
A DIGITAL CONTROLLER FOR A UNITY POWER FACTOR
CONVERTER

by

AHMED MITWALLI

S.B., ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

(June 1991)

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 1993

@Ahmed Mitwalli 1993
All rights reserved

The author hereby grants to MIT permission to reproduce and to
distribute publicly copies of this thesis document in whole or in part.

Signature of AuthorI
Department of Electrical Engineering and Computer Science

January 15, 1993

Certified by .

George C. Verghese
Professor of Electrical Engineering

Thesis Supervisor

Certified by
Steven B. Leeb

Assistant Profes or of Electrical Engineering
Thesis Supervisor

A ccepted by
Campbell L. Searle

MASSACHUSETTS INSTITUTE b- Chairman, Department Committee on Graduate Students
QF Trrw'Min nov

ARCHIVES

A Digital Controller for a Unity Power Factor Converter

by

Ahmed Mitwalli

Submitted to the Department of Electrical Engineering and Computer Science
on January 15, 1993, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering

Abstract

Digital control is rare in the area of power converters due mainly to cost considera-
tions. As operating requirements of power supplies become more stringent, however,
their control poses difficult problems better dealt with using digital rather than analog
control. With the falling prices of microcontrollers and the increase in their process-
ing power, microprocessor-based controllers for power converters should soon become
practical. In this thesis, a digital controller for a Unity Power Factor AC-DC converter
is designed, based on a linear large-signal model of the power supply. A hardware
implementation of the design is presented and analyzed, along with simulations of the
closed-loop system. Issues in digital control of power systems, such as quantization
effects and fixed-point representation of system parameters, are examined in the con-
text of this system. An adaptive controller is then designed and implemented using
the same system. The experimental results are then compared with the simulations
and used to evaluate the implementation.

Thesis Supervisor: George C. Verghese
Title: Professor of Electrical Engineering

Thesis Supervisor: Steven B. Leeb
Title: Assistant Professor of Electrical Engineering

To my wonderful parents, whose love and support have turned out to be my

greatest assets. I owe you more than I can ever repay.

To my beautiful sister, Dalia, who has always stood by my side. I have never met

anyone who is more unselfish.

To my loving brother, Mohammed. May you have a bright and successful future.

God bless them all.

Acknowledgements

I had an incredibly stimulating and rewarding experience working on my Master's

thesis, and I have many people to thank for it. Mainly, I had the opportunity to work

with two exceptional supervisors.

Professor Verghese has to be one of the most brilliant human beings I have ever

met. The knowledge and insights I have gained from interacting with him are invalu-

able. His excellence as a person also extends far beyond his academic achievements

and intellectual abilities, and he has provided me with a role model in many aspects

of life. Thank you George.

Professor Steve Leeb has the rare combination of a deep understanding of theo-

retical issues and knowledge of practical matters. He worked closely with me on this

project, and his contributions are in every part of it. He was there on the long nights

of work, always ready to help, and never out of answers. I had the great opportunity

to work with him as a fellow student and friend and then as a supervising faculty

member. Thank you Steve.

Professor Aleksandar Stankovic, now at Northeastern University, was yet another

exceptional person I had the privilege of working with. It is hard to imagine my last

year and a half without his help and encouragement (on and off the basketball court).

His intelligence and good nature are of a rare magnitude.

Everyone in LEES deserves some thanks. The friendliness of the place made

my experience the best it could have been. Special thanks to Derek, Kamakshi,

Haatchitaba, John, Dave, Brett, Jeff, Mary, and of course, Vivian.

Thanks to family and friends. Without my parents, my sister Dalia, and my

brother Mohammed, and their constant support from so far away, none of this would

have been possible. I also thank my roommates and friends with all my heart.

I would like to acknowledge and thank Digital Equipment Corporation for sup-

porting the project, and in particular Dr. Joseph Thottuvelil, who was a great help

and a pleasure to work with.

Contents

1 Introduction and Background 12

1.1 Objectives . 12

1.2 The Power Factor . 13

1.3 High Power Factor AC-DC Converters 14

1.4 Modeling of UPF Power Supplies . 16

1.5 Digital Control . 18

1.6 Motivation 19

1.7 Thesis Organization . 21

2 Modeling and Control Design 23

2.1 Dynamic Models of the UPF . 23

2.1.1 The T,-Averaged Model . 23

2.1.2 The TL-Averaged Model . 24

2.1.3 Sampled Data Models . 25

2.2 Controller Design . 27

2.2.1 PI Control . 27

2.2.2 Deadbeat Control . 32

2.2.3 Additional Design Features -. 33

2.2.4 Integrator Windup and Startup Behavior 36

2.2.5 Overall Design . 37

3 Implementation 40

3.1 Hardware Implementation . 40

3.1.1 Digital Voltage-Loop Controller 40

3.1.2 D/A Conversion . 45

3.1.3 Analog Current-Loop Controller 45

3.1.4 A/D Resolution Enhancement 47

3.1.5 A/D Anti-Aliasing Filter . 48

3.1.6 The Complete System . 50

3.2 Implementation of Control Algorithm in Software 50

3.2.1 Timing . 52

3.2.2 Scaling and Digital Parameters 53

3.2.3 Other Controller Characteristics 57

3.2.4 Overall Software Implementation 64

4 Design and Implementation of Adaptive Control 65

4.1 Motivation . 65

4.2 Design and Implementation . 66

4.2.1 Estimation 66

4.2.2 Gain Tuning and Testing . 71

5 Experimental Results 73

5.1 Experimental Setup . 73

5.2 System Simulation and Results . 74

5.2.1 Simulation . 74

5.2.2 Digital Controller Without Adaptive Control 75

5.2.3 Adaptive Control 78

5.2.4 Overall Results . 80

6 More Compact Implementations 85-

6.1 Microprocessor Implementation Without the Evaluation Board 85

6.1.1 Memory Interfacing . 86

6.1.2 A/D Interfacing . 86

6.1.3 Experimental Results and Conclusions 87

a

6.2 VLSI Implementation . 88

6.2.1 Overall System Layout . 89

6.2.2 Control and Data Path . 89

7 Conclusions and Future Work 94

A Derivation of Closed-Loop Transfer Function in the z-Domain 97

B Comparison of Large- and Small-Signal Models 101

C Passive Filters for Anti-Aliasing and Ripple Frequency Selection 105

C.1 Anti-Aliasing Filter . 105

C.2 Bandpass Filter for the 120Hz Ripple 106

D Simulation Code 114

D.1 Simulations of the Discrete-Time System 114

D.2 Simulation of Digital System and Multiple Features 117

D.3 Simulations of T,-Model for Capacitance Estimation 123

E Circuit Schematics 128

F Controller C Code 136

G Schematic and Timing Diagrams for Compact Microprocessor Sys-

tem ' 147

H Transistor Level Schematics of Multiplier Cell and Block Description

of Multiplier Block 150

List of Figures

1-1 Voltage and current in conventional capacitor-filtered rectifiers.[15] . 15

1-2 A high power factor ac/dc switching preregulator [3] 17

1-3 Block diagram for a linearized model of a UPF. 17

1-4 A typical digital controller [6]. 20

2-1 The TL-based sampled-data-model. 26

2-2 A discrete-time PI controller [3]. 28

2-3 Response of the closed-loop system with proportional control. 30

2-4 Response of the closed loop system with PI control - system poles at

.5. 31

2-5 Deadbeat response to load disturbance. 32

2-6 A self-tuning regulator [10]. 34

2-7 Regulator with antiwindup . 36

2-8 Startup with integrator windup and no soft-start. 37

2-9 Overall controller design. 38

3-1 The digital development system. 42

3-2 The 80C196 interrupt structure [13]... 43

3-3 Output port 1 and multiplying DAC -configuration. 46

3-4 Output synchronization. 46

3-5 Implementation of the current loop. 47

3-6 Closed-loop system with 8-bit input quantization. 48

3-7 Closed-loop system with 10-bit input quantization. 49

3-8 Increasing Input Resolution. 49

3-9 Overall structure of hardware system. 51

3-10 System timing. 53

3-11 Transformation of v, to the digital value of 55

3-12 Transformation of V to its digital value. 56

3-13 Startup transient with anti-windup mechanism. 58

3-14 Startup behavior with soft-startup and initial anti-windup scheme. . 59

3-15 Startup behavior with soft-startup and modified anti-windup scheme. 60

3-16 10-bit quantized system with poles at .8. 63

3-17 Software structure. 64

4-1 Load transient response with C > C. 67

4-2 Ripple response to capacitance doubling followed by load doubling. 68

4-3 Ripple Detection. 70

5-1 Simulation of Startup in Implemented System. 76

5-2 Simulation of Load Transient Response in Implemented Digital System. 77

5-3 Startup in Implemented System . 79

5-4 Steady-State in Implemented System 80

5-5 Response of Implemented System to Load Transient 81

5-6 Response of System with Incorrect Load Capacitor Value without Adap-

tive Control . 82

5-7 Response of System with Incorrect Load Capacitor Value with Adap-

tive Control . 83

6-1 Block diagram of compact microprocessor implementation. 87

6-2 Block diagram of VLSI implementation. 90

6-3 Finite state machine for data path control. 91

6-4 Timing of Control Circuitry. 93

A-1 The Closed-Loop System. 98

A-2 Bode Plot for Transfer Function Between Reference Voltage and Out-

put Voltage. 99

A-3 Bode Plot for Transfer Function Between Reference Voltage and Out-

put Voltage. 100

B-1 Response of large-signal and small-signal controllers to load transients

from 50 Watts to 2000 Watts and back. With the large capacitor used,

there is hardly any difference 102

B-2 Response of large-signal and small-signal controllers to load transients

from 50 Watts to 400 Watts and back. The capacitor used is a tenth

of the size of the capacitor used earlier. 103

B-3 Response of large-signal and small-signal controllers to large voltage

transients . 104

C-1 A Second-Order Low-Pass Filter. 106

C-2 Bode plot for implemented anti-aliasing filter. 107

C-3 A Second-Order High-Pass Filter. 107

C-4 Bode Plot for Low-Pass Component of Ripple Band-Pass Filter. . . . 108

C-5 Bode Plot for High-Pass Component of Ripple Band-Pass Filter. . . . 109

E-1 Unitrode Application Circuit . 131

E-2 Boost Converter and Analog Current Loop. 132

E-3 Input Circuitry for Sampling Input Voltage and Load Current. 133

E-4 Input Circuitry for Sampling Output Voltage and 120Hz Ripple . 134

E-5 Circuitry for Converting Digital Command to Analog Voltage..... 135

G-1 Schematic Digaram of Compact Digital System. 148

G-2 Timing Diagram for Memory Access Cycle. 149

H-1 Circuit Schematic for Adder Cell. .. 151

H-2 A Product Cell. 151

H-3 An 8 by 4 Parallel Multiplier. 152

List of Tables

6.1 Estimated Cost for Components .. . 88

E.1 Resistor Values . 129

E.2 Capacitor Values . 129

E.3 Other Components . 130

Chapter 1

Introduction and Background

1.1 Objectives

The main goal of this thesis is to explore an implementation of a digital controller for
a power electronic circuit. Although digital control techniques are widely used in the
area of motor drives, they are rare in other areas of power electronics, mainly because
of cost considerations. As operating requirements on power converters become more
stringent, however, controlling them becomes a complex problem, better solved with
digital rather than analog control. There has been some effort in researching digital
control for power supplies [17] [5], but very little has been done in terms of actual im-
plementation of such controllers. This experiment should provide insight into some of
the difficulties that arise in realizing such systems as well as answers to these problems.

A Unity Power Factor (UPF) converter was chosen for the implementation. The
increasing popularity of this power supply makes it a natural target for research.
Moreover, as a high end product in the power supply industry, it is a prime candi-
date for experimenting with advanced control techniques that are conceivable with a
digital controller.

In implementing this controller, several issues are examined. A large-signal sam-
pled data model is used for control design and simulation. This model, as well as
the simulation techniques used, are evaluated based on the experimental results. The
discrete-time analysis methods, simulation environment, and the development system
should provide a taste of what capabilities are available for achieving digital control
in power electronics.

Demonstrating the availability of the necessary development tools and the real-

12

izability of digital controllers for power supplies is not enough to motivate choosing
them in practice, however. Additional features that are not easily implemented with
analog circuits, such as parameter estimation, are therefore included in the design.
Potential reductions in the size and cost of such controllers as well as possible im-
provement in performance are explored. Overall, an evaluation of the prototype and
a look at product feasibilty are used to determine whether digital control of power
supplies may be the direction in which we should be heading.

1.2 The Power Factor

The power factor, k,, of a two-terminal network is defined in [31 as the ratio of the
average power measured at the terminals to the product of the rms values of the
terminal voltage and current.

< p(t) > < p(t) >
VrmIrms S

< p(t) > is known as real power and is measured in watts, and S is known as appar-
ent power and is measured in volt-amperes. The optimal value for this ratio is unity,
indicating that the source is delivering all of its power to the load.

In an AC system, the voltage and current are typically periodic waveforms in time,
and the measured power is the product of these waveforms over a cycle [18]. In order
for the product of the rms values of the voltage and current to equal the measured
power and yield a unity power factor, the two waveforms need to coincide in shape
and phase. To understand this better, we consider as an example an ac system with
a single harmonic of voltage and a distorted current. The standard utility voltage
supply is nominally a sinusoidal waveform:

v(t) = V, sin wt (1.2)

Assuming a port with periodic current i(t)

00

i(t) =E In sin (not +On.)= I1 sin (wt + 01) + E(In sin not + On) (1.3)
n=O InfI

The average power delivered by this system is:

1T
< P >= -- vidt = V,., cos (1 = Skake (1.4)

T Jo

where kd = -,t and ke = cos 8; kd is the distortion factor and ke is the displacement
factor. The power factor is then defined as:

k, = kdke (1.5)

If the shapes of the voltage and current waveforms coincide, kd is unity, and if they
are in phase, ke is unity. Hence, for a unity power factor, we need two waveforms of
the same harmonic content and phase [3].

In the past, low power factors were mainly due to phase displacement, or a non-
unity k,. Most of the loads that an ac power system had to provide power to were
linear, drawing a sinusoidal current at the same frequency as the input voltage sine
wave. These loads were usually inductive, causing the current to lag the voltage. The
displacement factor was then less than unity, resulting in poor power factors. Power
factor correction in such a situation can be simply achieved by adding the appropriate
capacitor in shunt with the load. More recently, however, the power factor problem
has taken on a different form. Today, electronic devices and power supplies present a
highly non-linear load to the AC source, therefore drawing a distorted, non-sinusoidal
current from the utility. An example of such a load is the basic configuration of the
AC-DC power converter used to supply most computers and other electronic equip-
ment with power, namely a simple rectifier circuit with capacitive filtering. Figure
1-1 shows a diagram of such a circuit and its waveforms.

The line rectifier adds a dc component to the input voltage, and the capacitor
input filter extracts it and supplies it to the load. The capacitor is replenished by
the rectifier at each half cycle with brief bursts of current at each voltage peak. The
resulting current is distorted as shown. The poor power factor here is due to kd, the
distortion factor. The contribution to load power is made by a harmonic component
of the current which is in phase with the input voltage, but heavily attenuated due
to distortion. Power factors in such setups may be as low as 50% . Power factor
correction here involves reshaping the input current waveform, and is a much more
difficult problem than adding phase to correct for displacement effects.

1.3 High Power Factor AC-DC Converters

Most AC-DC power converters used today are based on a design similar to the one
presented above, with a rectifier and an input filter. The resulting power factor is
usually around .6, and the current waveform is distorted with higher harmonics. Most
computers require only a few hundred watts and this poor power factor multiplied by

V, VOLTAGE

AC LINE
VOLTAGE

LOAD

I I

AC INPUT
CURRENfT

I I

Figure 1-1: Voltage and current in conventional capacitor-filtered rectifiers.[15]

the 1400 or so watts available from a standard outlet provides the necessary power.
However, recent trends in computers and electronic systems have resulted in an in-
creasing demand for power factor corrected power converters. The overall number
of computers (and other electronic devices that use switch-mode power supplies) has
increased dramatically as a result of cost reductions, increasing level of computer
literacy, and user-friendly interfaces. This results in more power wasted due to poor
power factor, which translates directly into utility losses, since the utility usually

charges customers for real power consumed. Moreover, the increasing demand for
computing power in workstations has led to an increase in workstation components
and therefore in their electrical power requirements. As the power limits of standard
electrical outlets are approached, one way to meet these new requirements is to rewire
offices with nonstandard outlets. Besides incurring extra cost on the customer, this
solution requires rewiring of the outlets every time the workstation is moved [1]. A
more practical solution would be to increase the power factor of the power supply.

As mentioned earlier, a poor power factor in switched power converters is usu-
ally accompanied by distorted current waveforms. The higher harmonics in these
waveforms may interfere with nearby instruments, often making it necessary to add
extra filtering components. Higher harmonics may also resonate and interfere with
the utility's circuit protection devices, causing them to malfunction. Power factor

correction through current shaping would essentially eliminate many or all of these
higher harmonics. In Europe, more stringent limits on the harmonic content of power

supply waveforms are already being legislated. According to the tougher standards

recommended by the International Electrotechnical Commission (IEC) 555-2, power

supplies rated higher than 300 watts need to incorporate some form of power factor

correction [18].

Responding to this increasing need for higher power factors, several systems with

power factor correction have been developed. The multiple output Modular Power

System with high power utilization [2] provides an 80% power factor to deliver 1200

watts to a workstation from a standard outlet. It does not, however, solve the prob-

lem with input current harmonics. More recently, power supplies with almost unity

power factors (UPF) have been introduced, providing levels of power near the maxi-

mum that can be drawn from the standard outlet. A UPF uses a certain power supply

topology with some control scheme that draws a current with the same frequency and

shape as the input voltage.

One increasingly popular scheme for achieving this sinusoidal input current uses

the circuit in Figure 1-2. The boost converter in the circuit receives as its input

the rectified AC waveform, Vlsinwtl. The inner loop controls the source current to

the shape and phase of the input voltage by providing a switching sequence for the
transistor that forces the inductor current iL(t) towards a desired current i,(t), which
is in turn made proportional to the input voltage. The outer voltage loop regulates

the output voltage v, to the reference voltage V by adjusting the proportionality
constant used to generate i,(t) every line cycle [4]. This allows the system to correct

for deviations from the nominal point in the output voltage due to disturbances in

the constant load P.

1.4 Modeling of UPF Power Supplies

There are different approaches to modeling UPF power supplies and designing their

control loops. We focus here on the boost converter topology presented above. In [1],
Williams investigates five different control circuits. They are all based on a small-
signal transfer function between i,(t) and v,(t). Henze and Mohan [5] use a hysteretic

current controller for the inner loop and a digital PI controller for the outer voltage

loop. One model presented by [4] and [17] is derived by linearizing a power balance
description of the boost converter above with a load resistor in parallel with the con-
stant power load and is shown in Figure 1-3. The linearization is done around the

nominal operating point for the output voltage, V0.

L

Viz'

TL

Without the load resistor, a power balance description averaged over half a line
cycle yields:

dv2(t) 1
= -(V2k(t) - 2P)di C (1.6)

Averaging techniques used to arrive at this and other models will be discussed in
more detail in Chapter 2. Linearizing this about the nominal operating point, and
using tildes to denote deviations from the nominal, we get the following transform

-2P

1/2VoC
k+2---- V 0

Figure 1-3: Block diagram for a linearized model of a UPF.

I

domain description (which is the result in Figure 1-3 for the case R = 0).

1- -
O = V 2 - 2P) (1.7)

V0 2sV0C'

The models mentioned above and the one developed here are all derived through some
form of linearization. Linearized models are valid only in the vicinity of the nominal
operating point and are therefore small-signal models. In Chapter .2 we develop a
large signal model that we use for the design of the digital controller. A large signal
model is more accurate, and controllers based on it are potentially more robust and
reliable than those based on linearized models.

1.5 Digital Control

In the last decade or so there has been a rapid increase in the use of digital con-
trollers in dynamic systems. Digital controllers have become an integral part of the
operation of many industrial systems [6]. Originally, they were used as components
only in large-scale control systems. However, the evolution of microprocessors and
microcomputers that can rapidly perform a variety of control functions has brought
digital control into small-scale systems as well.

The ability to "make decisions" (i.e. implement complex, nonlinear, time varying
control laws) is one of the main strengths of digital control. Applications that utilize
this capability include "intelligent" industrial robots and fuel economy optimization in
automobiles. This and other advantages of digital computing over analog computing
combine with the decreasing cost and size of microprocessors and microcomputers to
produce the current trend toward digital controllers rather than analog controllers
[6]. Some of the advantages of digital control are:

e Straightforward data processing allows for more complex calculations and the
implementation of modern control schemes.

* A simple change of a program allows for a change in controller characteristics.
This flexibility allows the designer to modify the controller at will, as well as
implement adaptive control schemes.

* Digital controllers are superior in terms of internal noise, aging, and drift effects.

Some of the disadvantages of digital control are:

* System performance is likely to degrade as sampling and quantizing result in
more errors.

9 A digital controller that compensates for such degradation involves a more com-
plex design than its analog counterpart.

* A digital controller can be slower and more expensive than an analog controller
[6].

Generally, digital control of a continuous time system involves sampling of the control
signals, A-D conversion, processing of the digital data using a digital computer, D-A
conversion of the digital outputs, and interpolation of the resulting signal. Figure 1-4
illustrates a typical digital control system.

In power electronics, digital control of motors and motor drives has become very
popular, [7], [8]. However, the use of digital control in other converter systems is not
widespread. Power converter systems place high demands on digital control systems,
and digital controllers that meet these high demands are often considered too costly.
The systems must be able to handle fast closed-loop control processes with sampling
times of 1 ms and below. They must also meet specific time requirements in generating
control signals and reacting to process interrupts. A good user interface is required
so that changes to the controller may be made easily during planning and testing [9].
In [9], Siebert reviews a new multicomputer control system for all types of converters.
The design uses 3 80196 Intel microprocessors and provides a fairly high-level language
interface. Very little has been done in terms of actual implementation of digital
controllers for power converters, however. A low cost digital controller for DC - AC
inverters and DC - DC PWM converters is discussed in [14].

1.6 Motivation

With the increasing need for high power factor converters, UPF power supplies have
rapidly gained popularity. It is essential that power supplies for workstations and
other computers be robust, reliable, and quick to respond to perturbations in circuit
parameters. The linear large signal model introduced in the next chapter leads to a
controller that promises quick and reliable correction of changes in the output volt-
age that result from perturbations in load power or input voltage. Simulations show
transients settling down after eight line cycles, but even faster response is possible
[4]. Power factors of .97 in steady state are also simulated. Large perturbations are
handled well due to the linearity of the model that underlies the controller design.
Prior to this project, however, only an analog controller based on the large signal
model had been implemented.

oItVa

0*18er mwoe

raw sr one,

NOW

Figure 1-4: A typical digital controller [6].

The cyclic nature of the UPF converter, due to its sinusoidal inputs, makes it
easily and accurately described via a sampled data model. Once such a model is
available, the design of discrete-time controllers using the model can be straightfor-
ward. A discrete time controller lends itself naturally to implementation in a digital
setting. A digital implementation would add to the flexibility and robustness of the
system. Moreover, it would allow for the on-line real time estimation of various
circuit parameters that are likely to change with age or for other reasons, thereby
facilitating adaptive control. One such parameter is the bus capacitance, which can
be estimated from the ripple on the output voltage. The microprocessor may also
be programmed to shut down under emergency conditions and at the request of the
user. Considering that the cost of microprocessors is decreasing rapidly and that we
could conceivably use part of the processing capability already available on a system,
the cost of a digital implementation may not be significantly more than an analog
one, if at all. Moreover, a digital controller need not be slower than an analog one;
closed-loop bandwidths can be comparable, and digital controllers can even result in
faster settling than analog controllers. This will become clear in the case of UPF
converter control, as the sampled data model and controller are developed in later
chapters.

Digital control theory is well-developed [10], and microprocessors are becoming

less and less expensive and more powerful. Nevertheless, the cost of digital hardware
is still too high for many small-scale applications. This combines with programming
complexity and time to hinder the development of digital control applications. The
digital controller explored in this thesis is developed with cost as well as design time
in mind. An inexpensive microprocessor is chosen, and a high-level language (C)
is used for algorithmic implementation. Entry of digital controllers into a field of
small-scale inexpensive products such as power electronics would be highly unlikely
without attention to cost and design time. Our goal is to demonstrate that digital
controllers can provide equal or better performance than their analog counterparts in
controlling inexpensive power electronic circuits with little extra cost in design time
or money.

1.7 Thesis Organization

This thesis document is organized into seven chapters. Chapter 2 develops a large-
signal model for the boost converter, averaged over the time scales of both the switch-
ing period and half the line period. It then presents a sampled data model based on
the averaged models, which is then used for the design of a discrete-time controller.
Simulations of the resulting discrete-time system are then described.

Chapter 3 describes the implementation of the digital controller. It begins by
discussing common issues in digital control, such as quantization error and sampling.
Problems more specific to the system at hand are then introduced. A description of
the microprocessor development system is provided, and the initial implementation
is discussed. Software, digital hardware, and analog hardware used for interfacing to
the power converter are described. Simulations used in the development process are
also shown.

Design and implementation of adaptive control are discussed in Chapter 4. Other
additional features and potential improvements are also explored. While some are
simple enough to implement, others do not promise significant improvement in this
system but are worth exploring for future reference.

Chapter 5 presents the results of experiments. These results are compared with
simulations for verification of successful operation. They are also compared with an
analog implementation of a related control scheme (to evaluate the digital imple-
mentation), and with an implementation using a commercially available circuit that
utilizes a different control scheme (to evaluate our choice of controller).

Chapter 6 investigates more compact implementations of this system. The first one
uses the same microprocessor as in the development of the prototype, and interfaces
it directly to off-chip memory and other hardware essential to this application, elimi-
nating the need for the development board and all the extra hardware and firmware.
A second uses a VLSI implementation, which would be cheaper, faster, and more
compact.

Chapter 7 summarizes'the pertinent conclusions of this research work, and identi-
fies problems for future research. Matlab simulation code, C programs for testing and
running the microcontroller, and hardware schematics are included in the appendices.

Chapter 2

Modeling and Control Design

Systems that are inherently cyclic, such as the one at hand, can be accurately de-
scribed using a sampled data model (SDM). Such a model is a discrete time descrip-
tion useful for designing discrete time controllers. Sampled data models and discrete
time control for the UPF are developed below. Simulations of the closed-loop system
under various control designs are included, but omitting details such as quantization.

2.1 Dynamic Models of the UPF

The circuit in Figure 1-2 can be described by a power balance equation, as mentioned
earlier. This power balance relationship is used to develop continuous- and discrete-
time models of the circuit, averaged over both the switching period and the period
of the rectified line voltage. These models are used to develop controllers and to
obtain simulations in MATLAB TM for the closed-loop system with different controller
designs.

2.1.1 The T,-Averaged Model

In [41 Mahabir develops models for the UPF using a resistive load in parallel with a
constant power load. The models below are developed in the same manner, ignor-
ing the effect of the load resistor in parallel with the constant load. Equating the
power input to the system in Figure 1-2 with the power dissipated in the different
components, we find:

1 d 2 1
C ' =viL -L - P (2.1)

2 dt 2 dt(21

Typically, the inner-loop, or the current loop controller, is operating at a much higher
bandwidth than the outer loop. If we choose that to be the case, we can make the
approximation that the inner loop is working ideally, and that the inductor current
is following the current commanded by the controller:

iL(t) = k(t)vjn(t) (2.2)

(Note that k(t) is referred to in Figures 1-2 and 2-2 as p(t).) Substituting for the
inductor current above:

-C = k(t)v (t) - 1 d[(t)v-L(t)] - P (2.3)
2 dt in 2 dt

In developing this model, the switching frequency ripple in the output voltage was
ignored. This result is essentially the same as that arrived at by averaging a switch
model over the switching period. Hence it will be referred to as the continuous-time
T,-averaged model. It is clear that if v, is taken as the state variable, 2.3 is a nonlinear
description of the power converter. However, if v is used, the model is effectively
linear [4].

2.1.2 The TL-Averaged Model

The T,-averaged model may still be simplified further by averaging over a longer
period. Let TL be the period of the rectified input. Averaging 2.3 over TL yields an
averaged model on the time scale of the input period. The running average defined
by

it= - f w(r)dr (2.4)
. T L TT

is used. Denote v(t) by x. If the ripple in v,(t) is small, then x 0 ij. Assuming
that k(t) varies slowly enough to be considered constant over any interval of length
TL further simplifies our analysis, as

7k(t2)v(t) ; k(t V- (2.5)
L TL *n2

and

f t d[k 2(t v (t)01(.6

{-TL dt

with our assumption that k(t) is slowly varying. The resulting TL -averaged model is
given by the linear time-invariant (L TI) first-order description

dx(t) 1
="t : -(V 2k(t) - 2P) (2.7)

dt C

The TL-averaged model is not as accurate as the T,-averaged one, as it ignores the
ripple on the output voltage. This ripple is very small, however, as the load capacitor
is usually very large. The TL-averaged model provides a much simpler description,
which facilitates the straightforward design of controllers. Moreover, the assumption
that k(t) is essentially constant over a rectified line period allows for the implemen-
tation of "slow" controllers that operate on that parameter. This is especially helpful
in digital implementations, as will become clear shortly. The T,-averaged model is re-
quired for simulations and in formulating an expression for the output voltage ripple,
which is used in Chapter 5 to estimate the value of the output capacitor. However,
controllers based on the TL -averaged model should yield satisfactory results in reg-
ulating the output voltage in our application. Controllers based on the T, -averaged
model would need to react with the frequency of the switch. An analog implemen-
tation of such a "fast" controller is currently being investigated [15], but a digital
implementation at that speed with the currently available technology would be too
expensive to be practical.

2.1.3 Sampled Data Models

To achieve a unity power factor, the input current has to coincide in shape and phase
with the input voltage. This dictates that k(t) is kept constant over each cycle. Under
this condition, it is natural to investigate sampled data models (SDM) and controllers.
A sampled data model on the time scale of the input period TL is developed below
and eventually used for designing a discrete-time controller for the digital controller
implementation. With TL = 8.3ms as the sampling period, there is ample processing
time for most present day micro-controllers to execute significant control algorithms.
A sampled data model on the time scale of the switching period T,. is also developed.
It is used later in simulations and in developing adaptive control schemes, for which
the "TL -SDM" proves insufficient [4].

TL-SDM

Assume that k(t) is essentially constant over the input period, the value of k(t) in
the nth cycle being denoted by k[n]. Let the value of v0 at the beginning of the nth
cycle equal x[n]. Integrating either the T,-averaged model in 2.3 or the TL-averaged
model in 2.7 over TL yields the following equation [3]:

- 2P

k L Vj21 -z V 2

Figure 2-1: The TL-based sampled-data-model.

C(x[n + 1] - x[n]) = TL(k~n] - P) (2.8)

or

x[n + 1] = x[n] + C k[n] - TL P (2.9)

This TL-SDM is a state-space representation of a first-order LTI discrete-time system,
with control input k[n] and disturbance input P, as shown in Figure 2-1 (which
actually represents the z-transformed version of 2.9).

T,-SDM

The development of a sampled data model at the time scale of the switch period is
similar to that of the TL-SDM. Assume that k(t) is constant over T,. The time index
71 is used to denote the switching period. The sampled data model is then acquired
by integrating the T,-averaged model of 2.3 over T,. As presented in [4], the T, -SDM
is

x[7 + 1] = x[7] + bi[7]k[77] + b2[,q]k 2 [77 _ 2PT, (2.10)

where b1 [q] and b2[q] are time varying input gains given by:

V2 V2 TL
i[,q] = T, - { [sin (2V(7 + 1)T./TL) - sin (2x7T,1 TL)]} (2.11)

V2 L 2[(r(i+ (7rBIL;JJ
b2 [n] - C{si 2 (I(i + 1)T,/TL) - sin 2 (7r T/TL)} (2.12)

whereas the TL -SDM ignores the ripple in the output voltage, and therefore
reaches a steady state where x[n + 1] = x[n], The T. -SDM does not ignore this
ripple. It therefore reaches a cyclic steady state with a period equal to that of the
output voltage ripple.

2.2 Controller Design

The models developed above are verified through simulation and comparison with
results from a test circuit in [4]. These models are useful for designing controllers
for the UPF. Controllers may be designed based on the linearized model presented
earlier, or on any of the linear models of the last section. Both the T,-Averaged and
TL-Averaged models have been used to design analog controllers for the UPF (15],
[4]. To take advantage of the T,-SDM in a digital controller would require processing
speed that cannot be met today with a commercially viable digital implementation.
The TL-SDM is therefore chosen as the basis for designing a discrete-time controller
to be implemented digitally.

2.2.1 PI Control

A natural way to regulate the output voltage to a desired value V, is to use a discrete
time version of proportional integral, or PI, control [3]. This provides for zero steady-
state error despite uncertainties in system parameters (including load power) as shown
below. Proportional control by itself could not avoid load regulation in this case. To
exploit the linear model of the power supply, the state variable to be controlled needs
to be the square of the output voltage instead of the voltage. This variable is x, and
is regulated to a desired value X = V2. Note that the value of v, at the beginning of
each input cycle is what is being regulated to the reference, and not the average value
of v, . The ripple on v, is assumed to be small enough that this is not a major concern.

To assure that in steady-state the error in the output voltage goes to zero, the
error in v = x is fed into an accumulator, i.e. a discrete-time version of an integrator.
For the accumulator, a new state variable o is defined:

o[n + 1) = a[n] + (z[n] - X) (2.13)

The input to the accumulator is the error term x[n] - X = V,,.,.{]. If a steady state
is attained, x[n + 1] = x[n] = X and o,,[n] = 0 (Otherwise the accumulator would

Figure 2-2: A discrete-time PI controller [3].

not be in steady state). To implement PI control then, the value of the accumulator
is multiplied by an accumulator gain G1 and added to the product of a proportional
gain Gp and v,., The result is fed into the open-loop system through its control
input k[n]:

k[n] = Gpvr,,.,.[n] + Gro[n] (2.14)

Defining the normalized gains

TLV2
h1 = C GP (2.15)

h= TLV 2 G (2.16)
C

yields the following:

k[n] = C (hi(x[n] - X) + h 2e[n]) (2.17)

The resulting closed-loop system is shown in Figure 2-2.

The accumulator in the figure is shown as - . This is the z -transform transfer
function of the accumulator described above in 2.13 from its input t,,.,. to its output u.

The overall system is a combination of the converter and the controller, both of
which are first-order subsystems. The closed-loop model is therefore second-order,
and is described by the following state-space model:

o-[k +1] 1 1 a[k] 1 X0 P (.8
x [k + 1] h2 1 + h1 x [k] h1 j

If

A (2.19)
h2 1+hl

The characteristic polynomial for this system, obtained by finding the determinant
of zI - A, is

z2 - (h1 + 2)z + 1 + hi - h2 (2.20)

The roots of the characteristic polynomial are the poles of the system:

(h 1 +2)± h+4h2 (2.21)
z1, z2 = 2 (.1

The transient response of any variable in the system is of the form cizi + c2zk (for

z1 # z2), where ci and c2 are constants that depend on the initial conditions (and on
which variable is being considered). If Gr and Gp can be chosen such that zi and z2

have magnitude less than 1, the system will be stable, and will reach a steady state
in which v,.. = 0.

Without the accumulator part, the state variable x would be governed by the
first-order equation

2TL P
x[n + 1] = x[n] + hi(x[n] - X) - 2 (2.22)C

which in the steady state settles down to

2TLP
X[n + 1] = x[n] = X + . (2.23)

Ch1

This system exhibits load regulation and a nonzero steady-state error.
Figure 2-3 shows the response of the closed-loop system with proportional control

to a doubling in the load and Figure 2-4 shows the response to the same perturbation
with PI control. In these simulations, as well as in all simulations hereafter, plots of
k will be used to illustrate the envelope of the input current, since from Figure 1-2,
ir = kvin.

398

397-

396 -

395-

394

0 10 20 30 40 50 60 70 80 90 100

0.01

0.008-

0.006-

0.004-

0.002 --

0 10 20 30 40 50 60 70 80 90 100

Half Line Cycles

Figure 2-3: Response of the closed-loop system with proportional control.

The scheme above assumes that no knowledge of the load is available, and proceeds
to compute and store in the accumulator a value that would provide zero error for
any load. In most cases, however, a nominal value for it is known; if measurements of
the load are available, they can be taken advantage of as well. Based on knowledge
of the actual or nominal load, the control variable k[n] may be found as the sum
of a nominal K[n] and a k[n] to be computed by a PI controller. This scheme has
its advantages. In particular, the controller does not need to work as hard if the
estimate for K[n] is accurate. This can translate into less computation time in a
digital implementation. Moreover, outputting k[n] instead of K[n] could mean more
resolution per unit of control variable, if, as in the .case of a digital controller, the
output resolution is limited. The controller developed above is more straightforward
to implement however, and is better equipped to deal with the most general cases
in which the load and other parameters in the circuit are not well known, and is
therefore chosen for the implementation. The issues introduced here regarding the
difference between the two designs are discussed further as implementation issues.

401

400

0 399-

398-

397'
0 10 20 30 40 50 60 70 80 90 lOC

0.01

0.008-

0.006-

0.004-

0.002-

01
0 10 20 30 40 50 60 70 80 90 100

Half Line Cycles

Figure 2-4: Response of the closed loop system with PI control - system poles at .5.

401

400

399 --

398-

397'
25 26 27 28 29 30 31 32 33 34 35

0.02

0.015-

W 0.01 -

0.005-

01

25 26 27 28 29 30 31 32 33 34 35
Half Line Cycles

Figure 2-5: Deadbeat response to load disturbance.

2.2.2 Deadbeat Control

A stable LTI continuous-time system cannot settle down to its steady-state in finite
time after a disturbance occurs, since its transients decay exponentially. In discrete-
time systems, however, the case is different. Transients evolve as A", where n is the
number of time steps. By choosing A to be a nilpotent matrix, with eigenvalues at
0, this quantity will go to zero in finite time. Specifically, if A is a nilpotent matrix,
A = 0 will definitely be true for n = m, where m is the dimension of A, or for n < m
under certain conditions. The result is a so-called deadbeat system, whose transients
last only a finite number of steps.

For the UPF closed-loop system with PI control, setting z1 , z2 = 0 in 2.21 yields
the values hi = -2 and h2 = -1 for the normalized controller gains. The simulations
in Figure 2-5 show the response of the deadbeat system to a doubling in the load
Steady state is recovered in 2 cycles, the order of the closed-loop system.

Clearly, deadbeat response requires very high gains and high levels of control com-

mand that may not be available to the designer. As will be shown in Chapter 3, high
gains and bandwidth also result in an increase in quantization error in the digital
system. . In the case of the UPF, a tremendous increase in input current (to correct
for the error in the output voltage induced by the step in power) is required to achieve
deadbeat behavior. Physical limitations in the actual implementations deny the sys-
tem such input current levels. These limitations along with the complications due
to high bandwidth in the quantized system prevent the implementation of deadbeat
control.

2.2.3 Additional Design Features

The PI controller introduced above yields satisfactory results in analysis and sim-
ulation. However, power supply component limitations, system specifications, and
other implementation difficulties require the utilization of other control techniques in
conjunction with the basic controller. A digital implementation facilitates these extra
features with relative ease. Most of these control techniques are developed in more
detail in the implementation section, as they resulted from some implementation dif-
ficulty and many of their parameters are implementation dependent. However, their
general features were part of the initial design process and are introduced below.

Adaptive Control

Uncertainties in modeling and circuit parameters motivate the implementation of
adaptive control. An adaptive controller has the ability to "redesign" or adjust its
control characteristics based on measured or estimated system parameters. Reg-
ulators that employ such methods to automatically adapt to variations in system
parameters are also known as self-tuning regulators (STR). Figure 2-6 shows a block
diagram of a self-tuning regulator. An outer loop in the regulator adjusts the param-
eters of the regulator through estimation and design calculations. The process and a
feedback regulator, the PI controller in our application, make up an inner loop which
is "adapted" to parameter variations using inputs from the outer loop.

The system at hand provides a good test-bed for parameter estimation and adap-
tive control techniques. A microprocessor based system has the ability to carry out
the complex computations necessary, and uncertainty in the circuit parameters of the
power supply provides a problem to tackle.

The gain block with gain value T in Figure 2-2 provides several circuit pa-
rameters of which our knowledge is not necessarily perfect. The value of TL depends
on whether the input frequency is 50Hz or 60Hz. Adapting to variations in input
frequency requires detection of the zero-crossings of the input waveform and is not

Figure 2-6: A self-tuning regulator [10].

implemented here. V, the peak input voltage, depends on whether the input is sup-
posed to be 110voltarms or 220voltsrms. It may also change during operation. To
correct for perturbations due to disturbances in the input voltage, a DC filter is used
to estimate the peak input voltage and use the updated value in place of the original
estimate. This is the path shown as a dashed line in Figure 1-2. A more difficult
problem is responding to changes in the value of the load capacitance. The design
and implementation of a self-tuning controller which responds to variations in output
capacitance are presented in Chapter 5.

Bang-Bang Control

Components in the power supply are rated for operation below certain peak values
of voltage and current. For this reason, it may be necessary to apply an automatic
shutoff of the system if the PI controller allows the output voltage or other variables
to reach these limits for certain unlikely but possible disturbances. There may also
be a specification on the lower bound the voltage is permitted to reach. A slow but
robust controller may behave optimally in dealing with common disturbances but
would allow excursions outside this allowed band for some extreme operating condi-
tions.

One way to deal with this problem is to have different controllers for the different
situations. A linear controller, such as the PI controller discussed earlier, may be de-
signed and optimized for one range of voltages around the nominal operating point.
A second controller detects if the circuit variables are near their specified limits and
applies more extreme commands to bring them back within the safe range of oper-
ation. A controller that switches back and forth between two control commands in
this manner is known as a bang-bang or an on-off controller. [19] discusses a similar

a similar idea.

In a digital implementation of a controller such as the one at hand, quantization
error may be a problem in the steady state, and is usually a function of the gains of
the feedback loop. While reducing these gains will reduce the effects of quantization,
it may result in a regulator that fails to meet the specifications of the system. An
on-off controller could then be used to insure that these specifications ar met. A more
detailed analysis requires more knowledge of the implementation and the system lim-
itations, and is presented later.

Band Control

Another application of the division of the regions of operation among different con-
trollers for optimal results should be helpful in dealing with quantization error in the
digital implementation. Increasing the resolution on the input to the controller and
reducing its gains can bring the control quantization error to within tolerable levels
for normal operation. With the inclusion of adaptive control, in this case capacitance
estimation and self-tuning based on the estimated capacitance value, measurement of
the output voltage ripple is required. This ripple may be very low in amplitude, close
to the size of the error due to quantization of the control. For such a measurement,
therefore, it will be necessary to eliminate quantization noise, at least for the time of
the measurement.

To achieve cancellation of quantization noise, the controller command cannot be
allowed to fluctuate. This fluctuation is inherent in the digital implementation of
the controller, however, and may only be eliminated by disabling the PI controller
for some time while the output voltage is in (or near) the steady state. The general
algorithm for this scheme involves averaging the control command within a certain
distance from the steady-state and using the average value while measurement of the
output ripple is being carried out. The converter isrunning open-loop in this regime,
and care has to be taken to close the loop if significant deviation from the steady
state is detected. The result is that within the band of ±e, the voltage is allowed to
settle to any value. If e is small enough, the error is insignificant, and a reasonable
resolution on the AD converter and the output port should make such a value feasible.
Of course, the transient response is no longer the same for certain load disturbances.
The details of this algorithm and results are also discussed later.

Figure 2-7: Regulator with antiwindup

2.2.4 Integrator Windup and Startup Behavior

In the actual UPF system, there are upper and lower limits on the input current that
the feedback controller can command. For certain load disturbances and controller
gains, these limits may be reached. When that happens, the input current will sat-
urate at its limit, regardless of how far beyond the limit the controller commands it
to be. The feedback path is effectively broken. In a regulator that utilizes integral
action, this results in integrator windup [10].

When the feedback path is broken, the integrator is left unconnected to the rest of
the system except through its input, which is the error in this case. Being an unstable
system, it may integrate to a very large value. When the error is finally reduced to
the desired level, the integral may be so large that it takes considerable time until it
assumes a normal value again, so the commanded current will remain stuck at its limit
far longer than it should for proper recovery. One way to avoid integrator windup
is through an additional feedback path that sends the error between the actual and
desirable commanded currents back to the integrator through an appropriate gain, as
shown in Figure 2-7. The error between the commanded and the actual currents is
zero when the current is not saturated.

A more easily implemented solution is to completely isolate the integrator when
the current is saturated. The integral action is disabled, and the value in the inte-
grator is held until the current is no longer saturated.

Significant windup effects are witnessed in the UPF system simulations only dur-
ing the startup transient. The load transients did not produce enough of a voltage
disturbance to cause the integrator to wind up. Another problem with the startup

500

O 300 -

200 - -

1006
0 10 20 30 40 50 60

0.03

0.02-

0.01-

0
0 10 20 30 40 50 60

Half Line Cycles

Figure 2-8: Startup with integrator windup and no soft-start.

transient is the shape of the current, which shoots to the saturation level due to the
large error detected. This problem is dealt with using a soft-startup routine. The ref-
erence voltage is initialized to a lower voltage than the desired one. It is then stepped
up to the final value over a few cycles, during which the current. level rises slowly as
it raises the output voltage level to the reference. Figure 2-8 demonstrates the effect
of integrator windup and the sharp current transient during startup. The implemen-
tation of a soft-startup routine and an anti-windup scheme are discussed in Chapter 3.

2.2.5 Overall Design

Combining the PI controller, the adaptive controller for estimating and adjusting to
the capacitance, the bang-bang controller, the "band" controller, and the anti-windup
mechanism, the system in Figure 2-9 is obtained.

The combination of several features and control loops complicates the design be-

Band

Figure 2-9: Overall controller design.

yond the basic PI controller. However, with a fairly cheap digital implementation,
the inclusion of even more features is possible, as will be demonstrated in the next

chapter.

Chapter 3

Implementation

A digital implementation of the controller can add to the robustness of the system
by allowing a more complex and flexible design, and a highly repeatable implementa-
tion. The disadvantages, however, are higher cost, and performance degradation due
to sampling and quantization [6]. In the following sections, the various hardware and
software components used to implement different sections of the layout in Figures
1-2 and 2-9 are presented. The implementation discussed here excludes the adaptive
control section. A general description of the development system is given, with ref-
erence to the system manuals for more details. Use of the relevant components in
this specific application is then illustrated. Implementation circuits are mentioned by
function and illustrated by block diagrams. The algorithms used are presented and
the methods used to arrive at the design parameters are discussed. Calculations with
actual values and circuit diagrams are reserved for the appendices, however.

3.1 Hardware Implementation

Hardware is needed to replace every component in Figure 1-2. Digital hardware
is used for implementing the voltage-loop controller. The current-loop controller is
implemented in analog hardware and interfaced to the boost converter. Interfacing
between the digital hardware and the rest of the circuit requires some extra miscella-
neous hardware as well. The implementation of these circuits is discussed below, and
their construction method briefly outlined.

3.1.1 Digital Voltage-Loop Controller

The voltage-loop controller in 1-2 is to be implemented digitally. From the system
model and control design described in Chapter 2, the output of this loop only changes

once every TL seconds. This low-speed loop naturally lends itself to a digital imple-
mentation that is not too expensive. To implement the current-loop controller on
a microprocessor would require more expensive technology. Moreover, the digital
implementation of the voltage-loop controller provides most of the flexibilty and ro-

bustness that one could hope to achieve in this system. The extra cost required to

include the current loop controller on the microprocessor is not warranted presently.
The ROMless 16-bit 80C196KB was chosen as the microprocessor for the appli-

cation. Much less expensive than 32-bit microprocessors and DSP chips, this em-
bedded microcontroller provides ample processing power for the system at hand. A
straightforward implementation of the PI controller discussed above actually should
not require even as sophisticated or expensive a microprocessor as the 80C196KB.
However, the difficulties and complications in design due to quantization may cause a

simpler microprocessor to end up requiring a considerably more complex implemen-

tation. Moreover, to achieve high levels of performance and to explore the various

control schemes and features made possible by operating in the digital domain, a
reasonably powerful microprocessor is required.

The EV80C196KB software evaluation tool for the 800196KB microcontroller al-
lows control and monitoring of the processor through an Embedded Controller Mon-
itor (ECM) that supports basic debug facilities in the target system [12). The ECM
is broken into two programs, one executing in the EV80C196KB and the other in an

IBM PC compatible. They communicate via an asynchronous serial channel to allow

the downloading of microcontroller programs, execution of these programs, and mon-
itoring the various processor states as the programs execute. The 80C196KB has a
16-bit CPU and 232 bytes of on-chip RAM. It is a register-to-register machine, so no

accumulator is needed, and most operations can be directly performed from or to any

of the registers. In addition, there are many peripherals that are directly controlled
through register operations. Figure 3-1 illustrates the features of the evaluation board

and the microprocessor necessary in the application. Details of this system and other

features of the 80C196KB and the EV80C196KB are found in [13] and [12].

Interrupt Handling

In a digital control system, some tasks such as sampling and output generation need
to be synchronized to specific points in time. Others are event generated, such as
shutdown or other precautionary measures taken when a certain condition is detected.
Still other tasks, such as system operation services or computations carried out during
time gaps free of other processing tasks, have no time restriction. For such a system,
an interrupt oriented software structure is the best choice. In the UPF controller

setup, the sampling and control output need to be carried out at specific points in

time (8.33 ms apart). System shut-off, whether user generated or due to failure, is

RELEVANT COMPONENTS OF 80C196

Figure 3-1: The digital development system.

event-generated, and fine tuning of the system over several control cycles may be ac-
complished through estimation of circuit parameters to be computed over some time,
whenever the processor is free. The event-generated tasks are carried out when an
event occurs, and the time specific tasks are executed when timers on the microcon-
troller expire or reach a specified value. These events and timers generate interrupts,
with the event-generated interrupts in this case having the higher priority. When
an interrupt is generated, the CPU transfers control to the interrupt service routine
(ISR) associated with the detected interrupt, as instructed by an interrupt vector.
Tasks that have no timing constraints are not executed within an ISR and therefore
have the lowest priority. On the 80C196KB, special function registers (SFR) and
other devices handle interrupt generation, as shown in Figure 3-2.

The A/D Converter

The 80C196KB has an analog to digital (A/D) converter system on board. The system
has an 8-channel multiplexer to allow the sampling of 8 different analog signals at

INTERRUPT SOURCES

0008H. 0013H

80C196K8

28 Sources
18 Vectors

VECTOR STATUS

Figure 3-2: The 80C196 interrupt structure [13].

different times. The output of the multiplexer is passed through a sample and hold
and then a 10-bit successive-approximation A/D converter. On the 12MHz version of
the microprocessor, a conversion is completed in approximately 26p1s. As is the case
with other peripherals, the A/D converter is SFR controlled. In this application, an
A/D sample is acquired by writing a value to an SFR that specifies the channel to be
sampled and initiates the acquistion. When the conversion is complete, an interrupt
is generated. The results of the conversion (the value sampled and the number of the
source channel) are found in other SFR's. This process is outlined below:

1. Conversions are started by loading the ADCOMMAND register with the chan-
nel number and setting the GO bit to one to initiate conversion immediately.

2. The ADRESULT-HI register contains the 8 most significant bits of the conver-
sion result.

3. The 2 least significant bits are acquired from the AD-RESULTLO rgister. This
SFR is also contains information on which channel has just completed a con-
version. This information is necessary as the UPF application requires the use
of more than one channel.

The A/D converter generates an interrupt when conversion is completed. This method
of detection is chosen over the possible polling of a status bit in ADRESULTLO, in

accordance with the interrupt driven software structure of the whole system.

Timers

There are two timers on the 80C196KB. Timer1 is a 16-bit free-running timer in-

cremented every 16 clock cycles, giving it a timing resolution of 1.33ps. Timer2 is

clocked externally through an input pin. Four "software timers" may be implemented

using the high speed output unit (HSO) in conjunction with one of these timers. This

is accomplished by programming the HSO to generate interrupts at preset times. As

each programmed time is reached by the specified timer, a Software Timer Inter-

rupt is optionally generated. The timing of the digital controller implemented here is

accomplished by writing to SFR's specifying Timer1 as the source of timing and en-

abling the Software Timer Interrupt. When the interrupt is generated, time-specific

tasks are carried out. The source of the interrupt is identified from the contents of

another register. This information is necessary when using more than one software

timer (e.g. to implement a digital filter during testing, or for adaptive control which

uses much faster sampling to estimate circuit parameters). The steps below describe

this implementation:

1. The HSOCOMMAND register is loaded with the number of the software timer

to be initiated. Timer1 is specified and the Software Timer Interrupt is enabled

also as part of the byte written to the HSOCOMMAND register.

2. The HSO-TIME register is loaded with the sum of the current value of Timer1

and another number. Timer1 will then increment once every 16 clock cycles

until it reaches the number loaded into the HSOTIME register, at which time

it will generate a software interrupt.

3. The I/O status register 1 (IOS1) contains information on which software timer

expired. In our application this information is necessary when using more than

one software timer (e.g.. to implement a digital filter during testing and for

adaptive control, which uses much faster sampling to estimate circuit parame-

ters).

Output Ports

Ports 3 and 4 on the 80C196KB are output ports. On the EV80C196, however, these

ports are used for memory access, and may not be used for output without off-board

latches and decoding [12]. Port 1 and two pins on Port 2 are "quasi-bidirectional",
and may be used as output pins [13]. In our implementation, the 8 lines on Port

1 are used for the output, as it turns out that 8 bits provide sufficient resolution.

However, it should be noted that in an application not constrained by the evaluation

board's use of resources, higher output resolution may be achieved, and control of
more than one system on the same microcontroller is feasible. The output mechanism
is discussed further in the next section.

3.1.2 D/A Conversion

The output of the digital voltage-loop controller needs to be fed to the current-loop
controller as an analog signal. A natural implementation of the system computes the
commanded current ip in Figure 1-2 inside the microprocessor and then converts it
to an analog signal to send to the current loop controller. This requires, in addition
to computing k[n], that the input waveform be sampled and reconstructed to provide
the correct sinusoidal shape on the controller output. This extra sampling and pro-
cessing is demanding in terms of microcontroller power and time. A better method
utilizes a multiplying digital-to-analog converter (multiplying DAC). A multiplying
DAC outputs a certain function of a digital and an analog input, usually a product.
It is used to replace the multiplier in Figure 1-2 with inputs k[n] and v,,(t). Figure
3-3 illustrates the multiplying DAC in the implemented circuit configuration.

The latch at the input to the multiplying DAC is used to synchronize the signals to
its pins. When used as outputs, the quasi-bidirectional pins will change state shortly
after the system clock (CLKOUT) falls. The LS374 Flip-Flop shown clocks in the
values of Port 1 pins to the multiplying DAC on the rising edge of CLKOUT. Figure
3-4 illustrates the latch timing. The inputs to the multiplying DAC are guaranteed
to all change at the same time, on the rising edge of CLKOUT.

3.1.3 Analog Current-Loop Controller

The current-loop controller is implemented using the Unitrode UC3854. The UC3854
was designed to be used in a fully analog setting to implement both the voltage and
current control loops, [16]. Three external control inputs to the chip, A, B, and C,
are fed to a function block that outputs the function A. This output is used as
the current reference to which the input current is controlled through a current-mode
controller on the chip, as shown in Figure 3-5. For a purely analog controller, one of
the inputs is made to be the input voltage waveform v,(t), another is the scale factor
k(t) derived from the output voltage error, and the third (the one in the denominator)
is proportional to the square of the input voltage rms value. The system in Figure
1-2 is thereby achieved [16].

For our digital implementation, inputs A and C are fixed in value and B is chosen
to be the output of the multiplying DAC from the previous section. This setup is

From Port 1 CLKOUT

15V

Vref

Vout
An =
An =

= -Vref(A1/2 + A2/4 + .7. + A10/1024)
1 if nth digital input is high.
0 if nth digital input is low.

Figure 3-3: Output port 1 and multiplying DAC configuration.

CLKOUT

OLD VALUES

OLD VALUES

Figure 3-4: Output synchronization.

PORT 1
LINES

DAC
INPUTS

NEW VALUES

NEW VALUES

UC3854 AND APPLICATION CIRCUIT

Figure 3-5: Implementation of the current loop.

particularly attractive for testing and development since it allows the flexible limiting
of commanded power to safe values defined by A, C, and the upper limit on B. This
upper bound and the voltages and circuits used to set it are shown in the appendices.

3.1.4 A/D Resolution Enhancement

The A/D converter on the 80C196KB has a 10-bit resolution. However, these bits are
not all found in the same register, as noted above. It therefore requires an extra read
operation to get the full 10 bits. Moreover, the microprocessor can be instructed to
perform an 8-bit conversion and yield a faster conversion time. However, the extra
time incurred is insignificant, and the quantization effects are much less if 10 bits
are read. Figure 3-6 shows the simulation of a PI-controlled UPF converter transient
and steady-state response with 8-bit input quantization and Figure 3-7 shows it with
10-bit input quantization. (The output quantization specified for the simulation is 8
bits. It turns out that this is the optimal output resolution for the system at hand,
as will be argued later under software implementation.) The poles of both systems
are at .5.

402

401-

400

399-

398-

397
0 10 20 30 40 50 60 70 80 90 100

150

100-

50-

0
0 10 20 30 40 50 60 70 80 90 100

Half Line Cycles

Figure 3-6: Closed-loop system with 8-bit input quantization.

As it turns out, the 10-bit resolution on the A/D does not yield satisfactory results
without an additional step. Since only a small portion of the range of voltages (a
section around steady state) needs to be resolved for successful PI control within
the limits of the control command, it is possible to increase this resolution with the
circuit in Figure 3-8. A small range of voltages is mapped onto the 0-5 volt range of
the A/D converter, effectively increasing its resolution by a number of bits equal to

log2(m) , where m is the slope of the ascending section of the curve. This fix is used
in conjunction with the 10-bit A/D converter.

3.1.5 A/D Anti-Aliasing Filter

Although the assumption that the output voltage is essentially flat is good, there
still remains some 120Hz ripple on the load capacitor. In addition, there are other
harmonics in the system due to the use of noisy components in the construction of
the prototype. To ensure that upon sampling these frequencies do not get aliased and

401

400

399

398

397

150

01 0 2v
0 1 2 340 50 6 7 890 100

1000

50

0 10 20 30 40 50 60 70 80 90 100

Half Line Cycles

Figure 3-7: Closed-loop system with 10-bit input quantization.

R1

A = . Vout

2.7 4.3 Vin

Vout = (R2 / R1) x (V2- Vi)

Figure 3-8: Increasing Input Resolution.

I I I I I

corrupt the measurement, an anti-aliasing filter is built to reject frequencies outside
the 60Hz bandwidth. It is also important to insure that the filter does not cut into
the bandwidth of the closed-loop system and change its response to load transients.
Design and implementation of the anti-aliasing filter are discussed in the appendices.

3.1.6 The Complete System

Additional circuitry is used to provide buffering, scaling, reference voltages to limit
the current commanded by the current-loop controller, and variables required by the
adaptive controller. In addition, isolation amplifiers are used to isolate the digital
system from the analog components. Detailed schematics of the complete system are
shown in the appendices. Figure 3-9 shows a diagram of the overall system. The boost

converter uses a load capacitor C = 470pf and inductor L = 1mH. The capacitor is
rated for 450 volts. The load is composed of 3 light-bulbs in series, combining for a
total of approximately 3200 ohms. The load may be effectively doubled by dropping
an equal resistor in parallel with the light-bulbs. The DC filter is used to provide a
measurement of the peak input voltage needed to implement the control as discussed
in Section 2.2.3 under Adaptive Control. The inputs to the UC3854 in Figure 3-5 and
the analog input to the multiplying DAC are chosen so that the maximum current
command at 110 input voltage rms outputs 50 watts of power, which at the lower load
level of 3200 ohms produces 400 volts across the load capacitor, sufficiently below its
rated maximum.

3.2 Implementation of Control Algorithm in Soft-

ware

The software implementation of the controller uses fixed-point arithmetic to avoid the
extra cost in terms of processing time and memory incurred by including a floating-

point library. Care also needs to be taken to prevent extraneous gains from changing
the characteristics of the closed-loop system. These gains are introduced by the
hardware interfaces or by scaling to enable the use of fixed-point representation.

Timing constraints are also of extreme importance when working with sampled-data

models. Timing as well as parameter quantization and scaling are at the core of the
software design problem.

Figure 3-9: Overall structure of hardware system.

51

3.2.1 Timing

Timing for the controller is implemented using the HSO unit and Timer1 in the man-
ner described earlier. To implement the discrete-time PI controller, the sampling and
control output frequencies need to be 120Hz. To start the system up, Software Timer
0 is set to expire after 8.33ms. It is extremely important to maintain this frequency
as accurately as possible, so the first instruction in the ISR for the. software timer
interrupt is to reload the timing register with the same value for the next cycle. In
this manner, an 8.33ms period is insured every cycle, to within the resolution of the
timer. The time-specific tasks of this controller, i.e. control output and sampling, are
carried out next, before any further processing is executed. In doing so, uncertainty
in the time periods between samples or outputs due to varying processing time from
cycle to cycle (caused by conditionals in the code, for instance) is avoided. Once all
of the necessary variables are sampled, the PI algorithm may be carried out, and the
only time restriction on this task is that it be completed within one sampling cycle.
It is therefore also included within the software timer ISR. Note that the 8.33ms time
period is ample time for the controller implemented here. A simple PI computation
requires less than lms to complete. The extra time is then left for estimation and
adaptive (or more complex) control, or to be used by the operating system. Shutdown
generates an interrupt of higher priority that transfers control to its own ISR when
detected. Figure 3-10 illustrates the timing of the implementation.

An important issue in an implementation which uses a digital timer such as the
one on the 80C196KB is timer resolution. Timer1 on the microprocessor is updated
once every 8 state times of the processor, or 16 clock cycles, with a timing resolution
of 1.33 pts. Our sampling and output period can be accurate only to within the limits
of this resolution. As a result, the sampled points are not exactly one ripple period
apart and our output is not being updated every exactly TL seconds.

Two schemes were considered for dealing with this problem. The first is to use two
different sampling periods, one the smallest time that Timer1 can count that is larger
than TL and the other the largest time that Timer1 can count less than TL. This
would prevent drifting along the ripple on the output voltage and at times controlling
the peak to V while at others controlling the trough to that level. The second scheme
would involve hardware circuitry to to detect the zeros of the input voltage and use
them to trigger the sampling and control output operations. These two systems were
relatively easy to implement but were found to be unnecessary. The large output
capacitor results in an effectively DC output voltage, and the timer resolution of
1.33ts is high enough for us to ignore the timer quantization issue. However, in a
different system this may not be the case and one must be aware of this problem.

8.3 ms
120 Hz ON
TIMER F 5 112:33 4ISR OFJ

SHUTOFF ON
SIGNAL OFF

CONT- 0
ROLLER OFF

1.Reload Timer 4.Compute PI Output
2.Oulput Controller Command 5.EstimationfTuning,
3.Sample Controller Inputs and Operating System.

Figure 3-10: System timing.

3.2.2 Scaling and Digital Parameters

In order to achieve the correct implementation of the PI controller, the end result of
our computation should be, as in Figure 2-2:

k[n] = T V2(hI (v2- y2) - h 2 o-[n]) (3.1)

Several problems arise in the digital implementation of this equation. Quantization
of inputs to the controller occurs as a result of A/D conversion, and output quantiza-
tion is a function of the number of bits that are feeding the input to the multiplying
DAC, as was demonstrated in Figures 3-6 and 3-7. The equality above is therefore
never met, and the desired zero-error steady state is not achieved. Instead, the out-
put voltage and input current exhibit cyclic behavior around the "infinite-precision"
or (analog) steady-state. Quantization error is also a function of the speed of the
system, as is further discussed below.

The use of fixed-point arithmetic also dictates that many of the parameters of our
system be scaled to be represented by an integer (as many of them are smaller than
1). This scaling, as well as other extraneous gains due to hardware, A/D conversion,
or D/A conversion enter the loop in the transfer relation between the inputs to the
controller and its outputs. The software must be designed to undo any such undesir-
able gains and ensure the relationship in 3.1 as the controller transfer relation. Define
the following parameters:

e Div, is the fraction of the output voltage that is fed into the resolution mapping
circuit. The output voltage is scaled down by a voltage divider to a level where
it can be used in the control circuit. See Figure 3-8.

* Div is the fraction of the input voltage peak value V that is measured by the
A/D converter to use in the control equations.

* m is the slope of the linear region in the resolution mapping circuit for v,. See
Figure 3-8.

* xint is the x-intercept in the resolution mapping function. See Figure 3-8.

* h1d, h2d are the digital gains specified in the microcontroller software.

* Vd is the reference voltage as specified in the microcontroller software.

* Acc is the accumulator value in the microcontroller software.

e Accm., is the maximum accumulator register value.

e Gdig is a gain used to shift the digital gains to retain more of their significant
digits.

* km, is the maximum command the voltage loop can issue as defined by the
current limit in the setup and the peak input voltage.

* -ma, is the maximum integrator value from the discrete time controller described
in Equation 3.1.

* FAD is the A/D transfer gain, which for a 10-bit A/D with a 5 volt input range
is 1023/5 (the result of the A/D conversion is quantized of course).

Controller Inputs

The inputs to the controller, namely v, and V, are transformed through peripheral
circuitry and A/D conversion. The output voltage, v,, is divided down to a level that
a digital circuit can handle. Only a fraction, Div,, of v, is fed into the control cir-
cuitry. This fraction is the input to the resolution mapping circuit of Figure 3-8, with
slope m and x-intercept Xint as listed above. The output of this circuit is then fed into
the A/D converter on the 80C196KB, with a quantized transfer gain FAD. In order to
recover a multiple of v. for computing the error value, the negative offset acquired in
this process is added back in software. The result is then squared, as required by our
linear model, which dictates that the square of the output voltage is the state variable.

Figure 3-11 shows the propagation of the output voltage through the system until
it is compared with the reference to detect the error. For each block in the figure,
x denotes its input and y its output. The boxed functions are the result of the
hardware system and the encircled ones are implemented in the software. The result
of the overall transformation is:

F2
Vod

Figure 3-11: Transformation of v, to the digital value of v,.

v2, = x Divo) - x;,ft) x m x FAD]+ 2mFAD} 2 _ m2 DiOFAD x 0 (3.2)

and the reference, Vd is defined with the same transfer function.

Vod = m 2 DiV x V2 (3.3)

The input voltage peak V is divided through a voltage divider which sends a
fraction Divo to the A/D converter. On entry into the microprocessor, this value is
multiplied by a digital gain, Gdig, that serves to cancel a gain in the digital parameter
that is used to improve the accuracy of the fixed point computation (see Controller
Gains and Parameter Limits-below). A squaring operation follows in accordance with
the controller developed earlier. Figure 3-12 shows this flow of transformations. The
resulting digital value is:

Vd = Gdig(Div;FAD V) 2 = GdigDivFi 2x V 2 (3.4)

Controller Gains and Parameter Limits

Given the analog gains, the digital gains are chosen as follows:

C Div? 255
hid= round{ x Gdi x Div 2 k (3.5)

Multiplying by y- before processing as shown above saves a multiply operation.

Figure 3-12: Transformation of V to its digital value.

The gain of Gd, serves to provide a more accurate representation of the quantized
parameter. The fourth gain stage serves to map the values of k, the control command,
to the range from 0 to 255 on the 8-bit output port. The 8-bit output resolution was
found to be sufficient for the implemented system and higher resolution rquiring extra
digital hardware was not warranted, as shown in the appendices.

This digital output is then fed into the multiplying DAC which commands max-
imum power for a digital number of 255. The DAC effectively scales the output of
Port 1 by km,../255. Combining these results, the digital controller then performs the
operation:

k[n] = [hld(v2 _ V) + h2d Acc[n]] (3.6)

k[n] = 255V2 [hid(v d[n] -V)+ ha v2,[i] -Va] (3.7)

which reduces to the desired control algorithm in Equation 3.1.

The extra gain factor, Gdi,, is limited by the register sizes and possible overflow
after multiplication by the error or the accumulator value. The maximum value of the
integrator, Uma., is chosen as the value for which the maximum command is generated
in the steady state, with an output voltage error of zero.

kmaTL V2
a = h2C (3.8)

The maximum value of the accumulator, ACCma, is then chosen accordingly by multi-
plying Acc by the ratio of digital error to analog error (the resulting transfer function
from Figure 3-11.

Accmar = m 2DivFAD2 X -mao (3.9)

This value when substituted into Equation 3.6, must not cause the result of the
numerator computation to overflow the register used to hold its value. To insure
that this never occurs, the worst case scenario, in which v, = 0 was checked for the
implemented parameters with a 32-bit signed integer register type.

3.2.3 Other Controller Characteristics

Features that were introduced in the design section include Bang-Bang control, Band
control, Integrator-anti-windup, and Soft-startup. Dead-beat control, as mentioned
earlier, is not feasible in this application because it requires very large current to
achieve a two-cycle transient decay. Safety features that shutoff the controller when
it is above the safe caopacitor voltage level and apply the maximum power level when
the voltage is below a minimum are used, and are what is referred to in the design
section as Bang-Bang control.

A digital filter was also implemented during the testing stages. The simplest form
of a filter, which used a second, faster, software timer to collect more samples of the
output voltage and average their value, was used. The digital filter was found to
improve performance slightly in terms of quantization. However, the averaging tech-
nique would have slowed down the system response, and a more complicated filter
would conflict with the goal of achieving a simple digital implementation. However,
digital filtering is an option that may be used depending on the application, and the
code used for its implementation is included in the appendices.

The Band controller, Integrator-anti-windup, and soft-startup are discussed below,
along with the speed of the system, which was compromised due to quantization
effects.

Integrator-anti-windup and Soft-startup

As mentioned earlier, integrator windup is a problem that arises in PI controllers
when the controller output is saturated. When saturation occurs, the integrator is ef-
fectively isolated from the closed loop system, and is therefore unstable [10]. Its value
may increase excessively during that period, and it may take some time to "unwind"
it from this state, which may result in undesirable behavior of the system (in this case

500

400-

0 300 -

200 -

100
0 10 20 30 40 50 60

0.015

0.01 --

0.005-

0
0 10 20 30 40 50 60

Half Line Cycles

Figure 3-13: Startup transient with anti-windup mechanism.

voltage overshoot). As an anti-windup mechanism, the accumulator is disabled when
the output of the digital controller is saturated. Simulations of the startup transient
of the system with the anti-windup scheme implemented are shownin Figure 3-13.
The voltage does not overshoot as it did in Figure 2-8. However, the current tran-
sient is still very sharp on startup.

The soft-startup mechanism used simply steps up the reference voltage to its final
value in a few cycles. The result is that the controller does not detect as large an
error as it would with the true reference, and therefore does not command too much
current instantaneously. Figure 3-14 shows the simulation of the startup transient
with this soft-startup mechanism employed in addition to the anti-windup scheme.
Although the current transition is much smoother, the voltage overshoots. The simple
anti-windup scheme used fails when the reference is stepped up gradually during soft-
startup. Since the output does not saturate, the integrator is not disabled for the
period of the startup. It therefore accumulates error throughout this period, and is
wound up past the point of the steady-state integrator value when the steady-state is

400

300-

200 --

1001
0 10 20 30 40 50 60

0.015-

0.01-

0.005-

0
0 10 20 30 40 50 60

Half Line Cycles

Figure 3-14: Startup behavior with soft-startup and initial anti-windup scheme.

reached, causing a voltage overshoot. To solve this problem, the integrator is disabled
for the duration of the startup. A simulation of the result of this design is shown in
Figure ??. The current transition is soft and the output voltage does not overshoot.
The figures here are for 10-bit quantization, without the hardware resolution mapping
circuit.

Band Control

The Band control algorithm, as mentioned earlier, is used to eliminate quantization-
induced oscillations by allowing the steady-state value to settle to a value that is close
to the reference voltage but not equal to it. If that level is tolerable by the system,
this oscillation-free state can be used to observe the ripple on the output voltage to be
used in the capacitance estimation discussed later. A general algorithm is presented
below:

Define the following variables and constants

e e is the distance in volts away from , within which the system is allowed

400-

300-

200-

100,
0 10 20 30 40 50 60

0.015

0.01-

0.005 -

0
0 10 20 30 40 50 60

Half Line Cycles

Figure 3-15: Startup behavior with soft-startup and modified anti-windup scheme.

to settle down. In other words, all the points within an c away from V are

considered an acceptable steady-state. e is of course a multiple of the system

quantum of input.

* n is the number of consecutive cycles that the system has spent in steady-state,
with V - e < V0 < V, + E

* Scmd is the sum of controller commands accumulated over consecutive "steady-

state" cycles.

* n m a, is the number of cycles sufficient for computing an estimate for the steady-
state command.

* Kn,,m is the "nominal" command, used in the steady-state operation of the

circuit.

* k is the PI controller command on the current cycle.

The sequence of control commands to be included with the PI controller and

Bang-Bang controller is:

1. Set the values of E and nma,.

2. Initialize the variables: Scmd = 0, n = 0, Knom = 0.

3. Sample v,.

4. If v0 is NOT within an e of V then apply normal PI command k and goto 2.

5. If v, is within an e of V and n < nmax:

Scm = Scmd + k n = n +1 (3.10)

Then apply PI command k and goto 3.

6. If n = nma, set Knom = Scmd/nmax and use Knom for the controller command.

When Knom is used, the integrator should be disabled.

7. Goto 3.

The algorithm in its roughest form above was used in the implementation, with

details and actual values used shown in the appendices and the microprocessor code.

Slight variations in the algorithm may provide optimality under certain conditions.

The value of e may be chosen differently depending on the noise level and the error

tolerance of the system, and similarly for the value of nm.aa. Situations where two

values for e, one used to determine when the system has entered the "steady-state"
regime and another, looser one to decide when a disturbance has taken place, may
be used. The tight value may be required to accurately estimate the steady-state
command. However, the system may be capable of tolerating larger disturbances
than dictated by this narrow band. The use of two distinct values in such a manner
results in a "hysteresis" type function, and would not be difficult to implement as an
additional feature.

Other obvious variations on this algorithm would update the estimate for the
steady state more frequently, or would switch out of the steady-state regime period-
ically as a safety measure. More complicated adaptive control may slow down the
system while it is making its measurements in order to reduce the quantization in
the control command (Which is a function of the feedback gains as is shown below).
Also, there is no need to reassign K,, = Scmd/nma on every cycle, but it was done
so here to illustrate the algorithm in the simplest manner.

This technique works effectively only with levels of current quantization signifi-
cantly better than those of the 10-bit A/D system with poles at .5 or even .8. The
algorithm works successfully in the implemented circuit, which uses the analog res-
olution mapping circuit and has system poles around .9 or so. The results of this
implementation are presented with the experimental results and in the appendices.

Trading off Speed for Less Quantization Error

It has been shown that the A/D resolution is a factor in determining the level of
quantization error in the output voltage, and therefore in the steady-state current.
The speed of the system is another variable that effects different quantization error
levels, especially in the input current. The gains of the feedback controller determine
how much current is commanded from the input in response to a an error in the
voltage. Whether this error is due to a disturbance in the load or to quantization is
transparent to the controller. It will therefore ask for a change of current in response
to quantization error, and this change will be bigger if the gains are larger. An obvious
tradeoff is therefore the speed of the system vs. the level of quantization in the system
variables. The final implementation of the system had to be slowed down somewhat
from the initial design in order to bring down the levels of quantization to tolerable
levels. An example of how the speed of the system can affect quantization levels is
shown in Figure 3-16. The input quantization level is 10 bits, and the poles have been
set at .8. In comparison with Figure 3-7 which has the same A/D resolution but has
poles at .5, this system exhibits much less quantization in the steady-state current,
and has fewer harmonics in the output voltage as well.

394 ' L 1 I I - I I

0 10 20 30 40 50 60 70 80 90 100

150

100 -

50-

10 20 30 40 50 60 70 80 90 100
Half Line Cycles

Figure 3-16: 10-bit quantized system with poles at .8.

Vo

-1<U<25 '"'" ""'C "" '"I '"-'on 'U VR
ACC 120 HZ :1023/5 ;

COMPUTE INVERT RES SAMPLE
MAPPING V0, V

Figure 3-17: Software structure.

3.2.4 Overall Software Implementation

A simplified overall view of the software implementation is shown in Figure 3-17.
The timing is accomplished as explained earlier, and the software is interrupt driven.
The diagram shows the general operation of the code as well as an example of how
extraneous gains produced in the hardware are offset in the software. The initial
check on the output voltage is a precuationary check in case of a malfunction in the
power supply. If the level of the boost converter output voltage does not rise to
slightly below that of the peak input voltage without closing the controllable switch,
then the switch is not closed. The computation in the diagram includes deciding the
region of operation, which control scheme to apply, and the resulting output. Many
of the details have been left out here, but are described in the appendices in detailed
flow charts and documented code.

Chapter 4

Design and Implementation of

Adaptive Control

As discussed in Chapter 2, the system at hand provides a good test-bed for parameter
estimation and adaptive control techniques. A digital system has the ability to execute
the complex computations necessary, and as shown below, uncertainty in the circuit
parameters of the power supply provides a problem to tackle.

4.1 Motivation

The need for adaptive control in the system at hand arises as certain circuit param-
eters may vary over time or under specific conditions. In particular, the load capac-
itance may be imprecisely known or may change due to variations in the connected
loads. As is clear from Figures 1-2 and 2-2, the capacitance value is an important
parameter in the controller design. Errors in knowledge of this value will degrade the
performance of the controller, as the poles of the closed-loop system move off their
desired locations.

In the controller shown in Figure 2-2, the capacitance value multiplies the sum
of the proportional and integral parts. If the assumption of perfect knowledge of the
capacitance is removed, the value of C in the controller is replaced by C, the best
available estimate of the capacitance. This new system is equivalent to the old one,
but with new gains, gi, defined as:

C C
9= hg2= h2(4.1)

The roots of the characteristic polynomial as defined in Equation 2.21 are then:

(g + 2)± g+ 4g2 (4.2)
2

This expression simplifies to:

z =4{(hi + 2) t h + 2 } (4.3)

Clearly, given that the gains are negative for this system, a decrease in the load
capacitance moves the poles apart on the real axis and may move one of them outside
the unit circle or onto the negative real axis, while an increase in the capacitance
increases the negative term under the square root sign, moving the poles off the real
axis. Figure 4-1 demonstrates the transient response obtained (in a simulation) in
the first case, with the poles at ±v/Z/2. Compare this simulation with that in Figure
2-4. As shown in Chapter 5, an error in the estimate of the capacitance may result in
excessively high gains which, in addition to moving the poles of the system, increase
the quantization error in the digital system.

4.2 Design and Implementation

4.2.1 Estimation

To tune the controller to changes in the load capacitor, its value must be estimated.
This information is available in the ripple on the output voltage. Reference [11]
defines an approximate relationship between the output voltage ripple amplitude e
and the capacitance:-

Pw 2VC (4.4)

where W2 is twice the line frequency. Figure 4-2 demonstrates these dependencies
of the ripple on the load and the capacitance. The simulation uses the T,-sampled
model and simulates the quantization effects in the digital system.

The value of the ripple is very small compared to the DC level of the output,
which causes problems in resolving the ripple at the input to the A/D converter on
the microprocessor. To get around this difficulty, the ripple frequency is filtered out
and sampled through a different A/D channel, as is shown in the Appendices C and
E. The rest of the hardware necessary is a current sensor to allow the measurement
of the output load power, which is part of the relationship above (also shown in the
Appendix E). As it turns out, a smaller load capacitance was needed to get a mea-

405

400

395
0 10 20 30 40 50 60 70

0.01-

0.005-

0
0 10 20 30 40 50 60 70

Half Line Cycles

Figure 4-1: Load transient response with O > C.

80 90 100

80 90 100

401

400

399-

398-

397-

396-

395'
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

10 x Switch Cycles

Figure 4-2: Ripple-response to capacitance doubling followed by load doubling.

surable signal for our experiments.

Detecting the Ripple Amplitude

The first step in estimating the capacitance value is detecting the other quantities
in the relationship in 4.4. The current is sensed as a voltage off a small resistor in
series with the load. The ripple is seen by the A/D converter through a band-pass
filter. One way to estimate the ripple amplitude is through interpolation based on a
few samples of the waveform. However, that would necessitate the use of both the
math and floating-point libraries with the microprocessor, which would slow down
the operation and result in higher cost in terms of memory. Moreover, the math
library is not yet availabe for the IC96 compiler. Instead, a simple sampling scheme
that sweeps the waveform in search of the peak was used. This algorithm is described
below and illustrated in Figure 4-3.

1. When the 8.33 ms timer (which is not synchronized with the ripple or the input
current) expires, output the control command computed from the previous cycle
and sample the output voltage. If the state of the controller and the output
voltage indicate steady state (assuming operation in the band around steady
state, where the command is locked and chosen as an average of steady state
commands, see Sections 2.2.3 and 3.2.3), then goto 2. If not steady state, then
sample input voltage, compute PI command, reinitialize algorithm variables,
and repeat 1.

2. Sample the (filtered) ripple on the A/D channel around 100 times, with approx-
imately 50 ps between samples, keeping the largest and smallest values. This
sweeping of more than half a period guarantees either the peak or the trough
will be detected. Store the larger in absolute value between the maximum and
minimum points detected. After the last ripple sample, sample the load current
A/D channel. If this sampling has been carried out for 20 consecutive cycles,
goto 3, otherwise return to 1.

3. Average the ripple samples from the 20 cycles of measurement to filter out
voltage spikes or other noise. (The number of cycles used in the averaging may
be varied depending on the nature of the noise in the system and the desired
frequency of estimation.) The load current measurement may be averaged as
well, although in the implemented system this measurement is fairly clean and
only the last measurement was kept.

4. Compute the capacitance as explained below, then restart the estimation cycle.
Note that this estimation cycle is reinitialized if a disturbance takes the system
out of the steady-state.

8.3 ms 0

120 Hz Ripple

Microprocessor
Operation 1 2 3

1. Short Controller Cycle - Output command, sample vo, detect
steady-state, then halt and hand over to estimator.

2. Sample ripple. Note that as long as this spans more than half
of the 8.3 ms period, the amplitude will be detected.

3. Sample load current.

Figure 4-3: Ripple Detection.

Computing the Capacitance

The value read.in as the voltage off the current sense resistor in series with the load
is:

Vi = Rene X it (4.5)

This is then sampled through the A/D converter with gain FAD, as discussed in
Chapter 3. The output ripple is also sensed through three second-order filters imple-
menting a band-pass filter, as discussed in the Appendix C. A gain stage is included
to boost the ripple to an easily measurable value. The combination of the transfer
functions of the filters and the gain stage for 120 Hz frequency are lumped into a
single gain term, G,.,,. This measurement is also made through the same 10-bit A/D
converter. The resulting digital parameters are then:

idig = FADRene X it (4.6)

Edig = FAD Gp X e (4.7)

The following expression, derived from 4.4, is then used to compute the capacitance:

GCiag _ GcRenseCMet (4.8)C dig
W2edig Grp

where GC is a digital gain introduced to yield a fixed point representation for the
value of the capacitance. The same expression should be used to obtain the initial
digital estimate, Co,dig.

4.2.2 Gain Tuning and Testing

Gain Tuning

The digital gains were computed as the product of the load capacitance and other
parameters, as discussed in Chapter 3. They are therefore factored as follows:

hdig= hdigc X Co (4.9)

where C, is the initial estimate for the load capacitance, and Co,dig is its digital value.
An obvious tuning procedure corrects the gains as follows:

1. Compute the digital estimate of the capacitance based on the measured load
current and ripple amplitude, Cdig.

2. Multiply the existing gains by Odig and divide by Co,dig. Note that tuning is
done every time an estimate is acquired, ie. only when the system is in steady
state.

3. Update the capacitance value by setting Co,dig = Cdig

Testing

A simple test was used to verify the operation of the estimator and gain tuner above.
In order to avoid hardware modifications emulating capacitance variations, the con-
troller was started with gains based on a capacitance value that was wrong by a factor
of 3. A transient response with the adaptive controller was then monitored and com-
pared to that with a controller using the same erroneous controller gains, but without
adaptive control. The controller code was optimized for dealing with the case of the
actual capacitance value less than the initial estimate (gain scaling for highest accu-
racy). Results of of this experiment are illustrated in Chapter 5, and indicate the
sorts of improvements that may be obtained via adaptive control. Finer tuning of

small errors and other situations are straightforward extensions of this case. System
noise may need to be eliminated further, along with further code optimization.

Chapter 5

Experimental Results

As mentioned throughout, there are few digital implementations of power converter
controllers outside of the area of machine drives. Cost and feasibility issues, as well
as doubt about the usefulness of digital control in the domain of power supplies, have
for the most part limited this area to analog control. The outcome sought here is thus
a functional controller that demonstrates potentially low-cost implementations of a

product that may have demands better met with digital control rather than simple
analog control.

5.1 Experimental Setup

A layout of the hardware system was presented in Section 3.1.6. The construction
of the system was carried out in different stages. The AC line was fed through a
VARIAC (VARiable AC supply) to allow for adjustment of the input voltage. The
boost converter components were soldered onto a copper-coated circuit proto-typing
board and laid out horizontally. The input to the power stage was connected to the
output of the VARIAC. The power stage output was connected to 3 lightbulbs in se-

ries, each 15 watts in strength. A resistor of approximately 3 kI in value was placed
in parallel with the light bulbs, to be switched on when a load increase is needed.
The resistor switch along with the VARIAC ON switch, a "fuse-blown" indicator, and
voltmeters for the boost converter DC side and the controller power are housed in a
panel on the front side of a platform which contains the power supply and loads. 24
Volt, ±15 Volt, and 5 Volt power lines are available from a switching power supply

-1

adjacent to the plastic platform '.

The isolation amplifiers, Unitrode chip and surrounding discretes, the multiplying
DAC, and the output latch are soldered onto a prototyping board. The connections
to the boost converter are made through the edge of the prototyping board, which
plugs vertically into an edge-connector soldered onto the horizontal power supply
board. The connections to the EV80C196KB are made by wirewrapped connections
to a ribbon cable. The EV80C196KB is mounted onto a solid copper board on top of
switching power supply. The power supply provides the ±12V and 5V levels required
by the board. The board communicates with the PC host through an RS-232 cable
and connector. Analog filters and the resolution mapping circuit are constructed on
a breadboard mounted next to the EV80C196KB and connected to it via wirewrap
connections. This setup is noisy but easy to use and modify.

To start up the system, the main power is turned on. The VARIAC is then
switched on. This sends the DC side of the boost converter to the peak value of the
AC side waveform. In a product, this stage would be produced by introducing a delay
in starting up the controller, to allow the converter to reach this initial state. The
control code is downloaded onto the evaluation board and its execution is started. A
3-second delay is inserted at the beginning to allow the user to turn on the power
to the Unitrode chip. (This is necessary, as the default state of the Port 1 lines is
high. If the Unitrode chip is powered up while these lines are high, the maximum
current command will be requested.) A load transient is simulated by dropping the
3 kfl resistor in parallel with the light bulbs. To power off the system, the Unitrode
chip power is turned off first, then the VARIAC and then the main power.

5.2 System Simulation and Results

5.2.1 Simulation

Using the large-signal model and PI controller developed above, MATLAB simula-
tions 2 are constructed for the closed-loop system. With the general parameters of the
development system and techniques presented above, simulations of the digital sys-
tem and the experimental setup are also defined. Detailed simulations of the system,
including such features as the resistive load and audio-susceptibility effects were also

'The boost converter, load setup, housing structure, and front panel were constructed by Steven
Leeb

2MATLAB is a trade mark of The Mathworks Inc.

carried out, but showed no significant differences in system response from simulations
without the details. Simulations were used in all stages of the development. The
digital controller was initially tested open-loop, by feeding it with a constant voltage
and monitoring the controller command. The increasing command (in response to
the constant 'error') with saturation was compared to a simulation of the open-loop

controller and verified as the desired response. Closed-loop system comparisons with

simulations were also carried out. More simulations were used to examine the ef-

fect of changes in the output capacitance on the transient behavior. Documented

simulations based on the TL-SDM are included in Appendix D. Simulations of the

implemented system are also shown below.

Simulations were also carried out using the T.-SDM. This provided more detailed
examination of the output voltage waveform and ripple. The ripple behavior is es-
sential in implementing adaptive control. Simulations shown in Chapter 4 were used
to confirm the relationship between the ripple and the load used in estimating the
capacitance. Documented simulations based on the T.-SDM are also included in Ap-
pendix E.

Figure 5-1 shows a simulation of the startup response of the implemented system.
A straightforward ramping of the reference voltage is implemented for soft-startup.
More complicated schemes may be used, especially to deal with the effects of the non-
linearity introduced by the resolution mapping circuit. The system transitions from a
nonlinear region of "minimum" voltage to a linear region around the steady state as it
ramps up, and the effects of this transition have not been examined. Figure 5-2 shows
a simulation of the load transient response in the working digital system after slowing
it down by moving the poles closer to the unit circle (around .91) and improving the

input resolution using the resolution mapping circuit discussed earlier. The effects of
quantization are negligible in this design, which was used for the final implementation.

5.2.2 Digital Controller Without Adaptive Control

The experimental setup described above exhibited a high susceptibility to noise and
interference between signals. This was the result of the temporary nature of the

structure (part of which was built on a breadboard), the parasitic inductances on

the evaluation board, and the large number of active analog components in the final
system. Isolation amplifiers, the Unitrode chip, and many operational amplifiers were
used. Some of the operational amplifiers were used as buffers around the isolation
amplifiers, which could only source up to 2 mA of current. Others were used in
providing the appropriate inputs to the Unitrode chip. Although passive filters were

400 600

400 - 600

800

800

1000 1200 1400

1000 1200 1400

Half Line Cycles

Figure 5-1: Simulation of Startup in Implemented System.

200

150

100
C 200

x1O-3
1.5

1

0.5

1600

200 1600

-

250

o
245 -

-

240'
0 200 400 600 800 1000 1200

250

200-

150-

100

50-

0
0 200 400 600 800 1000 1200

Half Line Cycles

Figure 5-2: Simulation of Load Transient Response in Implemented Digital System.

used, they were constructed as cascades of second order filters, connected to each
other through an operational amplifier configured as a follower. In a final product,
most of these active components may be eliminated.

However, in our experiment, the high level of noise proved very limiting. Filters
with low bandwidth had to be built to remove the noise from the output voltage at
the A/D channel. This was especially important as the quantization of the system
served to accentuate the error due to noise. The system bandwidth had to be made
lower to achieve acceptable steady state behavior (smooth input current and output
voltage). The bandwidth of the controller can be made higher in a less noisy system.

A digital filter was implemented during the testing stages as well in an attempt to
reduce the effects of the noise. Although it was not used in the final implementation
to leave as much room as possible in the processing cycle for adaptive control, it
demonstrated the ability of the digital microprocessor to replace a variety of analog
components.

Experimental results for the startup, load transient response, and steady state
operation of the physical system are shown below. The poles of the system have been
placed around .9, as in the simulation above. The results agree with the simulations
and demonstrate satisfactory performance for the UPF converter. Quantization error
can be seen in the current waveform, but not so much in the voltage waveform, due to
scale. The sinusoidal current yields a near unity power factor. Note that the startup
behavior of the UPF is not uniform in the slope of the output voltage or the input
current. Nonlinearities are introduced as the sampled output voltage goes from the
region in the resolution mapping circuit where it is flat to where it is ascending. A dif-
ferent A/D channel, sampling the output voltage directly without passing it through
the resolution mapping circuit, may be used for startup if needed. More involved
soft-startup mechanisms, where the gains as well as the reference change for instance,
may also be used.

5.2.3 Adaptive Control

The design and implementation of an example of adaptive control in the context of
this probelm were also explored. Specifically, as discussed in Chapter 4, the load
capacitance was estimated from measurements of the output voltage ripple and load
power. This capacitance was used to tune the PI controller gains. One simple exam-
ple of the initial capacitance estimate being much larger than the actual value was
tested. The controller managed to estimate the capacitance correctly and to tune the

Figure 5-3: Startup in Implemented System

79

250 V

Figure 5-4: Steady-State in Implemented System

gains to their desired value for the given capacitance. These values were monitored

through the EV80C196KB monitor software, and were verified to be correctly tuned.

The transient response of the controller with the same erroneous initial PI gains, but

without adaptive control, is compared in Figures 5-6 and 5-7 to that of the system

with the estimation and gain tuning implemented.

A smaller capacitor was used for implementing the adaptive controller. With the

original load capacitor, the ripple on the output voltage was too small to be accurately

measured. The smaller capacitor has a shorter holdup time, and the response to a

transient is worse than before (the voltage dips lower when the load is stepped up for

instance).

5.2.4 Overall Results

The experimental results match the simulations well, verifying that the large-signal

model is fairly accurate. Moreover, no load regulation and no steady state error are

250 8V ini 80ln s 88r6anJVrCHA. L .

Figure 5-5: Response of Implemented System to Load Transient

Figure 5-6: Response of System with Incorrect Load Capacitor Value without Adap-
tive Control

82

Figure 5-7: Response of System with Incorrect Load Capacitor Value with Adaptive
Control

--- I

evident. A Unitrode application circuit built around the UC3854 to implement total
control for the UPF exhibits load regulation. Although an analog implementation
of a PI controller should in theory have zero steady-state error, in reality this is not
the case. True PI control, with infinite gain at DC, is not possible due to parasitic
resistances. The digital controller suffers from no such parasitics.

The basic closed-loop controller was successfully implemented, with a few addi-
tional features that were included with relative ease, and that illustrates the potential
for rather complex control. Adaptive control was also successfully implemented. The
microprocessor used is relatively inexpensive and quite powerful, leaving room to
implement more complex algorithms or to decrease the cost of the implementation.
With the decreasing cost of semiconductors and their increasing functionality, the
possibilities are even greater. Adaptive control allows the system to achieve higher
level performance and self-tuning. As power requirements become more stringent, this
higher performance becomes more and more important. Digitally controlled power
converters are better suited to meet these needs.

Chapter 6

More Compact Implementations

Implementing the digital controller using the EV80C196KB provided a good test-bed
for the system and facilitated a proof-of-concept experiment. The flexibility of the
evaluation board and its user-friendly interface with a host PC made it possible to test
various control schemes and to easily modify and optimize the controller. A product
design cannot make use of the evaluation board, however. Cost and size considerations
require that only the essential interface circuitry to the microprocessor is used and
the evaluation board removed. Since one of the main arguments commonly presented
against digital control in power supplies is the cost of implementation, more compact
and less expensive implementations are explored below. Only a brief description of
these implementations is presented, as they were carried out as separate projects and
documented in more detail separately.

6.1 Microprocessor Implementation Without the

Evaluation Board

For implementing the digital controller, interface circuitry to the A/D converter
and output port is required. Memory is necessary for storing the controller code
and needs to be interfaced to the microprocessor. In the implementation using the
EV80C196KB, off-chip memory and memory and I/O interfacing are provided by the
evaluation board. However, these components represent only a small fraction of the
total board size and functionality, and hence of the cost. The result is an expensive
implementation.

In order to achieve a cost-effective implementation, the EV80C196KB has to be
replaced with only the essential circuitry for our application (namely the memory and
interfacing mentioned above). Additional hardware, such as the multiplying DAC and

the LS374 used to latch the outputs from Port1 and into the multiplying DAC, is also
necessary. This hardware, however, is also built separately for the evaluation board
implementation, and has already been described. The remaining interfaces (those
that are on the EV80C196KB on the evaluation board implementation) are discussed
below 1.

6.1.1 Memory Interfacing

As on the evaluation board, Port3 and Port4 are used for memory interfacing. The
lines on these ports are used for both Data and Address communication. In this
implementation, two EPROM's are used for external memory. An external memory
access cycle occurs over two CLKOUT cycles. On the first clock cycle, the micro-
controller presents the address to be accessed. In order to preserve this information
for the second cycle of retrieving the data from the EPROMs, this address must be
latched. Two LS373 transparent latches are used to hold the address values for an
extra cycle. These latches are controlled by the ALE signal from the 80C196KB. The
ALE signal indicates whether the information on the lines is Address or Data. A
block diagram of this design is shown in Figure 6-1. The data lines are unidirectional
in this case since only memory reads are necessary. Detailed 'schematics and timing
diagrams are shown in Appendix G.

The 80C196KB has 256 bytes of on-chip RAM. The controller code does not
require more than this amount in accessible memory, and therefore no additional
SRAM is required. Had that not been the case, an SRAM chip would need to be
interfaced to the microcontroller as well. That may be done through the same I/O
port lines, but with data flowing both ways. Another point to be made is that not
all of the memory used in this implementation is necessary. In a final version of the
controller in which the code has been optimized for space, some of the lines on ports 3
and 4 may be free for improving the output resolution or perhaps controlling another
power supply.

6.1.2 A/D Interfacing

The A/D interfacing circuitry is also shown in Figure 6-1. This circuitry is suggested
by and discussed in detail in [13]. At the input to every A/D converter channel is
sense capacitor that gets charged by the input to the channel during a 1 p.s conversion
window. There is also about 3 pA of leakage current. For inputs with high output
impedance, the converter accuracy may degrade due to the leakage current causing

1Safroadu Yaboah-Amankwah is responsible for this work as part of an undergraduate lab super-
vised by the author. The schematics in Appendix G are taken from his report on the project.

Figure 6-1: Block diagram of compact microprocessor implementation.

a significant drop in the signal voltage. Moreover, the time constant of the RC
connection may be long enough to prevent the sense capacitor from charging fully
during the 1 ts sampling window. Adding an external capacitor larger than the sense
capacitor compensates for this and ensures the charging of the 2 pF sense capacitor.
Combining it with a small resistor as shown in the figure also reduces sensitivity to
noise with the resulting low pass filter. The resistor also limits the input current. The
diodes in the interface circuitry are used to protect against overvoltage conditions on
the inputs.

6.1.3 Experimental Results and Conclusions

The system described above was built and tested open-loop. The controller code
as well as other test code was burnt into the EPROMs and the microcontroller was
reset. Inputs were generated by power supplies and fed into the analog channels.
The digital outputs were monitored and verified to match their expected values. No
closed-loop verification was carried out as it was felt that these tests were enough.
The system implemented was shown to perform the functions of the EV80C196KB

Table 6.1: Estimated Cost for Components
Components Estimated Cost
Board $ 12.50
Manufacturing $ 9.25
Controller $ 16.70
EPROMs and Latches $ 2.50
Discretes $ 2.00
Total $ 42.95

that are necessary for the UPF digital controller.
The table below shows the approximate cost of the different components and the

total cost as based on a PC-board implementation of the circuit. The provided figures
are conservative. The cost is lower for bulk quantities of microprocessors, and the
EPROMs may be removed completely by hard-coding the control algorithm into the
microprocessor chip. Also, a cheaper microcontroller may be used, as mentioned
earlier. The area of this controller board, especially if the EPROMs are removed,
would be basically that of the microprocessor, the latch, the multiplying DAC, and a
few discrete components. This is negligible compared to the size of the power supply
components.

The remaining cost and area are those of the analog interfacing circuitry and the
power supply. Note that a simple current-loop will replace the Unitrode UC3854 and
the isolation amplifiers will be removed in a product version of this system. Further
studies are needed to obtain an accurate estimate for the likely cost of this system,
and to compare it to existing analog controlled systems.

6.2 VLSI Implementation

To take the compaction of the digital controller one step further, a VLSI implemen-
tation of the control algorithm was explored. This work was carried out as a class
project, so the limited time and chip area constrained the implementation. The
project was meant to demonstrate the feasibility of a VLSI implementation rather
than to produce an actual working controller. The area available did not permit
the implementation of wide enough data paths to produce high enough resolution
for practical use. Although a working integrated circuit has not been fabricated,
tremendous insight into the problem has been gained as a result of this experiment.
Specifically, the implemented controller uses multiplication and addition, important
components of many controllers (and of all linear controllers). The components of

this integrated circuit should be therefore very similar to those of the generic linear
controller.

The following sections discuss the overall solution to the design problem and
introduce the functional blocks that implement the different operations. Although
much of the flexibility of the microprocessor is lost, some is retained and more can
be incorporated with a more complex design. The advantages are reductions in cost
and area, and an increase in speed.

6.2.1 Overall System Layout

The controller in Figure 2-2 comprises addition and multiplication operations. One
implementation would lay out a multiplier and an adder circuit for each operation.
Although this would have the fastest propagation time from input to output, the
area consumed by such an implementation is excessively large. A better circuit would
pipe all the multiply operations through one multiplier and the additions through one
adder. The control for such a circuit is more difficult, but it greatly reduces the area
requirements.

In addition to the addition and multiplication modules, multiplexors are needed
to select the numbers to be added or multiplied, registers to hold the intermediate
values which are to be used later in the computation, and a PLA (Programable Logic
Array) to implement a finite state machine controlling the data flow through the
circuit. Additional circuitry is needed to deal with the negative numbers that are
encountered in the computation. Figure 6-2 shows a block diagram of the different
modules and the data flow.

6.2.2 Control and Data Path

Two-phase non-overlapping clocking is used to pipeline the circuit. The clock can be
as fast as the worst delay between two registers. One addition or multiplication is
carried out every clock cycle. The delay through the circuit is therefore the number
of operations multiplied by the clock period.. The shift registers are loaded after a
reset is detected by the gain values. This feature was included to allow for the mod-
ification of the controller parameters. The final multiply operation is incorporated
into the gains, except for the capacitance value. Although the capacitance estimator
is not implemented on the chip, the capacitance is provided as an immediate input.
This allows an estimator running off-chip to modify the controller's estimate of the
capacitance in real time.

vo + Vref vo - Vref

C -

x +
PREG AREG

DUMMY OUTREG Accumul

Figure 6-2: Block diagram of VLSI implementation.

Figure 6-3: Finite state machine for data path control.

To best describe the operation of the circuit and the data flow, a diagram of the
finite state machine (FSM) is shown in Figure 6-3 and a description of every state is
presented below. Every state in the state machine represents an operation during a
clock cycle. The output is sampled by an external clock running at 120 Hz.

The states of the FSM are described below:

0 This is the RESET state. The RESET pin is an input to the chip, and all states
transition to this state when this line goes high. A counter and the Accumulator
are set to zero when the RESET pin goes high as well. Once in the RESET
state, the first bit of the numbers representing the gains hi and h2 is loaded
and the counter is incremented. State 1 is entered next.

1 In State 1, the gains are loaded bit-serially. This is accomplished by hand-
shaking that is not discussed here, and the counter keeps track of when this

operation is done. Once this operation is terminated, State 2 is entered.

2 In this state, the Accumulator value is multiplied by the gain h 2 and loaded
into the PREG. State 3 is entered automatically on the next clock cycle.

3 Load the value in PREG into register DUMMY, and then multiply the input
values of v, + V,,e and vo, - Vre (In order to simplify the computation, it is

assumed that the input comes from analog adders and subtractors that provide
these quantities, resulting in one required multiplication for the digital system).
Store the value in PREG. Transition to State 4.

4 Multiply PREG by h1 and store the value in PREG. On the same cycle, add
the values in the accumulator and the value from PREG (which before the end
of this cycle is still the value of the error). Store the addition result in AREG.
Transition to State 5.

5 Load the Accumulator register from the value in the AREG. Add the values in
DUMMY and PREG. Result is stored in AREG. Go to State 6.

6 Multiply the the values in AREG and the input C (capacitance value). Store
the result in OUTREG. Transition to State 2.

A simplified timing diagram is shown in Figure 6-4. The multiplexor control
signals are changed every cycle to specify which inputs are to be used. They are
outputs of the state machine but are not shown in the timing diagram for simplicity.
The serial loading of the controller gains after RESET is also not shown in detail.

Many details of the design have been left out. A rough estimate of the delay of the
whole control computation for a maximum register size of 10 bits yields a figure on the
order of microseconds or 10's of microseconds. This figure increases with the sizes of
the registers and adder and multiplier blocks. However, for the most part, the whole
8.33 ms is left for the off-line capacitance estimation or for any additional features in
the control. With enough area, any width of data path may be implemented. Details
of the project are not included here, but a sample transistor level schematic of one
cell used in the design, and the configuration in which the cells are used to implement
a functional block, are shown in Appendix H. In general, the unit cells operating
on single-bit inputs are used in arrays to implement multi-bit operations. The same
design may be easily modified to accommodate wider words. This implementation
would also prove much cheaper and smaller in size.

CLK2

RESET

STATE 0 21

LOAD PREG

LOAD AREG

LOAD DUMMY

LOAD ACC

LOAD OUTREG

Figure 6-4: Timing of Control Circuitry.

Chapter 7

Conclusions and Future Work

The goal of this research was to explore the issues surrounding a digital implemen-
tation of a controller for a UPF converter. The design and implementation of such a
controller was carried out, with feasibility, performance, cost, and size in mind. As
operating requirements on power converters become more stringent, power supplies
with high power factors and complex control for high levels of performance become
more valuable. Digitally-controlled UPF's appear attractive from several points of
view. However, cost and lack of experience with such systems are significant hurdles
in the way of their development. Nevertheless, with the falling prices of semicon-
ductor products and the increasing processing power of digital microcontrollers, it
appears that it may be time to consider this alternative. This thesis explored this
possibility.

In Chapter 1, high power factor converters were reviewed along with general back-
ground in digital control. The research was motivated and its goals outlined.

Modeling of UPF converters was discussed in Chapter 2. A large-signal model for
the boost converter topology of the UPF was developed in detail. Averaging over half
the line period provided a first-order LTI model from which a sampled data model
was derived. Continuous-time and discrete-time models at the time scales of the
switching frequency were similarly obtained. The "slow" sampled data model was
used to develop a discrete-time PI controller for the UPF. More complex nonlinear
control was also designed for the system. The availability of a microprocessor allowed
much freedom in the control design.

In Chapter 3 the implementation of the controller was presented. The implemen-
tation details as well as the difficulties encountered were discussed. This controller

was taken one step further in Chapter 4, with the design and implementation of adap-
tive control. This was a critical step since it clearly demonstrated the advantage of
digital control over analog control.

Experimental results were reviewed in Chapter 5. Overall, the results were in favor
of digital control of such a system. Although some problems still need to be ironed
out, in general the digital controller exhibited more flexibility and better performance
than the analog counterparts. With more research and product development, a com-
mercial digitally controlled UPF seems very feasible, even in cost.

As cost is an important parameter in this experiment, cheaper implementations of
the controller were explored in Chapter 6. A microprocessor implementation without
the evaluation board and a VLSI implementation were described. Again the results
were promising. The cost of a digital controller should eventually not be much higher
than that of an analog controller.

Much remains to be done, however, towards producing a commercially feasible
digitally controlled UPF. The implemented prototype is built in a temporary and
noisy experimental setup. A final product would need to be constructed as a perma-
nent, less noisy structure, perhaps as a PCB. Reductions in cost are also required.
Toward that end the compact implementations discussed in Chapter 6 should prove
to be helpful. An option not explored in this thesis is the use of a less powerful and
less expensive microprocessor.

Future work should also attempt to analyze more deeply the phenomena encoun-
tered here that will be part of every digital controller implementation. Specifically,
mathematical models for quantization error need to be developed and analyzed. In-
put/output resolution enhancement methods should also be explored further. For
example, one idea is to design a controller that divides the command signal into a
constant nominal component based on knowledge of the load and a variable compo-
nent to be set by the feedback. By doing so, the same number of bits used to specify
the full command earlier may be used for a smaller portion of it, hence increasing
the output resolution of the digital controller. Other controllers, such as those based
on different models, should be explored as well. The flexible experimental setup used
here will allow the examination of different control algorithms in a physical system
and not only in simulation.

The results of this thesis, the questions raised and investigated, and the experi-
mental setup that was constructed indicate that digital control of power supplies is
a viable choice. The thesis provides a knowledge base and a test-bed that should be

helpful in carrying out this further work.

Appendix A

Derivation of Closed-Loop

Transfer Function in the z-Domain

The sampled-data-model for the open-loop system presented in Chapter 2 is shown
again below in Equation A.1:

TLV 2 2TL
x[n +1] =x[n]+ C k[n] - C P

Taking the z-transform of this discrete-time description of the system yields:.

zX(z) = X(z) + TL(V 2 K(z) - 2P(z))
C

1
X(z) = (TL/C(V 2 K(z) - 2P(z)))

z - 1

(A.1)

(A.2)

(A.3)

This open-loop system is shown in Figure 2-1.
The discrete-time PI controller shown in Figure 2-2 is summarized

transfer function:

C 1
K(z) = (h1 + h 2 (x (X(z) - Xre(z)))

TLV z-1

by the following

(A.4)

Closing the loop with the PI controller yields the system in Figure A-1.
The resulting transfer functions between the output X(z) and the two inputs,

reference X,,f (z) and disturbance P(z), are:

X(:)

Xref(Z)

-(h 1 : + h2 - h1)
z2- (2 + hi)z + 1 + hi - h2

(A.5)

Xref

Figure A-1: The Closed-Loop System.

100

100

101

Frequency (rad/sec)

101

Frequency (rad/sec)

102 103

102 103

Figure A-2: Bode Plot for Transfer Function Between Reference Voltage and Output
Voltage.

X(z) -(z - 1)2TL/C

P(z) z 2 -(2+hi)z+1+hi -- 2

(A.6)

The bandwidth of the closed-loop system is an important parameter in the design
of the anti-aliasing filter, as discussed in Appendix B. The figures below demonstrate
the system transfer functions, with the system gains used in the final implementation,
which correspond to:

h2= .0056

0

-10

-20

10-1

~~~~. . . . . . - , . .........

. . - . " . . . . . . . . . . . . . . . .. = -...

. .. .. .. .. .. . . .. ... . .. .. .. .. .. .. .... . . " " . " . " . . . . . ..........
I I ll I f I I i ! I I I I11 I I I I I I

a I I 11 11 I . I 11 11 I I 11 11 I I li i

-100
-150

-200'
10-1

.~ ~ ... . . . ... . . . . . . .e . . . . . . . . ... . . . . . ... . . . . ... . . . ... . . . . a.. . ... . .... ... .

a e e = , e a a e r e a. . m .... ... .... .. e... .. ... . .. . .. . . .. . . I .. . .. . . .. .. .I ... .. . . .... ee a e e aa aumm..e m.. .a. ae e .. a m=o wse ===n ae. ... =m, a.. ... .. .sa g- 4mw. eeo ... -- g.. .ase ... m- .. o m.ea .......... .. ........... ,e .. ... .. e .. ae

hi = .1527 (A.7)



30

.. . .. .. .. . .. . . .. .. . ... . . . . . ... .. ..

20 - - -. .

10

10-1 100 101 102 103

Frequency (rad/sec)

00

2......

-300-

-400 - ...... .

10- 100 101 102 103

Frequency (rad/sec)

Figure A-3: Bode Plot for Transfer Function Between Reference Voltage and Output
Voltage.

100



Appendix B

Comparison of Large- and

Small-Signal Models

Simulations were carried out to compare controllers designed on the basis of large-
signal and small-signal models. It was found that in the simple first-order system at
hand, the large-signal model does not have a great advantage over the linearized one.
However, with sufficiently large disturbances, some differences are witnessed. In a
more complex system or one that has tighter specifications, these differences may be
crucial. The two controllers were used in simulation to control a large-signal model
of the UPF, as that is the more accurate of the two models.

The controller based on the large-signal model was designed in Chapter 2. The
time-domain representation of the linearized model in Equation 1.7 is:

dtT= 1 (V2 k - 2P) (B.1)
dt 2VdC

Following the same steps used in Chapter 2 to design the PI controller based on the
large-signal model, a PI controller is derived using this model of the converter. As it
turns out, given a controller bsed on the large signal model with gains Gr and Gp and
poles z1 and z2, the corresponding controller based on the linearized model with the
same poles will have the same gains but a different error term. In particular, whereas
in the first case the error is:

V. = 2 V2 = 2-a, + f2 (B.2)

in t 0 s casit

in the second case it is:

101



350 1
300 -

250
0 20 40 60 80 100 120 140

0.25

0.2-

0.15-

0.1-

0.05-

0
0 20 40 60 80 100 120 140

--Linearized Model, __Linear Model

Figure B-1: Response of large-signal and small-signal controllers to load transients
from 50 Watts to 2000 Watts and back. With the large capacitor used, there is hardly
any difference.

V,. = 2Vdi, (B.3)

The difference in the reaction of the two controllers to disturbances is proportional
to the square of the deviation from the nominal, which for small deviations and large
reference voltages, is negligible compared to the other error term, the product of the
reference voltage and the voltage deviation. In the UPF system, the reference voltage
is large and the load transients are not significant enough to produce large error
signals. In some of the simulations that follow, the load capacitor is changed or a large
voltage transient is forced at the output in order to witness the differences between
the two models. The simulations also verify the relationship stated above between
the two error expressions. The linearized model controller reacts more strongly than
the linear one for negative deviations from the nominal, and more weakly for positive
deviations.

102



300-

200 --

100
0 20 40 60 80 100 120 140

0.06 I

0.04 --

M 0.02 --

0-

-0.02
0 20 40 60 80 100 120 140

--Linearized Model, Linear Model

Figure B-2: Response of large-signal and small-signal controllers to load transients
from 50 Watts to 400 Watts and back. The capacitor used is a tenth of the size of
the capacitor used earlier.

103



600

400-

200-

0
0

0.08-

0.06-

0.04-

0.02-

0 L
0

Figure B-3:
transients.

10 20 30 40 50

10 20 30 40 50 60
--Linearized Model, Linear Model

Response of large-signal and small-signal controllers to large voltage

104



Appendix C

Passive Filters for Anti-Aliasing

and Ripple Frequency Selection

C.1 Anti-Aliasing Filter

The output voltage signal is composed mainly of a DC component and a 120Hz ripple
component. The microprocessor A/D samples the output voltage once every 8.33ms,
or at a rate of 120Hz. This situation results in aliasing of the ripple harmonic
and other noise components that may exist in the system. An anti-aliasing filter
is constructed using passive elements to prevent this. The circuit in Figure C-1
illustrates the basic low-pass configuration used.

The transfer function for the circuit above is:

1
H(s) 1 (C.1)R1R2C1 C2s2 + (R1 C1 + R1 C2 + R 2C2 )s + 1

MATLABTM programs were written to take a set of available resistor and capaci-
tor values and to return all the filters with poles within a specified range that may be
implemented with the available resources. These programs are included at the end of
this appendix.

The implemented filter uses a cascade of three second-order filters to produce
a sixth-order one. The break point of the individual filters had to be well outside
the bandwidth of the closed-loop system so as to not interfere with the controller's
operation. This break point is especially conservative since, when such filters are
cascaded, the breakpoint moves closer to zero. Also note that the sum of the phases
of these three cascaded filters and the phase in the pass band of the closed-loop system
needs to be a safe phase margin below 180 degrees. The presented filter provided good

105



R1
Vin

C1

4

Figure C-1: A Second-Order Low-Pass Filter.

experimental results for the setup used.
The parameters of the implemented filter are:

R1 = 2800hms R 2 = 22500hms C1 = 1pF C2 = 3.3pF

The Bode plot of each individual second-order filter is shown below.

C.2 Bandpass Filter for the 120Hz Ripple

In order to select the 120Hz component of the output voltage to estimate the load ca-
pacitance, a bandpass filter is required. Again, only passive components were used to
avoid introducing additional noise into the system. The filter was implemented using
a cascade of second-order lowpass and highpass filters. The highpass configuration is
shown below in Figure C-3.

The transfer function for this filter is:

H(s) = RR 2C 1C 2S2

RIR 2CIC2S2 + (R1 C1 + R1C2 + R 2C2 )s + 1

The parameters of the implemented high-pass filter are:

(C.3)

R1 = 2000hms R 2 = 34000hms C1 = 10pYF C2= .47pF

106

(C.2)

(C.4)

I A vout

R2
C21



0

-20

S -40

-60

-80

-100
10

0

-50
bo

100

-150

-2001
10 102 103

Frequency (rad/sec)

104

K

105

Figure C-2: Bode plot for implemented anti-aliasing filter.

Vout

C2

R1 R2

Figure C-3: A Second-Order High-Pass Filter.

107

102 103 104
Frequency (rad/sec)

105

.~~~~~~~~~~ ~ ~ ~ ~ ~ ~ . . .. . ... ... . . . .. . . . . . .. . .. . . . . . . . .

.~~~~~~ ~ ~ ~ ~ .. . .. . .. . . .. . .... . .. .. . .. .

- - - - -.. . ........... ....... . . . .. ........... . . . .. . . . . . .. .. .

. .. . s . e fa ae e e ea a =s e e. " a .' .0 . .a . ea a e =e . .. .. . ..... .. . ee e = oe - i =# # . ~ a= s ea -e s ...............e ............s, .-.....

I-



0

-20

0 40 -7........

-60
101 102 103 104

Frequency (rad/sec)

0

-50

a -100

-150

-200
101 102 103 104

Frequency (rad/sec)

Figure C-4: Bode Plot for Low-Pass Component of Ripple Band-Pass Filter.

The parameters of the implemented low-pass filter are:

R1 = 4000hms R2= 24000hms C1 = 22pF C2 = 2.2p.F (C.5)

The Bode plots for these filters are shown below. The output voltage was passed

through a Low-High-Lo configuration of these filters before being sent to the ripple

sensing channel on the A/D converter. A gain stage shown in the schematics is used

to amplify the ripple signal, which is attenuated due to the less than unity magnitude

of the filter responses at the w = 27r x 120rad/sec point. This is discussed under

estimation of the load capacitance.

The following pages contain the MATLABA code used to design the filters dis-

cussed above.

108



.0. . . ..-.. .... ., .. . ,. .- ,. .. .. .. ......+ . . - - --. .- -. .- -. .- .. .-. .. - - - - ...' - ..- + ..- - .. - -.

-150 -

-200u
10-2 10-' 100 101 102 103

Frequency (rad/sec)

200

100 -

0 -

-100

-2001 I
10-2 10-1 100 10' 102 103

Frequency (rad/sec)

Figure C-5: Bode Plot for High-Pass Component of Ripple Band-Pass Filter.

109



XX Searching code to find a list of filters that meet a X
XX specified range for the poles and zeros of a given XX
XX filter transfer function. The code allows the user X
XX to specify the limits on the poles and zeros of a X
XX transfer function, which is specified also by the XX
XX coefficients of the numerator and denominator of the XX
XX the transfer function. The circuits that satisfy XX
XX the pole-zero specs are returned in the form of a XX
XX list of the parameters for that circuit and the pole XX
XX and zero locations for those parameters. The list XX
XX of parameters to be searched over is specified as a XX
XX group of arrays in the beginning of the file. X
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XX Assign the array 'a' to different capacitor values to
XX be used.
XX The length of this array may be varied.
a(1) = le-6;
a(2) = 3.3e-6;;
a(3) = 1Oe-6;

XX Since the circuit specified here has two caps that may
XX on the same values, set the search list for the second
XX cap to be that of the first...

b = a;

XX Array 'aa' is a list of resistor values

aa(1) = 200;

aa(2) = 400;

aa(3) = 600;

aa(4) = 1800;

XX The second resistor in this circuit may take on values
XX from the same list as the one before

110



bb = aa;

XX Initialize a counter to keep track of how many solns
XX have been found

count = 0;

XX Loop with as many nested loops as you have variable
XX parameters in the circuit -- here 4 times.

for i = 1 : 3

for j = 1 : 3

for k = 1 : 2

for 1 = 1 : 2

XXU

XXU

c1

c2

r1

r2

XXU

XXU

XXU

U

XXU

Assign

to the

a combination of the parameters in the lists

circuit values. Loop thru all possibilities.

= a(i);

= b(j);

aa(k);

= bb(1);

Specify the transfer function for the circuit

to be designed. Here, the coefficients of descending

powers of s in the numerator and denominator of the

laplace domain transfer function are specified in terms

of the variable parameters.

XX For lowpass filter, numerator is 1

n1= 1;

XX Denominator for 2nd order low-pass filter

dl = r1 * r2 * ci * c2;

d2 = (r1 * (ci + c2)) + r2 * c2;

111



d3 = 1;

num = [ni];

den = [di d2 d3];

XX Specify conditions on the poles and zeros
XX For this example, only poles are necessary,
XX since there are no finite zeros

XX Find roots of denominator (poles) and condition
XX the parameter combinations to be saved by these
XX conditions....

rt = roots(den);

if ((rt(1) > -1000) & (rt(2) > -1000))
if ((rt(1) < -400) & (rt(2) < -400))

XX Increment count of how many solns there are.

count = count + 1;

XX Save the first and second roots (poles)

solni(count) = rt(1);

soln2(count) = rt(2);

XX Save the capacitor and resistor values (parameters)

si(count) = c1;

s2(count) = c2;

s3(count) = ri;

s4(count) = r2;

end

end

XX

end

end

112



end

end

113



Appendix D

Simulation Code

Simulations for the system were written in MATLABTM. Many programs were writ-
ten and are available from the author. Only the core programs from which the rest
of the simulations were derived are included here. At many points, certain features
were commented out. Documentation of the code is included to guide the user in
changing the parameters of the simulation if necessary. It is important to remember
that the code was developed by the author for his own use, and mainly to study the
implemented circuit in the easiest manner possible. Hence there is much room for
increasing the efficiency of the code and its modularity that was not explored here.

D.1 Simulations of the Discrete-Time System

XX This code simulates the closed loop discrete time system XX
XX without the peripheral resolution mapping hardware or any XX
XX digitizing effects on the inputs, outputs, and controller %
XX parameters. It is a simulation of the steady-state X
XX behavior and response to transients. Many variations of XX
XX this code can and were used, but are not included. Where XX
XX appropriate, comments have been made as to where changes XX
XX could be made to accomodate simulations of different X
XX situations. In a more modular simulation, the parameters XX
XX could be defined at the beginning of the file or made X
XX arguments of the matlab file for easier modification of XX
XX the simulation.. This is simply rough code as design aid. XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

114



XX Initialize the state variable y = square of output voltage
XX Here since simulating steady state, initialize to steady

XX state value.

y(1) = 400 * 400;

XX Period of rectified line cycle, and period of the
XX Tl- Sampled Data Model is 8.3 ms. Assign values to input

XX peak voltage, initial load in watts, initial command
%% (steady state), and the discrete time gains as computed

XX using the discrete time model. verr is 0 in steady state

%% and acc, or integrator, is set to its steady state value.

Tl = 8.33333e-3;

C = .00047;

V = 156;

P = 50;

k(2) = (2 * P) / (V * V);

vo(1) = 400;

hi = -1;
h2 = -.25;
verr = 0;

acc = 2 * P * Tl / (C * h2);

%% Loop through so many Tl periods, or half line cycles

for i = 2:200

XX Save the accumulator value for displaying
XX and debugging later

ac(i) = acc;
y(i) = y(i - 1) + Tl/C * ((V * V) * k(i) - 2 * P);

vo(i) = sqrt(y(i));

% This implements a load transient

if i == 30

115



P = 100;
end

XX Error computation here assumes reference is 400 V..
XX Other references may be used, or a variable could
XX be placed there and modified at the beginning of the
XX program as desired

verr = y(i) - 400 * 400;

% g is the output of the controller (input into plant)

g = (C / (Tl * V * V)) * (( hi * verr) + (h2 * acc));

% This conditional implements a saturation function on the

% controller command. May be removed if the theoretical

% dynamics of the model are to be tested, or modified based

X on the setup.

if g > .0255

k(i + 1) = .0255;

else k(i + 1) = g;

end

%% This part of the code updates the accumulator to implement
%% the integration function. The conditional implements an

%% upper bound on the accumulator value, specified as the
%% value which will yield the maximum command in steady state

% with the proportional part contributing nothing. Again this

% has a lot of room for improvement in terms of being predefined

XX as a function of h2 and max current.

acci = acc + verr;

if acci > -44184.5

acc = acci;

else

acc = -44184.5;

end

end

116



D.2 Simulation of Digital System and Multiple

Features

XXXX%%XX%%XXXXXX%%%XXXXXXX%%XXX%%%X%%X%%%XXXX%%XX%%%
XX This simulation code has as a core the earlier code, U%

%% but includes a simulation of the different features %%
%% added in hardware to the system implementation and %%
%% other features such as integrator anti-windup. These %%

%% features are documented in the different sections of %%

%% the code and may be commented out. Improvements on XX
XX the existing code in terms of modularity are also XX
XX mentioned but not implemented, as the purpose was not %

%% to develop a friendly simulation tool but to use this XX
XX code to study the implemented circuit. The code was %X

% used only by the author, and some work needs to be XX
%% done before others may find it easy to use........... XX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XU hack 2 to 2.8 mapped

% startup with problems (k changes too much)

XX softstartup solutions and antiwindup
XX work2 new simulation with imax = .94 and diff load transient (not doubling)

X% and new gains
XX also has input voltage changing on transient

XX No startup behavior is shown here. For simulating %%
%% startup, I use the same model for the UPF as the one U

XX used for steady state. To carry out this simulation, XX
U% include the following initial assignments instead of XX
XX the ones in the code below. XX

XU STARTUP ASSIGNMENTS

XX y(1) = 150 * 150; XX since the output goes to input

%% peak before boosting is started

117



XX k1(2) = 0;

XX k(2) = 0; XX initial command is set to 0 for
XX soft startup

XX vo(1) = 150;

% May leave load initial value as is, or since in the
XX actual implementation we use resistive loads, assign
XX P = y(i) / R, where R is a resistance of the load

% Assign system parameters

%% Period of rectified line cycle, and period of the

%% Tl- Sampled Data Model is 8.3 ms. Assign values to input

%% peak voltage, initial load in watts, initial command
XX (steady state), and the discrete time gains as computed

XX using the discrete time model. verr is 0 in steady state
%% and acc, or integrator, is set to its steady state value.

y(1) = 250 * 250;

Tl = 8.33333e-3;

C = .00047;

V = 156;

%% As in the expermimental setup the voltage level is dropped
%% the load power is changed in the resistive load.

P = 27.22;

ki(2) = (2 * P) -/ (V * V); XX Steady state command

%% Gains are adjusted to move poles of system around.. This
XX system here is slow. poles around .9.

vo(1) = 250;

hi = -.1527;

h2 = -.0056;

verr = 0;

XX If implementing soft startup need to step reference voltage

%% up initially. Initialize variable vr to initial reference

XX and then step up over the first few cycles. vr also is

118



XX based on the transformation of vo thru hardware etc........

vr = 370050 XX uncomment if implementing soft start

XX Digital Controller Parameters XX
% The digital command is mapped from 0 to 255, with 255 %%
XX corresponding to the max command derived from the max X
XX current that can be drawn. here it is 6.3e-3 amps.. X
XX A more modular implementation has imax and kmax as X
X as variables. The peak input is fed through the 10-bit%%

%% AD converter, with a gain of 2^10 / 5, but after being %%
XX divided by 100 or so, the result being the gain here. XX

XX the round function is used to simulate the quantization%%

k(2) = round(ki(2) * 255 / 6.3e-3);

Vi = round(V * 2.046);
hI1 -190;

h21 -7;

g = 0;

XX Accumulator value determined by transformation of output
XX voltage as shown in chapter 3

acc = round(2 * P * Ti * 2.046 * 2.046 * 4.6 * 4.6 / (C * h2));

XX Reference voltage is the digital counterpart of 250 volts

%X as determined by transformation in chapter 3

vr = 5017600;

XX Loop with each cycle representing a Ti cycle.

for i = 2:2500

XX For a resistive load include:
XX P = vo(i) * vo(i) / R;

119



y(i) = y(i - 1) + (Tl/C) * ((V * V) * ki(i) - 2 * P);

XX Output voltage cannot drop below 150

if y(i) < (150 * 150)

y(i) = 150 * 150;

end

vo(i) = sqrt(y(i));

XX Load transient. V is also changed slightly to simulate

XX audio-susceptibility.

if i == 600
P = 42.78;
V = 153;
VI = round(V * 2.046);
end

XX The mapping of the output voltage as it goes through X
XX resolution mapping hardware stage in the circuit. The map XX
XX sets anything below a certain cutoff to zero.. Here it is XX
XX 210 volts. Anything above the range of interest is as X
XX good as maximum. Here it is 3.7 , but for optimal use of XX
XX full AD range it is set to 5 and the linear region of the XX
XX mapping circuit is used to fill whole range up to 5 volts XX
XX If in the region of interest, the voltage is offset then XX
XX amplified by the ratio of the resistors................. XX

if vo(i) < 210

d(i) = 0;
else if vo(i) > 296

d(i) = 3.7;
else d(i) = 4.6 * (vo(i) / 105 - 2);

end

end

120



XX Feed through AD converter

a(i) = round(d(i) * 1023 / 5);

XX end of mapping

XX Dummy arrays for monitoring values for debugging

xx(i) = vr;
x(i) = acc;

X. The output voltage is recovered by undoing the offset. %%
XX The gains are not undone, as part of them is undone in %%
XX the division by the input voltage squared (this undoes XX
% the AD gain), and the rest (gain of resolution mapping XX
%% circuit) is taken care of in the gains as shown in chap XX
XX 3. This saves computation time........................ XX

XX recovery

dd(i) = a(i) + 1882;

s(i) = dd(i) * dd(i);

XX end recovery

verr = round(s(i) - vr);

z(i) = verr; XX Save for debugging purposes

%Uncomment next section if simulating soft startup. The values

XX used (4000, 5017600, and initial value, may all be changed

XX based on preferred behavior... Could also be parameterized.

121



Y. if(vr + 4000) < 5017600
XX vr = vr + 4000;

XX else vr = 5017600;

XX end
XX------------------------------------XX

Y. Rounding simulates the use of fixed point arithmetic.

XX Truncating may be a better simulation, but not much
XX difference witnessed.

g = round((round(hl1 * verr) + round(h21 * acc)) / (Vi * VI * 10));

dum(i) = hil * verr;

XX Could set g = 0 here if vo above certain level to implement
% Upper bound shutoff....

XX Command is bound above by 255 and below by 0.

if g > 255

k(i + 1) = 255;
else k(i + 1) = g;
end

if g < 0

k(i + 1) = 0;

end

XX Following line simulates action of mult DAC with unitrode setup.
%% 8 bits are used (255 units of resolution) and max current used
.. here is 6.3e-3.

ki(i + 1) = (6.3e-3 / 255) * k(i + 1);

XX Anti-windup - If command in saturation level, then do not

XX accumulate error in accumulator.

if k(i + 1) == 255

122



x(i) = x

else

acci = acc + verr;

XX If using soft startup and intending to disable integrator during

XX startup, replace line immediately above with following

%%./.------------------------/U

XX if vr == 5017600

% acci = acc + verr;

XX else acci = acci; %% or acci = 0;

XX-----------------------XX

%% Sign of accumulator kept negative..

if acci > 0

acc = 0;

else

% Upper (negative) bound on accumulator as defined by h2 and

% maximum command.

if acci > -123595950
acc = acci;

else acc = -123595950;

end

end

end

end

D.3 Simulations of T,-Model for Capacitance Es-

timation

123



XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XX This code uses the same controller in the feedback loop XX
XX that is used with the Tl based model.. The controller XX
X% designed based on the slow model.. However, this code XX
XX models the boost converter according to the Ts model, XX
XX which is on the time scale of the switching period. The XX
XX main use of this simulation is to show the 120Hz ripple XX
XX which is used for the capacitance estimation. The XX
XX dynamics of this ripple are studied with the aid of the XX
XX simulations. Capacitance and other parameters are X
XX perturbed and their effect studied. Quantization is X%
XX also simulated and its effect is not disruptive of the XX
XX general operation or stability issues. However, in the %
XX actual system it distorts the shape of the ripple...... X
XX This is not demonstrated in these simulations as the XX
% command, unlike the real system, is changed only at the XX
X zero crossings of the ripple, but a slight modification XX
XX in the code could show the same results................ %

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XX Define parameters of system and initial value....
XX This only shows steady state behavior.

y(1) = 400 * 400;

Tl = 8.33333e-3;

C = .00047;

V = 156;

P 50;

ki(i) = (2 * P) / (V * V);

kl(2) = (2 * P) / (V * V);

XX Digital command with 8 bit output resolution and max
XX analog command equal to .0256

k(1) = round(kI(1) * 255 / .0256);

k(2) = round(kl(2) * 255 / .0256);

vo(I) = 400;

hi = -. 4;

h2 = -. 04;

124



verr = 0;

XX Parameters not required by slow model
XX are the inductance and switch frequency

L = le-3;

Ts = le-5;

XX digital controller parameters

V1 = round(V * 2.046);

hil = -2250;

h21 = -225;

g = 0;

acc = round(2 * P * Tl * 2.046 * 2.046/ (C * h2));

XX Initial T1 Cycle

XX Equations for model are those in chapter 2 under Ts model

XXXXXXXXXXXXXXXXXX
for j = 1:832
cc1 = sin(2 * pi * (j + 1) * Ts /Tl);
cc2 = sin(2 * pi * j * Ts / Tl);

cbi = (V * V) / C;

cb2 = T1 / (2 * pi);

bi = cbl * Ts - cbl * (cb2 * (ccl - cc2));

ci = sin(pi * (j + 1) * Ts / Tl);

c2 = sin(pi * j * Ts / Tl);
b2 = ((V * V * L) / C) * ((c1 * ci) - (c2 * c2));

dumi(j) = bi;

dum2(j) = b2;

y(j + 1) = y(j) + (bi * ki(i)) + (b2 * ki(i) * k1(1)) - (2 * P * Ts / C);
vo(j) = sqrt(y(j));

125



end

XXXXXXXXXXXXXXXXXX

XX Successive cycles. Each cycle contains 833 switch cycles.

XX An inner loop runs that simulation of switch cycles. For

XX faster simulation lower switching frequency may be used.
XX The high frequency here is not necessary since this model
X averages over the switch cycle, thus eliminating these
XX switch frequency harmonics which are the reason for using
XX rapid switching in the physical system.....

for i = 2:60

for j = ((i -1) * 833) : (i * 833 - 1)

cci sin(2 *pi * (j + i) *Ts / Tl);

cc2 = sin(2 * pi * j * Ts / Tl);

cbI = (V * V) / C;

cb2 = Tl / (2 * pi);

bi = cbi * Ts - cbi * (cb2 * (cci - cc2));

ci = sin(pi * (j + 1) * Ts / Tl);
c2 = sin(pi * j * Ts / Tl);
b2 = ((V * V * L) / C) * ((ci * c1) - (c2 * c2));

duml(j) = bi; XX For monitoring, debugging
dum2(j) = b2;

y(j + 1) = y(j) + (bi * ki(i)) + (b2 * ki(i) * ki(i)) - (2 * P * Ts / C);

vo(j) = sqrt(y(j));

end

if i == 5

P = 100;

end

XX Rest of simulation is straight forward and identical to that
XX of other programs.. The controller is the same....

a(i) = round(2.046 * vo(j));

126



s(i) = a(i) * a(i);

x(i) = acc;

verr = round(s(i) - 818 * 818);

g = round((( h1l * verr) + (h21 * acc)) / (V1 * Vi * 10));

if g > 255
k(i + 1) = 255;

else k(i + 1) = g;

end

if g < 0
k(i + 1) = 0;

end

k1(i + 1) = (.0256 / 255) * k(i + 1);

acci = acc + verr;

if acci > -1151300
acc = accl;

else acc = -1151300;

end

end

127



---

Appendix E

Circuit Schematics

This appendix contains schematic diagrams of the various circuits implemented. The
microprocessor board was left out and is referred to in the schematics only by its
connector pins. Note the following:

e Isolation Amplifiers (AD202) are used to protect the EV80C196KB and isolate
it from the analog circuit.

e The output of the isolation amplifier which isolates the output of the multiplying
DAC from the Boost converter is flipped in polarity in order to undo the negative
sign of the output voltage of the multiplying DAC.

o All the operational amplifiers may be powered with negative and positive rails
except the one marked S. Being part of the resolution mapping circuit, it needs
to have a ground at its lower rail in order to implement the function described
in Chapter 3.

o The clamping at the high rail around 5 volts in the resolution mapping circuit
may be achieved using a diode with its anode at the output of the circuit and its
cathode at the 5 volt supply from the EV80C196KB. Another way of achieving
this is to just use the 5 volt supply as the positive power rail for the operational
amplifier in the circuit. If the opamp does not pull close to its high rail, however,
the result is loss of resolution.

* The isolation amplifiers can source only about mA of current. This necessitates
the addition of followers at the output of these isolation amplifiers as shown in
the schematics.

o Tables showing component values are included in this appendix.

128



Table E.1: Resistor Values
Resistor # Resistor Value Resistor # Resistor Value
R1 374 kQ R22 2.4 kQ
R2 10 kQ R23 400 Q
R3 5.6 kQ R24 3.4 kQ
R4 5 Q R25 200 Q
R5 .25 Q R26 2.4 kQ
R6 20 Q R27 400 f
R7 15 kQ R28 4.4 kQ
R8 22 kf2 R29 4.4 kQ
R9 3.9 kQ R30 20.2 k
R10 3.9 kQ R31 20.2 kf
R11 24 kQ R32 400 Q
R12 1.6 kQ R33 600 kf2
R13 2.7 kf R34 280 Q
R14 97.3 kf R35 2.25 kf
R15 10 kf R36 2809
R16 19.8 kf2 R37 2.25 kf
R17 1.6 kf R38 280 Q
R18 18.4 kf2 R39 2.25 kQ
R19 1.4 kf2 R40 135 kf
R20 18.6 k2 R41 82 k .
R21 8.4 k Q R42 62 kf

Table E.2: Capacitor Values

Capacitor # Capacitor Value Capacitor # Capacitor Value
CL 470 pF C11 2.2 p F
C1 .47 IF C12 22 pF
C2 1 nF C13 1 pF
C3 62 pF C14 3.3 p F
C4 620 pF C15 1 iF
C5 270 pF C16 3.3 iF
C6 1 pF C17 1 pF
C7 2.2 p F C18 3.3 pF
C8 22 pF C19 .47 pF
C9 .47 ptF C20 .1 pF
C10 10 pF C21 22 pF

129



Table E.3: Other Components
Component Part # or Value Component Part # or Value
D1 UHVP806 D2 IN5820
L 1 mH

130



C

Figure E-1: Unitrode Application Circuit
131



Figure E-2: Boost Converter and Analog Current Loop.

132



Figure E-3: Input Circuitry for Sampling Input Voltage and Load Current.
133



Ground from DC side of Boost

Ground from Microprocessor Board

Power for Opamps and Isoamp

from Microprocessor Board

R27

0

C0

(I.

0W



To Unitrode Circuit +

ftj

0

0

0

0
0q

Vout = -Vref(Al/2 + A2/4 + ... + A10/1024) 12V and V from EV80C196KB
An = 1 if nth digital input is high.
An = 0 if nth digital input is low. 15V and from Unitrode



Appendix F

Controller C Code

/* Micro-Controller C Code */
/* This code implements the PI controller */

/* for the UPF with additional features. */

/* Soft Startup, Antri-windup, Command */
/* saturation, and fixed command control */

/* in the steady-state are implemented. */

/* While this code performs the functions */

/* required, there is room for improvement */

/* in terms of coding efficiency and time */

/* and space consumption. Some effort has */

/* been taken to implement a clever,

/* efficient program, but more can be done */

/* in that department. The software is */

/* is mainly interrupt driven, and as a

/* helpful reference in understanding the */

/* register control and interrupt methods */
/* used, see the user's manual for the

80C196KB

/* The next 2 lines reserve locations 30 to */
/* 38 as they are used by the EV80C196KB */
/* and should not be modified in code that */

/* runs on a microcontroller in the board. */

136



register char apple[9];

#pragma locate (apple = 0x30)

/* Specify micro model to be KB */

#pragma model(kb)

/* Specify Interrupt Service Routines for */

/* interrupts expected. */

#pragma interrupt (software_timer = 5)

#pragma interrupt (analog-conversion-done = 1)

#include<80C196.h>

/* Digital Gains for PI controller */

/*#define hi 190;*/

/*#define h2 7;*/

register long hi;

register long h2;

/* v1 and v2 are used to read in AD registers */

/* and then combined to give 10 bit values for*/

/* vo and vi....... */

register unsigned int v1;

register unsigned int v2;

register unsigned int vo;

register unsigned int vi;

/* result - holds the PI controller command */

/* check - tells which AD channel was read */

/* vr - reference voltage squared */
/* ve - voltage error

/* res-temp and rest - used for computing */

result, PI command.....

/* acc-temp - computes new accumulator value */

137



acc - equals acctemp unless negative or

over saturation limit.....

count1 and count2 - counters.. see code */

flag, sum, dumi - used in steady-state */

band control

register

register

register

register

register

register

register

register

register

register

register

register

unsigned

unsigned char result;

unsigned char check;

long vr;

long ve;

long res.temp;

long acc-temp;

long acc;

long rest;

unsigned int counti;

unsigned char count2;

unsigned char flag;

unsigned int sum;
int dum1;

/*Adaptive control params*/

/*ripple - holds sampled value of ripple */

/*rmin and rmax hold the maximum and */

/*minimum values for a specific 8.3 ms cycle*/

/*rmini and rmaxl accumulate rmin and rmax*/

/*over several cycles for averaging*/

/*rmin2 and rmax2 are the resulting averages*/

/*c and c1 used in computing estimate*/

/*i is sampled current of load*/

/*count3 and count4 used for sampling and */

/* averaging, respectively */

/*eps - ripple measured*/

/*cest = estimated capacitance*/

register unsigned int ripple;

register unsigned char count3;

register unsigned int rmin;

register unsigned int rmax;

register long rmin1;

register long rmax1;

138



register long c;
register long ci;

register unsigned char count4;

register unsigned int i;
register unsigned int rmax2;

register unsigned int rmin2;

register unsigned int eps;

register long dum2; /*debugging*/

register long cest;

/* Software-timer ISR.. Software timer used */
/* for Sampled-Data-Model timing and Startup*/

void software-timer(void)

{
/* Use count1 and loop 500 times with */

/* time equal to 10000 timer units to */

/* give user time to power up analog */

/* interface - time is about 3 seconds*/

/* ioportl writes controller command. */

if (counti < 500)

{
ioportl = 0;

counti = count1 + 1;

hsocommand = 0x18;

hsotime = timeri + 10000;

}
else

/* After startup, if flag = 1, which */
/* means that we are in the steady */

/* state band in which we need to */

/* eliminate quantization, disable PI*/

/* and average the last 18 commands */

/* to find desired command...

/* Otherwise, write "result", which */

/* is output of PI controller...

{

139



if (flag == 1)
ioportl = sum / 18;

else

ioportl = result;

/* Set software timer for 8.3 ms

/* and sample AD channel 0 */

hso-command = 0x18;
hso-time = timeri + 6254;

ad-cormmand = 8;

}
/* collect peaks from diff cycles for averaging*/

}

/* AD conversion completed ISR. Entered when a

/* is completed, which in this code is either */

/* from channel 0 or 1...

void analog-conversion-done(void)

{
/* This implements the soft-startup mechanism */

/* by stepping up the reference voltage.

if ((vr + 4000) < 5017600)

vr = vr + 4000;

else vr = 5017600;

/* The channel sampled is in the bottom 3 bits */

/* of ad-resultlo.....

check = adresultlo;

/* If channel 0 was sampled, then that is vo

if ((check & 7) == 0)

{
v1 = (unsigned int) ad..result.hi;

140



vi = vi << 2;

v2 = (unsigned int) ad-resultjlo;
v2 = v2 >> 6;

vo = vi + v2;

/* dumi used for band control as vo value changes */

/* in undoing resolution mapping etc.. we need */

/* value of vo at 1 point in computation for later*/

/* on in the controller.....

dum1 = vo;

/* Sample Channel 1 */

/* The next few lines implement segmented control around */

/* the steady state.. This means the PI controller is */

/* disabled and an average of steady state commands is */

/* used in order to avoid quantization oscillations....

/* If not already in "steady-state" for 18 cycles, but */

/* this cycle is within the band, increment count2..

if ((dumi < 368) && (dumi > 348) && (vr == 5017600) && (count2 < 18))

{
count2 = count2 + 1;

sum = sum + result;

}

/* If in "steady-state" for 18 cycles, set flag = 1 to */
/* indicate that officially in steady state and can

/* fix output command based on previous 18 commands....

if ((count2 == 18) && (dumi < 368) && (dumi > 348) && (vr == 5017600))

{
flag = 1;

}
else

/* If outside steady-state band, reset flag = 0, */
/* count2 = 0, sum = 0 */

141



if ((dumi > 380) || (dum1 < 326))
{
flag = 0;

count2 = 0;

sum = 0;

count4 = 0;

rmini = 0;

rmaxi = 0;

if (flag == 1)

{
ad-command = 11;

count3 = count3 + 1;

}
else

{
ad-command = 9;

/* If channel 1 was sampled, then that is vi */

else if ((check & 7) == 1)

{
vi = (unsigned int) ad-resulthi;
vi = vi << 2;

v2 = (unsigned int) ad-result_lo;
v2 = v2 >> 6;

vi = vi + v2;

/* If vo low enough, avoid computations */

/* immediately saturate...

if (vo < 50) result = 255;

else

/* Undo Resolution mapping then */

/* carry out PI control..

{
vo = vo + 1882;

142



ve = (long) vo * (long) vo;

ve = ve - vr;

ve = 0 - ve;

restemp = ve * hi;

res-t = acc * h2;

res-temp = res.temp + res-t;

res-t = (long) vi * (long) vi;

rest = rest * 47;

res-temp = res-temp / res-t;

if (res.temp > 255)

result = 255;

else

/* Accumulator control

/* Disable during startup and while in */

/* specified steady-state band (flag = 1) */

/* Also disable if saturation.. This */

/* prevents windup...

{
if ((vr == 5017600) && (flag == 0))

{
acctemp = acc + ve;

if (acc.temp > 650000000)

acc = 650000000;

else if (acctemp < 0)

acc = 0;

else

acc = acctemp;

}
if (res-temp < 0)

result = 0;

else result = (unsigned char) res-temp;

else if ((check & 7) == 3)

/* Succesively sample ripple */

{

143



vi = (unsigned int) ad.result-hi;
v2 = (unsigned int) ad-resultjo;
vi = vi << 2;

v2 = v2 >> 6;

ripple = v1 + v2;

if (ripple < rmin)
rmin = ripple;

if (ripple > rmax)
rmax = ripple;

if (count3 < 100)

{
count3 = count3 + 1;

adcommand = 11;

}
else

ad-command = 10; /* sample load current */

}
else if

((check & 7) == 2)

/* Read in i, load current */

vi = (unsigned int) ad-result-hi;

vi = vi << 2;

v2 = (unsigned int) ad-result-lo;

v2 = v2 >> 6;

i = vi + v2;

if (count4 < 200)

rmini = rmini + rmin;

rmaxI = rmax1 + rmax;

count4 = count4 + 1;

}
else

/*if done averaging and still in steady state*/

/*then compute capacitance and adjust gains*/

if (flag == i)

144



rmin2 = rmini / 200;

rmax2 = rmaxI / 200;

if ((rmax2 - 390) > (390 - rmin2))

eps = rmax2 - 390;

else eps = 390 - rmin2;

c = (long) i * 10000000;

c1 = 750 * (long) eps;

C = c / ci;

/* Round instead of truncate */

/* Make sure gains do not drop */

/* to zero

hi = hi * c;

if ((2 * (hi % cest)) > cest)

hi = (hi / cest) + 1;

else

hi = hi / cest;

dum2 = ci;

h2 = h2 * c;

if ((2 * (h2 % cest)) > cest)

h2 = (h2 / cest) + 1;

else

h2 = h2 / cest;

cest = c;

if (hi == 0) hi = 1;

if (h2 == 0) h2 = 1;

}

count4 = 0;

rmini = 0;

rmax1 = 0;

}

rmin = 1023;

rmax = 0;

count3 = 0;

145



}

main()

{
/* main driver for code. Initialize variables, */

/* reset interrupt pending and mask registers, */

/* and send into infinite loop to wait for

/* interrupts ..... *

hi = 760;

h2 = 28;

dum2 = 5 % 3;
cest = 32000;

flag = 0;

count2 = 0;

sum = 0;

counti = 0;

vr = 3900623;

result = 0;

acc = 0;

ioportl = 0;

int-mask = Ox22;

int _pending = 0;

hsocommand = 0x18;

hso-time = timer1 + 6254;

ad-command = 8;

enable (;
while(1);

}

146



Appendix G

Schematic and Timing

Diagrams for Compact

Microprocessor System

147



Figure G-1: Schematic Digaram of Compact Digital System.

148



CLOCKOUT

ALE
/D3 --

/RD

AD<15:O>

Figure G-2: Timing Diagram for Memory Access Cycle.

149

T Min(ns) Max(ns)
1 166 572
2 -5 16
3 .5T1-15 T1-40
4 .5T1-5 .5t1+25
5 .5T1 .5T1+25
6 .5T1-20
7 .5T1-23
8 .5T1-20



Appendix H

Transistor Level Schematics of

Multiplier Cell and Block

Description of Multiplier Block

150



Ci4
Symbol

Figure H-1: Circuit Schematic for Adder Cell.

1+1

C iP1

Figure H-2: A Product Cell.

151

+



X7 X6 X5 X4 X3 X2 X1 X0

PiCi \ Po

P2

P3

i=0
P11 P1O P9 P8 P7 P6 P5 P4

Figure H-3: An 8 by 4 Parallel Multiplier.

152



Bibliography

[1] J.B. Williams, "Design of Feedback Loop in Unity Power Factor AC to DC
Converter", PESC, 1989, pp.959-967.

[2] B. Sharifipour, P. Cacciola, and J. Maddox, "Designing a 1200 Watt Mul-
tiple Output Modular Power System with High Power Utilization for the
Workstation Environment", APEC, 1989, pp. 439 - 444.

[3] J. G. Kassakian, M. F. Schlect, G. C. Verghese, Principles of Power Elec-
tronics, Addison-Wesley, 1991, pp. 395-399.

[4] K. Mahabir, G. Verghese, J. Thottuvelil, and A. Heyman, "Linear Aver-
aged And Sampled Data Models for Large Signal Control of High Power
Factor AC-DC Converters", PESC, 1990, pp. 291 - 299.

[5] C.P. Henze and N. Mohan, "A Digitally Controlled AC to DC Power Con-
ditioner that Draws Sinusoidal Input Current", PESC, 1986, pp5 3 1-5 4 0 .

(6] K. Ogata, Discrete-Time Control Systems, Prentice Hall Inc., 1987, pp. 1
- 36.

[7] B. Orlik, H. Weh, "Microprocessor-Controlled Three-Phase Motors With
High Resolution Digital Pulse Width Modulator for High Pulse Frequen-
cies", EPE, 1985, pp. 3.39 - 3.44.

[8] C. Bergman, P. Goureau, "Direct Digital Control of a Self-Controlled Syn-
chronous Motor with Permanent Magnet", EPE, 1985, pp. 3.269 - 3.273.

[9] J. Siebert, "Freely Programmable Digital Open-loop/Closed-loop Control
System for Converters and Converter Drives", EPE, 1985, pp. 5 .7 - 5.10.

[10] K. Astrom, B. Wittenmark, Computer-Controller Systems, Theory and
Design, Prentice Hall Inc., 1990, pp. 224 - 226.

[11] A. Stankovic, G. Verghese, X. Liu, and J. Thottuvelil, "Fast Controllers
for High-Power-Factor AC-DC Converters", European Power Electronics,
1990.

[12] 'EV80C196KB Microcontroller Evaluation Board User's Manual, Release
001', INTEL Corporation, February 20, 1989.

153



[131 '80C196KB User's Guide', INTEL Corporation, October 1990.

[14] Y. Guijun, L. Norum, "Low Cost Digital Controller for PWM Converter",
International Federation for Automatic Control Low Cost Automation,
1990.

[15] Eissa, Mohamed,"A Fast Analog Controller for a Unity Power Factor Con-
verter", Master Thesis, MIT, June 1993.

[16] 'Power Factor Correction with the UC3854 - Application Note', UNI-
TRODE Integrated Circuits,

[17] Mahabir, Krishna N., "Digital Control of Large Signal Behavior in Switched

DC-DC Converters", Master Thesis, MIT, May 1989.

[18] Wilkenson, Bruce, "Power Factor Correction and the IEC 555-2", Pow-

ertechnics Magazine, Februaury 1991.

[19] Miwa, B. A.,"Interleaved Conversion Techniques for High Density Power
Supplies", PhD. Thesis, MIT, June 1992.

154


