray diagram of
KTT, moistened and under tension.



third and seventh layer lines indicates that these are not true meridional

reflections. There is also an apparent decrease of intensity of the

2.95 A. reflection relative to the 9.7 A. reflection.

Mo K O( radiation -was used to test whether this latter inten-

sity change is due to the fact that in the highly stretched fibers less

of the specimen is tilted into the sphere of reflection than in the

case of the more poorly oriented fibers. Mo K o(radiation has a smaller

curvature of the sphere of reflection than Cu K o(, and enables the

true intensity relationships of the reflections in question to appear.

Figures40show.s a comparison of the same stretched sanple of KTT irradiated

with Cu K 00 and Mo K 0(. It is seen that the correct intensity relation-

ship is similar to that in Figure 4(.

It is clear that Figure 5 is a 'better ' diagram than Figure L

because of the decrease in arcing in the pattern. However, it is not

the most useful diagram for determining the transform of an individual

diffracting unit, the protofibril, since as seen in Figure 7 , the

transform is clearly sampled by a poorly developed lattice.* The

sampling observed is consistent with that expected for hexagonal packing

of cylinders. The distance between cylindrical diffracting centers is

about 12 A. in unstretched samples at normal humidity, and about 10-1 A.

in stretched samples.

2. Patterns from moistened specimens

Figure 6 shows a pattern obtained from moistened KTT under

tension. The tendon was kept moist while in the stretcher by means of

* By this we mean that packing arrangements result in intensity being
permitted only at reciprocal lattice positions. Thus, in effect, we
can think of the continuous transform of the individual diffracting unit
as being 'sampled' at these discrete positions.



Figure q
Wide-angle x-ray diagram
taken with Cu K radiation
of KTT under tension

Figure 10

Wide-angle x-ray diagram
taken with Mo K radiation
of same specimen as in Figure



wet filter paper in which windows were cut to allow the x-ray beam to

hit only the specimen. From Figure 6 , it is seen that most of the

lattice has been eliminated by the treatment with water, and the un-

sampled intensity relationships are available. This is the pattern

whose intensity distribution must be explained by any model. One should

remember, however, that the presence of water changes the ratio of the

protein to background electron density.

Figure S shows a similar pattern traced over Bernal coordinates.

In patterns from moistened specimens in which the Jattice is still pre-

sent the strong equatorial row line reaches spacings up to 16 A. (Iluntzel

and Prakke, 1933). As the specimen is dried, the spacing decreases to

a lower limit of about 10.6 A. in unstretched tendon (Rougvie and Bear,

1953) and less than this in stretched tendon (Cowan et al, 1953).

It may be noted that a spread of diffuse intensity shows up

in Figure (P at close to the correct value for the.fourtA iaylminyr, *This

spacing has a meridional component also. No such intensification is

apparent in dry specimens (Figure E). In addition, intensity seen on

the sixth layer line in patterns from dry specimens (see Figure)

seems to have disappeared in patterns from moistened specimens.

From Figure , it is seen that two kinds of diffraction may

be distinguished on the collagen wide-angle diagram. The strong near-

meridional reflections are confined relatively sharply to the third,

seventh, and tenth layer lines. On the other hand, a diffmse row line

at about 4.5 A. is composed of diffractions not clearly located on

layer lines. The greater distance of these diffractions from the meri-

dian accounts for some of the diffuseness.



Table I

Diffraction by Dry Collagen at Wide-Angles

Near-Meridional

Relative
Intensity

S
S
VS
w
vw
W

wWW

Layer Line
Index

0
3
7
10
11
13
14
16
17
20
30
40
50

Equatorial

Period
C = Z d,A.

28.7
27.8
28.6
27,9
30.
28.8
29.4
27.8
28.8
29.4
30.h
30.0

Bessel Function
Order
n

1
0
3
1
2
2
1
0
0
0
0

Observed Spacings, d, A.

11.6 VS 5.7 S

and Relative Intensity

4.6 S 2.25 +.05 V1*

* Reflections obtained with Mo K o, and reported by Peruta
(1952).

+ May not be true equatorial reflection, since off-equatorial
components appear to be strong.

Table 'A

Principal Meridional Reflections of Dry Collagen Under Tension

Observed Spacing
d, A.

Layer Line Index

9.97
4.18
2.95

Period
0 = kAd, A.

29.9
29.3
29.5

Observed
Spacing

(c)
9,55
3.97
2.86
2.54
2.3
2.06
1.8h
1.64
1.4
0.98-"
0.76*
0.60*
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B. Interpretation of the wide-angle diagram

The history of the problem has been outlined in the introduc-

tion. In the next section the necessary helical diffraction theory

is presented with particular emphasis placed on ambiguities encountered

in the analysis. In the subsequent section the theory is applied to

the collagen wide-angle diagram.

1. Helical structure determination by x-ray diffraction

Introduction

The helical diffraction problem may be approached systemati-

cally. The plan of this discussion is to consider first the diffraction

from certain mathematically 'ideal' helical distributions. Basic theory,

including the necessary Fourier transforms and selection rules, will be

developed in this section. Application of the theory to the interpreta-

tion of the diffraction diagram will then be discussed. The analysis

will finally deal with ambiguities encountered in the structure deter-

mination.

a. Basic theory

The Fourier transforms for certain helical diffractors have

recently been derived by Cochran, Crick and Vand (1952) and Crick (1953a).

Definitions: Three kinds of distribution are considered:

1. The continuous helix is defined as a uniform helical scatterer in-

finitely thin and long.

2. The discontinuous helix is a periodic set of points on a continuous

helix; scattering takes place from the se points only.

3. The coiled-coil is either 1. or 2., in which the axis of the helix

itself forms another helix.



The discontinuous coiled-coil is the most general array; all

other distributions may be considered as special cases of this. The

selection rule for the Fourier transform of a discontinuous set of

points arranged on a coiled-coil has been derived by Crick (1953a).

By appropriate conditions the selection rules and transforms of other

distributions may be derived from this. Table 3 presents this informa-

tion.

Definitions of symbols in Table Z

Crystal space Reciprocal space

Coordinate Systems

No = number of turns in major coil

N1  number of turns in minor coil

r 0 radius of major helix

r = radius of minor helix

= angular coordinate of major helix

= angular coordinate of minor helix

= angular coordinate of scattering center

= initial 3 coordimte of major helix

P = repeat of major coil

C = period = N0 P

A~ = layer line index

n, m', p, q, d, S = any integer

M = number of scattering centers



tan at= 2Wro/P

rl = ri (1 + cos9)/2

6 = r1 (1 - cos ec)/2

b. Application of the theory to the calculation of transforms:

For the purposes of analysis, any helix consisting, for example,

of groups of amino acid residues acted upon by a screw axis or axes, may

be reduced to one of the configurations considered above. Variations

of electron density due to the atomic discontinuities may be 'smeared

out' and a continuous helix used as a representation. Marked discon-

tinuities of electron density, corresponding to the repeat of each

amino acid residue, or to the scattering from a particular side chain

sequence, may be condensed to a periodic distribution of nodes, or

point centers of scattering. Diffraction from such distributions (con-

sidered independently, or packed in various ways) may be analyzed by

the preceding transforms. This enables rapid model evaluation. It

is clear, however, that although the transform obtained in this way

is correct, it is incomplete. The complete expression for the struc-

ture includes the transform of the electron density distribution about

the node, and within the 'continuous' electron density 'smear.'

Examples of some transform calculations are given in this thesis.

They are based on the analysis of the collagen diagram. The simplest

case is that of the discontinuous helix, calculated from equation 5'

This is presented on page 40. The calcua tion of the transform of the

continuous coiled-coil according to equation 3 is more difficult.

Both the methods and the results of such a calculation are given in

Appendix, '
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Tab 3

Fourier Transforms and Selection ;'les for Helical Distributions

Structure

1. discontinuous coiled-coil

2. discontinuous coiled-
coil of steeppitch

3. Bontinuous coiled-coil

4. continuous coiled-coil
of steep pitch

5. simple discontinuous
helix

Conditions

Since
A -+ 0

d 0

mi - 0

A -+ 0
ii' - 0

Ni - 0

Selection Rule

Nog. + (N1-N ) + Ns + (No +Nl)d

- + m

Nop + (Nl-NO)q + Nis - +Mm!

NOg + (N1 - No)%. + Nls

+ (No + Ni) d =

N 4 + (Nj - NO)q + Ns-

(a)Noni + - A. 

(m - No)n2 -X + Mm

(where ni = -n 2 )

Transform

1Jp(2 nRr )Jg(2TR1) Js(2 f (f/c )r s in oc )Jd(2-n rA)

Lip( q- +1n/2) + iq (-p+1+I1/2) + is (- + ) +id (f + 9l+1/2)

+ + 21 iIA~/c

J(2jKRr.) Jg (2n Rrl) J (2iT(/c)r, sinc)

x ip (4+ 0 + ~U/2) + iq (-j+ + 1T/2) + is (- A + 7 )

m + 2u i- A0/c

-V 1- with m' - 0.

A

- 2. with m' *- 0.

J n (2-0Rr) exp Ii n (y +1T/2)

(b)*

6. simple continuous helix Ni -m'

= 0
Non -o

* This may easily be proved by a substitution.

1n 2Ir ar) exp i n ( %P+ /2
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For the calculation of structure factors, the groups of amino

acid residues are broken up into sets of like atoms, each set being at

a certain radius from the central axis. These sets are then treated by

a simple extension of the methods derived for the discontinuous helix

(Cochran, Crick, and Vand, 1952).

c. Application of the theory to the interpretation of the diffraction

pattern

If a pattern can be indexed according to any of the selection

rules listed in the preceding section, the helical nature of the dif-

fractor is possible and the basic axpecte of structure may be specified.

In the usual crystallographic case, the symmetry properties of the

diffractor are derived from the extinctions noted in a pattern. Helical

diffractors yield only a limited number of reflections, and the analysis

may be based on the presence of diffraction maxima predicted from the

selection rules, as well as absence of reflections in forbidden regions

of reciprocal space.

It should be keot in mind that this kind of treatment is

based on the analysis of the transforms of individual helical dis tri-

butions. Any packing arrangements affect the transform by extinctions,

and thus complicate the task of elucidating the helical configuration.

Thus, it is desirable to eliminate all lattice experimentally so that

unsampled intensities appear on the x-ray diagram. Certain packing

difficulties are discussed more fully in Appendix .

The following section shows how the basic aspects of the

structure may be derived from the position of the maxima in a pattern.

Some geometrical concepts useful in the interpretation of helical pat-

terns are first developed.



(1) Helix Geometry*

All the points on a helix fall on a cylindrical surface. If

this surface is split in a direction parallel to the axis, and laid

flat, an array of parallel lines is obtained. This corresponds to the

mapping - kX (see Figure lIt). Any helix with regularly distributed

discontinuities along its1length will then reduce to ainet consisting

of a number of unit cells in the XY plane (Figure 11).

In general, helix-nets may be classified as single-cell

or multiple-cell. The single-cell helix-net is defined as that in

which no node exists on the line joining 0 to 0'. The multiple-cell

helix-net has more than one unit cell in the X direction so that one

or more nodes exist on the line joining 0 to let us say 0" in Figure U4.

Within the single-cell helix-net various familieP of .helices

whose members include all the nodes may be constructed (dashed lines

in Figure l1.). These are related by screw axes coincident with the

helix axis. We define the primitive helix as that which includes all

the nodes in the cell. It is generated by joining an origin (0 or 0'

in Figure 1l) of the cell with the lowest node in the cell ('a' in

Figure *). In the single-cell helix-net there will be two primitive

helices of opposite sense of twist, and the sum of the number of turns

in each primitive helix is equal to the number of nodes in the cell.

The genetic helix is the primitive helix with fewer number of turns.

No primitive helixes exist far the multiple-cell helix-net.

It is obvious that the smallest family of helices which includes all

* Useful references: Bravais, L., and Bravais, A. (1831); Tate, G.P.,
(1872); Thompson, D.W. (19h2).

* All the members of a particular family of helices have the same
radius and pitch.



the nodes on this compound net is one in which the number of strands

is equal to the number of unit cells in the cable. Further, the members

of this family of helices are related by a rotation axis coincident with

the helix axis.

Y

x x
)C X

x X x

Figure I o. Figure W4-

(2) Interpretation of the pattern

From a consideration of the selection rules and the trans-

forms in connection with thehelix geometry we may deduce certain general

features useful in interpreting helical patterns.

(a) Meridional reflections correspond either to the discontinuities

in the helix, or to the period of the minor coil in the coiled-coil.

This is apparent from equations (3) and (5), Inspection of their trans-

forms shows that for the case when A= N1 or M respectively, meridional

reflections are predicted.

(b) Near-meridional reflections correspond to specific helical aspects

of structure. Two cases may be considered.

1. The discontinuous helix will have diffractions of greatest

strength and closeness to the meridian on layer lines whose indices are

I= NO, (M+No), since the transforms for these cases have Ji Vessel

function terms. It may be noted that the indices No and M-N0 are equal



to the number of turns in each of the primitive helices in the struc-

turets net cell. This corresponds, of course, to these turns being

equivalent to the planes of highest scattering power in the structure.

Further, the symmetry about M results from each meridional reflection

acting like a displaced origin.

Since the N and (M +No) layer lines will be strong and near..

meridional, and since the layer line where I - M will be meridional,

a pattern may be examined to see whether the relationships

No + (M -N0 ) = M (7a)

and

(M + NO) - No M (7b)

are obeyed by the appropriate rdlections. If this is true, the pattern

may be characterized in terms of a discontinuous helix and its net

immediately deduced.

2. The continuous coiled-coil will have near-meridional strong

reflections on layer lines where = No, (N +No), since the transfarms

will consist of the product of one J, Bessel function and three Jo's

(assuming the value of the Js Bessel function factor is appreciable).

We may then write down

No + (Ni - NO) = N1  (8a)

(NO + N) - No = N1  (8b)

From (7) and (8) the correspondence between N1 and Mis clear and a net

which is based on (7) might equally well describe (8).*

* The discontinuous coiled-coil will reduce the sum of two nets if the
period of the discontinuities is different from the period of the minor
coil, (M;N 1 ). This compound net will cons ist of one primitive helix of
N turns and two primitive helic es with (aM-N) and (bNi-N) turns respec-
tively, where a and b are integers. N is the smallest number of turns
which accommodates an integral number of nodes corresponding to aM and
bN1 . Equations (7) and (8), tgethen,describe this situation.
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(c) The period of a helix

If P/p can be expressed as the exact ratio of whole numbers,

i.e.,P/p = M/N0, then there is an exact period to the structure, C =

N P = Mp. This exact repeat may be quite large and often there will

be combinations of smaller integers which approximate the correct

ratio:

P/p = M/Ne, (M - a)/(No - b)

If this approximation satisfies the x-ray diagram within a certain error,

it is often more feasible to work with the smaller period. (Far a dis-

cussion of this problem see Cochran, Crick, and Vand, 1952).

(3) Ambiguities in the analysis

(a) Net aihbiguities

1. Net-helix ambiguity:

The most profound ambiguity in this analysis is that of the

net versus the helix as the actual diffracting structure. It can be

shown (Crick, 19534)that the Fourier transforms of the net (with rota-

tion) and the helix place intensity at similar loci in reciprocal space.

The net and the helix have, therefore, a formal equivalence.

If much lattice is present in the diffracting system, the

diffraction line shapes cannot be determined. It should be noted, how-

ever, that the transform of a helix gives little intensity after the

first few maxima, even in the presence of a well-developed lattice. On

the other hand, numerous row lines would indicate a net of large extent.

In some cases it may be possible to eliminate most lattice.

Differences in the shapes and 'areas' of the diffraction maxima are then

expected for the two kinds of structure. The rotation diagram of a net
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derives from the intersection of reciprocal rods rotated into the

sphere of reflection. The transform of a helix is determined by

Bessel function maxima.

In addition, other non-crystallographic information may be

brought to bear in determining hich of the two kinds of structure is

correct. Stereochemical requirements and analysis of the system by

electron microscopy, ultracentrifuge, and other physical-chemical tech-

niques may yield information which favors one of the two poss-ibilities.

2. 2. The single-cell versus the multiple--cell ambiguity;

This ambiguity is discussed fully in Appendix r. It is
a

shown there that the transform of/cable consisting of A discontinuous

helices, related by an A-fold rotation axis, has the following selec-

tion rule:

A (NO/A)q = + Mm'

where n = Aq for each .

This means that the Bessel functions in the Fourier transform of a

helix are multiples of the number of cells determining the width of

the helix-net. Thus, in indexing a diffraction diagram, the assignment

of a J1 Bessel function to the prominent near-meridional reflections

corresponds to the assumption of a s ingle-cell helix-net. Similarly,

the assignment of higher order Bessel functions to these reflections

implies multiple-cell helix-nets.

Limits may be imposed on the number of cells wide a particular

helix-net may be. The higher the order of the Bessel function assigned,

the larger must be the radius of the diffracting unit to account for
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the position of a particular maximum on the x-ray diagram. When the

radii become too large to meet other requirements, for example, of

density or of packing, the associated helix-nets and any wider ones,

need not be considered.

(b) Connection ambiguities

The preceding analysis has been based on a treatment of

idealized diffracting systems where periodic discontinuities are re-

duced to 'nodes'. In order to use the Fourier transforms developed,

these nodes were treated as point scatterers. It is clear, however,

that in the actual structure, the nodes correspond to any periodic

variations of electron density which occur along the scattering back-

bone. Thus, for a protein, a node might correspond to a group of

amino acid residues in which one residue has a smaller side chain

than the others, or to the minor coil in the continuous coiled-coil.

Included by the node might be more than one polypeptide chain, and

different nodes might belong to different chains related by various

screw axes (see Figure lla). Thus, by designating the 'net' of a

helix, the helical analogue of the crystallographic lattice has

been specified by the node arrangement. However, the chemical con-

nection about the node remains to be specified. Stereochemical

arguments, complete structure factors, and other considerations

must be used in distinguishing among the many possibilities. Appendix

I gives some general examples of the problem and this ambiguity is

discussed at length with specific reference to collagen in a later

section of this thesis.
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2. Application of helical diffraction theory to collagen

a. The basic helix-net of collagen

The appearance of the collagen pattern immediately suggests a

discontinuous helical diffractor. The presence of two strong near-

meridional reflections, each displaced from a true meridional reflec-

tion by the same amount is a striking feature. Thus, we note the rela-

tion:

3 + 7 = 10 (for indices assigned on the basis
of a 28.6 A. period.)

The correct helix-net may be described as ten discontinuities in three

turns of the genetic helix. This is shown in Figure M'. The basic

screw corresponding to the genetic helix, is a tranalation of 2.86 - 3.1 A./

node, and a rotation of 1080/node. Indexing on the basis of a 20 A. pseudo-

period (Cohen and Bear, 1953) yields a very similar net with seven nodes

in two turns.

We may note that the three-chain model for the collagen

protofibril suggested by Pauling and Corey (1951) has nine discon-

tinuities in one turn, and the 3 helix model (Bear, 1952) has seven

discontinuities in four turns. These do not give the correct distri-

bution of diffracted intensity for the collagen diagram (Pauling and

Corey, 1953; Cohen and Bear, 1953).

Starting with the correct helix-net, and using the selection

rule for the discontinuous helix (equation 5 ) we can draw up a table

which gives the orders of the Bessel functions expected for each layer

line in the 28.6 A. period. This is shown in Table4j . If one compares
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PLANAR REPRESENTATION OF THE COLLAGEN HELIX
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Figure 1..



Table I

Bessel Function Orders for Discontinuous Helix for Collagen

-10 m/ n = Bessel function crder
n = 3 = Layer line index

m'= Any integer

d = c/
A.

00 0 10 --

28.6 1 -- 7

14.3 2 -- --

9.56 3 11 --

7.15 4 -- 8

5.72 5 - --

4.77 6 12 --

4.09 7 -- 9

3.58 8 - -

3.18 9 13 -

2.86 10 -- 10

2.60 11 -- --

2.38 12 14 -

2.20 13 -- 11

2.04 14 -- --

1.91 15 15 -

1.79 16 -- 12

1.68 17 -- --

1.59 18 16 --

1.51 19 -- 13

1.43 20 -- --

* Assuming a 28.6 A. period.
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the predicted diffractions with the observed ones,excellent agreement

is found. Thus, in Table L the lowest Bessel f unction predicted for

each observed layer line is noted. However, for spacings greater than

the 2.86 A., the faintness, arcing and diffuseness of the reflections

are such that the indexing is not reliable and too much stress should

not be laid on these reflections. In addition, the atomic scattering

factors will have effects in this region which are not taken into ac-

count by the simple point discontinuity model used in this preliminary

analysis. Some notion of the intensity distribution is gained by plot-

ting the position of the lowest order of Bessel function predicted for

each layer line on some reasonable radial scale. This is shown in

Figure 13 for the first 10 layer lines of a discontinuous helix with

radius 3 A. As a first approximation, one may consider that the lower

the order of the Bessel function, the greater the intensity. For true

intensity calcuhtions, of course, various damping factors which are

functions of position in reciprocal space must be taken into account.

As an aid in evaluating models, an toptical transformer'

was designed and constructed by Mr. Harold Wyckoff. Appendix 31 gives

a description of the system and the particular methods used in obtaining

the diffraction patterns. iie may note that for helical diffractors

whose transform amplitudes have cylindrical symnetry, such an apparatus

is particularly useful, since any one section through the origin of

reciprocal space (corresponding to a projection in real space) gives

the complete intensity distribution. Figure14 shows the projection

of the basic discontinuous helix for collagen, and the optical diffrac-

tion pattern obtained. The relative positions of the chief maxima are

as anticipated from Figure 1 .
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A comparison of this optical diffraction pattern writh the

x-ray diagram obtained with moistened KTT (Figure (6 ) shows an essen-

tial similarity in the two patterns. In particular, the strength and

position of the third, seventh, and tenth layer lines should be noted,

as well as the presence of the heart-shaped equatorial maximum corres-

ponding to the 4.5 A. equatorial intensity. The chief discrepancy is

the prediction of relatively strong fourth and sixth layer lines, which

do not appear (with the possible exception of the fourth) on the wide-

angle diagram.

I should also be pointed out that the helix-net which was

derived for the collagen protofibril was based on the analysis of the

sharp near-meridional diffractions. The fact that the intense heart-

shaped equatorial maximum at 4.5 A. appears in transforms of this basic

net is of interest. However, the presence of diffuse intensity maxima

in other regions of the wide-angle pattem has been mentioned before

(see Figure 6). Whether these will be explained by the same structure

-which accounts for the mridional reflections remains to be seen.

b. The structural interpretation of the collagen helix-net,

The basic helix-net represents those parts of the protofibril

which diffract coherently. In the preceding section, it was shown that

very good agreement is found between observed diffraction maxima, and

those predicted by a discontinuous helix. However, all the ambiguities

discussed above are present in this analysis and must be considered.

(1) Helix versus net ambiguities

The primary ambiguity is the helix versus the m t as the actual

diffracting unit. Without a complete analysis of the shape of the dif-

fraction maxima, one cannot conclusively Drove tiat the x-ray pattern is

not derived from a mt rotation diagram. However, all the evidence is
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consistent with the assumption of a cylindrical diffracting unit for

the protofibril. Thus, the shape of the layer line maxima on patterns

from moistened specimens (showing little lattide) have characteristics

of Bessel functions (Figure 6). In particular, the first minimum and

second maximum on the equator can both be accounted for by a hollow

cylindrical diffractor of radius 5.7 A. (the Fourier transform is then

a Jo Bessel function). The pattern from dry tendon, showing sampling

by a poorly developed lattice, is consistent with the assumption of

hexagonal packing of cylindrical units. In addition, electron micros-

copy of the fibril indicates a uni-axial structure. Once the cylindrical

nature of the individual diffracting unit is assumed, the wide-angle

diagram can be interpreted on the basis of a discontinuous helix, and as

shown above, the agreement with observed intensities is very good.

It is highly probable, therefore, in the case of collagen,

that the net is only a formal and not an actual solution of the diffrac-

tion problem.

(2) Restrictions on the helix

The next stage in the arnlysis, where the number of nodes in

the helix and the chemical connections about the nodes are described,

is far more difficult. In order to make a solution feasible, all

possible restrictions on the model, from chemical, stereochemical and

physical data (including the x-ray diagram) must be considered.

(a) Number of residues per node

The density of collagen is usually taken as 1.35 (Astbury,

1940). This is the value one obtains far dry collagen by flotation

in mixtures of organic solvents (Rougvie and Bear, 1953). However,
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Pomeroy and Mitton (1951) have pointed out the errors involved in the

use of such a method, and by displacement of nitrogen gas, they deter-

mined a 'real density' of 1.41 for dry-calf hide collagen.

In order to calculate the number of residues which must be

placed at each noc for the single-cell helix-net we may proceed with

an argument like that given by Bear (1952). 'We assume that the proto-

fibrils in collagen can be considered as hexagonally packed cylinders.

The distance between planes is then 10.6 A., the value of the equatorial

spacing for the driest specimens. Therefore, the distance between

centers of the cylinders is 10.6 A./cos 304, or 12.24 A. This gives

a value of 130 A2 for the cross sectional area of each protofibril.

The cylindrical volume for each node in a 28.6 A. period is then 372.A 3 .

If the density is taken as 1.41, it contains a weight of about 315.

The serious difficulty nomr confronts us as to what residue

weight one should use. Bear (1952) has given reasons for believing

that the collagen wide-angle diagram is derived mostly from the inter-

band or well-ordered region of the fibril. The relative extent of

this region is not known. Further, he has given convincing arguments

for the localization in the interbands of residues with hydroxylic

rather than acidic or basic side chains. He pictures the non-polar

side chains (which make up about 65% of the residues) as being dis-

tributed among both the bands and interbands.

If it is assumed that there is no difference between band

and interband, the average residue weight of 93 for all amino acids

there present, peruits about 3.5 residues per node. If, however, the

assumption is made that only non-polar and hydroxylic residues are in



the interbands, their average residue weight makes possible as many

as four residues per node.

Thus, in building models we are faced with the problem of

whether to place 3, 3.5, or 4 residues about each node of a single net

cell. This argument depends on the assumption of relatively small

differences between band and interband. If greater differences oc-

curred, the numbers of residues per node might be quite different in

the two regions.

(b) The lattice ambiguity. Number of nodes per discontinuity

The next problem to deal with is how many net cells wide

the collagen helix may be. The a nswer to this depends partly on the

answer to (a). Two kinds of argument may be used.

The maximum extended length of an amide residue is 3.64 A.

(Corey and Donohue, 1950). Further, it is impossible to have a non-

integral number of residues compose each node.* Using these facts,

it is clear that the collagen helix cannot comprise more than four

net cells. In this case only one residue is associated with each

node, and it is impossible to have fewer than one per node.

Moreover, for models built from only one kind of net, only

helix-nets one or two net cells wide need be considered. This is so

since the assumption that the third layer line maximum is a J3 or J

Bessel function requires the radii of the corresponding cables to be

larger than the 6 A. limit imposed by the dry pattern.

* The only exception to this is the case of the coiled-coil (see Ap-
pendixE). But since the coiled-coil comprises only one net cell in
width, it is not relevant to this ambiguity.



Helices composed of combinations of single- and multiple-cell

nets have transforms whose maxima depend on all the nets involved. In

this case, a net three or more cells wide might be permitted.

(c) Stereochemical restrictions

In apaking the chemical connections, certain rules are to be

followed. Pauling and Corey have formulated the general plan of attack

for the synthetic approach to protein structure (see Corey and Pauling,

1953 and Pauling and Corey, 1953, for references). Donohue (1953) has

recently reviewed the criteria used.

The structures are built of planar amide uiits in which the

tran7configuration seems more probable than the cis. The maximim number

of hydrogen bonds are to be established, and these bonds have prescribed
and

lengths, and angular limits between the N-Hf 0-N vectors. For the

particular case of collagen, Ambrose and Elliott (1951) have presented

evidence fran infra-red dichroism that the hydrogen bonds are gener-

ally oriented in a direction perpendicular to the fiber axis.

It is clear that these stereochemical restrictions place very

great limitations on the number of models which may be constructed on

any given plan. However, in the development of these rules, side chain

effects were not considered, and it seems likely that some variation

from these stereochemical requirements may be tolerated in particular

situations.

(d) The imino residues in collagen

Collagen has an amino acid composition which is distinctly

different from that in all other proteins. This is due to the extra-

ordinarily high content of proline and hydroxyproline. From the data



of Bowes and Kenten (1948), Bowes, Elliott and Moss (1953) and Brown,

Kelly, and Watson (1953) for mamalian collagen, these amino acids occur

in almost equal amounts and they make up, on the average, at least one

out of every five residues.

Moreover, these imino residues present special stereochemical

problems, in addition to the lack of a hydrogen bonding locus on the

nitrogen. The large pyrrole ring must be accommodated by the structure

in which the proline is placed, and there is a loss of rotational

freedom about the N-Coe bond of the residue. These conditions make

it i#possible to accommodate proline in one of the two possible senses

of twist for the Othelix (Pauling, 1953). At present not enough evi-

dence is available to decide whether the tranonfiguration is more

probable than the cis or even whether the planarity of the peptide

bond is maintained for these residues.

(e) Extensibility

Electron microscope evidence of Schmitt, Hall and Jakus (1942)

showed that fibrils stretched to several times their length still main-

tained their pattern of bands. This might be interpreted to mean that

the protofibrils in collagen are extensible up to two and a half times

the normal length (Bear, 1952). However, explanations of the extension

are possible which do not necessitate uncoiling in the part of the proto-

fibril which gives rise to the wide-angle pattern. Therefore, in view

of the very severe and possibly artificial limitation such a restric-

tion places on a model, it is probably unwise at this time to use this

as a structural criterion.



(3) Mdels for collagen

The collagen model pr oblem has presented unexpected difficulties.

Since the basic net is known, it might be expected that at least several

models would fulfill the necessary criteria, and that these would have

to be evaluated with regard to details of the wide-angle pattern. How-

ever, although in theory there are very many different arrangements of

residues which satisfy the node pattern, the stereochemical and chemical

restrictions are such that very few models look promising. Cowan et al.

(1953) have listed several of the general types which might be possible,

but no detailed model was suggested.

In fact, since the basic net was determined last year, only

one model has been proposed which fulfills to any reasonable degree

the necessary requirements. This is the model proposed by Crick (1954).

It is a two-strand cable, based on the two-cell helix-net of collagen.

Each strand has 3/2 turn in 29.5 A. The infra-red dichroism of collagen

is accounted for by having hydrogen bonding perpendicular to the axis

of the helix. However, the stereochemical requirements are not com-

pletely satisfied since there is a crowding of atoms in violation of

van der Waal's radii. In addition, it is an all cis peptide bond

structure. The optical transform, made for this model by Mrs. Chow,

uhows that the agreement with the collagen wide-angle diagram is good

(see Figure 1 ). One expects that any model built on the net plan will

give the three, sevepand ten reflections, but it is the relative inten-

sities and positions of these reflections which must be accounted for.

Further evaluation of this model is being carried out by Mrs. Chow.

It appears at this time, therefore, that no entirely satis-

factory model has been proposed for the collagen protofibril.
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C. Conclusions

1. The wide-angle x-ray diagram of unstretched collagen

can be indexed by a 28.6 A. meridional period. Periods up to

about 30 A. were obtained by high tension.

2. The diagram is that of a helical diffractor. The

genetic helical arrangement is ten nodes in three turns. The

basic screw, therefore, has a translation of about 3 A., and

a rotation of 1080.

3. Helical diffraction ambiguities are encountered in the

more detailed analysis of the pattern.

4. Thus far, no model has been proposed which fulfills

all the necessary physical and chemical criteria.



Chapter III

Optical Rotation Studies

Two important relationships describe the optical rotativity

of a substance. The first expresses the value of the rotation inde-

pendently of the concentration at a particular wavelength and tempera-

ture. The other indicates the dependence of the rotation on the wave-

length of the light used in the measurements.

Thus, we have the following definitions:

The specific optical rotation of a solution of an optically active sub-

stance is defined as:

T GKC. 1001 C 1
where 0(. is the observed rotation in angular degrees at temperature T

and wavelength W; c is the concentration of the substance in grams per

100 cc. of solution; and X is the length of the tube in decimeihers.

Drude (1900) formulated the relation for the wavelength de-

pendence of rotation. This may be expressed as:

where km are the rotation constants;''X are the dispersion constants;m

and are, in principle, the absorption bands controlling the dispersion.

The formula is not valid within and close to an absorption band.

Classification of the kinds of rotatory dispersion which may

be found have been made by Lowry and Dickson (1913), Lowry and Owen (1930)

and Lowry (1935). If a one-term Drude equation is followed,

0



This is called simple dispersion.

If more terms are necessary, the substance is said to show

complex dispersion.

If 1/Lo is plotted against ?2, and a straight line is ob-

tained, the substance shows simple dispersion. The slope of the line

gives the rotation constant k, and the intercept gives the dispersion

constant X2

Dispersion measurements are important for several reasons. If

a quantitative camparison of the optical activity of different substances

is to be made, the dispersion constants should relate to the same wave-

length region in order that the comparison be justified. Thus, if dif-

ferent absorption bands were controlling the rotation of two different

compounds, this would be clear from the dispersion curves and comparison

of the rotation values could not be made. Furthermore, any theoretical

relation between molecular, structure and chemical composition is based

upon the dispersion characteristics of the material and not simply

upon the rotation at one wavelength (cf., Discussions of the Faraday

Society, 26, 1930). In a problem as difficult as the relation between

optical rotation and mol cular structure in proteins, all information

about the rotation characteristics, including the rotation and disper-

sion constants, should be determined.

A. Experimental data

1. The conversion of 'procollagent to 'parent gelatin'

The optical rotation of solutions of ichthyocol and calf hide

'procollagen' and 'parent gelatin' was investigated. The material was

prepared by a citrate extraction and the protein concentrations deter-
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mined by a Biuret reagent technique. A complete description of pre-

parative procedures and concentration determination is given by Gallop

(1953).

Optical rotation measurements were nade with a Schmidt and

Haensch polarimeter which could be read to 0.05*. Unfiltered radiation

from an Osram sodium lamp (SL/D 1-3) was used in the initial experi-

ments and later experiments were performed using a G.E. Na 1 lamp.

Temperature regulation was maintained by means of circulating water

from a thermoregulated bath through metal jacketed 2 dm. polarimeter

tubes. Temperature was controlled to about +l" C. At least ten ob-

servations were averaged for each recorded reading.

Results: Figure 16o presents a typical curve where'LoO( is

plotted against temperature at various times during heating and re-

cooling cycle. From the data, the optical rotation of unheated ich-

thyocol 'procollagen' in citrate buffer pH 3.7 (0.15 M citrate) was

found to be 10() 0 = -350 +300. Upon heating the solution to 300 CD

the rotation fell until reaching values of o1O = -1104 +20*. The

speed of this reaction varied; from one to more than twenty four hours

were required for the completion of the reaction with different pre-

parations and concentrations. At 40' C. the reaction proceeded very

rapidly in every case, the rotation falling froma<J 4O = -350* to -110*

within a half hour.

Vlhen the solutions were cooled, the rotations gradually rose

and values ofl(0 up to about -2800 were obtained, depending upon

temperature and length of cooling. The specific rotation of -350*

characteristic of the unheated 'procollagen' was not obtained, but
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longer equilibration at low temperature might have produced rotations

greater than -280*.

Once the valueJJ] = -. 100 has been reached by the system,

the mutarotation phenomenon is reproducible; upon cooling to a certain

temperature the rotation Aises to a characteristic value, and when the

solutions are reheated the rotation gradually falls until, at a tempera-

ture of 300 C., the limiting value of -1100 is again obtained (see

Figure 16). This kind of rotativity behavior is characteristic of

gelatins (Smith, 1919).

t Procollagen' preparations from calf hide showed a some-what

different temperature dependence, requiring heating to 340 C. before

marked rotation changes were observable, but the values for the specific

rotations (within 15%) and the mutarotation phenomenon were like those

for the ichthyocol preparations.

The data presented here are consistent with those reported

by Thaureaux (1945) for acid extracts of various collagens. The lower

rotations obtained by that author are probably accounted for by the

impurity of the preparations she examined.

2. Correlation with viscosity studies

Preliminary experiments were carried out with Dr. Paul Gallop

to determine the relation between s pecific rotation and the intrinsic

viscosity of 'procollagen.' These data have been reported by Gallop

(1953, 1954). For these experiments, the method used was the same as

in sectionA1, except that two thermoregu2ated baths were used, one for

the viscometers and theother for the polarimetry. The temperature re-

gulation was such that the solutions in the polarimeter tubes were
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maintained at about the .same temperature, within 24 C., as those in the

viscometers. The deviation in temperature occurred chiefly when the

temperature in the two baths was changed. Two kinds of Ostwald-Fenske

capillary viscometers were used which had flow times of about 60 seconds

and 270 seconds for water at 200 C. No study was made of the gradient

dependence of the intrinsic viscosity

Three different runs were made. In the first, ichthyocol

'procollagen' at a concentration of 0.38% showed a slaw decrease of

rotation at 30* C. (incomplete in 12 hours) and a simultaneous decrease

in viscosity. When the solution was heated to 390 C., both reactions

went rapidly to completion (within one hour). Another run was made

using a different preparation of 'procollagen' and three concentrations

of protein. In this experiment the rotation reached its limiting

value at 30* C. within five hours for all three concentrations, while

the viscosity remained high. Figureff illustrates this effect for one

of the concentrations.

An experiment with hide 'procollagen' gave a similar result.

Figure l shows the specific rotation and intrinsic giscosity at differ-

ent times. The intrinsic viscosity is seen to be about seven when the

optical rotation has reached its limiting value. Intrinsic viscosities

were determined by plotting n5 p/c versus c at specified tenperatures

and times, and extrapolating to zero concentration. Figures Ii and 2o

show these viscosity data. The initial intrinsic viscosity for unheated

hide 'procollagen' was found to be about 28, and that for hide 'parent

gelatin' 0.h to 0.6 at 39* C. Thisrmay bt !dampared withd values of 19

for the intrinsic viscosity of unheated ichthyocol 'procollagen' and
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0.34 for ichthyocol 'parent gelatin' at 390 C.

3. Rotatory dispersion measurements

A. Rotatory dispersion measurements were carried out to analyze further

the temperature effect on the specific rotation of the solutions of

ichthyocol 'procollagen' and 'parent gelatin.'

Method: For these experimnts a Rudolph high precision polarimeter

was used. This could be read to 0.0024. In practice an accuracy of

about 0.01* was obtained. Metal jacketed h dm. polarimeter tubes were

used, and an minco thermoregulated bath was used for temperature con-

trol. Each temperature setting was maintained to less than +0.5*G

The temperature of the solutions was about 10 different from that of

the circulating water, and if three tubes were run in series, the

maximum temperature differential among them was about 10 C. At least

ten observations were averaged for each recorded reading. The tubes

were closed with rubber stoppers and aluminum foil.

Four wavelengths in the visible were used. Sources and

filters are presented in TableC.

Tables

mP Source Filter

436 G. E, H-4 Corning Glass #3389 and
Hg Arc #5113 (2.5 mm.)

546 i i Baird Interference filter
#V-1-250; Corning Glass

#3-69; and Corning Glass
Didymiun #1-63

578 " "t oCorning Glass #3480 (3.85 mn)
and #502 (0.8 mm)

"589 G.E. Na-1 Yellow filter supplied with
lamp Rudolph polar imeter
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Concentrations of ichthyocol 'procollagen' from 0.02% to

0.h6% were examined at three different temperatures. The protein pre-

parations were stored in the refrigerator at about h0 C., then trans-

ferred to the polarimeter tubes and equilibrated for 12 hours in a

water bath at 100 C. Readings were then taken. The solutions were

kept overnight in the tubes at 104 C. and during the course of five

hours the next day the temperature was raised to 420 C. in the bath

and the tubes equilibrated at this temperature for one hour. Readings

were then taken and the temperature lowered overnight. After 30 hours

at 10 C. readings were again taken. This procedure was repeated for

each set of three concentrations.

Results: The results of these experiments are presented in

Figures 'A, 31, and'a, which show the readings at T = 114, 410 , and

20 C., respectively. In order to include all of the data most clearly

these are bilinear plots of 1/[O& T vs. W2 + 100 c. (A 5% correction

was mde for each of the three lowest concentrations at 20 C. because

of possible faulty sealing of the polarimeter tubes.) The following

main features may be derived from the data:

(1) 1/L D vs. X gives a straight line at each of the three tem-

peratures. The intercept does not differ within experimental error for

each of the three temperatures.

(2) In order to illustrate these data, rotation values from the medium

concentration range were chosen. These are close to extrapolated values

for unheated 'procollagen' at 110 C. and for 'parent gelatin' at 10,

and no valid extrapolation can be made for 'parent gelatin' at 2L C.

Table (P presents these values, and they are plotted as 144 vs.2

in Figured14. Assuming a V = 0.042 x 108 cm2 as the dispersion con-
0
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Table 6

Representative Specific Rotation Values

436 546 578 589

714 410 364 350

L2L3410  227 132 116 110 +13%

2 570 331 289 276 +10%

These % errors refer to the medium concentration
range.

Table '1

Representative Rotatory Dispersion Constants

kTk =C (oX (?2_

assuming X2 = 0.042 x 10~8 cm2

x 10~8 cm2
0.19 0.298 0.334 0.347

kilo 106 105 106 107

k o 33.6 33.8 33.9 33.6

k2o 84.4 84.7 84.4 84.2
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stant, the rotation constants obtained far these values are T = 11 0 C,

k = 106; T = 404 C. , k = 34; T = 20 C., k = 84. Table 7 gives this

information. A value of Wo = 0.042 +0.006 x 10-8 cm2 (uncertainty es-

timated) is indicated by the data of Figures 2 , 22, andi3.

Only the 'parent gelatin' at 20 C. shows a significant con-

centration dependence. This was about 30% for the concentration range

investigated (% refers to \iO(j3l 4OC3c2/1 c2 x 100, where cl and

c2 are the highest and lowest concentrations tested). The experimental

error is at least 10% for the lower concentrations so that one cannot

derive the shape of the concentration dependence curve from these data.

4. The concentration dependence

An experiment was designed to check the reproducibility of

the concentration dependence of rotation exhibited by 'parent gelatint

gel. A series of dilutions from one stock solution of ichthyocol 'pro-

collagen' was made up. Three different concentrations of the 'procollagen'

were hdated.to h04 C. far 50 minutes, then cooled to room temperature

and placed in the polarimeter tubes. The tubes were carefully sealed

by parafilm covered rubber stoppers. Water close to 04 C. was circulated

through the tubes for 10 hours before readings were taken. Data from

nine concentrations were obtained. A plot of the readings fo 10d

vs. c is given in Figure 15. This shows about a 12% concentration de-

pendence for 0.02% to 0.31% solutions. The order of magnitude involved

in the concentration dependence is in agreement with the data of Robin-

son (1952) and Ferry and Eldridge (1949), who used higher concentrations

(the lowest was 0.1%) and different kinds of gelatin.
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5. Dependence on ionic strength

A solution of ichthyocol 'procollagen' in 0.05% (wt) HAc

(pH about 3.5) has a rotatory dispersion curve similar to that obtained

for 'procollagen' in the higher ionic strength citrate buffer. This

is true, also, for 'parent gelatin' at 400 C. at the two different

ionid strengths. However, when the 'parent gelatin' is cooled, the

rotations observed in 0.05% HAc do not reach values as high as those

characteristic of cool 'parent gelatin' in citrate buffer. When 1/&.3

is plotted against )X2 for this case, therefore, the slope is

higher than that obtained with the 'parent gelatin' in citrate buffer.

The extrapolation is to the same X2 in the two cases (see Figure '6
0

and compare with Figure24 ).

That this is an effect of ionic strength is shown by the

rotation of cold 'parent gelatin' in a solution of 0.05% HAc + 0.1 M

NaCl. The specific rotation of this solution was similar to that of

'parent gelatin' in the citrate buffer. It may be noted that 'parent

gelatin' in 0.05% HAc does not "igel"i at concentrations where gelling

occurs in higher ionic strength solutions.

6. Studies on films

Preliminary experiments were dbne on the rotatory dispersion of

films prepared from 'parent gelatin.' These were made by dissolving

ichthyocol 'procollagen' in 0.05% HAc, then heating the solution above

500 C., or by heating the 'procollagen' with distilled water. A known

volume was then pipetted onto a cooled, circular optical flat, and this

was transferred to a desiccator. The desiccator was then partially

evacuated to speed up the drying process. The desiccator was placed
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either in the refrigerator at about 4* C., or in the drying oven at

about 604 C. In the former case, drying took about two days and in the

latter, overnight.

One can determine the concentration of the original solution

.by using the Biuret reagent on a known dilution. From the number of

grams of protein distributed over the area of the flat, one can calculate

a film thickness which is probably accurate to about 25%. The optical

flats to be examined were placed in a special holder to keep the surface

of the film normal to the incident light in the polarimeter.

This was done for two kinds of film: one, made from a solu-

tion of 'parent gelatin' in distilled water, and having a thickness

of 94hp; and the other prepared from a solution of 'parent gelatin' in

0.05% HAc and having a thickness of 8.hp. Two of the latter films

were placed together for the rotation readings. Figure2. shows the

results for these films. 1/(o(is plotted against '2. It is clear

that the values for the specific rotations are much higher than those

obtained for 'procollagen' in solution (e.g. k - 190). Within ex-

perimental error a straight line is obtained by plotting the data in

this way. No significant difference for the two kinds of film was ob-

served. The rotatory dispersion constant for the films seems to be

the same as that determined for solutions.

Because of the birefringence of the films and difficulties

in determining film thickness, a more exact determination of the film

rotativity was not made. Films prepared the same way, but dried in the

oven at 60" C., had approximately the same f ilm thickness as the cold

'films.' However, these 'hot' 'parent gelatin' films had rotations

which were too low to be detected by the methods used. This is in
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agreement with the results of Robinson (1953) -who reported 'cold,

gelatin films to have(X)D E - and 'hot' gelatin films to have

-125*.

Films of unheated 'procollagen' were prepared and dried in

the refrigerator, but an oxmotic effect caused salt accumulation in the

center of the films, so that accurate readings could not be carried

out. It appeared, however, that such films had a rotation comparable

to the 'parent gelatin' films dried in the cold.

7. Summary of experimental data

1. The specific rotation of solutions of 'procollqgen' from

ichthyocol and calf hide (in citrate buffer, pH 3.7, 0.15 M citrate)

i 0 -350 +30*. The solutions have an intrinsic viscosity

of about 19 and 28 respectively.

2. Upon being converted to 'parent gelatin' by heating to 30" C.

and greater, the solutions have rotations of 0  = -110 +200, and

an intrinsic viscosity of 0.34 for the ichthyocol, and 0.4 to 0.6 for

the hide.

3. In some cases,'the decrease of rotation reaches completion more

rapidly than the decrease of intrinsic viscosity.

h. 'Parent gelatin' solutions show a reversible mutarotation

cycle with temperature, but upon cooling they do not reach a value of

rotation as high as that characteristic of unheated 'procollagen' solu-

tions (IOI D -280* for 'parent gelatin').

5. Ichthyocol 'procollagent *at 110 C., and 'parent gelatin' at

410 C. and at 20 C., show simple dispersion and have the same disper-

sion constant, within experimental error. epresentative rotation



values for the medium concentration range give rotation constants

for 'procollagen' k1 1 . = 106, and for 'parent gelatin' k4g =34,

k20 = 84, when a dispersion constant 2 a 0.042 jC 10'0 , c2

is assumed. A value of 2= 0.02 + 0 a06 x 10~8cm2 (uncertainty

estimated) is indicated by the experimental data for the entire

concentration range of 0.02% to 0.4%,

6. Specific rotations of ichthyocol 'procollagen' at 1100. and

'parent gelatin' at 410 C. show little concentration dependence.

The most marked concentration dependence is shown by 'parent gelatin'

at 20 C. For the concentration range of about 0.02% to 0.3% this is

about 12 to 30%.

7* A decrease of ionic strength at a pH of about 3.5 does not

change the rotatory power of 'procollagent at 1* C. or 'parent

gelatin' at 400C., but causes a decrease in rotation of 'parent

gelatin' at 1* C. The rotation constant of the 'parent gelatin'

at 10 C. is k 1 70. The dispersion constant is unaffected for

all the solutions by the change in ionic strength.

8. Films of ichthyocol 'parent gelatin' dried at about 4* C.

have higher specific rotations than solutions of 'procollagent.

These films show Lo4 -6200and the rotation constant, k, is

about 190.The dispersion constant is equal, within experimental

error, to that of solutions of ichthyocol. Films of 'parent gelatin'

dried at 60* C. have a very much lower specific rotation.

B. Discussion of experimental data

1. The conversion of 'procollagen' to 'parent gelatin'

Molecular interpretation of the optical rotation change: The

bonds involved in this conversion would appear to be weak primary valence

bonds, or secondary valence bonds such as hydrogen bonds, or van der Waal 's



interaction farces. The peptide linkage should not be disrupted by

the mild heat treatment used in the conversion process, hence secondary

links are probably involved.

Bonds of this strength could be involved in three structural

aspects of the 'procollagen' molecule: in the intermolecular lateral

aggregation of the 'procollagen' molecules; in the end-to-end union of

particles of 70,000 molecular weight to form the long 'procol3agen'

polymer; or in the internal polypeptide chain configuration of the 'pro-

collagen' molecule. We will consider the possibility of relating each

of these to the rotation change observed in the conversion to 'parent

gelatin.'

Any intermolecular lateral aggregation in solutions of 'pro-

collagen' would be disrupted by the heating process. However, the

mass per unit length is reported by Gallop (1954) to be 80 - 120

avograms per A., which is in agreement with the specifications from

x-ray diffraction for a single helical unit. Thus, the 'procollagent

molecule (under the experimental conditions reported) must be considered

essentially a single long chain kinetic unit, and intermolecular lateral

interactions are unlikely to be of significance for the optical rotation.

Since the end-to-end union of the 70,000 molecular weight

particles is disrupted in the conversion process, this might be con-

sidered a possible source of the rotation change. However, the de-

polymerization corresponds roughly to the breakage of the 'procollagen'

molecule in about ten places. Assuming a hypothetical four-chain model

for the collagen protofibril, only eight terminal residues out of a

total of about 700 would have the optipal rotation changed in the
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ddpolymerization process. Further, since the anide linkage may not be

involved, the change in rotation, even of these residues, might not be

very great. Therefore, we may consider that the depolymerization re-

sults in rotation changes which are negligible compared with the large

decrease of rotation which occurs.

One is then led to attribute the rotativity behavior largely

to changes in the internal configuration of the molecules vhich occur

with heating.

The data correlating the viscosity and rotativity are in

agreement with this point of view, since they indicate that different

rates of reaction exist for the depolymerization and the optical rota-

tion changes. These data may be interpreted as meaning that the internal

configurational rearrangement is over before the depolymerization re-

action reaches completion, the .ink connecting the units being stronger

than the intra-unit bonds. For proper analysis of the kinetics, more

exact temperature regulation is required.

The conclusion reached from this discussion is that the rota-

tivity change occurring when 'procollagen' is degraded to form 'parent

gelatin' is largely due to the change in internal configuration of the

molecule making up the 'procollagen' polyner.

2. The mutarotation of 'parent gelatin'

The mutarotation phenomenon mans that the 'parent gelatin'

can reversibly regain much of the high rotation, characteristic of the

'procollagen.' This is shown very clearly by the rotation constants

for 'procollagen' at 110 C., and for 'parent gelatin' at hl C., and

at 20 C. The cold 'parent gelatin' and the 'procollagent solutions have k's

which are similar and quite different from that of the gelatin at 41 C.



In the introduction to this thesis, the two possible factors

which might cause the mutarotation of gelatin were discussed. These

are configuration changes and aggregation. Any interpretation of the

mutarotation phenomenon amounts to an evaluation of the relatige im-

portance of these two factors.

The following discussion presents such an evaluation based

on the experimental data reported in this thesis.

(a) The concentration dependence of mutarotation.

This is a case in which a conclusion is easily reached if

large changes occur, but there is far more difficulty in interpreting

a small change. That is, if the phdnomenon of mutarotation had been

greatly inhibited by decreasing the concentration of the gelatin solu-

tions, then the conclusion that lateral aggregation is the more important

factor would probably be valid.

However, the data presented above show that the effect amounts

from about 10 to possibly 30% for the o ncentration range tested. This

is small compared with the large change in rotation occurring as the

solution is cooled. The concentration dependence does, however, seem

to be larger than that found for the unheated 'procollagen' or for the

'parent gelatin' at 40' C.

A concentration effect on rotation has been found by investi-

gators for many different kinds of molecules (for studies with proteins

see Jirgensons, 1952b). Various theories, none of them convincing, have

been advanced to explain this effect (Livens, 1913; Born, 1918; de

alleman, 1924). Thus ,it is customary to express specific rotation as

lim &h + k'c
c -4 o X
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liii r1
where 1 (0C is the lintrinsic' rotation of a system of molecules

in -which no interaction takes place, and k' is an empirically determined

constant for the system.

According to the experiments described above, we would assign

a small value to the interaction term and a large value to the con-

figuration term. Since the cooled gelatin molecule is different from

either the 'procollagen' or the gelatin sol molecule, the constant

describing the concentration dependence could also be different.

Objections might be raised to this interpretation since

aggregation was present even in the 0.02% solutidns (Boledtker, 1953).

Significant changes of rotation, therefore, would not be observed until

much lower concentrations were examined. This possibility cannot be

neglected, nor can it be experimentally tested except by more refined

means.

We may conclude then that the data from concentration de-

pendence studies of mutarotation favor the configurational change as

being more important than the aggregation effect.

(b) Interpretationi of.Imutdrotation

The preceding section has dealt with an experiment on gelatin

in various states in an attempt to interpret a phenomenon which gelatin

exhibits. Similar experiments have been described by other investigators

(Ferry and Eldridge, 1949; Robinson, 1953). However, because of

rotation studies on 'procollagen', a soluble, non-denatured collagen,

a much more direct and convincing argument may now be given to explain

the mutarotation. This is the following:
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(1) The decrease of rotation from -350* to -110* which occurs in

solutions of 'procolagen' in the conversion to gelatin, has been shoi

in section 1. to be related only to the loss of the specific collagen

configuration along the polypeptide chains.

(2) Conversely, it must be expected that if the gelatin molecules can

regain the collagen configuration, in part or completely, an increase

of rotation up to a possible -350* is expected.

(3) This does, in fact, occur when gelatin is cooled. There is proof

from x-ray diffraction that the configuration characteristic of collagen

is regained by at least parts of the molecule, and the rotation rises

to values approaching -3004.

(4) An additional point that aggregation per se cbes not produce this

change of rotation is found in studies of gelatin films. Only the

film having the specific collagen configuration showed the increase

of rotation. Although there was maximum aggregation in the 'hot'

gelatin film, no such increase occurred.

Therefore, we conclude that the mtarotation phenomenon in

gelatin is largely to be correlated with the gain and loss of the

specific collagen configuration.

Other experinental data are consistent with this interpretation.

For example, the results of the experiment dealing with ionic strength,

reported above, can be accounted for in the following way: the poly-

peptide chain configuration in the unheated 'procollagen' molecules in

0.05% HAc is well stabilized, and charge effects do not cause a con-

figuration change. However, when 'parent gelatin' has been formed and

the solutions are cooled, the charge effects at low ionic strength
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impede the molecules from regaining the collagen configuration. This

results in the relatively low laevorotation of cold 'parent gelatin'

in 0.05% HAc. These charge effects are diminished by increasing ionic

strength.

Various alkali halides, and urea, cause a large decrease in

laevorotation (and viscosity) of gelatin 'gel' and a smaller change of

rotation of the sol (Carpenter, 1927; Carpenter and Lovelace, 1935 a,b;

1938). These and similar reagents affect intramolecular linkages,

particularly hydxogen bonds, stabilizing the collagen configuration,

since they also cause thermal contraction in tendon (Gustavson, 1949).

Both thermally contracted tendon and gelatin in the sol state show the

'amorphous' collagen wide-angle diagram in which the 2. 86 A. reflection

is missing. Thus, the decrease in laevorotation caused by these re-

agents may be associated with the loss of the collagen configuration

in the gelatin molecules.

Although 'parent gelatin' can regain much of the collagen

configuration, it does not regain all of it. This is seen from

the different rotation constants of 106 and 84. Many of the differ-

ences between 'parent gelatin' and 'procollagen' are probably associ-

ated with this fact. Gelatin molecules have more loci available for

intermolecular bonding than do 'procollagen' molecules. High solubility,

aggregation and inability to reconstitute large spacings are therefore

expected of such a system.

C. Conclusions

From the experimental data summarized on page 70 , the de-

crease in rotation of Io(b11 = -350v to 1( 3 = -li0, occurring when

'procollagen' is converted to 'parent .elatin,' is interpreted as



resulting from the loss of the specific collagen configuration within

the 'procollagen' molecules. Accordingly, the mutarotation phenomenon

exhibited by 'parent gelatin' is believed due for the most part to the

gain and loss of the collagen configuration in the 'parent geatin'

molecules.
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CHAPTER IV

Theories Relating the Rotatory Power and Configuration of Proteins

A. The correlation of rotatory power and helical configuration in collagen

and gelatin.

The discussion in Chapter III was based on the fact that

the configuration of the polypeptide chains in collagen was different

from that in gelatin. No further specification of the configuration

difference was made in the interpretation of the rotation data.

Robinson (1951,1953) has used similar experimental facts for gelatin

(particularly the rotation correlated with infrared data for films)

to attribute the mutarotation phenomenon to a configuration change.

However, he denotes the collagen configuration as simply the speci-

fic collagen 'fold' and no precise atomic arrangement is specified.

The hypothesis is suggested here that it is precisely and

solely the helical aspect of the collagen configuration, rather than

any other kind of 'fold' which is responsible for the large rotation

changes occurring in. collagen and gelatin.

1. The argument

There are two possible sources of optical activity in a

protein. One is due to side chains producing an ;asymmetry about

the 04 carbon atom in the amino acid residues. The other is due to

the configuration of the polypeptide chain backbone (C-0-N-C). Thus,

if a dissymmetric* configuration of the backbone were assumed by a

*A dissymmetric configuration is one which has no plane, center or
alternating axis of symmetry. A dissymmetric configuration is not
necessarily asymmetric. (See Partington, 1953)
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polypeptide chain composed only of glycine residues, one would pre-

dict that the structure would be optically active. In proteins, the

contribution of the backbone to optical activity is due both to its

own symmetry -properties and to its effect on the field about each

asymmetric o( carbon atom.

In general, one would not expect environmental effects alone

to cause large changes in the optical rotation of proteins. We in-

clude in such environmental effects the influence of other solute

molecules in the neighborhood (except when these are in extremely

high concentrations). The XC carbon atoms in the protein are usually

separated from the environment by the side chains and they are not

directly linked to the polar and conjugated groups on the side chains.

Furthermore, any changes of rotation which might be produced by the

environment would not be expected to be of the same sign for all

residues, hence a partial cancellation would occur. These arguments

apply also to those configuration changes in the backbone which,

effectively, merely alter the environment about each O< carbon.

The data on gelatin sols support this idea. Environmental

changes such as pH and ionic strength have relatively little effect

on the specific rotation (Kraemer and Fanselow, 1925; Carpenter, 192;

Carpenter and Lovelace, 1935 a, b). The small influence of intra- and

intermolecular associations on rotation is seen from the fact that

films made from gelatin sol have the same specific rotations as the

solutions of gelatin sol (Robinson and Bott, 1951).

Certain ba ckbone configurations are expected to have large

values of optical rotation. A helix is such a configuration. The



optical rotation of a material depends upon the difference in its

refractive indices for left and right circularly polarized light.

A helix is a classical example of a dissymmetric structure which would

be expected to show this refractive index difference (Kauzmann, Walter'

and Eyring, 1910). In a protein, the helical configuration of the

polypeptide chains means that the backbone possesses this dissymmetry.

In addition, the asymmetry about each OC. carbon atom might be

changed by the helical configuration. Since the helix is composed

of equivalent repetitive units (having one or more oC carbon atoms)

one would expect the same sign for the induced change of rotation in

each unit. This might.result in a large contribution to rotation.

It may be noted, however, that the rotation due to the dissymmetry

of the backbone is not necessarily of the same sign as that due to

the asymmetry of individual amino acids.

The production of optical rotation by a helical configur-

ation made up of symmetrical molecules is seen in quartz. Quartz

is optically active only in the crystalline state when the SiO2

molecules form helices (Lowry, 1935). An example in which the effect

of the helix is superimposed on the rotation due to the asymmetric

carbon atoms is seen in synthetic polypeptides. Co-polymers of %6

-methyl-Irglutamate and DL phenylrmalanine show a change in speci-

fic rotation from Lo-20 to + 70, as the percentage of O. (hence

helical) configuration rises fran 15 to 100 % (Robinson and Bott,

1951).

The x-ray data interpreted in Chapter II of this thesis

have shown that at least part of the collagen protofibril (corres-
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ponding to the interbands) has a helical configuration. This config-

uration would certainly be maintained along some of the length of the

molecule when collagen is dispersed in solution. Furthermore, it was

shown in Chapter II that the large number of imino residues in colla-

gen present a special stereochemical problem. That is, such residues

may be incorporated more easily in either a right or a left-handed

helix, depending upon the particular configuration. Thus, in collagen

one would expect that the sense of twist assumed by the helix would

be the one which could more easily accommodate the proline and hydroxy-

proline residues. There is then a possible reason for the presence of

helices of one sense of twist in collagen.

We suggest, therefore, that it is this helical configuration

of the polypeptide chains in at least part of the tprocollagent mole-

cules which is responsible for the high rotation. Hence, it is the

gain and loss of this helical configuration which gives rise to large

changes in rotation observed in collagen and gelatin.

2. Consequences of the theory

Having suggested the concept that the high rotations found

under certain conditions in collagen are due to the helical configur-

ation of the polypeptide chains, we can use the value of the rotation

as a measure of this helical configuration. Specific rotations are

here referred to the Na D line.

a. A specific rotation of about -110 might be that for a

collagen molecule with little helical configuration, that is, a randomly

coiled, or possibly 1G type of array of the amino acids. This occurs

in the gelatin sol.
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It is also possible that the value -110 0characterizes

gelatin molecules in which some of the helical configuration still

exists, and a lower rotation would then be expected for completely

random type of chain configuration. The effect of very high concen-

trations of certain salts such as KI (Carpenter and Lovelace, 1935 a,b)

in decreasing the specific rotation of a gelatin sol below values of

-110 might be related to this point. However, since high concentra-

tions of urea cause an increase in the rotation of gelatin sols

(Carpenter and Lovelace, 1938) the mechanism of these salt effects

is not yet understood.

b. Specific rotations of -25 0 to -3500 characterize a

state of the protofibril interband in which at least some of the

polypeptide chain is in a coiled configuration. Because of the much

higher rotation in 'cold' films, one would suspect that the value

-350"does not characterize the completely helical state of the inter-

band.

c, Specific rotations of -6200 to -1000* are found in

high states of aggregation. One possibility is that these rotations

correspond to a more highly coiled state of the polypeptide chain.

When water is removed (as in the drying of a film), there would

tend to be more intramolecular hydrogen bonding and thus a larger

part of -the polypeptide chain is likely to form the helical configur-

ation.

A different explanation would be that interaction increases

the contribution of already existing helices. The preceding discussion

tends to support the first view.

3. Objections to the theory

Collagen and gelatin have a unique amino acid composition
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due to the very large amounts of proline and hydroxyproline present.

In the hypothesis outlined above, it was assumed that the significance

of these residues for optical rotation is in causing the helices of

collagen to have one sense of twist. However, the pyrrole ring in

these amino acids involves the of. carbon as one of its members.

Strains in this ring might, therefore, have a large effect on the

rotation of the o. carbon. If the collagen configuration imposed

such a strain, which was the same for all pyrrdlidine residues, this

might cause a very large total change in optical rotation. This ob-

jection is weakened, however, by the fact that the change in specific

rotation from -1000 to -350* for the protein would require a specific

rotation of about -12000 for the proline and hydroxyproline residues.

Furthermore, since there are two asymmetric carbon atoms in the hydroxy-

proline pyrrole ring, the change would have to be in the same direction

for both, to produce a large effect. Therefore, until rotation data

on proline and hydroxyproline in a variety of conditions is known,

this argument cannot be evaluated.

B. An interpretation of the optical rotation of globular proteins.

In general, one should be cautious in extrapolating infor-

mation about optical rotations from one system to another. However,

in the case of proteins, this extrapolation may be justified for the

following reason. Although very few rotapory dispersion investigations

of proteins have been done, the data of Hewitt (1927) and Hansen (1927)

f or various globular proteins including albumins and globulins, show

dispersion constants in the general range of that of Iprocollagent.

Since the theory here will be made for rotation values in. the visible

region of the spectrum, in particular the Na D line (589 mu) small
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differences in the dispersion constants in the ultraviolet reglon

of the spectrum should not invalidate this comparison.

Two important facts are found in examining the data on

globular proteins: (1) the specific rotations of native proteins are

in the range of -30to -60 0 (Jirgensons, 1952 ab; Doty and Geiduchek,

1953). (2) Upon denaturation, the rotation rises and in some cases
a

values up to -110 and -120may be reached (Jirgensons, ibid; Kauzmann

et al., 1953; Yang and Foster, 1954).

1. The denatured state
to explain the above facts

The hypothesis advanced here/is that upon denaturation

globular proteins tend to approach a disordered, or randomly coiled,

or p0 configuration of the polypeptide chains, and that a specific

rotation of about -100 + 20, characterizes this state. Thus rotat-

ions in the range of -80 to -120 0would be expected for denatured pro-

tehs having an taverage'* amino acid composition.

At present, little evidence is available to test this an

hypothesis. In the following paragraphs the relevant data are summar-

ized.

On the basis of a variety of experimental work, the concept

has been developed that the 'denaturation' of globular proteins corres-

ponds to some sort of unfolding or randomizing of the polypeptide

chains (an important early reference is Mirsky and Pauling, 1936).

Even in so-c alled reversible denaturation the large entropye changes

involved (Kunitz, 1948) may imply a rearrangement of the polypeptide

*By 'average' we mean having a composition without a preponderant
amount of any one amino acid.



chains toward a more probable, hence less specifically folded, con-

figuration. Recent references on this point will be found in Anson

(1953) and Lumry and Eyring (1954).

Two lines of evidence may be used to account for the rotation

values of denatured proteins. One comes from the data on residue ro-

tations of amino acids in positions where terminal effects are neglig-

ible. These have been measured for only a few amino acids. The data

of Erlanger and Brand (see Erlanger and Brand, 1951, for references)

show that in 0.5 N HCl, L-lysine has a specific rotation (as a residue)

of ~809% but L-alanine has a specific rotation of -246 0 . dntil further

evidence is accumulated for amino acid-residues under varying conditions,

the theory cannot be proved or disproved on this account.

Another line of evidence is provided by the rotation of pro-

teins whose state is known to correspond to the randcmly coiled or to
O

the P configuration. The specific rotation of about -ll for gel-

atin sol may be cited as evidence. However, its unique amino acid

composition (about 20% by weight of glycine and about 25% by weight

of proline and hydroxyproline) may make the value -11OO coincidental.

The specific rotation of silk fibroin which is a 4 protein is of

interest. The data of Coleman and Howitt (1947) show a rotation of

about -,600 for Idenaturedt silk fibroin. However, since glycine m& es

up 42.4% of the nitrogen in this protein (Levy and Slobodiansky, 1949),

the specific rotation for the same protein without glycine would be

about -900, which is in the range .cited. The present author has found

that the specific rotation of a solution of feather keratin, a 4Q pro-

tein, dispersed in PO buffer, is about -114. This preparation was

supplied by Mr. Malcolm Rougvie.



From the evidence cited, it is clear that the base line for

an 'average' array of amino acids in a random or. configuration can-

not yet be determined precisely, and there will certainly be a variation

due to specific amino acid composition but an average value of about

-100 may not be far off if no very unique amino acid composition is

involved.

2. The native state

A possible explanation of the specific rotation of native

globular proteins is the following. The small negative rotations of

these proteins (-30*to ~60) suggest that a large cancelling effect

of some sort might be taking place, with the resultant low rotations

observed due to an inequality in the cancellation. Such a situation

would occur for example, if in globular proteins there were equal

amounts of left- and right-handed helices made up of 1-amino acid

residues. The combined rotation of such helices might cancel to leave

the small negative rotation actually observed.

An interesting point for this suggestion is the fact that

the . helix which is favored as the s tructural basis for globular

proteins (Pauling and Corey, 1953) has about equal probability of

occurring in either a left- or a right-handed configuration so long

as imino acids need not be incorporated into the coil (Crick, 1953 b;

Pauling, 1953). Furthermore, since these residues do occur in rela-

tively small amounts in globular proteins, they have been used to

explain the Iturning of cornerst in the structure (Pauling, 1940, 1953).

In these positions, they would not determine the sense of twist formed '

by the rest of the helical backbone.

Accordingly, the increase of rotation observed upon denaturing

a globular protein might be interpreted as resulting from a decrease in



the extent of well-ordered helical configurations in the polypeptide

chains of the protein molecules.

It should be noted, however, that the helical configuration

for globular proteins has not yet been proved, and the above argument

could equally well have postulated some other configuration of the

polypeptide chains, whose presence in a racemic mixture gives rise

to a large cancelling effect.

C. Conclusions

1. An hypothesis is suggested that the large rotation

values observed in collagen and gelatin are due to the helical con-

figuration of the polypeptide chains along at least part of the proto-

fibril. The mutarotation phenomenon exhibited in gelatin is therefore

correlated with the gain and loss of the helical configuration of the

polypeptide chains.

2. An hypothesis for the optical rotation values of globu-

lar proteins is the following:

The denatured state of globular proteins corresponds

to a randomized or unfolded configuration of the po2ypeptide chains.

A specific rotation of about -100(depending on amino- acid composition)

characterizes such a state.

In the native state, globular proteins may have configurations

where a large cancelling of optical rotation occurs. This would result

in the low negative rotations actually observed. Such a situation

would exist if gldbular proteins consisted of about equal numbers

of helices having opposite senses of twist.



Summary

The main conclusions derived in this investigation are:

1. The polypeptide chains in collagen have a helical configuration

in the portion of the protofibril which yields the wide-angle x-ray

diffraction diagram.

2. The change of specific rotation which occurs when 'procollagen'

is converted to 'parent gelatin' is due to the loss of a specific

collagen configuration in the polypeptide chains of the 'procollagen'

molecules. The mutarotation of gelatin is due to the gain and loss

of this configuration within the gelatin molecules.

3. The preceding conclusions are correlated by an hypothesis which

proposes that it is precisely the helical configuration of the poly-

peptide chains in portions of the protofibrils iich is responsible for

the high rotation value.- of 'procollagen.' Accordingly, it is the gain

and loss of this helical configuration which produces the mutarotation

in gelatin.

The evidence for these conclusions is summarized below.

1. A few observations were made using small-angle x-ray diffrac-

tion and electron microscopy, in addition to wide-angle diffraction, in

order to add to information which indicates that all portions of the

collagen fibril are not structurally equivalent.

A.- Small-angle diagrams of tendon swollen in neutral salt solu-

tions show the same alternating intensity relationship (odd orders

strong and even orders weak) and loss of fanning, which previously had

been known to occur in tendon moistened with distilled water.



b. Small-angle x-ray diagrams of dry tendon under high tension

reveal for the first time that tension can produce the same effect as

hydration, since. the x-ray diagrams are similar to those obtained

from hydrated tendon.

The evidenced cited in a and b suggests that both water and

tension increase interfibrillar orientation to permit the appearance of

the cosinusoidal variation of electron density. Further, the disap-

pearance of fanning and lengthening of the period indicate that this

orientation takes place chiefly in the bands, or disordered regions of

the fibril, which are located in both halves of the period.

c. A preparation of ichthyocol 'procollagen' can form fibrils with

a 640 A. period, and 'segment long spacing' material with about an

1800 A. period. The polarimetric studies of this material, discussed

below, therefore, relate to a 'typical' collagen system.

d. Wide-angle x-ray diagramswhich reveal small details of

structure, were taken on the systems described above.

(1) Diagrams of moistened tendon or of dry tendon under

tension show that no quantitative correlation can be made of the

changes occurring at small and wide angles. This confirms previous

ideas about the essential independence of results obtained at these

two structural levels.

(2) Films of 'segment long spacing' icthyocol 'procollagent

yield a poorly oriented collagen-type wide-angle diagram. This suggests

that in the transformation to long-spacing material, some portions of

the protofibril which yield the wide-angle diagram remain unchanged.

2. The part of the structure which the wide-angle x-ray diagram

characterizes was shown to be helical by the following analysis:



a. Diagrams from dry tendon can be indexed according to a 28.6 A.

meridional period for unstretched tendon, and about a 30 A. period for

tendon under tension. The assignment of indices to reflections is the

first step in the structure determination.

b. Patterns were obtained from moistened tendon under tension.

These diagrams yield the intensity distribution expected from indepen-

dently diffracting protofibrils.

This diagram was analyzed according to the theory of Cochran,

Crick, and Vand (1952). In order to interpret the diagram in detail,

a treatment was developed using 'helix-nets' (the mapping of cylindrical

surfaces onto a plane). This treatment allows a simple presentation of

helical diffraction ambiguities,.

c. The collagen x-ray diagram is shown to be that of a helical

diffractor. The genetic helix in the collagen protofibril has ten

scattering nodes in three turns. The genetic helix is the simplest

arrangement of equivalent scattering groups and does not necessarily

show true chemical connections.

d. Further restrictions on the specific atomic arrangements of the

polypeptide chains are derived. These are based on the x-ray diagram

and chemical considerations.

3. Polarimetry was also used in this investigation since it is a

sensitive indicator of short-range structural detail and permits analysis

of material in solution.

For the first time a soluble, non-denatured, 'pure' collagen

fraction, which had been characterized by physical-chemical methods

(Gallop, 1953, 1954) was also studied by optical rotation. The fol-

lowing results were obtained:



a. Ichthyocol 'procollagent in PH 3.7 citrate buffer has an in.

trinsic viscosity of about 20, and a specific rotation of 0g 0

-350 + 30*

b. The 'parent gelatin' produced from the 'procollagent by heating

to temperatures greater than 30*C. has an intrinsic viscosity of about

0.34 and a specific rotation of c3 40 = 1o + 20*.

c. In-some cases, in the conversion to 'parent gelatin', the de-

crease of rotation reaches completion more rapidly than the decrease

of intrinsic. viscosity.

d. The ichthyocol ?parent gelatinI (which has been characterized

physico-chemica3ly by Gallop (1953, 1954)) gels upon cooling and shows

an increase of rotation . 4 -. 280*. The rotation change is re-

versible with temperature. This is the well-known mutarotation pheno-

menon of gelatin.

e. Similar results were obtained with 'procollagent and 'parent

gelatint from calf hide.

f. Rotatory dispersion measurements reveal that ichthyocol 'pro-

collagent at 11*0., and 'parent gelatint at 410C. and 2:C. show

simple dispersion. That is,

to(k k = rotation constant
(:4 - 1) )28 = dispersion constant

The dispersion constant for all three temperatures is the same within

experimental error.

Representative values for medium concentrations in the range

2
0.02 to 0.4 % yield kiio = 106, k 4 0i = 34, and k2* = 84 assuming X0

0.042 x 10 cm2. A value of X2 M 0.042 + 0.006 x: 10-8 cm2 (uncertainty

estimated) is indicated by the experimental data in the entire concen-

tration range investigated.



g. The concentration dependence is most marked for 'parent

gelatin' at 2*C., and is 10 to 30% for the concentration range 0.02

to 0.3 %. This range includes concentrations lower than any re-

ported in the literature, for polarimetric investigations of gelatin,

h. Preliminary investigations of the effect of ionic strength

on rotation show that cool 'parent gelatin' has a lower specific

rotation in solutions of 0.05 % H% c than in 0,15M citrate buffer,

i. Films made from evaoprating cold 'parent gelatin' have a.

very high rotation, (Lt -6200 ) Films made from evaporating

hot 'parent gelatin' have a much lower rotation.

4j. It is also suggested that globular proteins in the denatured

state have a random or unfolded configuration of the polypeptide

chains which may be characterized by a rotation oft oe-100*; and

that in the native state they have a configuration in -hich aT

large cancellation of rotation occurs, resulting in the observed

rotations of --30* to .600..
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Suggestions for future work:

I. The x-ray diffractioi analysis and structure determination

a. At present the most serious handicap in the structure deter-

mination of collagen is the lack of data on the amino acid sequence.

The results of such an investigation would reveal the chemical signi-

ficance of bands and interbands, and would enable a better estimate of

the number of residues to be placed about each node of the collagen net.

The frequency of the pyrrolidine residues would also be determined.

The amino acid sequence should be carried out on a system such as

'parent gelatin' or some subnnit of this.

b. The stereochemical requirements of proline and hydroxyproline

are as yet undetermined. Peptides with these residues should be

studied cyrstallographically. This would reveal whether the cis- or

transoconfiguration of the peptide group occurred with these amino

acids, and also whether the planarity of the peptide link is maintained.

c. The relation of the wide-angle pattern to the molecular struc-

ture of collagen must be clarified. In this connection, the diffuse

reflections have to be correlated either with the portion of the helix

backbone which gives the sharp near-meridional reflections, or to side

chains, or to another part of the structure, perhaps the bands, having

a different configuration from the interband backbone.

d. The properties of the collagen molecule, including size, are

still not established. If the molecular weight of 'segmental long

spacing' particLies was found to be 70,000, the hypothesis of the ex-

tensibility of the 640 A. unit would be confirmed. If a unit of higher

molecular weight were found, other molecular species in collagen would

be indicated.



II. Optical rotation studies

a. On collagen and gelatin

More film work is necessary on 'unheated' 'procollagen' and

on 'parent gelatin.' The rotation of tendon collagen should be deter-

mined. Comparative studies -on 'procollagen' and 'parent gelatin' from

other sources are also of interest. Gelatin solutions should be exa-

mined at higher temperatures to see whether there is more configurational

change leading to a lower rotation. .4 further evaltation of the ag-

gregation factor in mutarotation may be made by the addition to gelatin

of reagents which inhibit aggregation. Katz and Wienhoveri,(1933)

examined the rotation of such systems, but a more refined analysis

may now be made using combined light scattering and optical rotation

data.

The particular role of proline and hydroxyproline in the

rotation of collagen and gelatin has not yet been established. Rota-

tion studies of these amino acids (as residues) under a variety of

conditions should be made.

b. Other proteins

Much fundamental work on the optical rotation and rotatory

dispersion of other proteins and synthetic polypeptides remains to be

done. Synthetic polypeptides which can be transformed from the l to

the p configuration should be analyzed both in solution and in films.

The films could be -correlated with x-ray diagrams. Since optical rota-

tion is a most sensitive test of structural arrangement, G-F transforma-

tions of proteins, and both 'reversible' and 'irreversible' denaturation

should be analyzed by this .method. If fractionation of globular pro-

teins is accomplished, as in the separation of the two kinds of chain in



insulin, the rotations of different fractions should be measured to

see whether a difference in sign or size of rotation is found.

The eventual goal of such studies is a more precise correla-

tion of configuration with optical rotation.
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APPENMDD I

Ambiguities of the Helical Diffraction Problem

A. The single-cell versus multiple-cell ambiguity

Consider two discontinuous helices superimposed in space.

One is then held fixed and the other rotated about the common axis.

As the angle of rotation increases, modulations appear in the trans-

form for the single helix. Extinctions occur when the second helix

is out of phase with the first by IT radians. Similarly, when an

n-fold rotation axis is coincident with the helical axis, a cable of

n intertwining helices is generated. Because of the extinctions

which occur in such a case, an ambiguity arises which is particularly

important in interpreting helical diffraction patterns.

The development of this ambiguity may be illustrated by reference

to a particular example. We begin writh a discontinuous helix consist-

ing of say ten nodes in three turns of a primitive helix. The single-

cell net of this structure and the expected diffraction pattern are

presented in Figure 1 .

.1. I0

N -

Figure lo. Figure IAr-
We now place another identical helix V radians out of phase with

the first and note the new net and the expected diffraction pattern

(Figure '. ).*
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It is clear that the pattern may now be indexed by A =i$ , this

corresponds, of course, to the halving of the period by the two-fold

rotation axis. If this lower indexing is used, and the assumption is

made that the strong near-meridional reflections observed correspond

to Jl Bessel functions and not J2 Is, a new single-cell net may be

constructed which, when wrapped into a helix, would give-rise to this

same diffraction pattern (Figure 3)

Figure 3e Figure 3 4

This net has half the radius and half the nodes of the true compound

net in Figure o. (this is of the total number of nodes in Figure Ia.).

Conversely, we may consider that the two double-cell nets in Figure 'le.

correspond to a cable made up of four unit cells of Figure io. It

will be shown that the transforms for the single-cell net of Figure 3o.

and the multiple-cell net of Figure AL, have the sane form, but differ

in the orders of Bessel functions and the radii involved.

By methods of this type, it is possible to prove that any cable

made from helices related only by a rotation axis may be reduced to

a simpler net. Conversely, if one takes the diffraction pattern as



the starting point, the analysis may be carried out most directly by

drawing up the single simplest net which accounts for the lowest

indexing of the pattern and then deriving the possible multiple-cell

nets based on this.

It is instructiye to prove the relation between the single-cell

helix-net and the multiple-cell helix-net by a consideration of the

transforms and the selection rules for .the two cases. To do this we

proceed as follows:

Consider a continuous cable of A helices related by a rotation

axis coincident with the cable axis. The transform of this structure

is T(, I) &g ALW ("/ -%+rra-/A)]

This last term is large only when

n Aq, where q is any integer.

Selection rule (6) may be rewritten as

A(NO/A)q - , where n = Aq for each.A. .
(6a)

Thus the cable has the same period as the single-cell helix-net but

is made of NO/A turns. The transforms differ only in that the orders

of the Bessel functions for the cable transforms are A multiples of

those in the single-cell helix-net case, and the radii of the two are

different.

This treatment may be extended to the discontinuous helix case.

Here the same restriction on n will apply, namely only those values

of n are permissible which are multiples of A. Thus equation (5) may

be rewritten as

A(N /A)q e .I + Mm', where n = Aq for each A.

(Sc)



Equations (6a) and (5c) aie then the most general cases.

When actual structures are considered and not the relation between

the idealized single-cell helix-net and the derived' cable, the relation

Scable = Arsingle-cell will not, in general, liold. But since it is

probable that the radius of the cable will be larger than that of a

single helix, the radial positions of the diffraction maxima in recipro-

cal space may not be very different for the two cases.*

B. Connection ambiguities

Given a single-cell helix-net with an arrangement of node's,

various combinations of discontinuous helices may be derived which

include all the nodes in the cell. The simplest case is that of the

two primitive helices. Other possibilities include various kinds of

cables. These cables may be composed of a single family of helices,

all at the same radius from the central axis, or they may consist of

any combination of helices from different families at different radii

from the central axis. As in all connection ambiguity cases, only

additional information, including detailed structure factors, will

distinguish between some of the possibilities. Some examples of the

problem follow.

1. The two solutions listed for the discontinuous helix (5a)

and (5b) correspond to the existence in the net of two primitive

helices. These two 'primitive -solutions have transforms which

* It may be mentioned that in the limit as A - oe the cable
approaches the net. The net-helix ambiguity ( RoOo-35 )
might be developed in this way.



differ only in the signs of the Bessel fuii6tion terms (nl = -n2)*

If there is cylindrical symmetry in the transform, i.e., if only

one Bessel function term dominates the solution, they will have

identical amplitudes in the transform.*

In the real structure, the node transform will be different

for the two cases, and if the x-ray diagram is detailed enough, the

correct solution may be selected.

2. Equations (7) and (8) ,point up the ambiguity in the dis-

continuous helix versus the continuous coiled-coil case. Here,

again, actual structure factors will, of course, show the difference

between the two, but certain other features may be considered also.

It is easy to show that internal symmetry in the sub-pattern

surrounding meridional reflections is predicted for an ideal dis-

continuous. helix, but that this is not necessarily true for the

coiled-coil. Furthermore, the sub-pattern repeats identically in

the discontinuous helix case, but this is not true for the continuous

coiled-coil, since the JS Bessel function factor will have a different

weighting value at various layer lines along the meridian, although

it is constant along each layer line. In practice, however, there is

a difficulty in trying to use these differences to distinguish

between the two cases. If the portion of reciprocal space under

analysis corresponds to distances-in the structure of the order of

magnitude of the scattering centers, conclusions drawn from the
S- - ---- ---- ---------- M------ ---------

* In the case where the lowest node on the net cell is located
midway between the two origins (i.e. a two-node cell) the primi-
tive helices differ only in having opposite senses of twist.
It can be shown that in the transform, for every Jn term there
is a J term. Thus the geometrical symmetry has its mathe--n
matical counterpart.
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idealized representations are not reliable. At relatively small

angles, however, these criteria might be useful.

In appendix III, the transform of a continuous coiled-coil for

collagen has been calculated (Figure 6 ). This should be compared

with the transform of the discontinuous helix based on the same net

(p. ,Figure 6)

C. The packing of helices

Single strand helices in which all loci are at equal radii from

a central axis and which scatter independently of one another have

periodicitj. imposed in one direction only, along the helix axis,

and no order specified in a direction perpendicular to this. The

transforms in such cases are confined to continuous layer lines. The

addition of scattering material at different radii from the central

axis, as discussed in the connection ambiguity, has the effect of

modulating the intensities. It is clear that additional packing

arrangements which affect the transform by introducing extinctions

complicate the task of elucidating the individual helical configura-

tion. We may note some kinds of packing with suggested methods for

analysis.

In the preceding section on net ambiguities one situation was

examined in detail. In this case, helices are intertwined about

one another so that they are operated on by a rotation axis coincident

with the helical axis, an n-fold axis thus forming a cable of n

intertwining helices. It was shown that the preliminary analysis can

be done by considering the structure in terms of single-l-cell'inets

and derivative multiple-cell nets. Any pattern has an ambiguity of
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interpretation based on this problem.

-A special case of this situation arises where a rotation axis

is made coincident with the axis of the major coil in a coiled-coil,

thus generating a coiled-coil cable. The simplest way to handle

the transform is to derive that for a single coiled-coil in the

appropriate configuration, and then to examine the phase factor

and selection rule for the cable case. The nature of the particular

selection rule involved will determine the change in the transform

of the individual coiled-coil. This treatment has been applied by

Crick (1953b) to a two- and three-strand cable of a particular

configuration of coiled-coils. If this coiled-coil cable is a

possible way of interpreting a given pattern, different systems of

indexing must be tried. The approach by single-cell helix-nets and

multiple-cell helix-nets is not easily applicable to this case.

Other packing arrangements involving screw axes can be handled

similarly.

We may note that for the usual packing arrangement where the

individual helices do not intertwine, but simply group together,

one samples the continuous transform .at appropriate lattice positions.



APPENDIX II

The Optical Transformer

A. Theory

At certain stages in an x-ray diffraction structure analysis,

it is necessary to determine the diffractions expected from a

proposed or preliminary model. This is usually done by structure

factor calculations which are simply the mathematical analogue of

the diffraction process. However, since diffraction is a general
also.

property of waves, ,a physical analogue is/available. A two

dimensional representation of a model, made on the proper scale,

can be used to diffract visible light waves like a grating. The

resulting diffraction pattern is equivalent to the intensity dis-

tribution expected from the actual model in a section of reciprocal

space corresponding to the particular projection used. This is the

principle of the 'optical transformer.' A complete discussion of the

theory is given by Hanson, Lipson and Taylor (1953).

We will consider here only one kind of projection. We begin

with the usual structure factor formula. (The notation is the same

as that on page

but r cos 0 is simply the projection of the structure on a plane

through the axis perpendicular to the direction of the incident beam.

If this projection is used the intensities obtained correspond

to those in the plane through the origin of reciprocal space,



perpendicular to the incident beam. It is obvious that this simple

projection is particularly useful for cylindrical diffractors or for

helical diffractors whose transforms essentially have cylindrical

symmetry. This is true for the .discontinuous helix when only one

Bessel function term dominates such near-meridional reflection. In

such cases, this one section through reciprocal space gives the

complete intensity distribution.

It is also clear that the optical transformer is most easily

used, both in theory and practice, when the diffractions from an

individual unit.. only, without superimposed lattice, are to be

examined.

B. Description and use of apparatus

The optical transformer used was designed and constructed by

Mr. Harold Wyckoff. The system consisted of a Hg arc whose radiation

was filtered for the 546 line. Two lenses of focal length 4 and 2

meters were used. A diagram of the system with analogous parts of

the x-ray diffraction system is given below. This is taken from

Bear (1954). See Figure9 .4

Model projections were made on the scale 1cm. equals 1 A.

These were reduced photographically about So times to produce the

final negative used as a mask. In order to reduce aberrations caused

by imperfections on the gelatin surface of the negative, the mask

was coated with an immersion oil which matched the refractive index

of the gelatin. This was then placed between optical flats in a holder,

Exposure times varied depending upon the pinhole and masks used,

but were generally less than one hour.



THE OPTICAL TRANSFORMER

Analogous parts of x-ray diffraction system:
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APPENDIX III

the Calculation of the Fourier Transform of the Continuous

Coiled-Coil in Collagen

Crick(1953 a,b) has derived the expression for the Fourier

transform of a coiled-coil and has used this to predict the meridional

and near-meridional reflections expected from a model for o4 keratin.

Since a very gradual coiling takes place in the major helix in this

model, equation 2 in Tablel may be used. Crick did not employ the

formula to obtain either the relative positions or magnitudes of

the reflections for each layer line.

We wish to use the transform to determine the intensities

expected for a continuous coiled-coil model for the genetic helix

in collagen. This calculation serves as a test for the (optical

transformer' described in Appendix 7E, and in addition furnishes

more accurate intensity relationships than can be obtained by

that method.

The genetic helix we are considering has ten turns of the

minor coil in three turns of the major coil for the 30 A. period. It

is apparent that equation 3 must be used here. This means that

. Bessel functions are factors in each term. We may rewrite equation

3:

where .. P - A +ir/2) + +s( d P 4-~ ~~~ n t- dom 9+f" -1n+ (w4rr)

We may take 4 0 0 0)

from which we get

+a .x -



The implicit assumption of cylindrical symmetry which was made here

can be proved correct for values of R 4 0.10. Deviations from

cylindrical symmetries are probably not very great for values of

R 4 0.30.

More than one term must be used for calculating the intensity

at each point in reciprocal space even for near-meridional reflections.

We wish to eliminate all terms but those which will have an appreciable

value. To do this we consider each of the four Bessel function

factors separately. Given a model with prescribed radii for the major

and minor coils, the arguments of the Jp, Jq, and Jd, factors will

depend only on R, the radial coordinate in reciprocal space. For the

specific example here, the following values were used:

ro = 2.h A. rl =-1.80 A, C =_30 A.

& = 0.41 ri a 1.41

(Dimensions of the o( helix were used for the minor coil)

Substituting these, we get:

Jp (15. 1 R),i Jg (8.76 R),2 Jd (2.54 R)

By plotting the values of different orders of these Bessel function

factors, as a function of R, we can determine when they no longer

have an appreciable value for the region of reciprocal space under

consideration. Thus, the following table may be drawn up:

R .12 sin /A
0.10 0.20 0.30

p 0i l! 2 0 t1t2 3 4 O0 1± 2t3±h ± 5

q 0 !1 0 1a2 0 1± 2 t3

d 0±1 0 1 0112
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The integers are the orders of the Begiel function factors which must

be considered.

The argument of the J. Bessel function factor depends only on

layer line index and is constant over a given layer line for all

radial positions. For the collagen case this is JS (0.322 ). A

similar plot is made for this factor and it turns out that values of

from 0 to 4 U must be considered at the tenth layer line. Fewer

orders are necessary for layer lines of smaller index.

The next step is a consideration of the selection rules. It

is necessary to determine the relative sense of twist in the major

and minor coils since different selection rules occur for the two

possibilities of the same or opposite sense of twist. It is easily

shown that on layer lines which are integral multiples of A /No,

identical solutions occur for the two cases (this is due to these

layer lines exhibiting the continuous helix aspect of structure). For

other layer lines the following relationship exists:

pq = Pa- S sSas

ds - das

where the subscript'It refers to the solution in which both helices

have the same sense of twist, and the subscript Iggt to the one in

which they have opposite senses of twist.

Using either one of the two possible selection rules the solu-

tion corresponding to the other selection rule can be immediately

found by the above rules.

For the collagen case, calculations for both solutions were

carried out up to values of R = 0.10 in reciprocal space. The

solution which agreed better with the x-ray pattern was then chosen
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and the calculation done for values of R up to 0.30. For the

collagen case this turned out to be the one in which the major and

minor helices had the same sense of twist.

The sele ction rule used was: 3p - 13q - 7d = t- 108.

A table was drawn up for possible combinations of 3p, 13q and 7d, in

which all the permissible integers for p,gq, and d were included.

Inserting the value of a in the selection rule, all possible solutions

were determined, and checked off by reference to this table.

For radial positions near R 0.30, more than 30 terms in some

cases had to be considered. In addition proper attention had to be

paid to the sign of the Bessel function factors, as well as to the

phase factor j . However, once all the solutions were tabulated,

corresponding to the permissible combinations of p, q, d, and s, the

calculation was quite mechanical. The results were in excellent

agreement with the diffraction pattern obtained using the optical
and the

transformer. A comparison of the calculatec/observed intensities

is- showifin Figures 5 ox6.

It should be pointed out, that although the transform of the

coiled-coil gives good agreement with the intensity distribution

on the wide-angle diagram (see Figure 6 ), the coiled-coil model

for collagen does not fulfill the necessary stereochemical require-

ments.



Figure 5o. Figure r4p

Projection of continuous coiled-coil for collagen
aui its optical diffraction pattern
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