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ABSTRACT

DIFFUSION WITH REVERSIBLE CHEMICAL REACTION

IN HETEROGENEOUS MEDIA

by

PIETER STROEVE

Submitted to the Department of Chemical Engineering on August
3, 1973, in partial fulfillment of the requirements for the
degree of DOCTOR OF SCIENCE at the Massachusetts Institute of
Technology.

A theoretical and experimental program was under-
taken to study diffusion with reversible chemical reaction in
heterogeneous media. The heterogeneous systems considered
are media where one phase is dispersed in a second continuous
phase, and where reversible chemical reactions may occur in
either phase.

Theoretical equations describing steady-state
diffusion with reversible chemical reaction in heterogeneous
media were solved using approximate analytical methods.
Equations were developed for several reaction kinetic schemes
including the four-step model of Adair. Expressions derived
for the effective permeabilities showed that the effect of
the reversible chemical reaction is to facilitate the trans-
port of the diffusing species. The equations take into
account deviations from chemical equilibrium. The effective
permeability is a maximum when the reaction is at equilibrium.
In the case that the reaction departs sufficiently from
equilibrium facilitated transport becomes negligible, and the
theoretical equations reduce to Maxwell's equation for inert
heterogeneous media.

An experimental program was undertaken to measure
transport rates in both inert and reactive suspensions.
Effective oxygen permeabilities were measured in thin liquid
slabs of inert dispersions, inert and reactive emulsions, and
reactive red blood cell suspensions. The measured permeabilities
showed good agreement with the theoretical predictions. Hemo-
globin facilitated oxygen transport is significant in red blood
cell suspensions at low oxygen partial pressures. Comparison of
the experimental results on the diffusion of oxygen in red blood
cell suspension with theoretical predictions suggests that the
oxygen-hemoglobin reaction inside the red blood cell is near but
not at equilibrium.
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The theoretical framework presented here can be used
to model and predict mass transport phenomena in a variety of
other reactive heterogeneous systems. Important biological and
chemical engineering problems of a similar nature can be
studied with the presented theoretical framework.

Thesis Supervisors: Kenneth A. Smith
Professor of Chemical Begineering

Clark K. Colton
Associate Professor of Chemical Engineering
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1. SUMMARY

1.1 Introduction

The understanding of transport processes in heterogen-

eous media is an important problem in science and engineering.

In the chemical industry, heterogeneous media such as emul-

sions, slurries, foams, dispersions, and solid mixtures are

frequently encountered as process streams or materials of

construction. Processes such as the drying of textiles, air

or moisture permeation through paint films, and the migration

of plasticizers into and out of polymers need to be under-

stood in order to rationally design or choose equipment to

perform a specified task.

In the field of biology one deals almost exclusively

with heterogeneous systems, because organisms are constructed

from a unit building block, the cell. Engineers and scien-

tists are increasingly interested in how biological systems

have solved complicated transport requirements. Such know-

ledge may lead to applications in industrial or chemical

processes, as well as to the design of devices that can take

over biological functions. For example, with the development

of highly permeable membranes, it is now recognized that the

blood phase is often the limiting resistance to mass transfer

in membrane oxygenateDs and artificial kidneys. Hence, a

fundamental quantitative understanding of solute transport
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in blood is a prerequisite for the design of more efficient

devices that carry out the mass transfer operations normally

performed by the human body.

This thesis is concerned with steady state diffusion

with reversible chemical reaction in heterogeneous media.

Although the relevant literature is large, this phenomena is

not fully understood and experimental results are often con-

tradictory or insufficient. For the most part, previous work

has dealt with diffusion without chemical reaction in hetero-

geneous media and with chemical reaction in homogeneous media,

but the combined problem has not been considered with any

rigor. A theoretical and experimental program was undertaken

in this thesis. Systems were studied where mass transport

is influenced only by diffusive and chemical reaction effects.

The heterogeneous media considered are those for which one

phase is dispersed in a second continuous phase, and for

which the characteristic size of the dispersed particles is

much smaller than the characteristic dimension of the overall

system. Theoretical expressions were derived for the effec-

tive permeability for a variety of cases. The specific

systems studied experimentally include primarily oxygen per-

meation through inert suspensions, model reactive suspensions,

and whole blood. The latter system was used because the data

can be of utility in the design of artificial oxygenators,

and, in addition, many physicochemical parameters are avail-

able for this particular system.



Some experimental work on the diffusion in stagnant

blood is available in the literature. Stein et al (1971) and

Hershey and Karhan (1968) measured the oxygen diffusivity in

red blood cell suspensions under conditions for which the

oxygen-hemoglobin reaction inside the red blood cells was

completely saturated (inert suspension). Kutchai and Staub

(1969) measured significantly larger diffusivities in packed

red blood cells under conditions for which the reaction was

unsaturated than for conditions for which the reaction was

saturated. However, no theoretical framework that can

account for these results has previously been done.

1.2 Theoretical Developments

1.2.1 Systems Studied in this Thesis

A conceptual framework for the problem area con-

sidered in this thesis is shown in Figure 2.2.

Case 1 is steady state Fickian diffusion of species A

in a one-dimensional film. Simple modifications are shown by

cases 2 and 3. Case 2 is diffusion in a heterogeneous medium

in which one phase is dispersed in a continuous phase, for

example an emulsion or dispersion. Such an inert suspension

is a reasonable model for diffusion of solutes in blood where

no significant solute interactions occur with the plasma pro-

teins or hemoglobin molecules. Transport in inert heterogeneous

media is fairly well understood. The steady state mass trans-

port rate (in the case of a gas) is given by



26

(Ax=0 - Ax=L

N A =(. 1
L

where P is the effective permeability. (Permeability as used

here is the product of the diffusivity times the solubility).

The classical mathematical approach to the problem has been

to solve Laplace's equation

V2 $ = 0 (1.2)

where $ is the potential. For example Maxwell (1881), con-

sidered a single sphere in an infinite continuum where the

field is unidirectional and linear at large distances from

the sphere. By solving Laplace's equation for the potential

in spherical coordinates both inside and outside the sphere,

one obtains the potential variation due to the presence of

the sphere in the continuum.

For the analysis of a dilute suspension of spheres,

Maxwell considered the suspension to be confined to a spherical

region and located in an infinite continuous medium. By assum-

ing- the perturbation associated with each of the smaller

spheres inside this spherical suspension to be independent of

each other, Maxwell obtained an effective permeability for

the suspension by equating the perturbation caused by the

spherical suspension region with that caused by each of the

small individual spheres. The resulting expression for the

effective relative permeability is given by
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P P +2P -21[P -Pd
- = (1.3)

c d+2c+ [c d

where 0 is the volume fraction of the dispersed phase, Pc

is the permeability of the continuous phase, and Pd is the

permeability of the dispersed phase. Other relationships

include those derived by Fricke (1924) for a suspension of

randomly oriented ellipsoidal particles, and Bruggeman (1935),

who took into account the interaction of neighboring particles.

Case 3 corresponds to diffusion with reversible chemical

reaction in a homogeneous syttem. Reactant B is constrained

to remain within the film and combines with the permeating

species A to form product AB

ki
A + B AB (1.4)

k2

If both species B and AB have significant molecular diffusivi-

ties, they can increase the mass transfer of A beyond that which

is possible from purely physical diffusion of A alone. This

phenomena has been termed carrier-facilitated transport, and

the steady state mass transport is given by

x=O x=L

N A = P(1+F) ( AA (1.5)
A L

where F is termed the facilitation factor and accounts for the

contribution of the carrier molecules to the total mass flux.

In order to determine the facilitation factor, the differential



mass conservation equation for A, B, and AB in the film must

be solved subject to the associated boundary conditions. If

the reaction is at equilibrium everywhere in the film, the

facilitation factor is a maximum and is given by (Olander 1960)

DBkik2CT
F eq (1.6)

e DA (1+kC A x=) (l+kC A(=6

When the reaction deviates from equilibrium within the film,

the problem is more difficult since the equations are non-

linear. An approximate solution can be obtained if the

equations are linearized, and solutions available in the

literature differ from each other depending upon the method

of linearization employed. Friedlander and Keller (1965)

presented a single point linearization solution valid for

small driving forces only. For large driving forces the method

of matched asymptotic expansions has proven useful in giving

accurate predictions of flux for near equilibrium conditions

(Goddard et al 1970, Kreuzer and Hoofd, 1970, 1972). Recently

Smith et al (1973) have presented approximate analytical

solutions corresponding to a perturbation from purely physical

diffusion on one hand (thin films), and from reaction equilib-

rium at each point within the film on the other (thick films).

In all solutions, the facilitation factor is found to be a

function of F and the ratio of the film thickness L to the

characteristic lenghh A. The latter is the ratio of diffu-

sional to chemical reaction effects and is given by



-l/2k1CA+k2 kik2CT-
1 =+ _(1.7)

DB DA(k C+k 2 )

for the reaction A+B AB. The characteristic length also

gives a measure of the thickness of the region near the boun-

daries of the film where the departure from chemical equilibrium

is significant. The dimensionless parameter is similar to the

Thiele modulus as has been pointed out by Perelson and

Katchalsky (1972), and in a general context by Weisz (1973).

asL/X increases, nonequilibrium effects become negligible, and

the facilitation factor F reaches the asymptotic value given

by Olander (1960).

Combinations of cases 2 and 3 are shown in cases 4 and

5 which are examples of diffusion with reversible chemical

reaction in heterogeneous media. In Case 4, the carrier

species is present only in the dispersed phase. An example

is the diffusion of oxygen in whole blood where hemoglobin

is present only inside the red blood cells. In Case 5 the

carrier species is present only in the continuous phase.

Such a situation may arise in gas absorption with chemical

reaction in a slurry or in the diffusion in blood of metabo-

lites, drugs, or amino acids that interact with plasma

proteins but not with hemoglobin.

Case 6 and 7 are more complicated reactive heterogen-

eous systems where the carrier species is present in both



the continuous and dispersed phase. In Case 6, two different

carriers are constrained to remain within their respective

phases and cannot permeate across the boundary between dis-

persed and continuous phases. In Case 7, one carrier species

is present in both phases, and it can diffuse from one phase

into the other.

The same approach utilized by Maxwell was employed here

to obtain effective permeabilities for the heterogeneous media

shown in Figure 2.2. Fisst a solution was obtained for the

concentration and potential field of the diffusing species

inside and outside a single sphere in an infinite continuum.

With this in hand the average effective permeability of a

suspension of spheres was obtained as described above.

The general solutions for Cases 6 and 7 of Figure 2.2

will be referred to as the impermeable and permeable models

respectively. These two general solutions can be reduced to

give solutions for eases 2,4, and 5. The general utility of

the mathematical approach was demonstrated by employing for

Case 4 the four-step reversible reaction scheme proposed by

Adair (1925) to model the reaction of oxygen with hemoglobin:

ki
A + B AB (1.8a)

bi

A + AB 2 A2B (1.8b)
b2

A + A2B a A3B (1.8c)
b3

A + A3B * A4B (1.8d)
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The Adair reaction scheme is an approximation to an extremely

complicated reaction mechanism, but it is a better approxima-

tion than a one-step reaction scheme as given by (1.4).

1.2.2 Details of the Derivations

Consider a single sphere, of radius a and per-

meability Pd' immersed in an infinite medium of permeability

Pc, with a constant uniform mass flux of the diffusing species

A imposed at large distances from the center of the sphere.

A single step reversible reaction with carrier B and B'

occurs in the continuous and discontinuous phases, respectively:

ki
A + B+ AB (1.9)

ki'
A'+B' + AB' (1.10)

k2'

Reactions (1.9) and (1.10) were chosen as an example only,

and the theoretical development can be extended to other

reaction schemes. The steady state diffusion equations in

spherical coordinates for species A, B, AB outside the sphere

and A', B', AB' inside the sphere are given in Figure 4.2,

along with the associated boundary conditions for both the

impermeable and permeable model. The boundary condition at

r=0 fixes the partial pressure of A at the center of the

sphere, and the boundary condition at r=m fixes the total

flux of A and, in addition, imposes equilibrium between



all reacting species. These boundary conditions apply to

both the impermeable and impermeable model, but the boundary

conditions at the sphere boundary are of course different.

Boundary conditions at r=a insure continuity of species flux

and potential, and do or do not constrain the carrier species

to remain in its respective phase. For small driving forces

across the sphere, an approximate solution can be obtained by

utilizing single point linearization about the partial pres-

sure at the center of the sphere. For the sake of simplicity

it was assumed that the diffusivities of all the carrier

species in both phases are equal and that Henry's Law is

applicable. It can be shown that as a consequence of the

single point linearization technique the concentrations at

the center of the sphere are at equilibrium. Once the con-

centration and potential variation has been determined the

effective permeability of a suspension of spheres can be

obtained. Tables 1.1 and 1.2 summarize the relationships

obtained for the impermeable and permeable model. The parame-

ters A and A' are the continuous and dispersed phase character-

istic lengths and are defined analogously to equation (1.7).

They give a measure of the thickness of shells outside and

inside the sphere where deviations from chemical equilibrium

are significant. The factor Fd is the dispersed phase facili-

tation factor, and the terms F q and Feq' are the equilibrium

continuous- and dispersed-phase facilitation factors and are



defined as

D Bkik2C T aA

eq P c(ki+k2 tAA A)

F ' = DBk'2C'A (1.12)
eq d (ki'+k2'aA' PAo

It should be noted here that the general equations in Table

1.1 and 1.2 are for a suspension of reactive spheres in a

reactive continuum that is at equilibrium throughout the con-

tinuum except locally near the boundary of the spheres. This

is a consequence of the boundary conditions at ramw which fixes

the species to be at equilibrium. The general equations can

give solutions for the other heterogeneous media if the parame-

ters are allowed to attain certain values. To make the spheres

inert a/X' must approach zero so that F d approaches zero. To

make the continuum inert F eqmust be set to zero since reduction

of a/A will increase nonequilibrium effects around the spheres

but will not make the continuum inert. Inspection of the

equations show that the equations are similar in form to Max-

well's equation and in fact reduce to Maxwell's equation as

shown for Case 2. The continuous phase permeability, P c, is

increased by the factor (l+F eq), and the dispersed phase per-

meability is increased by the factor (1+F d)*

The Adair reaction scheme for oxygen combination with

hemoglobin has been given by equation (1.8). For the case of
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Type of
Media

Reaction inside
Reaction outside

Case VI

TABLE 1. 1

EFFECTIVE PERMEABILITY RATIO FOR THE IMPERMEABLE MODEL

Relationship

P (l+F ) -

c eq
2 Pc (1+Feq ) d (1+Fd) (1-2 Fe fc ) 2 P[Pc (1+Feg )-Pd (1+Fd) (l+F fc)]

2Pc (1+Feq )+P d (l+F d) (1-
2Feq f c )+[P (1+Feq )-Pd (l+Fd )(l+Feq f c)]

Comments

General
relationship for
no shell.

Inert inside
Reaction outside
Case V

(impermeable
carrier)

Reactive inside
Inert outside
Case IV

Inert inside
Inert outside
Case II

P (1+F )Tc eq

2Pc (l+Fe )+P d (1-2Fe f c ) 2 [Pc (l+F e )-Pd (1+Fe f c)
2 Pc (l+F )+P (1-2 F f )+D[P (l+F )-P (l+F fc)]

c eq d eq c c eq d eq c

2Pc +Pd (l+Fd)
2 [PcP d (l+Fd

P 2Pc Pd (1+Fd) + [P-Pd (l+Fd

P 2P +P +@[P -P]
c c d c d

where:

1 + x

c A a
f2 + 2 a + a

Fd

(3 + 1) tanh - 3

F' [ aeq 2 a A

(2 X2 + 1) tanh -

a

1+F' [ 1 -

(3 + 1) tanh - 2

a

(2 + 1) tanh - 2

a 0

F =0
eq

a 0

F =0
eq



Type of
Media

Reaction inside
Reaction outside

Case VI

Inert inside
Reaction outside

Case V
(permeable
carrier)

Reactive inside
Inert outside
Case IV

Inert inside
Inert outside

Case II

where:

TABLE 1.2

EFFECTIVE PERMEABILITY RATIO FOR THE PERMEABLE MODEL

Relationship

Pc (1+F )

2Pc(l+F )Pd(l+F , )[-- ]-2,D{Pc(l+F )-Pd(1+F q)[ }11c eq d eq -Q c eg d l-Q
2Pc (1+Fe )+Pd (l+Fq) [1 Q]+{P (l+Fe) -Pd (l+F 'q) [ ]}

Same as Case V, Table 1.1 only if F' = 0
eq

Same as Case IV, Table 1.1

Same as Case II, Table 1.1, Maxwell

f F' - F 2c eq eq
F' 1 + F

P = eq eq

d (1+F ')F cc eq a+ fc

d eq eq

a X,'2 - tanh (2 +-)

la

Comments

General relationship.

a

+i~ 0

F =0eq

IL I
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an Adair reaction scheme inside the dispersed phase with no

reaction in the continuous phase the mass conservation equation

for species A', B', AB', AB', AB', and A4B' inside the dis-

persed phase and species A in the continuous phase must be

coupled with the boundary conditions in order to be solved.

Again, single point linearization about the center point con-

centrations was the technique utilized to linearize the equa-

tions; this led to an eigenvalue problem. An effective

permeability was obtained which is of the form

- P d(l+FAdair) + 2P - 2 4 [P -P (l+FAdair).

P P (l+FAdair) + 2P - [P -P (l+FAdair (1.13)

The parameter FAdair is the facilitation factor in the dispersed

phase for the case of four-step Adair kinetics. When equilibrium

conditions are attained throughout the sphere, the Adair facili-

tation factor approaches its equilibrium value

Adair 4D 'C , dA1
eq T(1.14)

d

where dy/dpA is the slope of the oxygen-hemoglobin saturation

curve

1.2.3 Average Effective Permeability

The equations so far derived were for local per-

meabilities and facilitation factors in terms of the partial

pressure of species A at the center of the sphere. Thus the



effective permeability is uniquely defined only at a local

point within the suspension. If one considers a liquid slab

composed of a suspension of spheres and across which a large

partial pressure gradient of A is imposed, then the average

effective permeability of the slab may be calculated by inte-

grating the local expression across the thickness of the film

x=Lf PI 
PdpA

p x=0
= A (1.15)

ave x=0 x=L
A ~PA

1.3 Analysis of Theory

The behaviour of the equations for the various heterogen-

eous media shown in Figure 2.2 were analysed. Heavy emphasis

was placed in the analysis on Case 4 (oxygen diffusion through

blood) and on a comparison of the one-step and four-step

reaction schemes, represented by equations (1.10) and (1.8)

respectively. Physicochemical parameters used for the calcu-

lations were taken from Kreuzer (1970), Gibson (1959, 1970)

and Altman and Dittmer (1971), and are given in Table 5.1.

Figure 5.8 shows the local dispersed-phase facilitation factor

as a function of sphere radius a and oxygen partial pressure

p0 2 for the one-step model. As the size of the spheres in-

creases, the facilitation factor reaches the equilibrium

facilitation factor. As the partial pressure increases the

reaction saturates and facilitation effects become neglioible.

Figure 5.9 shows the local effective permeability as a function



of sphere radius and partial pressure.as calculated for whole

blood. Curves are shown for radii corresponding to one-half

the minimum and maximum red cell dimension.and for a radius

based on equivalent red blood cell surface area. The local

effective permeability is a maximum at zero partial pressure

because the one-step reaction scheme predicts a hyperbolic

oxyhemoglobin saturation curve with a maximum slope at that

point. Figure 5.10 shows the integrated average effective

permeability for red cell suspensions in plasma for two driving

force conditions. The equations show that the chemical reaction

inside the dispersed phase increases the effective permeability

over that of the inert case.consistent with Maxwell's equation.

Analysis was also carried out with the four-step reaction

scheme for two cases for which kinetic parameters were avail-

able (Gibson 1970): red cells containing (1) normal amounts

and (2) "stripped" of 2,3 diphosphoglycerate (2,3 DPG). The

Adair facilitation factor for unstripped (normal) blood is

shown in Figure 5.16. The facilitation factors maximize near

the partial pressure for which the sigmoidal four-step satura-

tion curve has a maximum slope. Local permeabilities for whole

blood are shown as a function of oxygen partial pressure and

sphere radius in Figure 5.18. The effective permeabilities

maximize near the point where the oxygen-hemoglobin saturation

curve is steepest. Blood depleted of 2,3DPG exhibits higher

facilitation factors because of the higher oxygen affinity of



the "stripped" hemoglobin and consequent steeper saturation

curves. The effective permeabilities are therefore large in

the low oxygen partial pressure range, but decrease rapidly

as the reaction saturates. The average effective permeability

for unstripped red blood cell suspensions is shown in Figure

5.21 for the same conditions as those shown in Figure 5.10.

It can be seen that the one-step model and the four-step model

give reasonably good agreement. This was anticipated in view

of: (1) the large driving force (with consequently large

hemoglobin saturation differences); and (2) the use of

kinetic rate constants for each model which are of the same

order of magnitude. A number of driving force conditions were

investigated, and the one-step and four-step reaction schemes

compared. It was concluded that the one-step reaction scheme

fails to agree with the four-step scheme only when both

boundary conditions fall within the steep portion of the

sigmoidal hemoglobin saturation curve.

In addition to the model for oxygen diffusion in blood,

the behaviour of the equations for the other cases discussed

above were also analysed.

1.4 Experimental Materials and Apparatus

Gas permeabilities (mainly oxygen) were measured for thin

liquid slabs of heterogeneous media. Since diffusion in inert

heterogeneous media (for which there is little data in the

literature) is relevant to the general problem of reactive



heterogeneous media, experiments were performed with unreactive

media prior to utilizing reactive red blood cell and model

suspensions. It was expected that if the experimental results

showed good agreement with Maxwell's equation, then further

experimental results could be obtained with confidence on

reactive media. The following media (inert and reactive,

homogeneous or heterogeneous) were investigated in the order

given:

1) inert dispersion

2) inert emulsions

3) inert and reactive hemoglobin solutions

4) red blood cell suspensions

5) reactive emulsions

The inert dispersions investigated were as follows:

i) Teflon 120 FEP-fluorocarbon dispersions

ii) Teflon 30 TFE-fluorocarbon dispersions

iii) Polystyrene latex dispersions

Carbon dioxide permeabilities were measured in the fluoro-

carbon dispersions and oxygen permeabilities were measured

in all other systems. The inert emulsions investigated were

O/W emulsions of the following organics

i) Castor oil

ii) Vegetable oil

iii) PlD Fluorocarbon



These dispersions and emulsions gave a wide variation in the

dispersed to continuous phase permeability ratio.

The hemoglobin solution and red blood cell suspensions

in saline were prepared by accepted standard methods. Fresh

whole human blood (type 0, positive) was purchased from the

Massachusetts General Hospital Bloodbank and stored at 4*C

prior to use. Red blood cells were removed from blood by

centrifugation, washed, and resuspended in saline (pH=7.0).

Hemoglobin solutions were prepared by freeze-thawing packed

red blood cells.

Reactive emulsions (W/O) were made by emulsifying aqueous

hemoglobin solution in a continuous organic phase. Oxygen

permeation experiments were carried out on emulsions where

the dispersed hemoglobin droplets had either a relatively

large or small average particle size in order to demonstrate

nonequilibrium effects. By appropriate control of the emul-

sification procedure the particle size distribution of the

"large" and "small" emulsion could be controlled.

Thin liquid films of the various types of media were

supported on each side by two thin silicone support membranes

in a sample holder as shown in Figure 6.4. The mass transfer

resistance of the membranes to oxygen was small in comparison

to the total mass transfer resistance (3 to 6%) and was taken

into account in the data reduction. Liquid film thicknesses



employed were from 0.5 to approximately 2 mm. Film thickness

was controlled by placing thin metal spacers in a gasket of

the same thickness. The rubber gasket acted as a seal when

the sample holder was completely assembled.

The experimental apparatus was designed as a modifica-

tion of Barrer's classical time-lag apparatus (Barrer and

Skirrow 1948) and is shown in Figure 6.3. The apparatus was

run at partial vacuum to eliminate gas phase resistance. To

insure that the liquid in the film did not evaporate, a satu-

rator containing the same material as that in the sample

holder, was utilized to saturate the upstream and downstream

volumes. The experiments involved the introduction of 02

into the upstream volume and recording of the downstream

pressure change with time as the gas diffused from the upstream

volume, through the membrane-liquid-membrane layer, and emerged

into the downstream volume. Oxygen permeabilities were obtained

from the quasi-steady state mass transfer rate for known con-

ditions of driving force, thickness of liquid film, and total

mass transfer area.

1.5 Results and Discussion

Effective permeabilities for oxygen transport in inert

dispersions and emulsions compared well with Maxwell's

equation for moderate differences between the continuous and

dispersed phase permeabilities. For the dispersions, the

dispersed to continuous phase permeability ratio, P /Pc, was
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near zero. Figure 7.6 shows a comparison between the theory

and the experimental results for the permeation of carbon

dioxide in FEP 120 dispersions. Figure 7.11 shows the

results of oxygen permeation experiments in vegetable oil-in-

water emulsions. In this case the dispersed phase to contin-

uous phase permeability ratio is

- = 1.67

c

For larger differences in the permeability ratio of the two

phases the data deviates from Maxwell's equation at high dis-

persed phase volume fractions as is shown in Figure 7.12. for

the fluorocarbon emulsions.

Oxygen permeabilities were measured in inactivated hemo-

globin solutions in order to measure the permeability when no

reaction effects are present. Hemoglobin can be "inactivated"

by conversion into the inactive methemoglobin form, or operating

the mass transfer experiment under conditions such that the

hemoglobin is fully saturated and no longer participates in

the reaction ("inert"). This then becomes a case of pure

Fickian diffusion. The calculated diffusivities, obtained

from the permeability data and published oxygen solubilities

(Altman and Dittmer 1971) compared well with those published

in Kreuzer's review article (1970) as shown in Figure 7.15.

In order to check the mobile-carrier, facilitated

transport hypothesis, active hemoglobin was partially



immobilized by adsorption in swollen collodion membranes.

The active hemoglobin in the collodion membranes did not

facilitate oxygen transport as is shown in the normalized

plot of Figure 7.13. Hemoglobin soaked in Millipore membranes,

which does not adsorb the hemoglobin, does facilitate oxygen

transport since it retains its mobility. The results in

Figure 7.13 are consistent with the mobile carrier transport

hypothesis. It should be noted that the membranes were

clamped inside a specially constructed sample holder without

the use of the silicone membranes. Additional details are

available elsewhere (Zahka 1971).

Average effective oxygen permeabilities were measured in

red blood suspension for conditions where the hemoglobin inside

the red blood cells was either partially or fully saturated.

In the latter case the chemical reaction effects are negligible

and the situation is equivalent to diffusion in inert hetero-

geneous media as is shown in Figure 7.17. For the reactive

suspensions, experiments were carried out with three different

oxygen partial pressure driving force conditions (in the

unsaturated portion of the oxygen-hemoglobin saturation curve).

These results weee compared with theoretical predictions

obtained from equation (4.99) and are shown in Figures 7.19a,

7.20a and 7.21a. The experimental results fall between the

theoretical curves for the "minimum" red blood cell radius,

1 ym, and the "maximum" red blood cell radius, 4 ym, Clearly,

the hemoglobin inside the red blood cells facilitates the
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oxygen transport. As the driving force is increased the relative

effect of the hemoglobin facilitated oxygen transport decreases

in relation to the total oxygen transport. The comparison of

theory and experimental results suggests that the oxygen-

hemoglobin reaction is not at equilibrium inside the red blood

cell. However, note the relatively small effect to be expected

from the departure of the reaction within the red cells from

equilibrium at a volume fraction of D=0.45 which is consistent

with that of whole blood. The parameters used for the theo-

retical comparisons were either measurdd values or values

previously published.

In addition to the reactive red blood cell experiments,

oxygen permeation experiments were carried out with a model

reactive suspension aqueous hemoglobin solution emulsified in

oil. This is a desirable system since the dispersed hemoglobin

particles are indeed spherical as assumdd in the theory. Further

the particle size of the emulsion can be changed so that non-

equilibrium effects can be shown experimentally. In addition

the hemoglobin diffusivity is not precisely known at red

blood cell hemoglobin concentrations, but at lower hemoglobin

concentrations experimental agreement between published values

is reasonable (Kreuzer 1970). In this work a hemoglobin

solution of 16.3 gr/100 ml was used. Emulsion was made with

either a volume average particle radius of 1.5 ym ("small"

emulsion) or 8.2 ym("Large" emulsion). Hemoglobin activity



after emulsification was measured with the van Slyke

technique. Figure 7.33 shows the experimental results.

The theoretical equations were corrected for hemoglobin de-

activation, 42% of total for the large and 54% for the small

emulsions, and for the particle size distributions. Additional

details are available elsewhere (Tuntunjian 1973). The results

clearly indicate the effect of particle size. It should be

noted that the reaction is nearly at equilibrium for the large

size emulsion.

Since the theory and the experimental results gave good

agreement the theory was utilized to predict the effective

relative permeabilities at physiological conditions and driving

forces. In artificial oxygenators or the lung, the venous

blood is nearly 75% saturated and as a consequence facilitation

effects should be relatively small. Figure 7.29 shows the pre-

dictions at 37*C for transport from a partial pressure level

of 100 mmHg to a level of 35 mmHg. At a volume fraction of

=0.45 the effect of the chemical reaction increases the

effective permeability only about 8 percent.

1.6 Conclusions and Recommendations

A theoretical framework has been developed that models

diffusion with reversible chemical reaction in heterogeneous

media. The theoretical framework incorporates general aspects

of previously published work on mass transport phenomena in
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inert heterogeneous media and diffusion with reversible

chemical reaction in homogeneous media. As an example, sev-

eral models have been developed for various types of hetero-

geneous media and reaction schemes. Effective permeabilities

were derived which show that the effect of reversible chemical

reactions is to increase the transport rate of the diffusing

species in heterogeneous media. The effective permeability

is a maximum when the chemical reactions are at equilibrium.

In the case that nonequilibrium effects become important,

facilitated transport becomes negligible and the theoretical

equations reduce to Maxwell's equation for inert heterogeneous

media.

Coupled with the theoretical developments, an experimental

program was undertaken to investigate mass transport phenomena

in both inert and reactive media. Experimentally measured oxy-

gen permeabilities in thin liquid films of inert dispersions,

inert emulsions, reactive red blood cell suspensions, and

reactive emulsions showed reasonable agreement with the

theoretical equations. It was concluded that in the opera-

tion of an artificial oxygenator at normal physiological

conditions, hemoglobin-facilitated oxygen transport contributes

only a fraction of the total mass transport rate. This same

conclusion appears to be valid for oxygen uptake in the lung;

but in the tissues and muscles, where the partial pressure of

oxygen can be low, hemoglobin facilitated oxygen transport

may become significant.
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2. INTRODUCTION

2.1 General Introduction

The understanding of transport processes in

heterogeneous media is an important problem in science and

engineering. Whereas a transport process may be well

understood in a homogeneous system, a similar process in a

heterogeneous system can be of such a complexity that no

theoretical solutions or experimental data may be available.

Since many physical systems are of a heterogeneous rather than

homogenous nature, it is not surprising that researchers have

increasingly turned their attention to the study of transport

processes in heterogeneous media. In the chemical engineering

literature alone, hundreds of articles are published each year

on transport processes such as heat transfer, mass transfer,

and fluid flow in heterogeneous media (Tavlarides et al.

1970). In the chemical industry, heterogeneous media such as

emulsions, slurries, foams, dispersions, and solid mixtures

are frequently encountered as process streams or materials of

construction. For example, processes such as the drying of

textiles, air or moisture permeability of paint films, the

migration of plasticizers into and out of polymers, and

heterogeneous catalysis of feed reactants need to be under-

stood in order to rationally design or choose the equipment

to perform the required task.

In the field of biology one deals almost exclusively

with heterogeneous systems, because organisms are made of a



unit building block, the cell. The cell itself is a

heterogeneous system of intricate complexity. The knowledge

of how biological systems can exist depends to a great extent

on the understanding of the heterogeneous transport processes

within these systems. In addition, engineers and scientist

are increasingly interested in how biological systems have

solved complicated transport requirements. Such knowledge

may lead to applications in industrial or chemical processes,

as well as to the design of devices that can take over

biological functions.

Transport processes in heterogeneous media occur of

course in many other disciplines, but space limits a full

discussion of these phenomena. This thesis is mainly concerned

with the problem of diffusion with reversible chemical reaction

in heterogeneous media, and in particular with the application

of the solution to biological transport processes.

Fortunately, different transport phenomena are often analogous

so that the extension of this work to related phenomena may be

relatively straightforward if appropriate modifications are

made.

2.2 Introduction to the Problem

In this laboratory, researchers have been interested

for some time in the performance and characterization of

artificial kidneys and blood oxygenators (Buckles et. al.

1968; Colton et. al. 1971b). Since the development of highly

permeable membranes, it is now recognized that the blood phase
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is often the limiting resistance to mass transfer. Hence a

fundamental quantitative understanding of solute transport in

blood is a prerequisite for the design of more efficient

devices that carry out mass transfer operations normally

carried out by the human body. Mass transport of a solute in

blood is a complex phenomenon because blood is a heterogeneous

system as shown in Figure 2.1. Solute molecules must diffuse

around plasma proteins and around or through the red blood

cells. The equilibrium distribution of solute between plasma

and the red blood cell may be unequal. The solute may undergo

chemical combination with any of the many species present in

the plasma or the red blood cell phase, and deviations from

chemical equilibrium of the reactions between the solute and

these species may be important. Further the red blood cell

membrane may offer a significant resistance to mass transfer.

Since the main function of blood is to act as a transport

fluid, most of the reactions that take place in blood are

reversible. The phenomenon of diffusion with reversible

chemical reaction in heterogeneous media is of course not

limited to the diffusion of solutes in blood, but such

phenomena also take place in the transport of nutrients,

metabolites, and drugs to tissues, organs, or any ensemble

of cells. At present, despite scores of publications, this

phenomena is not fully understood, and experimental results

are often contradictory or insufficient. In general, systems

have been studied for which only a few of the described

processes are operative. For example, numerous theoretical

solutions have been given for mass transport without chemical
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reaction in heterogeneous media, and diffusion with chemical

reaction in homogeneous media. An integrated application of

the results of the work on simplified systems toward the more

complex situation has not been done previously. Considering

the need for a theoretical frame work to model diffusion with

reversible chemical reaction in heterogeneous media, a

theoretical and experimental program was undertaken in this

thesis. The specific experimental systems utilized includes

oxygen permeation through blood for the reason that the data

can be of utility in the design of artificial oxygenators,

and in addition many physical parameters are available for

this particular system.

2.3 Heterogeneous Systems Studied in This Thesis

The purpose of this thesis is to gain a quantitative

understanding of mass transport with reversible chemical

reaction in heterogeneous media. The following restrictions

apply. Systems will be considered where mass transport is

influenced only by diffusive and chemical reaction effects.

The only heterogeneous media considered are those for which

one phase is dispersed into a second phase with the

characteristic size of the dispersed particles much smaller

than the characteristic dimensions of the overall system.

A conceptual framework is shown on Figure 2.2. Case 1 is

steady state Fickian diffusion in a one dimensional film.

Here A is the permeating species (a gas in this thesis).

Modifications that may arise in many systems are shown by

cases 2 and 3. Case 3 corresponds to diffusion with reversible
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chemical reaction in a homogeneous system. Reactant B is

constrained to remain within the film, and combines with the

permeating species A to form product AB. If both species B

and AB have significant molecular diffusivities they can

increase the mass transfer of A beyond that which is possible

from purely physical diffusion of A alone. This case has

been termed carrier-facilitated transport. An example of such

a system is the diffusion of oxygen in hemoglobin solutions.

Case 2 is diffusion in a heterogeneous medium where

one phase is dispersed in a continuous phase, for example an

emulsion or dispersion. Such an inert suspension is a

reasonable model for diffusion of solutes in blood where no

significant solute interactions occur with the plasma

proteins or hemoglobin molecules. The diffusion of urea in

whole blood can be an example of such a system.

Combinations of cases 2 and 3 are shown in cases 4

and 5 which are examples of diffusion with reversible chemical

reaction in heterogeneous media. Case 4 is the situation

where the carrier species is present only in the discontinuous

phase. The diffusion of oxygen in whole blood is analogous

to case 4 because hemoglobin is present only inside the red

blood cells. In case 5 the carrier species is present in the

continuous phase but not in the dispersed phase. Such a

situation may arise in gas absorbtion with chemical reaction

in a slurry or in the diffusion of metabolites, drugs, or

amino acids that interact solely with plasma proteins and not

with hemoglobin.
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Cases 6 and 7 are more complicated reactive

heterogeneous systems where the carrier species is present in

both the continuous and dispersed phase. In case 6 the two

different carriers are constrained to remain within their

respective phases and cannot permeate across the boundary

between dispersed and continuous phases. In case 7 only one

carrier species is present in both phases and this species

can diffuse from one phase into the other. Before proceeding

into the development of a theoretical model and a discussion

of the experimental program, a literature review is necessary

to discuss previous work on transport in heterogeneous media,

and diffusion with chemical reaction in homogeneous media.

It will be shown later that the mathematical model incorporates

general aspects of each subsystem, and the approach of the

experimental program is to work with systems of increasing

complexity.

It should be emphasized here, that the theoretical

models developed in this thesis have application not only to

biological transport phenomena, but also to similar processes

of chemical engineering interest, such as, for example,

absorbtion and reversible reaction of reactants into emulsions,

dispersions, or encapsulated enzyme suspension and the

transport of ions through ion selective heterogeneous

membranes that utilize selective carriers (ion selective

electrodes).
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3. LITERATURE SURVEY

A review of the literature reveals that extensive

work has been done on transport without chemical reaction

in heterogeneous media (inert heterogeneous media), and on

diffusion with reversible chemical reaction in homogeneous

media. Work in these areas will be discussed before

considering the system of primary interest involving the

reaction of oxygen with hemoglobin.

3.1 Diffusion in Inert Heterogeneous Media

The literature contains many models that predict the

effective physical properties of heterogeneous media.

Parameters of interest include the electrical conductivity,

magnetic permeability, mass permeability, thermal conductivity,

and dielectric displacement. In view of the many properties

of the composite in which one may be interested, it is

fortunate that for the above parameters there is similarity

of treatment, and the equations derived for each parameter are

interchangeable. The articles of Barrer (1968), Reynolds and

Hough (1957), and Meredith and Tobias (1962) are excellent

reviews of the published equations.

Nearly all of the analysis published to date consider

the solution of the steady state problem. At steady state

many phenomena associated with heterogeneous media are

expected to obey Laplace's equation

V24 0 (3.1)
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where $ is the potential. In the case of the diffusion of

solutes in heterogeneous media, Laplace's equation is the

mass conservation relationship. Examination of the literature

yields the following conclusions (emphasis on mass transfer):

i) Most of the equations are for two component

systems.

ii) At present, due to the complexity of the

problem, no rigorous solution is available.

Exceptions are the relations derived for purely

parallel or series arrangements or infinitely

dilute suspensions of spheres or spheroids.

iii) Most existing solutions differ from one another

in the approximations made in their development.

iv) The solutions indicate that the effective

relative (dimensionless) permeability of the

medium is dependent only on the volume fraction

of the dispersed phase, the shape of the

dispersed particles, and the relative

permeabilities of the two phases

P d

P- f(4), shape d, P-)
c c

where P = effective permeability

Pc = permeability of the continuum

Pd = permeability of the dispersed phase

= volume fraction of dispersed phase

d = dispersed phase

the particle size is not important as long as it
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is much smaller than the characteristic dimension

of the system, but much greater than the size of

a molecule.

v) A few solutions are a function of the particle

size distribution.

vi) Experimental verification of existing solutions is

meager.

The solutions for parallel or series arrangements of components

in a composite are not of interest, since in this work only

media where one phase is dispersed into the other phase will be

considered (see Figure 2.2, case 2). Because there are dozens

of relationships published in the literature, only the better

known equations will be discussed. From a physical standpoint,

it is desirable that the following criteria be met,

= 0 K = 1 (3.2)

= 1 K - (3.3)
m Pc

where the permeability ratio Km is defined as

K T (3.4)m P.c

Permeability, as used here is the product of diffusivity times

solubility P = Da. For the heterogeneous medium the solubility

is

= ac (1 - 5) + ad3 (3.5)



In the case of a nonvolatile solute the permeability ratio

is better expressed as

D[R d/c + 1 - 4]
K = d/c_ __

m D
c

where Rd/c is the equilibrium solute distribution coefficient

between dispersed phase and continuous phase (Rd/c = (Cd/C c) eq)

Some equations need not satisfy the criteria given by

(3.2) and (3.3) because they only apply for ordered arrange-

ments of particles in a continuum, and in that case there is

an upper limit of volume fraction. For instance, for the case

of a cubical array of spheres, the maximum volume fraction

occurs when the spheres are close-packed (@ = /6). For a

random dispersion of spheres, 4 = 1 can be approached if there

is a large size distribution of the spheres, or if the spheres

can be deformed.

The simplest kind of two phase dispersion consists of

spherical particles of mass permeability Pd imbedded or dis-

persed in a medium of permeability P c. Maxwell (1881) considered

a single sphere in an infinite continuum where the field is

unidirectional and linear at large distances from the sphere. By

solving the Laplace equation for the potential in spherical

coordinates inside and outside the sphere, he obtained the poten-

tial variation due to the presence of the sphere in a continuum.

For a dilute suspension he considered the suspension itself

spherical and located in the continuous medium. By assuming

the perturbation associated with each of the smaller spheres

inside this spherical suspension to be independent of each



other, he obtained an effective permeability for mass transfer

for the suspension by equating both the perturbation caused by

the spherical suspension, and that caused by all the small

spheres. Maxwell obtained for the effective relative

permeability

Kd + 2 - 2D (1 - Kd) (3.6)
m Kd + 2 + (1 -Kd)

dd

where K 
P

d P
c

Lorentz (1880), and Lorenz (1880) independently derived the

same relationship. A detailed derivation of Maxwell's

equation is given in Appendix A. Equation (3.6) is rigorously

valid only for a dilute suspension of randomly-oriented

spheres, where the particles are of uniform size. For (D

approaching zero all other relationships derived for spheres

in a continuum must give the same numerical value as Maxwell's

equation. It should be noted that if the permeabilities of

the suspended phase Pd and the continuous phase Pc are nearly

the same, Maxwell's equation can be applied over the full range

of the volume fraction.

Fricke (1924) considered a suspension of randomly

oriented ellipsoidal particles. Fricke's procedure is similar

to that of Maxwell, but instead of solving the potential

problem for a single sphere, he considered the more general

case of a spheroid and worked in confocal ellipsoidal

coordinates. He obtained



K (WKd - (3.7)m 1 + D (W- 1)

where
3 -

il [1 - (1 - Kd) Li] (3.8)

The three values of L. involve elliptic intergrals of the

second kind and are purely numerical. These values depend

only on the axial ratio of the dispersed particles. Solutions

have been obtained for particles which are spheroids (i.e.,

when two of the principal axes of the particle are of equal

length), and in that case only one value of L is needed since

L1 + L2 + L3 = 0 (3.9)

and

L = L3 (3.10)

If the principal axes of the spheroids are designated by a, b,

and c (where b = c), the value of L3 may be obtained from

Table 3.1 which was given by Meredith and Tobias (1962). For

the case of spheres, a = b = c, all L. 's are equal to 1/3 and

Fricke's equation reduces to Maxwell's. Fricke's equation is

rigorously valid only for dilute dispersions of spheroids,

and the volume fraction range in which the equation is

accurate should be the same as for Maxwell's equation.

Bruggeman (1935) derived a relationship for suspensions

of spheres in which he attempted to take into account the

interaction of neighboring particles:



TABLE 3.1

L 3 FOR SPHEROIDS

Shape

Rods

Prolate Spheroids

Spheres

Oblate Spheroids

(b = c)

b/a

0

1/6

1/5

1/4

1/3

1/2

1

2

3

4

5

6

Disks

* Values from Meredith and Tobias (1962).

0.5000

0.4784

0.4720

0.4624

0.4465

0.4134

0.3333

0.2383

0.1823

0.1477

0.1245

0.1077



(Kdm = 1-) 
(3.11)

Kl/3 (1 - Ka)
m d

The above expression was derived for dispersions of random

particles in the concentrated range of volume fractions by

approximations based on Maxwell's relation. Bruggeman used

an integral procedure of adding infinitesimal fractions of

the dispersed phase to the mixture and considering the surround-

ing medium (mixture) for the added particles to be the

continuum. Maxwell's equation is used to derive the differen-

tial change of the effective permeability with a differential

change in the volume fraction, and subsequent integration yields

equation (3.11). Meredith and Tobias have pointed out that a

limitation (on physical arguments) of the Bruggeman

approximation arises because the surrounding medium may be

treated as a continuum only if the successively added

infinitesimal volume fractions of the dispersed phase consists

of particles which are much larger than the ones added

previously. They suggested that Bruggeman's equation should

be a good approximation when a large range of particle sizes

is present in the dispersion. In addition, however, the

particle size distribution should be poly-model.

Meredith and Tobias (1962) derived a relationship

utilizing not an integral but a stepwise Bruggeman technique

(as described above) and Fricke's equation. The result they

obtained is:

2 + (WKd - 1) 2(1 - 4) + WKd
Km = 2+ c(W - 1) [2 (1 - ) + W J (3.12)
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where W is defined by equation (3.8). Meredith and Tobias'

equation does not follow the criterion given by equation

(3.3) and therefore fails for concentrated volume fractions.

Bottcher (1945) also considered the interaction of

particles with their neighbors. Bottcher also assumed that

the permeability around a particle is that of the mixture

and not that of the continuous phase. Using this assumption,

Bottcher obtained the following relationship for the average

permeability

K -l1 K -l1
m d (3.13)

3K K + 2Km d m

Niesel (1953) derived equations for randomly

oriented lamellae and cylinders in a continuous medium

3 + 2(Kd - 1)
Km Kd 3K - D(K - 1) lamellae (3.14)

m d 3d - (d ~

and

K - K K + 5
1 @= [ K - 1 ~ K d+5Km ] cylinders

(3.15)

Niesel's equation for lamellae is the same as Fricke's for

the case of infinite flat discs.

In order to determine the effect of interacting

particles, the problem is simplified when the position of the

particles is fixed and symmetric. Rayleigh (1892) considered

the case of parallel cylinders in a square array, and spheres

of uniform size in cubical lattices. For a cubical array of



spheres where the field is perpendicular to a side of the cube

he obtained

K = 1 - 21/ 4 (3.16)
m (2+Kd) /(1-Kd) + 4-0.525(1-Kd ) 13 +Kd

For small volume fractions equation (3.16) reduces to that of

Maxwell. Meredith and Tobias (1960) have evaluated one more

term in the denominator for the Rayleigh's expression for

spheres and Runge (1925) improved Rayleigh's expression for

cylinders. In addition Barrer and Petropoulos (1961) derived

an equation for lattices of parallelepipeds in a continuum.

Many empirical relations have been derived by various

authors. Some of these do not approach Maxwell's and Fricke's

relationship for small volume fractions. Empirical relation-

ships have been proposed by Slawinsky (1926), Pearce (1955),

Topper (1955), Higuchi (1958) and others. Meredith and

Tobias (1962) have reviewed these relationships and have

discussed their limitations.

The equations reviewed here are just a drop in the

bucket compared to all the equations that have been published.

However many derivations have been duplicated and are known

by different names in different disciplines. At present this

field is still quite active, and new relationships with

varying degrees of sophistication appear continually in the

literature.



3.1.1 Analysis of Theoretical Equations

The primary emphasis in this thesis is on randomly

dispersed spherical particles in a continuum, and the equations

of Maxwell, Bruggeman, Fricke, and Bottcher are of special

interest. The solutions of various relationships is shown

graphically in Figures 3.1, 3.2, and 3.3 for the following

three cases: Kd = 0; Kd = 5, Kd = 100. For the case of an

impermeable suspended phase in a continuum (Kd = 0) the

largest differences between Maxwell's relationship and those

of others occurs at concentrated volume fractions. Bottcher's

equation appears to fail at volume fractions greater than

approximately 0.35.

When the mass permeability of the dispersed phase is

of the same order of magnitude as the mass permeability of

the continuous phase, differences in the equations are small

as shown by Figure 3.2. For a large dispersed phase

permeability relative to the continuous phase permeability the

equations again show large deviations when compared to

Maxwell's equation in the concentrated volume fraction range

(see Figure 3.3). The dashed straight lines on Figures 3.1,

3.2 and 3.3 are given as a basis of comparison, and represent

an effective permeability linearly weighted with volume

fraction. For small volume fractions the equations of

Bruggeman, and Bottcher must agree with that of Maxwell, but

as 0 increases the difference between these relationships

increases to a maximum at some value of D less than one. In
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Kd 0

o.8

MAXWELL

BRUGGEMAN

FRICKE (b/a = 4)

O LATE SPHEROID

B0 \CHER
0,41

Experimental Data:

Klute (1959)

* Meredith and Tobias
(1962)

(monodisperse)

0
0 0.5

FIGURE 3.1

COMPARISON OF VARIOUS EQUATIONS FOR NON-CONDUCT-
ING SPHERICAL PARTICLES
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TABLE 3.2

MAXIMUM RATIO
K (author)

K (Maxwell) AND VOLUME
m

FRACTION AT WHICH IT OCCURS

K Bruggeman
d ratio

Bottcher
ratio

0.05

0.528

0.790

0.1 0.902

0.5

1.0

5

10

50

100

500

1000

0.995

1.0

1.076

1.227

2.200

3.102

7.771

11.90

0.860

0.874

0.671

0.697

all

0.670

0.687

0.792

0.825

0.898

0.919

0.180

0.512

0.717

0.990

1.0

1.150

1.472

4.347

7.987

37.15

73.62

0.630

0.773

0.792

0.711

all 1D

0.670

0.621

0.618

0.622

0.612

0.613

0.788

0.882

0.919

0.995

1.0

1.066

1.158

1.400

1.476

1.581

1.606

*Fricke has same physical validity as Maxwell.

Fricke*
b/a = 4

ratio

0.980

0.725

0.675

0.550

all 0

0.500

0.525

0.650

0.725

0.850

0.900



Figure 3.4, Bottcher's equation fails when Kd approaches

infinity, but the equations of Maxwell and Bruggeman level

off to a fixed value for a given value for @ when Kd -

Bottcher's equation increases with no limit, and for Kd -

the ratio of the effective mass permeability to the mass

permeability of the continuous medium, Km, approaches infinity.

This is physically impossible, and therefore Bottcher's

equation should not be used for Kd > 0.35 and for large Kd.

The maximum ratios of Km predicted by other authors

relative to that predicted by Maxwell

Km (other author)

Km (Maxwell)

are given in Table 2.2 for different values of Kd. Also shown

are the approximately volume fractions at which this maximum

ratio occurs. The table gives a quick quantitative measure

of the maximum possible deviation from Maxwell's equation,

and also the spread in predicted values for various models.

The shape effect for an oblate spheroid with b/a = 4 as

predicted by Fricke's equation is significant only when

Kd + 0, and K d 1

3.1.2 Comparison of Experimental Data

Considerable experimental data have been taken on

the effective physical properties of heterogeneous media. The

electrical conductivity and thermal conductivity of various

materials as a function of the volume fraction of the suspended
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phase has been extensively studied. At present there exists

considerable disagreement between various authors as to what

theoretical model fits the experimental results best. Some

authors have obtained data on systems for which the order of

magnitude for Kd was one, and then concluded that the data

followed a particular model very closely. Since there is

little difference between solutions at this point, the same

conclusion can therefore be made for the other models. Often

the models have been applied to media that do not correspond

to the assumptions implicit in the theoretical model. For

instance, materials such as porous brick or metallic mixture

are usually composed of two continuous phases, not a

suspended phase in a continuous phase. Often it is difficult

to accurately measure the volume fraction for certain

materials. In their review, Meredith and Tobias (1962) have

concluded that besides the inaccuracies in actual measurements,

the wide disagreement in experimental data can be explained

only on the basis of a lack of correspondence between the

actual experimental system, and the authors' description of it.

They further concluded that data on thermal conductivities is

the least reliable.

Most of the reliable information has been obtained on

particles in a continuum. Jefferson, Witzell and Sibbitt

(1958) measured thermal conductivities of graphite-gelled

water (Kd = 288) and graphite-silicone oil (Kd = 1063)

suspensions. The effective thermal conductivity was about 20%

higher than Bruggeman's equation. Woodside and Messmer (1961)
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measured the thermal conductivities of sands packed in water

(Kd = 13.7), oil (Kd = 65) and air (Kd = 332). In all three

cases the data fall between that of Maxwell and Bruggeman.

Eichbaum (1959) has measured the dielectric displace-

ment of ground vycor glass in polystyrene (Kd = 1.68) and ground

window glass in polystyrene (Kd = 3.12). The results were in

accordance with all the mentioned theoretical models for

spheres in a continuum.

Stewart (1899) measured the electrical conductivity of

dog's blood for volume fractions of the red blood cell phase

from 0.114 to 0.907. His data is in excellent agreement with

Fricke's model for the case of oblate spheroids, b/a = 4.25,

and Kd = 0, which suggests that the electrical conductivity of

the red blood cell membrane is near zero.

De La Rue and Tobias (1959) measured the electrical

conductivity of glass spheres in electrolyte solutions

(Kd = 0). For a narrow particle size distribution, the data

fall between values predicted by the Maxwell and Bruggeman

equations (see Figure 3.2). Bruggeman's equation represents

the data satisfactorily when the dispersed phase contains a

broad range of particle sizes.

Meredith and Tobias (1961,1962) measured the electrical

conductivity of water-propylene carbonate emulsions (both oil

in water and water in oil). The conductivity in each phase

was adjusted by adding KCl to the aqueous phase and quarternary

ammonium iodide salts in the organic phase (Kd = 0, 0.172, 15.7,

100). The particle size variation was less than one order of



magnitude. For volume fractions up to 0.5 the data fall

between the relationships of Maxwell and Bruggeman (see Figure

3.3) and are represented accurately by the equation of

Meredith and Tobias (3.12). Klute (1959) collected various

data available on the electrical conductivity of a mixture of

spheres (Kd 0) at high volume fractions, and the data again

falls between the Maxwell and Bruggeman relations. For

spheres in cubical lattices in a continuous medium, Meredith

and Tobias (1960) found that their modification of Rayleigh's

equation for cubical arrangement of spheres fitted the data

well for Kd = 0 and Kd -' C.

Stein et al. (1971) measured the effective oxygen

diffusivity of human red blood cells in Agar gels, and

Hershey and Karhan (1968) the oxygen diffusivity in whole

sheep's blood. (In this case the solubilities of the dispersed

and continuous phases are nearly equal.) This work will be

discussed later.

In regards to the experimental work that has been

done, the following conclusions may be drawn for spherical

particles in a continuum:

i) Primarily, it has been the electrical

conductivity and thermal conductivity of

dispersions and emulsions which have been

measured. Little work has been done on the

effective mass permeability of heterogeneous

media.
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ii) For low volume fractions (4 < 0.1) Maxwell's

equation is accurate for random or ordered

arrangements of spherical particles.

iii) As the volume fraction increases the data for

monodisperse spheres in a continuum scatter

between the equations of Maxwell and Bruggeman.

Agreement with Bruggeman's equation is closer

when there is a wide size distribution of

spheres.

In closing, it should be mentioned that there exists

a ratio of system dimension to particle dimension below which

a particulate composite can no longer be called macroscopic-

ally homogeneous. Wyllie and Gregory (1953) experimentally

determined this minimum to be 25 for spherical particles in a

continuum, and Fidelle and Kirk (1971) reported a ratio of 10

for irregular particles in a continuum.

3.2 Diffusion with Reversible Chemical Reaction in

Homogeneous Media

3.2.1 Historical Background

At least since the work of Hatta (1928) and Hill (1928)

mass transfer with chemical reaction has received considerable

attention from researchers in many disciplines. In the field

of chemical engineering, a widely used process is the

absorption of a gas by a solution of a substance with which

the dissolved gas reacts. This process may be utilized to



remove a component from a mixture of gasses, or to form a

useful product from the chemical reaction. Much research

has been directed to understanding the effect of chemical

reaction upon the mass transport rate, so that chemical

engineers can logically design the process. A comprehensive

treatment on gas-liquid reactions has been given by

Danckwertz (1970). Biologists, on the other hand, are

concerned with the diffusion and chemical transformation of

physiological important species in organs, tissues, and cells.

A knowledge of the effect of chemical reaction on the mass

transport rates may not only explain why a living system has

evolved as it has, but may also have important implications

if these systems fail in case of disease, or environmental

stress.

The fundamental phenomenon that occurs for diffusion

with chemical reaction in chemical processes or biological

systems are of course similar, and Weisz (1973) in an

informative paper has pointed out that developments in each

field have often been duplicative.

Engineers and biologists have long known that the

effect of the chemical reaction is to increase the mass

transport rate of the diffusing species above that which can

be attributed to purely physical diffusion alone. This

increase in the mass transport rate is known in the field of

chemical engineering as "enhanced mass transfer". In the

field of biology, the increase of mass transfer rate for the

case of diffusion with reversible chemical reaction has been
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transport is an important phenomenon in the transport of

physiologically important species in biological systems. For

example, glucose crosses the erythrocyte membrane of man some

104 times faster than would be predicted by the assumption

that only simple Fickian diffusion of glucose occurs (Stein,

1967). At present it is generally accepted that for many

systems the increased mass transfer rate is caused by the

diffusive nature of the reactive species, also known as the

carrier species. Only in a few well defined systems has the

carrier species been identified for a given observed

facilitated transport system. Scholander (1960), Hemmingsen

and Scholander (1960), and Wittenberg (1959) have reported

that oxygen transport in homogeneous solutions of hemoglobin

or myoglobin is facilitated. Stein (1968) and Bassett and

Schultz (1970) studied the facilitated transport of oxygen in

thin films of aqueous solutions of cobaltodihistide, Ward and

Robb (1967) reported the facilitated transport of carbon

dioxide across thin films of bicarbonate-carbonate solutions,

and Ward (1970) showed that nitric oxide transport is

facilitated in ferrous chloride solutions. The work cited

above is in no way exhaustive, and many other experimental

results on well-defined systems have been published. The

work of Ward and Robb (1967) is especially fascinating. By

adding sodium arsenite to the bicarbonate-carbonate solution

to catalyse the reactions and consequently to increase the

facilitation rate, a separation factor of 4100 was achieved



81

in the permeability of carbon dioxide over oxygen. The

possible industrial application in separation processes

of these "liquid membranes" has created great interest. Before

discussing in greater detail the work done on the system of

interest, oxygen-hemoglobin, a brief summary on the theoretical

developments shall be discussed.

3.2.2 Theoretical Developments

Consider as an example the reaction

k1

A + B AB (3.17)
k 2

occurring in a film of thickness L as shown in Figure 2.2,

case 2, and shown in more detail in Figure 2.5. Here A is

the transported species and B and AB are the mobile carrier

and carrier-complex species which are constrained to remain

within the film. The problem is to predict the flux of A, and

following Smith et al. (1973) the differential conservation

equations for the species within the film are

d2C
DA 2  = k CAB - k2 CAB (3.18)
Adx 21AB 2A

dCB
D B = kC - k (3.19)

B 2 1lAB -2 AB
dx

d2C

DAB 2  = -k CA B + k2CAB (3.20)
ABdx 21AB 2A
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FIGURE 3.5

DIFFUSION WITH REVERSIBLE CHEMICAL REACTION IN A
ONE DIMENSIONAL FILM.
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The equations are subject to the following boundary conditions

x = 0 CA = (3.21)

x = L CA = CL (3.22)A A (.2

dCB
x = OL dC = 0 (3.23)

dx

dCAB
x = 0,L dx = 0 (3.24)

L
f (CB + CAB)dx = CTL (3.25)
0

Boundary conditions (3.21) and (3.22) are the imposed

concentrations of A at the faces of the film; boundary condi-

tions (3.23) and (3.24) maintain the carrier species within

the film, and boundary condition (3.25) is a stochiometric

constraint which is necessary because only three of the four

boundary conditions given in (3.23) and (3.24) are independent

(Goddard et al., 1970).

At this point the problem can be simplified by

assuming DAB = DB. This is reasonable because the carrier

molecule is generally much larger than the molecule with which

it combines. Addition of equations (3.19) and (3.20) and two

integrations give

C B + CAB T (3.26)

The total carrier concentration is a constant throughout the

film when the diffusivities are equal. Substitution of
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equation (3.26) into (3.18) and (3.19) gives

d2C
DA A = k AB+ k2 B k2 T (3.27)

D d2 C - CC

DB B = k CAB + k2 CB - k2 CT (3.28)
Bdx21AB 2B 2T

The constancy of the total flux of A at any point in the film

can be utilized by taking the difference of equations (3.27)

and (3.28) and integrating

dC dC
N A= -A DB dx (3.29)

Equation (3.29) is equivalent to

T dCA -D dC (3.30)
NA A D dx - AB dx

and the second term of the right hand side of equations (3.29)

and (3.30) represents the flux of A due to the carrier species.

A second integration of (3.29) yields

-T
DACA - DBCB = -N x + a2 (3.31)

In order to solve the problem one can either utilize equations

(3.27) and (3.31) or (3.27) and (3.28), with boundary

conditions (3.21), (3.22), and (3.23). In the case of thick

films (film thickness L approaches infinity), the reaction

approaches equilibrium. An order of magnitude analysis shows

that the diffusional term of equation (3.27) will vary

inversely with L2 and consequently it will be small compared



to the reaction terms on the right hand side as L -+ o. In

this case the diffusion term can be neglected. Equation (3.27)

will then reduce to the equilibrium relationship and use of

equation (3.31) will yield the equilibrium solution of Olander

(1960)

C - C DBKC (C - C )
N T =D( A A)+ B T A A

A = DA L + L (1 + KC )(1 + KC )
A A

(3.32)

where K is the equilibrium constant and is given by

K = -

2

Equation (3.32) can be rewritten as

C0 - CL

N = D ( A A ) (1 + F ) (3.33)
A A L eq

where F is the facilitation factor and is a maximum when the

reaction is at equilibrium

DBKC
F = T (3.34)
eq DA(1 + KC )(1 + KCL)A A A

Equation (3.33) can also be rewritten as Ficks law with a

variable effective diffusivity

C0 - CL

N = 5 A A)
A L

where = DA (1 + F)
eq



The reaction is therefore to increase the effective

diffusivity. In the case of a nonequilibrium reaction the

form of equation (3.33) would be

CO - CL
N = D (1 + F)( A AA A L

where the facilitation factor F is the facilitation obtained

for nonequilibrium conditions and is smaller than F .
eq

When the reaction deviates from equilibrium within

the film the solution of equation (3.27) and (3.28) is

difficult since the equations are nonlinear. To proceed with

a solution the equations must be linearized, and solutions

available in the literature differ from each other depending

upon what linearization method is used and what assumptions

are made. It should be noted here that formally identical

problems in heat transfer have been solved earlier by Brokaw

(1961). For the mass transfer problem Friedlander and Keller

(1965) presented a single point linearization solution valid

for small driving forces only. For large driving forces the

method of matched asymptotic expansion has proven useful in

giving accurate predictions of flux for near equilibrium

conditions (Goddard et al., 1970; Kreuzer and Hoofd, 1970,1972).

Recently Smith et al. (1973) have presented approximate

analytical solutions corresponding to a perturbation from purely

physical diffusion on one hand (thin films), and from

reaction equilibrium at each point within the film on the

other (thick films). The two cases are developed in such a
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manner that, through interpolation, solutions can be obtained

for any film thickness with reasonable accuracy.

In essence, the near equilibrium solutions are

developed from a perturbation from the equilibrium solution by

setting

CA = C + ACA (3.35)

CB = B + ACB (3.36)

and substituting into the differential equations. The

essential result that is obtained is the facilitation factor

F which is a function of F and the ratio of the film
eq

thickness L to the characteristic length X. The characteristic

length is a ratio of diffusional to chemical reaction effects

and is given by

k CA + k2 k k2C -1/2
= [+ ]2 (3.37)

DB DA(k CA + k2

for the reaction A + B AB. The characteristic length also4_

gives a measure of the thickness of the region near the

boundaries of the film where departures from chemical equili-

brium are largest. The dimensionless ratio L/A is a dimension-

less parameter which is similar to the "Thiele modulus" as has

been pointed out by Perelson and Katchalsky (1972), and in a

general context by Weisz (1973). As the ratio L/X increases,

nonequilibrium effects become negligible, and the facilitation

factor F reaches the asymptotic value F as given by
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Olander (1960)

L
F + F , as (3.37)

As L/X approaches zero deviations from chemical equilibrium

become important and the situation approaches pure Fickian

diffusion so that

F + 0, as + 0 (3.38)

These limits can also be observed qualitatively from equations

(3.27) and (3.28) by letting L approach infinity or zero. The

Friedlander and Keller solution is an expansion from a single

equilibrium value and provides, for L + o, the correct asympto-

tic value given by (3.37) and (3.38) only for small driving

forces. For a reaction of the form of (3.17) they obtained

1 + F 1 F (3.39)

1 - 1eq f(L
1+ F X 7

eq

where

f(L) 2 cosh( ) - 1
L = 1 _--- [ ] (3.40)

(L sinh( L)

and F eq defined for a very small driving force is given by

DBKCT
F = B T (3.41)
eq DA(1 + KCA)

0 L
Although for infinitesimal small driving forces C ~ CA anyA CAn

concentration in the film can be used in (3.41) to calculate

F eq, the correct concentration is that at the center of the
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slab C = (C0 + CL)/2 where the reaction is at equilibrium. As
A A A

L/X varies from zero to infinity f(L/X) varies from zero to one

as shown in Figure 3.6. For L/X > 100 Figure 3.6 indicates that

f(L/X) is near one and consequently from (3.39). F is near

F implying that the reaction is substantially at equilibriumeq

throughout the film.

As mentioned previously, for large driving forces the

Friedlander and Keller single point linearization technique

fails to give the correct equilibrium asymptote as given by

(3.34). The solutions developed for large driving forces for

near equilibrium conditions given by Kreuzer and Hoofd (1970,

1972), Goddard et al. (1970), and Smith et al. (1973) provide

the correct equilibrium asymptote. By comparison with

numerical solutions of Kutchai et al. (1970) and Meldon (1973),

Smith et al. showed that their near equilibrium solutions are

of higher accuracy than those previously mentioned. In

addition Smith et al. (1973) have given a thin film solution

for large departures from chemical equilibrium which approaches

the non-reactive asymptote (3.38) in the correct manner.

3.3 The Oxygen-Hemoglobin System

The uptake of oxygen in the lungs, and the subsequent

transport to organs and tissue via the bloodstream has been an

active and fascinating subject for biologists, chemists,

physicists, engineers, and others. A full understanding of

the respiratory process in the human body will perhaps never

be at hand, but present knowledge about oxygen, and of course
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carbon dioxide transport, in the body is already voluminous.

Publications appear at a prodigious rate. For example, more

than 250 articles per year have appeared on the hemoglobin

molecule alone (Buse 1971) in the past few years. No

attempt shall be made in this thesis to review the subject

exhaustively. Rather selective topics will be discussed which

have direct application to the work in this thesis, and even

here the reader will be referred to more extensive and

authorative reviews available in the literature. A general

introduction to the constituents of blood, and hemoglobin is

given in Appendix B and it is assumed that the reader is

familiar with the material.

3.3.1 Homogeneous Systems

The effect of hemoglobin on oxygen transport has

been considered for a long time (Roughton, 1932; Klug et al.,

1956; Roughton, 1959). The current interest in the facilitated

transport of oxygen in hemoglobin was initiated by the

experiments of Scholander (1960), Hemmingsen and Scholander

(1960), and Wittenberg (1959). Scholander (1960) and Hemming-

sen and Scholander (1960) reported that for identical pressure

differences across a hemoglobin soaked Millipore filter,

facilitated transport occurred at low oxygen tensions, where

the hemoglobin is partially saturated, while at high oxygen

tensions, where the hemoglobin is fully saturated, simple

diffusion of oxygen occurred. Scholander (1960), and Enns

(1964) proposed a collisional mechanism to explain the



facilitation of oxygen, which is analogous to the well-

established phenomenon of surface diffusion of adsorbed gases

on solids (Barrer, 1965). Fatt and LaForce (1961), Wang (1961),

and Collins (1961) proposed that diffusion of hemoglobin was

responsible for the facilitation of oxygen in the experiments

of Scholander, Keller and Friedlander (1966a) opposed the

collisional mechanism on the grounds that if the collisional

mechanism were indeed correct the facilitated mass transfer

rate of oxygen should increase as hemoglobin concentration

increases because of the increased collision rate, which is

contrary to their experimental results. At present the

diffusional mechanism of hemoglobin facilitated transport is

generally accepted, although a critical test of this mechanism

has not been performed.

After the work of Scholander, Keller and Friedlander

(1966a) and Wittenberg (1966) reported extensive experimental

results on oxygen diffusion in hemoglobin solutions. Keller

and Friedlander approximated the oxygen-hemoglobin reaction

as (see Appendix B)

k1

Hb + 02  HbO (3.42)

k 2

and in this case the characteristic length is given by

k1 C0 2 + k2  k1k 2CT l/2 (3.43)= [ + 1 T (3.43)
DHb DO (k1 CO2 + k2)
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For the film thickness employed in their studies (0.13 cm)

and a calculated maximum characteristic length to be of order

10~ cm they concluded that the use of the Olander's

equilibrium approach was justified in order to interpret their

data. Coupled with hemoglobin diffusivity data (Keller and

Friedlander, 1966b) Keller and Friedlander concluded that they

had reasonable agreement of measured oxygen flux with

equilibrium facilitation theory. Wittenberg (1966) measured

the oxygen facilitated flux in hemoglobin saturated Millipore

filters of different thickness. Experimental results

indicated that the augmented portion of the oxygen flux was

inversely proportional to the length of the diffusion path

at least down to a film thickness of 65 pm. For hemoglobin

with very high molecular weight such as earthworm hemoglobin

(MW = 2.9 x 106 ) , Wittenberg further showed that no

facilitated flux of oxygen occurred, suggesting that the

diffusional mechanism is indeed correct. All of the previously

mentioned work has been reviewed by Kreuzer (1970) in addition

to myoglobin facilitated transport of oxygen.

In all of these results on homogeneous systems it

has not been resolved what role facilitated transport plays

in oxygen transport in red blood cells. The characteristic

thickness of a red blood cell is between 2 and 8 ym and

homogeneous facilitated transport theory predicts moderate

departures from chemical equilibrium. Further it has not

been established if physical parameters measured for

homogeneous hemoglobin solutions can be applied to intact red

blood cells.
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3.3.2 Heterogeneous Systems

3.3.2.1 Inert Suspensions

As has been discussed in Appendix B, the oxygen-

hemoglobin reaction can be saturated at high oxygen tensions.

In order to measure the diffusion of oxygen without any

chemical reaction effects in blood suspensions, Hershey and

Karhan (1968) saturated thin films of sheep's blood (0.199 cm),

with air at one atmosphere prior to exposing one side of the

film to 760 mm Hg pressure of oxygen. Diffusion coefficients

of oxygen in blood with varying hematocrits were calculated

from the transient concentration change with time. Hershey

and Karhan obtained for the diffusivity of oxygen in sheep's

blood at 250C

D = (1.98 - 0.0085 H) x 10-5 cm2/sec (3.44)

for a hematocrit range of zero to 45 percent. In terms of

the nomenclature used for the heterogeneous media theory, the

hematocrit is related to the volume fraction of the dispersed

phase by

H = 100 D (3.45)

At this point it should be mentioned that 100 percent hematocrit

may not be attained for packed red blood cells. Guyton (1968)

contends that about 4% of plasma remains in the extracellular

space. Most researchers, however, do not correct measured

hematocrits since the exact correction factor is not known

accurately. The experiments by Hershey and Karhan can be
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criticized on at least two points. First the oxygen diffusion

studies were made with horizontal films in which case the red

blood cell sedimentation in the direction of the oxygen trans-

port may have affected the concentration versus time measure-

ment. Second, prior to experiment, the blood samples were

equilibrated by directly bubbling air into the blood sample

for one hour. Such a procedure can cause considerable

hemolysis of the sample.

Stein et al. (1971) measured the effective steady

state diffusion coefficient of oxygen in saturated suspensions

of human red blood cells in gelled agar with hematocrits

varying from 0 to 100% at 250C. Utilizing the measurement

made for packed red blood cells (H = 100), Stein et al.

obtained good agreement with Maxwell's equation for Kd = 0.46.

By working with agar, Stein et al. eliminated the problem of

sedimentation. At the same time the introduction of agar and

consequent gelling may have affected red blood cell properties.

3.3.2.2 Reactive Suspensions

3.3.2.2.1 Experimental Work

During the course of this thesis several publications

appeared on the diffusion of oxygen in unsaturated packed red

blood cells. Moll (1969) measured the oxygen transport in

human red blood cells smeared into thin sheets of porous nylon

or cellulose paper at 37 0C in the absence or presence of

carbon monoxide. Moll measured higher oxygen transfer rates,

on the average 64 percent, in the absence of CO than in the



presence of CO. On assuming equilibrium inside the red blood

cell, Moll calculated an average oxyhemoglobin saturation

difference of 82%. Substantial hemolysis occurred during

these experiments (maximum 25 percent), and the use of nylon

or cellulose supports causes the system to be effectively a

three component heterogeneous system: red blood cells, plasma,

support material. It must therefore be concluded that Moll's

experiments are in no sense conclusive with regards to the

occurrence of facilitated transport in red blood cells.

Kutchai and Staub (1969) measured oxygen transport

rates in films of packed human red blood cells supported on

stainless steel screens in the absence and presence of CO at

21.7 0C. Facilitated transport of oxygen was measured in the

absence of CO over a wide range of driving forces, with

minimal hemolysis of the sample (average less than one percent).

The amount of hemoglobin facilitated oxygen transport was

equivalent to that measured in hemoglobin films of equivalent

thickness and total hemoglobin concentration maintained in the

same support at 21.2 0C. Kutchai and Staub concluded that the

reaction inside the red blood cell is at equilibrium. Kutchai

and Staub measured hemoglobin concentrations of the packed red

bloods of order of 30 gr/100 ml. Since the concentration

inside the red blood cell is from 32 to 34 gr/100 ml (Guyton,

1968) as much as 10% of the packed red blood cell samples

that Kutchai and Staub used may have been plasma.

Keller (1969) in an article reporting on additional

data obtained by Stein (1968) observed no facilitation of
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oxygen in red blood cell suspensions. It is believed by this

author, however, that these results may be erroneous and they

will be discussed further in a later part of this thesis

(Results and Discussions).

The effect of the red cell membrane on the mass

transfer rate has been investigated for some time and

contradictory experimental results have been reported.

Roughton (1927) measured the rate of uptake of oxygen and

carbon monoxide by flowing red blood cell suspensions, the

observations being made by means of the rapid reaction

technique (Hartridge and Roughton, 1923). In comparison to

dilute hemoglobin solutions of the same total hemoglobin

concentration, the rate of oxygen uptake of the red blood cell

suspensions was much slower. Roughton (1927, 1932) suggested

that the difference in oxygen uptake was due to the red cell

membrane resistance. Kreuzer and Yahr (1960) compared the

oxyhemoglobin saturation with time of thin films of packed

red blood cells and concentrated hemoglobin solutions exposed

to oxygen. No differences were observed in the oxygen uptake

(saturation) of the stagnant films of red blood cells versus

the films of hemoglobin solutions of equal hemoglobin concen-

trations. Kreuzer and Yahr concluded that the red blood cell

membrane offered little resistance to mass transfer in direct

contradiction to the suggestion of Roughton. The previous

work of Stein et al. (1971) and Kutchai and Staub (1969)

support the results of Kreuzer and Yahr, and the present

consensus appears to be that membrane resistance is not



significant. This does not mean that the membrane

permeability (P = D a ) is much higher than that of the redm m m

blood cell interior. The permeability is probably of the

same order of magnitude, but the membrane is very much thinner

than RBC radius.

3.3.2.2.2 Theoretical Developments

Little theoretical work has been published on the

problem of diffusion with reversible chemical reaction in

heterogeneous media. La Force and Fatt (1962) presented a

technique to estimate steady state flux of oxygen through

whole blood which is developed from the assumption that this

flux is greater than that through a system of alternate

hemoglobin and plasma layers and less than that through a

parallel arrangement of hemoglobin and plasma layers. La Force

and Fatt assumed that the oxygen-hemoglobin reaction in the

hemoglobin layers (the thickness of order of red blood cell

size) was at equilibrium. The theoretical work done on homo-

geneous solutions suggests that the reaction is in the

nonequilibrium regime for these thicknesses so that a better

assumption for the lower bound of expected oxygen flux would

be a system of alternate inert hemoglobin and plasma layers.

Fatt and La Force (1963) also presented an equation that was

a modification of the theoretical model for inert heterogeneous

media presented by Meredith and Tobias (1962) and is given by

equation (3.12). Instead of using the dispersed phase

permeability Pd' Fatt and La Force replaced it by the



equilibrium homogeneous theory permeability Pd 1 + F ).d eq

Although at equilibrium conditions this is indeed the correct

dispersed phase permeability (as will be shown later in the

theory), Fatt and La Force gave no proof of the final relation-

ship used. The relationship further does not consider

nonequilibrium effects, and in addition, as has been mentioned

before, the relationship of Meredith and Tobias fails at high

volume fractions of the dispersed phase.(5ee 'ue_ 3,3)
A

3.3.3 Physico-Chemical Parameters

In order to apply the carrier-facilitated transport

theory as developed by such authors as Friedlander and Keller

(1965) and Smith et al. (1973) for a particular physico-

chemical system, kinetic and thermodynamic parameters need to

be known for the system of interest. Such parameters are

readily available for the oxygen-hemoglobin system.

3.3.3.1 Oxygen and Hemoglobin Diffusivities

Kreuzer (1970) in his excellent review on facilitated

diffusion of oxygen has reviewed the data on oxygen diffusivity

and hemoglobin diffusivity in hemoglobin solutions. Kreuzer

(1950, 1953), Pircher (1952), Keller and Friedlander (1966a),

and Goldstick and Fatt (1970) have reported values for the

oxygen diffusivity in hemoglobin solutions from a concentration

of 0 gr/100 ml to about 54 gr/100 ml (see Figure 3.7). The

data of Goldstick and Fatt (1970) is presently considered to

be the most accurate data. From a hemoglobin concentration of
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zero gr/100 ml to physiological concentrations in the red blood

cell (32-34 gr/100 ml) the diffusion coefficient of oxygen

decreases by approximately a factor of three.

The diffusivity of hemoglobin in hemoglobin solutions

versus hemoglobin concentration is shown in Figure 3.8. There

appears to be reasonable agreement for concentrations up to

25 gr/100 ml but there is considerable disagreement at higher

hemoglobin concentrations. For example the most recent data

reported by Riveros-Morenos and Wittenberg (1972) and Keller

et al. (1971) shows a variation of approximately 100% at near

physiological concentrations. Kreuzer (1970) in his review

article proposed a compromise curve which he used in subsequent

papers on the theory of facilitated transport (Kreuzer and

Hoofd, 1970, 1972).

3.3.3.2 Kinetic Rate Parameters

The reaction rate of hemoglobin ligands has received

considerable attention from researchers because they have been

able to utilize measured reaction rate parameters to deduce

much information about the structure-function behavior of

hemoglobin and on the mechanisms of reaction. At present,

however, no set of data has correlated in fine detail with any

reaction scheme. The early work by Hartridge and Roughton

(1925) showed that the combination of oxygen with hemoglobin

could be approximated by a second-order reaction, with a rate

constant for the overall reaction (k1 ) of about 3.0x10
6

moles/l-sec which was not influenced significantly by values
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of the pH between 7 and 10. The oxygen dissociation reaction

was also studied by Hartridge and Roughton (1923) who used

dithione to cause the reaction HbO + Hb+O2 to go to completion,

and found the dissociation reaction to be first order in HbO 2

(k2 ~ 40 sec~ ). Later in a series of experiments Gibson and

Roughton (1957a,b,c) have attempted to fit the kinetics of

oxygen association and dissociation to the four step scheme of

Adair (1925). These results have been summarized in a review

by Gibson (1959). Recently Gibson (1970) has obtained a set

of rate parameters for the four consecutive association and

dissociation reaction that also gave an adequate fit of

oxygen-hemoglobin saturation curve at pH 7 and at 20-210 C. As

has been mentioned in Appendix A the Adair scheme remains an

approximation to the true and unknown reaction scheme. It is

not surprising, that the simplified one-step scheme still

enjoys considerable use because of its simplicity and great

utility in mathematical modeling of processes in the oxygen-

hemoglobin system.

3.3.3.3 Solubility Coefficient of Oxygen

The solubility coefficient of oxygen in water and

various physiological fluids is available at a variety of

temperatures. Table 3.3 reports the Bunsen solubility

coefficient of oxygen (milliliters of gas at STP dissolved

per milliliter of water at 1 atm pressure) for water, isotonic

saline, plasma, and whole blood obtained from the tabulations

of Altman and Dittmer (1971). It is interesting to note that
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the oxygen solubilities in plasma, isotonic saline, and whole

blood are virtually the same at a given temperature.

Apparently the introduction of hemoglobin has little effect

upon the physical solubility of the total medium, but it

increases the solubility of 02 in water to make up for the

excluded volume of hemoglobin. The physical solubility of 02

in red blood cells can be calculated from Table 3.3 since

aa + (l- )
02 ,blood RBC 02 ,RBC RBC 02,plasma

and where

= 0.45
RBC

For example the Bunsen solubility coefficients of oxygen

inside the red blood cells at 250 and 370C are (cc(STP)/cc/atm)

a = 0.0276 at T = 250 C
02 ,RBC

a = 0.0236 at T = 370 C

02 'RBC

which is not very different from the oxygen solubility of

isotonic saline, and in fact is slightly higher. This is

consistent with experimental results obtained by Sendroy et

al. (1934) who reported higher oxygen solubility constants

for ox blood cells than that for ox plasma at 370C.
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TABLE 3.3

BUNSEN SOLUBILITY COEFFICIENT OF OXYGEN

IN VARIOUS FLUIDS CC(STP)/CC/ATM

Medium

Whole
Temp Isotonic Plasma Blood

oC Water Saline (Human) (Human)

17 0.03283 0.03170 0.0290 0.0303

21 0.03044 0.02931 0.0273 0.0282

25 0.02831 0.02718 0.0257 0.0265

29 0.02649 0.02536 0.0242 0.0249

33 0.02507 0.02394 0.0226 0.0235

37 0.02386 0.02273 0.0214 0.0223
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3.4 Discussion

The previous sections have dealt with theoretical

and experimental developments for diffusion with or without

reversible chemical reaction in homogeneous and heterogeneous

systems. Special emphasis has been placed on the oxygen-

hemoglobin system. Several conclusions and comments can be

drawn from this review.

i) Theoretical models for diffusion in inert

heterogeneous media appear to be well-developed

for moderate permeability differences between

dispersed and continuous phases. As far as is

known, no extensive data has been obtained on

the effective permeability of heterogeneous

media.

ii) Theoretical models for diffusion with

reversible chemical reaction in homogeneous

media is now well developed.

iii) Experimental results obtained on the facilitated

transport of oxygen in hemoglobin solutions tend

to indicate that the diffusive mechanism is

responsible for the increased mass transfer rate.

Reasonable agreement exists between experimental

results and equilibrium facilitated mass trans-

fer theory.

iv) Experimental data on facilitated mass transfer

in heterogeneous media is limited.
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v) No theoretical developments for diffusion with

reversible chemical reaction in heterogeneous

media have been made that take into account

deviations from equilibrium conditions.

The objective of this thesis is to give an improved quantitative

understanding of mass transport with and without reversible

chemical reaction in heterogeneous media. The program presented

in this thesis consists of two phases. First a theoretical

model is developed for diffusion with reversible chemical

reaction in heterogeneous media. In the second phase

experimental results have been obtained on mass transport in

reactive and inert systems and the results compared with the

developed theory.
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4. DEVELOPMENT OF THEORETICAL MODELS

The types of heterogeneous media considered here are

those previously shown in Figure 2.2. The theoretical frame-

work developed here is easily extended to other situations

such as, for example, a reactant in a spherical shell. The

same approach employed so successfully by Maxwell and later

Fricke will be utilized here. First a solution is obtained

for the concentration field of diffusing species both inside

and outside a single sphere in an infinite medium. With this

in hand the average effective permeability of a suspension

of spheres may be obtained by utilizing a technique developed

by Maxwell. Two models will be considered, the impermeable

model and the permeable model. The impermeable carrier model

refers to the situation in which the carrier molecules cannot

penetrate the continuous-dispersed phase boundary, as is shown

by case 6, Figure 2.2. Mobile carrier species are present

both in the dispersed and continuous phase, but these species

are constrained to remain within their respective phases. For

the permeable carrier model, the carrier can diffuse from one

phase to the other as is shown in case 7, Figure 2.2. The

two cases presented here are for reactions inside and outside

the dispersed phase, but it will be shown later that the

equations derived here will be applicable to the other cases

considered in Figure 2.2. Finally the mathematical technique

employed here will be utilized to solve for the problem of an

Adair type reaction scheme in the dispersed phase with no

reaction in the continuous phase.
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4.1 General Mathematical Formulation of the Problem

Because the permeable and impermeable model are

similar in mathematical form, the problem will be initially

developed in a general way so as to be valid for both models.

Consider a single sphere, of radius a and permeability Pd'

immersed in an infinite medium, of permeability Pc, which has

a constant uniform mass flux of the diffusing species A

imposed at large distances from the center of the sphere (see

Figure 4.1). A single step reaction with carrier B and B'

occurs in the continuous and discontinuous phase respectively

k 1
A + B AB (4.1)

k2

k'1

A' + B' AB' (4.2)

as is shown in Figure 4.1. Primes are used here to denote

parameters inside the sphere. Reactions (4.1) and (4.2) are

chosen as an example only, and the theoretical development

can be extended to other reaction schemes. The steady state

differential mass continuity equations in spherical

coordinates for species A, B, and AB outside the sphere, and

A', B', AB' inside the sphere are:

outside the sphere,

23'C 3C
D 1 2 2- (r ) + 2 ( sin6 ) = 1 k CACB - k2 AB

r 3r 3r r sin6 De 36

(4.3)
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FIGURE 4.1

REACTING SPHERE IN A INFINITE REACTING MEDIUM.
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where: i = A, B, 6 = +1
(4.4)

i = AB, 6 =

inside the sphere,

3C! DC!
1 D 2 + 1 (s

D + r2si. (sine6 ) ]- [kIC C -kr 2 r Dr r 2sinO 36 3

............ (4.5)
where: i = A', B', 6 =+1

i = AB', 6 -l (4.6)

The differential mass continuity equations inside and outside

the sphere, and the associated boundary conditions for both

the permeable and impermeable model are shown in a schematic

manner in Figure 4.2. Beside the fact that the permeable and

impermeable model have identical mass conservation equations,

the boundary conditions at r = 0 and r = o are the same. The

boundary conditions at the phase boundary (r = a) are of

course different, as expected. The problem will first be

developed in a general way utilizing equations (4.3) through

(4.6) and the boundary conditions at r = 0 and r = x. Once

the problem is formulated the specific boundary conditions at

r = a for the specific model will be introduced.

If it is assumed that the diffusivities of the

carrier and carrier-complex species within each phase are

equal

D AB= DB (4.7a)

and

D = D' (4.7b)AB B
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Outside Sphere

1a 2 1c 1 D
D [ - (r2 -) + 2 - (sine- )] = [k 1 CA CB - k2 I

r 3r ar r sine ae 3A

where: i = A, B 6 = + 1

i = AB 6=- 1

Inside Sphere

1 2 ac
D![ L (r2  ) + - (sine

r ar ar r sine ae

1)

ae

where: i = A', B'

i = AB'

Inside Sphere

A' + B' 2 AB'

K' k /k

Pd -AD

r = 0

p =p'A

= [kiC CL - k'2CB

6 =+1

6 =-i1

Outside Sphere

A + B * AB

K =k /k2

P aADA

r = a, all 9

Impermeable

acA acB3r 3r

B AB
ar ar -

Permeable

0PB =PB

PAB AB

r = -, all 9

NT = (D C -P pA Br B cA eq

equilibrium

apA S
shell: PC lr L [pA(a)-p (a)]

S

= ar

no shell: PA =

apA p
c air d ar

D'B D3CL
DB D B

ap
c ar d ar

FIGURE 4.2. SINGLE REACTING SPHERE IN A REACTING CONTINUOUS MEDIUM.
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it can be shown by a procedure entirely analogous to that by

which equation (3.26) was obtained that the total carrier

concentration inside and outside the sphere is a constant so

that:

outside the sphere,

CB + C = C (4.8)AB T

inside the sphere,

CA + CB = C (4.9.)B ABT

Introduction of equations (4.8) and (4.9) into the mass

conservation equations will yield only two independent mass

conservation equations in each phase. Retaining the equations

for A and B outside the sphere, and A' and B' inside the

sphere, and substraction of the equations for B from A, and

B' from A' gives:

outside the sphere,

1 3 2 A 1 1 3 A k
Pc 2 (r -) + 2 (sine )] = klaAPACB-k2 CT +k 2 CB

r 3r 3r r sineQDO 36

........... (4.10)

- [r2 (DBCB c A + 1 n [sine (DBCB c p 0D.....sine ( 1 BBcA

........................... (4.11)
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inside the sphere,

pd l r -) + 2 - (sine -)] = kapCA-kC+k C

r Dr 3r r sine 30 3e

(4.12)

S[r2 L (D C-Ppi [sin+ (1DC-P
Dr~5fl _ [sin* sn D e (DCAP)]=0

..........(4.13)

where the permeability is again the product of diffusivity

times the solubility. Since in this work the transferred

species A will be a gas the above equations were cast in terms

of the partial pressure of A and Henry's law was used

CA = a ApA (4.14)

C = ajpg (4.15)

Henry's law is applicable because the concentration of dissolved

gasses under normal physiological conditions is small.

The equations inside the sphere and outside the sphere

are nonlinear and must be linearized in order to be solved

analytically. For a small sphere in a medium the partial

pressure drop of A (driving force) across an individual sphere

usually is small so that the single point linearization

technique of Friedlander and Keller should be applicable. Like

Friedlander and Keller (1965) the equations are linearized

about a single point by neglecting second order terms. An

obvious choice is the center concentration where the reaction

rate is zero and equilibrium exists so that (as a consequence

of the technique):
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outside the sphere

k C
C = 2 T (4.16a)
B ka0

1 AA +2

inside the sphere

o' k C
C 0 (4.16b)CB =0~4~~k

k ia pA + k

To expand the concentrations as small deviations around the

center equilibrium conditions, one defines:

outside the sphere,

p A + Ap (4.17)

CB = C0 + AC (4.18)
BB B

and inside the sphere,

p = p+ 6p (4.19)

CA = C +AC (4.20)
BB A

Substitution of equations (4.17)-(4.20) into (4.10) to (4.13),

deletion of second order terms, and use of the equilibrium

relationships (4.16) yields:



117

outside the sphere,

1 9 2 9AA 1_ _ 9 9 AA
P [ 2 (r 2 ) + 2 - (sine )] =

r Dr Dr r sine 90 D0

0 0
(k1aApA + k2 B + klaACB A

(4.21)

S[r2 (DAC PA + 1 in [sine (D AC- -_r Tr DBCB - cA' sine 90 90 B B -c APA)H =0

......... (4.22)

and inside the sphere,

1 9 2 1 A
Pd 2 (r + 2 -(sinG )] =

r 9r Dr r sinO 90 90

(k ap + k')AC + k ac Cf p (4.23)

S[r2 (DAC - PdAp1) + sinG [sinG D (DAACA - Pd )] = 0

........... (4.24)

Investigation of the physics of the problem suggests a e depen-

dency of the form of cose since the problem is symmetric

(similar to the Maxwell problem, Appendix A). At large

distances away from the sphere the species must approach

equilibrium conditions. Noting that dCB = d(ACB) the

relationship

[d ACB equilibrium
k 1k 2 aA CT [

0l A [d ApA]equilibrium
(k aA pA + k 2)

........... (4.25)

should be satisfied at r = for any solution for ApA and ACB'

From equation (3.41) equation (4.25) can conveniently be
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rewritten as follows

[d ACB equilibrium DB F [d A equilibrium

. . . . . (4.26)

where F is defined at a point by equation (3.41)

Feq
DBk k2 CT A

c (k + k up2
Bi1 2A

T
In addition as r - the flux of A is a constant, NA. From

homogeneous facilitation theory the total flux of A is

therefore

DAP A T
-P (1 + F ) = N cosO as r
c eq Dr A (4.27)

This suggests a solution for the outside concentrations of the

form

APA

NTNA

P (1 F ) [r - af (r) ]coso
c eq

(4.28)

(4.29)
F NT

AC e A [r + ag (r) ] cose
B eq

with the restriction that

f+ 0

g+ 0

as

as

r +00

r +oo

in order to satisfy (4.25).

Ap' = H (r) cose

Inside the sphere let

DBAC; - PdAp = G(r) cosO

(4.30)

(4.31)
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with the restriction that

H(0) = 0

G(0) = 0

Equations (4.28) through (4.31) are quite general in terms of

the dependency on r, but they satisfy symmetry conditions on

e. In addition Ap and ACA should vanish at r = 0 since

equilibrium conditions exist at the center of the sphere.

Equations for ApA and ACB also satisfy the equilibrium

condition and the constant flux boundary condition for r +o.

The problem now has been reduced to the solution of

four differential equations, two outside the sphere and two

inside the sphere, and the mathematical form of these solutions

has been deduced. Additional general mathematical formulation

can be done before considering specific boundary conditions

for each model. In fact the dependency of f(r), g(r), H(r)

and G(r) can be obtained exactly, and these will apply to

both the impermeable and permeable models.

4.1.1 Outside the Sphere

Outside the sphere we have the differential equations

(4.21) and (4.22) and the solutions for these equations given

by (4.28) and (4.29). Substitution of the formulas for ACB

and ApA into (4.22) yields

[r 2(F g'-f')] - 2(F g-f) = 0 (4.32)
Dr eq eq

where f' = , g'
Dr Dr
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The form of (4.32) yields a solution that relates f and g

F g-f = 2
r

(4.33)

where A is a constant whose value will be determined from the

boundary conditions at r = a. Substitution of (4.28) and

(4.29) into (4.21) gives

0
1 r2  k aApA + k

[r f.+ 2rf' - 2f] = DB )F g +
r 2DB e

0 0
kyaCB k a0Ak2

+ 1 )f + APA2 F
Pc D

k a C 0 r
l A B _k2

eq P D eqa

......... (4.34)

Substitution of (4.33) into (4.34) yields

2, +r 2
r f" + 2rf' - [2 + ]f =

k 0 + k
fA$PA k2 )a2A

D )a AB

where the characteristic length X is again given by

k 0 + k
1 pA + 2) +

DB
kAk 2 CT

0
Pc (k1aApA + k2

The particular solution for f for equation (4.35) is straight-

forward

fpart
kApA+k2 22 2

= - ( D ) a A/r
D B

The homogeneous equation that remains is

r2f" + 2rf' - 2[2 + r 2 = 0

(4.35)

1 (4.36)

(4.37)

(4.38)
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Equation (4.38) is a Bessel equation whose solution is

(Mickley et al., 1957)

fhomo = K r- 1 /2 [C 13/2 () + C -3( ) (4.39)

where Ip (Z) is a modified Bessel function of the first kind of

order p. Since from equation (4.28) f -+ 0 as r - it follows

that

- C 2

so that f becomes

0
A kcpk 2 , 2 2 2 r- /

f = - a A/r + K ()-l/ 2  3/2I -3/

............................... (4.40)

where K is a constant to be determined from the boundary

conditions at r = a. Since (Abramowitz and Stegun, 1968)

I3/2(Z)

and

I 3/2 (Z) =

1 sinhZ + coshZ
Z Z Z

sinhZ 1 coshZ
Z Z Z

Vi -Iz

(4.41)

and further

0
1 kla+k 2  2

1+F D )
eq B

(4.42)

it follows that

f = - a2 A + K (r ) -l/ 2  1/2 (1 + ) [cosh - inh(1+ eq ) 2+r rsn
eq r

............................. (4.43)
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If the constants A and K1 are known the concentrations pA and

CB can be determined at any point outside the sphere since

NT
0 0 A

PA A APA A - P (1 + F ) [r - af(r)]cosO
c eq

. .......... (4.43a)

F N
C = C + AC = 0 + + ) [r + ag(r)]coseB B B B D B(U+ F q

B eq
.......... (4.43b)

where f (r) is given by (4.43) and g(r) by (4.33). Finally

0 0
(DB B cPA) = (DB B C A +

N r cosO {l + (.) 3 AFA r 1 + F (.4eq

is obtained from equations (4.43a and b) and is a useful form

in the later use of the boundary conditions at r = a, and in

the derivation of effective permeabilities.

4.1.2 Inside the Sphere

The differential equations inside the sphere are given

by (4.23) and (4.24) with equations (4.30) and (4.31)

presenting the respective forms for the solutions. Substitution

of (4.30) and (4.31) into (4.24) yields

r 2G" + 2rG' - 2G = 0 (4.45)

which yields a solution of the form

G = K2r (4.46)

and substitution of (4.46) into (4.31) gives
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D BAC - Pd'p = K2r cose (4.47)

The functional form of (4.47) satisfies the requirement that

AC and Ap vanish at r = 0. The constant K2 will be

determined from the boundary conditions at r = a. Substitution

of (4.47) and (4.30). into (4.23) yields

2 2 K2 ka pA + k2
r H" + 2rH' - (2 + r 2 )H 2 k Pr 3

A' B d
(4.48)

where A' is the characteristic length inside the sphere and is

defined analogously to (4.36) using parameters appropriate to

conditions inside the sphere

1 k ap + k
2 DB

k a ak C'0A2 T

Pd(k apA + k)

The particular solution to (4.48) is

K0
K2 kla pA + k2

part DB P d

The solution to the homogeneous part to (4.48) is a Bessel

function

H = r- 2 C /2 (r +homo 1 i3/2 5T '-32

Since, from equation (.4.30),

Ap (0) = H (0) = 0

it follows that

C = 0

(4.49)

(4.50)

(4.51)
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and the homogeneous solution is

Hhomo = Crr 2I 3/2 ( ) (4.52)

Use of (4.41) yields finally for H(r)

10K ka pA + k
H(r) = 2 ( A A___ _ r

B d

-1/2[ F 2 r sinh r/X)]
+ Kr-/ [ (cosh - sih H/A) (4.53)

By defining
K2

K 22 N A
NT

P
K' = T K

N a /Ta/2
A

and since

1 k a p 0 + k
(1 + F ', )X 2 (4.54)

eq B

equation (4.53) becomes

NT
H(r) = -K P r

2P,(1+ F r
dL eq

T
N Ta

+ A K' (a) 1/2 (_) 1/2 [cosh r sinh r/x' (4.55)
Pd 4 r r A r/4

If the constant K and K are known then p and C can be

determined at any point within the sphere since

p + AP = + H(r) cose (4.56)
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NT

B B B B + K rcosO + P H(r)cose
B B

.......... (4.57)

where H(r) is given by (4.55). Finally

(DACA - P = DAC ' - Pdp ) + K N r cose (4.58)

The problem that remains now is to evaluate the constants A,

K1 , K and K so that the concentrations inside and outside

the sphere can be fully specified. At this point the remaining

boundary conditions need to be utilized for each model

considered here: impermeable and permeable.

4.2 Impermeable Carrier Model

4.2.1 Solution for the Concentrations for the Species Inside

and Outside the Sphere

The impermeable carrier model considered here applies

specifically to case 6, Figure 2. The constants K1 , K , K ,

and A can now be solved through use of the boundary conditions

at r = a as shown in Figure 4.2. The case considered here

will be the case where the sphere is encapsulated by a very

thin inert skin (membrane) of finite permeability PS and

thickness L . The boundary conditions are as follows:

1. Continuity of flux of A at r = a

P A A a) - p- (a) = P at r = a
C~r L , A A d~r

.. .......(4.59a,b)

Substitution of (4.56) and (4.43a) into (4.59) gives



N T
A adf j

1+Feq drr=a

dH
Pd dr

T
P NA

= - - - P + F a [1 - f (a)] - H(a)}
s c eq

Use of the definitions for f and H given by equations (4.43)

and (4.53) yields after some algebraic work

- +F l 1+ A - K ( ) (-2-2 - ) (cosh--sinh -)]
eq eq

P
a s {l A + K (2(l+) (cosha-sinh )

Pc (+Feq s eq

1
1+F P P ,2 a a

+ K2 1+F - KP(1+F )p--( (cosh -Lsinh,)}eq d e da

1

= -K (l+F' ) + K ( ) [-2(cosh - inh )
eq

+ sinh ]

.......... (4.61b)

2. Skin impermeable to B

9C B
D3r

at r = a (4.62)

Use of equation (4.43b) gives

1+ a d
r=a

-0 (4.63)

Substitution of the derivative of g, which is defined by (4.33)

and (4.34), yields after rearrangements,
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r=a
(4 .60a)

(4.60b)

(4.6la)



-F (L- 2A)eq 1+F ,eq
K= x
1 1X~/2[(-2 2 - -) (cosh- sinh )]a aloB

3. Skin impermeable to 13'

3C0

3r =0 at r = a

Use of equation (4.57) gives

T
N P
A + c = 0
AB Bt of ( ) a

After substitution of (4.55) equation

F'

Sl+Feq

(4.66)

(4.66) becomes

K ( )l 2 [-2(cosh - sinh Xr) + r sinh

.......... (4.67)

Equations (4.61), (4.64), and (4.67) are the necessary

relationships to evaluate the unknown constants A, K1 , K , and

K'. Substitution of (4.64) and (4.67) in the first and last

terms of equation (4.61) gives

1+F l I eqeq eq
- 2A]

-% 4 (P)1/2 aaL
'a' [-2 (cosh - sinh + sinh

. .......... (4.68)

Substitution of (4.64) and (4.67) into the first and second

part of equation (4.61) and substitution of (4.68) gives

after algebraic manipulation
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(4.64)

(4.65)
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P d(1+F )R
P (l+F ) - P (l+F ( ce+f F)

A c eq d d. c. eq Pc

1+F 2 P (1L+F )Req 2P (l+F ) + P (l+F )[ (1-2f F ) + d eq m
c eq d d c eq P

(4.69)

where

f = - a (4.70)
c 2 + 2 +a

a A

(3 + 1) tanh a - 3

F' a
eq X, 2

(2 + 1) tanh , - 2
a aF d a=k

(3 + 1) tanh a 32 A'- a
1 + F '[l a

eq 2A' 2  a A'
+ 1) tanh , 2

a
..........(4.71)

and
P

R = d/a (4 .72)m ps/L
S

The parameter Rm is the ratio of the membrane mass transfer

resistance to the inert particle resistance. The characteris-

tic lengths A and A' here give a measure of the thickness of

shells outside and inside the sphere where deviations from

chemical equilibrium are significant. The factor Fd is

called the dispersed phase facilitation factor which will be

discussed later.

The constant A is now specified and K can be obtained

by substituting (4.68) into (4.67) so that
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K' = 2A (4.73)
2 1 + F

eq

Since A is fully specified K' can be evaluated from (.4.72),2

K can be evaluated from (4.68), and K, can be evaluated from

(4.64). The concentration profiles for A, B, and AB are fully

specified outside the sphere, and A', B', and AB' are fully

specified inside the sphere. For example, equations (4.43a),

(4.43) and (4.69) gives the partial pressure profile PA (or

concentration since CA = aApA) outside the sphere.

In the case that the membrane mass transfer resistance

is negligible (Rm - 0) the constant A as presented by (4.69)

reduces to

lF P (l+F eq) - P (l+Fd ) (l+fcFeq (4.74)
1+F eq 2P (l+F eq) + P d(l+F) (1-2 fc F eq)

while the expressions for K1 , K , and K remain the same.

Equation (4.74) can also be derived by using the no shell

boundary conditions as shown in Figure 4.2.

4.2.2 Application of the Model to Other Cases

For the potential # of species A outside the sphere,

Maxwell derived the following relationship (see Appendix A):

N a

0= A ()r cose {l + ( 3A) (4.75)
c

where A is defined as
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P - d
A -2? +d (4.76)

c d

The above relationship is valid for an inert sphere in an

inert continuum. In the case of a sphere in a reacting

medium the potential must be appropriately re-defined to

include the contribution to the potential by the carrier

species,

D BD
A -p DB C B0 (4.77)

(pA - B - P 'c c

From the previous section the potential outside a reacting

sphere in a reacting medium is given by

T

$= - () r cos G{l + (a)3 A (4.78)
r 1l+F (.8c eq

where A/(l+F ) is given by (4.74) for the case of negligible

membrane resistance

A P c(l+Feq) - P d(l+Fd) (l+f F )
l+F 2P (l+F ) + P q(+F )(1-2f F )eq c eq PdlF)(~ cFe

Comparison with Maxwell's equation shows that in the case of

a reactive continuous medium the constant A/(l+Feq ) is similar

to Maxwell's A. The effective continuous phase permeability

is given by

S(1+ F )
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and the dispersed phase permeability is increased by a factor

(l+Fd) times a factor that is a function of fc and F . The

dispersed phase facilitation factor Fd has the following

properties

Fd eq as - (4.79)

Fd = 0 as T + 0 (4.80)

and therefore exhibits the same properties as the homogeneous

systems' facilitation factor as discussed in the Literature

Survey. In the case that a/X' approaches zero the reactive

sphere becomes "inert" and equation (4.74) reduces to

P (1+F ) - eqlf
A _ c eq d eq d(lf F eq) (4.81)

1+F - 2P (l+F ) + P c(1-2f F

which is the solution for the case of an inert sphere in a

reactive continuum as presented by Figure 2, case 5.

Unlike the dispersed phase, the continuous phase

cannot be made unreactive by letting a/X approach zero. The

parameter f c is a function of a/A as is shown by equation

(4.70) and its effect is solely on the effective permeability

of the dispersed phase as is shown by equation (4.74). The

limits on f c are as follows

f = 0 a 0 (4.82)
c

_a

f = - + 0 (4.83)c 2
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and in no way, either from (4.82) and (4.83) or (4.74), can

the effective permeability of the continuous phase be made to

approach the value Pc as a/X approaches zero in the case of a

finite F . Regardless of how large X is relative to a,eq

equilibrium conditions have been imposed at r + by

boundary condition (4.27). In a qualitative sense,

nonequilibrium conditions in the continuous phase, as

indicated by small values of a/X, exist only locally near the

sphere while the total reactive continuous medium remains at

equilibrium. The only way that the reactive continuous

medium can be made inert is by making the effect of the

chemical reaction negligible. This requires that F is much

smaller than one. Since F is defined by

F D B k 1k2 aA T
eq Pc (k2 + k laApo)2

it can be made to approach zero by letting DB or CT approach

zero. By the appropriate choice of various parameters equation

(4.74) can now be reduced to various models.

1. Maxwell's relationship for an inert sphere in an

inert medium; case 2, Figure 2.

By letting F + 0 and either a/X' + 0 or F ' -+ 0,eq eq

equation (4.74) becomes

P - P
A = 2? d (4.84)

c d

and the potential $ is from (4.78)
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T

r cos {+ (a)3 A} (4.85)
c

Since N T N when F is zero, equations (4.84) and (4.85)
A A eq

contain the correct solutions for the Maxwell problem as given

by (4.76) and (4.75).

2. Reactive sphere in an inert continuum; case 4,

Figure 2.

By letting F + 0, equation (4.74) becomes
eq

A c d F) (4.86)
2Pc + Pd (1 + Fd)

and the potential $ is from (4.78)

= A )r cos a {1 + ( 3 A} (4.87)
c

In the nonreactive continuous medium the effective permeability

of the reactive dispersed phase is given by Pd (1+Fd) by

comparison with Maxwell's equation.

3. Inert sphere in a reactive medium; case 5,

Figure 2.

By letting F' -+ 0, or a/X' -+ 0, equation (4.74)
eq

reduces to

P (1+F ) - P (1+f F)
A c eq d c eq (4.89)

1+F - 2P (l+F ) + P (1-2f F )

and the potential $ outside the sphere is from (4.78)
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NT
$= - A )a o 0{ (3 A+ } (4.90)Ap- r Cos 0 l+ 3 A+

c eq

It is obvious that the impermeable reaction outside-

reaction inside model derived in the previous section is quite

versatile in that it can be applied successfully to the other

systems of interest.

4.2.3 Effective Permeability for a Suspension of Spheres

Consider a suspension of n reactive spheres, of radius

a1 , suspended in a spherical volume of reactive continuous

medium, with radius a2, which is suspended in an infinite

bath of the reactive medium. A unidirectional constant mass

flux of A is imposed on the infinite reactive medium at very

large distances from the spherical cluster (see Figure 4.3).

The suspension is sufficiently dilute that interactions between

spheres may be neglected. The potential at a point which is

located a large distance R from the center of the spherical

cluster (R >> a2 ) is given by

T 3NA nal A
= - (-)Rcos 6 {l + 3(4.91)

c R 31 + Feq

Equation (4.91) is obtained from (4.78) and the second term

in the brackets accounts for the disturbance on the potential

caused by the presence of the spheres. The constant A/(l+F )

is that defined for either an inert or reactive sphere in a

reactive medium. The potential can be equated to one derived

for the spherical cluster with an effective permeability P
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FIGURE 4.3

SPHERICAL CLUSTER OF REACTIVE SPHERES IN A REACTIVE
CONTINUUM
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NT 3
NA a2  A* (492

$= - (--)2R cos 0 {1 + -- }(.2
c R3 1 + F

eqq

where the constant A*/(,l+F eq) is that defined for an inert

sphere with permeability P in the reactive medium

A* P (1 + F ) - P(l + f *F )
A* _ 0 er _ nerJ(4.93)

l+F - 2P (1 + F ) + P(l - 2f *F )eq c eq c eq

Now f* is given by equation (4.70) with a equal to a2. However,c 2

since a2 >> a1 and the spheres do not interact with each other

it follows that a2 /X is sufficiently large so that f* is zero.2 c

The general relationship for the effective permeability, P, of

a suspension of spheres in a reactive medium is than

(l+F ) - 2DA

Pc (+F eq) (1+Feq ) + DA 1  (4.94)

Equation (4.94) is similar to that derived for the Maxwell

problem given by equation (A.15) but the factor A is dependent

upon many factors, including the partial pressure of species

A at the center of an individual sphere. Thus, the effective

permeability is defined only at a local point within the

suspension, or for the total suspension when the driving force

across the total physical system is extremely small. If one

considers a slab composed of such a suspension which has

imposed upon it a large partial pressure gradient of A, then

the average permeability of the slab may be calculated by

integrating the local expression as presented by (4.94) over
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the thickness of the film

x=L
PA
/ P dpA

RAVE x=L x=Q (4.95)
(p A PA

This expression for the average effective permeability is valid

if the expression for P is valid: the partial pressure

difference across each sphere must be small compared to the

local value of the partial pressure at the center of the

sphere, and the reaction in the continuous phase must be near

equilibrium.

The local effective permeability for a suspension of

reactive medium can be obtained from equations (4.94) and

(4.74)

2P (l+F )+P (1+F) (1-2F fd -2@ [P (l+F ) -
P______c eq d d eq c eq

P c (1+F eq) 2Pc (l+F eq)+Pd (l+Fd) (1-2Feq f + [P (l+F eq)-

c~ eq c eq d deqc e

-P (l+F )(1+F f )]d d eq (4.96)
-Pd(l+Fd)(l+F fc)

Again the form of (4.96) is quite similar to that derived by

Maxwell. In order to obtain the average effective permeability,

P must be integrated as shown by (4.95).

4.2.4 Effective Permeability for Other Heterogeneous Media

As has been stated in the previous section equation

(4.94) is the general relationship for the effective permeability
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for a suspension of spheres in a reactive medium. The general

relationship for a suspension of spheres in an inert medium

(F = 0) is

T _ 1 - 2 A (497)
P l+ MA
C

where A is the constant for either a reactive or inert sphere

in an inert continuum. Equations (4.97) and (4.94) can be

applied to derive local effective permeabilities for specific

systems, or the very same equations can be derived by inspection

from the local effective permeability equation for the

impermeable model as presented by (4.96).

1. Maxwell's relationship for a suspension of inert

spheres in an inert continuum.

By letting F = 0, and a/X' + 0 or F' + 0, equation
eq eq

(4.96) reduces to

- 2P + P - 25[P - Pd]

P 2P + P + 2[P - P ](4.98)c c d c d

2. Suspension of reactive spheres in an inert

continuum; case 4, Figure 2.

By letting F 0, equation (4.96) becomes
eq

2Pc + Pd (l+Fld 24D[Pc-Pd(1+Fd)] (499)
P 2P0 + Pd (l+Fd) + (D [Pcd (l+Fd
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3. Inert sphere in a reactive medium; case 5,

Figure 2.

By letting F' + 0, or a/A' -+ 0, equation (4.96)

reduces to

2P (l+F ) + P (1-2Feq f c)- 2 [P c(l+F )-P (1+F f )]
Pc eq___qcc eq d eq c

P (l+F ) 2P (l+F ) + P (1-2F f + 4)[P (l+F )-P (1+F fc
c eq c eq d eq c eq d eq

........... (4.100)

4.3 Permeable Carrier Model

The permeable carrier model refers to case 7, Figure

2.2 where a mobile carrier species is present in each phase,

continuous and dispersed, and the carrier and carrier-complex

species can diffuse from one phase into another. Whereas in

the impermeable carrier model B, AB and B', AB' can be entirely

different species, for the permeable carrier model these

species are the same. However, the kinetic reaction rate

constants and activity coefficients are permitted to be

different in each phase. The boundary conditions at r = a

are shown in Figure 4.2 and these are utilized to determine

the constants A, K1 , K and K1. For convenience the equations

derived in Section 4.1 are summarized outside the sphere:

NT

p(1F ) [r - af(r)]cos 6 (4.101)
c eq

F NT
CB - C ) 1 eqA [r + ag(r)]cos 0 (4.102)B B DB 1Feq

T
N ca

_ -A r co l + a)3 A(413
- - a r 1+F e
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where

f (r) = - A 2
1+F r

+ K (E -1/2.() 1/2 (1 + ) Icosh }
lar r

sinh (4.104)

(4.105)g (A 2 + f (r)

eq eq

inside the sphere,

pA -PA

C' - CB

SH (r) Cos e

T
K'N a P

- cos B +5 d H(r) cos 0
- DA a BI

BB

T
K'N a
< 2A r Cos
Pd a

(4.108)

where

NT a NT sinhr
H(r) = -K2 A r + KA a K 1/2 /2 r [ h -

2P(1+Fqa P 4 r r 

........... (4.109)

Solution for the Concentrations for the Species

Inside and Outside the Sphere

From Figure 4.2 the boundary conditions at r = a are

as follows:

1. Continuity of total flux of A at r - a.

(DBCB ~ C A (D CA - Pdp
at r = a

.......... (4.110)

(4.106)

(4.107)

4.3.1
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If equations (4.103) and (4.108) are utilized, equation (4.110)

becomes,

K' = 2A
1 eq

(4.111)

which relates K to A.

2. Continuity of the potential species A at r = a

pA =
at r = a (4.112)

Substitution of equation (4.101) and (4.106) yields

- NT

P (1 +AF a [1 - f(a)] = H(a)
c eq

(4.113)

The definitions of f(r) and H(r) are given by (4.104) and (4.109)

so that

1 + A - K (1)1/2( 1 + A)(cosh a sinh )
eq

K c eq - K lFP (1+F dd eq eq

() 1/2 - s' a
.a [cosh )7r a sinh i

3. Continuity of the potential of B at r = a

pB B

or
CB

(-) =

C'
(-)

at r = a

at r = a

(4.114)

(4.115)

(4.116)
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where is the activity. This boundary condition is analogous

to the second boundary condition that specifies that the

potential of A (or activity) is continuous across the phase

boundary. Substitution of (4,102) and (4.107) into (4.116) and

use of the relationship

C C'0B B
B BA

(4.117)

gives

{ 1+ N a[1+ FA + f(a)

B B eq eq eq

NT
B B d

= -y {K r a + 5- H (a)}
B B B

(4.118)

Substitution of the functional forms of f(r) and H(r) as given by

(4.104) and (4.109) yields

Fq A 1 A + 1 'l()1/2 Aa
1+ {l + F l -+ - -)/ (1 + -)[cosh -- sineq q eq eq Fanh1+Feq{1 Feq 1Feq Feq Feq a ( .cs

= B {K
B B

-K' 1 + '1/2 aa sn
-2 l+F' + K4(-) [cosh r - inh

eq

4. Continuity of the dissolved species flux on r = a

cpA A
Pc Dr d 3r

at r = a (4.120)

Use of equations (4.101) and (4.106) gives
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NTA d f PdH .. 11
A+ [1 - a -| = Pdd (4-121)1+F dr r=a d dr r=a

which becomes

- 1 2 - K (X)l/2[ (-2 -2 - ) sinh )]}
1+F !+F 1 a a (cs -sih)J

eq eq

1 1 +a a
S-K2 1 + K ()l 2 [-2(cosh - sinh ) + sinh ]

2l+F' a~- sa n
eq

(4.122)

The resulting four equations (4.111), (4.114), (4.119), and (4.122)

are the necessary relationships to completely specify the constants

K1 , K , K , and A. The use of equation (4.111) in (4.114), (4.119),

and (4.122) will eliminate K . Solution for K1 , K and A is

straightforward and the final results are

P (l+F)
(1 + F - 2A)[P (1+F ) - (1 + F + A)

dq eq1+ eq
K' = F (4.123)

(1+F ) [- (a )1 /2 [cosh - sinh ]-
d eq

K - 1{(+l1+
1 ( ) 1/2 (1 + )(cosh - sinh ) 1

a a

2A P c(l+F e)

(1 l+F Pd1+F
eq d eq

P ( l+F, )
(1 + F - 2A) (l+F ] (1 + F + A)

eq A[Pd(1+Fq eq
+ F } (4.124)

'F'[1 -eq
eq
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P (1+F ) -P (l+F' 1
A c eq d eq 1- (4.125)

1+F
eq 2P (1+F + P (l+F

c eq d eq) l1 Q

where
f F' - F 2

c eq eq
F l + F

Q = eq eq (4.126)

P (l+F' ) (F ) 2- tanh ar (2 - + a)
c eq eq + f c aPd1+F) (F' ) c 1- tnE'al+eq eq 1 -tanhx

and fc is again defined by (4.70). The constants K1 , K>, K , and

A are now completely specified by equations (4.124), (4.111),

(4.123) and (4.125). In arriving at the relationship for A use

was made of the relationship

B B - c eq (4.127)

eq

Equation (4.127) is a thermodynamic constraint, and is equivalent

to maintaining the equilibrium constant, based on activity, the

same in each phase

K = K' (4.128)
a a

where

K = PAB (4.129)
a PA B

Equation (4.127) can be derived from (4.128) in a straightforward

manner. Since the total carrier concentration inside and outside

the sphere is constant,



CT C + Co
T B AB3

B + A0
B'PB +cAB AB

C = Co' + C = op 0  + a A
T B AB B B c B PAB

If in addition it is assumed that

a= AB1~B AB (4.130)

and

(4.131)A' = a'
B AB

then the thermodynamic constraint in terms of equilibrium constants

based on concentration is

KaA = K'a (4.132)

where

K = AB AB
CA CB a AC B

It follows from equation (4.132) that the following relationship

is also valid

I -K --A A

(aApA + 1 = 1 (4.133)

o 21
(K'apA + 1)

Since F and F' are defined as
eq eq

F
eq

F'eq

D BKaA CT

Pc (KaApo + 1) 
2

D K'aC'

= T 2

P (K'ap 0  + 1)2
d A A

(4.134)

(4.135)

144
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substitution of equations (4.134) and (4.135) yields equation

(4.127).

Equations (4.130) and (4.131) are reasonable

assumptions if the carrier does not undergo major physical

changes upon binding the solute A. In the case that equation

(4.130) and (4.131) are physically untrue the theory can be

appropriately modified in a straightforward manner.

4.3.2 Application of the Model to Other Cases

The relationship (4.125) derived for the permeable

carrier model can be reduced so that it gives valid solutions

for other systems of interest. Investigation of (4.125) shows

that some similarity exists between it and Maxwell's model.

Again some of the comments made in section 4.2.2 are valid here.

1. The equation derived is valid for a sphere in

a reactive medium that is virtually everywhere

at equilibrium. Nonequilibrium conditions can

exist in shells of thickness X and X' outside

and inside the sphere.

2. As a/X approaches zero the reactive continuous

medium does not approach inert conditions

throughout. At distances much larger than A

equilibrium must be attained because of mathema-

tical constraint (boundary condition) as r -+ o.

In order to reduce the general relationship to

continuous inert problems F must be set to

zero in order not to violate boundary condition

(4.27).
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Application of (4.125) under the specific constraints will yield

valid expressions for the following heterogeneous sytemns of

interest.

1. Inert sphere in an inert medium: the Maxwell

problem.

Setting F equal to zero, and letting a/X 0, oreq

setting F' = 0, equation (4.125) reduces to Maxwell's relationship.eq

It should be emphasized here that "permeable" and "impermeable"

models become indistinguishable for the inert continuous medium.

If F is zero, this implies that the carrier concentration is zero

in the continuous phase (it cannot exist) or the diffusivity of

the carrier is zero so that it can neither diffuse in or out.

2. Reactive sphere in an inert medium.

By setting F equal to zero, equation (4.125) reduces

to that given by (4.86).

3. Inert sphere in a reactive medium.

For this particular situation the "permeable" and

"impermeable" model will give different results. Even if no

reaction occurs inside the sphere the permeable carrier model

allows the carrier to diffuse through the inert particle, while in

the impermeable model the carrier must diffuse around the particle.

By letting a/X' approach zero so that the sphere is essentially

nonreactive. Q in equation (4.126) becomes
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f '. -F
c eq eq 2

E' 1l+F

Q* = e _ eq (4.136)
P (l+F' )F

c eq eq - 2 f
Pd(l+F )F ' c

It should be noticed from equation (4.136) and (4.125) that

A/(l+F ) is still a function of F' eventhough the reaction iseq eq

negligible inside the sphere. The relationships can be expressed

solely in terms of F since the thermodynamic constraint given by

(4.127) still holds. If in addition F' is set equal to zeroeq

equation (4.125) gives the equivalent result that is obtained from

the nonpermeable model as given by equation (4.89). By setting

F' zero the carrier either does not exist inside the sphere, oreq

its mobility is zero, and the permeable model is essentially

reduced to the nonpermeable model.

4.3.3 Effective Permeability for a Suspension of Spheres.

The derivation of the effective permeability for a

suspension of spheres in a reactive medium has been given in

section 4.2.3. From equations (4.94) and (4.125) the local

effective permeability for the permeable model is

2Pc(1+F )+P (l+Fe )q[ ]-2l{Pc(l+F )-P(l+F )[ ]}

P (l+F ) 2P +F F )+P (l+F1 )[ ]+4{P(l+F )-P (l+F' )[
c eq c eq d eq 1-Q c eq d eq Q

.......... (4.137)

The average effective permeability is again
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L
PAL o

PAVE f 0 dpA/(pA P )

AA

4.3.4 Effective Permeability for Other Heterogeneous

Systems

The relationship for the local effective permeability

obtained for the permeable model as presented by equation (4.137)

can be used to derive analogous relationships for the other

heterogeneous media of interest.

1. Effective local permeability of an inert suspension

of spheres in an inert medium.

By letting F = 0, and a/X' + 0 and/or F' = 0,
eq eq

equation (4.137) reduces to Maxwell's equation.

2. Effective local permeability of a reactive

suspension of spheres in an inert medium.

By letting F = 0, equation (4.137) reduces to that
eq

given by (4.99).

3. Effective local permeability of a suspension of

inert spheres in a reactive medium.

a. Permeable carrier.

By letting a/X'approach zero, equation (4.137) reduces

to

P _ 
2Pc (l+F )+Pd (1+Fq) ( )-2)[Pc (l+F d d+F' ) ( 1)]

P (l+F ) 2P (l+F )+P (l+F )( ) +4 [Pc(l+F )-P (1+F 1
c eq c eq d eq .eq d eq(41 )

. 6 6 00 (4.138)
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b. Impermeable carrier.

By letting F' = 0 and a/X'+ 0, equation (4.137)
eq

reduces to that given by (4.100).

4.4 Adair Reaction Scheme Inside the Dispersed Phase -

No Reaction in the Continuous Phase

The two models developed in the previous sections

have been shown to be quite versatile in that they can be reduced

to the various cases shown in Figure 2.2. The models were

developed for a second order reversible reaction, as an example

only, and the theoretical procedure can be utilized to arrive at

solutions for different reaction schemes (in identical or other

types of media). In this section a solution will be discussed

for a four-step reversible reaction scheme involving the

diffusing species A inside the dispersed phase with no reaction

in the continuous phase (see case 4, Figure 2.2). The four-step

reaction scheme was proposed by Adair (1925) to model the

reaction of oxygen with hemoglobin and this reaction scheme has

been discussed in Appendix B.

Consider a single sphere, of radius a and

permeability Pd' immersed in an infinite liquid medium of

permeability Pc. A constant mass flux N A is imposed at large

distances from the sphere (as shown in Figure A.1). Inside the

sphere the species A reacts with the carrier species B (which is

constrained to remain within the sphere) in a four-step reaction

scheme



A + B

b

k 2
A + B 4-

b 2

k 3
A + A 2B 

b 3

k
4

A + A3 B
bg 4

AB,

A 2 B,

K =1 b

k
K k2

2 b 2

A3B

A 4 B,

K ~k3
K3 b 3

Kk
K4 b 4

Here k. is the forward rate constant, b. is the reverse rate
J J

constant, and K. is the corresponding equilibrium constant.
J

The mass conservation equations inside the sphere are of the

form

V2(D.C. = R. (4.139)

where V2 is the Laplacian in spherical coordinates, which (for

azimuthal symmetry) is

Vu2 1 9 (r2 a + 1 - (sin DU (4.140)
r 2r Dr r sinO 3e6 3P

and R. is the rate per unit volume of the depletion of species i.

Mass conservation equations of the form of (4.139) apply to the

species CA' B' CA B' A3B, and CA4B inside the sphere. In

this section the primes have been omitted to denote conditions

inside the sphere, and the asterisk will be used to denote

150

(4.139a)

(4.139b)

(4.139c)

(4.139d)
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conditions outside the sphere. Outside the sphere the sole

species is A and the mass conservation equation in spherical

coordinates is

V2 (D*C*) = 0

or

V2(p)= 0

The boundary conditions for this problem are;

(4.141)

inside the sphere,

at r = 0
=

(4.142)

at the sphere boundary,

pp

aCB

@r

at r = a

at r = a

aCAB 3 A 2B 3 A3B

3r 3r3r

at r = a

(4.143)

(4.144)

3CA B
4r

(4.145)

and far away from the sphere,

ap* -
pc . A- -N A cosO6 as r - (4.146)

The solution for the partial pressure variation of A

outside the sphere is of the form

p* - pl = A r cos 6 l+ A ( ) 3A - {l+ Pa3 (4.147)

c 3r
p A

d 3r
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The potential outside the sphere is given by (p* - p ) so that

NA 3
S= - r cos G {l + A(-) }r (4.148)

The solution of the equations inside the sphere is obtained by

a linearized perturbation analysis similar to that described

earlier. Before proceeding it will be assumed here that the

diffusivities of the carrier species are equal

D B D = DA2B DA B DA B (4.149)

It can then be shown (Appendix C) that the total carrier

concentration is a constant throughout the sphere

CB + C + CA2B + CA3B + C A+CB = C T (4.150)

from which the concentration CA B can be eliminated. The
4

concentration of the other species are expanded as small

deviations from conditions at the center of the sphere

pA 0 +
A PA+APA

CB = C B + ACB + B

C C0  + AC'AB AB AB

= C0  + ACA2B A

= C 0  + ACA 3B A

= pA+f(r) cosO

= C B + g (r) cos 0

S + h (r) cos eAB

= Co + i(r) cos e
2B A2

B = C AB j(r) cos e
3 B A 3B

C

C AB
A2B

CA3B

(4.151a)

(4.151b)

(4.151c)

(4.151d)

(4.151e)
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After substitution of these equations in the conservation

equations inside the sphere, and elimination of second order

terms, one arrives at five differential equations in f, g, h, i,

and j. Appendix C gives the solution in detail. Once the

constant A has been determined, the effective permeability can

be obtained (utilizing Maxwell's technique) from

P _ 1 - 2 A (4.152)
P l + Ac

As shown in Appendix C, if the reactions (4.139) are at

equilibrium throughout the sphere, the constant A is given by

-P [l + FAdair

A = c d eq (4.153)
2P + P [l + FAdair
c d eq

where the equilibrium facilitation factor for the Adair four-

step model is given by
0

4D C Tz )

FAdair _ dpA (4.154)
eq Pd

The term dy/dpA is the slope of the hemoglobin saturation curve.

The effective permeability can therefore be obtained from

P (1 + FAdair + 2P - [P P (1 + FAdair
P _ d eq _ c [c d eq (4.155)
Pc P ( + FAdair + 2P + @[P -P (1 + FAdair

d eq ) c c d eq

Equation (4.153) and (4.155) show that the dispersed phase

Adair
permeability of A is increased by a factor (1 + F ).

eq

In the case that the reaction is not at equilibrium,

it is shown in Appendix C that the solution for A depends on
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four eigenvalues. The four eigenvalues, 6., for the four-step

model correspond to the characteristic length A of the one-step

model. Although in the Adair four-step model there are four

reactions and four 6 , there is not an one-to-one correspondence

between a specific reaction and any of the 63.. Changing the
J

rate constants for an individual reaction will change all . as

they are each dependent on all the rate parameters. Each .

represents a solution to the differential equations governing

the four-step reaction scheme.

In the case of nonequilibrium conditions inside the

sphere the constant A is obtained by solving (see Appendix E)

a system of ten equations containing ten unknowns (including

A). Since the effect of a reversible chemical reaction involving

mobile carrier species is to increase the steady state mass

transfer flux of the diffusing species it can be shown that the

constant A must be of the form

P - P (1 + FAdair

A = c ddalr (4.156)
2P + Pd (1 + FAdair

where FAdair is the nonequilibrium facilitation factor. The

effective (relative) permeability of the heterogeneous medium

can be obtained from (4.152) by substitution of equation (4.156)

for A, which yields

P (1 + FAdair + 2P - 2[P - P (1 + FAdair
P ddairAdadr(4.157)
c Pd(l + FAdair + 2P c + [Pc P d(1 + FAdair

If FAdair is near zero equation (4.157) reduces to Maxwell's
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equation. The average effective permeability over a large

driving force is obtained by integrating the local effective

permeability P over the total partial pressure range

x=L
PA-
A PdpA
x~=0

DAVE x=L x=O (4.158)

A ~A

Note that once PAVE has been determined the flux can be

calculated from Fick's law.
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5. ANALYSIS AND APPLICATION OF THEORY

In the reduction of the impermeable carrier model

and the permeable carrier model to other systems of interest,

it was shown that the two models give the same predictions for

the case of a reaction inside the dispersed phase, but no

reaction inside the continuous phase. The case of reaction

inside only is of interest because it is the model for oxygen

diffusion in whole blood. In addition to the one-step reaction

in the dispersed phase, a four-step reaction scheme in the

dispersed phase was developed in chapter four. These will be

referred to as the one-step and the four-step model. These

two reaction models will be discussed and applied to oxygen

transport before considering the general impermeable and

permeable models.

5.1 Reaction in the Dispersed Phase Only

5.1.1 One-Step Model

5.1.1.1 Single Sphere in a Continuum

In order to reduce the general model (permeable or

impermeable) to the case of reaction inside the dispersed phase

only, it was shown earlier that F must be set equal to zero.

The partial pressure pA inside the sphere is given by equations

(4.56), (4.55), (4.68), (4.73), and (4.86) and is
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TN Ta 3P
0 A r _ _ _

A PA P a 2P + P (l+F

F' ( 3/2' r - sinh(r/x')
I L IT r/X' X

( )+ eq r r r/'
1+Feq (l+F' )( )l 2 [2(cosh a - sinh { r + a sinh a

eq eq a 3T -aX' x'osiK

...... (5.1)
The partial pressure PA outside the sphere is obtained from

equations (4.43), (4.43a), (4.64), and (4.68) and is

N a P P (1 + F )A A P ) {1 + ()3 c d(+ d 1} cos e (5.2)
PA = A P a r 2P c+ P 1+ Fd)~

(Subscript d or superscript prime refers to the dispersed phase.)

As discussed earlier the partial pressure of species A outside

the sphere is given by the imposed potential field plus a term

accounting for the presence of the sphere. The relative effect

of the disturbance term decays with the cube of the distance

from the center of the sphere. The dispersed phase facilitation

factor Fd is the relative amount by which permeation of species

A across the sphere is increased by carrier-facilitated

transport. Insofar as the concentration field outside the

sphere is concerned, the effect of chemical reaction is simply

to increase the apparent permeability of the sphere which is

given by Pd(1 + Fd). When no reaction occurs, or the reaction

effect is insignificant with respect to diffusive transport,

F d is zero and the problem reduces to that of an inert sphere

in a continuum (Maxwell Problem).

The facilitation factor Fd was derived by utilizing

a single-point linearization similar to the approximation

employed by Friedlander and Keller (1965), and the functionality
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of Fd is given by equation (4.71). In Figure 5.1 a comparison

is given between the facilitation factor Fd derived by

Friedlander and Keller for a slab, given by equation (3.39),

and the facilitation factor derived here for a single sphere

(Note: the subscript d and superscript prime are irrelevant

in this comparison). The facilitation factor depends only upon

F' and a/A' (or L/A') and the case chosen here is consistent
eq

with parameters (listed in Table 5.1) occurring inside the

red blood cell at 250 C. At large a/A', Fd approaches its

maximum value which is characteristic of chemical reaction

equilibrium throughout the sphere. As a/A' decreases, Fd

decreases as the chemical reaction departs from equilibrium

within a boundary layer at the sphere surface, the thickness

of which is of order A'. Note that the Friedlander and Keller

facilitation factor, for permeation through a one dimensional

slab, approaches F' in the same way as the solution for aeq

sphere. That is to say, when A' is very much smaller than the

size of the sphere, the boundary layer is a spherical shell

which is essentially one dimensional in character. The

influence of spherical geometry begins to have an effect when

A' is greater than 20% of the sphere radius.

In Figure 5.2 radial profiles are shown for species

A (partial pressure) and B (concentration) at the axis of

symmetry. The profile of B inside the sphere can be obtained

from equations (4.57), (4.55), (4.73), and (4.86) and is
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T

N Ta F,'
C = C 0 + D (1 - 2A) () { F'BB DA a 1+ F'

B eq

F 3() (V 1 /2 [cosh--- sinh (r/'
eq ra r[c'r/h

(1 + F') ( )l/2 [-2 (cosh - sinh ) + sinh ]eq a TA a ATA

.......... (5.3)
The curves in Figure 5.2 are plotted for a case where the

permeabilities of the dispersed and continuous phases are equal.

They show qualitatively the effects of increasing facilitation

factor as a/A' increases. For the inert case (a/A' = 0), the

partial pressure of A is linear in r across the entire sphere.

When reaction occurs, the profile is curved over a region

comparable in length to A' . As Fd increases towards its

equilibrium value F1q, the apparent permeability of the sphere

increases and the partial pressure of A at the surface of the

sphere decreases. As a consequence, the concentration or

partial pressure differences across the sphere are less than those

imposed over an equivalent dimension in the free stream far from

the sphere. This reinforces the validity of the key assumption

in the analysis that is, the grounds on which the second order

terms in the reaction rate expression are dropped.* The

concentration profiles of B behave in a qualitatively similar

fashion except that the gradient at the surface is zero. The

concentration profile of B becomes successively steeper as a/A'

increases and equilibrium conditions are attained throughout the

sphere. Note that for a/A' = 10 the reaction is close to

equilibrium near the center of the sphere, and since CB for

a/A' = 10 is greater than the equilibrium value of CB at a/A' + o,

* It also reinforces the use of single point linearization.
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the profile of A (Figure 5.2) will dip below the equilibrium PA

profile near the center of the sphere.

Figure 5.3 shows qualitatively the local partial

pressure field (potential) when the permeability of the sphere

is either less than or greater than the surroundings for the

case of no reaction inside the sphere (Maxwell's problem). As

expected, curves of constant potential outside the sphere (pA

tend to bend away from the region of higher permeability, but

within the sphere (p ) they are straight lines. Notice that

the disturbance on the potential outside the sphere decays

rapidly as the distance from the periphery of the sphere

increases. When a chemical reaction occurs inside the sphere,

the interior loci of constant partial pressure, p , become

curved as shown in Figure 5.4. Figure 5.4 has been drawn so

that the field outside the sphere does not change by making

the apparent permeability of the sphere the same, with or

without reaction. As has been discussed before, the partial

pressure of A is equivalent to the potential # in the case of

an inert continuum. For the case of a reactive sphere in an

inert continuum pA still represents the potential outside the

sphere, but p no longer is the potential inside the sphere.

The potential must be appropriately defined to include the

effect of the chemical reaction, so as to satisfy Laplace's

equation and can be taken as

= (p - p ) - CA + D + Dcos (5.4)
A d o
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inside the sphere and

= pA - (5.5)

outside the sphere. The constants D and D2 can be

evaluated by requiring

$' = $ at r = a (5.6)

p = PA at r = a (5.7)

so that
D'

D C 0  (5.8)
d

and T

D A [-(l + A) + (1 - 2A)] (5.9)
c d

where A is given by equation (4.86). The form of the potential

is somewhat arbitrary in terms of the constants because as

defined by equations (5.4) and (5.5) and boundary condition

(5.6) the potential has been made arbitrarily continuous

across the sphere boundary. Once the potential has been

defined the flux can be calculated by

22.

(2 l r sin e de, (5.10)
( ) 1 dr

The flux outside and inside the sphere is therefore given

respectively by

T 2
($2)~. N A sin 2 6 A) (r a)2 (5.11)

21 hd 2 fr

(where the limits of integration are from zero to 0) .
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T 2

an (a - ) - 2 1 - 2A) sin 6 (5.12)

Complete flux, potential, and partial pressure plots, are shown in

Figure 5.5 . Here predominantly vertical curves are loci of

constant potential or partial pressure, and the predominantly

horizontal lines are streamlines or lines of constant flux

difference. In the absence of reactions inside the sphere,

these two sets of curves are, of course, mutually orthogonal

and are calculated so that they form curvilinear squares outside

the sphere. For reference, the case of equal permeabilities in

the dispersed and continuous phases is shown in the left hand

figure. Lines of constant potential are all vertical and lines

of constant mass flux difference are all parallel to the

imposed potential gradient.

On the right hand side are figures for three sets of

conditions involving a sphere exposed to the same imposed

potential gradient (or mass flux). At the bottom, the

permeability of the sphere is less than that of the surroundings

for the case of no reaction. Constant potential lines bend into

the sphere (as they do for the left hand side of Figure 5.3)

while the streamlines bend away from the sphere as most of the

mass diffuses around it. In the center figure on the right

the reaction has been turned on, and lines of constant partial

pressure are plotted. Inside the sphere, of course, these two

sets of lines are no longer orthogonal. When the potential

function is appropriately defined to include the effect of

chemical reaction as given by equation (5.12) the isopotential

lines and streamlines will again be orthogonal, as shown in
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FIGURE 5.5a

LOCI OF CONSTANT PARTIAL PRESSURE OF SPECIES A
INSIDE AND OUTSIDE THE SPHERE.
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the figure in the upper right. The lines of constant flux

difference for both figures bend towards the sphere as most of

the mass near the sphere diffuses through the sphere. The

partial pressure loci (in the right hand middle figure) are

severely curved near the periphery of the inside of the sphere

because the carrier species concentration gradient near the

periphery must approach zero so that most of the flux (near

the periphery) is by diffusion of A which requires a large

gradient in A.

The top figure can also represent an inert sphere

in an inert continuum for the case

Pd(no reaction) = Pd(1 + F)

The potential and flux definitions are valid generally since

the term in equation (5.4) due to the presence of the carrier

species reduces to zero as a/A' approaches zero.

Finally an interesting graphical result is

obtained when Pd(1 + Fd) is smaller than P c In this case

partial pressure profiles outside the sphere bend towards the

sphere, and the partial pressure profiles inside the sphere

bend towards the periphery of the sphere as shown in Figure

5.5a, reversing curvature.

5.1.1.2 Permeability of a Suspension of Spheres:

Application to the Oxygen-Hemoglobin System

Once the outside potential is fully described as a

function of r and 0, an effective permeability can be obtained
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for a dilute suspension of spheres. From the previous chapter

the effective permeability is given by equation (4.99)

P 2Pc + Pd (1 + Fd) - 2.[Pc d (1 + Fd)]
(5.13)P 2Pc + Pd(l + Fd) + [P c d ( 1 + F d)(

It is interesting to analyze the behaviour of the above

relationship in terms of criteria similar to those given by

equations (3.2) and (3.3)

= 0 P = Pc (5.14)

= 1 P = Pd(1 + Fd) (5.15)

Equation (5.13) exhibits the correct behaviour. Notice that,

for a "homogeneous" medium of the dispersed phase, the

permeability would be

P = Pd (1 + F ) (5.16)

if the film thickness L should be of such a magnitude that L/X'

is large enough so that equilibrium is established throughout

the film. In the case of a "heterogeneous" medium of the

dispersed phase (at maximum volume fraction D = 1), one still

has boundaries between adjoining particles that require the

gradients of the carrier species to reduce to zero at each

interface. This situation may be approached by packed red

blood cells where volume fractions near one may be attained

since the red blood cells are deformable. Even though in this

case the particles are not spherical, equation (5.13) through

(5.15) still will give a reasonable quantatative approximation
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of the real situation. Notice that if the reaction is at

equilibrium inside the sphere, the carrier concentration

gradient inside the sphere adjusts to zero in an infinitely

thin boundary layer at the periphery of the sphere so that in

this case (5.15) reduces in that case to (5.16).

Equation (5.13) will now be applied to the problem of

oxygen transport in red blood cell suspensions. The oxygen-

hemoglobin saturation curve has been discussed in Appendix B

and was shown to be sigmoidal in nature. The one-step reaction

scheme leads to a hyperbolic saturation curve. Figure 5.6

compares the hyperbolic saturation curves for various equilibrium

constant with a sigmoidal saturation curve with a p50 of 10 mm

Hg. The p50 here is the partial pressure at 50 per cent

saturation, and a p50 of approximately 10 mm Hg is consistent

with human blood in the presence of 2,3 DPG at 250C. It should

be obvious from Figure 5.6 that a sigmoidal saturation curve

cannot be fitted with a one-step saturation curve regardless of

what equilibrium constant is used. The one-step approach

therefore is an approximation to the real physical situation,

but as has been discussed in Chapter 3, it remains a reasonable

model in light of the results of the kinetic experiments

performed by Roughton and others. The analysis performed here

can be extended to the four-step scheme (see next section) that

more closely models the sigmoidal saturation curve. However,

as has been pointed out in Appendix B, the Adair scheme too

is still an approximation (of higher accuracy than the one-step

model) as has been indicated from experimental results obtained
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by Roughton et al. (1971) and Gibson (1973). The kinetic rate

parameters chosen here are those given by Gibson (1959) and are

equal to those used by Kreuzer and Hoofd (1970, 1972).

Figure 5.7 shows the characteristic length X calculated

as a function of oxygen partial pressure inside the red cell at

250 C for the one-step model. Oxygen and hemoglobin diffusion

coefficients were taken from Kreuzer's review (shown in Figures

3.7 and 5.8) at red blood cell concentrations, and the oxygen

solubility from Table 3.3. The parameters are consistent for

whole blood at 25 0C (red blood cells in plasma) and are

tabulated in Table 5.1. The hemoglobin concentration is given

in terms of the total heme concentration (four times the

hemoglobin concentration).

The characteristic length X'varies from 0.1 to 0.15 pm

and reaches a maximum at about 24 mm Hg. The facilitation

factor Fd calculated from these parameters is shown in Figure

5.8. Fd is plotted as a function of sphere radius for various

values of oxygen partial pressure. The upper and lower bounds

for the equivalent radius of the red blood cell treated as a

sphere are given, first, on the low side by the smallest half-

thickness of the red blood cell, taken as 1 ym, and second on

the high side by the largest half axis of the red cell, taken

to be 4 Pm. Within these bounds, the facilitation factor varies

from 40 to 80% of its equilibrium value. The curves depend

markedly upon partial pressure primarily because of its effect

on the equilibrium facilitation factor F' and only secondarilyeq

because of the dependence of 2' in partial pressure. For a
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TABLE 5.1

PARAMETERS EMPLOYED IN CALCULATIONS

0.020 moles/liter (one step model)

0.005 moles/liter

- aA 1.75 x 10-6 gr-mole/liter/mmHg

= 0 .65 x 10-5 cm2/sec

= 0.76 x 10 cm 2/sec

= DA

= DB

KINETIC PARAMETERS

One-Step Model:

ki = 3.0 x 106 liter/mole/sec

k = 42.8 sec~1

Four-Step Model:

With 2,3 DPG* Stripped of 2,3 DPG**

= 1.77 x 106

= 1900

= 3.32 x 106

= 158

= 4.89 x 10 5

= 539

= 3.30 x 106

1.47 x 106

136

3.52 x 106

15.7

1.58 x 106

138

3.30 x 106

= 50

liter/mole/sec

sec~

liter/mole/sec

sec

liter/mole/sec

sec~

liter/mole/sec

sec~1

* Exact concentration of 2,3 DPG not known (probably 1 mole

DPG: 1 mole Hb). T = 21.5 0 C, pH = 7.0.

** T = 20 0 C, pH = 7.0.

C T

aO2

b
3

k

b
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D = 0.65 10~cm sec
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0.14 a = 1.75 x 16 r5ole liter' mm Hg
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one-step reaction and at fixed a, Fd attains a maximum value as

partial pressure approaches zero.

The local effective permeability values consistent with

these facilitation factors for whole blood as a function of

oxygen partial pressure are shown in Figure 5.9. Tbe curves

are plotted for the bounding estimates of the red cell equivalent

sphere radius, for a sphere with equivalent red cell area, 1.6 pm,

and for the inert and equilibrium limiting conditions. For large

partial pressures of oxygen all curves approach the inert

situation since F continuously decreases with increasing partiald

pressure. At high oxygen concentrations the reaction saturates

and the effect of the chemical reaction is negligible. It is

noteworthy that the effective permeability is somewhat less

sensitive to a departure from chemical equilibrium than is the

facilitation factor itself. For example, in the limit of zero

partial pressure, the permeability for a suspension of spheres

with a 1.6 pm radius is only about 24% lower than the

comparable value for reaction equilibrium, whereas the facilita-

tion factor is about half of its equilibrium value. This is due

in part to the fact that plasma, which constitutes 55 per cent

of the total volume, has a significantly higher permeability

than the red blood cells so that the chemical reaction effects

are somewhat "dampened" by the continuous phase volume.

The average effective permeability over a specified

partial pressure range is proportional to the area under the

curve
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For the equilibrium case the integral in equation (5.17) can be

obtained in closed form

t - Atan-' q (K'a p) - tan~1 a (K'ap (2) + l

AVE c q K' Vqr p (1) (2)
ca -p A

...........(5.18)

where
D' P

q = A (1 - @) + 2 + ] (.5.19)
B T c

r = (1 - ) (5.20)

c

B T c

Pd

t = 1; (1 + 24) (5.22)
c

For the nonequilibrium case equation (5.13) cannot be integrated

in closed form and a computer program was written that integrated

the area numerically using the trapezoidal rule (see Appendix E).

By comparison with equation (5.18) for the equilibrium case it

was found that 250 incremental divisions were sufficient to give

accurate average effective permeabilities (to four significant

figures) for any partial pressure variation between 0 and 150

mm Hg.

Figure 5.10 shows the ratio of the average effective

permeability of blood to that of plasma as a function of sphere



Hg
(1)

p =40mm

02

0 0.2 0.4 06 0.8

(1)

p0 2 140mm
(2)

0 2= 0 mm
=0.40

PC -

Hg
1.0

0.9

0.8

Pave
Pc 0.7

1.6

1.4

1.2

1.0

0.8

0.6

0.4

1.0

Hg

Hg

0.2 0.4 0.6 0.8 1.0

RED CELLS IN PLASMA

FIGURE 5.10. AVERAGE EFFECTIVE PERMEABILITY RATIO.

0.6-

0.5-

0.4-

03-
0

ave

PC



182

radius and volume fraction of suspended red blood cell in plasma.

The two conditions shown correspond to a situation in which the

downstream partial pressure of oxygen for a thin film of blood

is maintained at zero, and the upstream partial pressure is

maintained at 40 or 140 mm Hg. The intercept at a volume

fraction of unity for the inert case corresponds to the

permeability ratio of the dispersed and continuous phases. As

anticipated, the average effective permeability is increased by

facilitation within the red cell. The magnitude of this effect

increases as the facilitation factor increases with decreasing

oxygen partial pressure. At sufficiently low values of the

upstream partial pressure, the addition of red cells to plasma

can actually increase the average effective permeability above

that of plasma alone. Note again the relatively small effect

to be expected from the departure of the reaction within the

red cells from equilibrium for whole blood conditions,

especially for large driving forces. For very small sphere

sizes the facilitation effect is negligible and the results

reduce to that predicted by Maxwell's equation (inert).

A common method of presenting experimental data for the

facilitated diffusion through a thin one dimensional film or

slab is a plot of species flux versus applied upstream pressure,

with the downstream pressure fixed as.shown in Figure 5.11.

Predicted curves are shown for permeation across 800 pm films

of whole blood for the situation where the downstream partial

pressure of oxygen in maintained at zero. Above about 50 mm Hg,

all the curves assymptote into straight lines and become
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virtually parallel to the inert case. Again note the relative

insensitivity to a moderate departure from reaction equilibrium

for whole blood by comparison of the 1 pm, 4 pm, and equilibrium

curves. Note that the flux is given by

x=0 x=L
pO ~PO

N 0 2 AVE ( L2

5.1.1.3 A Note on Kinetic Parameters

In the use of the one-step model to predict effective

permeabilities and mass fluxes, a question arises regarding

what backward rate constant should be used. The forward rate

constant here is considered fixed and taken from Gibson (1959).

A particular choice of the backward rate constant will fix the

equilibrium constant and consequently a particular hyperbolic

saturation curve as is shown in Figure 5.6 (K' = kj/k ). From

Figure 5.6, if the whole equilibrium curve is considered, a K'

of 7.0 x 104 would be a better approximation of the sigmoidal

saturation curve than a K' of 1.0 x 10. For different

saturation curves a question arises as to what the most

appropriate one-step approximation might be. Unfortunately,

as far as is known, no extensive experimental comparison of

measured kinetic rate constants with the oxygen-hemoglobin

saturation curves has been developed. The only relevant work

known to this author is that done by Bauer (1971). Bauer

measured both forward and backward rate constants, and the p50

for hemoglobin solutions with or without 2,3 DPG at 10 0 C. In
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comparing the calculated p50 obtained from the one-step

saturation with the measured p5 0 , Bauer showed that these

were virtually identical over the pH range from 5.8 to 8.2. This

suggests that a suitable base approximation would be to choose

a backward rate such that the p50 obtained from the one-step

hyperbolic saturation curve is the same as that given by the

sigmoidal saturation curve.

5.1.2 Four-Step Model

The four-step model or Adair reaction scheme in

heterogeneous media was developed in section 4.4. The

theoretical developments will be utilized to predict oxygen

transport in red blood cell suspensions. To date the only

complete set of kinetic parameters for the Adair reaction

scheme has been given by Gibson (1970) for hemoglobin solutions

in the presence of and "stripped" of normal blood 2,3 DPG.

These kinetic parameters are listed in Table 5.1 and will be

used here in the theoretical calculations as an example (note

that primes will not be used in the four-step model to denote

conditions in the sphere). In comparing the two sets of

constants for "stripped" an "unstripped" hemoglobin it is

interesting to note that the fourth reaction is unaffected by

DPG. The greatest differences are found in the reverse rate

constants for the first three reactions, these being

substantially lower in the absence of DPG. The effect of

the absence of DPG is to produce a significantly higher

oxygen affinity. The reason is that 2,3 DPG binds deoxy- and
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oxy-hemoglobin but is released after the third oxygen molecule

reacts with the Hb molecule (see Appendix B). Before

proceeding with a discussion of the theoretical computations

with the four-step model, the reader is reminded that the

Adair reaction scheme remains an approximation to a very

complex reaction mechanism. However, it should be an improved

model over the one-step version. On the other hand kinetic

data for the one step model are more reasily available than

that of the Adair mechanism.

Figure 5.12 shows the oxygen hemoglobin saturation

curves, obtained from Adair's equation, for stripped and

unstripped conditions utilizing Gibson's rate constants as

tabulated in Table 5.1. It should be noted here that the data

for stripped hemoglobin were reported at 200C, and the

unstripped kinetic rate data were reported at 21.50C. The 1.50C

temperature difference lessens the comparability of the two

sets of data. However, the differences in reaction rates due

to 2,3 DPG are much greater than that which can be attributed

to temperature.

The Adair reaction scheme in heterogeneous media

presents an eigenvalue problem, and in Figure 5.13 the four

eigenvalues al, '2 3 , and 64 are shown for the unstripped

case). The eigenvalues were obtained from equation (C.54).

The eigenvalues are physically comparable to the characteristic

length X in the one step problem. (Note that in this discussion

primes are not used to denote conditions inside the dispersed

phase). Figure 5.13 shows that the numerical values of the
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eigenvalues are of the same order of magnitude. For the case of

unstripped hemoglobin, the eigenvalues are weak functions of

oxygen partial pressure beyond a p0 of 25 mm Hg. Once the

eigenvalues are determined, the constant A can be obtained as

described in Appendix C. Once A has been determined the Adair

facilitation factor F Adair, can be calculated from equation

(4.156) and FAdair is obtained from (4.154). The computer
eq

programs for the Adair four-step model are listed in Appendix E.

Figure 5.14 gives a comparison of the Adair facili-

tation factor for a sphere and for a slab. The facilitation

factor for a slab was obtained from a Friedlander and Keller

type analysis for a four-step reaction scheme in a homogeneous

slab as outlined in Appendix C.3. At large sphere diameters

or slab thicknesses, FAdair approaches its maximum value,

FAdair, which is characteristic of chemical reaction equilibriumeq

throughout the sphere. Note that the facilitation factor for

Adair.
the slab and the sphere approach F in the same manner. Aseq

the sphere diameter or slab thickness decreases (2a/6. decreases)

FAdair decreases as the chemical reactions depart from

equilibrium within a boundary layer at the sphere surface. The

influence of spherical geometry begins to have an effect at a

dimension of about 5 pm. Note that the behaviour of the Adair

facilitation factor is very similar to that of the one-step

model presented in Figure 5.1.

The facilitation factor dependence upon the partial

pressure of oxygen is shown in Figure 5.15 and 5.16 for

stripped and unstripped hemoglobin. As expected, the
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facilitation factor is strongly dependent on sphere radius and

oxygen partial pressure. The Adair equilibrium facilitation

factor, F Adair, has a maximum at the partial pressure for which
eq

the slope of the Adair saturation curve is steepest (as

indicated by equation 4.154). For the nonequilibrium

facilitation factors, the maximum occurs at nearly the same

oxygen pressure as for the equilibrium facilitation factor

(there is a slight but negligible shift). An important

qualitative conclusion can therefore be made: The behaviour

of the nonequilibrium facilitation factor is similar to the

equilibrium facilitation factor. The numerical value of the

nonequilibrium facilitation factor is of course always less

than the equilibrium value and is dependent upon the sphere

radius. Note that the nonequilibrium facilitation factor for

the stripped hemoglobin (for a fixed radius) is less

attenuated in comparison to the unstripped curves, each

relative to their respective equilibrium facilitation factors.

This is due to the lower kinetic parameters for the stripped

case (compared to the unstripped case). The facilitation

factors for the stripped case, however, are numerically larger

at very low pressures because the stripped saturation curve is

much steeper in this region than the unstripped saturation

curve. The stripped facilitation factor increases and

decreases rapidly as saturated conditions are attained for

relatively low oxygen partial pressures.

The local effective permeability for whole blood,

stripped and unstripped, is shown in Figures 5.17 and 5.18 as
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a function of oxygen partial pressure. Since the local

effective permeability is dependent on the facilitation as

shown by equation (4.157) the curves in Figures 5.17 and 5.18

show somewhat similar behaviour as the two preceding figures.

Like the local effective permeability obtained by the one step

model, the Adair local effective permeability maximizes at the

point where the equilibrium curve has the steepest slope, but

for the one-step model this occurs at zero partial pressure.

Once the local effective permeability has been

determined, the average effective permeability for a given

driving force can be obtained by integration as given by

equation (4.158). Figure 5.19 shows the average effective

permeability ratio of red cells in plasma as a function of

sphere radius and volume fraction for both stripped and

unstripped blood. The conditions shown are an upstream oxygen

partial pressure of 20 mm Hg and a downstream pressure of 0 mm

Hg. For those particular conditions the stripped suspension has

a slightly higher equilibrium effective permeability than the

unstripped suspension. This is because at equilibrium a

larger saturation difference exists for the stripped than the

unstripped hemoglobin as can be seen from Figure 5.12. For the

nonequilibrium case, however, the converse is true. For the

1 ym and 4 ym sphere radius the effective (relative)

permeability for the stripped red blood cells is lower than

that of the unstripped case because of the lower kinetic rates

associated with the former system. As the sphere radius

decreases, the facilitation factor will approach zero and
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the effective (relative) average permeability reduces to that

which is given by Maxwell's solution.

In Figure 5.20 the downstream pressure (back pressure)

has been raised from zero mm Hg to 2 mm Hg. As can be seen from

Figure 5.20, the average effective permeability for the

unstripped suspensions is barely affected, in fact, it is

slightly higher. In terms of equilibrium conditions, the

saturation difference from a driving force from 20 to zero mm

Hg or 20 to 2 mm Hg has barely decreased for the unstripped

system. The driving force has been decreased by 10% so that

the "amount of facilitation per unit driving force", which is

a function of the saturation difference, is greater. A slight

increase in the back pressure has a significant affect on the

average effective permeability ratio of the stripped red blood

cell suspensions. In the case of equilibrium, a 2 mm back

pressure raises the downstream saturation from zero to 61%.

The resulting drop in saturation difference across the

suspension causes a drop in the facilitation factor and

consequently the dispersed phase permeability is reduced. It

should be noted that explanations offered here in terms of the

equilibrium situation are also valid for the nonequilibrium

cases.

5.1.3 Comparison of One-Step and Four-Step Model

Some of the results presented in sections 5.1.1 and

5.1.2 have already indicated similarities and differences

between the one-step and four-step model. In making a
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comparison between the one-step model and the four-step model,

the obvious question arises: When does the one-step model

fail to predict accurate permeabilities? That answer can be

qualitatively answered from an inspection of the behavior of

the one-step and four-step saturation curves.

Consider the saturation curves presented in Figure

5.6. The sigmoidal saturation curve is identical with the

saturation curve obtained from Gibson's kinetic parameters for

unstripped hemoglobin. It has been suggested in Section

5.1.1.3, that a base case for comparison of the one-step and

the four-step model should be agreement between the p's of the
50

two models. The hyperbolic saturation curve with

K' = 7.0 x 104 1/mole gives virtually the same p50 as the

sigmoidal Adair curve in Figure 5.6 and this particular value

of K will be considered the base case. It is also the value

employed in the theoretical calculations in Section 5.1.1.2.

The discussion that follows will be in terms of the

equilibrium situation, but it is assumed that the same

qualitative conclusions apply to the nonequilibrium results

(assuming comparable kinetic rate parameters between the two

models). The discussion will be followed with a few examples.

As an example, consider a thin film of blood which

has an oxygen driving force imposed upon it. Tbe following

general remarks can be made for various driving forces in the

unsaturated portion of the equilibrium curves:

1. Large oxygen driving force across the film.

For this particular case the one-step and the
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four-step model should give close agreement in

predicting the average effective permeability,

because both predict large differences in hemo-

globin saturation across the film.

2. Small or moderate oxygen driving force across

the film.

In this case the one-step model is expected to

fail if the oxygen partial pressure change in

the film occurs in the region where the

saturation curve is steepest. If the partial

pressure drop of oxygen across the film occurs

at the top or bottom of the curve, the one-step

model should give good agreement with the four-

step model, if a hyperbolic saturation curve is

exmployed that closely matches the Adair

saturation curve over the region of interest.

A few examples follow:

Figure 5.21aand 5.21b give the average effective

permeability ratio for the four-step model for the following

driving force conditions

x=O x=L
(1) P0 = = 140 mm Hg, px L = 0 mm Hg

2 2

x=0 x=L
(2) PO = 40 mm Hg, p0  = 0 mm Hg

2 2

Parameters as reported in Toble 5.1 were employed. It can be

seen, in comparison with Figure 5.10, that the one-step model

and the four-step model give excellent agreement. This was
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1.5

UNSTRIPPED

p 0  140 mm Hg

x=L
P0 = 0 mm Hg

EQUILIBRIUM

RAVE

P
c

a=4.m

- a=l/Ax

0.5

INE RT

0

0 0.5

FIGURE 5.21a
AVERAGE EFFECTIVE PERMEABILITY RATIO
FOR TEE FOUR-STEP MODEL FOR THE
CONDITIONS SHOWN.
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2.0

UNSTRIPPED -

p 0 = 40 mm Hg

-- 2L
p = 0 mm Hg

2

1.5 EQUILIBRIUM

PAVE~

P
c

1 a= 4)Am

-- a= 1 /Am

0.5 INERT -

0
0 0.5

FIGURE 5.21b
AVERAGE EFFECTIVE PERMEABILITY RATIO
FOR THE FOUR-STEP MODEL FOR CONDITIONS

SHOWN.
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anticipated in view of: (1) the large driving force across the

film (with a large equilibrium saturation difference across the

film); (2) the close agreement of the numerical values between

the characteristic length and the four eigenvalues as presented

in Figures 5.7 and 5.13. An improved fit is obtained if a

larger K' than 7.0 x 104 is employed (with ki fixed at

3.0 x 106 1/mole/sec, k' must be lowered) . The change is not2

significant. Finally note from Figures5.21 the relative small

effect to be expected from a departure of the reaction within

the red cells from equilibrium, especially for whole blood

conditions (+ = 0.45). This is consistent with similar

observations made for the one-step model, particularly for

large driving force conditions.

Figure 5.22 shows a comparison of the average

effective permeabilities between the one-step and four-step

model for the case of a small driving force in the region of

the steeper part of the sigmoidal saturation curve. The one-

step model deviates considerably from the four-step model and

predicts much lower permeabilities. Besides the base case of

K' = 7.0 x 10 4, results were also generated for the cases of

5 4 4
K' = 2 x 105, 3 x 10 , and 2 x 10 . In each case the effective

permeabilities were lower than those predicted by the base

case. It is obvious that for this particular driving force the

one-step model is not satisfactory.

Figure 5.23 shows the average effective permeability

ratio for the driving force of pXO 5 mm Hg and p = 0 mm Hg.
2 2

The "base" one-step model fails to agree with the four-step model



FIGURE 5.22
AVERAGE EFFECTIVE PERMEABILITY RATIO FOR
A DRIVING FORCE OF

P, o = I 5mmnHg
2

AND p xL 5mml{g0
2

205

PC
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3
EQUILIBRIUM

P

2 -- a= 4p m

a=01 m

INERT
(one-step and

four-step)

0
0 0.5

FIGURE 5.23
AVERAGE EFFECTIVE PERMEABILITY RATIO FOR
A DRIVING FORCE OF xO AND

P02 - 5mmlg

P 0 E = OmmHg
2
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3_____ I I I I -

ONE-STEP(K-1.6?5x10 ~

- - --- FOUR STEP (unstripped)

2 -

2 a 0mmHg

2

- EQUILIBRIUM
(one-step and four-step)

PC

11M -

INERT
(one-step and four-step

0 1 1 1 1 1 1 I
O 0.5

FIGURE 5.24
ATTEMPTED FIT OF FOUR-STEP MODEL WITH
ONE-STEP MODEL FOR WHICH K=1. 6 75x10
1/mole.
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and in this situation it predicts much larger permeabilities.

This behaviour can be understood from the behaviour of the

saturation curves in Figure 5.6. For a K' of 7.0 x 104

1/mole the hyperbolic saturation curve does not match the

sigmoidal Adair curve in the low saturation range. A K' can

be chosen however that will give a better fit. If k is

adjusted such that

k'
K' - 1 = 1.675 x 104 1/mole

2

so that k = 179 sec~ , a better fit is obtained as can be

seen from Figure 5.24. This particular value for K' matches

the saturation value given by the hyperbolic saturation curve

at 5 mm Hg.

The nonequilibrium response of the average effective

permeability for the 1 pim and 4 pm show qualitatively the same

behaviour at that exhibited at.equilibrium. The nonequilibrium

response depends to a major part on the magnitude of the

numerical value of the facilitation factor inside the dispersed

phase. Figure 5.25 compares the normalized facilitation factor

F/F for the one-step and four-step model versus the sphere

radius a. Two conditions are shown: a partial pressure of 10

mm Hg where the equilibrium facilitation factors are large, and

a partial pressure of 40 mm Hg where the equilibrium facilitation

factors are smaller (for the chosen parameters). The four-step

model and one-step model show close agr eement at a p0 of 40
2

mm Hg (small Feq , all a), but difference exists where the

equilibrium facilitation factor is relatively large. The results



0.1

F

F
eq

or

FAdair
FAdaireq 0. //

-- rn-rn- - four-step
unstripped

one-step

0.001
0.01 0.1 1 10 100

a Pym

FIGURE 5.25. COMPARISON OF THE FOUR-STEP AND ONE-STEP NORMALIZED FACILITATION
FACTORS AS A FUNCTION OF SPHERE RADIUS AND PARTIAL PRESSURE.
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in Figure 5.25 are qualitatively similar to the behaviour of

the nonequilibrium curves for the one-step and four-step

model shown in Figures 5.22, 5.23, and 5.24.

From the above examples it can be concluded that

the one-step model can give close agreement with the four-step

model if the equilibrium saturation curves can predict

approximately the same hemoglobin saturation drop across the

film (Figure 5.26 summarizes the regions of the sigmoidal

curve where hyperbolic saturation curves are expected to give

close fits for a driving force in that region). For the

nonequilibrium regime one-step model should give reasonable

results if the above is satisfied, and in addition the kinetic

rate parameters for both models are of comparable value. If

these conditions are not met, the one-step model is expected to

give incorrect results with the deviation from the four-step

model a function of the amount of facilitation. An implicit

assumption here is that the Adair model is correct.

Finally in Figure 5.27 a plot of flux versus po

for the four-step model is shown for whole blood conditions

(o = 0.45). The thickness for blood film is identical to that

of Figure 5.11. Note the sigmoidal behaviour of the flux

curves in the low oxygen partial pressure range. The theory

predicts correctly the behaviour observed experimentally by

Kutchai and Staub (1969) who measured oxygen flux as a function

of upstream oxygen pressure (with pXO = 0 mm Hg) for packed
0 2

red blood cells.
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FIGURE 5.26

COMPARISON OF THE ONE-STEP AND FOUR-STEP MODEL IN TERMS

OF THE EQUILIBRIUM SATURATION CURVES.
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5.2 Reaction in the Dispersed and Continuous Phase.

The Impermeable and Permeable Model

In this section the behaviour of the two general

models - impermeable and permeable - will be compared and

discussed. As a logical basis of comparison all parameters

for both models must be the same. As a consequence, the

parameters must be of such values that the thermodynamic

constraint, required for the permeable model, is notviolated.

Recall that the constraint requires that

Ka' K a (5.23)
A A

of in terms of the kinetic rate parameters the relationship

becomes

k 1c,kA a k lA (5.24)
k k2

Table 5.2 lists the parameters used in this section. The values

of the parameters were chosen as an example only. Although

equation (5.24) is satisfied, this is not a necessary

constraint for the impermeable model. Computer programs for

all the theoretical calculations are listed in Appendix E.

5.2.1 Single Sphere in a Continuum

For a single sphere in an infinite medium,

concentration profiles and lines of constant total flux

differences can be calculated from the equations developed in

Chapter 4. The partial pressure of A inside the sphere is

given by
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TABLE 5.2

PARAMETERS USED FOR THE COMPARISON

OF THE IMPERMEABLE AND PERMEABLE MODEL

forward rate constants:

backward rate constants:

concentration of carrier:

C T

solubility rate of A in
the two phases:

= 4 x 10 6 1/mole/sec

= 4 x 107 1/mole/sec

= 80 sec

= 400 sec~

= 0.10 moles/l

= 0.02 moles/i

-6= 2 x 10 moles/l/mm Hg

= 1 x 10- moles/i/mm Hg

permeabilities and
diffusivities:

P
c

DA

= 1 x 10 2cm -moles/sec/i/mm Hg

= 2 x 10~11 cm 2-moles/sec/l/mm Hg

4 x 10-8 cm2/sec

DB = 1 x 10 cm2/sec

k 1



215

p = p + H(r) cos e (5.25)

where H(r) is given by equation (4.55) (or (4.109)). Outside

the sphere, the partial pressure of A is given by

T

p- P (l F ) [r - af(r)]cos 6 (5.26)
c eq

where the function f(r) is given by equation (4.43) (or (4.104)).

Equations (5.25) and (5.26) are general and apply to both the

impermeable and the permeable model. The models differ in

respect to the numerical values of the mutually similar

constants that appear in the functional forms of H(r) and f(r).

The iso-partial pressure lines of A inside and outside the sphere

are given in Figure 5.28 for the impermeable model, and in

Figure 5.29 for the permeable model. Note that the iso-partial

pressure lines are bent inside the sphere. This is consistent

with the behaviour of the iso-partial pressure lines for a

single reacting sphere in a inert medium as presented by

Figures 5.4 and 5.5a. Outside the sphere the iso-partial

pressure lines bend away from the sphere into linear lines (at

very large distances away from the sphere). The iso-partial

pressure lines for the impermeable model show significantly

more curvature than the iso-partial pressure lines for the

permeable model. The latter are considerably smoother than the

former.

The potential inside and outside the sphere is:



a/X= 16.7, a/X'= 20.9

p0= 10 mm Hg

F' = 10, F = 2.5
eq eq

FIGURE 5.28

ISO-PARTIAL PRESSURE LINES FOR A REACTING SPHERE

IN A REACTING CONTINUUM. IMPERMEABLE CASE.
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PERMEABLE

a/X= 16.7, a/X'= 20.9

p = 10 mm Hg

F' = 10, F . = 2.5
eq eq

FIGURE 5.29

ISO-PARTIAL PRESSURE LINES FOR A REACTING SPHERE
IN A REACTING CONTINUUM. PERMEABLE CASE.
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Inside the sphere:

(p -) (P 0 CO) + E cos e
A d CA) A P dB

Tk NT
- rcos

.......... (5.27)

0 + E cos 0 (5.28)

Outside the sphere:

D B

= (PA CB)
c

NTNA
= - (-) r Cos

c

- 0 - B

A P B'
c

o {1 + (')3 1 A
r +Feq

The constant E can be evaluated by requiring

q' = $ at r = a

from which

T 3A
E = -N a ( F

eq

Once the potential has been defined, the total flux can be

calculated by

2= r2 sin e dr (5.33)

The flux difference inside and outside the sphere is therefore

given by:

Inside the sphere,
T 2

($a - ( r) = - N-) sin2 (1 _ 2A_2 a+
eq

.......... (5.34)

(5.29)

(5.30)

(5.31)

(5.32)
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Outside the sphere:

T 2N a
A r)2 sin e [1 - 2A 3

l +F r
eq

.......... (5.35)

where the limits of integration are from zero to 6 radians.

Note that the definition of the potential satisfies Laplace's

equation

V2 ' 0 (5.36)

V2 = 0 (5.37)

which can also be obtained from subtraction of the differential

mass conservation equations for species B from A as was done in

equations (4.13) and (4.11). As a consequence one can expect

that lines of constant potential and lines of constant flux

difference are mutually orthogonal. In addition such plots

would behave in a similar manner as the isopotential and

isoflux difference plots given earlier in Section 5.1.1.1

(see Figure 5.5). Since the flux plots are symmetrical along

the 00 - 1800 axis and a mirror image along the 900 - 2700 axis

only one quarter of a circle will be shown (the 0 to 900

quarter). This way several conditions can be shown on the

same figure. Figure 5.30 shows lines of constant flux

difference for the impermeable model for three conditions:

1. equilibrium

2. a/X =16.7,a/X' =20.9

3. a/X = 1.67, a/X' = 2.09
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60'Z=,Y1Ue 6L9T1 =Y/V 'md~ TOO =e

FIGURE 5.30

LOCI OF CONSTANT TOTAL FLUX DIFFERENCE FOR THREE VALUES OF

THE CHARACTERISTIC LENGTHS. IMPERMEABLE MODEL.
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By appropriate rotation of the figure each subfigure can be

viewed. For equilibrium conditions inside and outside the

sphere, the effective permeability inside the sphere is greater

than the effective permeability outside the sphere, and lines

of constant flux difference bend towards the sphere. As the

reaction deviates from equilibrium in boundary layers inside

and outside the sphere periphery, the effective permeability

inside the sphere becomes less than the effective permeability

of the continuum and lines of constant flux difference bend

away from the sphere. This is due (besides the particular

choice of variables) to the fact that nonequilibrium conditions

can reduce facilitation effects inside the sphere to be

negligible, but since the mathematical model requires the

continuous medium to be at equilibrium throughout the medium,

except locally very near the sphere, the facilitation effects

are always a maximum in the continuous phase. Therefore

reduction of sphere radius and consequently the reduction of

a/X (and a/A') has little effect on the effective permeability

of the surrounding reacting medium. This of course is a

mathematical result and has been discussed to some extent in

Chapter 4. The only manner (mathematically) in which the

reacting continuous medium can be made to be inert is by

setting F equal to zero.

Flux plots for the permeable model are shown in

Figure 5.31 for identical conditions as those shown in

Figure 5.30. Notice that there is little change in the plots

as a/A and a/A' are decreased. This is due to the fact that



6O*Z =Y/P 'L9*T =YIe 'd T-0 =?

FIGURE 5.31

LOCI OF CONSTANT TOTAL FLUX DIFFERENCE FOR THREE VALUES OF
THE CHARACTERISTIC LENGTHS. PERMEABLE MODEL.
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the carrier species can still diffuse through (and facilitate

transport of species A) the sphere. Note that for equilibrium

conditions the two models, permeable and impermeable give

identical iso-flux difference plots.

5.2.2 Effective Permeability of a Suspension of Spheres

The general equation for the effective permeability

for the impermeable model has been given by equation (4.96)

and is

P

c (1 + F eq)

2Pc (1+F eq)+Pd (1+Fd) (1- 2 F f c )-2{pc (1+F )-Pd (1+Fd)(l+F f c)

2Pc (+F )+Pd (l+Fd) (1- 2 F f ) + P (1+F )-P (1+F ) (1+F f c

. .(5.39)

where

f = - a (5.40)
c2 + 2 +aa x

For the permeable model the effective permeability is given by

equation (4.137) which is

P (l+Fc eq

2P eql+F P eqL 1-Q c eq d eqa l-Q (.1
c eq d q[1e)d( q

where the factor Q is given by
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2
f F' -F

c eq eq
F' 1 + F

Q 
q 11 FeqI

P (1 + F' )F 2 - tanh (2 + a
ceq eq + f, a ] (5.42)

P (l+F )F' 1-- tanh
d eq eq a

and fc is given by equation (5.40). As has been pointed out,

the relationships are valid for reacting spheres in a continuous

reacting fluid that is everywhere at equilibrium except locally

near the sphere. On letting a/A approach zero, which implies

that the nonequilibrium region around each sphere is very

large, at distances sufficiently far from all spheres, the

medium must be at equilibrium as specified by the boundary

conditions for r ->- (see Figure 4.2). Therefore one would

expect that for small a/A the relationships are no longer

valid if the distances between each sphere in the suspension

is of order A. This will put a constraint on the maximum

volume fraction for a given a/A that the relationship can

be used for. This constraint will be developed a little later.

First it is of interest to investigate additional

mathematical behaviour of the effective permeability

relationships of the two models. Some limiting cases will be

analyzed.

For the case that the reactions inside and outside

are completely at equilibrium, which can be attained by letting

a/A and a/A' approach infinity, the effective permeability for

both the impermeable and impermeable model becomes
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P (+
c eq )

2P (l+Fe)+P (l+F' )-2 {P (l+F )-P (l+F'q)}
c eq d eq c eq d eq (5 .43)

2P (l+F ) +P (l+F' )+1P (l+F eq) -P eq)

At equilibrium, and for identical physical parameters, the

permeable model and impermeable. model are indistinguishable.

Equation (5.43) indicates that at equilibrium the dispersed

phase permeability is increased by the factor (1+F' ), and theeq)

continuous phase permeability is increased by the factor (l+F ).

Equation (5.43) also has the appropriate limits for D = 0 and

D = 1 which are

= Pc(1 + F ) 4= 0 (5.44)

P=P (1 + F ' ) @ 1 (5.45)
d eq

For the case that the continuous medium is at

equilibrium (a/A -* a) and the parameter a/A' is allowed to

approach zero the impermeable model reduces to

S 2Pc (l+F eq)+Pd -2{P c(l+Feq )-P }
Pc _lF q 2 c eq dc e (5. 46)P(1+F )~2P (l+F )+P +4){P (1+F )-P }5,6

c eq c eq d c eq d

Equation (5.36) is the relationship for a suspension of inert

spheres in a reacting fluid that is at equilibrium. The limits

for 4 = 0 and ) = 1 are

= c (l+Fe) e =0 (5..47)

p = P. c =1 (5.48)
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For the case a/A -+ w, a/A' -+ 0 (same as above) the permeable

model yields the relationship

- 2P (1+F )+P (l+F' )-2 C(P (l+F )-P (1+F' )}P c eq d eq c eq d eq (5.49)
P' (l+Feq) -

2 P~ (lF)P lF )+{ (l+Fq)-Pd(1+F'q)}cT( F2c(+ -(+ 1F(+ eq c eq) d eq) +4'c eq -d eq)

which is identical to equation (5.43) for equilibrium in both

phases. This is not so surprising if one recalls the boundary

conditions for the permeable model that specify that the

activity of the species are continuous across the phase boundary

(see Figure 4.2). If the carrier species A, B and AB are at

equilibrium at the phase boundary, it follows that species

A',B' and AB' are at equilibrium at the phase boundary. Since

equilibrium conditions exist also at the center of the sphere

it follows that equilibrium conditions exist throughout the

sphere. Therefore equation (5.49) is consistent. The same

equation is also obtained when a/A' + - and a/X + 0 and a

similar explanation as given above explains the result. In

that case equilibrium conditions everywhere inside the sphere

impose equilibrium conditions locally outside the sphere.

As a consequence, one would expect from the above discussion
4

and those in the previous section, that equation (5.. ) is

fairly insensitive to what the value of a/A and a/A' are.

Before presenting some graphical results on how

the average effective permeability behaves, a volume fraction

contraint on the solutions will be developed. The "flip-flop"

or "on-off" nature of the theory has already been pointed out

with, regards to the reaction in the continuous phase. There

is no smooth transition from equilibrium to inert conditions
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in the continuous phase if a/X is allowed to change from

infinity to zero. In fact there is no transition whatsoever

because of the constraints imposed by the mathematical approach

in the solution. The only way that the continuous phase can

be made inert is by setting the continuous phase equilibrium

facilitation factor, Fq , equal to zero. Since reduction of

a/X implies increase of the thickness of the nonequilibrium

zone around a particle the equations are valid only for

suspensions for which the distance of separation between pairs

of particles is adequate for an approach to equilibrium

conditions at the midway point. As a consequence, there is a

maximum volume fraction beyond which the equations are

expected to fail.

A criterion must therefore be set up to arrive

at some minimum distance, away from the center of the sphere,

at which equilibrium conditions start to prevail. Once this

minimum distance has been determined, the maximum volume

fraction for which the models are still valid can be

determined since it is a function of the minimum distance.

For both models the concentration variation for A and B outside

the sphere is given by

NA

p A Pc(1 0T.) [r - af(r)] cos 0 (5.52)

F NA
C = C0 +1 -e- [r + ag(r)] cos 6 (5.51)

B B D 1+FB eq

where f and g are given by
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f(r) = - A a2 + r-/2X1/2(1 + r -f+ (r l + K (L.) ( +X) [csh- sinh-

.......... (5.52)

g(r) = A + f() (5.53)
eq eq

The function f(r) is composed of two parts f 1 (r) and f2 (r) which

are

fA (a 2 and, (5.54)f1( 1 +F 'r
eq

f2 (r) = K (r)- l/2()l/2(1 + )[cosh r - sinh (5.55)r inhr

so that f(r) can be restated as

f(r) = f 1 (r) + f2 (r) (5.56)

For equilibrium conditions throughout the continuous medium

(a/A -* o-) the function f2 (r) approaches zero while f 1 (r) remains

finite (since A remains finite). Therefore the equilibrium

profile is given by

NA
P 0 T [r - af (r)]cos 0 (5.57)
~A AP c(1+F e) 1

c eq

In addition, the function f(r) must approach zero as r/a

approaches 00. As a consequence, the function f2 (r)

accounts for the nonequilibrium conditions near the sphere, and

it decays rapidly for values greater than r/a = 1. Therefore

the relative value of f2 (r) to f 1 (r) will determine how closely

the-concentrations of species A and B approach their equilibrium

values. Since, if
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2 =o0 (5.58)
f 1(r) '

the concentrations are near equilibrium, two criteria are

adopted below to determine at what value (r/a) the ratio

f2 (r)/f 1 (r) is small enough so one can 
assume equilibrium

conditions have been attained (this value of (r/a) is then the

minimum (r/a)). The criteria are:

1. "10% away from equilibrium" when

f2
f (r |=0 .1 then r = rminimum (.9

and

2. "1% away from equilibrium" when

C2r)
fr) = 0.01 then r = rminimum (5.60)

The value of the ratio f2 (r)/f 1 (r) is shown in Figures 5.32a-b

as a function of (r/a) and a. The parameters utilized are

listed in Table 5.2. As expected the ratio decays rapidly -

for large a/A but more slowly for small a/A . When rminimum has

been determined, the maximum volume fraction can be determined

from

1 (5.61)
maximum r 3

a minimum

which assumes that the volume fraction can be determined from

a sphere (the dispersed sphere) in a sphere (the sphere of

surrounding nonequilibrium fluid) model.

Now the average effective permeability can be

calculated and the maximum volume fraction can be determined.
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f2(r
f 1

0.1

0.01
1 1.5 2.0 2.5 3 3.5

r/a

FIGURE 5.32a. THE FUNCTION If2 (r)/f 1 (r) AS A FUNCTION

OF r/a AND SPHERE RADIUS. IMPERMEABLE MODEL
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f2 (r)

f0 (r) 0

0. 01
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FIGURE 5.32b. THE FUNCTION f 2 (r)/f I (r) AS A FUNCTION

OF r/a AND SPHERE RADIUS. PERMEABLE MODEL.
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It should be pointed out, that for a particular driving force

range and a fixed radius a, the parameter a/A is not constant

since it is a function of the species concentration. In this

work the minimum local a/x for a given driving force was

selected as the parameter to determine rminimum and #maximum'

Figures 5.33 and 5.34 show the average effective permeability

for a suspension of spheres calculated for the indicated

driving force and the physical parameters listed in Table 5.2.

As expected, for the impermeable model, the average effective

permeability decreases as the sphere radius decreases (see

Figure 5.33). The equilibrium curve is obtained when a/A and

a/A' both are larger than 100. The dashed lines indicated the

region above which one expects the impermeable relationship to

be valid. The "10% away from equilibrium" criterion is a less

restrictive constraint than the 1% criterion and therefore

allows a greater region of validity. Table 5.3 summarizes the

minimum radius ratios and maximum volume fractions as a

function of the sphere radius.

The permeable model predicts little change of the

average effective permeability as a function of sphere radius.

No envelopes of regions of validity have been constructed on

the figure because of a limitation of space. Table 5.4 lists

the respective minimum volume fractions as a function of

sphere radius. Note that for comparison the average relative

effective permeability of a completely inert suspension is

given in Figures 5.33 and 5.34. This curve is of course

consistent with Maxwell's equation and can be obtained by

setting F = 0 and letting a/A' approach zero.
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IMPERMEABLE

p (= 20, pxL = 0 mm Hg

EQUILIB.

a= 10pm

4 ym

2vym

1y m

0.6pm

0.4pm

0.2pm

0.lym

0.Olpm

0.5 1

FIGURE 5 . 33

AVERAGE EFFECTIVE PERMEABILITY RATIO FOR
THE IMPERMEABLE MODEL (FOR CONDITIONS SHOWN)

DAVE
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TABLE 5.3

MAXIMUM ALLOWABLE VOLUME FRACTION

FOR IMPERMEABLE MODEL AS A FUNCTION

OF SPHERE RADIUS

10% equilibrium

r
(-)ammin max

1.01

1.02

1.04

1.08

1.14

1.20

1.30

1.71

2.4

3.4

~1

0.97

0.95

0.90

0.80

0.66

0.58

0.36

0.20

0.073

0.032

1% equilibrium

(r)ammin .max

1.04

1.05

1.08

1.15

1.24

1.41

1.56

1.80

4.10

6.30

-1

0.89

0.85

0.79

0.65

0.53

0.36

0.26

0.17

0.0145

0.004

sphere
radius

a
(pm)

6

5

4

3

2

1.5

0.6

0.4

0.1

0.06
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PERMEABLE

p = 20, pxL= mm Hg

FItJRE 5.34

AVERAGE EFFECTIVE PERMEABIL;TY RATIO FOR

THE PERMEABLE MODEL. (FOR CONDITIONS SHOWN)

DAVE

P
C
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TABLE 5.4

MAXIMUM ALLOWABLE VOLUME FRACTION

FOR PERMEABLE MODEL AS A FUNCTION

OF SPHERE RADIUS

10% equilibrium

(r)
min max

~1

1.01

1.03

1.07

1.18

1.38

3.8

~1

0.97

0.92

0.82

0.67

0.38

0.019

1% equilibrium

(r)
min max

1.02

1.03

1.05

1.09

1.13

1.22

1.44

1.76

5.4

~l

0.94

0.92

0.86

0.77

0.69

0.55

0.35

0.18

0.007

sphere
radius

a
(yPm)

3

2

1.5

1

0.6

0.4

0.1
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5.2.3 A Note on the Impermeable Model

A common method of observing facilitated transport

in a biological sample is to measure the mass transport rate

across a thin film of the sample as a function of the driving

force. Figure 5.35 shows, for the impermeable case, a typical

mass flux versus upstream partial pressure plot, where the

downstream pressure is maintained near zero. Physico-chemical

parameters are listed in Table 5.5 In this case the

thermodynamic constraint has not been imposed. It is of

interest to note that the behaviour of the mass transport

curves is similar to that calculated for a medium in which a

reversible reaction occurred only in the dispersed phase.

This similarity points out the hazards of using mass transport

data (of the above kind) to deduce information about the

physical characteristicsinside the sample. The models

discussed and developed in this thesis could be reasonable

models of reactive heterogeneous biological media that have

physical structures similar to those shown in Figure 2.2.

However, a mass transport experiment on such a medium may not

necessarily indicate what, where, and how many kinds of

biological carriers are present in the sample.
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L= 800 im
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FIGURE 5.35

FLUX VERSUS DRIVING FORCE PLOT FOR THE IMPERMEABLE MODEL.
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TABLE 5.5

PHYSICO-CHEMICAL PARAMETERS USED IN SECTION 5.2.3

FOR THE IMPERMEABLE MODEL

foward rate constants:

backward rate constants:

concentration of carrier:

solubility of A in the
two phases:

permeabilities and
diffusivities:

k = 4 x 106 1/mole

k = 4 x 10 1/mole

= 80 sec 1

= 400 sec

C' = 0.10 mole/l

C = 0.02 mole/l

a = 1 x 10 mole/l/mm Hg

= 1 x 10-6 mole/l/mm Hg

-11 2
= 1 x 10 cm -mole/sec/

1/mm Hg

P = 2 x 10~11 cm2-mole/sec/
c 1/mm Hg

-8 2
D = 4 x 10 cm /sec

DB -88 x 10 cm2/sec

P d
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6. EXPERIMENTAL PROGRAM, METHODS, AND APPARATUS

6.1 Introduction

In the literature survey it was pointed out that,

excluding theoretical developments on inert heterogeneous media,

little theoretical and experimental work has been performed on

mass transport in heterogeneous media. With the theoretical models

proposed in this thesis the theoretical gap has now largely been

closed. An experimental program will be described in this chapter

and the results reported in the next chapter, the aim of which was

to significantly improve present understanding of the problem.

Since the problem of diffusion in inert heterogeneous media became

a subproblem of the general theory for reactive heterogeneous media

and since in addition little experimental work has been performed

on inert heterogeneous media it seemed logical to perform

experiments first on inert heterogeneous media. It was expected

that if the experimental results showed good agreement with

Maxwell's equation, then further experimental results could be

obtained with confidence on reactive heterogeneous media. Inert

heterogeneous media utilized in this thesis were dispersions and

emulsions with a broad spectrum of permeabilities. The work on

reactive heterogeneous media focused on the system of interest,

namely the oxygen-hemoglobin system, and utilized red blood cell

suspensions and one model system. In addition, experiments were

carried out to elucidate the augmentation mechanism of human

hemoglobin, in particular to determine if any site-to-site

diffusion occurs.
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In general the experimental procedure utilized in this

thesis was to measure mass transfer rates of gas (usually oxygen)

across one-dimensional liquid slabs of the system of interest with

a known driving force, thickness of the liquid film, and total mass

transfer area. The sample was held in a sample holder and the

oxygen flux was measured with a modified time lag apparatus

(Barrer and Skirrow, 1948). A full description of the apparatus

and sample holder will be given at the end of this chapter. The

permeability obtained from the experimental measurements

NO L
P= ~ 2 (6.1)

x=O x=L

AlpO2 02

was compared with the predicted permeability obtained from the

heterogeneous media theory. In the case of a reactive suspension

P in equation (6.1) is of course PAVE or in the case of a reactive

homogeneous film of liquid it is PAVE'

The chapter will outline the experimental program in

this thesis, the methods utilized in the preparation of the

heterogeneous media employed, and the apparatus utilized to

analyze these media.

6.2 Inert Systems

6.2.1 Dispersions

A dispersion is a suspension of solid particles in a

liquid continuum. The dispersions utilized in this thesis consist

of colloidal polymer particles suspended in an aqueous medium. The
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three dispersions used are as follows

i) Teflon 120 FEP-fluorocarbon resin (Du Pont).

Teflon 120 FEP-fluorocarbon resin is a

dispersion of fluorinated ethylene-propylene

(FEP) in an aqueous medium. The particle size

ranges from approximately 0.10 pm to 0.25 pm.

ii) Teflon 30 TFE-fluorocarbon resin (Du Pont).

Teflon 30 TFE-fluorocarbon resin is a

dispersion of tetrafluoroethylene (TFE) in an

aqueous medium. The colloid particles are 0.05

to 0.5 pm in size.

iii) Polystyrene latex dispersion.

The Teflon fluorocarbon dispersions were received from the Du Pont

Company in one quart containers. The dispersions are stabilized

with 5-7% of surfactants. The specific gravity for the dispersions

and the continuous aqueous phase were determined from the weighings

of calibrated volumes of the liquids. The aqueous phase was

obtained from the dispersion by centrifuging out the solid

particles at 16,000 rpm for 40 minutes in a centrifuge (Servall,

Model RC-2). (To insure that all solid content was removed from

the aqueous media the color intensity of the centrifuged "solid-

free" liquids were compared to mixtures of small aliquots of the

respective dispersions in large known volumes of water. It was

determined that the solid content of the aqueous media so obtained

was less than 0.004 volume percent.) Specific gravities

determined in this manner compared well with those reported in the

Du Pont data sheets for 120 FEP and 30 TFE dispersions as is shown
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in Table 6.1 and 6.2. Once the specific gravities were determined

the volume fraction of the solids was calculated and compared to

the percent obtained solely from Du Pont data. These numbers

compared quite well as is shown in Tables 6.1 and 6.2 (the maximum

difference is about 1 volume percent). It was assumed that the

Du Pont data was correct. Dispersions of smaller volume fractions

than those reported in the tables were obtained by pipetting

calibrated volumes of dispersions and solid free liquid. In one

case a higher volume fraction was obtained by centrifuging a

weighed amount of dispersion, removing some of the solid free

liquid, weighing the remaining amount and than gentle redispersing

the solid material with a glass rod until the solution was

homogeneous in appearance.

The polystyrene latex dispersion was prepared by

emulsion polymerization of styrene monomer in an aqueous media

Through proper control of additives in the water phase (anionic

and nonionic surfactants, free radical initiator), and control of

reaction temperature and stirring rate, virtually monodisperse

polystyrene beads can be grown according to the methods of Woods

et al. (1968). The basic procedure is to place known amounts of

styrene monomer (Eastman), distilled water, Siponate DS-10

(disodium dodecyl diphenyl ether disulfonate from Alcolac Chemical

Co.), the nonionic surfactant Triton X-100 (a polyoxyethylene

isooctylphenyl ether from Rohm and Haas), and the radical

initiator K2S208 (potassium peroxydisulfate from Fischer Scientific)

into a closed container and to then react the contents with

gentle agitation at 650C for 24 hours. After the 24 hour period
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TABLE 6.1

PHYSICAL PROPERTIES OF 120 FEP DISPERSIONS

(Blend 283)

% solid by weight

Specific gravity of dispersion

Specific gravity of solids

Specific gravity of liquid

% solid by volume

Du Pont
data sheets

53.7 1

1.432

2.12-2.172

35.4-36.2 3

Experimental

1.426

1.003

34.24

9.18

Data from packing slip data sheet

Data from Du Pont data sheet A-21458

Calculated from 1 and 2

Calculated from 1 and experimental data (can also utilize

Psolid)
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TABLE 6.2

PHYSICAL PROPERTIES OF 30 TFE DISPERSION

(Blend 2400)

% solid by weight

Specific gravity of dispersion

Specific gravity of solids

Specific gravity of liquid

% solid by volume

Du Pont
data sheets

59.71

1.502

2.18-2.262

39.4-42.0 3

pH

Experimental

1.498

1.003

39.84

8.71

Data from packing slip data sheet

Data from Du Pont data sheet A-46473

Calculated from 1 and 2

.Calculated from 1 and experimental data
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the reaction vessel is maintained at 800C for an additional five

hours in order to complete the reaction. Woods et al.

investigated various recipes of reactants and reported the effect

of varying surfactant contents upon the particle size distribution

of the polystyrene latex, and they have given various recipes that

can produce monodisperse particles. The theory of emulsion

polymerization will not be reviewed here since it is incidental to

the real problem in this thesis. It should be pointed out however

that the polystyrene polymer does not grow in the monomer styrene

droplets but rather in the micelles created by the surfactants, and

that both free radical initiator and styrene monomer must diffuse

through the water phase into the micelle (or later to the growing

polymer particle).

In this thesis the basic recipe given by Woods et al.

in their table 1 was utilized. The reactants were placed in a glass

bottle containing some glass beads, capped, and then tied to the

blade of an inclined electric stirrer. The inclined stirrer was

placed in a water bath maintained at 65 0 C by a Tempunit

temperature controller (Cole-Parmer) and was rotated end over end

at approximately 30 rpm. After 24 hours the temperature was

increased to 800 C for an additional 5 hours. Several latexes

were produced in this manner until a suitable sample was prepared

(both in homogeneity and particle size) with the recipe as

reported in Table 6.3 for sample S-6. A small amount of the latex

dispersion was centrifuged for one hour at 16,000 rpm but no clean

separation of solids and continuous phase was observed. This was

probably due to the following: the relatively small specific
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TABLE 6.3

RECIPE FOR MONODISPERSE POLYSTYRENE LATEX (S-6)

Ingredient Amount (gr)

Water 54.863

Triton X-100 2.149

Siponate 0.740

KS2208 0.333

Styrene 66.287

gravity difference between polystyrene and aqueous medium; the

high volume fraction of solid; and electrostatic repulsion

between particles. Woods et al. (1968) reported a density for

polystyrene beads of 1.05 gr/cc. In order to obtain additional

latex samples with different solid volume fractions it was

decided to make up aqueous solutions with the same proportion of

water and water soluble components (surfactants but no K2 S2 0 8 )

as that reported in Table 6.3. This surfactant solution was then

used to dilute the original sample (S-6) to obtain samples with

smaller solid volume fractions. The density of the polystyrene

latex sample (S-6) and the surfactant solution was determined by

weighing calibrated volumes of the liquids. The density of the

surfactant solution was found to be 1.003 gr/cc and that of the

dispersion for sample S-6 as 1.027 gr/cc as reported in Table 6.4.

The volume fraction or volume per cent of solids for

sample S-6 can now be calculated by two independent methods. By
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TABLE 6.4

PROPERTIES OF POLYSTYRENE LATEX SAMPLE S-6

Specific gravity of dispersion

Specific gravity of liquid

Specific gravity of solids

Volume per cent of solids

Volume per cent of liquid

1.027

1.003

1.05 (Woods et al.)

52.4

47.6

utilizing data from Table 6.3 and the two measured densities the

specific gravity of the solid and the volume per cent solids for

S-6 can be determined. For example;

total volume dispersion total weight
Odispersion

= 124.372 gr = 121.1 cc
1.027 gr/cc

volume water =
weight water + surfactants
Paqueous phase

57.753 gr = 57.6 cc
1.003 gr/cc

volume % solids
volume solids 100

- total volume

121.1 cc - 57.6 cc 100 = 52.4
121.1 cc

On the other hand one can utilize the density data for the aqueous

solution and the density data for the solids as reported by Woods
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et al. and arrive at a density of the dispersion and the volume

percent of the solids for sample S-6. Either method yields

exactly the same numbers.

The fluorocarbon and polystyrene dispersions showed

good stability characteristics. The fluorocarbon dispersion

would only show some phase separation after standing on the

shelf for several weeks. No noticeable phase separation

occurred for the polystyrene sample after several months

storage.

The particle size and particle size distribution of

the latex particles for both the fluorocarbon dispersions and

the polystyrene dispersion was measured by electron photomicro-

graphy. The electron microscope used is a Phillips EM-2000

Electron Microscope. The technique involved was to place a

drop of diluted dispersion on a ultrathin collodion film

supported on a fine circular screen. After allowing the drop

to evaporate the screen was placed into the microscope and

analyzed.

6.2.2 Emulsions

An emulsion is a dispersion of one liquid dispersed

in a second liquid. Emulsions can be formed if appropriate

emulsifying agents are used to stabilize the suspension. Since

the oxygen permeation measurements made in this thesis took

roughly six hours, the emulsion employed had to be stable for

at least this time span. The term stability is used somewhat

loosely in the literature and may have different connotations
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depending on what property of the emulsion one is interested in.

In this work an emulsion was considered stable if the emulsion

did not show gross separation (creaming or sedimentation) over

a six hour period while particle size remained reasonably

constant. Tbe stability of an emulsion is a function of the

chemical nature of the materials, the density difference

between the immiscible phases, the particle size of the emulsion,

and the emulsifying agents used. If no emulsifying agent is

used emulsions are generally unstable even though a double layer

is often present. The charge density without the presence of a

surfactant is usually low; however, upon addition of a surface

active agent it will adsorb at the oil/water interface and may

provide sufficient repulsion to overcome van der Waals attraction

and consequently stabilize the emulsion. Another method of

stabilization is so called "pickering" where small solid

particles are allowed to adsorb at the oil/water interface and

act as a mechanical buffer. Further,long chain surfactant

molecules may exhibit an entropic repulsion effect when the

tails of the adsorbed molecules meet upon collision of two

particles. Although the stability of lyophobic colloids is

physically well understood in terms of double layer phenomena

and van der Waals attractive forces, and the theory based on

these physical phenomena (DLVO theory for Derjaguin, Landau,

Verwey and Overbeek) has been successfully applied to under-

standing stability phenomena in colloidal dispersions, one can

not yet predict the ideal surfactants to given an emulsion a

particular desirable property. A useful semi-theoretical
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semi-empirical method for selecting a surfactant is the numerical

classification based on the H.L.B. scale; this refers to the

hydrophilic-lipophilic balance of the emulsifer molecule

(Griffin, 1949, 1954). The numerical H.L.B. values for many

emulsifiers have been found by experimental tests, and the

characteristic application of the emulsifer has been correlated

relative to the H.L.B. value. Table 6.5 classifies the H.L.B.

value according to the application of the emulsifier and Table

6.6 gives the experimentally determined H.L.B. value for some

specific surfactants (Davies and Rideal, 1963). By choosing

a surface active agent with the appropriate H.L.B. value, either

O/W (oil dispersed in water) or W/O (water dispersed in oil)

emulsions can be generated.

TABLE 6.5

CLASSIFICATION OF EMULSIFIERS ACCORDING TO H.L.B. VALUES1

Range of H.L.B. Values Application

3.5 - 6 W/O emulsifier

7 - 9 Wetting agent

8 - 18 O/W emulsifier

13 - 15 Detergent

15 - 18 Solubilizing agent

1 From Davies and Rideal (1963).
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TABLE 6.6

H.L.B. VALUES FOR SOME SURFACE ACTIVE AGENTS1' 2

Surface Active Agent H.L.B. Value

Na Oleate 18

Tween 40 (polyoxyethelene (20) sorbitan
monoplamitate) 15.6

Alkyl aryl sulphonate 11.7

Tween 80 (polyoxyethylene (20) sorbitan
monooleate) 10.0

Span 20 (sorbitan monolaurate) 8.6

Ethanol 7.9

Span 80 (sorbitan monooleate) 4.3

Glycerol Monostearate 3.8

1 From Davies and Rideal (1963).

2. Atlas Chemical Industries publication LG-60.

Note: The Span and Tween surfactants are commerical trade

names of Atlas Chemical Industries (now ICI America

Inc.).

Two researchers collaborated with the author in order

to select emulsion systems and methods of preparation that would

be suitable for oxygen transport studies (Stricoff, 1971;

El-Twaty, 1972). Many types of emulsions were analyzed; both

O/W and W/O emulsions. It should be mentioned here that good
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stability is not the sole requirement to determine if a

particular oil-water emulsion system is acceptable in this work.

In addition the chemical nature of the system must be such that

it is inert in regards to the materials of construction of the

sample holder. As will be shown later in the discussion of the

apparatus, the liquid slab (emulsion slab) is isolated by two

thin silicone membranes in a sample holder constructed of

plexiglass, so the organic liquid used as the oil phase should

not attack either the silicone membranes or the plexiglass.

Unfortunately silicone polymers are soluble in many organic

liquids. In addition another requirement is that the vapor

pressure of the organic must be about the same as that of water

at 25 0 C or less (see discussion on apparatus). The final

emulsion systems used in this thesis are given in Table 6.7,

and these systems gave a wide range of permeabilities, as will

be shown in the next chapter. The physical properties and

description of the organics are given in Table 6.8.

The fluorocarbon was selected because it is known

that certain fluorinated organic liquids have a higher oxygen

solubility than whole blood at 1 atm oxygen pressure. Because

of numerous clinical transplantations now attempted, various

fluorocarbons such as PID have been studied as possible organ

preservatives (Malchesky and Nose, 1970). The principal

function of the fluorocarbon liquids is to supply the perfused

organ with oxygen and to remove carbon dioxide from the organ.

In actual use the fluorocarbon is often emulsified into an aqueous

phase, through use of the surface active agent Pluronic F-68
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TABLE 6.7

EMULSION SYSTEMS STUDIED

Composition
Emulsion System Oil Phase

Castor oil in Castor oil
water

Castor oil in 90 vol% Castor oil
water 10 vol% Span 80

Wesson vegetable Wesson vegetable oil
oil in water

Fluorocarbon PID Fluorocarbon PID

Composition
Aqueous Phase

90 vol% water
10 vol% Tween 40

90 vol% water
10 vol% Tween 40

90 vol% water
10 vol% Tween 40

50 gr of Pluronic
F68 per 1 liter
water

(BASF Wyandotte Corporation), and is used in emulsion form to

perfuse the organs. Fluorocarbon emulsions have also been used

as blood substitutes in intact animals (Sloviter et al. 1969).

Pluronic F-68 is a high molecular weight polyoxypropylene-

polyoxyethylene block polymer with a molecular weight of 1,750

that appears to have a low toxicity level (Schmolka, 1970;

Malchesky and Nose, 1970).

The method of emulsification chosen in this thesis

was mechanical agitation, and the device used was the Brown

emulsator. The device is essentially a homogenizer consisting

of two 15 ml hypodermic syringes connected by a double hubbed

needle. The two syringes are held in a cradle while an air-

actuated ram forces the liquid mixture to be emulsified back

and forth through the needle orifice. Becher (1967) made a

six-parameter statistical study of the effect of various

parameters on the initial size distribution function of oil in

water emulsions. The following parameters studied for the



TABLE 6.8

PHYSICAL PROPERTIES AND DESCRIPTION OF ORGANICS AT 250C

Viscosity
C

Vapor
Pressure
mm Hg_

Commercial
Source Composition

Castor oil'

Wesson
Vegetable
oil 2

PID
fluorocarbon 3

0.960

0.92

1.75

986

1.2

Fisher
Chemical

Hunt-
4

Wesson

Allied
Chemical

87% ricinoleic acid
7% oleic acid
3% linoleic acid
3% saturated fatty acids

45% linoleic acid
36% oleic acid
11% plamitic acid
5% stearic acid
3% linolenic acid

[(CF 3)2CF-O-CF2 CF2 2
perfluoro-1,4-
diisopropoxybutane
99.9% pure

1 Data from Handbook of Chemistry and Physics, 49th Edition (1968).

2 Personal Communication Hunt-Wesson Foods, Inc.

3 Mears, W. H. and R. L. Bearers, Fed. Proc. 29, 1819 (1970).

4 Purchased off the shelf in single bottle.
U,

Density
gr/ccOrganic
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emulsion system of a 57/43 mixture of chlorobenzene and light

mineral oil in water:

1. Number of passes through needle orifice

2. Orifice area of needle

3. Air pressure on ram

4. Phase volume fraction

5. Concentration of emulsifying agent

6. Hydrophilic-lipophilic balance (H.L.B.).

The distribution functions were determined photomicrographically,

and the data analyzed in terms of the average size. Becher

found that the primary parameters that determine particle size

are the number of passes, and the air pressure. Becher claimed

that (at least for his emulsion system) narrow particle size

distributions can be achieved. El-Twaty (1972) found that the

particle size distribution was a function of the emulsion system

studied, and further that not only air ram pressure and number

of passes were of primary importance in determining particle-

size but also emulsifier concentration. El-Twaty experimentally

determined that emulsions generated by the Brown emulsator were

reproducible for a fixed set of parameters. For more

information, the reader is referred to El-Twaty's thesis. In

this thesis, emulsions of different volume fractions were made

by mixing appropriate volumes of the aqueous and the organic

phase. Volumes of liquids were determined by calibrating the

syringes in the Brown emulsator. The number of passes was 60

and the air ram pressure used was 40 psi for all emulsions.
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Particle size of the emulsion was analyzed with either

a Coulter Counter or a Microscope. Particle size analysis was

used here both as a method of quality control (to insure that the

particle size was reasonable in comparison to emulsions of the

same type) and as a check to see if an emulsion failed to obey

Maxwell's equation because of possible particle size variations.

6.3 Reactive Systems

The heading "reactive systems" is somewhat

restrictive here because experiments are conducted in certain

cases where the chemical reaction is completely saturated

(inactivated) and consequently is of no importance in the mass

transfer phenomena. In addition some experiments have been

performed on some homogeneous systems.

6.3.1 Immobilized Hemoglobin Films

As has been discussed in the literature survey, the

augmentation of oxygen transport in hemoglobin solutions has

been explained by the mobile carrier facilitation hypothesis.

In collaboration with Zahka (1971) a study was made to

determine if any oxygen transport augmentation occurs in the

absence of significant hemoglobin translational mobility.

If the overall oxygenation process is presented by

a single step reaction

A + B t AB (6.2)
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where A, B, and AB are oxygen, hemoglobin, and oxyhemoglobin

respectively, then the steady-state oxygen flux through a one-

dimensional system, according to the mobile carrier hypothesis,

is given by

T dC dC
N = D dxA - DA A (6.3)A A dx AB dx

For the asymptotic case where the reaction is at equilibrium

throughout a film of thickness L the above equation is easily

integrated giving Olander's equilibrium solution as presented

by equation (3.32)

D (C - CL) D KC
NT A A A [ + B T (6.4)
A L DA(1 + KC)(1 + KCL)A A +

Alternatively, another mechanism may be responsible for a

portion of the observed facilitation, such as site-to-site

migration of oxygen across the hemoglobin molecule as suggested

by Scholander. Within the framework of a site-to-site surface

diffusion mechanism, equation (6.3) retains its validity, but

now CAB is the surface concentration of oxygen associated with

hemoglobin and DAB is the effective steady-state surface

diffusion coefficient of this species times the surface area of

the hemoglobin molecules per unit volume of solution. In the

concentrated solutions of interest here, the hemoglobin

molecules are in very close proximity, but long-range order

does not exist (Perutz, 1948). Since continuous arrays of

hemoglobin molecules are unlikely, the effective diffusion

coefficient would be expected to be a complex function of
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hemoglobin concentration (Barrer, 1965). Integration of

equation (6.3) yields a result identical in form to equation

(6.4). Whether the "carrier" is mobile or fixed the mathematics

remain essentially the same, as has been previously shown in

other contexts (Hill and Kedem, 1969). Because of the

similarity in functional form between the two models, an

experiment with a mobile carrier cannot conclusively demonstrate

that another mechanism is not simultaneously operative. By -

greatly reducing the mobility of the hemoglobin carrier without

affecting its reactivity towards oxygen an unquivocal test can

be made to differentiate between these mechanisms.

Hemoglobin or any other large protein molecule can

be immobilized (or insolubilized) by four principal methods:

i) physical adsorption to an inert carrier (such

as glass beads, charcoal, or collodion)

ii) entrapment inside the lattice of a polymeric

matrix

iii) covalent binding of the protein to a suitable

water-insoluble carrier

iv) covalent cross-linking of the protein by a

suitable bifunctional reagent.

The immobilization of proteins is currently an active

scientific topic, and excellent reviews are available that

have compared the various techniques involved in the various

methods (Silman and Katchalski, 1966; Goldman et al., 1972;

Weetal and Messing, 1972). Zahka (1971) investigated the

immobilization of hemoglobin by physical adsorption into
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collodion films, and the crosslinking of hemoglobin into films

with glutaraldehyde and benzidine diazonium salt. The

crosslinking agents deactivated the hemoglobin molecules and

could not be used in the test. The hemoglobin immobilized by

sorption into collodion membranes remained fully active, and

these membranes were used for the oxygen permeation experiments.

The collodion membranes were prepared from nitrocellu-

lose (U.S.P., J. T. Baker Chemicals Co.) by standard techniques

but were not further oxidized (Carr and Sollner, 1944; Gregor

and Sollner, 1946). The films were about 300 y thick, contained

85 to 90 per cent by volume water, and have been shown to have

an effective pore diameter of about 0.3 y (Goldman, et al., 1968).

Hemoglobin solutions were prepared by standard methods, the

description of which will appear in a later section of this

chapter. Methemoglobin solutions were prepared by addition of

potassium ferricyanide to the hemoglobin in solution. Collodion

membranes, which were stored in buffer prior to use, were

equilibrated with hemoglobin or methemoglobin solutions for 14

days. To make sure that the hemoglobin used in this study did

indeed facilitate oxygen transport, experiments were conducted

similar in nature to those of Scholander (1960). Millipore HA

fillers (approximate thickness 150 p, porosity 0.79, average

pore diameter 0.45 p, according to the Millipore Corp.) were

first filled with the same hemoglobin solution by capillary

action and then equilibrated for 12 hours. Membrane thickness

measurements were made before each oxygen permeation determina-

tion with a sensitive micrometer (Ames dial comparator, Model 412).
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It was anticipated that some of the hemoglobin would be

irreversibly sorbed by the nitrocellulose, as has been observed

with various enzymes which retained their activity in

hydrophilic collagen membranes (Vieth et al., 1972), and that

mobility of the retaining hemoglobin would be severely

restricted. This was analyzed by immersion of a hemoglobin-

saturated film of known thickness and area, the surface of

which was first wiped dry, into a large volume of agitated

buffer. Effective diffusivity of the free hemoglobin was

calculated from the amount eluted at known times and at

equilibrium by use of the solution for diffusion from a slab

into a well-stirred finite bath (Crank, 1964).

Oxygen affinity of hemoglobin was measured by

equilibrium uptake experiments. Measured amounts of hemoglobin

or of pieces of saturated membranes were placed in agitated

phosphate buffer, degassed, and then exposed to a specified

mass of oxygen in the presence of saturated water vapor. Oxygen

partial pressure in the gas space above the liquid was followed

manometrically (MKS Baratron) until there was no change with

time. Dissolved oxygen at the equilibrium partial pressure was

calculated from the known solubility (Altman and Dittmer, 1971),

and hemoglobin-bound oxygen was determined by material balance

through use of the ideal gas law. Additional points on the

oxyhemoglobin saturation curve were obtained by varying the

initial mass of oxygen.

All solutions were stored, and membrane equilibration

with hemoglobin solutions was carried out, at 4
0 C. All other
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experiments were conducted at 25 + 0.50C. Additional details

are available (Zahka, 1971).

6.3.2 Hemoglobin Solutions

Oxygen permeability data was obtained on "inactivated"

hemoglobin solution in order to compare measured permeabilities

with literature values of hemoglobin solutions diffusivity and

also to obtain some results at temperatures other than 25 0C.

The oxygen-hemoglobin reaction can be inactivated by several

methods. In the presence of 0.7 mm Hg carbon monoxide (lethal

concentration) the heme sites are completely blocked and

unavailable for the reaction with oxygen. Another method is to

convert the hemoglobin to the inactive methemoglobin form by

addition of potassium ferricyanide. A third method is to

saturate the hemoglobin completely with oxygen so that the

reaction is completed and no longer participates in the mass

transfer process. In each of these three cases, the oxygen

mass flux is solely a diffuse flux. Oxygen permeabilities were

measured in hemoglobin solutions where the hemoglobin reaction

was inactivated by each of the three metnioned methods.

Permeabilities obtained should of course be independent of the

inactivation manner chosen. Oxygen permeabilities were

obtained on hemoglobin concentrations from zero to 32 gr/100 ml

at 250C. Oxygen permeabilities were also obtained over a range

of temperatures for a fixed hemoglobin concentrations.
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6.3.2.1 Preparation of Hemoglobin Solutions

Outdated or fresh whole human blood (0 positive) was

obtained either from the Red Cross Blood Bank, or the Massachusetts

General Hospital Blood Bank both in Boston, Massachusetts. It

was centrifuged at 7,500 rpm for 15 min at 40C in a centrifuge

(Servall, Model RC-2) and the plasma and buffy coat were

discarded. The red cells were washed three times with pH 7.2

isotonic phosphate buffer (7.67 gr of NaCl, 1.36 gr Na2HPO , 0.51

gr of KH2PO4 per liter of water) and recentrifuged. Complete

hemolysis of the packed red cells was obtained by three cycles

of freeze-thawing in a salt-ice slush at -10 0 C. The

concentrated hemoglobin solution was centrifuged at 16,000 rpm

for 30 minutes in order to remove the red cell stroma. The

concentrated hemoglobin solution was diluted as needed with the

isotonic phosphate buffer (pH = 7.2) or isotonic saline.

Methemoglobin was prepared by the addition of 1.05 mole of

potassium ferricyanide per mole of heme. The five percent

excess is necessary to insure that the hemoglobin is fully

reduced to methemoglobin (Antonini and Brunor; 1971). Total

hemoglobin concentration of solution was quantitated by the

cyanmethemoglobin method (Richterich, 1969). The adsorption at

540 mp was measured (using a Bausch and Lomb 505 spectrophoto-

meter) of a .02 ml sample of hemoglobin solution diluted with

5.0 ml of standard cyanmethemoglobin stable reagent (Hycel

Inc., catalog no. 116C). The adsorption was related to

hemoglobin concentration through use of the Hycel certified
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cyanmethemoglobin standard (Hycel Inc., catalog no. 117). The

calibration curve was prepared by Emmer (1972).

6.3.3 Red Blood Cell Suspensions

The reactive heterogeneous media of interest was red

blood cell suspensions in buffered isotonic saline. Whole blood

was not used for a variety of reasons. Whole blood is usually

collected in 67.5 ml of ACD solution (Anticoagulant Citrate

Dextrose Solution U.S.P.) for the total collection of 450 ml of

blood. The ACD solution is acidic and causes the blood pH to

drop. Upon storage of whole human blood at 4 0C additional

physiological changes take place most of which are not under-

stood. However it is known that blood pH becomes more acidic

with time, and that some hemolysis of red blood cells may take

place. Small microsize clots may form in the suspension. In

this study, in order to be assured of reasonably consistent

samples, red blood cells obtained from whole blood were washed

and suspended in buffered isotonic saline at a pH of 7.0.

6.3.3.1 Preparation and Analysis of Red Blood Cell

Suspensions

Freshly collected whole human blood was purchased

from the Massachusetts General Hospital Blood Bank and stored at

4 0C in a refrigerator. Red blood cells were obtained from the

stored whole blood for oxygen permeation experiments and

saturation curve measurements. Red blood cells (RBC) were

prepared by a technique analogous to the method for preparation
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of hemoglobin solution (bur of course not hemolyzed). RBC sus-

pensions of various hematocrits were obtained by diluting the

packed red blood cells. The samples prepared were used

immediately for oxygen permeation experiments. The usual time

span of preparation, from removal from the blood collection bag

to insertion into sample holder, was of the order of one to two

hours. All blood was handled in plastic containers and

maintained at about 40C. The packed red blood cells were diluted

with the phosphate buffer at 25 0 C and the red blood cells

resuspended with gentle stirring with a teflon-covered magnetic

stirring bar and a magnetic stirrer at approximately 30 rpm for

a few minutes. In order to prevent bacterial growth, the

plastic containers used were rinsed (and sample holder was

flushed) with dilute formaldehyde solution (10 ml/liter

distilled water) and then rinsed thoroughly with distilled water

and finally rinsed one more time with buffered isotonic saline

prior to use in the red blood cell preparation. Small amounts

of streptomycin sulfate (1 mg/10 ml) were added to some of the

red blood cell suspension to inhibit bacterial growth

(Richterich, 1969).

The hematocrit of the red blood cell suspension was

determined by filling five heparinized glass capillary tubes,

5 cm long and 1.3 mm in diameter, with the suspension, sealing

the bottom with a white vinyl clay compound (Critoseal,

Sherwood Medical Industries) and centrifuging at 17,000 g for

7 minutes in a microcapillary centrifuge (International

Equipment Co., Model MB). Hematocrit was calculated as the
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percentage ratio of the red cell pack to the total sample

length through use of a calibrated card reader (Critocap tube

reader, Sherwood Medical Industries). Hematocrit was also

analyzed after the experiments in order to determine the amount

of hemolysis.

Once the red blood cell suspension was prepared, a

samll sample was introduced into the sample holder for mass

transfer analysis, and the remaining amount was used for

equilibrium saturation curve measurements. Experiments were

conducted either at 250C or 370C.

6.3.3.2 Equilibrium Saturation Curve Considerations

To assure that RBC suspensions are similar from run

to run, a necessary requirement is that the oxygen-hemoglobin

saturation curve is fairly constant from run to run. From the

discussion in Chapter 5 on nonequilibrium mass transport in

red blood cell suspensions, it seems reasonable that if there

is no correspondence of samples under equilibrium conditions,

one should not expect a correspondence in case of

nonequilibrium transport. The best way to control the

saturation curve is to control temperature, partial pressure

of carbon dioxide, pH, and organic phosphates such as

2,3-DPG (see Appendix B). Since temperature is fixed (250

or 370C) and the partial pressure of carbon dioxide in the

permeation experiments is zero mm Hg, the other parameters that

need to be controlled are pH and organic phosphate concentra-

tions. The dilution and washing of red blood cells with pH 7.2
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buffer leaves the final RBC suspension near a pH of 7.0, which

gives a reasonable equilibrium saturation curve in that, if the

reaction were indeed at equilibrium, reasonable saturation

differences could be attained in actual experiments. A pH of

7.4, which is a physiological pH, was not chosen because the

equilibrium saturation curve is fairly steep so that the

reaction is readily saturated for small oxygen concentrations

at the low concentration side of the liquid slab. Control of

pH for the RBC suspensions in the case of dilute suspensions

(of red blood cells) was attained by diluting the suspension

partly with pH 7.0 isotonic phosphate buffer. The procedures

guaranteed that the pH of all samples was near 7.0. For all

samples the pH was measured with a Radiometer BMS 3 pH meter,

and the pH range in the experiments was from 6.90 to 7.00.

Addition of 2,3-DPG to the suspension is ineffective because

organic phosphates cannot penetrate the red blood cell

membrane (Chanutin, 1971). A possible way to adjust 2,3-DPG

is to control metabolic processes within the red blood cell

through proper addition of nutrients. This was beyond the

scope of this thesis. The saturation data obtained here was

mainly used to ascertain the uniformity of the blood from

sample to sample. In order to utilize these results

theoretically for an Adair type transport model or any other

model, kinetic rate constants compatible with the model need

to be obtained. For all runs the saturation at near fifty

per cent saturation (p50) was measured or several points on

the equilibrium saturation curve were obtained.
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6.3.3.3 Equilibrium Saturation Curve Measurements

In order to obtain the hemoglobin saturation curve

the fraction of total hemoglobin in oxyhemoglobin form (or

per cent saturation) must be measured as a function of partial

pressure of oxygen. The oxygen hemoglobin saturation curve is

properly defined only at fixed temperature, partial pressure

of carbon dioxide, pH and other variables that affect the

saturation curve. The pH and free organic phosphate concentra-

tions do change somewhat due to structural changes in the hemo-

globin molecule upon oxygenation (Appendix B). The pH.changes

are small but common convention defines the pH of a saturation

curve at the fifty per cent value.

Various methods are available for the measurement

of the oxyhemoglobin saturation or total oxygen content (from

which oxyhemoglobin saturation can be calculated if the

dissolved oxygen content is subtracted). Gasometric (Van Slyke

and Neill, 1924), gas chromatography (Lenfant and Aucutt, 1966),

spectrophotometry (Gordy and Drabkin, 1957), a mixing

technique (Edwards and Martin, 1966), and dynamic methods

(Duvelleroy et al., 1969) have been reviewed in detail by Cole

and Hawkins (1967) and by Duc and Engel (1970). The gasometric

technique developed by Van Slyke and Neill is still considered

to be the standard method, and usually other methods are

analyzed by comparing results with the gasometric method known

as the Van Slyke method. The Van Slyke method is somewhat

laborious and requires appropriate training to perform the
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method accurately. It is not surprising therefore that many

commercial devices have become available that can determine

oxyhemoglobin saturation guickly and accurately. In this

study, oxyhemoglobin saturation was determined with an IL 182

CO-Oximeter (Instrumentation Laboratory Inc.). The IL 182

CO-Oximeter utilizes the spectrophotometric method and

total hemoglobin content automatically upon introduction of a

0.5 ml sample. The accuracy of the device is +1 oxyhemoglobin

saturation percentage. The partial pressure of oxygen and of

carbon dioxide, and the pH of the blood samples (or hemoglobin

solution) was measured with the BMS 3 blood micro system

(Radiometer). The Radiometer BMS 3 has a po2 range from 0 to

800 mm Hg (accuracy +0.1 mm Hg), a pCO2 range of 8 to 400 mm

Hg (accuracy +0.1 mm Hg) and a pH range of 0 to 14 (accuracy

+0.005). The three electrodes (oxygen, carbondioxide, and pH)

are situated in a temperature bath controlled by a built-in

temperature controller that controls the temperature to within

+0.02 0C variation.

The basic procedure for obtaining points on the

saturation curve was to tonometer two samples with known gas

of fixed oxygen concentration; one with humidified nitrogen

gas (p0  = 0 mm Hg) and the other with humidified air
2

(pO2 ~ 150 mm Hg). The volumes of red blood cell suspensions

(about 20 cc each) were each placed in an Erlenmeyer flask,

stoppered with a two hole rubber stopper (containing one tube

for gas inlet and one for gas outlet) and the humidified gas

(nitrogen or air) was then blown on the surface of the liquid
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while the flasks were gently agitated (at temperature of

interest). After about two hours the flask tonometered with

nitrogen was virtually at zero per cent oxyhemoglobin

saturation, and the air tonometered flask at complete

saturation. By mixing two small volumes (one each out of each

flask) in certain ratios, any saturation per cent between 0 and

100 per cent saturation can be obtained. Samples out of the

flasks were withdrawn through a small sampling port at the

bottom side of the flask (making sure that no gas was present

in the sample) with a 2-1/2 ml plastic syringe (Plastipak;

Becton, Dickinson and Company) and the two syringes (one zero

per cent HbO 2 ) were connected with a plastic three way stopcock

(Pharmaceal Laboratories). The two volumes were thoroughly

mixed by reciprocal movement of the plungers of the syringes,

and then the mixed sample was analyzed for oxyhemoglobin

saturation, pH, and partial pressure of oxygen. The partial

pressure of carbon dioxide was checked to insure that it was

near zero, and total hemoglobin concentration measured in order

to compare it with the more exact value obtained from the

cyanmethemoglobin method.

Prior to the analysis of the equilibrium saturation

curve of a red blood cell suspension, the sample was stored at

25 0C (or 370C) for the same time period as another sample was

maintained inside the sample holder of the permeation

apparatus prior to measurement of the steady state oxygen flux

through that sample.
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6.3.4 Model Systems

6.3.4.1 Motivation for Working with a Model System

In the literature review chapter it was indicated

that the hemoglobin diffusivity was not known with great

accuracy at hemoglobin concentrations comparable to those inside

the red blood cell. In addition hemoglobin diffusivities inside

the red blood cell has not been measured. It can be assumed

however that the hemoglobin diffusivity inside the red blood

cell is of the same order as that measured at comparable

hemoglobin concentrations in homogeneous solutions because long-

range order does not exist inside the red blood cell (Perutz,

1948). The comparison of experimentally obtained permeabilities

with those predicted by theory is open to some question in

regards to what the hemoglobin diffusivity should be. In

absence of an exact value of the hemoglobin diffusivity inside

the red blood cell, a logical procedure would be to compare

the experimental results with theoretical predictions utilizing

the maximum, the minimum, and an average value of the reported

hemoglobin diffusivities. On the other hand, the hemoglobin

diffusivity is known more precisely at concentrations below

25 gr/100 ml (see Figure 3.8). If a hemoglobin solution of a

concentration below 25 gr/100 ml can be encapsulated inside a

spherical particle, so that one has a model red blood cell, a

suspension of such particles could give a more precise test of

the theoretical model developed in this study. In addition,

the particle would be in spherical form as was assumed in the

derivation of the model.
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In this work four methods were investigated to

encapsulate hemoglobin solution in spherical form. Before

considering these methods in detail, some additional considera-

tions should be discussed. In the analysis of the theory it

was shown that at a hemoglobin diffusivity of 0.70 x 10~7

cm 2/sec (an average value) the oxygen-hemoglobin reaction is

not completely at equilibrium even if the maximum allowable red

blood cell radius (4 ym) is used (see Section 5.1.2). At a

lower hemoglobin concentration, the oxygen permeability and

hemoglobin diffusivity will increase, so that the value of

a/A' will be shifted more in the nonequilibrium regime. By

performing permeation experiments with model red blood cells of

one size, lets say with average particle diameter about 2 pm,

and permeation experiments with a suspension of larger size,

lets say with average particle diameter of about 10 pm, one

should be able to show experimentally that the average

effective permeability for the "large size suspension" must be

greater because it would be nearer chemical equilibrium. The

characteristic length of the oxygen-hemoglobin reaction is not

a strong function of hemoglobin concentration, as is shown in

Figure 6.1, so that the two suggested sizes are of a reasonable

value since the transition from inert to equilibrium regimes

occurs in the particle size range of about 0.5 to about 10 pm

particle diameter (see Figure 5.8). The large size suspension

can of course contain even larger particles as long as particle

size is at least 1/10 of the liquid film thickness (see Section

3.1.2).
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6.3.4.2 Methods of Encapsulation

As far as could be determined, four methods are

available to encapsulate a liquid inside a spherical particle

and these methods are:

1. Encapsulation of liquid with a thin polymeric

membrane.

2. Encapsulation of liquid with a thin liquid

hydrocarbon phase (liquid membrane).

3. Encapsulation of liquid with a lipid bimolecular

layer (lipid membrane).

4. Emulsification of the liquid into an organic

liquid such that a W/O emulsion is formed.

Publications have appeared in the open literature that describe

various techniques for each of the methods. A fifth possible

method which was not considered would be the adjustment of the

tonicity of the medium around the red blood cell to hypotonic

conditions so that the red blood cell would swell in volume

accompanied with a reduction in hemoglobin concentration. This

method was not used because it would be impossible to get a

"large size suspension" with the same hemoglobin concentration

as a "small size suspension" since the total hemoglobin inside the

red blood cell is fixed. A possible modification of this

technique would be the controlled rupture of the red blood cell

membrane by adjusting osmotic pressure and allowing some of the

hemoglobin to escape, and then by readjusting osmotic pressure

allow the red blood cell membrane to "repair" itself. This
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technique could also be used to encapsulate another liquid into

the ruptured red blood cell ghost, and subsequent adjustment of

osmotic pressure to repair the membrane. However it was felt

that to develop such a technique was beyond the scope of this

thesis.

For all of the four methods the initial step is to

form a W/o emulsion of the aqueous fluid to be emulsified in

an appropriate organic liquid. Once the emulsion is formed and

the suspended particles are of the desirable particle size, the

next step is to form a "skin" around the particles in order to

be able to isolate them (not for method 4 of course). In the

case of the first method, polymer skins are formed either through

interfacial condensation or interfacial coarcervation. The

techniques for these methods have been established by Chang and

co-workers at Mc Gill University (Chang et al., 1964, 1966, 1968,

1968a, 1972), and have been successfully applied to the

encapsulation of a variety of enzymes. The next step, after

polymer skin formation is complete (~ 200 A thickness), is to

quench the reaction (by diluting the reactant concentrations).

The particles are then suspended in an aqueous solution by

removing the organic liquid through repeated centrifugation and

washing.

Alternatively, the W/O emulsion is directly added

into a stirred aqueous phase (isotonic saline). If the organic

oil is properly tailored, the final result will be a multiple

emulsion, i.e. oil droplets containing droplets of hemoglobin

solution (or other liquid of interest) suspended in a
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continuous aqueous phase. (Li and Shrier, 1972, May and Li,

1972) An organic oil developed for this purpose is a mixture

of Span 80, ENJ-3029 and SlOON. ENJ-3029 is a high molecular

weight amine with an average molecular weight of 2000 manu-

factured by ENJAY Additives Laboratories, and SIOON (ENJAY)

is a mixture of organic compounds (28.8% Paraffins-mostly iso-,

57.2% Napthenes, 9.2% Aromatics, and 4.8% Polar compounds) with

an average molecular weight of 386.5, and a specific gravity of

0.8597 (Li, personal communication). The resulting beads of

hemoglobin are surrounded by the liquid organics which have

been termed liquid membranes.

The third method utilizes the tendency of

phospholipids to form bimolecular lipid layers in an aqueous

solution or at a water-oil interface. Cell membranes are at

present considered to be partially made up of bimolecular

lipid layers, and extensive research in the physical

characteristic of bimolecular lipid layers is currently in

progress (see reviews by Tien, 1972; Szabo et al., 1970;

Finkelstein, 1972). Previously small spherical vesicles have

been produced which were surrounded by bimolecular lipid

layers, but the size of the vesicles were of a diameter of

approximately 500 A, too small to be of interest in this

study (Seufert, 1970; Hauser et al., 1972). No attempt was

made in those studies to encapsulate a specific protein or

enzyme solution inside the phospolipid vesicles (just water).

Recently Chowhan et al. (1972) reported the preparation of

large size (1-2 ym) lecithin spherules (particles bounded by
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a bimolecular layer of lecithin) containing a 5.14% glucose

solution. The initial step is to emulsify the glucose solution

into a volatile organic solution (chloroform) containing lecithin

and dicetyl phosphate. The chloroform is then removed slowly

from the W/O emulsion by using a partial vacuum and continuous

stirring of the emulsion. After removal of chloroform the

result is a high volume fraction (4 ~ 1) dispersion of spherical

liposomes.

In each of the four methods, common problems are

particle size control and deactivation of the hemoglobin. The

particle size can be controlled through the proper control of

emulsification parameters such as time of emulsification and

stirring speed. Because large quantities of emulsions were

needed in the process of encapsulation, the Brown emulsator was

not used. Instead in the first step emulsions were made with

magnetic stirrers, electric blade stirrers, and a Waring blender.

Another problem encountered with the Brown emulsator was the

inversion of the W/O emulsion and relatively low volume fraction

of the aqueous phase. Deactivation of hemoglobin occurs in all

phases of the encapsulation process.

A major problem with the liquid membrane technique

was that a dispersion of single hemoglobin droplets in oil

droplets suspended in saline could not be obtained. Instead the

oil droplets would contain many hemoglobin particles as is shown

in Figure 6.2. The oil droplets would be of order 100 to

1000 pm while the hemoglobin droplets were of order of 2 to 10

pm. No method of stirring or adjustment of surfactant
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FIGURE 6.2
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concentrations could isolate single hemoglobin particles.

No successes were obtained with the bimolecular lipid

membrane technique as described by Chowan et al. (1972) because

upon evaporation of the oil phase the hemoglobin particles

coalesced rapidly. An attempt was made to prepare the particles

similar to the liquid membrane technique, but a multiple

emulsion with many hemoglobin solution particles in the oil

droplets was the result as shown in Figure 6.2. As a consequence

method 2 and 3 were abandoned.

In collaboration with Tuntunjian (1973), method 1

and 2 were extensively investigated. In method 1 hemoglobin

solution was encapsulated with either collodion or nylon

membranes of order 200 A thickness, and suspensions were formed

with an average particle diameter as small as 4 pm. The oxygen

uptake of hemoglobin at full saturation was checked through the

Van Slyke technique which was performed at the Massachusetts

General Hospital Blood Gas Laboratory. It was found that for

the particle size range of interest hemoglobin was

approximately 90 percent deactivated (Tuntunjian, 1973). This

amount of deactivation is so great that these suspensions would

be of little use in permeation experiments, and consequently

this model system was abandoned.

A problem with the water in oil emulsion system is

that is is relatively difficult to obtain emulsions of high

aqueous phase volume fraction without inversion and with good

stability. As has been discussed previously the presence of a

strong double layer stabilizes an emulsion because it imparts
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repulsive forces that counteract particle coalescence. Usually

the electrical conductivity in oils is poor so that the

electrical double layer is extended, and as a consequence

dilute W/O emulsions are favored. An appropriate volume

fraction of the hemoglobin phase would be of order of D > 0.40

in order that the facilitated transport effect upon oxygen

transport could be investigated. Of many oils investigated

only a Sl00N mixture was found to give high volume fractions of

aqueous hemoglobin solutions in oil emulsions. Volume fractions

as high as (D 0.7 could be attained before inversion of the

emulsion resulted. This high volume fraction suggests that ion

permeabilities are relatively large in the S100N mixture. The

S100N mixture was 90 volume per cent S100N, 5% ENJ-3029, and

5% Span 80.

Emulsions (W/O) were made with a Fisher Jumbo

Magnetic Stirrer (Fisher Scientific) yielding particles with

approximately 9 pm particle size (stirring speed of Teflon

stirring bar is 400 rpm), and emulsions with a particle size of

about 3 pm were obtained with an electric blade stirrer (1000

rpm). The hemoglobin solution was prepared from freshly

collected blood (purchased from the Massachusetts General

Hospital Blood Bank, type O positive) as previously described.

To prevent bacterial growth 1 mg of streptomycin sulfate per

10 ml red blood cell suspension was added. Additional details

are available elsewhere (Tuntunjian, 1973).

The Sl00N W/O emulsion system was used as the model

system for permeation experiments. Since the oil is the
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continuous phase, the permeability of the oil phase should not

be very large compared to the permeability of the hemoglobin

solution, otherwise facilitation effects will not be apparent

due to the high mass flux in the continuous oil phase.

Experimentally the permeability of the SlOON mixture was found

to be about 15 per cent higher than that of isotonic saline.

The permeability and the facilitation factor are a function of

the hemoglobin concentration and as a consequence an

appropriate hemoglobin concentration must be found that gives

a reasonable high facilitated flux. Tuntunjian (1973) has

performed many computer calculations utilizing the theory

developed for dispersed phase reaction only in order to analyze

what concentration range of hemoglobin should be used. A

concentration range of 14 to 18 gr/100 ml was found to be most

suitable to give maximum facilitation effects.

6.4 Gas Permeation Experiments

6.4.1 Experimental Apparatus

The gas permeation apparatus is a modification of

Barrer's classic, vacuum, time-log apparatus (Barrer and

Skirrow, 1948) and is shown in Figure 6.3. The thin liquid

film of the system of interest (such as an emulsion, dispersion,

red blood cell suspension, hemoglobin solution, etc.) is held

vertically between two silicone support membranes within the

sample holder. A schematic cross-sectional view of the sample

holder is shown in Figure 6.4. The sample holder is situated
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in a constant temperature bath controlled by a Yellow Stone

Instruments Model 72 proportional temperature controller

(distributed by Cole-Parmer). The YSI model 72 has a set

point repeatability of +0.010C and a stability of +0.0010C.

Such precise temperature control is necessary to assure

negligible interference in downstream pressure readings as a

result in fluctuations in the liquid sample vapor pressure.

Temperature charges are measured to within 0.001 0C with a

Beckman Differential Thermometer.

The sample holder is connected with Cajon ultra-torr

fittings (stainless steel) to a large upstream gas volume and a

small downstream gas volume such that the liquid slab is in a

vertical position. The face of the upstream slab is then

exposed to the upstream gas volume, and the downstream face of

the liquid slab is exposed to the downstream gas volume.

The whole permeation apparatus can be evacuated by

means of a vacuum pump. Prior to beginning an experiment the

previously evacuated upstream and downstream volumes are

equilibrated to the vapor pressure of the liquid system of

interest through use of the saturator. The gas volumes

upstream and downstream of the liquid slab need to be saturated

in order to be certain that no liquid evaporates from the

sample. Next the gas of interest is introduced into the upstream

volume and the downstream volume pressure change is recorded with

time. The experiments are run at partial vacuum in order to

reduce gas phase resistance to mass transfer. The gas on the

upstream side diffuses through the liquid slab and emerges in



286

the gas phase of the downstream volume. The pressure change

with time can be converted to moles of gas transferred per unit

time through use of the ideal gas law. During the course of an

experiment, the upstream pressure decreases minimally as gas

diffuses through the film because of low mass transfer ratio

and the large upstream volume (~ 3000 cc). Because of the low

flux the downstream pressure change is also small, so that a

quasi steady state situation arises after the initial transient

period.

In order to measure the downstream volume a calibrated

bulb was connected to the downstream volume. The bulb volume

was measured by repeated filling with water and weighing the

contents. Through use of the calibrated bulb the downstream

volume could be increased by approximately a factor of eight.

The downstream pressure was measured by means of a

Baratron Type 77 Capacitance manometer (MKS Instruments). The

sensitivity of the Baratron was such that pressure changes as

low as 1 pm Hg could be measured accurately and recorded on a

Sargent MR or a Heath model EVW-20A recorder. The upstream

pressure is read to within 0.02 mm Hg from a mercury manometer

through the use of a cathometer.

Most of the vacuum apparatus is enclosed by a large

wooden box to minimize the effects of variations in room

temperature. The interior of the box was maintained approxi-

mately 30C above the water bath temperature and held constant

within +0.02 0C, by means of a YSI Model 2156 proportional

temperature controller (Cole-Parmer). The purpose of keeping
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the air above the water bath several degrees higher than water

bath temperature is to avoid any condensation of the liquid in

the apparatus, especially in the Baratron pressure sensing head.

Any evaporation and recondensation can result in erratic down-

stream pressure variations.

The liquid film in the sample holder is bounded at

each side by two thin support membranes (MEM-213, General

Electric Co.). These silicone membranes are nominally 25 and

50 pm thick and have a high gas permeability. Since the liquid

films used in this study varied from approximately 450 to 2200

pm the mass transfer resistance of these membranes was usually

only a few percent of the total resistance. The three layer

sandwich of polymer-liquid film-polymer is enclosed by two

plexiglas plates, 5 cm in diameter and 1.9 cm thick. A thin

rubber sheet (the thickness of which corresponds to that of the

liquid film) serves as a gasket and the use of silicone grease

(Dow Corning) provides the seals between plexiglas, membrane,

and gasket. As shown in Figure 6.4, circular holes are cut in

the rubber gasket in which small metal disc spacers fit with a

thickness approximately 20 pm less than the gasket. These

spacers define the actual thickness of the liquid film once the

whole sample holder is tightly clamped. At the inside of each

plexiglas plate is a cylindrical cavity which defines the

membrane area exposed to gas transfer (25.5 cm2 ). The membrane

areas exposed to gas transfer are supported by a disc of very

porous nickel "foammetal" (General Electric Co.) which fits

smoothly into the cavity (its thickness is exactly the same as
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the depth of the cavity) and has an area of about 24 cm2 to

give a loose fit. The foammetal has an open pore structure

that constitutes 91 percent of the total volume. Because of

its porosity, the effect of the foammetal on total mass transfer

area and mass transfer resistance is negligible (also indicated

by experiment). The sample holder is tightly clamped by two

brackets to insure a vacuum tight seal and the correct film

thickness. Two filling ports are arranged in such a manner

inside the sample holder that, once the holder is assembled,

samples can be introduced with the aid of a syringe.

Once the sample holder is hooked up to the apparatus

the liquid slab is in a vertical position. If any sedimentation

or creaming of the dispersed phase occurs inside the liquid slab,

the direction of sedimentation or creaming is normal to the

direction of mass flux so that it should have little effect.

The sample holder is connected in such a manner that it can be

rotated (a half turn at a time) so that any separated system

can be redispersed prior to starting the actual mass flux

experiment. After an experiment was finished, and the sample

holder was disconnected from the apparatus, the degree of

creaming or sedimentation was checked. In none of the

experiments was the height of the clear separated continuous

phase more than one-ninth of the total liquid slab height

(diameter of transfer area). A dummy sample holder, containing

the same sample, and the same film thickness, was utilized to

decide how many times per unit time the sample holder needed to

be rotated. One half turn every two hours was deemed sufficient

for all systems that exhibited separation.
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6.4.2 Experimental Procedure

The sample holder is assembled as follows:

1. An extremely thin film of vacuum grease is spread

over the flat inner faces of the plexiglas plates.

2. Silicone membranes are stretched taut over each

plate.

3. A rubber gasket is placed on top of one of the

plates along with spacers of appropriate thickness. The filling

grooves of the gasket are placed over the filling ports.

4. The second plexiglas plate is placed on top of

the rubber gasket and the plates are then securely clamped.

5. The liquid sample is introduced into one of the

filling ports after the membrane over the port openings has

been punctured with a needle. The sample holder is placed in

an upright position with the filling ports in a vertical

direction and the liquid is introduced through the bottom

filling port through use of a syringe and a plastic tube.

Special care must be taken that no gas bubbles are introduced

during the filling procedure. After the liquid has been

introduced, the filling ports are sealed (small glass rods are

plugged in the Teflon Cajon ultra-torr male connectors).

6. The sample holder is placed in the water bath

and hooked up. to the apparatus with Cajon ultra-torr unions.

Note that the assembled sample holder could be used over and

over again as long as there were no leaks in the support

membranes.
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The following procedure was followed during the course

of all runs, prior to introduction of the gas of interest, to

insure that the sample and apparatus are degassed from all

unwanted gasses, and that the up and downstream gas phases

and the liquid film are equilibrated at the vapor pressure of

the sample.

1. Prior to connection of the liquid film holder,

the apparatus is evacuated to an absolute pressure <30 ym Hg

as read by a thermocouple vacuum gauge (No. 94178), Cenco

Instruments).

2. Upstream and downstream volumes are saturated

with the sample's vapor (some of the sample is present in the

saturator).

3. Nitrogen is introduced into the system until the

pressure in the upstream and downstream volumes is about 720 to

740 mm Hg.

4. The sample holder is connected to the apparatus

and exposed to the up and downstream volumes.

5. The sample holder is isolated and the pressure in

the volumes is reduced 20 to 40 mm Hg. The sample holder is

again exposed to the up and downstream volumes for about 30

seconds. Step 5 is repeated until the system pressure has been

reduced to the vapor pressure of the sample. (For each 200 mm

Hg reduction in pressure an additional waiting time of about 10

minutes is imposed.) The saturator is open at all times.

6. Once the sample holder pressure is near the vapor

pressure of the sample steps (1) and (2) are repeated twice and
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each time the sample holder is exposed to the up and downstream

volumes after the second step. Note that the pressure in the up

and downstream volumes in this procedure are the same by using

a common saturator and a connecting line.

7. The up and downstream volumes, the sample holder,

and the saturator are now equilibrated for approximately 1 - 2

hours until the pressure is stable.

8. The saturator valve and the connecting line

valve are closed and the downstream pressure is monitored until

the pressure variation with time is of order +1 pim per minute or

less than 5 per cent of the expeted rate of pressure rise during

the permeation experiment. This time period is usually another

1 - 2 hours. After this period, the downstream pressure is

recorded for about 30 minutes to 2 hours to ensure that pressure

increase with time is constant. This pressure increase is

usually due to extremely small leakages and is subtracted from

the measured pressure rise with time observed during the mass

transfer experiment.

9. The system is now ready for a mass transfer

experiment and at time zero the appropriate pressure of gas is

introduced into the upstream volume, and the downstream pressure

is recorded with time.

In case that an additional gas (such as carbon

dioxide) needs to be introduced, this is done right at the end

of step 6).
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6.4.3 Game Plan and Analysis of Experimental Results

Since there are a number of systems of interest in

this thesis each with increasing complexity, the simpler systems

were analyzed first before more complexity was introduced.

Permeability runs were first performed on water in order to

characterize the experimental apparatus. The diffusivity and

solubility of oxygen in water is known with greater certainty

than for any other liquid. The oxygen diffusivity values

measured by Goldstick (1966) were assumed to be the most

accurate and these were used to compare with experimental results.

The next systems considered were the inert heterogeneous media

and the hemoglobin solutions. The effect of creaming and

sedimentation upon the mass transfer rate could be ascertained

by investigations different volume fractions of dispersed

phase. The reactive systems were analyzed last.

The experimental data obtained consisted of the

recorded variation of downstream pressure with time, the partial

pressure of oxygen upstream (p0P) and downstream (p down), the
2 2

liquid film thickness the liquid film thickness L, the membrane

thickness Lm, the cross-sectional area AE, downstream volume

Vd, and system temperature T. The flux through the three layer

sandwich in terms of moles per unit time is

up down

dn - 2 2
dt 2L L

P Pm AVE
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The membranes have the same thickness Lm (measured while

stretched with the Ames dial comparator, Model 412), and the

membrane permeability Pm of oxygen through the MEM-213 is

1.214 x 10-6 (cm 2/sec)(cc(STP)/cc-atm) (General Electric Co.,

pamphlet no. GEA-8685A and confirmed by experiment). The flux

at steady state is given by

dQ (Da) AE AP02
L (6.6)

where

(Da) is the permeability in (cm 2/sec) (cc(STP)/cc-atm)

2
AE is the area in cm

Apo2 is the partial pressure driving force in atm

L is the thickness in cm

dQ/dt is mass flux in cc/0 2 (STP)/sec

Through use of the ideal gas law the mass flux in cc(0 2 )STP/sec

can be converted into moles/sec

(Dax) AE 0 0
dn (P_ 2 (6.7)
dt RT STP L

where

dn/dt is mass flux in moles/sec

Since the actual experimental measurement is a pressure rise

with time (at the conditions of the experiment) it is more

convenient to express equation (6.7) in terms of dp/dt so that

(Dcx) AE Op
d - (T + 273 2 (6.8)
dt 273 Vd L
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where dp/dt is the downstream pressure increase with time

in atm/sec

3and Vd is downstream volume in cm .

Equation (6.8) can be further modified so that all parameters

will have units that are measured experimentally. The final

"working equation" becomes

60 P AE Ap0 3
d= 1T + 273) 2 (6.9)

dt 273 Vd L

where

P is the permeability in (cm 2/sec) (cc(STP)/cc-atm)

T is the temperature in 0C

AE is in cm2

Apo is in mm Hg

2 , . 3
V is in cm

L is in cm

dp/dt is in pm Hg/minute (1000 pm Hg = 1 mm Hg)

The pressure drop through the membranes can now be calculated

through use of equation (6.9) and is

Ap =_ ( 273 V d m (6.10)m dt T + 273 60 AE P m 10(3

The partial pressure at the upstream side of the liquid slab

(between upstream membrane and liquid slab) and downstream side

of the liquid slab (between downstream membrane and liquid slab)

is
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x=O up .
pO 0  _ 2=m

2 2 m

x=L

P0 2

(6.11)

(6.12)down + AP
O2 m

Finally the average effective permeability of the liquid system

is obtained from

P = 273 V

AVE dt T + 273 60 AEp=0O

2

d L

x=L) 3

2

(6.9)
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7. EXPERIMENTAL RESULTS AND DISCUSSION

Experimental results are discussed in this chapter in

the same order as the experimental program presented in Chapter

6. Permeation experiments were analyzed as described in Section

6.4. Results for permeabilities are reported in the following

units

cm2 - cc(STP)
sec - cc - atm

these can be converted to the units

moles
cm - sec - mm Hg

by multiplying the permeabilities by the conversion factor

5.875x10-8

7.1 Characterization of the Permeation Apparatus

7.1.1 Permeability of Support Membranes

The oxygen permeability of the MEM-213 support

membranes Nwas measured for the 25 pm and 50 pm nominal thickness

membranes. In addition, the oxygen permeability of two membranes

as assembled in the sample holder was measured. In all runs but

one, the upstream and downstream volumes were completely

evacuated to about 20 pm Hg absolute pressure. In one

experiment the volumes were allowed to equilibrate with water

present in the saturator. The presence of water vapor did not

affect the permeability of the MEM-213 membranes, indicating

that gas phase resistance is negligible even in the case of a
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film of low mass transfer resistance (at those experimental

conditions). The average oxygen permeability obtained from all

the runs at 25 0 C is

P 12.0 x 10-7 cm2 - cc(STP)

02 'MEM-213 sec - cc - atm

which compares favorably with the value reported by General

Electric as

2
P E= 12.14 x 10-7 cm - cc(STP)

O2, MEM-213 sec - cc - atm

In all permeation runs with thin liquid films, the thicknesses

of the support membranes were measured. Liquid permeabilities

were calculated as described in Section 6.4 taking into account

the membrane mass transfer resistance. For most of the oxygen

permeation runs, the membrane resistance was approximately 3

to 6 per cent of total mass transfer resistance.

7.1.2 Oxygen Water Runs

In order to characterize the gas permeation apparatus,

experiments were conducted with the diffusion of oxygen through

slabs of water because for no other gas-liquid system are the

diffusivity and solubility known with better accuracy.

Although reported values of the oxygen diffusivity vary from

1.87 x 10-5 cm 2/sec (Kreuzer, 1950) to 2.44 x 10-5 cm 2/sec

(Davidson and Cullen, 1957) the most precise determination to

date of the oxygen diffusivity appears to be that of Goldstick

(1966) who reported a value for DO2,H20 of 2.13 x 10-5 cm2/sec.

The oxygen solubility is known with good accuracy and the value
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for a is 0.02831 cc(STP) at 25 0C as reported in
2' 20 cc-atm

Table 3.3.

The conventional time lag experiment for the diffusion

of a gas across a thin slab yields two independent measurements.

The transient period yields a diffusivity and from the pseudo-

steady state period (during which the downstream partial pressure

builds up linearly with time and driving force changes very

little) the permeability is obtained. From a plot of downstream

pressure versus time, a straight line extrapolation of-the linear

steady state portion of the curve yields an intercept, e, on the

time coordinate. Barrer (1939) has shown that this "time lag"

is related to the diffusivity as follows

D = 2g (7.1)

Unfortunately the sudden introduction of gas into the upstream

volume appeared to cause some fluid movement in the liquid film,

which in turn appeared to cause an initially anomalously high

transient flux as is shown in Figure 7.1. Intercept times

obtained from the anomously high flux portion (9') gave reasonable

diffusivities while intercepts with the final steady state

portion of the flux line often gave negative intercept times.

If the gas was introduced very slowly, so as not to disturb the

liquid layer, the anomously high portion of the curve

disappeared. Intercept times were in this case too long and

gave small diffusivities (because of long introduction time).

The transient analysis of the experiments were abandoned because
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of the doubtful values obtained from such an analysis in these

experiments and only steady state results are reported here.

An alternate anomalously high flux was observed by

Meldon (1973) in his study of the diffusion of carbon dioxide

through thin vertical films of alkaline solutions (same

experimental apparatus). In the case of carbon dioxide, which

has a significantly larger solubility than oxygen, convection

flows may be induced due to small density gradients in the film

for large driving force differences. The density differences

are caused by the variation of the CO2 concentration across the

film. Meldon (1973) experimentally determined the per cent of

flux due to the natural convection as a function of the Rayleigh

number

NRa = Gr NSc

where the Grashof number and Schmidt number are defined as

N = - 3

Gr 2 p

Here the relative density difference is given by

p

In Meldon's work the maximum per cent contribution for a film

thickness of 1564 ym was approximately 10 per cent with a

Rayleigh number of approximately 6000. For oxygen transport in

water with a driving force of 200 mm Hg the Rayleigh number is

approximately 10 so that contributions due to density driven
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natural convection is virtually zero.

The permeability obtained from a steady state experi-

ment can still be used to calculate a diffusivity when the gas

solubility in a non-reacting system is known so that

P
D experimental (7.2)
calculated aliterature

The diffusion so obtained will be referred to as calculated

diffusivities to remind the reader that these were obtained

from the experimentally measured permeabilities. Table 7.1

reports the oxygen permeabilities obtained for water films of

six different thicknesses. The average permeability for 34

experiments is

= 6.27 x 10-7 cm 2-cc(STP)
H2 0 sec-cc-atm

with a standard deviation of

2
S.D. =+ 0.18 x 10-7 cm -cc(STP)

sec-cc-atm

and yields an oxygen diffusivity of

22
D H 20 = 2.22 (+0 .06) x 10- sec'

This value is in very reasonable agreement with that obtained

by Goldstick. The standard deviation is approximately +3% of

the average permeability. Investigation of Table 7.1 shows

that the permeability is independent of film thickness and

clearly suggests that gas phase resistance is negligible.

Figure 7.2 shows a single experimental run for a 752 Pm thick
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TABLE 7.1

TABULATION OF OXYGEN PERMEATION IN DISTILLED WATER RUNS

Liquid Slab
Thickness L

pm

655

676

752

803

1563

2332

Average Measured
Permeability

2
cm -cc 02 (STP)

sec-cc-atm

6.22

6.32

6.26

6.22

6.31

6.38

Calculated
Diffusivity

D x 105
2cm

sec
Number of
Experiments

2.20

2.23

2.21

2.20

2.23

2.26

6.27 + 0.18 2.22 + 0.006Average Total 34
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liquid film. According to Fick's law, the flux (here in pressure

increase per unit time) is proportional to the driving force (in

mm Hg of oxygen) and Figure 7.2 shows excellent experimental

agreement. Figure 7.2 also suggests that gas phase resistance

is negligible as no negative deviation is apparent in the high

pressure range where gas phase resistance becomes larger. The

linearity of Figure 7.2 also suggests that no change in liquid

film thickness occurred with increasing pressure. In some

cases, the experiment was left on overnite, and the flux and

driving force were measured the next day. Inspection of

Appendix D shows that in all cases agreement with Fick's law

was excellent and the experiment showed good stability over

long times.

In addition to measuring the average oxygen

permeability and comparing it to literature values, a number

of other observations and experiments were made and are

summarized below.

7.1.2.1 Effect of Support Material

In order to ascertain the blockage effect upon total

mass transfer area by the 9% nickel supports (91% open void

space) the supports were replaced by 20% nickel supports (80%

open void space). In the one experimental run which was

performed, the measured permeability was

2
P =5.83 x 10-7 cm -cc(STP)
02'water sec-cc-atm
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some 7 per cent below the average value. Although the standard

deviation of the average oxygen permeability measured in water

is approximately 3 per cent, a conservative estimate would

attribute the 7 per cent decrease to the 11 per cent increase of

the nickel content of the support material, so that a conserva-

tive estimate of the total area blocked for mass transfer by the

9% nickel support material would be approximately 6 per cent.

However, the average oxygen diffusivity in water is already

some 4 per cent above the value given by Goldstick. In

addition the 9% nickel support is a light open structured

material which allows light to pass through. The 20% nickel

support, although porous, is a dense material and is optically

opaque. In addition, it is estimated that the size of the

contact points of the 9% support material (on the membranes)

is

dc z .005 cm

so that the relative size of contact point to film thickness

d
L.<< 1 .

In this case no effect of support material is anticipated,

irrespective of what the solid content of the material is.

7.1.2.2 Assemblage of Sample Holder

In assembly the sample holder the amount of

silicone grease used was critical. A slight excess of grease

used would cause seapage of the grease onto the open transfer
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area, decreasing the latter below the normal value of 25.5 cm2

(area without grease). In the case that seapage occurred,

which could be visually observed, a planimeter was used to

measure the area not covered by the grease. The uncertainty

in these measurement to quantify the area was +5%. These runs

were not used to obtain the average oxygen permeability of water.

7.1.2.3 Permeability of Other Gasses in Water

The permeability of nitrogen and carbon dioxide in

distilled water was measured in two experiments each and is

reported in Tible 7.2. The calculated diffusivities compare

well with values reported by Himmelblan (1964) for nitrogen,

DN2,water 2.10 x 10-5 cm 2/sec, and carbon dioxide,

DCO2,water = 1.92 x 105 cm 2/sec.

TABLE 7.2

PERMEABILITY OF NITROGEN AND CARBON DIOXIDE

IN DISTILLED WATER

1 Calculated
Permeability Solubility Diffusivities

cm2 cc(STP) cc(STP) cm2
Gas sec cc-atm cc-atm sec

N 3.28 x 10~ 0.01434 2.28 x 10-5

2

1 Altman and Dittmer (1971).
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7.1.2.4 Oxygen Permeability and Different Temperatures

The oxygen permeability in distilled water was also

measured at several temperatures in a set of experiments in order

to test the equipment at a variety of temperatures. According to

the Stokes-Einstein relationship, the diffusivity of species in

a liquid is directly proportional to the absolute temperature and

inversely proportional to the viscosity

D = constant T (7.3)

The experimental results are tabulated in Table 7.3 and the

calculated diffusivities are plotted versus the parameter T/y.

A straight line has been drawn with a slope equal to

constant = 6.92 x 10-1 gr-cm
oK-sec

-5 2
and through the diffusivity value of 2.13 x 10 cm /sec at

T = 250C. This slope was obtained from St-Denis and Fell (1971)

who compared the measured oxygen diffusivities in water of a

number of investigators over the temperature interval of 10 to

600C. Their slope was obtained by a least squares fit to the

data. The dashed line is the Stokes Einstein equation. The

results show fairly good agreement with the two straight lines.

7.2 Inert Systems

7.2.1 Dispersions

The inert dispersions used here are polystyrene, 30

TFE, and 120 FEP dispersions and their characteristics have been



TABLE 7.3

EXPERIMENTAL OXYGEN PERMEABILITIES AT

A VARIETY OF TEMPERATURES

Temperature

oc

17

21

25

29

33

Permeability

cm 2-cc(STP)
sec-cc-atm

5.78 x 10

6.02 x 10

6.01 x 10

6.05 x 10

5.97 x 10

Solubility1

cc (STP)
cc-atm

0.03283

0.03044

0.02831

0.02649

0.02386

Diffusivity
2cm

sec

1.77 x 10-5

1.98 x 10-5

2.13 x 10-5

2.28 x 10-5

2.50 x 10-5

Viscosity2

Centipoise

1.081

0.9779

0.8904

0.8148

0.7491

1 Altman and Dittmer (1971).

2 Handbook of Physics and Chemistry, 49th edition (1968).
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described in Chapter 6. For each of the dispersions, the

permeability of the solid phase is orders of magnitude smaller

than the permeability of the continuous phase so that the

parameter Kd defined as

P d
Kd 

P
c

is near zero for Maxwell's equation.

The results of the oxygen permeability of polystyrene

dispersions of different volume fractions of the dispersed phase

is shown in Figure 7.4. The experimental points show good

agreement with Maxwell's equation: the maximum deviation from

the theoretical line is 5% at a volume fraction of 0.261. The

polystyrene dispersions were fairly viscous at high volume

fractions and, when charged into the sample holder, caused the

rupture of the support membranes. Therefore no data points

were obtained beyond a volume fraction of 0.261. The

permeability of oxygen in polystyrene is

2
9.13 x 1-9 cm -cc(STP)d 9sec-cc-atm

as given by Robb (1971), so that the ratio of dispersed to

continuous phase permeability is

Kd = 0.015

because in this case

2
6.02 x 107 cm -cc(STP)

c =sec-cc-atm
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The polystyrene particles were nearly mono-dispersed.

Figure 7.5 shows an electronphotomicrograph of the particles

(prepared as described in Chapter 6). The volume mean diameter

defined as n v d

v n v (7.4)
i

was d = 0.120 pm,

and the volume mean diameter standard deviation defined as

n. v. (d. - d)2

og = En. v.(7.5)1

was av = 0.008 Pm

for a total number of 400 measured particles.

Figure 7.6 shows the permeability of carbon dioxide

in FEP 120 dispersions of various solid volume fractions. The

experimental points show good agreement with a theoretical line

calculated from Maxwell's equation. Maximum deviation is eight

per cent at a volume fraction of 0.411. This concentration

dispersion was obtained by centrifugation of the original FEP

120 dispersion (@ = 0.357). The continuous phase permeability

was measured as
2

P = 11.2 x 10-6 cm -cc(STP)
c sec-cc-atm

and the solid phase permeability has been reported as

2
9.67 x 10-8 cm -cc (STP)

d sec-cc-atm

for solid films of FEP (Pasternak et al, 1971), so that Kd is

Kd = 0.00863 .
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Figure 7.7 shows an electronphotomicrograph of the FEP

120 particles. The particles appear to have a slightly

"crumpled" look, but are fairly spherical. The particles were

virtually monodisperse and had a volume mean diameter and

standard deviation of

v = 0.199 yPm

= 0.016 ypm

for a total of 200 measured particles.

Figure 7.8 shows the comparison of experimental

results obtained on the permeation of carbon dioxide in 30 TFE

dispersions with Maxwell's equation. The experimental points

are from five to ten per cent below values predicted by

Maxwell. The continuous phase permeability was measured as

-13.0 x 106 cm2-cc (STP)
Pc =1.x10 sec-cc-atm

and the solid phase permeability was reported by Pasternak et

al. (1970, 1971) as

2
108 cm -cc (STP)

d= 8.90 x sec-cc-atm

for TFE films. Pasternak et al. (1971) suggested that the TFE

films most likely contain micropores so that the dispersed to

continuous phase permeability ratio is properly stated as

Pd

- 0.00685
c
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Figure 7.8a is an electronphotomicrograph of a TFE 30 particle.

The particle appears to be an agglomeration of small (about

0.05 pm) and larger particles (about 0.5 pm). No particle size

measurement of the agglomerated particles or the individual

particles could be made as detail in other photographs was very

poor. If the particles exist in solution as irregular

agglomerates it should not be surprising that the data on

Figure 7.8 deviates from Maxwell's equation. Maxwell's equation

applies to spherical-like particles, while the agglomerated TFE

30 particles were anything but spherical and were often flake-

like in appearance. If the particles are assumed disc-like and

modeled as an oblate spheroid, then Fricke's equation predicts

the correct deviation (see Figure 3.1) from Maxwell's equation.

7.2.2 Inert Emulsion

The emulsions used here were castor oil, vegetable

oil, and fluorocarbon in water; they have been described in

the previous chapter. Oxygen permeabilities were measured for

a variety of dispersed phase volume fractions up to approxi-

mately 0.75, and the dispersed phase to continuous phase

permeability varied from 0.471 to 33.4. All experimental runs

are listed in Appendix D

The aqueous phase for the two castor oil emulsion

systems and the vegetable oil emulsion system was 10% Tween 40

surfactant and 90% water by volume. The surfactant solution

used for the fluorocarbon emulsions was 50 gr of Pluronic F-68

per liter of water. Table 8.8 in Appendix D reports the
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oxygen permeability of these surfactant solutions.

Figure 7.9 shows the comparison of the experimental

oxygen permeability for castor oil in water emulsions (O/W) with

Maxwell's equation. The dispersed phase and continuous phase

permeabilities were measured as

2
2.55 x 10-7 cm -cc (STP)

d =sec-cc-atm

P = 5.42 x 10-7 cm 2-cc(STP)
c sec-cc-atm

so that the dispersed phase to continuous phase permeability

ratio is 0.471. Although there is some scatter of the

experimental points, the results seem to correlate reasonably

with Maxwell's equation even at the highest volume fraction.

At a volume fraction of 0.750 the emulsion had the consistency

of a cream.

The emulsions had a broad range of particle sizes

(and were of course spherical) from about 1 pm to 15 im with an

average volume mean diameter of dv = 10.0 pm. A typical size

distribution for a castor oil emulsion is shown in Appendix D.

The experimental oxygen permeabilities measured in

castor oil - Span 80 (10% by volume of Span 80 oil soluble

surfactant) in water emulsions are compared with Maxwell's

equation in Figure 7.10. The dispersed phase permeability was

measured as
2

-7 cm -cc(STP)
d= 2.76 x 10 sec-cc-atm
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so that in this case the dispersed phase to continuous phase

permeability is equal to 0.509. Except for one experimental

point, the agreement with Maxwell's equation is very good. The

particle size distribution was quite similar to the previous

system. The volume mean diameter was about dv = 9.0 pm with a

standard deviation of +4.0 im.

Another system investigated was the vegetable oil in

water emulsion. The dispersed phase permeability for the

vegetable oil is

-7 2
Pd = 9.09 x 10 cm -cc(STP)/(sec-cc-atm)

so that the dispersed phase to continuous phase permeability is

1.67 as is shown in Figure 7.11. The particle size of the

vegetable oil emulsion varied from 1 to 20 pm and the mean

diameter was approximately 10 pm with a standard deviation of

4 pm. Again the experimental points show reasonable agreement

with the theory.

Some phase separation was observed after the

permeation experiment was terminated for volume fractions

below ( = 0.3, but at no time was the separated layer more than

1/9 of the total height of the liquid slab (for the previously

mentioned emulsion systems). Since the experimental agreement

with Maxwell's equation is quite good, the results suggest that

for these three emulsion systems interfacial resistance, caused

by the adsorption of the Tween 40 surfactant at the oil-water

interface, is negligible. It is surprising that the oxygen

permeability for the castor oil is one half that of water. In
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general the oxygen solubility of organics is much larger than

that of water. For instance, the oxygen solubility of olive oil

at 250 C is given as 0.116 cc(STP)/cc/atm (Battino et al., 1968).

Unfortunately (as far as is known) the oxygen solubility in

Castor oil has not been determined, but if indeed it is larger

than that of water, it follows that the diffusivity is much

smaller than that of water. This was partially confirmed by

experiment because the lag time e' for castor oil was

approximately six times as long as that of water suggesting

that the diffusivity is approximately 4.0 x 10 cm /sec.

Before proceeding to a discussion of the PID

fluorocarbon emulsion, it should be mentioned that the

permeabilities of the three oils studied have only moderate

departures from that of the aqueous phase. In the reactive red

blood cell suspension the theoretically predicted effective

permeabilities also show only moderate departures from the

permeability of the continuous phase. It is therefore gratifying

that at least in this range of permeabilities Maxwell's equation

gives an adequate prediction of the effective permeability even

at high volume fractions.

Some trouble was encountered in accurately measuring

the oxygen permeability of the PlD fluorocarbon. In the case

of a highly permeable liquid the membrane resistance becomes a

significant part of the total mass transfer resistance. In the

case of the PID fluorocarbon for a film thickness of

approximately 0.16 mm and total membrane thickness of 93 pm the

membrane resistance accounts for about 50% of total resistance.
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Therefore the measured permeability was more variable from run

to run. The average oxygen permeability in PID fluorocarbon

was measured as

2
-5 cm 2cc (STP)

Pd (2.02 + 0.28) x 10 sec-cc-atm

The permeability of the aqueous phase is

2
= 6.02 x 0-7 cm -cc (STP)

c sec-cc-atm

so that the dispersed phase to continuous phase ratio is

= 33.4 + 4.7
c

As indicated by Table 6.8 the specific gravity of PID fluoro-

carbon is much higher than that of water. Because of

sedimentation problems it was decided to measure oxygen

permeabilities only for emulsions with a concentrated particle

size where particles were packed so tightly that no sedimentation

could occur. Figure 7.12 shows the comparison of the experimen-

tal results for the effective permeability (of the PlD emulsions)

with that predicted with Maxwell's and Bruggeman's equation. The

data points fall in a region between Bruggeman's and Maxwell's

equation, some 20% above the values predicted by Maxwell. This

behavior is quite similar to that encountered by other

investigators when Kd is much larger than one. These

permeability differences are not encountered in the physiological

system of interest, but for other systems with a large Kd

Maxwell's relationship can be rigorously applied only for dilute

suspensions. The average volume mean diameter for the
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fluorocarbon emulsion was 11 pm with a standard deviation of

4 pm.

In addition to the PID fluorocarbon the oxygen

permeability of the fluorocarbon FC 80 was measured. Fluorocarbon

FC 80 is composed predominantly of perfluorobytyltetrahydrofuran

(obtained from the 3M Company) and has an oxygen solubility which

is almost identical to that of PlD. The oxygen permeability for

this compound is (two measurements)

2
= 1.83 x l0-5 cm -cc(STP)

pFC'80 sec-cc-atm

which is of comparable value to that of PlD fluorocarbon.

7.3 "Reactive" Systems

The reactive system of interest is the oxygen-

hemoglobin system. First the experiments on films of partially

immobilized hemoglobin will be discussed. Then data will be

presented on the diffusion of oxygen in inert films of hemoglobin

solution and inert red blood cell suspensions prior to the

discussion on heterogeneous reactive systems.

7.3.1 Immobilized (Reactive) Hemoglobin Films

In collaboration with Zahka (1971) hemoglobin was

immobilized by sorption into a swollen hydrophilic gel (collodion)

as has been described in the previous chapter. The relative

immobility of hemoglobin within the collodion film was

demonstrated by desorption experiments. Effective hemoglobin

diffusivities, calculated as a function of time during the
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desorption experiments, increased as the mean concentration in

the membrane decreased. This is consistent with the observed

dependence of hemoglobin diffusivity on hemoglobin as shown in

Figure 3.8. Tbe initial value, when the free hemoglobin

concentration in aqueous solution within the membrane was

maximal (34.4 and 25.0 gr/100 ml in two experiments) averaged

3 x 10 cm /sec. At equilibrium, about 12 gr hemoglobin/100 gr

collodion (wet weight) remained permanently sorbed to the

membrane and did not leach out after several weeks. Roughly

one-third to one-fourth of the hemoglobin within the film was

therefore irreversibly adsorbed, and it was assumed in the

diffusion calculations that this strongly adsorbed component

was immobilized and did not contribute to the observed diffusive

flux of hemoglobin. Immobilization in the hydrophilic gel may

result from hydrogen bonds and van der Waals and electrostatic

interactions between hemoglobin and the polymer. With regard to

electrostatic effects, it is well known (Carr and Sollner,

1944) that collodion membranes have a net negative charge which

arises from the presence of dissociable acidic groups. The

remainder of the hemoglobin was clearly mobile, but its

diffusivity was reduced from its value in free solution by a

factor of about 25 (see Figure 7.8). This diffusivity reduction

factor is consistent with previous results with hydrophilic

films of similar water content (Colton et al., 1971.a). All

hemoglobin in the collodion films was found to reversibly bind

oxygen in a manner similar to hemoglobin in free solution. In

pH 7.4 phosphate buffer at 250C, the p50 was 10 mm Hg, and the
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total oxygen uptake was approximately equal to that expected

if all the hemoglobin in the film were active.

Oxygen permeation rates through the immobilized

hemoglobin films were compared with those for similar films

containing only water or methemoglobin as well as microporous

Millipore filters containing hemoglobin solution, the latter

having been shown to augment oxygen transport (Scholander, 1960).

The membranes were clamped into the sample holder without the

presence of the support membranes.

Normalized oxygen permeation rates as a function of

partial pressure driving force are plotted in Figure 7.13 in a

manner such that all experimental data are shown on one graph.

Data points lying on a straight line which passes through the

origin conform to normal Fickian diffusion, whereas points lying

above that line indicate augmented transport. Oxygen

permeability (defined as P = Da), was first calculated from the

slope of the best straight line fitting the data for large

driving forces from a plot of permeation rate versus driving

force. Permeability values so calculated are tabulated in the

legend to Figure 7.13 and range from about one-fifth to two-

thirds of the value expected for a film of pure water. Minor

corrections (less than 10 per cent) were made to put all data

in Figure 1 on a uniform basis of zero downstream partial

pressure.

Augmentation of oxygen transport occurred only

through hemoglobin-filled Millipore filters. The dotted curve

in Figure 7.13 was calculated from equation (6.4), with
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7 3 -K = 7.0 x 10 cm /mole (Gibson, 1959), and DB 6.5 x 108

cm 2/sec. Equation (6.4) is a valid approximation for flux

prediction since for the thicknesses of the membranes employed

the reaction was at equilibrium (Wittenberg, 1966). The

hemoglobin diffusivity, treated here as a fitting parameter,

is within the range reported in Figure 7.8 when corrected for

the porosity and the tortuosity (1.45). These data therefore

conform to a mobile carrier mechanism.

All other data, including that for collodion

containing immobilized hemoglobin, are statistically

indistinguishable and fall on a straight line which passes

through the origin, as would be expected from equation (6.4)

if no augmentation mechanism of any kind were operative. These

results clearly demonstrate that mobility of human hemoglobin

was a prerequisite for measurable oxygen transport augmentation

in the system studied.

7.3.2 Inert Hemoglobin Solutions

Oxygen permeabilities were measured in inert liquid

films of hemoglobin solutions (methemoglobin) of various

hemoglobin concentrations. Since oxygen solubilities in

hemoglobin solutions can be estimated accurately from data

presented in Table 3.3, the oxygen diffusivities can be

calculated from the experimentally measured permeabilities.

Figure 7.14 gives the experimentally determined

oxygen permeabilities in hemoglobin solutions at 25 0C. At a

zero hemoglobin concentration the oxygen permeability is the
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permeability of the buffered isotonic saline and was measured

as
2

0-7 cm -cc(STP)
02 ,isotonic saline sec-cc-atm

As the hemoglobin concentration increases to red blood cell

concentrations the oxygen permeability decreases by about a

factor of three. The decrease is virtually linear with

concentration. The data presented in Figure 7.14 is tabulated

in Table 7.4 in addition to the estimated oxygen solubility

coefficients and the calculated diffusivities. It was assumed

that the oxygen solubility coefficient for concentrated hemo-

globin solutions (33 gr/100 ml) is equal to that of packed red

blood cells. A linear estimate was made between the values of

the oxygen hemoglobin solubility for isotonic saline and

concentrated hemoglobin solution in order to arrive at oxygen

solubility coefficients for hemoglobin solutions with inter-

mediate hemoglobin concentrations. Since the oxygen solubility

coefficient varies by only 1.5% the values in Table 7.4

should be quite accurate. The estimated oxygen diffusivity

is compared with the Kreuzer correlation for all published

values of the oxygen diffusion coefficient in hemoglobin

solutions (see Figure 3.7). Kreuzer (1970) reduced all data

relative to the D0  for saline which was taken as 2.07 x 105

2 2cm /sec (according to Goldstick, 1966). The calculated

diffusivities fall somewhat above Kreuzer's correlation.

However if the line is replotted so that the D0  for saline is

-5 2 22.22
2.22 x 10 cm /sec by multiplying the plot by the factor (2.07
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TABLE 7.4

OXYGEN PERMEABILITIES AND CALCULATED

OXYGEN DIFFUSIVITIES IN INERT

HEMOGLOBIN SOLUTIONS (T = 25'C)

CT

gr/100 ml

0

8.78

8.78

15.4

15.4

22.3

26.2

31.8

P

cm 2-cc(STP)
sec-cc-atm

6.00 x 10

5.30 x 10

4.78 x 10

3.96 x 10 7

3.93 x 10

3.35 x 10

3.14 x 10 7

2.20 x 10

a

cc (STP)
cc-atm

0.0272

0.0273

0.0273

0.0274

0.0274

0.0275

0.0275

0.0276

D

cm2

sec

2.20 x 10-5

1.94 x 10-5

1.76 x 10-5

1.44 x 10-5

1.43 x 10-5

1.29 x 10-5

1.14 x 10-5

0.80 x 10-5

(All experimental runs are listed in Appendix D.)
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the calculated diffusivities scatter around the corrected line.

It should be mentioned here that even if the Kreuzer plot is

not corrected the scatter of the data points is no worse than

those shown in Figure 3.7. It can be concluded that the data

obtained here is consistent with other literature values.

Oxygen permeabilities were also measured for a

hemoglobin solution of fixed hemoglobin concentration (15.4 gr/100

ml) at a variety of temperatures. Table 7.5 shows the oxygen

permeability and calculated diffusivity for a hemoglobin

solution with a concentration of 15.4 gr/100 ml over the

temperature range of 17-33 0C. Oxygen solubilities were

estimated as described earlier. The oxygen permeability appears

to be quite insensitive to temperature changes over this range.

According to the Stokes-Einstein equation, the diffusivities

(at two temperatures) for a gas-liquid system are related by

D Ty
2 _ 2 l (7.6)

D T 2

Unfortunately viscosity data is scarce for hemoglobin solutions

so that a rigorous comparison of equation (7.6) with the

calculated diffusivities presented in Table 7.5 is not possible.

One could assume however that the viscosity ratio (y /12) is

approximately the same as that of pure water. Figure 7.16 shows

a comparison of the oxygen diffusivities from Table 7.5. The

experimentally obtained diffusivities appear to deviate some-

what from equation (7.6) if the viscosity data of pure water is

used. The hemoglobin concentration of 15.4 gr per 100 ml was
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TABLE 7.5

OXYGEN PERMEABILITY IN INERT HEMOGLOBIN SOLUTION

(15.4 gr/100 ml) AS A FUNCTION OF TEMPERATURE

P x 10 7

cm -cc(STP)
cc-atm

3.99

3.96

4.02

3.90

D(calculated) x105

2
cm
sec

1.25

1.35

1.47

1.61

(All experimental runs are listed in Appendix D.)

Estimated from the oxygen solubility of concentrated

hemoglobin solutions (equal to 02 solubility in red blood

cells which was calculated from Table 3.3 as described in

Section 3.3.3.3) and the oxygen solubility of isotonic

saline. A linear estimate was made between the two values

at each temperature assuming that CT in red blood cells is

33 gr/100 ml and in that in saline is 0 gr/100 ml (see

Table 3.3).

T

OC-

17

21

25

29

33

37

a

cc (STP)
cc-atm

.0318

.0295

.0274

.0256

.0243

.0228
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chosen because it is approximately equal to the hemoglobin

concentration of normal whole human blood.

7.3.3 Red Blood Cell Suspensions

Oxygen permeabilities were measured for red blood

suspensions with a volume fraction variation from zero to 0.98

and at different driving force conditions. As has been shown

in Chapter 5, facilitation effects are a maximum at low

partial pressures where the hemoglobin is largely unsaturated

throughout the liquid film. As the partial pressure is

increased at both sides of the film, the hemoglobin becomes

more saturated throughout the film and facilitation effects

become negligible. This then becomes a case of pure Fickian

diffusion through the suspension. Experimental results were

obtained for both the inert case and the reactive case.

The red blood cell suspensions were prepared as

described in Section 6.3.3.1 and suspended in buffered isotonic

saline. The pH of the suspensions was near 7.0, and the

temperature was 250C. Two experiments were also performed at

physiological temperatures (37 0C).

7.3.3.1 Inert Red Blood Cell Suspensions

At conditions of pH = 7.0 and T = 25 0C, the oxygen-

hemoglobin saturation curve is nearly fully saturated at about

40 mm Hg at pH = 7 and T = 250C (with or without 2,3 DPG). In

order to measure the oxygen permeability in inert suspensions,

the samples were equilibrated at approximately 50 mm Hg partial
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pressure of oxygen prior to the permeation experiment. This

procedure guaranteed that the hemoglobin inside the red blood

cells was fully saturated, and that the reaction did not affect

the diffusion of oxygen through the suspension. In Table 7.7

the experimental results are tabulated, with the calculated

diffusivities. In the case of red blood cells suspended in

saline the oxygen solubility is virtually a constant, because

the solubilities for saline and the red blood cell differ by

only 1.5 per cent. To obtain oxygen solubilities for red blood

cell suspensions of various volume fractions, a linear estimate

was made between values for saline and red blood cells. If the

red blood cell membrane resistance to oxygen transport is

negligible, it follows that the oxygen permeability for red

blood cells should be equal to that for concentrated hemoglobin

solutions of 33 gr/100 ml (red blood cell hemoglobin concentra-

tion). From Figure 7.14 the oxygen permeability for a hemo-

globin solution of 33 gr/100 ml is 2.05 x 10~ cm 2-cc(STP)/sec/cc/

atm. Figure 7.17 shows a comparison of the data from Table 7.6

which Maxwell's equation with a dispersed phase to continuous

phase permeability ratio given as

p P -7
d _ RBC _ 2.05 x 10 = 0.342
c saline 6.00 x 10

The data agree quite well with the theoretical line (maximum

deviation 10 per cent) and no consistent deviation from the

theoretical equation is apparent. These results are in agreement

with previous authors' work that suggested that membrane



TABLE 7.6

OXYGEN PERMEABILITIES IN INERT1 RED BLOOD CELL SUSPENSIONS

AT 250C and pH = 7.0

cm 2-cc(STP)
sec-cc-atm

6.00 x 10~7

5.18 x 10~7

3.93 x 10~

3.58 x 10 -

3.05 x 10~

2.90 x 10~

2.26 x 10~

2.08 x 10~

2.07 x 10~

c

1

0.865

0.655

0.596

0.509

0.483

0.377

0.347

0.345

(estimated)

cc(STP)
cc-atm

0.272

0.273

0.274

0.274

0.275

0.275

0.275

0.276

0.276

D (calculated)

2
cm
sec

2.20 x

1.40 x

1.43 x

1.31 x

1.11 x

1.05 x

0.823x

0.755x.

0.752x

10-5

10-5

10-5

10-5

10-5

10-5

10-5

10-5

10-5

(All experimental runs are tabulated in Appendix D.)

1 Partial pressure downstream was about

was about 200 mm Hg (see Appendix D).

50 mm Hg and the upstream partial pressure

0

0.214

0.417

0.585

0.715

0.828

0.866

0.974

0.985
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resistance is not significant (Kreuzer and Yahr, 1960; Kutchai

and Staub, 1969; Stein et al., 1971).

At this point it is of interest to compare the data

obtained by Hershey and Karhan (1968) on oxygen diffusion in red

blood cells suspended in plasma with Maxwell's equation. Hershey

and Karhan reported an oxygen diffusivity of 1.98 x 10-5

cm 2/sec in plasma. From Table 3.3 the oxygen solubility

coefficient in plasma has a value of .0257 cc(STP)/cc/atm so

that the permeability of oxygen in plasma is 5.10 x 10~7

cm 2 -ccST? . The oxygen permeability of the red blood cell issec-cc-atm

2.05 x 10~ . The dispersed phase to continuous phase ratio is

therefore 0.402. Figure 7.17 compares Hershey and Karhan's data

with Maxwell's equation. The data scatters above the theoretical

line. The dashed line is equivalent to equation (3.44) after

converting diffusivities into permeabilities by multiplication of

the appropriate solubility (Table 3.3). For a volume fraction of

0.45 the Hershey and Karhan correlation predicts permeabilities

approximately 20 per cent higher than that given by Maxwell's

equation. It should be recognized that Hershey and Karhan's data

is for sheep's blood not human blood, but the dispersed phase

permeability would have to be as much as 50 per cent higher

if the data is to correlate with Maxwell's equation (Kd 0.6).

Since it is unlikely that the oxygen permeability in sheep's red

blood cells is that much larger than that in human red blood

cells, a possible explanation of the high data is sedimentation

of the red blood cells which in Hershey and Karhan's experimental

system was in the direction of oxygen transport (see discussion
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in Section 3.3.2.1). In this work the liquid film was in a

vertical position so that red blood cell sedimentation was

normal to oxygen transport and therefore should have considerably

less effect on the mass transfer rate. This was confirmed by

experiment (both on the emulsion systems and the red blood cell

suspension) where in certain cases some phase separation

occurred but where no increase of the mass transfer rate was

observed. For the red blood cell suspensions some phase

separation due to sedimentation occurred only for volume

fractions below 0.45 (separated phase height less than 1/9 of

total height). For concentrated volume fractions little

sedimentation should occur as the red blood cells are in

physical contact with each other and interfere with each others

motions. It should be noted here that for the red blood cell

suspensions in saline no rouleaux formation (stacking of

individual red blood cells) was observed by microscopic

examination both before and after experiments.

7.3.3.2 Reactive Red Blood Cell Suspension

Oxygen permeabilities of red blood cell suspensions

were measured for cases in which the downstream oxygen partial

pressure was low. Experiments were conducted at 250C, and the

pH of the red blood cell suspension in saline was near 7.

Experiments were also conducted at 37 0C with physiological

driving force conditions. For the experiments at 25 0C, runs

were performed at three different driving force conditions as

reported in Table 7.7. These conditions were such that large
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TABLE 7.7

AVERAGE EFFECTIVE PERMEABILITIES OF OXYGEN IN REACTIVE RED

BLOOD CELL SUSPENSION FOR THREE DIFFERENT DRIVING

FORCE CONDITIONS

x17
AVE

cm 2-cc (STP)
sec-cc-atm

RAVE

Psaline

= 24 .3, POx=L
p2

0.384
0.536
0.732

- 2.0 mm Hg

6.28
5.96
6.29

50.0, p x=L 3.3 mm Hg
p0 2

0.210
0 .387
0.492
0.785
0.852
0.911
0.916
0.920

5.83
5.02
5.01
4.42
4.39
4.57
4.40
4.02

- 89.7, pOx=L
p2

0.225
0.394

0.518
0.765
0.908
0.909
0.932
0.941
0.963

= 4.8 mm Hg

5.45
4.68
4.45
3.77
4.00
3.96
3.21
4.08
3.66

x= 0
02

PO2

1.05
0.995
1.05

px=0
2

0.972
0.837
0.836
0.737
0.731
0.762
0.733
0.670

0.908
0.781
0.742
0.629
0.667
0.660
0.535
0.680
0.610
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saturation differences should exist across the film.

The red blood cell suspensions were prepared as

described in Chapter 6. Hemolysis encountered at the

termination of the oxygen permeation experiments was usually

one per cent or less of the initial volume fraction of red

blood cells. Saturation curves and p50 's were measured

utilizing the techniques described in Chapter 6. All experi-

mental results are tabulated in Appendix D. Additional details

about the experiments will be given in the next section.

Figures 7.19a,b, 7.20a,b, and 7.21a,b give a

comparison of the experimental results tabulated in Table 7.7

with theoretical curves predicted by the one-step model. The

hemoglobin diffusivity in Figures 7.19a, 7.20a, and 7.21a is

7.0 x 10-8 cm 2/sec and is consistent with Kreuzer's compromise

curve. The hemoglobin diffusivity in Figures 7.19b, 7.20b,

and 7.21b is 6.0 x 10-8 cm 2/sec and is given as a comparison.

The other physical parameters employed here are consistent

either with experimental data reported in earlier sections or

with values reported previously in the literature. These are

tabulated in Table 7.8. The backward reaction rate (k) was

chosen such that the hyperbolic saturation curve would give

the same p50 as that measured experimentally (the base case).

Inspection of Figures 7.19a, 7.20a, and 7.21a or Table 7.7

indicates that, for the reported conditions, oxygen transport

is facilitated in red blood cell suspensions. For sufficiently

low driving forces the average effective permeability becomes

greater than the permeability of the continuous phase. The
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FIGURE 7.19b

AVERAGE EFFECTIVE OXYGEN PERMEABILITY IN
REACTIVE RED BLOOD CELL SUSPENSIONS FOR
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-STEP MODEL. (DHb= 6 x 10-8 cm2 /sec)
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AVERAGE EFFECTIVE OXYGEN PERMEABILITY
IN REACTIVE RED BLOOD CELL SUSPENSIONS
FOR CONDITIONS AS SHOWN. COMPAR0N2
WITH ONE STEP MODEL. (DHb 7 x 10 cm /sec)
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FIGURE 7.20b

AVERAGE EFFECTIVE OXYGEN PERMEABILITY IN
REACTIVE RED BLOOD CELL SUSPENSIONS FOR
CONDITIONS AS SHOWN. COMPARISON WITH ONE

-STEP MODEL. (DHb= 6 x 10-8 cm 2/sec)
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FIGURE 7.21a
AVERAGE EFFECTIVE OXYGEN PERMEABILITY
IN REACTIVE RED BLOOD CELL SUSPENSIONS
FOR CONDITIONS AS SHOWN. COMPAkISOF
WITH ONE STEP MODEL.(DHb= 7 x 10 cm /sec)
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TABLE 7.8

PARAMETERS USED IN THEORETICAL CALCULATIONS

PC = saline 6.00 x 10-7 cm2 -cc (STP)c saline sec-cc-atm ' rom Figure 7.14

P = 2.05 x 10 , from Figure 7.14d RC sec-cc-atm ,fo iue71

a 2= .02718 cct , from Table 3.3

C e .02045 moles/literT ,Heme

CT = .00509 moles/liter

KINETIC RATE PARAMETERS

One-step Model:

3.0 x 1016 /mole/sec

68.5 sec~

Four-step Model:

= 1.77 x 106

= 2280

= 3.32 x 106

= 190

= 4.89 x 106

= 647

= 3.30 x 106

= 60

liter/mole/sec

sec

liter/mole/sec

sec

liter/mole/sec

sec

liter/mole/sec

sec

b
3

b 1
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experimental results scatter between the minimum red blood cell

radius, which is 1 pm, and the maximum radius, which is 4 pm,

in comparison with the theoretical results, if a hemoglobin

7 2diffusivity of 7.0 x 10 cm /sec is used. The inert line is the

theoretical result for very small radii (a >> 1 -Pm) or for

inactive hemoglobin. This curve is of course identical to that

shown in Figure 7.17, and is equivalent to Maxwell's equation.

The data was also compared with theoretical

calculations employing hemoglobin diffusivities consistent with

the maximum and minimum values of the reported hemoglobin

diffusivities at the hemoglobin concentration inside the red

blood cell of 33 gr/100 ml. This concentration is consistent

with experimentally measured values (in this work) to within

+ 1 gr/100 ml. From the data of Keller et al. (1971) the

maximum plausible diffusivity is approximately

-7 2
DHb = 1.5 x 10 cm /sec

and from the data of Adams and Fatt (1967) the minimum value is

-8 2
DHb = 3.0 x 10 cm /sec

As an example Figures 7.22 and 7.23 compare the data for the

driving force conditions

p0  = 50 mm Hg, px= = 3.3 mm Hg
2 2

For the one-step model neither of these particular diffusivity

values correlate with the data, assuming that the latter should

fall in the 1 vm to 4 pm range. The same conclusion was drawn
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for the other two driving force conditions. Since the one-step

model is expected to underestimate PAVE to some extent, it

appears that an appropriate fit between data and the one-step

theory is a hemoglobin diffusivity of order 7.0 x 10~ or

somewhat smaller (see Discussion in Section 5.1.3).

Saturation measurements on all of the samples used

for permeation experiments are reported in Figure 7.24. It

appears that the red blood cell preparation procedure, as

described, insured reasonable consistency of the equilibrium

saturation behaviour of the red blood cell suspensions.

It would be of interest to compare the four-step

model with the experimental data. However, no Adair kinetic

rate parameters have been reported for the conditions of these

experiments. The data reported by Gibson (1970) for hemoglobin

solutions at T = 21.5 0C, pH = 7, and physiological 2,3 DPG is

sufficiently similar to conditions in this work that one might

be tempted to use those parameters for comparison.

Unfortunately, these parameters predict a p50 of approximately

10 mm Hg which is inconsistent with the p50 in Figure 7.24

(which is approximately 13.5 mm Hg). Gibson states that the

accuracy of the numerical values of the kinetic parameters is

approximately + 20 per cent. By increasing all reverse rate

constants by 20 per cent and leaving the forward rates

unchanged a saturation curve is obtained which has a p50 Of

about 13 mm and gives a reasonable fit of the data as is shown

in Figure 7.24 (ignoring the 3.50 C increase). Utilizing these

particular values, reasonable agreement between the experimental
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data and the four-step model was obtained for a hemoglobin

-8 2
diffusivity of DB = 6.0 x 10 cm /sec as is shown in Figures

7.25, 7.26, and 7.27. If the assumptions made in regards to

the parameters employed in these calculations are justified, it

appears that the hemoglobin diffusivity in red blood cells is

in the lower range of experimentally reported values. At this

point, an exact value of the hemoglobin diffusivity inside the

red blood cell must away precise experimental measurement.

The driving forces employed in the experiments

with reactive red blood cell suspensions were chosen to give

maximum saturation differences. Under actual physiological

conditions, or in the operation of artificial oxygenators the

oxygen partial pressures are such that the blood is nearly

fully saturated. Since the facilitation factor is dependent

on the slope of the saturation curve, facilitation effects will

be reduced if conditions are such that one "operates on the

top of the saturation curve." Typically, in an artificial

oxygenator such as a membrane oxygenator, the reduced blood

would flow into the device at a p0 near 45 mm Hg. It would

then be contacted with pure oxygen at one atmosphere pressure.

From Figure B.3, which shows the oxygen-hemoglobin saturation

curve at physiological conditions, the hemoglobin saturation

change for the above conditions would be from approximately

75 to 100 per cent saturation.

This saturation change is considerably less than

that encountered in the experimental work in this thesis, and

as a consequence the amount of facilitated transport should be
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considerably less. In fact,from theory presented here, it would

appear that hemoglobin facilitated transport is only a fraction

of total oxygen transport in an artificial oxygenator. In the

human lungs p0 changes are encountered from about 100 mm Hg to

45 mm Hg. It would appear that hemoglobin facilitated transport

in the lungs is not the major transport mechanism. It should be

pointed out however that the theory developed here is good for

steady state transport in films thick enough that red blood cell

dimensions are much smaller than the characteristic dimension of

the film. Oxygen transport in the lungs and tissues is an

unsteady state process which occurs in thin capilaries of the

same thickness of the red blood cell. Therefore one must be

careful in applying the derived model to these systems. However

the theory can be used to given an educated quantitative guess

of the amount of facilitated transport in a artificial oxygenator.

Here, blood films are encountered which are substantially thicker

than those in the body, so that the blood can be treated as a

hemogeneous fluid.

In order to measure the amount of facilitation for

physiological driving force conditions, two experiments were

carried out at 37 0C with a volume fraction of red cells of

0.45. In one experiment, the hemoglobin inside the red blood

cell was inactivated by introduction of 20 mm Hg of carbon

monoxide. In the second experiment the hemoglobin was active.

The driving forces were: upstream oxygen partial pressure of

100 mm Hg, and a downstream pressure of 35 mm Hg. The

physiological conditions of a temperature of 37
0C, a pH of 7.4
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and a pressure of about 40 mm Hg give a p50 of about 26.5 mm Hg.
P5

For a pH of 6.85 at 37 0C the p50 is approximately 25 mm Hg as

shown in Figure 7.28. For the driving force conditions chosen,

the saturation differences would be 25% across the film for

equilibrium conditions. These were the conditions employed for

the two runs. For the inert run the permeability measured was

2
P = 3.85 x 10-7 cm -cc(STP)

sec-cc-atm

at a volume fraction of

= 0.45

This can be compared with an effective permeability at 250C of

2
3.99 x 10 -7 cm -cc(STP)

sec-cc-atm

which can be obtained from Figure 7.17 (for a volume fraction

of q = 0.45). The change in temperature affects the permeability

little because, while the diffusivity increases, the solubility

decreases as temperature increases. For the run with the

reactive red blood suspension the average effective permeability

was
2

S4.05 x 10-7 cm -cc(STP)
AVE sec-cc-atm

for a volume fraction 0.45. Compared with the inert run the

permeability is only 5.2% above that of the inert run.

In order to make a comparison between theory and

the two data points, one needs to know the necessary physical

parameters at 370 C. From the permeability data on water,
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hemoglobin solutions, and the red blood cell suspension versus

temperature it can be assumed that Psaline and PRBC remain

virtually unchanged. From Bauer's work (1971) the forward

reaction rate is

kv = 5.0 x 106 1/mole/sec

and choosing the p50 as a match between the hyperbolic saturation

curve and the sigmoidal curve presented in Figure 7.28 it follows

that the backward reaction rate constant is

k' = 163.5 sec~1

The oxygen solubility in the dispersed phase is (from Table 3.3)

a' = .02273 cc(STP)

02 cc-atm

Taking the hemoglobin diffusivity at 37 0C to be approximately

-8 2
DIb= 7.0 x 10 cm /secHb

than theoretical predictions can be made for the driving forces

p0 'O = 100 mm Hg
2

px=L = 35 mm Hg
2

Figure 7.29 gives the theoretical curves predicted by the

one-step model for the conditions shown. At a volume of 5 = 0.45

the predicted increase of the effective permeability over the

inert permeability is about eight per cent for the 1 pm radius.

This is in close agreement (within experimental error) with the

experimentally measured increased indicating that at physiological
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driving forces the facilitated flux contributes only a minor

fraction of the total flux (if above mentioned restrictions

are met). The above conclusion is consistent with the conclusion

made by Schroeder and Holmquist (1968). Through approximate

calculations, Schroeder and Holmquist compared the diffusive

oxygen transport and the hemoglobin facilitated oxygen transport

at normal physiological conditions and concluded that at those

conditions "facilitated transport may contribute approximately

6 per cent of the total flux of oxygen into the erythrocyte."

It has already been mentioned that one must be careful not to

extend the theory for the average effective permeability to

situations where the characteristic dimension is of the same

order as the red blood cell radius. A reconsideration of the

problem of a single sphere in an infinite medium would also

predict low facilitation factors at physiological conditions

(average p0 equal 70 mm Hg) as can be seen from Figure 5.8.
2

It appears therefore that Schroeder and Holmquist's conclusion

is probably correct. On the other hand, if indeed the

contribution of facilitated flux is only a fraction of total

flux, it does not mean that facilitated flux is not important.

In the uptake of oxygen in the lungs six per cent may be

important. Further in streneous exercise, the pO2 in muscle

tissues may drop as low as 10 mm Hg, in which case facilitated

transport would become very significant as saturation changes

inside the red blood cell would occur in the steep portion of

the saturation curve (where the facilitation factor is a

maximum).
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7.3.3.2.1 Details and Comments on the Oxygen

Permeation Experiments on Reactive Red

Blood Cell Suspensions

The liquid film thickness of the red blood cell

suspensions in Figures 5.19a,b was 4.57 pm, and those in Figures

5.20a,b and 5.21a,b was 803 pm. The transient period in these

experiments prior to the establishment of the steady state flux

was from approximately a half to two hours depending on film

thickness and red blood cell volume fraction. No anomalously

high flux was observed during the unsteady state portion of the

experiment. For the 457 pm thick films no sedimentation of the

red blood cell phase was observed, indicating that wall effects

reduces sedimentation. For the 803 Pm thick films some phase

separation occurred for volume fractions below D = 0.45, but at

no time was the separated layer more than one-ninth of total

liquid height.

Hemolysis was less than one per cent in the reported

experiments. Hemolysis as defined here, is the per cent of

red blood cells that lysed during the course of an experiment

given by

% Hemolysis = 100 efore after(7.7)
Dbefore

Hemolysis can affect the mass transport significantly. If red

blood cells lyse, they will release the hemoglobin into the

continuous saline phase. Although the presence of the

hemoglobin may decrease the oxygen permeability in the continuous
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phase, the hemoglobin will have a large diffusivity since total

hemoglobin concentration will be low (true unless the volume

fraction, 4 = 1.0). In addition, if indeed the oxygen-hemoglobin

reaction is not at equilibrium inside the red blood cell, upon

release into the continuous phase, the released hemoglobin would

be at chemical equilibrium in the continuous phase. This then

becomes a problem of reaction inside the dispersed phase and

within the continuous phase and is compatible with the impermeable

carrier model developed in Chapter 4. Figure 7.30 gives

theoretical comparisons for the average effective permeability

ratio obtained for zero per cent hemolysis (reaction inside the

dispersed phase only) and three per cent hemolysis. Figure 7.31

gives the theoretical calculations for ten per cent hemolysis.

The calculations were made by first computing the amount of

hemoglobin in the continuous phase and the new volume fraction

upon hemolysis. Second, the hemoglobin diffusivity in the

continuous phase was determined through use of Kreuzer's

compromise curve (see Figure 3.8), and third, the oxygen

permeability in the continuous phase was determined from

Figure 7.14. The calculated average effective relative

permeability is plotted versus the initial volume fraction of

red blood cells. The same parameters as listed in Table 7.8

were employed (for the dispersed phase), and the kinetic rate

constants for the hemoglobin in the continuous phase were taken

to be the same as those in the dispersed phase.

It is obvious from Figures 7.30 and 7.31 that small

amounts of hemolysis can have a significant effect on the
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average effective permeability and must be avoided. This was

confirmed in experiments where hemolysis was larger than one

percent. These experiments were discarded. Hemolysis appears

to be a function of the age of the blood; it increases as the

age of the blood increases. (Age is defined here as the time

after actual withdrawal from a donor.)

Another phenomenon that was observed was that the

oxygen consumption rate of red blood cell suspensions increased

with the age of the red blood cells. This effect was

encountered in some initial exploratory experiments with outdated

blood. In oxygen permeation experiments it was found that the

average effective permeability was less for outdated reactive

suspensions that those observed for fresh inert suspensions.

In order to check that this effect was indeed due to "oxygen

consumption" by the suspension, independent consumption

experiments were performed. Saline red blood cell suspensions

in saline of different ages, and initially fully saturated with

air, were placed in sealed plastic syringes and the per cent

saturation was measured as a function of time. To inhibit

bacterial growth, 1 mg of streptomycin sulfate per 10 ml

suspension was added to some of the samples (Richterich, 1969).

Some typical results are shown in Figure 7.32 for outdated blood

(age = 25 days) and relatively fresh blood (age = 5 days).

(Human blood is considered outdated 21 days after withdrawal

from donor). The common result is that initially the blood

remains at 100 per cent saturation. After some time has passed

the saturation drops slowly and then will drop rapidly. The
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older the blood the sooner the desaturation process would

initiate. Addition of streptomycin sulfate (an antibiotic)

delays but does not stop the desaturation process. Another

additive added to the blood samples was potassium cyanide

(1 gr/10 ml). Tyuma and Ueda (1971), who observed similar

deoxygenation rates in hemoglobin solutions, have suggested

that there are "oxygen consuming factors" present in hemoglobin

(as yet undetermined) and they showed that addition of

cyanide inhibited the deoxygenation process in hemoglobin

solutions. In this work, the addition of KCN gave approximately

the same result as the addition of streptomycin sulfate. As

far as the author could determine, this process (which is

reversible) is as yet not understood (is it oxygen consumption

or bacterial growth?). It does point out the need to work with

fresh blood as was done in this thesis. In some permeation

experiments streptomycin sulfate (1 mg/10 ml) was added to the

fresh blood, but no effect was observed (see Appendix D). From

these results and Figure 7.32 it appears that "oxygen

consumption" (the most appropriate word) is negligible in fresh

red blood cell suspensions. It should be noted here that

streptomycin sulfate was added for the experiments at 37 0C.

Finally, it should be mentioned that Stein (1968), who did not

observe facilitated mass transfer in red blood cell suspensions

(see Chapter 3), used outdated whole blood in his experiments.

A possible explanation of his results is that in his

experiments the oxygen consumption was reponsible for a reduction

of the observed oxygen mass transfer rate.



379

7.3.4 Model System

In the preceding sections on reactive red blood

cell suspensions, it was shown that the theory correctly predicts

the experimental behaviour of the permeability data. It was

pointed out however that the exact hemoglobin diffusivity is at

present not known, so that a precise comparison with the theory

is not possible. This is due to the fact that the

experimentally measured hemoglobin diffusivity at red blood

cell concentrations varies from approximately 3.0 x 10-8

cm 2/sec to 1.5 x 10~ cm 2/sec. At lower hemoglobin concentrations

there exists less disagreement between the various reported

values for the hemoglobin diffusivity. In collaboration with

Tuntunjian (1973), oxygen permeability experiments were

conducted utilizing a model system chosen to lessen this

uncertainty. The model system consisted of a fresh hemoglobin

solution (CT = 16.3 gr/100 ml) emulsified into a continuous

oil phase as described in Chapter 6. Emulsions (W/o) were

made that had either a large particle size or a small particle

size by appropriate control of the emulsification procedure.

The emulsification process caused some denaturation of the

hemoglobin, and the remaining activity of the hemoglobin was

measured through the Van Slyke technique. Appropriate details

of the experiments have been given by Tuntunjian (1973). It

was found that the large size emulsions had a number average

particle size of

d = 9.30 pmn



380

with a standard deviation of

C = 8.77 Pm

and a hemoglobin activity of 58% of the original hemoglobin.

The volume mean diameter and standard deviation was calculated

as:

d = 16.3 pm

a = 24.5 Pm

The small emulsion had a number average particle size of

dn = 2.54 pm

a standard deviation of

a = 0.95 pm

and a hemoglobin activity of 46%. The volume mean diameter

was calculated as

d = 2.90 pm

and the standard deviation was

a = 3.26 pm

The particle size was measured with the aid of a microscope

and a total of 500 particles were measured for each emulsion.

Figure 7.33 shows a comparison of the measured permeability

data with the theoretical curves obtained from the one-step

model. Parameters used in the calculations are listed in
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1.5

A Large size emulsion

Small size emulsion

3 Inert emulsion

AVE

P -

100 % active-

x=o
- PO = 41. 0 mm Hg

2,

p 0  = 2.7 mm Hg
2

0
0 0.5

FIGURE 7.33

COMPARISON OF EXPERIMENTAL RESULTS WITH
THEORETICAL PREDICTIONS FOR THE ONE-STEP
MODEL FOR THE REACTIVE EMULSIONS.
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Table 7.9 and these were either measured or they are consistent

with previously discussed values. The deactivation of the

hemoglobin inside the hemoglobin solution droplets was

accounted for in the calculations by reducing the hemoglobin

concentration in proportion to deactivation, but leaving

diffusion coefficients unchanged. The size distribution of

the emulsions was taken into account by integrating over the

volume particle size distribution. The oxygen-hemoglobin

saturation curve of the hemoglobin solution was measured and it

was found to be virtually identical to that shown in Figure

7.24; the p50 was 13 mm Hg (Tuntunjian, 1973).

Figure 7.33 clearly indicates the effect of

particle size upon the mass transfer rate. The reaction inside

the large emulsion (av = 8.1 Pm) is nearly at equilibrium.

(If not corrected for the 42% deactivation the line will fall

just slightly below the equilibrium curve.) The reaction inside

the small emulsions (av = 1.45 pm) is not at equilibrium. The

theory shows quite reasonable agreement with the experimentally

measured values. The inert runs were obtained by introduction

of carbon monoxide into the upstream and downstream volumes.
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TABLE 7.9

PARAMETERS EMPLOYED IN CALCULATIONS

FOR THE MODEL SYSTEM

Parameter Source

CT = 16.3 gr/100 ml

.'. CT,Hm = 0.0101 mole/i

D Hb 2.25 x 10~ cm2/sec

aO2 = .0272 cc(STP)/cc/atm

P = P = 7.05 x 10-7 cm -cc(STP)
sec-cc- atm

measured

Kreuzer compromise,
Figure 3.8

Table 3.3

Appendix D

P= 4.03 x 10 - cm -cc(STP)
d sec-cc-atm

ki 3.0 x 10 61/mole/sec

k' = 62.5 sec
2

x=0
P2

x2L
PO0 2

= 41.0 mm Hg

= 2.7 mm Hg

Figure 7.17

Table 7.8

Table 7.8

Appendix D

Appendix D
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8. CONCLUSIONS AND RECOMMENDATIONS

A theoretical framework has been developed that

models diffusion with reversible chemical reaction in

heterogeneous media. The theoretical framework incorporates

general aspects of previously published work on mass transport

phenomena in inert heterogeneous media, and diffusion with

reversible chemical reaction in homogeneous media. As an

example, several models have been developed for various types

of heterogeneous media and reaction schemes. Effective

permeabilities were derived which show that the effect of

reversible chemical reactions is to facilitate the transport

of the diffusing species in heterogeneous media. The effective

permeability is a maximum when the chemical reactions are at

equilibrium. In the case that the reaction departs sufficiently

far for equilibrium facilitated transport becomes negligible

and the theoretical equations reduce to Maxwell's equation for

inert heterogeneous media.

Coupled with the theoretical developments, an

experimental program was undertaken to investigate mass

transport phenomena in both inert and reactive media.

Experimentally measured oxygen permeabilities in thin liquid

films of inert dispersions, inert emulsions, reactive red

blood cell suspensions, and reactive emulsions showed reasonable

agreement with the theoretical predictions. It was concluded

that in the operation of an artificial oxygenator at normal

physiological conditions, hemoglobin-facilitated oxygen

transport contributes only a fraction of the total mass transport
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rate. This same conclusion appears to be valid for oxygen

uptake in the lung, but in the tissues and muscles, where the

partial pressure of oxygen can be low, hemoglobin facilitated

oxygen transport may become significant. In regards to the

theoretical modeling of oxygen transport in the lungs or an

artificial oxygenator at physiological conditions, the

assumption that the oxygen-hemoglobin reaction is at equilibrium

appears to be a reasonable approximation for whole blood.

The theoretical framework presented here can be

used to model and predict mass transport phenomena in a variety

of other reactive heterogeneous media. Shape effects can be

incorporated as has been done for example by Fricke (1924) for

inert heterogeneous media. Important biological problems such

as the diffusion of carbon dioxide in blood, transport of

nutritients and metabolites through tissues, and the

absorbance of drugs through the skin should be amenable to

analyses similar to those presented in this thesis if the

necessary physico-chemical parameters are known for the system

of interest. In addition, similar processes of chemical

engineering interest, such as, for example, absorption and

reversible reaction into emulsions, slurries, and dispersions,

can be analyzed.
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APPENDIX A: MAXWELL PROBLEM

A.1 Single Sphere in a Continuum

Consider a single sphere, of radius a and permeability

Pd, immersed in an infinite liquid medium of permeability P . A

constant mass flux N A is imposed at large distances from the

sphere as shown in Figure A.l. Note that maintaining either the

mass flux or the driving force gradient Ap/L (or potential

gradient) constant is equivalent since at large distances from

the sphere (9 = 0)

N = PA
A c Ar

FIGURE A.l. SINGLE SPHERE IN INFINITE MEDIUM.
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The mass conservation equations for A inside and outside the

sphere are:

outside sphere,

1 3 2 A 1 A
P 2 1 r a3,r ) +p A 2 . i (sin G )] 0 (A.1)

r r + r sinD

inside sphere,

2
r_ 2 pp

P 2 + 2 . (sin )]0 (A.2)
r r sin a

In deriving equations (A.l) and (A.2), it was assumed that

Henry's Law is applicable,

CA = a AA

which is a reasonable assumption for sparingly soluble gasses

such as oxygen. The permeability is therefore defined as the

diffusivity DA times the solubility cA of A in the medium. The

boundary conditions are as follows:

1. Continuity of the potential pA at the phase

boundary

PA P at r = a, all 6 (A.3)

2. Continuity of the mass flux of A at the phase

boundary

P r Ad r at r = a, all O (A.4)
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3. Concentration at the center of the sphere is

fixed

p = p at r = 0 (A.5)

4. Constant mass flux of A at large distances from

the sphere

P - - NA cos e as r + a>, all e (A.6)

The last boundary condition also imposes the condition of symmetry

on the solution of equation (A.l) and (A.2). The solution of

(A.1) and (A.2) is straightforward (Panofsky and Phillips, 1962)

and is attained through the method of the separation of variables

by letting (for the inside potential or the outside potential)

p = R(r) 0(6)

The separated equations are of the form

2 DR
D(r2 r) - n(n + 1) R =0

1 (sin )+ + n(n + 1) 0
sin D391 D sin 2 0

The general solution of the differential equation R(r) is

R(r) = Anr + Br n-l

and the general solution for (0) is

0 = E P M(dos 0) + D Q m(cos $)
m n M n



390

The functions P nm(cos 8) and Q (cos 0) are the associated

Legendre functions of the first and second kind, respectively.

Application of the boundary conditions (A.3) through (A.6)

yields:

outside the sphere

N P - P
(p -(P)r cos ( {l - [ d +2Pc] (A.7)A A P r d c

inside the sphere,

N 3P

p p = (LL) r cos 2P + (A.8)
c c d

Outside the sphere, the partial pressure of A (or potential field

of A, (p - p ) is given by the imposed potential gradient,

NA A

-- = r at r+ (A.9)
c

plus a term accounting for the disturbance arising from the

presence of the sphere. The relative effect of this disturbance

term decays with the cube of the distance from the center of the

sphere.

A.2 Effective Permeability for an Ensemble of Spheres

Consider a dilute suspension of n spheres, with

permeability Pd and radius al, located in a spherical volume

of the continuous medium, with radius a2, which itself is

located in an infinite bath of the continuous medium which has
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a constant mass flux (or potential gradient) .imposed on it

(see Figure A.2). The suspension is assumed to be sufficiently

dilute that the interactions between spheres may be neglected.

O

O oFIGURE A.2

SPEIALSSENINO SHRES.

O O,

02 O

FIGURE A.2

SPHERICAL SUSPENSION OF SPHERES.

Under these conditions the disturbance in the potential field

at large distances from the center of the spherical cluster

arising from the presence of the n spheres is simply the sum

of the disturbances resulting from each sphere individually.

From equation (A. 7 ) it follows that

N na3  P -P

-A ( )r cos { [d +2P ]
c R d c

(A.10)

The disturbance at such a point may also be written in terms

of an effective permeability of the spherical cluster as a

whole, P,

0
PA - A

N a3-NA a2  P-
-(P )r cos e {l + C

c R P + 2Pc

(A-ll)
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By equating the two expressions (A.10) and (A.ll) and use of

the volume fraction P of the dispersed phase

na
(A.12)

one arives at Maxwell's expression

P + 2P - 2+D[P - Pd]

= d + 2Pc + c d]
(A.13)

or in the nomenclature of Section 3.1

Kd + 2 - 2D[1 - Kd]

m Kd + 2 + 0[l - Kd]
(A. 14)

Reviewing the procedure of obtaining the solution of equation

(A.14) the first step is to obtain the potential outside the

sphere which is of the form

(pA - pA)

NAa
= -(V-)r cos 0 {l + (2)3 A}

c

where A is obtained from the boundary conditions and is from

equation (A.7)

P - P
A= - d C

Pd+2P
(A.15)

Once the constant A is in hand, Maxwell's technique for obtaining

the average permeability of a suspension of spheres yields, in

terms of A

P
c

1 - 24 A
l + A

(A.16)

-

c
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APPENDIX B: THE NATURE OF BLOOD AND HEMOGLOBIN

B.1 Constituents of Blood

Blood is a complex suspension composed of two primary

components, the plasma and the blood cells. The red blood cells

(erythrocytes) make up the major volume of the blood cells,

approximately 98 to 99 per cent, and the remaining is

contributed by white blood cells and platelets. As a reasonable

approximation, blood can be considered to be a two phase

heterogeneous system, plasma and eythrocytes, where the

erythrocyte membrane demarcates the phase boundary between the

two. Both phases are aqueous, where at 250C the plasma phase

has a specific gravity of 1.0239 and the erythrocytes a specific

gravity of 1.098.

A short discussion will be given here of the

properties of plasma and the red blood cells, and for more

complete details the reader is referred to extensive reviews

and tabulations available in the literature (Bishop and Surgenor,

1964; Mc Farlane and Robb-Smith, 1961; Altman and Dittmer, 1971).

Plasma

Plasma is a buffered, straw yellow liquid consisting

of a complex mixture of electrolytes, inorganics, organics and

proteins in solution in water. Many of the compounds present

in plasma have been identified and Altman and Dittmer (1971)

have tabulated presently available information. The protein

content of plasma is approximately 7 per cent by weight and
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consists of globulins, albumin and fibrinogen. One of the

primary functions of albumin (and to some extent the other

proteins) is to exert osmotic pressure at the capillary

membrane, in order to prevent the fluid of the plasma from

leaking out of the capillaries in the interstitial spaces

(Guyton, 1968). The globulins are divided into three major

types: alpha, beta, and gamma globulins. The gamma globulins,

and to a lesser extent the beta globulins, are the antibodies

that resits infection and toxicity, and thus are responsible

for providing the body with immunity. The alpha and beta

globulins (as well as albumin) play an important role in

transporting nutrients and metabolites in the blood stream

through reversible combinations with the species and subsequent

release in another part of the body.

The Red Blood Cells

The red blood cell has several major functions, of

which the most important one is the transport of hemoglobin,

which in turn carries oxygen from the lungs to the tissues.

The red blood cell also contains carbonic anhydrase, an enzyme

which catalyzes the hydration reaction of carbon dioxide, and

at the same time CO2 can reversibly combine with hemoglobin.

Consequently the red blood cell is a very important mediator of

CO2 transport. Another important aspect of the red blood cells

is that the hemoglobin inside the cells is an excellent acid-

base buffer and the blood cells therefore are responsible for

approximately 70 per cent of all the buffering power of the

blood (Guyton, 1968).
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The red blood cell is a biconcave disc with a mean

diameter of approximately 8 micrometers, a thickness of 2 ym

at the peripheral region and a thickness of 1 vm in the middle.

Recently Evans and Fung (1972) have reported geometric

dimensions of the red cell to within 0.02 pm through use of

interference microscope. Table B.l shows the statistics for

various dimensions, surface area and the volume of the red

blood cell obtained from the measurement of 50 cells at

physiological conditions as reported in their paper. Under

TABLE B.l

DIMENSIONS OF THE HUMAN RED CELL

Diameter 7.82 + 0.62 vim

Maximum thickness 2.58 + 0.27 ym

Minimum thickness 0.81 + 0.35 ym

Surface area 135 + 16 (vm)2

Volume 94 + 14 (Pm)3

certain conditions the shape of the red blood cell can be

deformed. Tbe membrane is quite flexible and shape

variations can be induced by pH, osmotic pressure, and the

flow field of the fluid.

The red blood cells usually comprise about 45

per cent of the total blood volume. In flowing blood the cells

are individually dispersed, but in stagnant blood the red cells

may form clusters. These clusters are known as roulea because
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the red cells are stacked in rolls, and the rouleaux will break

up when the shear rate of the fluid is above 1 sec~1 (Meyer,

1967). The hemoglobin inside the red cell is in a concentrated

aqueous solution with an average concentration of 32 to 34

gr/100 ml, so that the blood of a normal person contains

approximately 15 grams of hemoglobin in each 100 ml of blood.

Since each hemoglobin molecule (.MW= 64,500) can react with 4

oxygen molecules, on the average, 100 ml of blood can combine

with a total of about 20 ml of oxygen (STP). Compared to the

physical solubility of oxygen in blood, the presence of

hemoglobin increases the oxygen capacity of whole blood about

fifty times.

B.2 The Hemoglobin Molecule

Hemoglobin and its cousin myoglobin have enjoyed a

special relationship with researchers from many disciplines

since the beginning of the twentieth century. If one considers

the functions of hemoglobin, its universal occurrence in

vertebrates and many lower forms of life, and its ready

availability it should not be surprising that hemoglobin and

myoglobin are likely candidates for the devoted attention of

molecular biologists, chemists, physicists, engineers, and even

philosophers. In terms of scientific motivation, hemoglobin

has such a versatility of biological, chemical, and physical

functions and behavior that the study of hemoglobin has nearly

become an academic discipline by itself and the term hemo-

globinoligists has been coined for those scientists active in
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the field. Since the author does not belong to that select

group, any attempt on his part to give a concise review of

published work that pertains to developments in this thesis

would be fruitless. For an up to date account of a significant

portion of work performed on hemoglobin, the recent book by

Antonini and Brunori (1971) and the review by Buse (1971) is

recommended.

Hemoglobin is a very complex molecule that consists

of about 10,000 atoms with a molecular weight of 64,500. Each

hemoglobin molecule is composed of four subunits each of which

in turn consists of a heme group, an iron atom surrounded by a

porphyrin ring, and a globin, a polypeptide chain. The iron

atom is in the divalent or ferrous state and each atom can

combine with one molecule of oxygen. The capacity of the

ferrous ion to bind reversibly with molecular oxygen is acquired

only through the combination of the heme group and the globin.

The heme alone will not bind oxygen. Further the globin subunits

allow each of the four hemes to interact in a physiologically

advantageous manner. Four major globins that occur in humans

have been identified: a, 5, y and 6 polypeptide. The normal

adult hemoglobin (hemoglobin A or Hb A) is composed of two a

and two S chains and is often written a 2/fA. The superscript

A shows that the molecule is of the genetically normal, adult

type. The normal human adult also has a minor hemoglobin

component (hemoglobin A2 ) consisting of two a chains and two 6

chains. The y polypeptide chains occur in the fetal hemoglobin

(Hb F) which is written as a.A/YF (Ingram, 1963).
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Considerable progress has been made in eluciating

the primary, secondary, tertiary, and quarternary structure

of hemoglobin. The amino acid sequence, or primary structure,

of the a, 5, and y-chains of human adult hemoglobin has been

identified (Braunitzer et al., 1961, 1964; Koningsberg et al.,

1961, 1962, 1963; Schroeder, 1963). In addition over 100

mutant hemoglobins have been discovered and the variations in

the amino acid sequence have since been identified, and the

modification in properties due to amino acid substitution has

been useful in analyzing the relationship between structure and

function in the hemoglobin molecule.

The a chain and the S chain have 141 and 146 amino

acids respectively. The secondary structure, or the regular

arrangement in space of the polypeptide chain, has been

identified for hemoglobin of several species. Portions of the

chains have helical twists, as shown in Figure B.1, and by

convention have been numbered A through H. The three-dimensional

arrangement (tertiary structure) of the chain for myoglobin and

hemoglobin, and the location of the four subunits in space

(quarternary structure) for hemoglobin has been under intensive

investigation by Kendrew, Perutz and co-workers at the

University of Cambridge. A three-dimensional model of sperm

whale myoglobin showing the arrangements of the amino acids in

the helical and non-helical regions and the heme group has been

given by Watson and Kendrew (1961) through use of x-ray analysis.

Myoglobin may be taken to represent a simpler type of

respiratory protein (one subunit per molecule instead of four)
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FIGURE B.1
A REPRESENTATION OF THE A3 CHAIN OF HUMAN HEMOGLOBIN
SHOWING THE LOCATION OF THE AMINO ACIDS. (reproduced
With permission of Prof.Schroeder)
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from which hemoglobin has evolved. Subsequent analysis of

horse hemoglobin has shown large architectural similarities

between the subunits of hemoglobin and the myoglobin molecule

and the arrangement of the a and 3 subunits in space (Cullis,

et al., 1962). The heme in the subunits of hemoglobin is

tucked in a cleft made up by the polypeptide chain of each

subunits as shown in Figure B.2. The molecular interactions

between the heme and the protein are very complex and involve

about 90 Van der Waals contacts (Antonini and Brunori, 1971).

As shown in Figure B.2 the hemoglobin molecule consists of two

a and 3 chains. Contacts between the different hemoglobin

chains are of such a nature that dissociation gives two a

dimers.

Considerable evidence has been obtained on

conformational changes associated with the binding of ligands

in hemoglobin. It is generally accepted that in hemoglobin,

conformational changes in ligand-binding are responsible for

the functional interaction of the molecule (Antonini and

Brunori, 1971). Extensive experimental results indicate that

oxy- and deoxyhemoglobin are in different conformational

states, but at present the precise influences of the

conformational changes upon hemoglobin function has not yet

been determined.
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FIGURE B.2

THREE DIMENSIONAL MODEL OF THE HORSE HEMOGLOBIN
MOLECULE. TOP FIGURE SHOWS SEGMENTS INVOLVED IN
THE CONTACT L,4,. LOWER FIGURE SHOWS SEGMENTS
INVOLVED IN THE CONTACT og/S3.

(Courtesy of ProfPeruts)
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B.3 Reaction of Hemoglobin with Oxygen

As discussed in the previous section the hemoglobin

molecule consists of four subunits, each of which can react

with one molecule of oxygen. The heme also reacts with other

ligands such as carbon monoxide and nitric oxide, while carbon

monoxide combines with the hemoglobin polypeptide chains. The

study of the equilibria and kinetics of the ligand binding of

hemoglobin has progressed since the beginning of the century.

Development of theoretical treatments on the behavior of

hemoglobin have developed virtually in parallel with

experimental results obtained on ligand binding and information

gained on hemoglobin structure.

Hufner (1903) proposed the first model for the

reaction of oxygen with hemoglobin

k
Hb + 02 HbO2 (B.1)

2 1b 2
k 2

Based on reaction (B.1) the fractional saturation of hemoglobin

with the ligand, defined as

y = 2 (B.2)
C Hb+ CHbO

2

is as follows

KapO0

y .2 (B.3)
l + KapO2

where K is the equilibrium constant
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K = (B.4)
k2

and pO2 is the partial pressure of oxygen which is related to

the oxygen concentration by the solubility constant

C0 2 -apO2 (B.5)

It was soon recognized that the oxygen-hemoglobin equilibrium

curve, plotted as hemoglobin saturation versus oxygen partial

pressure, was of a sigmoidal shape as shown in Figure B.3.

The hyperbolic saturation curve given by equation (B.3) has

been shown to give correct behavior for myoglobin but could

not give a correct fit for hemoglobin. The interaction of

the subunits in hemoglobin is responsible for the sigmoidal

behaviour of the saturation curve, and "cooperative phenomena"

of this nature occurs in many biological species.

Hill (1910) proposed that each hemoglobin molecule

contained n active sites for binding oxygen and that the

reaction could be treated as n-th order

Hbn + nO2  * (HbO2 n (B.6)

The saturation of hemoglobin according to equation (B.6) is

y 2 n (7)
1 + K(apO

2

Hill's equation has no physical significance because it was

shown that: (i) the experimentally determined value for n for

hemoglobin at physiological conditions was not an integer value
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(n = 2.8); (ii) by kinetic measurements the oxygen-hemoglobin

is a second order reaction (Hartridge and Roughton, 1925);

(iii) through molecular weight determinations it was determined

that hemoglobin was a tetramer (Adair, 1923). However, the

Hill equation has enjoyed considerable success as an empirical

relationship to describe equilibrium data.

Adair in 1925 proposed a four step mechanism to

account for the sigmoidal shape of the oxygen-hemoglobin

equilibrium curve and the knowledge that there are four active

sites in each molecule because of the presence of the four

subunits

k k'
Hbg + 02 Hb g K (B.8)J4  24 21 K1  b

b 1-

k k2
HbgO2 + 02 Hb (0 2 K (B.9)

b 2 2

k 3k
Hb (0 + 02 3 (02 3, K3 = (B.10)

b3  3

k' k4
Hb4 (02)3 + 02 - Hb(0 2)4 , K4 = (B.ll)

b4  4

The Adair reaction scheme yields for the fractional hemoglobin

saturation (Adair, 1925)

K1002 + 2K K2(o 2 2 + 3K K2K3 'ap 2 3 + 4K K2K3K 2

y 22 3 4
4[l + K +po + K 1 K2 K3 (p) + K K2 3KO4(p2 2 2 2

........... (B.12)
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The equilibrium constants are macroscopic constants, and when

the intrinsic constants (K.) for the sites are the same it can

be shown from statistical reasons that (Antonini and Brunori,

1971)

K :K :K3:K 31 1

12 3 4 86T:16

Any deviation from these statistically determined ratios, as

implied from the sigmoidal shape of the hemoglobin curve,

indicates heme-heme interactions. In the latter case Adair's

equation remains valid as the relationship does not imply any

particular values for the equilibrium constants. Considerable

effort has been undertaken by Roughton and Gibson to quantify

the kinetic rate constants and equilibrium constants from

kinetic and equilibrium measurements (Roughton, 1949; Gibson

and Roughton, 1957; Gibson, 1959, 1970). Recent accurate

experiments by Roughton et al. (1971) at the top part of the

saturation curve has shown that the Adair scheme cannot

accurately fit the equilibrium curve in the 98.50 to 99.50 per

cent range. This is not surprising considering that the Adair

scheme is extremely simplified relative to the complexity of

the molecular reactions. First of all many other reactions

occur on the oxygenation of hemoglobin. For instance, recent

interest has been centered on the different attraction of 2,3

diphosphoglycerate (DPG) towards deoxy- and oxyhemoglobin.DPG

has been shown to be an important affector of oxygen affinity,

its presence decreasing the overall hemoglobin affinity

(Benesch and Benesch, 1967; Chanutin and Curnish, 1967). Benesh
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and his co-workers (1967, 1968, 1969) have reported that

deoxyhemoglobin binds DPG strongly, but that oxyhemoglobin

does not bind DPG to any appreciable extent. Further, the

conformational states of deoxy- and oxyhemoglobin affect

the reactivity of the ligands towards the hemes of hemoglobin.

Therefore the Adair scheme is at best an approximation to the

real physical, but as yet unknown, situation. Various models

have recently been proposed that take into account the

transformational transitions in order to explain the

heme-heme interactions (homotropic interactions) and the

interaction effects on ligand binding caused by other

molecules (heterotropic interaction). Such allosteric models

have been proposed by Monod et al. (1965), Koshland et al.

(1966) and Perutz (1970). Modifications of these models

will most likely occur as more information and insight is

gained on the structure and function relationship in hemoglobin.
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APPENDIX C

DETAILS OF THE ADAIR DIFFUSION-REACTION SCHEME

The Four-Step Model

Adair (1925) proposed the following kinetic scheme for the

reaction of oxygen (A) with hemoglobin (B)

ki
A + B $ AB , k1/bi = Ki (C.1)

bi

k2
A + AB A2B, k2/b2 = K2 (C.2)

b2

k3
A + A2B $ A3B, k3/b3 = K3 (C.3)

b3

k4

A + A3B Z AaB k4/b 4 = K4
b4

where k. is the forward rate of reaction (C.j) and b. is the cor-
JJ

responding reverse reaction rate constant.

Consider a single sphere, of radius a and permeability Pd'

immersed in an infinite liquid medium of permeability Pc, which

has a constant mass flux N A imposed at a large distance away from

the sphere as shown in Eigure Al. With azimuthal symmepry -the

Laplacian in spherical coordinates is

V2u = (r2 u + 1n sin6)r2  r2sinO

so the steady state conservation mass equations for species A, B,

AB, A2B, A3B, A4B inside the the sphere, and for species A



outside the sphere are:

Inside the sphere,

DAV2CA = kiCACB+ k2CACAB+ k3CAC A 2B + k4CACAaB

- biC AB-b2CA2B-b3CA3B-b4CA4B

DB 2CB = kICACB - biC AB

D ABV 2CAB = k2CA CAB + biCAB- kiCA CB - b2CA2B

D A2BV 2CA2B

DAaB 2 B

DA 3 B A2CA3 B

D ABV2C 4

= k3CAC A2B + b2CA2B - k2CACAB - b3CA3B

= kCACAB + b CAaB - k3CAC A2B - bC A4B

= b4CA4B - kC A CA3B

(C.8)

(C -9)

(C.10)

Outside sphere,

(C. 11)V 2CA * = 0

Note that the primes which previously denoted conditions inside

the sphere have been omitted and that the asterisk now denotes

conditions outside the sphere. The boundary conditions for the

problem are:

Inside the sphere,

PA = PA at (C.12)

410

(C.5)

(C.6)

(C.7)

r = 0
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(again note that CA = aA A (.3)).

Sphere boundary,

P A c A at r = a (C.14)
d r = c Dr

PA = PA at r = a (C.15)

ac B ac AB ac AB ac AB ac 4CB _CAB 3A 2B A 3 B CAgB = 0  at r =a (C.16)
r Dr ar = ar - r

Far away from the sphere,

ap A*
P CrA = - NA cos 6 as r-+m (C.17)

The solution for the partial pressure variation of A (CA *=a*PA*)

outside the sphere is again of the form (see Appendix A, or section

4.2.3 for the case of a single reacting sphere in a continuum).

A* -N A r cos 0{l + A (r)3} (C.18)
c

The remaining problem is to find suitable solutions for equation

(C.5) through (C.10) and to determine the appropriate constants

in these solutions and that of equation (C.18) through use of

the appropriate boundary conditions.

C.l Equilibrium Solution

For cases of spheres so large that chemical equilibrium is

attained throughout the film, an equilibrium solution can be

derived. By adding equations (C.6) through (C.10), integrating

twice and utilizing boundary conditions (C.13) and (C.16), it
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can be shown that the total carrier concentration is a constant

throughout the sphere.

CB + CAB + CA2B + CA3B + CA4B CT (C.19)

if the carrier diffusivities are equal.

By utilizing equations (C.5) and (C.7) through (C.10), one

obtains

V2 pdPA + DB(CAB+2C A2B+3CA3B+
4CAB)] = 0 (C.20)

where
CA

PA a A~

Upon integrating equation (C.20) twice, the result becomes

PdPA + DB (CAB+ 2CA2B+
3C ASB+ 4CAgB) = B r cos 0+ E (C.21)

The equilibrium fractional saturation is defined

CAB + 2CA2B + 3C AB + 4CA4B

y =
4 CT

Since the fractional saturation value at the center of the sphere

is y*, for a small driving force of A across the sphere the sat-

uration change through the sphere can be related to the center

saturation concentration by

y = y*0 + 9 pA (C.22)
dp t A t ra

(provided that the reactions are everywhere at equilibrium).
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So the total concentration of oxygenated hemes can be related by

(C + 2C + 3C + 4C 4C y + 4CT A
CA2B A3B A.B

(C.23)

Substitution of (C.23) into (C.21) yields

PgpA + DB 4CTy*+ 4CT )XApA] = Br cos 6+ E

Equations (C.18) and (C.24) can now be utilized when coupled with

the boundary conditions to solve for the constant A. Application

of boundary condition (C.15) yields

N

Pd A*- a cos 6(l+A)}+
C

(C.24)

DB{ 4 yCT + 4CT dpA

= Ba cos 6+ E

N a
- cos 6(l+A)

(C.25)

If one then equates powers of (cosO), equation (C.25) yields

E = PdA + 4 DB Ty0  (C

and

Pa P d 4DBCT d * NA Pd
P N Aa - PNAA a- P dpA PCC c d dAd

- T * A a = Ba (C
Pd e Al c

Further at r~a

a(CA+ 2CAB+3CA.B+ 4CA.B A

3r C ar

.26)

.27)

Pd ar + DB
(C. 28)
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from which

B = - NA(1- 2 A) (C.29)

Substitution of equation (C.29) into (C.27) yields a solution

for A which is

Pc d 1

2Pc + Pd

4D C dy-
B T dpA

+

3d
(C. 30)

4D C -

+B T dpA

Pd

Defining

Adair
Feq

4D C dy_ *
B T dpA

(C.31)

equation (C.30) can be rewritten as

P-P (1 + F Adair
c d eq

2Pc+ Pd (1 + FAdair
(C .32)

Sbustitution of A into (C.18) gives for the outside partial

pressure

N A a3 P - P (l+FAdair

rcosO {1+(-) c d eq }
PA*~c - AdT Adair

c 2P + P d(1+F eq
(C.33)

Maxwell's technique can now be utilized to obtain the effective
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permeability as described in Appendix A so that

P Pa(l+F Adair) +2P -25[P -P (1+FAdair H
- d eq C c d eq (C.34)

c P (l+FAdair) +2P + o[P -P (1+FAdair
d eq / c cd eq

Equation (C.34) gives the effective (relative) permeability for

a suspension of spheres in a continuum where a four step rever-

sible reaction which is completely at equilibrium occurs inside

the spheres. The fractional saturation y is given by Adair's

equilibrium relationship. This relationship can be obtained

from the equilibrium conditions of the four step reaction scheme

which are

CAB = K BpACB

C A = K2xpA C = KIK2(apAo)2CBa

CAB = AB = A B

C B = K3pACA0B = KIK2K3K(apAo) B

From equation (C.19) and the above relationships the concentra-

tion of CB* is given by

CB l+KiapAO+KIK 2 (aPA) 2+KIK2KCT (apA*+KiK2K3K p

so that the fractional saturation is given by

y* =
KI apA*+2KIK2 (apA 2+3KIK2K3 (apA*) 3+4KIK 2K 3 K4 (apA

4[l+KiapA*+KIK2(apAe) 2 +KIK 2K3 (apA)3 s+KiK 2K3K4 (apA 4
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C.2 Nonequilibrium Solution

The nonequilibrium solution is obtained from a linearized

perturbation analysis which is similar to that as described in

Chapter 4. First the number of differential equations can be

reduced through use of equation (C.19) and (C.21) which are

not dependent on the equilibrium assumption. Elimination of

C AB gives:

Pd A+DB(-4CB-3CAB-2C A2B-C AB) = E+BrcosO (C.35)

In order to expand the concentrations as small deviations

around the conditions at r=0, one defines:

C =CpA*

CB = B*
C = CB0

CAB CAB

CA 2B A 2B
0

CAsB= A3B

+ApA

+ACB

+AC AB

+AC A2B

+AC AsB

Consider first equation

A

= C AB

0
AB*ABCA2B

As

+ f(r)cosO

+ g(r)cos6

+ h(r)cosO

+ i(r)cosG

+ j(r)cose

(C.5). Substitution of equation (C.36a)

through (C.36e) and (C.19), elimination of second order terms,

and requiring to zeroth order the perturbations quantities are

equal, which requires

*

(C.36a)

(C.36b)

(C.36c)

(C.36d)

(C.36e)

0 = ki('~ wbCA (C.37a)
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0 b
0 = k2apA*CA- b2CA2B (C.37b)

0 = k3apACAB - b3C AB (C.37c)

0 = kaapA0 C - b4 [C -C OC 0  BCC] (C.37d)
aAA3B TB AB-A2 B A 3 B

one obtains

P d 2 f +2 df 2f
d dr2 r dr r2

a(kCB0 + K2C * + k3CAs + k4CAB )f

+ (ap Ak1+b4)g

+ (apA*k2-bi+b4)h

+ (apA k3-b2+ba)i

+ (apA *k4-b3+b4)j (C.38)

A consequence of (C.37) is that the concentrations at r=O

are at equilibrium. A similar treatment of equations (C.6),

(C.7) , and (C.8) yields

DB[ - = akiCBf + apA*kig - bih , (C.39)DB dr2 r dr r Bf+ P

DB d 2 + - 2 = a(k 2 C * - kiCB

- apA Okig

+ (appA k2+bl)h

(C. 40)- b2 i
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and

d2i + 2 di - = kC
+r r F - F-1 (k3C AB - k2CAB

- apA*k2h

+ (apA*k3+b2)i

- b 3 j

Also from equation (C.35) one obtains through a similar pro-

cedure

aD Af - D B(4g+3h+2i+j) = Br

Equations (C.38) through (C.42) must be solved for f, g, h,

i, and j. As suggested by the one-step solution given in

Chapter 4 a trial solution for f can be assumed to be of the

form

f = Fi(-) + F 2 (-) ( )a a a
sinh r + F 3 (-)0 a cosh r (C.43)

Since from boundary condition (C.12) the function f at r=O

must be zero

f(0) = 0

it follows that

F 3 = - F2 a

As a consequence the function f becomes

f = Fi( ) + F2 (r)a a
r - F2 ( a ) r

sinh T- - cosh

(C.41)

(C.42)

(C.44a)
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Similarly for g, h, i, j assume a solution of the form

r- 2  r a r
g = Gi (-) + G2() sinh -G2(T) (E) cosh (C.44b)

a a a os

h = Hi(-) + H2(E) sinh - H2(a) (r) cosh (C.44c)a a cosh

r r-2  r Tar C4d
i= Ii(-) + 12(-) sinh -2(2)(E) cosh (C.44d)

a a $ cos

r- 2  r- a r
1,= I (r) + J2 h)( cosh (C.44e)a a (Fa

Equations (C.44a) through (C.44e) can now be substituted into

equation (C.38) and two equations can be obtained (from the

r/a part and hyperbolic part) which are

0 =1 (kCB*+ k2C * + kCA2 + k4CA ) F1

+ (apAki+b4)Gi

+ - (apA*k2-bl+b4)Hi
d

+ (ap pA ks-b2+b4)II (C.45)
d

+ (apA*k4-b+b4)Ji
Pd

and
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=-2 =D (kiC 0 + k 2 CA + k 3 C + k4 )F2

f1- (apA*ki+b4)G2
Pd

+ - (apA k2-bl+b4)H2 (C.46)
d

+ (apA*k3-b2+b4)I2

+ - (apA*k4-bs+b4)J2

Similarly from equations (C.39), (C.40), and (C.41), one

obtains three additional sets of relationships for F2, G2,

H2, 12, J 2 , and for Fl, Gi, Hi, Ii, Ji. In addition by sub-

stituting equations (C.44a) through (C.44e) into (C.42) one

can show that F),G) , ll, Ii, Ji satisfy equations (C.42)

automatically but for the other constants one obtains

PdF2 - DB(4G2+ 3H2+ 2I2+J2) = 0 (C.47)

Eliminating J2 and substituting into the four relationships

for F2, G2, H2, 12 (and J2) one obtains for homogeneous

equations for F2, G2 , H2, and 12 of the form

(ai-A)F2 +al2G2 +cai 3H 2  +0114I2 * 0

a21F2 +(a 22-A)G2 +a2 3 H2  +(X2412  = 0

asF2 +as2G2 +(a33-A)H2 +Ct34I2 = 0

aX4IF2 +c4 2G2 + a43112 +(4 4-A)I2 = 0 (C.48)



where A = -
6 2

and the specific coefficients are

1 [
al' 1 EAk1CB4k2C O+k3CA2 +k4 (CA

1
a12= Pd[kiapA*

d

1
Oi 3 [ d(k2-3 k4) apA*d

ci 4= - (k3- 2k4)apA*
d
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(C.49)

A )+ (bDAb+ap DB )+DB -

+ 4b3-3b4- 4k4apA0 ]

- bi+3b 3 -2b 4]

- b2+2bI-b4) (C.50)

(The above were obtained from (C.46))

a2 1 D [kiaCB 0]
B

a2 2 D [ki apAJB

a23= - [b 1]DB
(C.51)

a24 = 0

(obtained from equation

as = [k2aC

a32 = - [kiapA
B

a 3 = .[k2 apA*+bi
B

a3 = - [b2]
B

(obtained from equation

(C.39))

- klaCCB 0]

(C. 52)

(C.40))
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1 aDA
C = -[k3aCA2 - k2aCA0 - b 3 aA

B2BB

a42 = -[4b 3 l
B

ai = -[3ba-k2apA (C.53)
B

a4= 1-[k3apA* + b 2 + 2b3
B

(obtained from equation (C.41))

The coefficients are constants and are defined in terms of equi-

librium concentrations which can be determined from the four

equilibrium relationships that can be obtained from equations

(C.1) through (C.2).

Equation (C.48) can be satisfied only if the coefficient matrix

vanishes

a.i-A U12 a13 a14

a.21 a 2 2 -A a23 0X24

=0

a3i a32 a 3 3-A 0.34

aC41 a42 as43 a4 4 -A (C.54)

The characteristic equation for A (actually f2) is solved to give

the four eigenvalues Si, 2, 3 and 04. (A similar problem was

considered by Meldon (1973) who solved the problem of the Adair

reaction scheme in a homogeneous slab.)
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For each value of k' the values of F2 (k), G2 (k) , H2 (k)r

and 1 2 (k) are given to within a multiplicative constant.

One therefore arrives at the solution for f, g, etc. as

f = FI(E)+F 2  ) sinh - F2 cosh r
a a 2 I a

(2)r r-2 (2) a rr
F 2  s- sinh F 2  -- cosh -a a 2

F&() ()
- I

sinh r - F2 (t) coshr 3 a30

F2 ( ) sinh - - F 2  -(r) cosh -

a 4. a5

(C.54a)

g = Gi (-) + G 2  (r) sinh - G2(1)a a Iia
cosh -

2

+ G2 () sinha G2 a) cosh

(C.55)

where the constants G2 (k) , H2 (k) 1 2 (k)

are known in terms of F2 (k)

G 2  = e2 (k)F 2 (k)

H2 (k) = e3 (k)F2 (k)

I2 (k) ( e(k) F2 (k) k=l,2,3,4

At this point there are 10 unknowns and these are

etc.
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Fi, Gi, Hi, Ii, Ji, and

F2 W, F 2 (2), F2 (3 , F 2 (4 ) and

A .

Ten relationships are needed in order to solve for the ten

constants. So far 4 relationships can be obtained relating

the constants Fi, G1 , Hi, I,, Ji as has been described

earlier. The first relationship is given by equation (C.45)

and can be rewritten as

yllFl+Yl 2 G,+y13H1+Y141+Y1sJ1 = 0 (C. 56)

where:

Yii = [kiCB +k2C +k3CAB+k4C 0B

A A3B

Yi2 = [ki pA*+b4]

d
Y13 = [k -bpAbi+b4]

d
Y4 1 [k3a ap*-b2+bs ]

Pd A

Y13 P = [k4axpA*-b3+b4] (C.57)

The other three relationships dealing with Fi, Gi, Hi, Ii , J,

are derived in a manner analogous to that by which equation

(C.45) was obtained (as described previously). From (C.39)

one obtains



Y2lFl+Y2 2Gl+Y 2 3HI+Y24Ii+Y25Ji

where

Y21 * -[akiCB 0

B

Y22 = 5-[a kipA]
B

Y23 = [bi]
B

Y24 = Y25= 0

From (C.40) one obtains

Y3sFi+Y3 2Gi+y 3 3 HI+y34Ii+Y35JI

where

= 0

= 0

Y1= 1 [k2aCA -kiOCB]
B

Y32-2 -' kicPY D= -[kapA]
B

Yss= [k2apA*+b]
B

Y34=-y-[b2]
B

Y35= 0

And from (C.41) one obtains

Y41FI+Y42 GI+Y 4 3 Hi+y44Ii+Y45Ji = 0

425

(C. 58)

(C.59)

(C.60)

(C.61)

(C. 62)
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where

1 *0
Y4 = -[kCA2B- ABB

Y42 = 0

Y43 = - 1kapADB A

Y- -t= 3-[k3p +b2
B A

Y45 = - -[b 3 ]
DB

(C.63)

Six more telationships are needed which are obtained from the

boundary condition at r=a. Four relationships are obtained

from (C.16) which requires that

=0

h- = 0
3r

-h 0
3r

=i 0

ar

r=a

r=a

r=a

r=a

(C.64a)

(C.64b)

(C.64c)

(C. 64d)

Substitution of equations (C.44b) through (C.44e) into

equations (C.64a-d) yields

4 (k) k a21 a a a
Gi = E 2F2 e2{l+(- ) ]sinh T-- - cosh -} (C.67)

k=1 k k k
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Hi (k) (k){ [ ( ) 31]sinh - a cosh }
k=l k k k

(C.68)

I = (k) (k) [1+ ]sinh - acosh a
k=l k k kk

(C.69)

Ji 2F2 (k) (k){ a+( ) ]sinh - a cosh

k=l k k k k

(C.70)

where es (k) is defined as

e(k) d (4 (k) + 3ea (k) + 2e4k)) (0.71)
DB (e

The final two equations are obtained from boundary conditions

(C.12) and (C.14) which yields

a4 N a N a
Fi + E F 2 (k) [sinh - - cosh ] + A= A

k=l ak -k k c c

(C.72)

{Fl- E 2F2 (k)[sinh a(1+ ()a a- cosh a
a k=l k k k hk

2NAa NAa

Sd d (C.73)

Equations (C.56), (C.58), (C.60), (C.62), (C.67) through

(C.70), (C.72) and (C.73) can now be used to solve for the

ten constants. This is of course done on a computer. Once

the values of the constants are known the effective per-

meability can again be obtained using Maxwell's method so
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that

1-2MA (C.74)
P 1+,DAC

Again the average effective permeability is given by

fP AL_f A-

PAVE IA0 Pd (C.75)

RAD - AL

C.3 Single Point Linearization Technique for Slab Geometry

A similar analysis as presented in the preceding sec-

tions can be carried out for the Adair four step mechanism

in a homogeneous medium. For a slab geometry such that

variations occur only in the x-direction, the Laplacian is

given as

V2u = u (C.76)

and equations (C.5) through (C.10) still apply if the above

Laplacian is used. The boundary conditions for a homo-

geneous slab are

C A= * ; at x = 0 (C.76)

CA AL ; at x = L (C.77)

dC dA dC dC dC
B =_AB - = A3B A4B = 0; at x=0,L (C.78)

dx dx dx dx dx

L

f0 (CB+CAB+CA2B +CAB+CA4B)dx = CT (C.88)
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If the diffusivities of the carrier species are the same it

can be shown that the carrier concentration is a constant

throughout the slab

CB + CAB + A2B + CA 3B + CA4B T (C.89)

In addition one can arrive at an equation similar to (C.20)

so that

V2 [DACA + DB CAB+2C A2B+3C AB+4CB)] * 0 (C.90)

In the special case that the reaction is at equilibrium through-

out the slab it can be shown from equation (C.90) that the flux

of A through the slab

C *-CL
N = + D [l+FAdair A A (C.91)
A A eq L

where FAdair is defined by (C.31). In the case that the
eq

reaction is near but not at equilibrium and for the case

that the driving force across the slab is small (CA 0 C AL)

the concentrations can be expanded as small perturbations

from concentration CA where

C A A (C.92)
A 2

in the center of the slab.

Therefore

CA = C + ACA (C.93a)

CB = C B + AC (C.93b)
B B B
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CAB AB + ACAB (C.94b)

CA2B A2B + ACA2B (C. 9 5b)

CA3B A3B + A A3B (C.96b)

CA4B AB + ACA 4B (C.97b)

Substitution of equations (C.97) into (C.5) through (C.10) and

the &limination of C A4 through use of equation (C.89) yields

a set of equations somewhat similar to those given by (C.38)

through (C.41). These are of the form

d2AC
A CA+ +13ACAB + ai4ACA 2B (C.98a)

dx2  lCA c1CB+o 1 C +

d2 ACB
d2 B = 2 1 AC + B22AC + ca23ACAB + a24AC2B (C.98b)

dx 2ABA 
2

=asCA iA+ a AB+assAAB +0.s 4ACA2B (C.98c)

dx2  1C 3AB+c 3 A

d A2B-= a FA+U42ACB + a43ACAB + a44ACA2B (C.99d)
dx

2

Again the requirement that to zeroth order the perturbation

quantities are equal requires that the center concentrations

are at equilibrium.

The specific coefficients are similar to those reported

in (C.48) through (C.53). These coefficients are:



1 = kiCBO+k2C 0 +k3C 0+k 4 (CA3 +
a" D-[ B A A2B A3B

A

a 1 D2 = [kAikCA*+4bs-3b4- 4 k4CA
A

ais3 = [(23 gC *-i3 s2 4
A

1

DA

D

D ADBA
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DA
-(b4--b3 )]

DB

(k3-2k4)CA *-b2+2b3-b4]

21 = [kiCB0]
B

122 = kiCA0

B

a2 3 DB [bi]

a24 = 0

131 =2 - iB
DB

l3 2 - [kiC A]
B

ass3 = [k2CA*+bl
B

as- [b2]
B
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a41 = 1-[k3CAB-k2CAB-b3 D4

a42 = 5-14b 3]
DB

aCs = -[3bs-k2CA0

at4 = -[ksCA*+b2+2bs]
B g s

The general solution for equations (C.99) are

ACA = Ci leX/6 + C12e

ACB = C21e X/+ C22e

ACAB = C 3 ie + C3 2 e

ACA 2B= C4 ie X/ + C4 2eX/

Upon substitution of equations

(C. 100a)

(C. 10Ob)

(C. 100c)

(C.100d)

(C.100) into (C.99) one arrives

at two sets of relationships analogous to that given in (C.48)

except that F 2, G 2 , H2, and 12 are replaced by Cii, C21, C31,

and C41 or C12 , C 2 2, C 32 , and C4 2 . These are

4
E (a..-6..A)C.1 = 0
j=l1J ) J

4
E (a. .-6 ..A)C.2 = 0

j=1 3 1 j2

i = 1,2,3,4

i = 1,2,3,4
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where

6.. = 1

6..
:IJ

for i=j

for i/j= 0

As with equation (C.54), the eigenvalues A (where A= 1/ 2 )

are obtained from the coefficient matrix.

a, -A

0.21

03 1

C4 1

0X12

(12 2 -A

a032

0.42

0%1 3

a23

a3 3-A

a4 3

0.24

a4 4-A

=0

(C.101)

The above 4x4 matrix yields the four eigenvalues A(k) from

which 61, 52, 53, and 54 can be determined. For the same

concentrations and physical parameters, the eigenvalues

determined from equations (C.54) are equal to those determined

from (C.101). For each value of S the values of C (k) C (k)k 1 , 2

(k) (k) or (k) (k) (k) ca(ekeerie
C3 1  C, or C , C2, C3, C4 can be determined

within a multiplicative constant. Expressing all constants

in terms of C and C one can obtain

Ck) _ e(k) C(k)
jl j 11

C(k) ( ek) C(k)
j2 1 12

j = 2,3,4

j = 2,3,4



434

At this point the unknowns are

C , (2), C(3) C and
11 11 11 11

C If C C(3) C(4)
12 12 12 12

and eight eilationships are needed. These can be obtained

from the boundary conditions. The first two boundary condi-

tions are obtained from (C.76) and (C.-77) which require that

ACA = ACA

CA A*
AC A= AC A1

where

C *- L
AC * = A A

A2

at x=O

at x=L

(C.102)

(C.103)

Substitution of the solution of ACA , which is of the form

ACA E IC ()e x/Sk + C (k) ex/Sk]A k=l

into equation (C.102) and (C.103) yields

4
ACA*= E

k=l
(Ck + C )

(C.104)

(C.105)

-AC 0 = L/k + C (e -L/k) (C.1
A k=l

Also from boundary condition (C.78) for ACB, ACAB, and ACA2B

which gives

06)
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dAC dAC dACB AB A2B = 0; x=0,L (C.107)

dx dx dx

the remaining six equations are obtained which are

S(k) (k) (k)
E [ ( - C1 )] = 0, i = 2,3,4 (C.108)

k=l k

Se(k)
4 [ (C(k) eL/ak - C(k) e-L/k)] = 0, i=2,3,4 (C.109)

k=l k 12

Now the eight constants C , C (k=1,2,3,4) can be solved

from the eight equations (C.105), (C.106), (C.107) and(C.108).

The facilitation factor F can be obtained by calculating the

flux at x=0 or x=L. Since

D A - NA = -(l+F Adair)NA (C.110)
dx

(at x=0, or x=L)

The facilitation factor is

[ 1 -(C - C k)

FAdair l k=l k - 1 (C.111)
2 AC 0A

L

The outlined derivation can be used to calculate facili-

tation factors for the single point linearization technique.

Due to time limitations the actual technique was not used.

Instead the methods described by Meldon (1973), who considered

the same problem but performed a matched assymptotic technique,
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were utilized to predict facilitation factors. Meldon (1973)

has shown that for small driving forces the method of matched

assymptotic expansion gives equivalent results when compared

to the single point linearization technique.



TABLE D.l1

OXYGEN PERMEABILITY IN MEM-213 MEMBRANES

Permeability

cm 2-cc (STP)
sec-cc-atm

12.2x10
7

11. 7x10 7

11. 5xl0 7

11.6x10 7

11.5x10<

12.6x10.
7

12.4x10
7

T = 250C, A = 25.5 cm 2

* Plus PH 20 = 23.8 mm Hg upstream and downstream.

Expt L

48.3

48.3

25.4

25.4

25.4

88.0

88.0

up
02

mm Hg

66.2

66.0

36.3

48.9

63.5

50.4

83.9

down

P0 2

mm Hg

0.3

0.3

0.2

0.9

36.3

1.1

2.5

Flux
dp/dt

y/m in

98.8

93.8

106.8

143.0

80.7

46.2

74.9

3
cm

255.5

255.5

256.2

256.2

256.2

256.2

256.2



TABLE D.2

OXYGEN PERMEATION THROUGH THIN LIQUID SLABS OF WATER

(For all runs T = 250 C, A = 25.5 cm 2)

up down Flux liq Permeability

L 2Lm d 02 02 dp/dt 02 cm 2-cc(STP)
1m pm cm3  mm Hg mm Hg y/mi mm Hg mm Hg sec-cc-atm

655 2.10 33.20 103.4 2.2 45.7 97.2 4.0 6.22x10 7

676 76.2 27.5 19.1 0.15 10.3 17.9 1.0 6.40xl0_7
39.3 0.45 20.6 36.7 2.1 6.25x10_7
49.7 0.8 25.3 46.3 2.6 6.08x10_ 765.2 1.3 31.7 60.6 3.3 5.81x10 779.6 2.1 39.1 73.5 4.0 5.92x10_7

114.7 3.5 58.8 105.1 6.1 6.22x10_7
156.6 4.3 80.0 152.3 8.2 6.17x10_7
170.5 5.6 86.0 156.1 8.8 6.13x10_7
191.7 6.7 97.8 174.9 10.1 6.23x10

676 76.2 27.5 61.7 1.2 32.1 57.2 3.3 6.24x10 7

97.5 2.0 53.9 89.9 5.6 6.67x10 7
176.6 4.7 88.8 162.7 9.2 6.07x10_7214.6 5.9 108.9 197.5 11.2 6.12x10_7238.7 7.7 121.5 218.5 12.5 6.19x10

676 76.2 27.5 94.1 1.5 51.7 87.3 5.3 6.59x10 7

133.6 4.8 71.2 121.4 7.4 6.55x10 7

752 75.2 33.20 96.4 2.2 36.9 89.7 4.5 5.98x10
148.7 2.8 56.0 139.0 6.9 6.02x10 o



TABLE D.2 (cont'd)

up down Flux lig Permeability
L Lm Vd O2O dp/dt OAmp3 2 2 cm -cc(STP)

m im cm mm Hg mm Hg p/min mm Hg mm Hg sec-cc-atm

676 93.0 33.20 124.2 1.5 46.0 115.7 7.0 5.95xl0~7
53.3 33.20 100.5 10.7 36.2 86.6 3.2 6.23x10 7
71.9 33.20 104.7 3.0 40.6 97.0 4.7 6.26x10 7
71.9 33.20 104.1 2.0 41.9 97.2 4.9 6.42x10~7
97.0 33.20 111.3 5.6 42.0 99.0 6.7 6.33x10 7
98.1 33.20 130.2 3.2 49.1 119.2 7.8 6.15x10~7
96.6 33.20 103.2 2.3 40.1 94.5 6.4 6.35x10~7
97.0 33.20 108.1 8.5 41.7 93.0 6.6 6.69x10 7

96.6 34.31 222.6 49.7 66.7 169.0 10.9 6.35x10 7

803 98.1 33.20 103.6 2.7 36.2 95.1 5.8 6.07x10-7
98.1 33.20 100.5 2.2 35.8 92.6 5.7 6.16x10~7

98.1 33.20 117.8 1.6 41.3 109.6 6.6 6.01x10 7

96.6 33.20 173.1 3.0 63.7 160.0 10.1 6.35x10 7

93.0 34.31 92.9 3.0 31.8 84.8 5.1 5.98x10~7
94.5 34.31 93.8 4.1 33.7 84.3 5.4 6.38x10~7
94.5 34.31 49.9 1.0 17.7 46.1 2.8 6.13x10~7
93.0 30.48 92.3 2.0 36.7 84.9 5.4 6.35x10 7

93.0 30.48 51.7 1.7 20.3 47.0 3.0 6.33x10~7
86.4 30.48 91.3 1.5 37.2 84.7 5.1 6.43x10~7

1563 93.0 33.20 213.1 2.4 40.8 204.5 6.2 6.24x10 7
93.0 33.20 199.1 3.4 40.1 189.6 6.1 6.57x10 7
93.0 33.20 200.9 3.1 38.9 191.9 5.9 6.28x10
93.0 33.20 196.5 2.7 38.3 188.0 5.8 6.32x10 7

243.9 4.7 46.8 232.1 7.1 6.25x10 7

1563 92.5 33.20 240.8 4.7 47.3 228.9 7.2 6.40x10 7
93.5 33.20 295.9 3.9 54.7 283.7 8.3 6.00xlO
93.0 33.20 206.3 5.2 39.1 195.2 5.9 6.22x10 7

92.0 33.20 206.0 4.7 39.0 195.4 5.9 6.19x10 7
93.0 33.20 202.7 10.1 39.5 186.6 6.0 6.57x10 7

2332 93.0 33.20 240.5 3.0 32.0 232.6 4.9 6 38x107.



TABLE D.3

MISCELLANEOUS GAS (02, N2 , CO2 ) PERMEATION RUNS THROUGH

THIN LIQUID SLABS OF WATER (T = 25 0C)

up down Flux Permeability
L 2Lm A Vd O O dp/dt 2

2 3 2 2 cm -cc(STP)
Jim ipm cm cm mm Hg mm Hg i/min sec-cc-atm

OXYGEN (P = 1.214 x 10-6 cm -cc(STP)/sec/cc/atm)

1563 93.0 23.1 30.56 135.7 2.1 26.3 6.39x10 7

186.7 8.0 34.7 6.31x10 7

265.7 12.7 51.0 6.55x10

15.63 93.0 20.1 30.56 154.8 1.5 24.1 5.87x10 7

199.7 3.6 31.6 6.00x10

1563 93.0 19.0 30.56 235.8 3.2 37.2 6.34x10 7

261.2 5.3 39.8 6.15x10 7

261.1 31.1 36.6 6.30x10 7

1563 93.0 23.9 33.20 176.5 2.0 31.4 6.14x10 7

(20% support material)

1563 93.0 25.5 30.48 100.0 1.0 37.4 5.83x10 7

NITROGEN (Pm = 5.32 x 10~ cm 2-cc(STP)/sec/cc/atm)

676 76.2 25.5 27.5 53.2 0.6 15.4 3.50x10 7

98.1 1.5 26.8 3.29x10~

676 76.2 25.5 27.5 57.2 1.3 14.4 3.06x10 7



TABLE D.3 (cont'd)

2L
m

Pm

93.0

93.0

93.0

A

2
cm

V d
3

cm

CARBON DIOXIDE

20.1

20.1

19.0

257.7

257.7

257.7

up

0 2
mm Hg

down
pO-

Flux
dp/dt

mm Hg P/min

Permeability

2
cm -cc (STP)
sec-cc-atm

(Pm = 7.38 x 10 6 cm 2-cc(STP)/sec/cc/atm)

101.6

106.3
183.7

114.8
138.4

1.8

4.1
10.1

3.5
6.9

43.0

43.6
79.3

42.7
51.9

1. 49x10-5

1. 42x10 5
1. 59x10

1.40x10 5

1.52x10 5

OXYGEN PERMEABILITY AT DIFFERENT TEMPERATURES

2 Lm
m

C yPm

17 803

21 803

25 803

29 803

33 803

98'.1

98.1

98.1

98.1

98.1

pup
p02

mm Hg

102.1

102.3

117.8

146.0

115.3

down

P0 2

Flux
dp/dt

liq
0 2

mm Hg y/min

2.6

3.4

1.6

6.4

2.7

32.9

34.7

41.3

50.7

41.0

93.3

93.0

109.6

132.0

106.6

6.2

5.9

6.6

7.6

6.0

Permeability

cm 2-cc (STP)
sec-cc-atm

5.78x10 7

6.02x10~

6.01x10 7

6.05x10 7

5.97x10 7

(For all experiments A = 25.5 cm2

1563

1563

1563



TABLE D.4

PERMEATION OF OXYGEN THROUGH THIN LIQUID SLABS

OF POLYSTYRENE DISPERSIONS

System Flux
dp/dt

p/min

Surfactant
solution

Polystyrene
dispersion

Polystyrene
dispersion

Polystyrene
dispersion

Polystyrene
dispersion

37.4

35.1

35.7

32.1

35.4

up
02

99.7

98.9

115.3

120 . 8

148.5

down
PO 22

mm Hg

2.6

1.2

2.1

2.9

2.2

Dsolid

0.0

0.055

0.123

0.205

0.261

P

c
2

cm -cc (STP)
sec-cc-atm

6 .02xl0
7

5. 65x10~
7

4. 93x10~
7

4. 27x10~
7

3. 73x10~
7

0.939

0 .820

0.710

0.619

T = 25 0 C Vd = 33.20 cm A = 25.5 cm 2 L = 752 pm

75.2 pm2Lm



TABLE D.5

PERMEATION OF CARBON DIOXIDE THROUGH THIN LIQUID SLABS

OF 120 FEP DISPERSIONS

System Flux pup pdown A 0solid
dp/dt 02 02 2 Pc

cm -cc (STP)C

p/min sec-cc-atm

120 FEP 56.2 173.0 2.7 19.0 0.000 11.6x10 -61

liquid

120 FEP 53.0 160.9 3.8 19.0 0.000 10.8x10-6 1

liquid

120 FEP 31.6 181.4 2.0 19.0 0.357 6.02x10 6 0.540

dispersion
-6

120 FEP 48.8 193.6 1.9 19.0 0.178 8.84x10-6 0.790

dispersion 60.9 242.7 8.2 8.99x10 6

120 FEP 35.4 162.1 2.0 21.1 0.309 6.93x10 6 0.618

dispersion

120 FEP 49.2 165.4 2.4 21.1 0.106 9.55x10 6  0.855

dispersion

120 FEP 53.0 170.5 3.2 21.1 0.060 l0.0xl0-6 0.893

dispersion

120 FEP 31.8 193.0 1.7 21.1 0.411 5.02x10 6 0.448

dispersion

T = 25 0C, Vd = 257.7, L = 1565 pm, 2Lm = 93.0 pm, P= 7.38xl0 6 cm-cc(ST)
rl m msec-cc-atm*



TABLE D.6

PERMEATION OF CARBON DIOXIDE THROUGH THIN LIQUID SLABS

OF 30 TFE DISPERSIONS

System

30 TFE
liquid

30 TFE
liquid

30 TFE
dispersion

30 TFE
dispersion

30 TFE
dispersion

30 TFE
dispersion

Flux
dp/dt

p/min

38.9

60.0

23.0

37.8
54.0
63.7
53.5

42.8

32.8

up
02

107.3

169.9

137.2

122.4
180.2
213.9
213.7

173.6

160.4

down

P0 2

1.3

1.5

1.2

2.3
5.1

10.0
43.3

1.3

1.3

(solid

0.398

0.80

0.199

0.299

2_
cm -cc (STP)
sec-cc-atm

13.0x10-6

13.0x10-
6

5. 85x10-6

ll.0xl0~_6
ll.0x10- 6

11. 3x10
6

8.60xl0-
6

7.10xl0-
6

T = 25 0 C, A = 19.0 cm 2 , Vd = 257.7 cm 3 , L = 1565 pm, 2Lm = 93.0 pm,

P = 7.38 x 10-6 cm 2-cc(STP)/sec/cc/atm

TP
c

0.450

0.855

0.660

0.543



TABLE D.7

PERMEATION OF OXYGEN IN THIN LIQUID SLABS OF

SURFACTANT SOLUTIONS USED FOR EMULSIONS

Surfactant
Solution

10% Tween 40
90% Water

Flux
dp/dt

p/min

34.3

48.1

33.9

41.2

p
0 2

197.0

286.6

207.7

246.5

down

p2
2

mm Hg

2.2

3.3

2.6

2.6

P

2cm -cc (STP)
sec-cc-atm

5.60 x 10~7

5.42 x 10~7

5.27 x 10~7

5.39 x 10~

54.850 gr F-68
per liter
water

i, 63.5

296.7

337.4

3.1

4.0

5.96 x 10~

6.08 x 10~

T = 25 0 C, Vd = 33.20, L = 1563 pm, L = 93.0 pm, A = 25.5 cm 2



TABLE D.8

PERMEATION OF OXYGEN THROUGH THIN LIQUID SLABS

OF CASTOR OIL EMULSIONS (O/W)

System

Castor oil
emuls ion

if

If

Castor Oil

Flux
dp/dt

y/min

50.3

42.6

37.9

41.0

35.9

44.5

36.9

40.6

42.2

38.8

28.2

28.7

pup
0 2

324.1

305.1

288.4

302.0

268.4

347.5

321.7

342.7

371.6

383.3

375.0

378.4

down

P0 2

3.2

2.4

3.0

4.8

1.8

5.2

2.8

2.3

2.0

4.7

2.0

3.3

A_

25.5

25.5

25.5

25.5

25.5

25.5

25.5

25.5

25.5

25.5

23.9

23.9

0.180

0.234

0.291

0.347

0.394

0.460

0.487

0.542

0.648

0.750

1.0

1.0

2
cm -cc (STP)
sec-cc-atm

4.97 x 10~7

4.46 x 10~

4.20 x 10~7

4.37 x 10~7

3.99 x 10~7

4.09 x l0 7

3.66 x 10~7

3.78 x 10 7

3.59 x 10~7

3.29 x 10~7

2.54 x 10~7

2.55 x 10~7

T = 25 0 C, Vd = 33.20,

p
c

0.918

0.825

0.775

0.806

0.736

0.755

0.675

0.698

0.662

0.608

0.470

0.471

L = 1565 ypm, 2L m = 93.0 Jim.
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TABLE D.9

TYPICAL SIZE DISTRIBUTION DATA FOR EMULSIONS

CASTOR

Diameter

pim

0- 1

1- 2

2- 3

3- 4

4- 5

5- 6

6- 7

7- 8

8- 9

9 - 10

10 - 11

11 - 12

12 - 13

13 - 14

14 - 15

OIL EMULSION

Number
of

Particles

344

365

120

66

36

17

13

7

5

2

2

1

0

0

0

VEGETABLE

Diameter

Pm

0- 1

1- 2

2- 3

3- 4

4- 5

5- 6

6- 7

7- 8

8- 9

9 - 10

10 - 11

11 - 12

12 - 13

13 - 14

14 - 15

All counts were made
magnification.

by microscope (American Optical) at 100OX

OIL EMULSION

Number
of

Particles

34

605

45

42

31

14

14

23

13

9

4

1

0

0

1



TABLE D.10

PERMEATION OF OXYGEN THROUGH THIN LIQUID SLABS OF

CASTOR OIL (10% SPAN 80) EMULSIONS (O/W)

System

Castor oil
emulsion

if

If

90% Castor
oil

10% Span 80

Flux
dp/dt

y/min

38.0

32.3

36.5

36.1

35.2

35.5

38.7

30.9

pup02

259.5

229.6

274.2

294.1

317.0

326.5

367.2

381.3

down

P O2

3.3

1.7

1.9

1.1

1.9

2.5

5.3

3.4

A_

25.5

23.9

25.5

23.9

23.9

23.9

25.5

23.9

Soil

0.122

0.260

0.348

0.403

0.490

0.586

0.694

1.0

2
cm -cc (STP)
sec-cc-atm

4.68 x 10

4.77 x 10~

4.24 x 10~7

4.17 x 10~

3.88 x 10~

3.70 x 10~

3.36 x 10~

2.76 x 10~

T = 250 C, Vd = 33.20, L = 1565 pm, 2Lm = 93.0 Pm.

C
c

0.865

0.880

0.783

0.768

0.717

0.683

0.620

0.509



TABLE D.11

PERMEATION OF OXYGEN THROUGH THIN LIQUID SLABS OF

WESSON VEGETABLE OIL EMULSIONS (O/W)

System

Wesson vegetable
oil emulsion

"

"

"

"

Wesson vegetable
oil

Flux
dp/dt

y/min

42.5

41.9

38.0

45.0

45.1

46.8

97.4

99.9

up

0 2

234.9

230.1

186.2

216.8

209.6

198.8

370.7

343.5

down
PO 2p2

3.6

2.7

2.6

5.8

4.7

3.4

6.7

5.8

qoil

0.122

0.248

0.403

0.460

0.515

0.655

1.0

1.0

2cm -cc(STP)
asec-cc-atm

5.87 x 10~

5.89 x 10~

6.64 x 10~

6.83 x 10~

7.06 x 10~

7.75 x 10~7

8.68 x 10~-7

9.50 x 10

T = 25 0 C, A = 25.5, L = 1565 pm, Vd = 33.20, 2 Lm = 93.0 pm.

TP
c

1.08

1.09

1.22

1.26

1.30

1.43

1.60

1.75



TABLE D.12

PERMEATION OF OXYGEN THROUGH THIN LIQUID SLABS OF FLUOROCARBON

Fluorocarbon

PID

PID

PID

PID

FC 80

FC 80

Flux
dp/dt

p/min

151.7

145.9

58.8

59.9

45.5

39.4

p
0 2

mm Hg

372.4

377.8

151.9

167.1

108.9

104.4

down
P2

12.6

24.8

52.3

15.9

2.5

5.3

2L
m

93.0

93.0

45.8

84.8

84.8

84.8

Apm

O L

02 02

mm Hg mm Hg

190.5

171.8

34.1

64.5

49.0

42.4

169.3

180.7

65.5

86.7

57.4

56.4

P

cm 2-cc (STP)
sec-cc-atm

*2.29x10-
5

1.93x10-
5

2.16x10 
5

1.66x10- 5

1.91x10-5

1.66x10-
5

T = 25 0 C, Vd = 257.2 cm 3, A = 25.5, L = 1565 pm (A* = 23.9 cm2 ).



TABLE D.13

PERMEATION OF OXYGEN THROUGH THIN LIQUID SLABS OF

PID EMULSIONS (0/W)

System

PID emulsion

I

Flux
dp/dt

y/min

434.0

118.4

53.0

62.6

48.2

74.7

up

p0 2

mm Hg

293.0

94.7

300.5

387.8

297.6

376.3

down

P0 2

3.1

10.6

8.5

8.3

7.4

7.8

Vd

3
cm

33.20

33.20

257.2

257.2

257.2

257.2

2
(oil cm -cc(STP)

oil sec-cc-atm

0.750

0.750

0.692

0.710

0.648

0.765

6 .00x10-6

5.53x10-6

5.54x10- 6

5.05x10-6

4.85x10-6

6.41x10-6

Tc

9.97

9.18

9.19

8.39

8.05

10.65

A = 25.5 cm 2, 2Lm = 93.0 pm, T = 25 0C.



TABLE D.14

PERMEATION OF OXYGEN THROUGH THIN LIQUID SLABS OF

INERT HEMOGLOBIN SOLUTION

2L
m

C T

gr/100 ml pm

(pH 7.0)

up
0n

ISOTONIC RESULTS

down
pn u1 "

Permeability

2 2 2
cm -cc (STP)

pm mm Hg mm Hg p/min sec-cc-atm

Buffered isotonic
saline pH 7.2

Methemoglobin

752

752

752

8.78 752

8.78 803

15.4

15.4

22.3

26.2

31.8Hemoglobin
(saturated)

752

803

752

665

752

97.0

97.0

93.0

97.0

93.0

97.0

93.0

97.0

53.3

97.0

103.9

108.0

185.0

130.1

133.7

154.2

142.0

99.9

153.4

166.1

3.4

3.6

2.0

5.3

8.9

8.2

3.2

3.3

2.7

33.5

36.7

40.3

69.9

41.9

35.6

37.2

33.6

20.9

35.6

18.8

5.80xl0 7

6.13x10 7

6 .06x1O

5. 30x10 7

4. 78x10 7

3.96x10

3.93x10 7

3.35x10 7

3.14x10 7

2.16x10 7

T = 250C, A = 25.5 cm 2, Vd = 33.20 cm 3.

System



TABLE D.15

OXYGEN PERMEABILITY IN THIN LIQUID FILMS

UNDER INERT CONDITIONS

OF RED

AT T =

BLOOD CELL SUSPENSIONS

250C

L

P0 2

55.0

48.8

65.9

50.8

66.7

41.6

52.5

54.4

Permeability

2
cm -cc (STP)
sec-cc-atm

5. 18x10

3.93x10

3.58x10

3.05x10~7

2.90x10 7

2 .26x10~7

2.08x10~7

2 .07x10

P
c

0.865

0.655

0.596

0.509

0.483

0.377

0.347

0.345

-pH

7.02

7.00

6.94

6.97

6.91

6.89

Vd = 34.31 cm , A = 25.5 cm 2, L = 752 pm, 2Lm = 96.7 pm.

*Vd = 30.48 cm , Lm = 86.9 pm.

(RBC

0.204

0.417

0.585

0.715

*0.828
0 . 866
0.866

0.979

0.985

up

p02

mm Hg

229.8

222.5

237.0

224.0

202.4

178.0

231.2

226.5

down
P0 2

mm Hg

50.4

45.1

62.7

48.1

64.9

40.0

50.6

52.5

Flux
dp/dt

p/min

57.1

45.2

39.0

33.7

26.6

19.8

23.9

22.9

0

P0 2

225.1

218.8

233.8

221.2

200.6

176.4

229.2

224.7



TABLE D.16

OXYGEN PERMEATION EXPERIMENTS IN

"REACTIVE" RED BLOOD CELL SUSPENSIONS

up

p0 2

down

P 2

Flux
dp/dt

x=0
Pn

_ mmHg mm Hg p/min

0.536

0.384

0.732

24.8

25.1

25.1

1.3

1.3

1.3

16.1

16.7

16.7

x=L Permeability
22

2 2 2cm -cc (STP)
mm Hg mmn Hg sec-cc-atm_

24.1

24.4

24.3

2.0

2.0

2.0

5.96x10 7

6.28x10 7

6.29x10 
7

p5 0
Hemo-
lysis

1.3

0.8

1.3

L = 457 ym, 2L = 55.9 ym, A = 25.5 cm2' d = 30.48 cm 3, T = 25 0C.

For all runs 1 mg/10 ml streptomycin sulfate added.

x=L x=0
average po= = 2.0, average po 2

2 2
= 24.3 mm Hg.

(Note: For this thickness no phase separation observed.)

7.00

7.00

14.8

14.0

6.95



TABLE D.17

OXYGEN PERMEATION EXPERIMENTS IN "REACTIVE" RED BLOOD CELL SUSPENSIONS

V pup
d p0 2

cm3 mm Hg

0.852 34.31 50.8

0.387 34.31 52.3

0.920 34.31 50.8

0.607 30.48 50.3

0.916 30.48 52.6

0.492* 30.48 52.0

0.210 30.48 51.1

0.785 30.48 50.5

0.911 30.48 50.0

down
Pf

Flux x=0
A A4- p0

x=L Permeability
Pn

p/
2  

'2 '2 2
cm -cc(STP)

mm Hg y/min mm Hg mm Hg sec-cc-atm

2.6

2.3

2.0

2.1

3.0

2.0

2.0

2.0

2.0

12.7 49.8

15.0 51.1

12.3 49.8

17.7 48.8

14.3 51.3

16.3 51.6

18.3 48.8

14.0 49.4

14.3 49.0

3.6

3.5

3.0

3.4

4.0

3.2

3.3

3.1

3.0

4.39x10 7

5.02x10 7

4 .02x10 7

5. 83x10 
7

4.40x10 7

5.01x10 
7

5.83x10~

4.42x10 
7

4 .57x10 7

%

Hemo-
lysis

0.4

0.2

1.3

14.1

0.0

0.8

0.7

1.0

0.5

P5 0

pH mm Hg

6.90 13.3

6.91

6.93 14.1

6.90 12.2

6.92 14.0

6.97 13.5

7.06

6.89 14.9

6.95

* added 1 mg/10 ml of streptomycin sulfate added.

A = 25.5 cm 2 , L = 803 pm, 2Lm = 94.5 pm, T = 25 0 C, average PO
= 3.3, average px 0

0 2

= 50.0.
00
01



TABLE D.18

OXYGEN PERMEATION EXPERIMENTS IN "REACTIVE" RED BLOOD CELL SUSPENSIONS

up
02

mm Hg

91.0

92.4

93.3

93.3

91.6

90.7

91.2

91.3

91.1

89.2

92.3

down

P0 2

mm Hcg

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

Flux
dp/dt

y/min

23.4

17.4

21.8

24.2

24.5

26.8

31.1

25.8

22.9

22.7

20.3

V d
3

cm

34.31

34.31

30.48

30.48

30.48

30.48

30.48

30.48

30.48

30.48

34.31

x=0

P0 2

mm Hg

88.2

91.0

91.7

91.7

89.8

88.8

88.9

89.5

89.4

87.7

90.7

A = 25.5 cm 2 ,

average p0
2

T = 25 0 C, L = 803 pm, 2L = 94.5 ym,

= 4.8, p0 x = 89.7.mm Hg
2

x=L

P0 2

mm Hg

4.8

4.4

4.6

4.8

4.8

5.0

5.3

4.7

4.7

4.6

4.6

Permeability

cm 2-cc(STP)
sec-cc-atm

4 .43x10

3.21x10

3.66x10

4.08x10

4.20x10

4.68x10

5 .45x10

4.45x10

3.96x10

4 .00x10

3.77x10 7

0.776

0.932

0.963

0.941

0.905

0.394

0.225

0.518

0.909

0.908

0.765

%

Hemo-
lysis

1.3

1.0

0.4

0.0

0.1

0.6

0.9

0.0

0.2

1.1

1.1

P5 0

mm Hg

13.5

14.2

13.3

13.3

14.1

14.0

12.5

13.1

pH _

6.93

6.91

6.97

6.95

7.00

7.00

6.90

6.92

6.94

6.90

7.03



TABLE D.19

OXYGEN PERMEATION EXPERIMENTS THROUGH

RED BLOOD CELL SUSPENSIONS AT 37 0C

Calculated

x=L
2

mm Hg

Flux

i
min

AVE

2
cm -cc (STP)
sec-cc-atm

35.1

38.0

98.2

99.6

17.8

16.3

4 -05xl0~
7

3. 85x10 
7

1.3

0

For both experiments: Vd = 30.48 cm3 + 1 mg/10 ml streptomycine sulfate

A = 25.5 cm2

L = 803 Pm

2 Lm = 87 pm

PCO

x=0
PO 

2

0.447

0.446 20

Hemo-
lysis



TABLE D.20

OXYGEN PERMEATION EXPERIMENTS ON THE MODEL SYSTEM

Type of
Emulsion

LARGE:

a=4.56 m
58% active

SMALL:

a=1.27 m
46% active

INERT:

0% active

OIL:

Run
Number

R E2
R xE6
R xE9
R xE10
RX E12
x

R El
RxE2
R XE5
RXE13
RXEl4
x

R Ell
RxE13
x

up

p02

down

P0 2

x= 0
Flux 02

mm Hg mm Hg p/min mm Hg

0.50
0.60
0.50
0.35
0.20

0.50
0.35
0.60
0.50
0.60

41.9
42.9
41.9
44.4
42.6

40.1
42.7
42.6
43.5
43.5

0.40 107.6
0.50 167.4

40.7
46.1

1.7
1.6
1.5
1.5
0.7

1.5
1.5
1.5
1.5
1.5

1.5
32.1

2.5
3.0

18.6
19.2
18.3
20.6
19.0

15.3
17.9
16.5
17.2
16.2

40.7
41.6
40.7
43.0
41.3

39.0
41.4
41.4
42.1
42.0

41.3 104.7
47.5 164.1

17.0 39.5
19.9 44.7

x=L
0n

AVE

2 2cm -cc (STP)
mm Hg sec-cc-atm

2.9
2.9
2.7
2.9
2.0

2.6
2.7
2.6
2.7
2.6

4.4
35.3

3.6
4.3

7.18x10 _-7
7.25x10_

- -7
7.07x10
7.53x10 7
7.08x10

6.14x10~
6.60xlO 

7

6 .08x10~
6. 35x10 7

6.02x10

5.93xlO7
5.36x10

-7
6.93x10 7
7.19x10

P
AVE

ROIL

1.02
1.03
1.00
1.07
1.00

0.870

0.937
0.863
0.903
0.853

0.841
0.761

1
1

Vd = 30.48 cm 3, A = 25.5 cm 2, L = 803 pm, 2Lm = 87 pm, T = 25 0C,

p x= 41.0 mm Hg, px=L

2 2
= 2.7 mm Hg.
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APPENDIX E

LISTING OF THE COMPUTER PROGRAMS

The following computer programs are listed in this

appendix:

1. General Impermeable Model Program

2. General Permeable Model Program

3. Four-Step Reaction Scheme Program (Nonequilibrium)

4. Four-Step Reaction Scheme Equilibrium Program

5. Potential Concentration, and Flux Difference

Program for One-Step Reaction in the Dispersed

Phase Only

6. General Program for Pressure and Constant Flux

Difference Profiles for a Reacting Sphere in a

Reacting Medium.

The first four programs calculate the average effective

permeability for a given driving force sphere radius, and

volume fraction of the dispersed phase. The average effective

permeability is obtained by numerical integration of the

effective permeability over the partial pressure and division

by the driving force. The first three programs were run on the

IBM 370 and the latter three on the IBM 1130 computer.

Programs 1, 2 and 6 can be used for any type of media discussed.
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IMPERMEABLE MODEL

THIS PROGRAM IS THE GENERAL IMPERMEABLE PROGAM.
THE PROGRAM CALCULATES THE AVERAGE EFFECTIVE PERMEABILITY
BY NUMERICAL INTEGRATION FOR A GIVEN DRIVING FORCE.
THE PROGRAM CAN BE USED FOR OTHER SYSTEMS SHOWN IN
FIGURE2.2. A MODIFICATION OF THE PROGRAM WAS UTILIZED
FOR DETERMINING THE EFFECT OF HEMOLYSIS UPON THE MASS
TRANSFER RATE OF OXYGEN IN RED BLOOD CELL SUSPENSIONS.
PHYSICO-CHEMICAL PARAMETERS IN THE DISPERSED PHASE ARE
USUALLY DENOTED BY THE LETTER P.
CK1, CK2, ARE THE KINETIC RATE PARAMETERS. ALPHA IS THE
SOLUBILITY. CT IS THE TOTAL CARRIER CONCENTRATION. PERM
IS THE PERMEABILITY AND DB 1S THE CARRIER DIFFUSIVITY.
PHI IS THE VOLUME FRACTION OF THE DISPERSED PHASE
A - RADIUS OF SPHERE. AK- THE CONSTANT A a PEFF- EFFECTIVE
PERMFABILITY. PAVE(1) AVERAGE EFFECTVE PERMEABILITY.
R IS THE DISPERSED TO MEMBRANE PHASE RESISTANCE

IMPLICIT REAL*8 (A-HO-Z)
DOUBLE PRECISION DSINHDCOSHDSQRT ,DTANH
DIMENSION PAVE(10)
NITER=0

PARAMETERS ARE READ

READ(5,501) CKlPCK2P,
READ(5,501) CTPCTALP
READ(5,501) PERMPPERM
WRITE(6,601) CKlPCK2P
WRITE(6t603) CTPCTAL
WRITE(6,605) PERMPPER

5 NITER=NITER+1
READ(5,501) ARMTHICK
PHI=.25
THICK=e0803
DO 800 KJI=1,1
RM=.1D+19
WRITE(6,621)
WRITE(6,607) ARMTHIC
P02=0.
KJI=1
IF(KJI.GT.O) GO TO 777

CK1 ,CK2
HP,
,DBPDB
%CK1 ,CK2
PHPALPH
MDBPDB

KsPHI

LOCAL VALUES. OF FEQ, PEFF, AND AK CAN BE DETERMINED IF DESIRED

DO 20 IK=1,11

ALPH
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FEQ=(DB *CK1 *ALPH *CK2 *CT )/(PERM *(CK1 *ALPH *P02 +CK2)**2)
TAMD=(CK1* ALPH*P02+CK2 ) /DB+(CK1*CK2*A LPH*CT) /(PERM*( CKl*AL PH
1*P02+CK2))
GAM=1./DSQRT(TAMD)
ALAM=A/GAM
GAMA=GAM/A
TAMDP=( CK1P*ALPHP*PO2+CK2P)/DBP+(CKlP*CK2P*ALPHP*CTP)/(PERMP*
1 (CK1P*ALPHP*PO2+CK2P))
FEQP=(DBP*CK1P*ALPHP*CK2P*CTP)/(PERMP*(CK1P*ALPHP*PO2+CK2P)**2)
GAMP=1./DSQRT(TAMDP)
ALAMP=A/GAMP
GAMAP= GAMP/A
IF(ALAMP.GT.100) GO TO 101
GO TO 102

101 TP=1.
GO TO 103

102 TP=DTANH(ALAMP)
103 R=PERMP/PERM*RM

SGAMA=-2.-2.*GAMA-ALAM
UVP=1.-GAMAP*TP
QUVP=-2.*UVP+ALAMP*TP
RFAC=PERM/PERMP*(1.+FEQ)/(1.+FEQP)
TERM2=FEQ*R*(1.+GAMA)*QUVP
TERM3=RFAC*FEQP*R*UVP*SGAMA
TOP=QUVP*SGAMA*( (1.+FEQ)-R+RFAC*R)-TERM2+TERM3
BOT=QUVP*SGAMA*((1.+FEQ)+ R/2+RFAC*R) -TERM2+TERM3
AK=(1.+FEQ)/2*TOP/BOT
PEFF=PERM*(1.+FEQ)*((1.+FEQ)-2.*PHI*AK)/((1.+FEQ)+PHI*AK)
WRITE(6,300) FEQ,FEQP#ALAMALAMP
WRITE(6,301) AKPEFFP02
P02=PO2+10
IF(PO2.GT.51) GO TO 104
GO TO 20

104 P02=PO2+5
20 CONTINUE

C
C DRIVING FORCE CONDITIONS SPECIFIED.
C

777 PAO=O
N=120
PAL=5
DO 400 NNN=1,20
J=1
WRITE (6,304)

11 J=J+1
TOTAL=O.
N=N*(J-1)
IF(PAL.GT.41.) GO TO 21
GO TO 22

21 N=300
22 DELPO=(PAL-PAC)/N

SUM=O
DO 75 I=1,N
P022=PAO+I*DELPO
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P021=PO22-DELPO
KKK=O
P02=PO22

PARAMETERS FOR IMPERMEABLE MODEL DETERMINED FOR FIXED P02.
REPEATED N TIMES IN ORDER TO OBTAIN PAVE(1)

12 FEQ=(DB *CK1 *ALPH *CK2 *CT )/(PERM *(CK1 *ALPH *P02 +CK2)**2)
TAMD=(CK1* ALPH*P02+CK2)/DB+(CK1*CK2*ALPH*CT)/(PERM*(CK1*ALPH
1*PO2+CK2))
GAM=1./DSQRT(TAMD)
ALAM=A/GAM
GAMA=GAM/A
TAMDP=( CK1P*ALPHP*P02+CK2P)/DBP+(CK1P*CK2P*ALPHP*CTP)/(PERMP*
1 (CK1P*ALPHP*P02+CK2P))
FEQP=(DBP*CK1P*ALPHP*CK2P*CTP)/(PERMP*(CK1P*ALPHP*PO2+CK2P)**2)
GAMP=1*/DSQRT(TAMDP)
ALAMP=A/GAMP
GAMAP= GAMP/A
IF(ALAMP.GT.100) GO TO 201
GO TO 202

201 TP=1.
GO TO 203

202 TP=DTANH(ALAMP)
203 R=PERMP/PERM*RM

SGAMA=-2.-2**GAMA-ALAM
UVP=1.-GAMAP*TP
OUVP=-2.*UVP+ALAMP*TP
RFAC=PERM/PERMP*(1.+FEQ)/(1.+FEQP)
TERM2=FEQ*R*(1.+GAMA)*QUVP
TERM3=RFAC*FEQP*R*UVP*SGAMA
TOP=QUVP*SGAMA*((1.+FEQ)-R+RFAC*R)-TERM2+TERM3
ROT=QUVP*SGAMA*((1.+FEQ)+ R/2+RFAC*R) -TERM2+TERM3
AK(1.+FEO)/2*TOP/BOT
PEFF=PERM*(1.+FEQ)*((1.+FEQ)-2.*PHI*AK)/((1.+FEQ)+PHI*AK)
IF(KKK)24,24,30

24 PEFF2=PEFF
KKK=KKK+1
P02=PO21
GO TO 12

30 PEFF1=PFFF
AREA=(P022-PO21)*(PEFF1+PEFF2)/2
SUM=SUM+AREA

75 CONTINUE
FAVE=TOTAL/(PAL-PAO)
FLLJXL=SUM/THICK
PAVE(J)=SUM/(PAL-PAO)
RATIO =PAVE(J)/PERM
WRITE(6,305) PAO,PAL, PAVE(J), FLUXL , RATIO,N

400 PAL=PAL+5
800 CONTINUE

IF(NITER.LT.4 ) GO TO 5
300 FORMAT(1OX,' FEQ=',D15.5,' FEQP=',D15.5,'ALAM=',D15.5,'ALAMP=',D15

1.5)



AK=',D15.5'' PEFF=',D15.5,' P02=',D15.5,/)
PAO PAL PAVE

RATIO N')
305 FORMAT(D15.5,D15.5, D15.5,D15.5sD15.5,I5)
501 FORMAT(D15.5,D15.5,D15.5,D15.5,D15.5)

FLUX

601 FORMAT(/,15X,'CK1P=',D15.5,'CK2P=',D15.5,'CK1=',D15.5,'CK2='Dl5.5
1)

603 FORMAT(
1)

605 FORMAT(
1)

607 FORMAT(

15X,'CTP=',D15.5,'CT=',D15.5,'ALPHP=',D15.5,'ALPH=',D15.5

15X,'PERMP=',D15.5,'PERM=',D15.5,'DBP=',D15.59'PB='D15.59/

///
15X

609 FORMAT( /,
613 FORMAT( 1

1BP=' D15.5
621 FORMAT(

1000 CALL EXIT
END

*'A=',D15.5,'RM=',D15.5'THICK',D15.5.'PHI =',D15.5,//)
25X,' HEMOL= ',D15.5)

OX,'DB=',D15.5,'CT=',D15.5,'PERM=',D15.5,'PHI=',D15.5,'D

30X~ ~

DATA READ IN

//G.SYSIN DD *
*40000E+7
.100OOE00

*10000E-10
.20000E-3
*40000E-3
*50000E-3
.10000E-0

*80000E02
*20000E-01
*20000E-10

. 10000E+5
*10000E+5
*10000E+5
*10000E+5

*40000E+8
.10000E-5
.40000E-07
.07500E00
*07500E00
.07500E00
*07500E00

*40000E+3
* 10000E-5

s80000E-07

301 FORMAT(1OX,'
304 FORMAT(

1L

463

)
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PERMEABLE MODEL

THIS PROGRAM IS THE GENERAL PERMEABLE PROGAM.
THE PROGRAM CALCULATES THE AVERAGE EFFECTIVE PERMEABILITY
BY NUMERICAL INTEGRATION FOR A GIVEN DRIVING FORCE.
THE PROGRAM CAN BE USED FOR OTHER SYSTEMS SHOWN IN
FIGURE2.2.
PHYSICO-CHEMICAL PARAMETERS IN THE DISPERSED PHASE ARE
USUALLY DENOTED BY THE LETTER P.
CK1, CK2, ARE THE KINETIC RATE PARAMETERS. ALPHA IS THE
SOLUBILITY. CT IS THE TOTAL CARRIER CONCENTRATION. PERM
IS THE PERMEABILITY AND DB IS THE CARRIER DIFFUSIVITY.
PHI IS THE VOLUME FRACTION OF THE DISPERSED PHASE
A - RADIUS OF SPHERE. AK- THE CONSTANT A.* PEFF- EFFECTIVE
PERMEARILITY. PAVE(1) AVERAGE EFFECTVE PERMEABILITY.
R IS THE DISPERSED TO MEMBRANE PHASE RESISTANCE

IMPLICIT REAL*8
DOUBLE PRECISION
DIMENSION PAVE(1
NITER=0

(A-HO-Z)
DSINHDCOSHDSQRT 9DTANH

0)

PARAMETERS ARE READ IN

READ(5,501) CKlPCK2P,
READ(5,501) CTPCTALP
READ(5,501) PERMP,PERM
WRITE(6,601) CKlP,CK2P
WRITE(6,603) CTPCTAL
WRITE(6,605) PERMPPER

5 NITER=NITER+1
READ(5,501) A*RMTHICK
PHI=.25
THICK=*0803
DO 800 KJI=1,1
RM=.lD+19
WRITE(6,621)
WRITE(6,607) ARMTHIC
P02=0.
KJI=1
IF(KJI.GT.0) GO TO 777

CK1,CK2

,DBP 9DB
,CK1oCK2
P HPALPH
MDBPDB

K ,PHI

LOCAL VALUES OF FEQ, PEFF, AND AK CAN BE DETERMINED IF DESIRED

DO 20 IK=1,11
FEQ=(DB *CK1 *ALPH *CK2 *CT )/(PERM *(CK1 *ALPH *P02 +CK2)**2)

TAMD=(CK1* ALPH*P02+CK2)/DB+(CK1*CK2*ALPH*CT)/(PERM*(CK1*ALPH

C
C
C

C
C
C
C
c
C
C

C
C
C

ALPH
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1*P02+CK2))
GAM=l/DSQRT(TAMD)
ALAM=A/GAM
GAMA=GAM/A
TAMDP=( CKlP*ALPHP*P02+CK2P)/DBP+(CKlP*CK2P*ALPHP*CTP)/(PERMP*
1 (CK1P*ALPHP*P02+CK2P))
FEOP=(DBP*CKlP*ALPHP*CK2P*CT?)/(PERMP*(CKlP*ALPHP*PO2+CK2P)**2)
GAMP=1./DSQRT(TAMDP)
ALAMP=A/GAMP
GAMAP= GAMP/A
IF(ALAMP.GT.100) GO TO 101
GO TO 102

101 TP=1.
GO TO 103

102 TP=DTANH(ALAMP)
103 R=PERMP/PERM*RM

TANG=TP*GAMAP
SGAMA=2*+2.*GAMA+ALAM
SGAM=SGAMA
GAM1=1.+GAMA
RP=PERM/PERMP
RF=(1.+FEQ)/(1.+FEQP)
RF1=1.-FEQ/FEQP
TOP1=SGAM*RP*RF1*(RP*RF*FEQ-FEQ)
TOP2=GAM1*RP*RF1*(1.-RF)
TOP3=(RP*FEQ/FEQP*SGAMA-2.*GAM1)*(1+FEQ)*(RP*RF-1)
TOP4= GAM1*(1.+FEQ)*(RP*RF-1.)*TP*ALAMP
TOP=(1.-TANG)*(TOP1+TOP2+TOP3)+TOP4
BOT1=SGAMA*RP*RF1*( 1.-l/(1.+FEQ)+2**RP*FEQ/(1.+FEQP))
BOT2=2.*GAM1*RP*RF1*(FEQP-FEQ)/(1.+FEQ)/(1.+FEQP)
BOT3=(RP*(FEQ/FEQP)*SGAMA-2.*GAM1)*(2.*RP*RF+1.)
BOT4=GAM1*(2.*RP*RF+1.)*TP*ALAMP
BOT=(l-TANG)*(BOT1+BOT2+BOT3) +BOT4
AK=TOP/BOT
PEFF=PERM*(1.+FEQ)*((1.+FEQ)-2.*PHI*AK)/((1.+FEQ)+PHI*AK)
WRITE(6,300) FEQFEQP#ALAMALAMP
WRITE(6,301) AKPEFFP02
P02=PO2+10
IF(PO2.GT.51) GO TO 104
GO TO 20

104 P02=PO2+5
20 CONTINUE

C
C DRIVING FORCE CONDITIONS SPECIFIED.

777 PAO=O
N=120
PAL=5
DO 400 NNN=1,20
J=1
WRITE(6,304)

11 J=J+1
TOTAL=O.
N=N*(J-1)



IF(PAL.GT.41.) GO TO 21
GO TO 22
N=300
DELPO=(PAL-PAO)/N
SUM=O
DO 75 1=1N
P022=PAO+I*DELPO
P021=PO22-DELPO
KKK=O
P02=PO22

PARAMETERS
REPEATED N

FOR IMPERMEABLE MODEL DETERMINED
TIMES IN ORDER TO OBTAIN PAVE(1)

FOR FIXED P02.

12 FEQ=(DB *CK1 *ALPH *CK2 *CT )/(PERM *(CK1 *ALPH *P02 +CK2)**2)
TAMD=(CK1* ALPH*P02+CK2)/DB+(CK1*CK2*ALPH*CT)/(PERM*(CK1*ALPH
1*PO2+CK2))
GAM=1./DSQRT(TAMD)
ALAM=A/GAM
GAMA=GAM/A
TAMDP=( CK1P*ALPHP*P02+CK2P)/DBP+(CKlP*CK2P*ALPHP*CTP)/(PERMP*
1 (CK1P*ALPHP*P02+CK2P))
FEOP=(DBP*CKlP*ALPHP*CK2P*CTP)/(PERMP*(CKlP*ALPHP*PO2+CK2P)**2)
GAMP=1*/DSQRT(TAMDP)
ALAMP=A/GAMP
GAMAP= GAMP/A
IF(ALAMP.GT.100) GO TO 201
GO TO 202

201 TP=1.
GO TO 203

202 TP=DTANH(ALAMP)
203 R=PERMP/PERM*RM

TANG=TP*GAMAP
SGAMA=2.+2.*GAMA+ALAM
SGAM=SGAMA
GAM1=1.+GAMA
RP=PERM/PERMP
RF=(1.+FEQ)/(1.+FEQP)
RF1=1.-FEQ/FEQP
TOP1=SGAM*RP*RF1*(RP*RF*FEQ-FEQ)
TOP2=GAM1*RP*RF1*(1.-RF)
TOP3=(RP*FEQ/FEQP*SGAMA-2.*GAM1)*(1+FEQ)*(RP*RF-1)
TOP4= GAM1*(1.+FEQ)*(RP*RF-1.)*TP*ALAMP
TOP=(1.-TANG)*(TOP1+TOP2+TOP3)+TOP4
BOT1=SGAMA*RP*RF1*(1.-le/(1.+FEQ)+2.*RP*FEQ/(l+FEQP))
BOT2=2.*GAM1*RP*RF1*(FEQP-FEQ)/(1.+FEQ)/(l.+FEQP)
ROT3=(RP*(FEQ/FEQP)*SGAMA-2.*GAM1)*(2.*RP*RF+1.)
BOT4=GAM1*(2**RP*RF+1.)*TP*ALAMP
BOT=(1.-TANG)*(BOT1+BOT2+BOT3) +BOT4
AK=TOP/BOT
PEFF=PERM*(1.+FEQ)*((1.+FEQ)-2.*PHI*AK)/((1.+FEQ)+PHI*AK)
IF(KKK) 24,24930

24 PEFF2=PEFF
KKK=KKK+1

21
22

466
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P02=PO21
GO TO 12

30 PEFF1=PEFF
AREA=(PO22-PO21)*(PEFF1+PEFF2)/2
SUM=SUM+AREA

75 CONTINUE
FAVE=TOTAL/(PAL-PAO)
FLUXL=SUM/THICK
PAVE(J)=SUM/(PAL-PAO)
RATIO =PAVE(J)/PERM
WRITE(6*305) PAOsPAL,

400 PAL=PAL+5
800 CONTINUE

IF(NITER.LT.4
300 FORMAT(10X,'

1.5)
301 FORMAT(10X9'
304 FORMAT( '

) GO TO 5
FEQ='oD15.59'

AK='ID15.59'
PAO

RATIO

PAVE( J), FLUXL RATION

FEQP=',D15.5'ALAM=',D15.5,'ALAMP=',D15

PEFF=' D15.5o'
PAL

N')
FORMAT(D15.59D15.5, D15.5,D15
FORMAT(D15.5D15.5D15.5.D15 .5.D15
FORMAT(/,15X,'CK1P=',D15.5,'CK2P='

P02='D15.5#/)
PAVE FLUX

.5sD15.5,I5)

.5)
D15.59'CK1='9D15.5

603 FORMAT(
1)

605 FORMAT(
1)

607 FORMAT(
1

609 FORMAT(

15X.'CTP=',D15.5,'CT='.D15.5,'ALPHP='.D15.5.'ALPH='.D15.5

///,
15X9'A=',D15.59'RM='#D15.59
/o 25X,' HEMOL= '.D15.5)

'THICK' D15.59'PHI =1'#D15.59//)

613 FORMAT( 1OX,'DB=' D15.5.'CT='.D15.5.'PERM=',D15.5,'PHI=' D15.5,'D
1BP=',D15.5)

621 FORMAT(
1000 CALL EXIT

END

30X. t****~**************************************~

305
501
601 'CK2='iD15.5
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FOUR STEP PROGRAM (NONEQUILIBRIUM)

THIS IS THE ADAIR FOUR STEP REACTION SCHEME PERMEABILITY
PROGRAM.
THE AVERAGE EFFECTIVE PERMEABILITY IS OBTAINED BY NUMERICAL
INTEGRATION.
THE PROGRAM FIRST SOLVES A FOUR BY FOUR MATRIX TO DETERMINE
THE FOUR EIGENVALUES. THEN THE CONSTANTS E(JM)
ARE EVALUATED. ONCE THESE
PARAMETERS ARE KNOWN THE TEN BY
ORDER TO DETERMINE THE CONSTANT
AVERAGE EFFECTIVE PERMEABILITY
PEFF IS OBTAINED BY
PERM- CONTINUOUS PHA
PERMEABILITY. B(J)-
RATE CONSTANTS. CT-D
ALF- SOLUBILITY IN D
CARRIER. PHI- VOLUME
LR(J) EIGENVALUES. A

NUMERICAL I
SE PERMEABI
BACKWARD RA

TEN MATRIX IS SOLVED IN
A. WITH THIS IN HAND THE

CAN BE CALCULATED.
NTEGRATION.
LITY. PRIME- DISPERSED PHASE
TE CONSTANTS. K(J)- FORWARD

ISPERSED PHASE CARRIER CONCENTRATION.
ISPERSED PHASE. DB- DIFFUSIVITY OF
FRACTION. EO- GRADIENT(IMPOSED).
(IJ) COEFFICIENTS OF 4X4 MATRIX.

G(IJ)- COEFFICIENTS OF 1OX10 MATRIX. AK -THE CONSTANT
PEFF-(AVERAGE) EFFECTIVE PERMEABILITY.

REAL K(4),KEQ(4), LR(4),LI(4)
DIMENSION C(6),B(4),D(4),A(4,4),IANA(4),AA(4,4),COE(3,3)
DIMENSION X(10),CONE(3)
DIMENSION F(5,4),G(10,10),AL(10)

PARAMETERS ARE READ IN.

READ(5,6OO) DADBCT
READ(5,600) ALFPERM,E
DO 4 J=194
READ(5,600) K(J),B(J)
B(J)=120*B(J)

4 KEQ(J)=K(J)/B(J)
PRIME=DA*ALF
WRITE(6,605)
WRITE(6,610)PERMPRIME
WRITE(6,625)
WRITE(6,628) K(1),K(2)
WRITE(6,635)
WRITE(6,638) B(1),B(2)

44 READ(5,600)AR
WRITE(6,620)AR
NQ=O

0

,CTDBALFtEO

,K (3) ,K (4)

,B(3) ,B(4)

DRIVING FORCE SPECIFIED
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46 READ(5,600) PAOPAL
NQ=NQ+1
PHI=0.2
DO 800 11=1,5
WRITE(6,676) PHI
N=120
IF(PAO.GT.99) N=240
DELPO=(PAO-PAL)/N
SUM=0.
JCON=O
DO 275 IR=1,N
P022=PAL+IR*DELPO
P021= P022-DELPO
P02=PO22
KKK=O

212 C(1)=ALF*P02

EQUILIBRIUM PARAMETERS AND CONCENTRATIONS CALCULATED.
COEFFICIENTS A(IJ) SPECIFIED.

THE

CALL EQUIL(CKEQKB9ACTALF9DAoDB)

EIGENVALUESLR(J) ,ARE CALCULATED USING THE SCIENTIFIC
SUBROUTINE PACKAGE SUBROUTINES HSBG AND ATEIG.
SINCE THE MATRIX A(IJ) IS NON-SYMMETRICAL, IT WAS FIRST
CONVERTED BY A SIMILARITY TRANSFORM TO THE UPPER ALMOST-
TRIANGULAR HESSENBURG FORM USING SUBROUTINE HSBG. SUBROUTINE
ATEIG THEN COMPUTES THE EIGENVALUES.

DO 23 1=1,4
DO 23 J=ls4

23 AA(IJ)=A(IoJ)
CALL HSBG(4,AA94)
CALL ATEIG(4,AALRtLIsIANA94)
DO 24 J=1,4

24 LR(J)=1./SQRT(LR(J))
640 FORMAT(15X,'LR(1)= ',E15.5,' LR(2)=

1LR(4)= 'SE15.5)
650 FORMAT(15X,'LI(1)= ',E15.59' LI(2)=

1LI(4)= ',E15.5)

E(J9M) ARE
SCIENTIFIC

CALCULATED USING THE
SUBROUTINE PACKAGE.

',E15.5,'

',E15.5,'

SUBROUTINE

LR(3)= ',E15.59'

LI(3)= '.E15.591

SIMQ FROM THE

DO 33 M=194
E( 1M)=1
DO 28 1=1,3
CONE(I)=-A(I+1,1)
DO 28 J=13
IF(I-J) 27o25o27

25 COE(IJ)=A(I+1,J+1)-1./LR(M)**2
GO TO 28

27 COE(IJ)=A(I+1,J+1)
28 CONTINUE

- 111-1--z",. ., -1-11-11-11- ll----"-"'-,,-, , -- I - -1-1 ---7,.--'---,:l.,-l-. -.-, .- 1 11 11 1 11 , -11 -- -1- .- 1. -, 1 7-- " , 1 -1 1 1 1 1-111, - I'll 1. 1'.,, -11, . I I - - , , I I., I - , , , I "llm
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CALL SIMQ(COEsCONE,3,KS)
DO 29 J=294

9 F(JM)=CONE(J-1)
3 CONTINUE

DO 9 1=194
9 E(5,1)=PRIME/DB -(4** E(29I)+3.* E(3,I)+2* E(4#I))

THE
ARE
THE

COEFFICIENTS G(I9J) ARE SPECIFIED AND THE TEN UNKNOWNS
CALCULATED UTILIZING THE SUBROUTINE SIMQ.
TEN UNKNOWNS ARE AL(J) WHERE AK IS AL(10)

GRAD=EO
G(l 1.)=(K(
G( 192)=(K(
G( 1 3)=(K(
G( 194)=(K(
G( 15)=(K(
G( 29 ) K ( 1
G(2s2)=
G( 2#3)
G(2.4) =0
G(2.5)=0
G(31)=(K(
G( 392 )=-K(
G(393)=(K(
G( 3t4)=-B(
G ( 3s5 )=0
G(4 1) =(K(
G( 4.2 )=0
G(493)=-K(
G( 4.4) = (K(
G(4,5)=-B(

1)*C(2)+K(2)*C(3)+K(3)
1)*C(1)+B(4))/PRIME
2)*C(1)-B(1)+B(4))/PRI
3)*C(1)-B(2)+B(4))/PRI
4)*C(1)-B(3)+B(4))/PRI
)*ALF*C(2)/DB
K(1)*C(1)/DB
-B(1)/DR

*C (3
*C(1
*C(1
/DR

*C(4)+K(4)*C(5))/DA

)-K(1)*C(2))*ALF/DB
)/DB
)+B(1))/DB

3)*C(4)-K(2)*C(3))*ALF/DB

)*C( 1)/DB
)*C(1)+B(2))/DB
)/DB

DO 6 I=14
DO 6 J=6*10

6 G(IJ)=0
DO 7 I=1,4

7 D(I)=SINH(AR/LR(I))*(1+(AR/LR(I))**2/2) -COSHCAR/LR(I))*AR/LR(I)
DO 8 1=5910
DO 8 J=l5

8 G(I#J)=0
G(5,2)=-1
G(6.3)=-1
G(7,4)=-1
G(8.5)=-1
DO 10 1=5#8
DO 10 J=699

10 G(I#J)=2.* E(I-39J-5)*D(J-5)
DO 12 I=5s8

12 G(I#10)=0
G(991)=1
DO 14 J=6.9

14 G(9,J)=SINH(AR/LR(J-5))-(AR/LR(J-5))*COSH(AR/LR(J-5))
G(9#10)=-AR*GnAD
G(1001)=1
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DO 16 J=6,9

16 G(10,J)=-2.*D(J-5)
G(10,10)=2.*PERM*GRAD*AR/PRIME
DO 18 J=1,8

18 AL(J)=O
AL(9)=AR*GRAD
AL(10)=PERM*GRAD*AR/PRIME
CALL SIMQ(GAL,10,KS)
AK=AL(10)

EFFECTIVE PERMEABILITY CALCULATED, AND THE WHOLE PROCESS
REPEATED (INTEGRATION) IN ORDER TO OBTAIN THE AVERAGE EFFECTIVE
PERMEABILITY

PEFF=PERM*(1-2.*PHI*AK)/(1.+PHI*AK)
IF(KKK) 2249224,230

224 IF(JCON) 225,225,229
225 PEFF2=PEFF

KKK=KKK+1
P02=PO21
GO TO 212

229 PEFF1=PEFF2
PEFF2=PEFF
GO TO 231

230 PEFF1=PEFF
231 AREA=DELPO*(PFFF1+PEFF2)/2

SUM=SUM+AREA
JCON=JCON+1

275 CONTINUE
PEFF=SUM/(PAO-PAL)
RATIO=PEFF/PERM
FLUX=PEFF*(PAO-PAL)/.0803
WRITE(6,674) PAO,PAL#PEFFFLUXgRATIO

800 PHI=PHI+0.2
1000 WRITE(6,681)

IF(NQ-3 )46,599,599
599 IF(KKK)598,44,44
598 PHI=PHI+.1
600 FORMAT(5E15.5)
605 FORMAT(10X,'PERM',11X.'PRIME'
610 FORMAT(5X,6E15.5)
620 FORMAT(/////////,25X,
628 FORMAT (5X,5E15.5)
635 FORMAT(/s10X9'B(1)', 11X 'B(2)
638 FORMAT (5X,5E15.5)
625 FORMAT(/,10X,'K(1)',11Xq'K(2)
676 FORMAT(/930X,'PHI=',E15.5)
674 FORMAT(5X,'PAO=',E12.5,' PAL=

1E12.5,' RATIO= ',E12.5)
681 FORMAT(////////////////////)

CALL EXIT
END

,13X, 'CT' ,13X#ID' 08' 1X'At F' ,9X ' EO'

AR= '

'qlX

',lx

,E15.5,///)

,'B(3)',11Xo'B(4)')

,'K(3)',l1X,'K(4)')

',E12.5,' PEFF= ',E12.5#' FLUX= ',
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SUBROUTINE EQUIL(CKEQqK9B9A9CToALF#DAtDB)

SUBROUTINE CALCULATES EQUILIBRIUM PARAMETERS AND A(I9J)

REAL KEQ(4)oK(4)
DIMENSION C(6)tA(4,4)oB(4)
F11+KEQ(1)*C(1)*(1.+KEQ(2)*C(1)*(1.+KEQ(3)*C(1)*(l.+KEQ(4)*C(1)

1)))
C(2)=CT/Fl
DO 5 J=3t6

5 C(J)=KEQ(J-2)*C(1)*C(J-1)
PRIME=DA*ALF

)*C(2)+K(2)*C(3
)-B(3)))/DA
)*C(1)+4.*B(3)-
)*(K(2)-3.*K(4)
)*(K(3)-2.*K(4)
*ALF*C(2)/DB
*C(1)/DB
)/DB

3.*B(4)-4.*K(4)*C(1
)-B(1)+3*B(3)-2*B(4
)-B(2)+2*B(3)-B(4))

)*ALF*C(3)-K(1)*ALF*C(2
)*C(1)/DB
)*C(1)+B(1))/DB
)/DB
)*C(4)-K(2)*C(3)-B(3)*D
(3)/DB
B(3)-K(2)*C(1))/DB
)*C(1)+B(2)+2.*B(3))/DB

A(1.l)=(K(1
1 DA/DB*(B(4
A(l2)=(K(1
A(1.3)=(C(1
A(l4)=(C(1
A(2 1)=K(1)
A(2#2)=K(1)
A(2o3)=-B(1
A( 24)=0
A(3tl)=(K(2
A(3o2)=-K(1
A(3o3)=(K(2
A(3.4)=-B(2
A(4 1)=(K(3
A(4,2)=4.*B
A(493)=(3**
A(494)=(K(3
RETURN
END

C
C DATA REA
C
//G.SYSIN DD *

*73750E-05
.16000E-08
.17700E+11
.33200E+11
.48900E+10
.33000E+11
*10000E-03
.24300E+02
.50000E+02
.89700E+02
.40000E-03
.24300E+02
.50000E+02
*89700E+02

)/PRIME
)/PRIME

/PRIME

))/DB

A/DB)*ALF/DB

*5090OE-05
-. 10000E+05

*60000E-07
*34600E-13
.19000E+04
*15800E+03
*53900E+03
.50000E+02

*20000E+01
*33000E+01
*48000E+01

.20000E+01
*33000E+01
*48000E+01
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FOUR STEP EQUILIBRIUM PROGRAM

THIS PROGRAM GIVES THE EQUILIBRIUM SOLUTION OF THE ADAIR
FOUR STEP REACTION SCHEME . PERMP- DISPERSED PHASE PERMEABILITY.
KEQ(J) EQUILIBRIUM CONSTANTS. PAO- UPSTREAM PRESSURE AT X=0.
PAL- DOWNSTREAM PRESSURE AT X=L. FLUX- FLUX THROUGH SLAB.
OTHER PARAMETERS SIMILAR TO THE NONEQUILIBRIUM PROGRAM.
AVERAGE EFFECTIVE PERMEABILITY OBTAINED BY NUMERICAL INTEGRATION.

REAL K(4),KEQ(4)
DIMENSION C(6), B(4)
READ(2,600) DA,,ALFPERM
READ(2,600) DBCT
DO 44 J=1,4
READ(2,600) K(J),B(J)
R(J)=1.2*B(J)

44 KEQ(J)=K(J)/B(J)
PERMP=DA*ALF
WRITE(3,605) DAALFPERMPPERM
WRITE(3,606) DBCT
WRITE(3,628) K(1),K(2),K(3)9K(4)
WRITE(3,638) B(1),B(2),B(3),B(4)
WRITE(3,648) KEQ(1),KEQ(2),KEQ(3),KEQ(4)

46 READ(2,600) PAO,PALPHI
DO 500 1I=1,5
WRITE(3,676) PHI
N=250
N=120
DELPO=(PAO-PAL)/N
SUM=0.
DO 275 I=1,N
PO22=PAL+I*DELPO
P021= P022-DELPO
P02=PO22
KKK=O

212 C(1)=ALF*PO2
DIV=1+KEQ(1)*C(1)*(1.+KEQ(2)*C(1)*(1.+KEQ(3)*C(1)*(1+KEQ(4)*C(1)

1)))
DBDP=KEQ(1)*ALF*(1.+KEQ(2)*C(1)*(4.+KEQ(3)*C(1)*(9+16*KEQ(4)*C(1)

1)))
BTOP=KEQ(1)*C(1)*(1.+KEQ(2)*C(1)*(2.+KEQ(3)*C(1)*(3.+4*KEQ(4)*

1C(1) )))
DSDP=DBDP/4/DIV-BTOP**2/PO2/4/(DIV**2)
SAT=BTOP/4/DIV
FEQ.DB*CT*DSDP/PERMP*4
AK=-(PERMP*(1+FEQ)-PERM)/(PERMP*(1+FEQ)+2*PERM)
PEFF=PERM*(1-2*PHI*AK)/(1.+PHI*AK)
IF(KKK) 224,224,230
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224 PEFF2=PEFF

KKK=KKK+1
P02=PO21
GO TO 212

230 PEFF1=PEFF
AREA=DELPO*(PEFF1+PEFF2)/2
SUM=SUM+AREA

275 CONTINUE
PEFF=SUM/(PAO-PAL)
RATIO=PEFF/PERM
FLUX=PEFF*(PAO-PAL)/.0803
WRITE(3,304) PAOPALPEFF9FLUXRATIO

500 PHI=PHI+0.20
IF(KKK) 599,599t46

599 PHI=PHI+.1
600 FORMAT(4E15.5)
605 FORMAT(5X,' DA= ',E1.5.' ALF= ',E15.5,'

1E15.5)
606 FORMAT(5X,' DB=
628 FORMAT(5X,' K(1)

1 'E15.5)
638 FORMAT(5X,' B(1)

1' .E15.5)
648 FORMAT(5X,' KEQ(

1' KEQ(4)= ',E15.
304 FORMAT(5X,'PAO='

1E12.5o' RATIO= '
676 FORMAT(/t30X#'PH

CALL EXIT
END

/ XEQ
.73750E-05 .1
.60000E-07 .5
.17700E+11 .1
.33200E+11 .1
.48900E+10 .5
*33000E+11 .5
.24300E+02 *2
.89700E+02 .4

'9E15.5 ' CT
= ,E15.5'

= ,E15.5'

1)= ',E15.5,
5)
,E12.5,' PAL
,E12.5)
I=' ,E15.5)

6000E-08
OOOOE-05
9000E+04
5800E+03
3900E+03
OOOOE+02
OOOOE+01
8000E+01

= ',tE15.5)
K(2)= '.E15.5,'

B(2)= '*E15.5,'

PERMP= ',E15.5,' PERM= ',

K(3)= ',E15.5,'

B(3)= ',E15.5,'

I KEQ(2)= ',E15.5' KEQ(3)= IE15.5,

PEFF= '#E12.5,' FLUX= '

.34600E-13

.20000E+00

.20000E+00

= ',sE12.5' I
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C POTENTIAL. CONCENTRATION. AND FLUX
C PROGRAM FOR CASE 4 ONE STEP MODEL.

C
C

C FOR PARTIAL PRESSURE# CONCENTRATIONt OR FLUX DIIFFERENCE THE

C PROGRAM FIXES THE LOCI AT CERTAIN VALUES AND THEN rALCULATES

C THESE LOCI AT VARIOUS POINTS IN SPACE AS A FUNCTION OF THE

C NORMALIZED RADIUS AND THE ANGLE.
C PRIME= OUTSIDE PERMEABILITY, PERM= INSIDE PERMEABILITY

C DA=DIFFUSIVITY OF A IN THE DISPERSED PHASE, DB= DIFFUSIVITY

C OF B, CKON= EQUILIBRIUM CONSTANT, CK1= FORWARD REACTION RATE

C RA=IS THE NORMALIZED RADIUS WHICH IS R/A
C EO= THE IMPOSED GRADIENT. CT= TOTAL CARRIER CONCENTRATION

C IN THE DISPERSED PHASE. ALPHA= SOLUBILITY OF A IN THE

C DISPERSED PHASE9A= SPHERE RADIUS.PAO= PARTIAL PRESSURE

C OF A AT THE CENTER OF THE SPHERE. CBO= CONCENTRATION OF

C SPECIES B AT THE CENTER OF THE SPHERE (EQUILIBRIUM)

C PHI= ANGLE IN RADIANS, DEGR= ANGLE IN DEGREES

C FFQ= EQUILIBRIUM FACILITATION FACTOR, F= FACILITATION FACTOR

C SZI= VALUE OF CONSTANT FLUX DIFFERENCE

C
C
C
C

DIMENSION ZSIN(20)
C

-C
C SET UP OF PHYSICAL PARAMETERS
C
C

99 READ(29543) CK1
543 FORMAT(E15.5)

PAO=10.
A=1lE-4
PAQ=3.25*( A/.0001)
PADIF=0.25*(A/o0001)
PRIME=2.804E-11
CT=0.02
ALPHA=1.745E-6
DB=.76E-7
DA=.65E-5
PERM=DA*AL PHA
CKON*7#E+4
CK2=CK1/CKON
EOu-1./A
CBO (CK2*CT)/(CK1*ALPHA*PAO+CK2)
WRITE(39342) PAOCBOAEO
WRITE(3.352) DADBtCT#ALPHA
WRITE(3.354)PERMqCKl#CK2 #PRIME
CKON=CK1/CK2
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C CALC OF GAM, ALAMB, GAMAA
c

Y=(CKON*ALPHA*PAO)/(1.+CKON*ALPHA*PAO)
TAMDA= CK1*ALPHA*PAO*((CT*(1.-Y))/(DA*ALPHA*PAO)
1(1.-Y)/(Y*DB))
GAM=1./ SQRT(TAMDA)
ALAMB=A/GAM
GAMAA=GAM/A
WRITE(3,361) GAMALAMBGAMAA

CALC OF TERMS AND CONSTANTS

U=DSINH(ALAMB)
V=DCOSH(ALAMB)
FEQ=(DB*CKON*CT)/(DA*((CKON*ALPHA*PAO+1.0)**2))
R=FEQ
FETA=((3.*(GAMAA**2)+1.
1-2.*GAMAA)
Q=FETA
F=(R*Q)/(1.+R*(1.-Q))
B1=((PERM*(1.+F)-PRIME)

+ (1./DB) +

)*(U/V)-3.*GAMAA)/((2.*(GAMAA**2)+1.)*(U/V)

/(PFRM*(1.+F)+2.*PRIME))*(-1.)
TERM=(CK1*ALPHA*PAO+CK2)/DB
QQ=SQRT(GAMAA)
OQQQ=QQQ*GAMAA
C1= (TERM*(PRIME/PERM)*(GAMAA**2)*(1
1(-(QQQQ )*U +(QQQ )*V
WRITE(3,371) FFFQBlC1

OUTSIDE PA

LOCI OF PARTIAL PRESSURE LINES OUTSIDE
CALCULATED

THE SPHERE ARE

WRITE(3,801)
PA=PAO+PAQ
DO 50 I=1,13

C VALUE OF
PA=PA-PADIF

THE PARTIAL PRESSURE

RA=4.25
WRITE(39310) PARA
RDEL=.25
KKK=O
DO 60 JJ=124
KKK=KKK+1
IF( 9-KKK) 4.5,5

4 IF(14-KKK) 7,6,6
7 RDEL=0.05

GO TO 5
6 RDEL=O.1

RA FIXED AND ANGLE CALCULATED

IS SET.
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5 RA=RA-RDEL
AR=1./RA
ANGLE=(PA-PAO)/ (-EO*RA*A*(1.+B1*(AR**3)))
IF(1.0-ANGLE) 83,11.11

11 PHI=DARCS(ANGLE)
DEGR=(180./3.1415927)*PHI
WRITE(3,704) RADEGRPHI

60 CONTINUE
83 RA=1.

C AT ZERO DEGREE ANGLE THE NORMALIZED RADIUS IS SEARCHED FOR
PHI=0.
DEGR=Oo
DIFF=-O.1
J=1

66 AR=1./RA
J=J+1
TA=PAO-EO*A*RA*(1.+B1*AR**3)
DELL=ABS(TA-PA.)
IF(DELL-1.E-3) 68,68,71

71 IF(PA-TA) 80,68,72
72 RAmRA-DIFF

GO TO 77
80 RA=RA+DIFF

DIFF=DIFF*Ol
RA=RA-DIFF

77 IF(J-50) 66,66,68
68 WRITE(3,355) TARAqDEGRsPHIoJ
50 CONTINUE

C
C
C INSIDE PA
C
C LOCI OF PARTIAL PRESSURES INSIDE THE SPHERE FIXED AND

C SEARCHED FOR.
C

WRITE(3,804)
CRIT=.001
PASET=PAO
DO 100 1=1,8

C PARTIAL PRESSURE SET
PASET=PASET+PADIF
PHI=-3.1415927/36
WRITE(3,307) PASET
DO 109 11=1918
J=1

C ANGLE IN RADIANS (PHI SET AND RA SEARCHED FOR
PHI=PHI+3.1415927/36.
DIFF-O.1
RA=1.0

107 AR=1./RA
J=J+1
PROD=RA*ALAMB
REV=1 */PROD
UR=DSINH(PROD)
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VR=DCOSH(PROD)
FSTAR=C1*(AR**O.5)*(-(REV
1PERM)*(GAMAA**2)* (1.
PA=PAO+EO*A*FSTAR*

DEL (PA-PASET)
DELL= ABS(DEL)
IF(DELL-CRIT) 108,108,111

111 IF(PA-PASET)130.1089112
112 RA=RA+DIFF

GO TO 177
130 RA=RA-DIFF

DIFF=DIFF*0.1
RA=RA+DIFF
IF(1.000-RA) 109,177,177

177 IF(J-50) 107,107,108
108 DEGR=(180./3.1415927)*PHI

WRITE(3,355) PARAqDEGRP
109 CONTINUE
100 CONTINUE

**1*5)*UR+(REV**0.5)*VR)-TERM*(PRIME
-2.*B1)*RA*(A**2)
COS(PHI)

HIv J

INSIDE CB CALC

CONCENTRATION LOCI OF B INS
DETERMINED AS A FUNCTION OF

IDE SPHERE FIXED
RA AND DEGR

AND LOCI

WRITE(3,806)
RA=1s

C CONC OF B AT RA=1 DETERMINED
AR=1./RA
PROD=RA*ALAMB
REV=1./PROD
UR=DSINH(PROD)
VR=DCOSH(PROD)
FSTAR=C1*(AR**0.5)*(-(REV**1.5)*UR+(REV**0.5)*VR)-TERM*(PRIME
1PERM)*(GAMAA**2)* (1.-2.*B1)*RA*(A**2)
CBSET=CBO+(PERM/DB)*EO*A*(FSTAR+(l1-2.*B1)*(PRIME/PERM)*RA)
BBB=CBSET-CBO
CRIT=.1E-6
WRITE(39666) CBSET 9CBO
DO 200 11=199

C A CONCENTRATIOM FOR B IS SET
CBSET=CBSET-0*10*BBB

C ANGLE IN RADIANS IS FIXED AND RA IS SEARCHED
999 PHI=-3.1415927/36

WRITE(3,666) CBSET 9CB0
DO 209 IJ=118
J=1
PHI=PHI+3.1415927/36.
DIFF=-0.1
RA1 .0
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207 AR=1./RA
J=J+1
PROD=RA*ALAMB
REV=1./PROD
UR=DSINH(PROD)
VR=DCOSH(PROD)
FSTAR=C1*(AR**0.5)*(-(REV**1.5)*UR+(REV**0.5)*VR)-TERM*(PRIME /
1PERM)*(GAMAA**2)* (1.-2.*B1)*RA*(A**2)
CB=CBO+(PERM/DB)*EO*A*(FSTAR+(1.-2.*B1)*(PRIME/PERM)*RA)*COS(PHI)
DEL=(CB-CBSET)
DELL= ABS(DEL)
IF(DELL-CRIT)208*208,211

211 IF(CBSET-CB)230,208,212
212 RA=RA+DIFF

IF(RA-1.0) 207,2079208
230 RA=RA-DIFF

DIFF=DIFF*(+O.1)
RA=RA+DIFF
IF(l.-RA) 209o277#277

277 IF(J-50) 207,207,208
208 DEGR=(180./3.1415927)*PHI

WRITE(3,356) CBPHIRADEGRJ
209 CONTINUE
200 CONTINUE

POTENTIAL FLOW

LOCI OF CONS
THIS IS DONE
THAT NO REAC
PERMEABILITI
IF ONE THEN
THE LINES OF
AND BY CALCU

TANT FLUX DIFFERENCE IS FIXED .
BY CALCULATING THE FLUX VALUES FOR THE CASE

TION OCCURS INSIDE THE SPHERE AND THE
ES INSIDE AND OUTSIDE ARE EQUAL.
USES THESE VALUES TO CALCULATE THE LOCI,
CONSTANT FLUX DIFFERENCE ARE ALL PARALLELL

LATING THE FLUX LINES AT 90 DEGREES AND
AT EACH RA DIFFERENCE OF *25 THESE LOCI ARE EQUIDISTANT.
THIS THEN IS THE BASE CASE TO COMPARE ALL LOCI TO.
HOWEVER NOTE THAT EACH PAIR OF LINES GIVES A DIFFERENT
FLUX DIFFERENCE.
FOR THE CASE OF A REACTIVE SPHERE THE LOCI WILL APPROACH
THE LOCI OF THE SPECIAL INERT CASE (AS LONG AS THE
CONTINUOUS PHASE PERMEABILITY IS THE SAME) FOR LARGE
DISTANCES AWAY FRO?4 THE REACTIVE SPHERE

WRITE(3,531)
RA=3.25
DO 440 IJ=1,12
RA=RA-*25
R3=RA**2
ZSIN(IJ)=-(A**2)*R3*EO*PRIME/2.
WRITE(3,532) RAZSIN(IJ)

440 CONTINUE

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
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C NOW THAT VALUES OF CONSTANT FLUX DIFFERENCE HAVE BEEN
C SET THE LOCI FOR THE REACTVE SPHERE IN THE NONREACTVE MEDIUN

C CAN BE GENERATED. A SIMILAR PROCEDURE IS USED AS BEFORE.

C

C
C

WRITE (3,807)
DO 460 II=1,10

C VALUE OF SZI IS SET
SZI=ZSIN(II)
RA=4.25
WRITE(3,631) SZI
RDEL=0.25
KKK=O
DO 450 IJ=1,24
KKK=KKK+1
IF(9-KKK)1,2,2

1 IF(14-KKK) 21,22,22
22 RDEL=O.l

GO TO 2
21 RDEL=0.05

C RA FIXED AND ANGLE CALCULATED
2 RA=RA-RDEL

ANGLE=(SZI)/(PRIME*EO*(A**2)*(B1/RA-(RA**2)/2))
ANGLE=SQRT(ANGLE)
IF(1.0-ANGLE) 463,461,461

461 PHI=DARSN(ANGLE)
DEGR=(180./3.1415927)*PHI
WRITE(3,704) RADEGRPHI

450 CONTINUE
463 DIFF=-0.1

J=1
C RA IS CALCULATED AT 90 DEGREES

RAz1.
306 AR=1./RA

JUJ+1
SZI=PRIME * A**2 * EO*(B1/RA - RA**2/2.)
DEL= (ZSIN(II)-SZI)
DELLwABS(DEL)
IF(DELL-1.E-19)308,308,311

311 IF(ZSIN(II)-SZI)330,308,312
312 RAxRA-DIFF

GO TO 377
330 RA=RA+DIFF

DIFF=DIFF*O.1
RA-RA-DIFF

377 IF(J-50) 306,306,308
308 WRITE(3,655)SZIRA,J
655 FORMAT(20X,'SZI=' ,E15.5,'RA=' ,E1 .5 'J' I5)
460 CONTINUE

C
C
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C SZI INSIDE SPHERE
C
C

DO 470 1=6912
C VALUE OF SZI IS SET

SZI=ZSIN(I)
RA=1.0
WRITE(3,631) SZI
DO 465 JJ=1919

C RA FIXED AND ANGLE CALCULATED
RA=RA-0.05
AR=1./RA
PROD=RA*ALAMB
UR=DSINH(PROD)
VR=DCOSH(PROD)
DFDR=-TERM*(PRIME/PERM)*(GAM**2)*(1.-2.*Bl)*(1./A)+C1*(-(AR**2)*
1(GAMAA**1.5)*(1./GAM)*VR + 2.*(AR**3)*(1./A)*(GAMAA**1.5)*UR+AR*
2(GAMAA**0.5)*(1./GAM)*UR -( 1./A)*(AR**2) *(GAMAA**0.5 )*VR)
ANGLE=(SZI)/(PERM*EO*(RA**2)*(A**3)*DFDR/2.)
ANGLE=(SZI)/(PRIME*EO*(RA**2)*(A**2)*(-(l-2.*Bl))/2.)
ANGLE=SQRT (ANGLE)
IF(1.0-ANGLE)773,471*471

471 PHI=DARSN(ANGLE)
DEGR=(180./3.1415927)*PHI
WRITE(3,704) RADEGRsPHI

465 CONTINUE
773 DIFF=-0.1

J=1
C RA IS CALCULATED AT 90 DEGREES

RA=1.E-7
706 AR=1./RA

JUJ+1
SZI=-PRIME*EO*RA**2*A**2*(1.-2.*B1)/2.
DEL=ZSIN(I)-SZI
DELL-ABS(DEL)
IF(DELL-1.E-21) 708.7089711

711 IF(ZSIN(I)-SZI) 730,708,712
712 RA=RA-DIFF

GO TO 777
730 RA=RA+DIFF

DIFF=DIFF*0.1
RA=RA-DIFF

777 IF(J-50) 706,706,708
708 WRITE(3,655) SZIRA#J
470 CONTINUE

FORMAT
FORMAT
FORMAT
FORMAT

/,20X*'SZISET='#E15.5)
15XqlRA=',E15.5,'DEGR='tE12
/*20X.* PAINITIALu'.E15.5'
//910X.' PAO='.E15.5#' CBO=

1)
352 FORMAT(10X.'
354 FORMAT(20X9'

*5,'PHI=',E1
RA INITIAL=
'E15.59' A=

2.5)
' *E15.5,/)
',.E15.5.' E0=' E15.5

DA='.E15.5' DB='.E15.5s' CT=',E15.59' ALPHA=',E15.5)
PERM='*E15.5#' CK1='#E15.5t' CK2='9E15.5,' PRIME='$

631
704
310
342
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1E15.5#////)
361 FORMAT(20X,' LAMDA=',E15
371 FORMAT(/910X*' F=',E12.5
356 FORMAT(lXt' C

1' J='12)
307 FORMAT(/e'
355 FORMAT(5Xe' P

1' J='12)
801 FORMAT(/t3OX#
804 FORMAT(/e3OXe
806 FORMAT(/e30Xe
807 FORMAT(/e3OXe
532 FORMAT( 30Xe
531 FORMAT(/o2OXe
666 FORMAT(/e3OX#

1000 CALL EXIT
END

B='eEl2.5e'

A='eE12.5e'

*59' A/LAMDA='
,' FEQ='eE12.5
PHI=' eEl2.5'

eE15.5,' LAMDA/A='#E15.5)
9' BI='eE12.5e' C1='#E12.5)
RA=',E12.59' DEGR='.E12.59

PASET='eEl2.5e/)
RA=',E12.5,'DEGR='E12.5'PHI='eE12.5#

OUTSIDE PA CALC'9/)
INSIDE PA CALC'e/)
INSIDE CB CALC'e/)
SZI CALC'o/)

RA=I'E15.5e' ZSIN='eEl5.5)
ZSIN CALCULATION 'I/)

CBSET='eEl5.5,' CBO='eEl5.5o/)
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C GENERAL PROGRAM FOR PRESSURE AND CONSTANT
C FLUX DIFFERENCE LOCI AROUND AND INSIDE A

C REACTING SPHERE IN A REACTING MEDIUM.

C

C THE PROGRAM FIXES CERTAIN VALUES OF THE PRESSURE AND THE

C TOTAL FLUX ( IN A REGION OF SPACE ) FOR SPECIES A AND THEN

C DETERMINES THE LOCUS OF THESE VALUES IN SPACE AS A

C FUNCTION OF THE NORMALIZED RADIUS AND THE ANGLE.

C FOR A FIXED SET OF PHYSICO-CHEMICAL PARAMETERS THE
C EQUILIBRIUM FACILITATION FACTORS CAN BE DETERMINED.

C THESE PARAMETERS ARE FED IN WITH THE VALUES OF

C THE CHARACTERISTIC LENGTHS FOR A GIVEN SPHERE RADIUS A.

C THE PROGRAM CAN CALCULATE PROFILES AND FLUX LINES FOR ANY

C OF THE HETEROGENEOUS MEDIA SHOWN IN FIGURE 2.2 .
C PHYSICO CHEMICAL PARAMETERS INSIDE THE SPHERE ARE

C USUALLY DENOTED BY A P AT THE END (P=PRIME)

C PERM= PERMEABILITYs EO= IMPOSED GRADIENT

C FA= IMPOSED FLUX, PAO= PARTIAL PRESSURE AT CENTER OF SPHERE.

C A= SPHERE RADIUS, ALAM= CHARAC. LENGTH,

C FEQ= EQUILIBRIUM FACILITATION FACTOR.

C AK, PK1,PK2,PK4, ARE THE FOUR CONSTANTS DETERMINLD FROM

C THE ROUNDARY CONDITIONS.

C
C
C
C

DIMENSION ZSIN(15)

C

C PARAMETERS ARE READ IN.

C
C

READ(2,501) PERMPERMPEOPAO
READ(2,501) FEQFEQP

17 READ(2,501) ALAMALAMP,A
JJJ=O
GAM=A/ALAM
GAMP=A/ALAMP
GAMA=1* /ALAM
GAMAP=1./ALAMP
PAQ=3.25*A/.0001
PADIF=.25*A/*0001
WRITE(3,605) PERMPPERM
WRITE(3,607) EO,PAO,A
WRITF(3,609) CAM, A LAMGAMA
WRITE(3,611) GAMPALAMPGAMAP
WRITE(3,612) FEQ,FEQP

605 FORMAT(15X,'PERMP=',E15.5,'PERM=',E15,.5)
607 FORMAT(15X,'EO=',E15.5,'PAO=',E15.5,'A=' E15.5)

609 FORMAT(/,15X,'GAM=',E15.5,'ALAM=',E15.5,'GAMA =',E15.5)
611 FORMAT(/915X,'GAMP=',E15.5,'ALAMP=' E15.5,'GAMAP=',E15.5)

d
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612 FORMAT(15X,'FEQ=',E15.5,' FEQP=',E15.5)

JK=1

CALC OF TERMS AND CONSTANTS

U =DSINH (ALAM)
V=DCOSH(ALAM)
UP=DSINH(ALAMP)
VP=DCOSH(ALAMP)
IF(ALAMP-75.) 102,101,101

101 TP=1.
GO TO 103

102 TP=DSINH(ALAMP)/DCOSH(ALAMP)
103 READ(2,502) NPATHRM

R=PEPRMP/PFRM*RM

VALUE OF NPATH DETERMINES WHAT MODEL WILL BE USED.

NPATH=1....IMPERMEARLE, NPATH=2 *...PERMEABLE

IF(NPATH-1
1 WRITF(3,705)

) 1,1,2

TFRMS AND CONSTANTS FOR THE IMPERMEABLE

SGAMA =-2. -2.*GAMA-ALAM
UVP=1.-GAMAP*TP
OUVP=-2.*UVP+ALAMP*TP
RFAC=PERM/PERMP*(1.+FEQ)/(

MODEL ARE CALC.

1s+FEQP)
R=1.
TERM2=FEQ*R*(1.+GAMA)*QUVP
TERM3=RFAC*FFQP*R*UVP*SGAMA
TOP=QJVP*SGAMA*( -R+RFAC*R)-TERM2+TERM3
BOT=QUVP*SGAMA*( + R/2+RFAC*R) -TERM2+TERM3
AK=(1.+FEQ)/2*TOP/BOT
WRITE(3,501) SGAMAUVPQUVPRFACTERM2TERM3
TERMT=QUVP*SGAMA*(-R+RFAC*R)
TERMB=QUVP*SGAMA* ( R/2+RFAC*R)

WRITE(3,501) TERMTTERMB
PK2=1.-2.*AK/(1.+FEQ)
ORT= SQRT(GAMA)
VU= EXP(-ALAM)
PK1=FEQ*(-l+TOP/BOT)/QRT/SGAMA/VU
DQRT= SORT(GAMAP)
OUVP=QUVP*DCOSH ( ALAMP)
PK4=(-FEQP/(1.+FEQP)*(1.-TOP/BOT))/(DQRT )/QUVP

GO TO 3
2 WRITE(3,707)
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TERMS AND CONSTANTS FOR THE PERMEABLE MODEL ARE CALCULATED

TANG=TP*GAMAP
SGAMA=2.+2.*GAMA+ALAM
SGAM=SGAMA
GAM1=1.+GAMA
PP=PERM/PERMP
RF=(1.+FEQ)/(1.+FEQP)
RF1=1.-FEQ/FEQP
TOP1=SGAM*RP*RF1*(RP*RF*FEQ-FEQ)
TOP2=GAM1*RP*RF1*(1.-RF)
TOP3=(RP*FEQ/FEQP*SGAMA-2.*GAM1)*(1+FEQ)*(RP*RF-1)
TOP4= GAM1*(1.+FEQ)*(RP*RF-l.)*TP*ALAMP
TOP=(1.-TANG)*(TOP1+TOP2+TOP3)+TOP4
ROT1=SGAMA*RP*RF1*(1.-1./(1.+FEQ)+2.*RP*FEQ/(1.+FEQP))
ROT2=2.*GAM1*RP*RF1*(FEQP-FEQ)/(1.+FEQ)/(1.+FEQP)
POT3=(RP*(FEQ/FEQP)*SGAMA-2.*GAM1)*(2.*RP*RF+1.)
POT4=GAM1*(2.*RP*RF+1.)*TP*ALAMP
ROT=(1.-TANG)*(BOT1+BOT2+BOT3) +3OT4
AK=TOP/BOT
VUP=(1.-TANG)*DCOSH(ALAMP)
PK2=1.-(2./(1.+FEQ))*AK
ORT= SQRT(GAMA)
DORT= SORT(GAMAP)
PK4=((1.+FEQ-2.*AK)*RP *RF - (1+FEQ+AK))/((1. + FEQ)*R

1DORT*VUP)
VU= EXP(-ALAM)
PK1=((1.+AK/(1.+FEQ))-(1.-2.*AK/(1.+FEQ))*RP *RF + ((1

1 *RP*RF - (1.+FEQ +AK))/RF1)/( QRT *GAM1*(VU))
3 FA=-PERM*(1.+FEQ)*FO

WRITF( 3,614) TOPBOTFARM
WRITE(3,613) AKPK1,PK2,PK4

A VALUE FOR PA
THE NORMALIZED

IS SET AND THE ANGLE IS CALCULATED AS
RADIUS RA IS VARIED.

WRITE(3,701)
PA=PAO+PAQ
DO 50 1=1,12

C PARTIAL PRESSURE PA IS SET
PA=PA-PADIF
RA=4.25
WRITE(3,615)
RDEL=*25

KKK=O

PA

DO 60 JJ=1,16
KKK=KKK+1
IF(11-KKK) 4,5,5

4 RDEL=.1
C RA IS SET

5 RA=RA-RDEL

OUTSIDE PA

P *RF1*

*+FEQ-2.*AK)
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AR1 I/RA
RATIO=RA/GAMA
VRUR=EXP(-RATIO)
F1=-1./(1.+FEQ)
F2=

1MA/RA) *(1.+(AMA/RA)*(VRUR)

*AK/RA**2
PK1*SQRT(AR)*SQRT(GA

FR=F1+F2
THE ANGLE FOR FIXED PA AND RA IS CALCULATED.

ANGLE=(PA-PAO)/(-FA/PERM/(1.+FEQ)*A*(RA-FR))
IF(1.-ANGLE) 83,11,11

11. PHI=DARCS(ANGLE)
THE ANGLE IN DFGRES IS CALCULATED

DEGR=(180/3.141592
POT=-FA*A*COS(PHI)
WRITE(3,617) RADE
CONTINUE
IF(RA-1.001) 50
RA=1.

AT ZERO DEGREES
PHI=0.
DEGR=O.
DIFF=-1.
J=1

66 AR=1./RA
RATIO=RA/GAMA
VRtR=EXP(-RATIO)
F1=-1./(1.+FEQ)
F2=

1MA/RA) *(1.+GAM
FR=F1+F2

7)*PHI
*(RA+AK/(1+FEQ)/(RA**2))
GRPHIPOT

,50,84

THE NORMALIZED RADIUS IS SEARCHED FOR.

*AK/RA**2
PK1*SQRT(AR)*SQRT(GA

A/RA)*(VRUR)

J=J+1
TA=PAO-FA*A/PERM/(1.+FEQ)*(RA-FR)
DELL=ABS(TA-PA)
IF(DELL-1.E-4) 68968,71

71 IF(PA-TA) 80,68,72
72 RA=RA-DIFF

GO TO 77
80 RA=RA+DIFF

DIFF=DIFF*O.1
RA=RA-DIFF

77 IF(J-50) 66,66,68
68 WRITE(3,619) TARADEGRPHIsJ

POT=-FA*A*COS(PHI)*(RA+AK/(1+FEO)/(RA**2))
WRITE(3,617) RADEGRPHIPOT

50 CONTINUE

INSIDE PA

PROCEDURE SAME AS BEFORE. FIRST
SET AND THE ANGLE IS CALCULATED.
RA IS SEARCHED FOR.

PA IS SET, THEN RA IS
FINALLY AT ZERO DEGREES
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WRITE(3,621)
PA=PAO
DO 150 I=1,10

C PA IS SET
PA=PA+PADIF
P A= 105
WRITE(3,615) PA
RDEL=.05
DO 160 JJ=1,20

C RA IS SET
QA=RA- RDEL
AR=1*/RA

C FOR A FIXED PA ,THE ANGLE IS CALCULATED
VRP=DCOSH ( RA/GAMAP)
URP=DSINH(RA/GAMAP)
VRURP=VRP-URP/ (RA/GAM'AP)
H1=-PK2*FA/PERMP*(1./(1.+FEQP))

1 PERMP*PK4*AR**0.5*(GAMAP/RA)**0.5*(VRURP)
HR=H 1+H2
ANGLE= (PA-PAO) /HR
IF(1.-ANGLE) 183,111,111

111 PHI=DARCS(ANGLE)
DEGR=(180/3.1415927)*PHI
POT=-FA*A* COS(PHI)*(PA*PK2+ 3*AK/(1+FEQ))

VRITF(3,617) RA,DFGRPHIPOT
160 CONTINUE
183 PA=1.

AT ZERO
DEGR=0.
PHI=O.
DI FF=. 1

DEGREES RA IS SEARCHED

FOR EACH RA

FA*A/

FOR.

J=1
166 AR=1./RA

J=J+1
VRP=DCOSH(RA/GAMAP)
URP=DSINH(RA/GAMAP)
VRURP=VRP-URP/(RA/GAMAP)
H1=-PK2*FA/PERMP*(1./(1.+FEQP))
H2=

1 PERMP*PK4*AR**n.5*(GAMAP/RA)**0.5*(VRURP)
HR=H1+H2
TA=PAO+HR
DELL=ABS(TA-PA)
IF(DELL-1.E-4) 168,168,171

171 IF(TA-PA) 180,168,172
172 RA=RA-DIFF

GO TO 177
18O RA=RA+DIFF

DIFF=DIFF*0.1
PA=RA-DIFF

177 IF(J-.50) 166,166,168
16P WRITE(3,619) TARADEGRsPHIJ

POT=-FA*A* COS(PHI)*(RA*PK2+ 3*AK/(1+FEQ))

FA*A/



WRITE(3,617)
IF(RA-1. ) 150

150 CONTINUE
151 WRITE(3,629)

RA,DEGRPHI ,POT
150,151

POTENTIAL

FOR THE LOCI OF
ARE SET UP FOR
IN A CONTINUOUS
PARAMETERS ARE
THIS CASE LINES
THIS BASE CASE
BY CALCULATING
THE LINES WILL
THE LINES OF CO
THE LINES OF TH
THE SPHERE. (EF

CONSTANT
THE CASE
MEDIUM A

ANALOGOUS
OF CONST

SETS THE

FLUX DIFFERENCE THE
OF A REACTING SPHERE
T EQUIL

TO THE
ANT FLU
VALUES

THEM AT 90 DEGRE
BE EQUIDISTANT.
NSTANT FLUX DIFF
E BASE CASE AT L
FECTS OF THE REA

VALUES
AT EQUILIBRIUM

IBRIUM. ALSO THE INSIDE
OUTSIDE PARAMETERS. FOR

X DIFFERENCE ARE PARALLELL.
FOR FLUX DIFFERENCES.
ES AND EACH RA=.25
FOR THE SITUATION OF INTEREST
ERENCE WILL APPROACH
ARGE DISTANCES AWAY FROM
CTING SPHERE DECAY RAPIDLY)

WRITE(3,531)
PA=3.25

C EQUILIBRIUM VALUE OF AK WOULD BE

AE=(1.+FEQ)*(PERM*(1+FEQ)-PERMP*(1+FEQP))/(2
1 (1+FEQP) )

C HOWEVER FOR EQUAL PARAMETERS IT IS ZERO
AF=0.

ZSIN(IJ)= ,ZI SET VALUES. CALCULATED

DO 440 IJ=1,9
RA=RA-#25
SZI=-FA*A**2*(RA**2-2*AE/(1+FEQ)/RA)
ZSIN(IJ)=SZI
WRITF(3,532) RAZSIN( IJ)

440 CONTINUE
RA=RA+.25

ZSIN(IJ)= SZI SET VALUES. CALCULATED

DO 441 IJ=9,12
PA=RA-.25
SZI=-RA**2*A**2*FA*(1.-2*AE/(1+FEQ))
ZSIN(IJ)=SZI
WRITE(3,532) RAZSIN(IJ)

441 CONTINUE

.*PERM*( 1+FEQ)+PERMP*

OUTSIDE SPHERE

INSIDE SPHERE

SZI OUTSIDE SPHERE

SAME PROCEDURE AS BEFORE IS USED. FOR EACH SET VALUE

OF SZI RA IS VARIED AND EACH ANGLE CALCULATED * THE POINTS

IN SPACE WILL THEN GIVE A LINE. AT 90 DEGREES RA IS SEARCHED.
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FLOW

C
C
C
C

- C

C
C
C
C
C
C
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WRITE(3,807)
DO 460 11=1,12
SZI=ZSIN(II)
PA=4.25
WRITE(3,731) SZI
RDEL=0.25
KKK=0
DO 450 IJ=lf24
KKK=KKK+1
IF(9-KKK)21,22,22

21 IF(14-KKK) 23,24,24
24 RDEL=0.1

GO TO 22
23 RDEL=0.05
22 RA=RA-RDEL

ANGLF= (SZ I) / (-FA*A**2* ( RA**2-2*AK/ ( 1.+FEQ) /RA)
ANGLE=SORT(ANGLE)
IF(1.0-ANGLE) 463,461,461

461 PHI=DARSN(ANGLE)
DEGR=(180./3.1415927)*PHI
WRITE(3,704) RA,DEGRPHI

450 CONTINUE
IF(RA-1.01) 460,463,463

463 DIFF-0.1
J=1
RA=1.

406 AR=1./RA
J=J+1
SZI=-FA*A**2*(RA**2-2*AK/(1+FEQ)/RA)
DEL= (ZSIN(II)-SZI)
DELL=ABS(DEL)
IF(DELL-1.F-19)408,408,411

411 IF(ZSIN(II)-SZI)430,408,412
412 RA=RA-DIFF

GO TO 477
430 RA=RA+DIFF

DIFF=DIFF*0.1
RA=RA-DIFF

477 IF(J-50) 406,406,408
408 WRITE(3,655)SZIRAqJ
655 FORMAT(20X,'SZI=',E15.5,'RA=',E15.5,'J=',I5)
460 CONTINUE

C
C SZI INSIDE SPHERE
C

WRITE(3,803)
803 FORMAT(////20X, 'INSIDE SZI'.//)

DO 470 1=6,12
SZI=ZSIN( I)
RA=1 .05
WRITE(3,731) SZI
DO 465 JJ=1,19
RA=RA-0.05
AR=1. I/RA
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ANGLF=SZI/(-FA*A**2*RA**2*(1.-2.*AK/(1.+FEQ))
ANGLE=SQRT(ANGLE)
IF(1.0-ANGLE)773,471,471

471 PHI=DARSN(ANGLE)
DEGR=(180./3.1415927)*PHI
WRITE(3,704) RADEGRPHI

465 CONTINUE
773 DIFF=-0.l

J=1
RA=1.E-7

706 AR=1./RA
J=J+1
SZI=-RA**2*A**2*FA*(1.-2*AK/(1+FEQ))
DEL=ZSIN(I)-SZI
DELL=ABS(DEL)
IF(DELL-1.E-21) .708,708,711

711 IF(ZSIN(I)-SZI) 730,708,712
712 RA=RA-DIFF

GO TO 777
730 RA=RA+DIFF

DIFF=DIFF*0.1
PA=RA-DIFF

777 IF(J-50) 706,706,708
708 WRITE(3,655) SZI,RA,J
470 CONTINUE
731 FORMAT(/20X,'SZISET=',E15.5)
704 FORMAT(15X,'RA=',E15.5,'DEGR=',E12.5,'PHI=',E12.5)
807 FORMAT(/,30X,' SZI CALC',/)

532 FORMAT( 30X,'RA=',E15.5o' ZSIN=',E15.5)
531 FORMAT(/,20X,' ZSIN CALCULATION ',/)

JK=JK+1
IF(3-JK) 1000,100091

501 FORMAT(E15.5,E15.5,E15.5,E15.5,E15.5,E15.5)
629 FORMAT(
5n2 FORMAT(
613 FORMAT(

1
614
615
617
619

621
701
705
707

1000

// XE

FORMAT
FORMAT
FORMAT
FORMAT

////,15X,'
15 ,F15.5)
15X,
' AK=',E
15X, 'TOP=
///, 25X,'
9X, 'RA='
5X, 'TA=',

CONSTANT FLUX DIFFERENCE LINES',//)

15.5,'PK1=',E15.5,'PK2=',E15.5,'PK4='
',E15.5,' BOT=',E15.5,' FA='iE15.5,'
PA=',E15.5,/)
E15.5,'DEGR=',E15.5,'PHI=',E15.5,' PO
E15.5,'RA=',E15.5,'DEGR=',E15.5,'PHI=

114)
FORMAT(/,30X,'INSIDE PA CALCULATION',//)

FORMAT(///,30X,' OUTSIDE PA',///)

FORMAT(///////25X,'NPATH=1 ******IM
FORMAT(///////,25X,'NPATH=2 ******PE
CALL EXIT
END

0
*20000E-10 .10000E-10
.25000E+01 *10000E+02
.16700E+02 *20900E+02

.10000E+19

+.10000E+05

.10000E-03

,E15s.5)
RM' ,E15.5)

T='E155)=1

PERMEABLE******'s///)
RMEABLE******',///)

S10000E+02
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APPENDIX F

SAMPLE CALCULATION FOR DATA REDUCTION

A calculation is given here as an example in order to

demonstrate how the permeability (average effective permeability)

is obtained. Some common parameters for most of the runs are

A = 25.5 cm'

V

P

d

3
= 30.48 cm

l.A 2

1.214 x 10-6 cm -cc(STP)
m sec-cc-atm

T 250C

L 803 ym

2Lm
= 94.5 ym

First the partial pressure drop through each membrane can be

obtained from equation (6.10). Substitution of the above

parameters yields

= 0.74 x 10-1 dt

Consider the ninth run. The experimental conditions of interest

are:

= 0.909

= 91.1 mm Hg, Pdown
p2

dE = 22.9
dt

= 3.0 mm Hg

min

so that the pressure drop through each membrane is

Ap = (0.74 x 10 ) (2.29 x 101 )

= 1.7 mm Hg

pupp 02
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The partial pressures at x = 0 and x = L can now be calculated

from (6.11) and (6.12)

x=0 = 91.1 - 1.7 = 89.5 mm Hg

2

X=L
PO0 2

= 3.0 + 1.7 = 4.7 mm Hg

Finally equation (6.9) gives the permeability which is with

the earlier set of parameters

= 1.465 x 10 -6 dp/dt
x=0 x=L
(0 - p 02 2

- (1.465 x 10- 6) (2.29 x 10 )
AVE (84.8)

3.96 x 1-7 cm 2-cc (STP)
sec-cc-atm

RAVE

so that
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APPENDIX G

NOMENCLATURE

a

A

A,AE

An

b.

B

Bn

C

- 0
C ,C

CA

CB

CA. B

CA

0
CA

L
CA

C 99

sphere radius

constant in the outside potential function

cross-sectional area

constant used in Appendix A

backward rate constant in Adair scheme i = 1,2,3,4

constant used in Appendix C, defined by equation (C.29)

constant used in Appendix A

concentration

equilibrium concentrations

concentration of species A

concentration of species B

concentration of species A B, i = 1,2,3,4

equilibrium concentration of A

concentration of A at x = 0 (or r = 0 in which case it

is an equilibrium concentration

concentration of A at x = L

constant used in Appendix C (i = 1,2,3,4; k = 1,2,3,4;

3= 1,2)

total carrier concentration

a constant used in Chapter 4

a constant used in Chapter 4

size contact points of support material

average particle diameter for class i

number average diameter

volume mean diameter

CT

C 1

C
2

d

d.

n

v
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P diffusivity

D effective diffusivity

DA diffusivity of species A

DB diffusivity of carrier species B

DA diffusivity of carrier species A B
DdB

D 2constant defined by equation (5.8)

D2 constant defined by equation (5.9)

ek) constant used in Appendix C (i = 2,3,4,5; k = 1,2,3,4)

E constant used in Appendix C

Em constant used in Appendix A

f(r) function defined by equation (4.43)

f(r) function defined by equation (C.44a)

f1(r) function defined by equation (5.42)

f2(r) function defined by equation (5.43)

f cfunction defined by equation (4.70)

F facilitation factor

FAdair Adair facilitation factor

Feq equilibrium facilitation factor

F dispersed phase facilitation factor Fd F' as

a/'+ o

FAdair Adair equilibrium facilitation factoreq

F. iconstant used in Appendix C (i = 1,2)

g(r) function defined by equation (4.33)

g(r) function defined by equation (C.44a)

G. iconstant used in Appendix C (i = 1,2)

h(r) function defined by equation (C.44c)

H. iconstant used in Appendix C (i = 1,2)
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H(r) function defined by equation (4.55)

I (Z) modified Bessel function of the first kind

i(r) function defined by equation (C.44d)

I. constant used in Appendix C (i = 1,2)

j(r) function defined by equation (C.44e)

J. constant used in Appendix C (i = 1,2)

k 1forward rate in one-step model

kf2 backward rate in one-step model

k. forward reaction rate in four-step model (i = 1,2,3,4)

K equilibrium constant for one-step model

K equilibrium constants for the four-step model

(i = 1,2,3,4)

Kd ratio of the dispersed phase to the continuous

phase permeability

K ratio of the effective permeability to the continuousm

phase permeability

K equilibrium constant based on activity

K a constant used in Chapter 4

K2 a constant used in Chapter 4

K2  a constant used in Chapter 4

K a constant used in Chapter 4

L film thickness

Lm support membrane thickness

L skin thickness
S

L. a constant

n integer

n. number of particles in class i
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NA

N T
NA

N 0 2
NO2
NGr

NRa

NSc

p
0

PA

pB

pAB

PO 202

x=L

p up0 2
down
0 2
x= 0
P0 2x=L

p2
P

P

C

PdPd

Psaline

Poil

PAVE

PM (cos )
n

flux of A

flux of A (implies carrier in continuous phase)

flux of oxygen

Grashof number

Rayleigh number

Schmidt number

pressure

partial pressure at x = 0 (or r = 0 in which case it

is an equilibrium pressure)

partial pressure of the species A

activity of carrier species B

activity of carrier species AB

partial pressure of oxygen

partial pressure of species A at x = 0

partial pressure of species A at x = L

oxygen pressure in upstream volume

oxygen pressure in downstream volume

partial pressure of oxygen in liquid slab at x = 0

partial pressure of oxygen in liquid slab at x = L

permeability (P = Da)

effective permeability

continuous phase permeability

dispersed phase permeability

oxygen permeability of saline

oxygen permeability of S-10ON mix

average effective permeability

Legendre function
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q function defined by equation (5.19)

Q function defined by equation (4.126)

Q* function defined by equation (4.136)

r radial distance

r function defined in equation (5.22)

R radial distance at r = R

R(r) function used in Appendix A

Rd/c equilibrium solute distribution coefficient between

dispersed phase and continuous phase

Rm parameter defined by equation (4.72)

s function defined by equation (5.21)

t time

t function defined by equation (5.22)

T temperature

v. average volume of particles in class i

Vd downstream volume

W parameter defined by equation (3.8)

X distance

Y fractional saturation

Greek Alphabet

a solubility of species A

a solubility of medium

a A solubility of species A

a B activity coefficient of carrier species B

aAB activity coefficient of carrier species AB

a. i. coefficient in 4x4 matrix
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eigenvalues i = 1,2,3,4

coefficient in 10xlO matrix

6 angle

0 function used in Appendix A

0,0' "time" lag

characteristic length

A defined by equation (C.49)

y viscosity

V kinematic viscosity

p density

standard deviation

potential (in continuous phase)

volume fraction of the dispersed phase

flux

Subscripts

A species A

A.B species A.B (i = 1,2,3,4)

B species B

c continuous phase

d dispersed phase

eq equilibrium

m medium or membrane

s shell or skin around particle

T total

v volume
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Superscripts

(prime) denotes dispersed phase

0 at x = 0 (or r = 0)

L at x = L

T denotes total
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